MCEACHERN

COMPLETION

REPORT

NCR vol. 2.

Mc Enchessauel exploration N.L.



PETROLIUM DIVISION

27 JUL 1990 PEP 119

OTWAY BASIN

**VICTORIA** 

McEACHERN No.1

COMPLETION REPORT VOLUME II

V.AKBARI

JULY, 1990

# 1. DETAILS OF DRILLING PLANT

# APPENDIX 1

Details of Drilling Plant

#### RIG #2

# SUPERIOR MODEL 700E SCR CAPACITY 11,000FT, 3,350M NOMINAL

#### DRAWWORKS

ONE SUPERIOR MODEL 700E SCR ELECTRIC DRIVEN DRAWWORKS COMPLETE WITH AUXILIARY BRAKE AND SANDREEL. MAXIMUM INPUT H.P. 1000. DRIVEN BY EMD MOTOR.

ONE FOSTER MODEL 37 MAKE-UP SPINNING CATHEAD. MOUNTED ON DRILLERS SIDE.

ONE FOSTER MODEL 24 BREAK-OUT CATHEAD. MOUNTED OFF DRILLERS SIDE.

TRANSMISSION - 2 SPEED TRANSMISSION WITH HIGH CHAIN 1 1/4" TRIPLE 26T TO 24T. TWIN DISC PO218 AIR CLUTCH. LOW CHAIN 1 1/4" TRIPLE 20T TO 39T TWIN DISC PO218 AIR CLUTCH.

#### **ENGINES**

FOUR CATERPILLAR MODEL 3412 PCTA DIESEL ENGINES.

#### MAST

FLOOR MOUNTED CANTILEVER MAST DRECO - MODEL NO: M12713-510 DESIGNED IN ACCORDANCE WITH A.P.I. SPECIFICATION 4E 'DRILLING AND WELL SERVICING STRUCTURES'.

CLEAR WORKING HEIGHT - 127'

BASE WIDTH - 13' 6"

HOOK LOAD

GROSS NOMINAL CAPACITY - 510,000 LBS

HOOK LOAD CAPACITY WITH:

10 LINES STRUNG 410,000 LBS

8 LINES STRUNG 365,000 LBS

6 LINES STRUNG 340,000 LBS 4 LINES STRUNG 306,000 LBS

MAXIMUM WIND LOAD 100 MPH - NO SETBACK
MAXIMUM WIND LOAD 84 MPH - RATED SETBACK

ADJUSTABLE RACKING BOARD WITH CAPACITY FOR 108 STANDS OF 4 1/2" DRILL PIPE, 10 STANDS OF 6 1/2" DRILL COLLARS, 3 STANDS OF 8" DRILL COLLARS DESIGNED TO WITHSTAND AN A.P.I. WINDLOAD OF 84 MPH WITH PIPE RACKED.

#### CROWN BLOCK

215 TON WITH FIVE 36" SHEAVES, AND ONE 36" FASTLINE SHEAVE GROOVED 1 1/8".

#### SUBSTRUCTURE

ONE PIECE SUBSTRUCTURE. 14' H X 13' 6" W X 50' L W/ 12' BOP CLEARANCE. SET-BACK - 200,000 LBS - CASING = 210,000 LBS. RIG LIGHTING

EXPLOSION PROOF FLUORESCENT.

#### TRAVELLING BLOCK

ONE 667 CROSBY MCKISSICK 250 TONE COMBINATION BLOCK HOOK WEB WILSON 250 TON HYDRA - HOOK UNIT 5 - 36" SHEAVES.

#### KELLY DRIVE

ONE 20 HDP VARCO KELLY DRIVE BUSHING.

#### KELLY

ONE SQUARE KELLY DRIVE 4 1/4" X 40' COMPLETE WITH SCABBARD.

#### SWIVEL

ONE OILWELL PC-300 TON SWIVEL.

#### ROTARY TABLE

ONE OILWELL A 20 1/2" ROTARY TABLE TORQUE TUBE DRIVEN FROM DRAWWORKS.

#### AIR COMPRESSORS & RECEIVERS

TWO LEROI DRESSER MODEL 660A AIR COMPRESSOR PACKAGES C/W 10 H.P. MOTORS RATED AT 600 VOLT 60 HZ 3 PHASE. RECEIVERS EACH 120 GALLON CAPACITY AND FITTED WITH RELIEF VALVES.

#### INSTRUMENTATION

ONE (1) 6 PEN DRILL SENTRY RECORDER TO RECORD:
WEIGHT (D) 1-MARTIN DECKER SEALTITE
1-CAMERON DEADLINE TYPE
PENETRATION (FEET)
PUMP PRESSURE (0 - 6000 P.S.I.)
ELECTRIC ROTARY TORQUE
ROTARY SPEED (R.P.M.)
PUMP S.P.M. (WITH SELECTOR SWITCH)

# !NSTRUMENTATION (Cont)

ONE (1) DRILLERS CONSOLE INCLUDING THE FOLLOWING EQUIPMENT:

MARTIN DECKER WEIGHT INDICATOR TYPE 'D' ELECTRIC ROTARY TORQUE GAUGE.

PIT SCAN.

S.P.M. GAUGE (2 PER CONSOLE).

ROTARY R.P.M. GAUGE.

ONE SET OF 'DOUBLE SHOT'

DEVIATION INSTRUMENT 'TOTCO'.

ONE SET OF MUD TESTING LABORATORY STANDARD KIT (BAROID).

#### DRILLING LINE

5000' OF 1 1/8" - TIGER BRAND.

#### MUD PUMPS

TWO GARDNER DENVER MUD PUMPS MODEL NO: PZHVE 750 EACH DRIVEN BY 800 HP EMD MOTOR.

#### GENERATOR

FOUR BROWN BOVERI 600 VOLT 3 PHASE 60 HZ AC GENERATORS. POWERED BY FOUR CAT 3412 PCTA DIESEL ENGINES.

# $\frac{B.O.P'S\ AND}{ACCUMULATOR}$

ONE HYDRIL 13 5/8" X 3000 P.S.I. SPHERICAL ANNULAR B.O.P., STUDDED TOP AND FLANGED BOTTOM. HEIGHT 14"

ONE HYDRIL 13 5/8" X 5000 P.S.I. FLANGED DOUBLE GATE B.O.P.

ONE GALAXIE 13 5/8" X 5000 P.S.I. 3000 DOUBLE STUDDED ADAPTOR FLANGES COMPLETE WITH STUDS AND NUTS.

ONE CUP TESTER. GRAY C/W TEST CUPS FOR 9-5/8" AND 13-3/8"

ONE WAGNER MODEL 130 - 160 3 BND 160 GALLON ACCUMULATOR CONSISTING OF:

SIXTEEN 11 GALLON BLADDER TYPE BOTTLES.

ONE 20 H.P. ELECTRIC DRIVEN TRIPLEX PUMP 600 VOLT 60 HZ 3 PHASE MOTOR AND CONTROLS.

ONE WAGNER MODEL A - 60 AUXILIARY AIR PUMP 4.5 GALS/MINUTE.

ONE WAGNER MODEL UM2SCB5S MOUNTED HYDRAULIC CONTROL PANEL WITH FIVE (5) 1" STAINLESS STEEL FITTED SELECTOR VALVES AND TWO (2) STRIPPING CONTROLS AND PRESSURE REDUCING VALVES. THREE (3) 4" HYDRAULIC READOUT GAUGES:

- ONE FOR ANNULAR PRESSURE
- ONE FOR ACCUMULATOR PRESSURE
- ONE FOR MANIFOLD PRESSURE

ONE WAGNER MODEL GMSB - 5A 5 STATION REMOTE DRILLERS CONTROL WITH THREE PRESSURE READBACK GAUGES, INCREASE AND DECREASE CONTROL FOR ANNULAR PRESSURE.

#### SPOOLS

ONE SET FLANGED ADAPTOR SPOOLS TO MATE 13 5/8" LOT X 5000 P.S.I. A.P.I. B.O.P. FLANGE TO FOLLOWING WELLHEAD FLANGES:

12" X 900 SERIES, HEIGHT 14"

10" X 900 SERIES " "

8" X 900 SERIES " "

B.O.P. SPACER. FLANGE 12" 3000 R57 STUDDED X 6" 3000 R45 FLANGE, HEIGHT 16"

B.O.P. SPACER SPOOL (DRILLING SPOOL) 12" 5000 X 12" 5000 BX160, HEIGHT 14"

#### KELLY COCKS

ONE GRIFFITH LOWER KELLY COCK 6 1/2" O.D. WITH 4 1/2" X H CONNECTIONS. ONE GRIFFITH UPPER KELLY COCK 7 3/4" WITH 6 5/8" A.P.I. CONNECTIONS.

#### DRILL PIPE SAFETY VALVE

ONE GRIFFITH 6 1/2" INSIDE BLOWOUT PREVENTORS (4 1/2" X H)
ONE GRIFFITH 6 1/2" STABBING VALVE (4 1/2" X H)

#### CHOKE MANIFOLD

ONE MCEVOY CHOKE AND KILL MANIFOLD 3" - 5000 P.S.I.

#### MUD SYSTEM

ONE PILL TANK CAPACITY 25 BBLS.
TWO MIX TANKS CAPACITY 108 BBLS. (EACH)
ONE RESERVE TANK CAPACITY 120 BBLS.
ONE DESILT TANK CAPACITY 120 BBLS.
ONE DESAND TANK CAPACITY 120 BBLS.
ONE SHAKER TANK CAPACITY 130 BBLS.
ONE SAND TRAP CAPACITY 15 BBLS.

#### FUEL TANKS

ONE 140 BBLS. ONE 6000 GALS - 30,000 LITRES.

#### WATER TANKS

ONE 400 BBLS

#### MIXING PUMPS

FIVE MISSION MAGNUM 5" X 6" X 14" CENTRIFUGAL PUMPS COMPLETE WITH 50 H.P. 600 VOLT HZ 3 PH EXPLOSION PROOF ELECTRIC MOTORS.

#### TRIP TANK PUMP

ONE MISSION MAGNUM 2" X 3" CENTRIFUGAL PUMP COMPLETE WITH 20 H.P. 600 VOLT 60 HZ 3 PH EXPLOSION PROOF MOTORS.

#### WATER TRANSFER PUMPS

THREE MISSION MAGNUM 2" X 3" CENTRIFUGAL PUMPS C/W 20 H.P. 600 VOLT 60 HZ 3 PH EXPLOSION PROOF MOTORS.

#### MUD AGITATORS

SIX GEOLOGRAPH/PIONEER 40 TD - 15" 'PITBULL' MUD AGITATORS WITH 15 H.P. 600 VOLT 60 HZ 3 PH ELECTRIC MOTORS.

#### SHALE SHAKER

ONE BRANDT - DUAL TANDEM SHALE SHAKER.

#### **DESANDER**

ONE PIONEER T8-6 'SANDMASTER' DESANDER.

#### DESILTER

ONE PIONEER T12-4 'SILTMASTER' DESILTER.

#### DRILL PIPE

10000 FT OF 4 1/2" GRADE 'E' 16.60 LBS/FT HARD BANDED DRILL PIPE 326 JOINTS.

#### DRILL COLLARS

- 1 6 1/2" OD DRILL COLLAR (SHORT) 15'
- 27 6 1/2" OD DRILL COLLARS.
- 3 ACTUAL 8" OD DRILL COLLARS.
- 9 ACTUAL JOINTS OF 4 1/2" HEVI-WATE DRILL PIPE.
- TWO (2) BIT SUBS 6-5/8" REG DBL BOX
- TWO (2) BIT SUBS 4-1/2" REG X 4-1/2" XH DBL BOX
- ONE (1) XO SUB 7-5/8" REG X 6-5/8" REG DBL BOX
- ONE (1) XO SUB 4-1/2" XH BOX X 4-1/2" IF PIN
- ONE (1) XO SUB 4-1/2" REG X 4-1/2" XH DBL PIN
- TWO (2) XO SUB 6-5/8" REG PIN X 4-1/2" XH BOX
- ONE (1) JUNK SUB 6-5/8" REG PIN X 6-5/8" REG BOX
- ONE (1) JUNK SUB 4-1/2" REG BOX X 4-1/2" REG PIN
- ONE (1) JUNK SUB 4-1/2" REG BOX X 4-1/2" XH BOX
- TWO (2) KELLY SAVER SUB S/W RUBBER 4-1/2" XH PXB
- TWO (2) CIRCULAR SUBS 4-1/2" XH X 1502 HAMMR UNION
- TWO (2) 12-1/4" EZI CHANGE S/STAB 6-5/8 REG PXB
- TWO (2) 8-1/2" INTEGRAL BLADE STABILIZERS 4-1/2" XH PXB

#### **ELEVATORS**

ONE (1) 4-1/2" BJ 250 TON 18 DEGREE TAPER D/P ELEVATORS

ONE (1) 2-7/8" IUS 100 TON TUBING ELEVATORS

ONE (1) 2-7/8" EUI 100 TON TUBING ELEVATORS

ONE (1) 13-3/8" BAASH ROSS 150 TON S/DOOR ELEVATORS

ONE (1) 13-3/8" S/JOINT P.U. ELEVATORS

ONE (1) 9-5/8" WEBB WILSON 150 TON S/DOOR ELEVATORS

ONE (1) 9-5/8" S/JOINT P.U. ELEVATORS

ONE (1) 7" BJ 200 TON S/DOOR ELEVATORS

ONE (1) 7" S/JOINT P.U. ELEVATORS

ALL P.U. ELEVATORS C/W SLINGS & SWIVEL

ONE (1) 8" WEBB WILSON 150 TON S/DOOR ELEVATORS D/C

ONE (1) 5-3/4" WEBB WILSON 150 TON S/DOOR ELEVATORS D/C ABOVE C/W LIFT NUBBING AND BAILS

#### ROTARY SLIPS D/P TUBING

TWO (2) 4-1/2" VARCO SDML D/P SLIPS

ONE (1) 3-1/2" VARCO SDML TUBING SLIPS

TWO (2) 8" - 6-1/2" DCS-R DRILL COLLAR SLLIPS

#### ROTARY TONGS

ONE (1) BJ TYPE 'B' C/W LATCH & LUG JAWS 13-3/8" - 3-1/2"

#### CASING SLIPS

THREE (3) 13-3/8" - 9-5/8" - 7" VARCO CSML CASING SLIPS

#### BIT BREAKERS

FOUR (4) 17-1/2" - 12-1/4" - 8-1/2" - 6"

#### FISHING TOOLS

ONE (1) 8-1/8" BOWEN SERIES 150 F.S. O/SHOT

ONE (1) 10-5/8" BOWEN SERIES 150 F.S. O/SHOT

C/W GRAPPLES & PACKOFFS TO FISH CONTRACTORS DOWN HOLE EQUIPMENT.

ONE (1) 8 O.D. FISHING MAGNET 4-1/2" REG PIN

ONE (1) REVERSE CIRC JUNK BASKET 4-1/2" XH BOX

ONE (1) JUNK BASKET MILL TYPE C/W MILL SHOE 4-1/2" REG PIN

ONE (1) JARS 6-1/2" O.D. GRIFFITHS FISHING 4-1/2" XH PXB

ONE (1) JAR ACCELERATOR GRIFFITHS FISHING 6-1/2" O.D. 4-1/2" XH PXB

ONE (1) BUMPER SUB 6-1/2" O.D. FISHING 4-1/2" XH PXB

ONE (1) 12" JUNK MILL - 6-5/8" REG PIN

ONE (1) 8" JUNK MILL 4-1/2" REG PIN

#### ROTARY REAMERS

ONE (1) 6-1/2" O.D. DRILCO N.B. ROLLER REAMER C/W TYPE K CUTTERS 8-1/2" HOLE

#### PUP JOINTS

THREE (3) 5' - 10; - 15; 4-1/2" O.D. GRADE 'G' PUP JOINTS

#### **AUGER**

ONE (1) 27-1/2" AUGER 4-1/2" XH BOX

#### RATHOLE DIGGER

ONE (1) FABRICATED ROTARY TABLE CHAIN DRIVEN

#### POWER TONG

ONE (1) FARR 13-5/8" - 5-1/2" HYDRAULIC POWER TONS C/W HYD. POWER PACK & HOSES & TORQUE GUAGE ASSY



2. SUMMARY OF
WELLSITE OPERATION

#### APPENDIX 2

The McEachern No.1 drill site was prepared by Mt. Gambier Earth Movers Pty. Ltd.

Prior to rig arrival, a 16-in conductor pipe had been installed and cemented.

The G.D.S.A Rig No. 2 was rigged up and McEachern No.1 was spudded on 1000 HRS 19th December, 1989.

Drilling 12  $^{1}/_{4}$ -in hole continued to 357m where the 9  $^{5}/_{8}$ -in casing was run and cemented with float at 342m and shoe at 354m.

The B.O.P.'s, choke manifold, and flareline were installed and the B.O.P.'s were successfully tested to the following pressures.

Blind Rams 1200 PSI
Pipe Rams & Manifold 1500 "
Hydrill 500 "

The float, cement, and shoe were drilled out and after drilling 5 metres of new hole, a formation integrity test was established having 8.7 lb/gal mud in the hole. The formation held 140 PSI.

Drilling 8  $^1/_2$ -in hole continued uneventfully to 1370m with a bit change at 934m.

At the depth of 1370m, a total of 79.5 hours were lost waiting on repairs to the Silicon Control Rectifier (S.C.R.).

The 8  $^1/_2$ -in hole was deepened to 1456 meter at which depth drill stem test No.1 was carried out over the interval 1445 to 1456 metres using open hole straddle packers set at 1443.2m, 1445.7m.

Drilling continued with new bit to total depth with bit changes at 1683 and 2138 metres.

The total depth of 2384m was reached at 0630 HRS 8th January, 1990.

The following logs were then run by Gearhart Australia

DLL/MSF/GR LSS/GR/TAC FDC/GR FED/GR SWC

Velocity Survey

Cement plugs were then set over the interval 2060 - 2010m, 1410 -1360m, 360-310m.

The last plug was successfully tested to 10,000 lbs. prior to settling surface plug and abandonment of the well.

The rig was released at  $0900\ HRS$ , 11th January, 1990.

# McEACHERN No.1



# 3. PRILLING FLUID RECAP.

# GAS AND FUEL EXPLORATION DRILLING FLUID RECAP MCEACHERN NO. 1

Prepared By : M Olenjniczak

Dated : December 1989

# TABLE OF CONTENTS

| 1. | WELL SUMMARY SHEET              |
|----|---------------------------------|
| 2. | DISCUSSION BY INTERVAL          |
| 3. | CONCLUSIONS AND RECOMMENDATIONS |
| 4. | MATERIAL RECAP (BY INTERVAL)    |
| 5. | MATERIAL RECAP SUMMARY          |
| 6. | DRILLING FLUID PROPERTIES RECAP |
| 7  | BIT RECORD                      |
| 8. | GRAPHS                          |
|    | APPENDICES                      |
| Α. | FORMATION TOPS                  |

8%" CALLIPER

FINAL MUD INVENTORY

В.

c.

#### WELL SUMMARY

Operator : Gas and Fuel Exploration

Well Number : McEachern No 1
Location : P.E.P 119 Vic

Contractor : GearHart Drilling

Rig : 2

Rig on Location : 18th December 1989 Spud Date : 19th December 1989

RKB Elevation : 4.8 mTotal Depth : 2384 m

Date Reached TD : 10th January 1990 (Plug & Abandon)

Total Days Drilling : 23 days

Rig off Location : 11th January 1990 (Rig Release)

Total Days on Well : 25 days

| Drilling Fluid Type       | <u>Interval</u> | <u> Hole Size</u> | Cost   |         |  |
|---------------------------|-----------------|-------------------|--------|---------|--|
| F.W Gel - Native Clay     | 9m - 357m       | 12¼               | \$ 2,  | 012.16  |  |
| KCl Polymer               | 357m -2384m     | 8½                | \$ 23, | 175.81  |  |
| MUD MATERIALS CHARGED TO  | DRILLING        |                   | \$ 25, | 187.97  |  |
| Engineer on Location from |                 | )-01-90           | \$9,   | 430.00  |  |
| TOTAL DRILLING COST MATE  | RIALS & ENGINEE | RING SERVICE      | \$ 34  | ,617.97 |  |
| Mud Materials not charge  | d to Drilling   |                   | \$     | -       |  |
| Engineering not charged   | to Drilling     |                   | \$     | -       |  |

Casing Program :  $9^5/8$ " @ 354 m

Drilling Supervisors : C McKay

Baroid Mud Engineers : M Olejniczak

#### INTRODUCTION

McEachern No 1 was drilled using Gearhart Rig 2 over 23 days from spud in on 19th December, 1989 until plug and abandonment on 10th January 1990.

This was very close to the projected dry hole time of 24 days, but actual drilling operations were under projection as more than four days of rig time was lost due to an S.C.R breakdown.

There were no serious drilling or mud problems and hole conditions appeared to be good through out. A drill stem test was successfully run at 1456 m without problems. The TD of 2384 m was reached on 8th January, and Gearhart wireline logs were then run over 1½ days without significant hole problems.

The final total mud cost of \$25,187.00 was only slightly above the programmed mud cost of \$22,894, with the excess being almost solely due to Barite and additional KCl cost.

#### DISCUSSION BY INTERVAL

#### 12¼" HOLE Surface - 357 m

When the Mud Engineer arrived on site at 0300 hrs on 19th December 1989, the kelly rathole and mousehole were just being drilled out with water and the main tanks still only had water in them.

After mixing 140 bbl of Pre-hydrated Bentonite actual spud in took place at 10.00 hrs using the active mud tanks only, by passing the desander and desilter. Began drilling very loose sands with no significant clay content from the bottom of the 16" conductor which had been set at 9.0 m. As it was expected to encounter the top of the Eumeralla Claystones and Siltstones from about 50 l it was hoped that the initial amount of Pre-hydrated Bentonite mixed would be enough to get through the sands, then dilution with water and additions of lime would suffice until  $9^5/8$ " casing point.

The pump rate was kept to 300 gpm till 40 m and then increased to 550 gpm, but as soon as this was done the conductor began to shake badly and appeared to sink a couple of inches. The pump rate was cut back to 300 gpm at 50 m as conductor washout appeared imminent. Drilling continued through loose sands and gravels with the mud viscosity being maintained at about 45 seconds with lime and caustic. Hole cleaning was not a problem with the yield point at 28 to 30 lb/100 ft $^2$ . However the sand content of the mud increased to over 1% so the pit volume was slowly increased so that the desander and desilter could be run.

At 94 m while still apparently drilling loose sands, the conductor sagged badly and washed out so drilling stopped. After unsuccessfully attempting to seal the conductor by dripping sacks of Barite around it, an 80 sx cement plug was set immediately beneath the conductor shoe.

#### DISCUSSION BY INTERVAL

#### 12¼" HOLE Surface - 357 (Cont)

After waiting on cement for three hours drilling resumed, without encountering any cement, but the conductor held. The top of the Eumeralla Formation was encountered at 151 m, with the mud being maintained at 40 to 45 seconds viscosity and 8.9 to 9.0 ppg, with water and lime additions only, until casing point was reached at 357 m.

After circulating the hole clean for % hour, a wiper trip was run to surface. Had to pump through a bridge at 35 m while running back in, and also washed 4 m back to bottom. Circulated the hole clean for another % hour using Lime to raise viscosity to 55 seconds with a lot of sand and clay being returned at the shakers until bottoms up.

The  $9^5/8$ " casing was then run in, washing down the last 7 m to bottom, and cemented with a 2%% gel lead slurry and neat tail slurry. Only a contaminated mud-cement mixture was returned at surface during the displacement, indicating that proper cement had reached close to surface. The upper part of the hole, in the loose sands must have been significantly washed out.

Instead of doing a top up cement job, the casing and conductor were later packed with loose gravel.

#### DISCUSSION BY INTERVAL

#### 8½" HOLE - 357 m - 2384 m

While waiting on cement and nippling up the BOP stack the surface pits were dumped retaining only about 150 bbl of the mud from the 12%" hole. This was diluted with an equal volume of water, so that as the float collar, cement and casing shoe were drilled out the contaminating effect of the cement gave a viscosity of about 33 - 34 seconds with a yield point of 15 lb/100 ft<sup>2</sup>, providing good hole cleaning.

At 359 m, after drilling 2 m of new hole a formation leak off test was run giving an 11.0 ppg equivalent Drilling then continued quite rapidly through consistent silty claystone of the Eumeralla Formation, maintaining a 1 to 1½% KCl content in the mud and treating lightly with EZ Mud D.P. Polyacrylamide, Pre-Hydrated in fresh water. This produced a flocculated mud of the following properties:-

Mud Weight : 8.7 ppg

Viscosity : 34 seconds Yield : 15 lb/100ft $^2$ 

Filtrate : No Control

Chlorides : 8 - 10,000 pg/l

This system was maintained down to 700 m, with very little solids build up, very little dilution, and very good cuttings returns at the shakers. The main purpose of running EZ Mud DP in a light KCl concentration for this short interval was to demonstrate that this could be an effective low cost method of drilling thicker sections of Eumeralla Formation in future wells where filtration control is not required.

#### DISCUSSION BY INTERVAL

8½" HOLE - 357 m - 2384 m (Cont)

As the first potential target, the Heathfield Sandstone, was expected at about 830 m, the mud system was gradually converted to a PAC-R, Dextrid based KCl Polymer mud of 3½ to 4% KCl, by additions of premix. It should be noted that the KCl was mixed directly into the mud system so the KCl percentage was raised rapidly, as the use of bulk bags of 1000 kg made mixing of the KCl very much easier. By the time 825 m had been reached the KCl content was at 3½% and the A.P.I Filtrate was at 5.8 ccs. The Heathfield Sandstone was not present in this well and control drilling of the Eumeralla Formation with the weight on bit limited to 5,000 lb continued.

At 934 m it was decided to trip for a bit change and to pick up a stabiliser, as the rig had begun having power supply problems with its S.C.R. There were no problems pulling out of the hole, but after running into the shoe while working on the S.C.R, tight spots had to be reamed from 386 m back to bottom over 9 hrs, in order to get the newly stabilised drilling assembly in, the hole.

Drilling continued with small amounts of Pre-hydrated Aquagel added to maintain the mud M.B.T level around 10 ppb as the Eumeralla Formation appeared to be predominantly silty. However after about 1195 m the formation appeared to change character with soft clay cuttings being returned at the shaker, increasing mud viscosity and sticky connections were experienced. The dilution rate was increased with some Q-Broxin added to give additional viscosity control. This formation change was later interpreted as the top of the Pretty Hill shale sequence. A ten stand wiper trip was run at 1239 m, without problems, to check the hole condition. Meanwhile the mud weight had also risen rapidly up to 9.4 ppg at which level it was controlled for the rest of the well.

#### DISCUSSION BY INTERVAL

8½" HOLE - 357 m - 2384 m (Cont)

At 1370, while tripping for a bit change, power from the S.C.R was lost at 924 m. After effecting a temporary repair managed to pull out under reduced power, change the bit and run back in to the casing shoe. The S.C.R unit was then repaired during the next four days, with the mud in the casing being circulated 1 hour each 12 hours.

After completing the repair ran back in the hole, but had to ream tight hole from 1275 m back to bottom at 1370 m over 5% hrs, with the hole packing off on two occasions with partial mud loss of about 30 bbl. Quite a lot of larger, hard block shale cuttings were returned at the shakers which persisted as drilling continued. At 1454 m, after drilling into the top of the pretty hill sandstone, circulated out a drilling break, then drilled to 1456 m, circulated out again and it was decided to run a D.S.T. A 10 stand wiper trip was run as a precaution without problems, but with 3 m of fill. The hole was then circulated out for another hour with more large shale cuttings at the shakers till the hole cleaned up.

The drill stem test was then successfully run over the interval from 1456 m to 1445 m with water recovered. There were no problems running or retrieving the test string. Drilling then continued steadily through the sandstone/shale sequence of the Pretty Hill formation with mud properties steadily maintained with premix additions. Typical mud properties were:

Mud Weight : 9.3 - 9.4 ppg

Viscosity : 39 - 44 seconds

Yield Point :  $12 - 16 \text{ lb/100 ft}^2$ 

API Filtrate : 6.2 - 7.0 ccs

Chlorides : 18,500 - 20,000 mg/l

% KCl : 3½ - 4%

#### DISCUSSION BY INTERVAL

8½" HOLE - 357 m - 2384 m (Cont)

The API water loss was maintained relatively low without very much difficulty, mainly due to the lack of dispersive Native Clays in the formation, with small regular additions of Pre-hydrated Aquagel made to maintain the M.B.T content at 10 - 12 ppb. This was done to provide a better sealing quality to the downhole filter cake particularly with the long section of sandstones being drilled.

The drilling rate slowed down markedly, but all significant drilling breaks were circulated out to check for hydrocarbon shows. Trips for bit changes were run at 1683 m and 2138 m with srurral 10 stand wiper trips in between all without significant problems other than very minor reaming. In the lower section of the Pretty Hill formation, the drilling rate increased markedly through a massive relatively clean sandstone section, before slowing dramatically to 3 - 4m/hr from 2344 m. As it appeared that the Casterton Formation Siltstone had been reached TD was decided upon at 2384 m.

After running a 10 stand wiper trip and circulating the hole clean for 1½ hrs Gearhart wiring logs were run during the next 1½ days, with the only problem being ledges between 1175 m and 1275 m being slightly difficult to pass.

The Caliper Log showed a hole of generally good condition with one notable section of bad hole from 1175 to 1275 m varying from gauge to 14", in the Pretty Hill shale section. This was the section which was sticky during drilling, and required a lot of reaming after the rig S.C.R repair. The pretty hill formation sandstone sections were all generally gauge to %" to %" underguage indicating significant filter cake build up.

#### DISCUSSION BY INTERVAL

8½" HOLE - 357 m - 2384 m (Cont)

With porosities indicated at 15% from logs, and a steady 1 bbl/hr mud loss downhole during logging this is not surprising, especially as some of the sands were quite coarse. The main point is that the filter cake build up did not create any logging problems or any signs of dirrerential sticking. The Eumeralla Formation averaged 8% to 10%" even including the upper section which drilled very rapidly, which can also be considered as quite good.

After completing logging the well was plugged and abandoned on 10th January 1990.

#### CONCLUSIONS & RECOMMENDATION

- Kelly rathole and mousehole, should be drilled with mud not water in areas with sandy surfaces to avoid potential erosion around surface conductor pipes.
- 2. Circulation rates in loose surface sands should be minimised until at least the sands have been totally drilled through, with mud viscosity maintained higher if required to avoid conductor washout.
- 3. The use of a low percentage KCl Polyacrylamide mud (EZ Mud D.P) to drill the Eumeralla Formation appears to have been successfully demonstrated, with low solids build up, good cuttings and good hole gauge all obtained at low cost.
- 4. The only badly washed section of the hole corresponded to the sticky section of the Pretty Hill shale, between 1175 m and 1275 m, which required a lot of reaming after being out of the hole for 4 days during the S.C.R repair. An increased KCl percentage might help, but there is no clear evidence for this, although the section appeared to stabilise with time.
- 5. Overall the KCl -Gel-Polymer Mud of 3½ 4% KCl preformed quite adequately with the bulk of the hole being in good gauge. Note that the reasonably low pumping hydraulics of 250 gpm combined with moderate nozzle sizes would also have played a large part in limiting hole washout.
- 6. The significant filter cake build up indicated by the caliper log in the lower parts of the pretty hill formation, corresponded with high porosities and coarse grain sized sands with inferred high permiabilities. In this situation it is better to run a KCl Polymer Mud with added Pre-hydrated Aquagel, to improve the sealing and lubricity of the filter cake, and as a direct result reduce filtrate invasion.

#### CONCLUSIONS & RECOMMENDATIONS

7. During the latter half of the well a sweet smell of fermenting Polymer Mud was evident around the rig. The mud PH was run higher to help reduce any possible fermentation, and no signs of mud deterioration were detected, suggesting it was purely mud on the ground and in the sump that was fermenting. Even after completing logging and circulating bottoms up prior to setting cement plugs, the bottoms up mud came back in very good condition. Still it would be a good idea to have some bactericide available for a longer duration well.

# Baroid Australia PTY. LTD./NL INDUSTRIES INC.

### MATERIAL RECAP

COMPANY GAS AND FUEL
WELL MCEACHERN No.1
LOCATION OTWAY BASIN
COST/DAY \$1006.08
COST/M \$ 5.78
COST/bbl \$ 1.72
RECAPPED BY M.OLEJNICZAK

DATE 20/12/89

MUD TYPES FRESH WATER BENTONITE/ NATIVE CLAY FLOCULLATED WITH LIME IIOLE SIZE 12¼" INTERVAL TO 357 m FROM 9 m DRILLED 348 m

CONTRACTOR GEARHART DRILLING DRILLING DAYS/PHASE 2
ROTATING HRS/PHASE 12½

MUD CONSUMPTION FACTOR 3.3 bb1/m

| MATERIAL     | UNIT   | UNIT<br>COST | ACTUAL<br>USED | TOTAL COST |
|--------------|--------|--------------|----------------|------------|
| 4QUAGEL      | 100 15 | 18.64        | 90             | 1677.60    |
| CAUSTIC SODA | 25 kg  | 27.93        | 5              | 139.65     |
| LIME         | 25 kg  | 6.51         | 9              | 58.59      |
| BARITE       | 50 kg  | 11.36        | 12             | 136.32     |

CHEMICAL VOLUME FRESH WATER SEA WATER TOTAL MUD MADE COST LESS BARYTES COST WITH BARYTES COMMENTS bbl bbl

20 1150

1170

A\$1875.84 A\$2012.16



# MATERIAL RECAP

COMPANY GAS AND FUEL

WELL MCEACHERN No.1 LOCATION OTWAY BASIN

COST/DAY \$1103.61 COST/M \$ 11.43 COST/bbl \$ 6.85 RECAPPED BY M.OLEJNICZAK

DATE 9/1/90

MUD TYPES 13% KCL POLYACRYLAMIDE

CHANGING TO % KCL POLYMER FROM 700 m

NOLE SIZE 8½
INTERVAL TO 2384 m

357 m FROM

DRILLED 2027m

CONTRACTOR GEARHART DRILLING

DRILLING: DAYS/PHASE 21

ROTATING HRS/PHASE 222

MUD CONSUMPTION FACTOR 1.7 bbl/m

| MATERIAL                | UNIT             | UNIT   | ACTUAL<br>USED | TOTAL COST<br>ACTUAL |  |  |  |
|-------------------------|------------------|--------|----------------|----------------------|--|--|--|
| AQUAGEL                 | 100 lb           | 18.64  | 100            | 1864.00              |  |  |  |
| CAUSTIC SODA            | 25 kg            | 27.93  | 27             | 754.11               |  |  |  |
| SODA ASH                | 25 kg            | 14.06  | 3              | 42.18                |  |  |  |
| LIME                    | 25 kg            | 6.51   | 1              | 6.51                 |  |  |  |
| BICARBONATE             | 40 kg            | 26.69  | 3              | 80.07                |  |  |  |
| PAC-R                   | 50 lb            | 97.18  | 70             | 6802.60              |  |  |  |
| DEXTRID                 | 50 lb            | 37.96  | 132            | 5010.72              |  |  |  |
| EZ MUD DP               | 50 lb            | 150.00 | 2              | 300.00               |  |  |  |
| Q BROXIN                | 50 lb            | 25.12  | 6              | 150.72               |  |  |  |
| POTASSIUM CHLORIDE (BUL | K BAG/). 1000 kg | 306.07 | 22             | 6733.54              |  |  |  |
| BARITE                  | 50 kg            | 11.36  | 126            | 1431.36              |  |  |  |

CHEMICAL VOLUME bb1 FRESH WATER bbl SEA WATER TOTAL MUD MADE bb1 COST LESS BARYTES **COST WITH BARYTES** COMMENTS

95

3290

3385

A\$21,744.45 A\$23,175.81



# MATERIAL SUMMARY

COMPANY GAS AND FUEL
WELL MCEACHERN No1
LOCATION OTWAY BASIN
COST/DAY \$1095.13
COST/ M \$ 10.60
COST/ bbl \$ 5.53
RECAPPED BY M.OLEJNICZAK

MUD TYPE F.W. GEL/LIME SPUD MUD

TO 357 m. 1½% KCL POLYACRYLAMIDE

TO 700m. 4% KCL POLYMER TO TD - 12½ 348 2

TOTAL ROTATING HRS 234½

DRILLED DRILLING
DAYS

2027 21

TOTAL HOTATING HAS 2342

TOTAL DEPTH 2384 m TOTAL 2375m 23 days

MUD CONSUMPTION: WELL AVERAGE

| MATERIAL                   | UNIT         | UNIT<br>COST | ESTIMATED<br>USED KG/M³ | ACTUAL<br>USED | TOTAL COST<br>ACTUAL |
|----------------------------|--------------|--------------|-------------------------|----------------|----------------------|
|                            |              |              |                         |                |                      |
| AQUAGEL                    | 100 lb       | 18.64        |                         | 190            | 3541.60              |
| CAUSTIC SODA               | 25 kg        | 27.93        |                         | 32             | 893.76               |
| SODA ASH                   | 25 kg        | 14.06        |                         | 3              | 42.18                |
| LIME                       | 25 kg        | 6.51         |                         | 10             | 65.10                |
| BICARBONATE                | 40 kg        | 26.69        |                         | 3              | 80.07                |
| PAC-R                      | 50 lb        | 97.18        |                         | 70             | 6802.60              |
| DEXTRID                    | 50 lb        | 37.96        |                         | 132            | 5010.72              |
| EZ MUD DP                  | 50 lb        | 150.00       |                         | 2              | 300.00               |
| Q-BROXIN                   | 50 lb        | 25.12        |                         | 6              | 150.72               |
| POTASSIUM CHLORIDE (BULK I | BAG) 1000 kg | 306.07       | 7                       | 22             | 6733.54              |
| BARITE                     | 50 kg        | 11.36        |                         | 138            | 1567.68              |

CHEMICAL VOLUME FRESH WATER SEA WATER TOTAL MUD MADE COST LESS BARYTES COST WITH BARYTES COMMENTS bbl bbl

115 4440

4555

A\$23,620.29 A\$25,187.97



# DRILLING FLUID PROPERTY RECAP

| COMPANY      |             |                   | GAS AND FUEL EXPLORATION |               |              |    |            |    |                   |                         |     |              |             |              | W          | /ELL        | ٨    | <b>I</b> CEACH | IERN            | No. 1    |              |                                         |
|--------------|-------------|-------------------|--------------------------|---------------|--------------|----|------------|----|-------------------|-------------------------|-----|--------------|-------------|--------------|------------|-------------|------|----------------|-----------------|----------|--------------|-----------------------------------------|
| DATE<br>1989 | DEPTH<br>m  | HOLE<br>SIZE      | TEMP                     | weight<br>ppg | T VIS<br>SEC | PV | ΥP         | 10 | GELS<br>10<br>min | WATER<br>LOSS<br>A P I. | CAK |              | PI          | MI           | CI<br>mg/I | Ca<br>mg/l  | SAND | SOLIDS         | WATER           | OIL<br>% | MBC<br>kạrm: | REMARKS TREATMENT FORMATION             |
| Dec          |             |                   |                          |               |              |    |            |    |                   |                         |     |              |             |              |            |             |      |                |                 |          |              |                                         |
| 19           | 143         | 12 <del>‡</del>   | -                        | 9.0           | 45           | 7  | <i>2</i> 8 | 15 | 18                | 20                      | 4   | 11.5         | 1.6         | 1.7          | 1500       | 120         | 1.0  | 4              | 96              | -        | -            | Spud in conductor weshed out            |
| <b>2</b> 0   | <i>35</i> 7 | 12 <del>1</del>   | -                        | 9.0           | <i>55</i>    | 10 | <i>3</i> 8 | 25 | 28                | N.C                     | 4   | 11.0         | .6          | .7           | 1200       | 180         | 0.1  | 4              | 96              | -        | -            | Drill Run and OMT 9 <sup>5</sup> /8 CSG |
| 21           | 357         | $8^{\frac{1}{2}}$ | -                        | 8.7           | 29           | 4  | 4          | 3  | 4                 | N.C                     | 4   | 12.0         | 1.1         | 1.2          | 800        | 190         | TR   | 2              | <i>9</i> 8      | -        | -            | WOC nipple up. Run in                   |
| 22 •         | 825         | $8^{\frac{1}{2}}$ |                          | 9.1           | 40           | 14 | 12         | 2  | 4                 | <i>5</i> .8             | 1   | 9.0          | .05         | .06          | 17500      | 350         | TR   | <i>3</i> ₹     | 96 <del>1</del> | -        | 6            | Drill, change to KCl Polymer            |
| 23           | 934         | 81                | -                        | 9.1           | <i>3</i> 7   | 11 | 10         | 2  | 4                 | <i>5.5</i>              | 1   | 9.5          | <b>.</b> 08 | .1           | 19000      | 200         | TR   | <i>3</i> ₹     | 96 <u>₹</u>     | -        | 6            | Drill, repair SCR                       |
| 24           | 1088        | 8 <u>1</u>        | 42                       | 9.2+          | 40           | 12 | 12         | 2  | 8                 | 6.4                     | 2   | 9.5          | .1          | . 12         | 20000      | 320         | TR   | $4\frac{1}{2}$ | 95 <u>₹</u>     | _        | 11           | Drill                                   |
| 25           | 1300        | 8 <u>1</u>        | 42                       | 9.4           | 41           | 12 | 13         | 3  | 8                 | 7.0                     | 2   | 9.5          | .1          | . 12         | 21000      | 320         | TR   | 5              | 95              | -        | 13           | Drill, wiper trip                       |
| 26           | 1370        | 8 <u>1</u>        | 42                       | 9.3           | 40           | 11 | 10         | 2  | 4                 | <i>5.0</i>              | . 1 | 9.5          | .1          | . 12         | 20000      | 320         | TR   | 5              | 95              | -        | 13           | Drill, POH, Repair to SCR               |
| 27           | 1370        | 81/2              | _                        | 9.3           | <i>3</i> 7   | 10 | 8          | 2  | 3                 | <i>5.</i> 0             | 1   | 9.5          | .1          | . 12         | 20000      | <i>3</i> 00 | TR   | 5              | 95              | -        | 13           | Wait on repair to SCR                   |
| 28           | 1370        | 81                | _                        | 9.3           | <i>3</i> 7   | 10 | 8          | 2  | 3                 | <b>5.</b> 0             | 1   | 9.5          | . 1         | . 12         | 2000       | 300         | TR   | 5              | 95              | _        | 13           | Wait on Repair to SCR                   |
| 29           | 1370        | 81/2              | -                        | 9.3           | <i>3</i> 7   | 10 | 8          | 2  | 3                 | <b>5.</b> 0             | 1   | 9.5          | .1          | . 12         | 19500      | <i>3</i> 00 | TR   | 5              | 95              | -        | 13           | n n n                                   |
| <i>3</i> 0   | 1446        | 8 <u>1</u>        | 44                       | 9.3+          | <i>3</i> 9   | 9  | 10         | 2  | 9                 | 6.8                     | 2   | 10.0         | .1          | . 15         | 20500      | 180         | TR   | 5              | 95              | -        | 12           | Ream back to bottom, Drill              |
| 31           | 1460        | 8 <u>1</u>        | 43                       | 9.4           | 42           | 11 | 13         | 6  | 14                | 7 <b>.</b> 2            | 2   | 9 <b>.</b> 5 | . 1         | . 15         | 20000      | 180         | TR   | 5              | 95              | -        | 11           | Ran DST No. 1                           |
| Jan          |             |                   |                          |               |              |    |            |    |                   |                         |     |              |             |              |            |             |      |                |                 |          |              | ·                                       |
| 1            | 1602        | $8\frac{1}{2}$    | 46                       | 9.3           | 40           | 9  | 12         | 3  | 8                 | 6.8                     | 2   | 10.0         | . 15        | .22          | 19000      | 220         | TR   | 5              | 95              | _        | 12           | Drilling                                |
| 2            | 1701        | 8 <u>1</u>        | 48                       | 9.3+          | 40           | 10 | 12         | 3  | 12                | 6.3                     | 1   | 9.5          | . 1         | . 13         | 18500      | 100         | TR   | 5 <u>²</u>     | 94 <u>1</u>     | -        | 12           | Drilling trip for bit change            |
| 3            | 1833        | $8\frac{1}{2}$    | 48                       | 9.4           | <i>3</i> 9   | 11 | 11         | 3  | 7                 | 6.2                     | 1   | 10           | . 18        | .22          | 18500      | 50          | TR   | 5 <u>₹</u>     | 94 <u>₹</u>     | -        | 11           | Drilling                                |
| 4            | 1943        | 8 <u>1</u>        | 48                       | 9.4           | <i>3</i> 9   | 10 | 12         | 2  | 8                 | 6.5                     | 1   | 9.5          | . 12        | . 18         | 20000      | 40          | TR   | 5              | 95              | -        | 11           | Drilling, wiper trip                    |
| 5            | 2075        | 81/2              | 52                       | 9.4           | 44           | 13 | 16         | 5  | 18                | 6.8                     | 1   | 10.5         | .25         | .3           | 18500      | 20          | TR   | 5 <u>²</u>     | $94\frac{1}{2}$ | -        | 11           | Drilling, wiper trip                    |
| 6            | 2217        | 8 <u>1</u>        | 53                       | 9.4           | 42           | 14 | 14         | 3  | 10                | 6.5                     | 1   | 9.5          | . 12        | . 18         | 18000      | 40          | 0.1  | 5              | 95              | -        | 9            | Drill, trip for new bit                 |
| 7            | 2374        | 81/2              | 56                       | 9.3+          | 42           | 13 | 14         | 3  | 10                | 6.7                     | 1   | 10.2         | .25         | . <i>3</i> 5 | 20000      | 20          | TR   | $4\frac{1}{2}$ | 95₺             | -        | 10           | Drilling                                |
| 8            | 2384        | 8 <u>1</u>        | -                        | 9.3+          | 42           | 13 | 14         | 3  | 10                | 6.7                     | 1   | 10.2         | .25         | .35          | 20000      | <i>2</i> 0  | TR   | 41/2           | 95₹             | -        | 10           | TD Logging                              |
| 9            | 2384        | 8=                | _                        | 9.3+          | 42           | 13 | 14         | 3  | 10                | 6.7                     | 1   | 10.2         | .25         | .35          | 20000      | 20          | TR   | $4\frac{1}{2}$ | 95 <u>²</u>     | _        | 10           | Logging P & A                           |

Baroid Australia PTY. LTD./NL INDUSTRIES INC.

# BIT RECORD. MCEACHERN NO. 1

|              |     |                 |        |      | JETS       | DEPTH | METRES  |                 | MTRS/        | ACCUM            | BIT             |       | VERT               | PUMP               | PUMP        |                    | MUD        | Ç | CONDITION |                 |             |                       |
|--------------|-----|-----------------|--------|------|------------|-------|---------|-----------------|--------------|------------------|-----------------|-------|--------------------|--------------------|-------------|--------------------|------------|---|-----------|-----------------|-------------|-----------------------|
| DATE<br>1989 | No. | SIZE            | MAKE   | TYPE | 32nd"      | OUT   | DRILLED | HOURS           | HR           | DRLG<br>HOURS    | WEIGHT  1b      | RPM   | DEV'N              | PRESSURE<br>p.s.i. | RATE<br>spm | wr<br><i>ppg</i> _ | VIS<br>sec |   | В         | G               | FORMATION . | REMARKS               |
| Dec          |     |                 |        |      |            |       |         |                 |              |                  |                 |       |                    |                    |             | •                  |            |   |           |                 |             |                       |
| 20           | 1   | 12 <del>1</del> | SEC    | S335 | 15. 15. 18 | 357   | 352.2   | 12 <del>1</del> | 28.2         | 12 <del>1</del>  | 10 - 20         | 140   | 31 <sub>4</sub> 0  | 800                | 180         | 9.0                | 45         | 2 | 4         | 0               | Sand/Cyst   | 9 <sup>5</sup> /8 CSG |
| 23           | 2   | 81/2            | VAREL_ | L114 | 3x10       | 934   | 577     | 28              | 20.6         | 40 <u>1</u>      | 5 - 10          | 120   | 10                 | 1100               | 90          | 9.1                | <i>3</i> 7 | 4 | 1         | 14              | Clyst       |                       |
| 26           | 3   | $8\frac{1}{2}$  | VAREL  | L137 | 3×10       | 1370  | 436     | <i>3</i> 8      | 11.5         | 78 <u>1</u>      | 10 - 20         | 90    | 10                 | 1350               | 90          | 9.3                | 41         | 2 | 1         | 0               | Clyst       |                       |
| 31           | 4   | $8\frac{1}{2}$  | VAREL  | V437 | 11.11.10   | 1456  | 86      | 14 <del>1</del> | 5 <b>.</b> 9 | 93               | 20 - 25         | 90    | 10                 | 1150               | 90          | 9.3                | 40         |   |           |                 | Clyst/SST   | Pull for test         |
| Jan          |     |                 |        |      |            |       |         |                 |              |                  |                 |       |                    |                    |             |                    |            |   |           |                 |             |                       |
| 2            | 5   | $8\frac{1}{2}$  | VAREL. | V437 | 11.11.10   | 1683  | 227     | 34              | <b>6.</b> 7  | 127              | 20 - 30         | 70/90 | 2°                 | 1100               | 90          | 9.3                | 40         | 3 | 4         | 4               | SST/Clyst   |                       |
| 6            | 6   | 8 <u>1</u>      | HTC    | J22  | 10.10.12   | 2138  | 455     | $73\frac{1}{2}$ | 6.2          | 200±             | 20 - 30         | 60/80 | 3º                 | 1150               | 90          | 9.4                | 42         | 2 | 4         | <sup>1</sup> /8 | SST/Clyst   |                       |
| 8            | 7   | $8\frac{1}{2}$  | VAREL. | V517 | 11.11.10   | 2384  | 246     | 34              | 7.2          | 234 <del>≟</del> | 20 <i>- 3</i> 5 | 60/80 | 3 <sup>3</sup> /4º | 1150               | 90          | 9.3+               | 42         | 4 | 3         | 0               | SST/SLST    | TD                    |

٠.

•

ابك

ι'n

14

ıs

דו

18

19

20

21

23

24

8 Cost (x \$1,000).

STATE OFFICE

3. GAS AND FUEL EXPLORATION. - McEACHEAN NO! MUD WEIGHT AND VISCOSITY VS. DEPTH. HOUNGEL SPUD MUD. 95/8"CSG INCREASE TO 55 SECONDS AT 354 DILUTE MUD WITH WATER TO DRILL CRIMENT AND CASING SHOP. 400 DRILL TO 9000 WITH EZ-MUO DP. FLOCULATED MUD. 600 -----800 CONVERT TO TO FROM 900m TO TO. 1000 1200 1400 . . . . . . 1600 1800 2000 2200 2400 -----. . . . RKB) **ДЕРТН** (м.

35

40

VISCOSITY (SECONDS.)

45

50

SS.

9.0 MUD 9.5 (PPS). 10.0

10.5

25

30

8.5

8.0



# GAS AND FUEL EXPLORATION MCEACHERN NO. 1

# APPENDIX - A

| FORMATION TOPS            | <u>DEPTH</u> |
|---------------------------|--------------|
| Post Otway Group          | Surface      |
| Eumeralla Formation       | 151          |
| Top Pretty Hill Shale     | 1195         |
| Top Pretty Hill Sandstone | 1426.5       |
| Casterton Formation       | 2344         |

<u>APPENDIX - B</u>

8½" HOLE CALIPER ( AVERAGED EVERY 25M)

| DEPTH M | INCHES            | DEPTH | INCHES            | DEPTH | INCHES            |
|---------|-------------------|-------|-------------------|-------|-------------------|
|         |                   |       |                   |       |                   |
| 375     | 10                | 1075  | 9 <sup>3</sup> /8 | 1775  | 81/4              |
| 400     | 9½                | 1100  | 91/4              | 1800  | 81/4              |
| 425     | 8 <sup>3</sup> /8 | 1125  | 10                | 1825  | 8 <sup>5</sup> /8 |
| 450     | 9½                | 1150  | $10^{3}/4$        | 1850  | 83/8              |
| 475     | 9 <sup>3</sup> /8 | 1175  | 11                | 1875  | 8½                |
| 500     | 9¼                | 1200  | 11                | 1900  | 8½                |
| 525     | 9¼                | 1225  | 10½               | 1925  | 8 <sup>3</sup> /8 |
| 550     | 8 <sup>7</sup> /8 | 1250  | 11                | 1950  | 8 <sup>5</sup> /8 |
| 575     | 8 <sup>3</sup> /4 | 1275  | 10½               | 1975  | 83/8              |
| 600     | 8½                | 1300  | 9½                | 2000  | 8½                |
| 625     | 9 <sup>3</sup> /8 | 1325  | 9 <sup>3</sup> /4 | 2025  | 8 <sup>5</sup> /8 |
| 650     | 9½                | 1350  | $9^{1}/8$         | 2050  | 8½                |
| 675     | 101/4             | 1375  | 9                 | 2075  | 8½                |
| 700     | 9½                | 1400  | 9                 | 2100  | 8½                |
| 725     | 9½                | 1425  | 9                 | 2125  | 8 <sup>1</sup> /8 |
| 750     | 9 <sup>7</sup> /8 | 1450  | 9¼                | 2150  | 8                 |
| 775     | 10                | 1475  | 8 <sup>3</sup> /8 | 2175  | 8                 |
| 800     | 8½                | 1500  | 9                 | 2200  | 8 <sup>1</sup> /8 |
| 825     | 8½                | 1525  | 9                 | 2225  | 8 <sup>1</sup> /8 |
| 850     | 9 <sup>3</sup> /8 | 1550  | 8½                | 2250  | 81/4              |
| 875     | 9                 | 1575  | 8½                | 2275  | $8^{1}/8$         |
| 900     | 8 <sup>5</sup> /8 | 1600  | 8 <sup>1</sup> /8 | 2300  | 8¼                |
| 925     | 9¼                | 1625  | 8 <sup>3</sup> /8 | 2325  | 8¼                |
| 950     | 9 <sup>3</sup> /8 | 1650  | 8¼                | 2350  | 8¼                |
| 975     | 10½               | 1675  | 8 <sup>5</sup> /8 | 2375  | 81/4              |
| 1000    | 11                | 1700  | 8 <sup>3</sup> /8 |       |                   |
| 1025    | $10^{3}/4$        | 1725  | 8 <sup>3</sup> /8 |       |                   |
| 1050    | 10                | 1750  | 8 <sup>3</sup> /8 |       |                   |
|         |                   |       |                   |       |                   |

# GAS AND FUEL EXPLORATION MCEACHERN NO. 1

## APPENDIX - C

|                | FINAL MUD  | INVENTORY | FOR  | RETURN T  | ro adelaide – | 9/1/90 |
|----------------|------------|-----------|------|-----------|---------------|--------|
| Aquagel        |            |           | 1b   | SX        | 130           |        |
| Barite         |            | 50        | kg   | SX        | 262           |        |
| Caustic Soda   |            | 25        | kg   | SX        | 8             |        |
| Soda Ash       |            | 25        | kg   | SX        | 7             |        |
| Bicarbonate    |            | 40        | kg   | SX        | 4             |        |
| Q-Broxin       |            | 50        | 1b   | SX        | 4             |        |
| PAC-R          |            | 50        | 1b   | SX        | 10            |        |
| Dextrid        |            | 50        | 1b   | SX        | 28            |        |
| EZ Mud DP      |            | 50        | 1b   | SX        | 2             |        |
| Baradefoam     |            | 25        | 1    | Can       | 2             |        |
| Condet         |            | 200       | 1    | Dru       | n 1           |        |
| Envirospot     |            | 200       | 1    | Drum      | n 2           |        |
| Potassium Chlo | oride (Ag) | 1000      | ) kg | Bag       | 1             |        |
| Total tonnage  |            | 22.2      | exc  | cluding p | oalletising   |        |

Returned to Adelaide by associated transport of Australia Truck, loaded as above on 9th January 1990.

# 4. SAMPLE DESCRIPTION

| WELL: McEAC | HERN N | O.1 DATE: 19-12-89 GEOLOGIST: A. TABASSI PAGE: 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    | *************************************** | SHOWS |            |      |     |
|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-----------------------------------------|-------|------------|------|-----|
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    | GAS                                     |       |            | FLU  | OR  |
| DEPTH (m)   | ક      | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL    | C1 | C2                                      | С3    | <b>C</b> 4 | NAT. | CUT |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | McEACHERN NO. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | <u>PEP 119</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | OTWAY BASIN - VICTORIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | SPUDDED @ 10.00 HOURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | TUESDAY, 19TH DECEMBER, 1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | RIG: GDSA RIG 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | The state of the s |          |    |                                         |       |            |      |     |
|             |        | <u>K.B.</u> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                         |       |            |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |    |                                         |       |            |      |     |

| WELL:                                   | McEAC | HERN N | 0.1 DATE: 19-12-89 GEOLOGIST: A. TABASSI PAGE: 2 OF                  |       |    |     | SHOWS |    |      |     |
|-----------------------------------------|-------|--------|----------------------------------------------------------------------|-------|----|-----|-------|----|------|-----|
| *************************************** |       |        |                                                                      |       |    | GAS |       |    | FLU  | OR  |
| DEPTH                                   | (m)   | 8      | SAMPLE DESCRIPTION                                                   | TOTAL | C1 | C2  | С3    | С4 | NAT. | CUT |
| 00-                                     | 10    | -      | No Sample                                                            |       |    |     |       |    |      |     |
| 10-                                     | 20    | 90     | <u>Limestone</u> off white to lt yel brown, loose, fri in part, med  |       |    |     |       |    |      |     |
|                                         |       | Ì      | to VC, dom C to VC, extremely fossiliferous, bryozoa, forams,        |       |    |     |       |    |      |     |
|                                         |       |        | crinoids and other shell frag, sub-rnd to rnd, v gd vis $ ot\!\!\!/$ |       |    |     |       |    |      |     |
|                                         |       | 10     | Sandstone translucent to v lt gry, v lt brn gry in part,             |       |    |     |       |    |      |     |
|                                         |       |        | unconsolidated, med to VC, dom C-VC, sub rnd-rnd, dom subrnd         |       |    |     |       |    |      |     |
|                                         |       |        | mod sorted quartz grains, no apparent mtx, rare multi-col            |       |    |     |       |    |      |     |
|                                         |       |        | lithics, v good vis $\emptyset$                                      |       |    |     |       |    |      |     |
| 20-                                     | 30    | 15     | <u>Limestone</u> as above                                            |       |    |     |       |    |      |     |
|                                         |       | 85     | Sandstone as above                                                   |       |    |     |       |    |      |     |
| 30-                                     | 40    | 15     | <u>Limestone</u> as above                                            |       |    |     |       |    |      |     |
|                                         |       | 65     | Sandstone as above with some VC med gry arg quartz grains            |       |    |     |       |    |      |     |
|                                         |       |        | (apparently the angularity caused by bit action of some "over        |       |    |     |       |    |      |     |
|                                         |       |        | grown" quartz pebble)                                                |       |    |     |       |    |      |     |
| 40-                                     | 50    | 10     | <u>Limestone</u> as above (possibly caving)                          |       |    |     |       |    |      |     |
|                                         |       | 90     | Sandstone as above, dom lt-med gry, lt-med brn-gry                   |       |    |     |       |    |      |     |
| 50-                                     | 60    | 50     | Sandstone as above, with tr quartz overgrowth and rare pyr cmt       |       |    |     |       |    |      |     |
|                                         |       | 50     | Claystone dk greenish gry, drk brn gry in part, firm to soft,        |       |    |     |       |    |      |     |
|                                         |       |        |                                                                      |       |    |     |       |    |      |     |

| WELL: McEA( | HERN N | IO.1 DATE: 19-12-89 GEOLOGIST: A. TABASSI PAGE: 3 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHOWS |    |     |    |    |      |     |
|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|----|----|------|-----|
|             |        | The state of the s |       |    | GAS |    |    | FLU  | OR  |
| DEPTH (m)   | 8      | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL | C1 | C2  | С3 | C4 | NAT. | CUT |
|             |        | disp in part, mod silty, rarely micaceous, mod glauconitic in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |    |     |    |    | i    |     |
|             |        | part with trace of med to C grained glauconite pellets, v dk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |     |    |    |      |     |
|             |        | green, tr med grained quartz & multi-col lith.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |    |     |    |    |      |     |
| 60- 70      | 30     | Sandstone as above with inferred abundant dk green gry arg mtx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |    |     |    |    |      |     |
|             |        | and some quartz grains with green staining.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |     |    |    |      |     |
|             | 70     | <u>Claystone</u> as above, mod to abundantly silty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |    |    |      |     |
| 70-80       | 100    | Sandstone med - dk green gry, med brn gry in part, v lt gry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |     |    |    |      |     |
|             |        | in part, fri-firm, hd in part, med-VC, sub arg-sub rnd, mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,     |    |     |    |    |      |     |
|             |        | - poor sorted quartz, some partially green stained and minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |     |    |    |      |     |
|             |        | med-C glauconite, abundant dk green gry arg mtx, tr pyr cmt,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |     |    |    |      |     |
|             |        | rare pyr nodule, tr overgrowth quartz grains, mod to poor vis (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }     |    |     |    |    |      |     |
|             |        | rare pyr nodule, tr overgrowth quartz grains, mod to poor vis (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | }     |    |     |    |    |      |     |
|             | tr     | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |    |    |      |     |
| 80- 90      | 100    | Sandstone lt brn gry, lt-med gry, fri-firm, med-VC, dom C, sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |    |     |    |    |      |     |
|             |        | rnd-rnd, dom sub rnd, poorly sorted qtz, abundant med gry arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |    |     |    |    |      |     |
|             |        | mtx, disp in part, silty in part, rarely micaceous in part,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |     |    |    |      |     |
|             |        | tr glauc (cavings?) rare pyr cmt, mod to poo vis.Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |    |    |      | ,   |
| 90- 100     | 100    | <u>Sandstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |    |    |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |     |    |    |      |     |

| WELL: McEAC | HERN N | 0.1 DATE: 19-12-89 GEOLOGIST: A. TABASSI PAGE: 4 OF                  |       |           |     | SHOWS |    |      |     |
|-------------|--------|----------------------------------------------------------------------|-------|-----------|-----|-------|----|------|-----|
|             |        |                                                                      |       |           | GAS |       |    | FLU  | OR  |
| DEPTH (m)   | 8      | SAMPLE DESCRIPTION                                                   | TOTAL | <b>C1</b> | C2  | С3    | C4 | NAT. | CUT |
| 100- 110    | 100    | Sandstone clear-translucent to v lt gry, lt gry brn in part,         |       |           |     |       |    |      |     |
|             |        | apparently unconsolidated, med-VC, dom C, sub ang-sub rnd,           |       |           |     |       |    |      |     |
|             |        | poorly sorted qtz, no apparent mtx, tr pyr, tr shell frag.           |       |           |     |       |    |      |     |
|             |        | tr med gry qtz overgrowth, $v$ good $v$ is $\emptyset$               |       |           |     |       |    |      |     |
| 110- 120    | 100    | Silty Claystone med-dk brn gry, soft, dispersing in part,            |       |           |     |       |    | ,    |     |
|             |        | extremely silty, becomes clayey siltstone in part,                   |       |           |     |       |    |      |     |
|             |        | becomes v fine arg sandstone in part, finely micaceous, tr lith      |       |           |     |       |    |      |     |
|             |        | with minor;                                                          |       |           |     |       |    |      |     |
|             |        | Carbonaceous Claystone, V dk gry-blk, soft, firm to elastic          |       |           |     |       |    |      |     |
|             |        | in touch, becoming coally in part with dull luster.                  |       |           |     |       |    |      |     |
| 120- 130    | 100    | Sandstone as per 100-110                                             |       |           |     |       |    |      |     |
| 130- 140    | 100    | Sandstone med brn, med brn gry, loose - fri, firm in part,           |       |           |     |       |    |      |     |
|             |        | VF - VC tr silt size in part, dom f and med (bimodel dist.),         |       |           |     |       |    |      |     |
|             |        | SA-SR, poorly sorted qtz, abundant med gry brn disp arg mtx,         |       |           |     |       |    |      |     |
|             |        | rare fine mica tr multi-col lith mod-poor vis $oldsymbol{arnotheta}$ |       |           |     |       |    |      |     |
| 140- 151    | 100    | Silty Claystone, med to dk brn, med brn gry in part, firm,           |       |           |     |       |    |      |     |
|             |        | disp in part, extremely micaceous, tr fine, carb det,                |       |           |     |       |    |      |     |
|             |        | extremely silty and/or sandy, rare fine lith.                        |       |           |     |       |    |      |     |
|             |        |                                                                      |       |           |     |       |    |      |     |

| WELL: McEAC | HERN N | 0.1 DATE: 20-12-89 GEOLOGIST: A. TABASSI PAGE: 5 OF         |       |    |     | SHOWS |           |      |     |
|-------------|--------|-------------------------------------------------------------|-------|----|-----|-------|-----------|------|-----|
|             |        |                                                             |       |    | GAS |       |           | FLU  | OR  |
| DEPTH (m)   | ક      | SAMPLE DESCRIPTION                                          | TOTAL | C1 | C2  | С3    | <b>C4</b> | NAT. | CUT |
|             |        | POST OTWAY SEDIMENTS/OTWAY GROUP UNCONFORMITY?              |       |    |     |       |           |      |     |
|             |        |                                                             |       |    |     |       |           |      |     |
|             |        | OTWAY GROUP                                                 |       |    |     |       |           |      |     |
| 151- 160    | 90     | Claystone med green gry, med blue green, firm, hd in part,  |       |    |     |       |           |      |     |
|             |        | sticky in part, occ disp in part, extremely silty, becoming |       |    |     |       |           |      |     |
|             |        | Siltstone in part, finely micaceous in part, tr carb mat.,  |       |    |     |       |           |      |     |
|             |        | interbd/interlam with:                                      |       |    |     |       |           |      |     |
|             | 10     | Sandstone med green gry, lt gry brn in part, speckled, fri- |       |    |     |       |           |      |     |
|             |        | firm, hd in part f-med, SA-SR, mod sorted qtz & lithic frag |       |    |     |       |           |      |     |
|             |        | including "volcanolithics" and chlorite (?) tr-com, med brn |       |    |     |       |           |      |     |
|             |        | gry & green gry arg mtx, disp in part, silty in part, tr    |       |    |     |       |           |      |     |
|             |        | calc cmt, tr carb mat., poor vis $oldsymbol{arphi}$         |       |    |     |       |           |      |     |
| 160- 170    | 85     | Sandstone as above                                          |       |    |     |       |           |      |     |
|             | 15     | <u>Claystone</u> as above                                   |       |    |     |       |           |      |     |
| 170- 180    | 100    | Silty Claystone/Clayey Siltstone as above                   |       |    |     |       |           |      |     |
|             | tr     | Sandstone as above                                          |       |    |     |       |           |      |     |
| 180- 190    | 100    | <u>Silty Claystone</u> as above                             |       |    |     |       |           |      |     |
| 190- 200    | 100    | Silty Claystone as above, dom med brn gry                   |       |    |     |       |           |      |     |
|             |        |                                                             |       |    |     |       |           |      |     |

| WELL: McEACHERN NO.1 DATE: 20-12-89 GEOLOGIST: A. TABASSI PAGE: 6 OF |        |                                                                            |       |           |     |    |    |      |     |
|----------------------------------------------------------------------|--------|----------------------------------------------------------------------------|-------|-----------|-----|----|----|------|-----|
| WELL: MCEAC                                                          | HERN N | U.I DAIE: 20-12-09 GEOLOGISI. A. IADASSI IAGE. U OF                        |       |           | GAS |    |    | FLU  | OR  |
| DEPTH (m)                                                            | 8      | SAMPLE DESCRIPTION                                                         | TOTAL | <b>C1</b> | C2  | С3 | C4 | NAT. | CUT |
|                                                                      | tr     | Sandstone as above                                                         |       |           |     |    |    |      |     |
| 210- 220                                                             | 100    | <u>Silty Claystone</u> as above                                            |       |           |     |    |    |      |     |
|                                                                      | tr     | Sandstone as above, dom fine                                               |       |           |     |    |    |      |     |
| 220- 230                                                             | 90     | Silty Claystone as above, dom med brn gry, med green gry in                | ,     |           |     |    |    |      |     |
|                                                                      |        | part, becoming in part;                                                    |       |           |     |    |    |      |     |
|                                                                      | 5      | Siltstone as above which in turn becoming minor;                           |       |           |     |    |    |      |     |
|                                                                      | 5      | <u>Sandstone</u> as above                                                  |       |           |     |    |    |      |     |
| 230- 240                                                             | 95     | <u>Silty Claystone</u> as above                                            |       |           |     |    |    |      |     |
|                                                                      | 5      | <u>Siltstone</u> as above                                                  |       |           |     |    |    |      |     |
| 240- 250                                                             | 100    | <u>Silty Claystone</u> as above                                            |       |           |     |    |    |      |     |
| 250- 260                                                             | 100    | Claystone as above, becoming med green gry in part, silty                  |       |           |     |    |    |      |     |
|                                                                      |        | in part                                                                    |       |           |     |    |    |      |     |
| 260- 270                                                             | 100    | Claystone as above occ med brn, silty in part                              |       |           |     |    |    |      |     |
| 270- 280                                                             | 90     | Claystone as above occ med brn, silty in part interlam with;               |       |           |     |    |    |      |     |
|                                                                      | 10     | Sandstone generally as above, med green gry, speckled, fri-                |       |           |     |    |    |      |     |
|                                                                      |        | firm vf to med, dom f, SA-SR mod-well sorted qtz & multi-col               |       |           |     |    |    |      |     |
|                                                                      |        | volcanolithics abundant lt-med gry & green gry, brn gry in                 |       |           |     |    |    |      |     |
|                                                                      |        | part arg mtx, tr biotite & muscovite, tr carb det, poor vis ${\mathscr G}$ |       |           |     |    |    |      |     |
|                                                                      |        |                                                                            |       |           |     |    |    |      |     |

| WELL: McEA | CHERN N | O.1 DATE: 20-12-89 GEOLOGIST: A. TABASSI PAGE: 7 OF            |       |    |     | SHOWS |    |      |     |
|------------|---------|----------------------------------------------------------------|-------|----|-----|-------|----|------|-----|
|            | 1       |                                                                |       |    | GAS |       |    | FLU  | OR  |
| DEPTH (m)  | ક       | SAMPLE DESCRIPTION                                             | TOTAL | C1 | C2  | С3    | C4 | NAT. | CUT |
| 280- 290   | 100     | Clayey Siltstone/Silty Claystone as above                      |       |    |     |       |    |      |     |
| 290- 300   | 100     | Silty Claystone as above                                       |       |    |     |       |    |      |     |
| 300- 310   | 100     | Silty Claystone as above with tr of coally particle            |       |    |     |       |    | !    |     |
| 310- 320   | 70      | Silty Claystone as above with tr of coally particle            |       |    | -   |       |    |      |     |
|            | 30      | Sandstone as above with tr of coally particle                  |       |    |     |       |    |      |     |
| 320- 330   | 60      | Silty Claystone as above, med brn gry, med green gry, lt green |       |    |     |       |    |      |     |
|            |         | gry                                                            |       |    |     |       |    |      |     |
|            | 40      | Sandstone as above                                             |       |    |     |       |    |      | -   |
| 330- 340   | 60      | Silty Claystone as above                                       |       |    |     |       |    |      |     |
|            | 40      | Sandstone as above                                             |       |    |     |       |    |      |     |
| 340- 350   | 60      | Silty Claystone as above                                       |       |    |     |       |    |      |     |
|            | 40      | Sandstone as above                                             |       |    |     |       |    |      |     |
| 350- 357   | 55      | Silty Claystone as above (Possible caving ?)                   |       |    |     |       |    |      |     |
|            | 45      | Sandstone as above (Possible caving ?)                         |       |    |     |       |    |      |     |
|            |         | Drilled to 357m, set casing, casing shoe                       |       |    |     |       |    |      |     |
|            |         | @ 354m, drilled out of casing shoe.                            |       |    |     |       |    |      |     |
|            |         | Drilled new hole, F.I.T., Resumed Drilling                     |       |    |     |       |    |      |     |
| 357- 360   | 60      | Silty Claystone as above                                       |       |    |     |       |    |      |     |
|            |         |                                                                |       |    |     |       |    |      |     |

| WELL: MCEAC | HERN N | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 8 OF             |       |           |     | SHOWS |    |      |     |
|-------------|--------|------------------------------------------------------------------|-------|-----------|-----|-------|----|------|-----|
|             |        | OLI MILL DE LE OF GROEGEST. II. IMMOSE TROM. O GE                |       |           | GAS |       |    | FLU  | OR  |
| DEPTH (m)   | ક      | SAMPLE DESCRIPTION                                               | TOTAL | <b>C1</b> | C2  | С3    | С4 | NAT. | CUT |
|             | 40     | Sandstone as above                                               |       |           |     |       |    |      |     |
| 360- 365    | 85     | Silty Claystone as above grading into;                           |       |           |     |       |    |      |     |
|             |        | Siltstone lt-med green gry, lt-med brn gry, lt-med blueish       |       |           |     |       |    |      |     |
|             |        | green, lt-med gry in part, soft to firm, block in part, rarely   |       |           |     |       |    |      |     |
|             |        | disp., in part abundantly argillaceous, rarely micaceous, rarely |       |           |     |       |    |      |     |
|             |        | to moderately carbonaceous trace very fine sand in part,         |       |           |     |       |    |      |     |
|             |        | slightly calcareous in part, interbd/interlam with;              |       |           |     |       |    |      |     |
|             | 15     | Sandstone as above, occ med brn with strong sil cmt.             |       |           |     |       |    |      |     |
| 365- 370    | 90     | <u>Siltstone</u> as above                                        |       |           |     |       |    |      |     |
|             | 10     | <u>Sandstone</u> as above                                        |       |           |     |       |    |      |     |
| 370- 375    | 90     | <u>Siltstone</u> as above                                        |       |           |     |       |    |      |     |
|             | 10     | Sandstone as above                                               |       |           |     |       |    |      |     |
| 375- 380    | 70     | Siltstone as above grading in part into                          |       |           |     |       |    |      |     |
|             |        | Silty Claystone as above                                         |       |           |     |       |    |      |     |
|             | 30     | <u>Sandstone</u> as above                                        |       |           |     |       |    |      |     |
| 380- 385    | 70     | <u>Siltstone/Silty Claystone</u> as above                        |       |           |     |       |    |      |     |
|             | 30     | <u>Sandstone</u> as above                                        |       |           |     |       |    |      |     |
| 385- 390    | 70     | Siltstone as above, grading in part into vf sandstone            |       |           |     |       |    |      |     |
|             |        |                                                                  |       |           |     |       |    |      |     |

| WELL: McEAG | HERN N | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 9 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |    |     | SHOWS |    |      |     |
|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|-------|----|------|-----|
|             |        | The state of the s |       |    | GAS |       |    | FLU  | OR. |
| DEPTH (m)   | 8      | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL | C1 | C2  | С3    | C4 | NAT. | CUT |
|             | 30     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |       |    |      |     |
| 390- 395    | 40     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |     |
|             | 40     | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |     |
|             | 20     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |       |    |      |     |
| 395- 400    | 70     | Sandstone, generally as above, med green gry, med brn gry in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |     |       |    |      |     |
|             |        | part, speckled, fri-firm, vf-f, occ siltsize to vf, dom f,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |    |     |       |    |      |     |
|             |        | SA-SR, well sorted qtz & "volcanolithics" and/or chlorite(?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |     |       |    |      |     |
|             |        | com to abundant arg mtx, med green gry, med gry in part,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |    |     |       |    |      |     |
|             |        | tr-com mica, rare pyr, tr carb mat., poor vis Ø interbd/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |    |     |       |    |      |     |
|             |        | interlam with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |    |     |       |    |      |     |
|             | 30     | Silty Claystone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |    |     |       |    |      |     |
| 400- 405    | 70     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |       |    |      |     |
|             | 30     | Silty Claystone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |    |     |       |    |      |     |
| 405- 410    | 70     | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |     |
|             | 20     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |     |
|             | 10     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |       |    |      |     |
| 410- 415    | 70     | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |     |
|             | 20     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |     |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |     |       |    |      |     |

| WELL: McEA | WELL: McEACHERN NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 10 OF |                                                |       |           |           |    |    |      |     |
|------------|-----------------------------------------------------------------------|------------------------------------------------|-------|-----------|-----------|----|----|------|-----|
|            |                                                                       |                                                |       |           | GAS       |    |    | FLU  | OR  |
| DEPTH (m)  | ક                                                                     | SAMPLE DESCRIPTION                             | TOTAL | <b>C1</b> | <b>C2</b> | С3 | C4 | NAT. | CUT |
|            | 10                                                                    | Sandstone as above                             |       |           |           |    |    |      |     |
| 415- 420   | 70                                                                    | <u>Claystone</u> as above                      |       |           |           |    |    |      |     |
|            | 20                                                                    | <u>Siltstone</u> as above                      |       |           |           |    |    |      |     |
|            | 10                                                                    | Sandstone as above                             |       |           |           |    |    |      |     |
| 420- 425   | 70                                                                    | <u>Claystone</u> as above                      |       |           |           |    |    |      |     |
|            | 20                                                                    | <u>Siltstone</u> as above                      |       |           |           |    |    |      |     |
|            | 10                                                                    | Sandstone as above                             |       |           |           |    |    |      |     |
| 425- 430   | 60                                                                    | <u>Claystone</u> as above                      |       |           |           |    |    |      |     |
|            | 30                                                                    | <u>Siltstone</u> as above                      |       |           |           |    |    |      |     |
|            | 10                                                                    | Sandstone as above                             |       |           |           |    |    |      |     |
| 435- 440   | 70                                                                    | <u>Claystone</u> as above                      |       |           |           |    |    |      |     |
|            | 20                                                                    | <u>Siltstone</u> as above                      |       |           |           |    |    |      |     |
|            | 10                                                                    | Sandstone as above                             |       |           |           |    |    |      |     |
| 440- 445   | 70                                                                    | <u>Claystone</u> as above, slightly calcareous |       |           |           |    |    |      |     |
|            | 20                                                                    | <u>Siltstone</u> as above                      |       |           |           |    |    |      |     |
|            | 10                                                                    | Sandstone as above                             |       |           |           |    |    |      |     |
| 445- 450   | 80                                                                    | Claystone as above, slightly calcareous        |       |           |           |    |    |      |     |
|            | 15                                                                    | <u>Siltstone</u> as above                      |       |           |           |    |    |      |     |
|            |                                                                       |                                                |       |           |           |    |    |      |     |

| WELL: | McEAC | CHERN 1 | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 11 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |           |           | SHOWS                                   |    |      |     |
|-------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-----------|-----------------------------------------|----|------|-----|
|       |       |         | The second secon |       |           | GAS       |                                         |    | FLUO | R   |
| DEPTH | (m)   | ક       | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL | <b>C1</b> | <b>C2</b> | С3                                      | C4 | NAT. | CUT |
|       |       | 5       | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |           | *************************************** |    |      |     |
| 450-  | 455   | 80      | <u>Claystone</u> as above, non calcareous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 15      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 5       | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |           |                                         |    |      |     |
| 455-  | 460   | 80      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 15      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 5       | <u>Sandstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
| 460-  | 465   | 80      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 20      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
| 465-  | 470   | 80      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 20      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
| 470-  | 475   | 80      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 15      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 5       | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |           |                                         |    |      |     |
| 475-  | 480   | 80      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 15      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |                                         |    |      |     |
|       |       | 5       | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |           |                                         |    |      |     |
|       |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           |                                         |    |      |     |
|       |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |           | :                                       |    |      |     |

| WELL: McEAG | WELL: McEACHERN NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 12 OF |                                      |       |           |     |    |    |      |     |
|-------------|-----------------------------------------------------------------------|--------------------------------------|-------|-----------|-----|----|----|------|-----|
|             |                                                                       |                                      |       |           | GAS |    |    | FLU  | OR  |
| DEPTH (m)   | ક                                                                     | SAMPLE DESCRIPTION                   | TOTAL | <b>C1</b> | C2  | С3 | С4 | NAT. | CUT |
| 480- 485    | 70                                                                    | <u>Claystone</u> as above            |       |           |     |    |    |      |     |
|             | 10                                                                    | <u>Siltstone</u> as above            |       |           |     |    |    |      |     |
|             | 20                                                                    | Sandstone as above                   |       |           | l   |    |    |      |     |
| 485- 490    | 70                                                                    | <u>Claystone</u> as above            |       |           |     |    |    |      |     |
|             | 10                                                                    | <u>Siltstone</u> as above            |       |           |     |    |    |      |     |
|             | 20                                                                    | Sandstone as above                   |       |           |     |    |    |      |     |
| 490- 495    | 70                                                                    | <u>Claystone</u> as above            |       |           |     |    |    |      |     |
|             | 15                                                                    | <u>Siltstone</u> as above            |       |           |     |    |    |      |     |
|             | 15                                                                    | Sandstone as above, with tr calc cmt |       |           |     |    |    |      |     |
| 495- 500    | 70                                                                    | <u>Claystone</u> as above            |       |           |     |    |    |      |     |
|             | 15                                                                    | <u>Siltstone</u> as above            |       |           |     |    |    |      |     |
|             | 15                                                                    | Sandstone as above, with tr calc cmt |       |           |     |    |    |      |     |
| 500- 505    | 70                                                                    | <u>Claystone</u> as above            |       |           |     |    |    |      |     |
|             | 20                                                                    | <u>Siltstone</u> as above            |       |           |     |    |    |      |     |
|             | 10                                                                    | Sandstone as above, with tr calc cmt |       |           |     |    |    |      |     |
| 505- 510    | 70                                                                    | <u>Claystone</u> as above            |       |           |     |    |    |      |     |
|             | 20                                                                    | <u>Siltstone</u> as above            |       |           |     |    |    |      |     |
|             | 10                                                                    | <u>Sandstone</u> as above            |       |           |     |    |    |      |     |
|             |                                                                       |                                      |       |           |     |    |    |      |     |

| WELL: MCEA    | HERN I | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 13 OF                |       |           |           | SHOWS |    |      |     |
|---------------|--------|----------------------------------------------------------------------|-------|-----------|-----------|-------|----|------|-----|
| William Media |        | MOLI BRID. 22 12 07 GRODOGIST. M. INDREST TROM. 13 OF                |       |           | GAS       |       |    | FLU  | OR  |
| DEPTH (m)     | ક      | SAMPLE DESCRIPTION                                                   | TOTAL | <b>C1</b> | <b>C2</b> | С3    | C4 | NAT. | CUT |
| 510- 515      | 70     | <u>Claystone</u> as above                                            |       |           |           |       |    |      |     |
|               | 20     | <u>Siltstone</u> as above                                            |       |           |           |       |    |      |     |
|               | 10     | Sandstone as above, with tr calc cmt                                 |       |           |           |       |    |      |     |
| 515- 520      | 70     | <u>Claystone</u> as above                                            |       |           |           |       |    |      |     |
|               | 20     | <u>Siltstone</u> as above                                            |       |           |           |       |    |      |     |
|               | 10     | Sandstone as above, with tr calc cmt                                 |       |           |           |       |    |      |     |
| 520- 525      | 80     | <u>Claystone</u> as above                                            | 0.18  | 35        |           |       |    |      |     |
|               | 20     | <u>Siltstone</u> as above                                            |       |           |           |       |    |      |     |
|               | tr     | <u>Coal</u> , black v dk brn, soft-firm, dull luster, blocky in part |       |           |           |       |    |      |     |
|               |        | subfis in part, rarely arg & pyritic in part, no fluor, no cut       |       |           |           |       |    |      |     |
| 525- 530      | 80     | <u>Claystone</u> as above                                            | 0.02  | 4         |           |       |    |      |     |
|               | 20     | <u>Siltstone</u> as above                                            |       |           |           |       |    |      |     |
|               | tr     | <u>Coal</u> as above                                                 |       |           |           |       |    |      |     |
| 530- 535      | 90     | <u>Claystone</u> as above                                            | 0.02  | 4         | c         |       |    |      |     |
|               | 10     | <u>Siltstone</u> as above                                            |       |           |           |       |    |      |     |
|               | tr     | <u>Coal</u> as above                                                 |       |           |           |       |    |      |     |
|               | tr     | Sandstone as above, with rare calc cmt                               |       |           |           |       |    |      |     |
| 535- 540      | 90     | <u>Claystone</u> as above                                            | 0.02  | 4         |           |       |    |      |     |
|               |        |                                                                      |       |           |           |       |    |      |     |

| WELL: McEA( | CHERN I | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 14 OF |       |           |           | SHOWS    |          |      |     |
|-------------|---------|-------------------------------------------------------|-------|-----------|-----------|----------|----------|------|-----|
|             |         |                                                       |       |           | GAS       | <b>.</b> |          | FLU  | JOR |
| DEPTH (m)   | ક       | SAMPLE DESCRIPTION                                    | TOTAL | <b>C1</b> | <b>C2</b> | С3       | C4       | NAT. | CUT |
|             | 10      | <u>Siltstone</u> as above                             |       |           |           |          |          |      |     |
|             | tr      | <u>Coal</u> as above                                  |       |           |           |          |          |      |     |
|             | tr      | Sandstone as above                                    |       |           |           |          |          |      |     |
| 540- 545    | 70      | <u>Claystone</u> as above                             | 0.37  | 74        |           |          | <u> </u> |      |     |
|             | 30      | <u>Siltstone</u> as above                             |       |           |           |          |          |      |     |
| ,           | tr      | Sandstone as above                                    |       |           |           |          |          |      |     |
| 545- 550    | 70      | <u>Claystone</u> as above                             | 0.18  | 24        |           |          |          |      |     |
|             | 30      | <u>Siltstone</u> as above                             |       |           |           |          |          |      |     |
|             | tr      | <u>Sandstone</u> as above                             |       |           |           |          |          |      |     |
| 550- 555    | 70      | <u>Claystone</u> as above                             | 0.12  |           |           |          |          |      |     |
|             | 30      | <u>Siltstone</u> as above                             |       |           |           |          |          |      |     |
| 555- 560    | 70      | <u>Claystone</u> as above                             | 0.07  | 14        |           |          |          |      |     |
|             | 30      | <u>Siltstone</u> as above                             |       |           |           |          |          |      |     |
| 560- 565    | 70      | <u>Claystone</u> as above                             | 0.39  | 76        |           |          |          |      |     |
|             | 30      | <u>Siltstone</u> as above                             |       |           |           |          |          |      |     |
|             | tr      | Sandstone as above                                    |       |           |           |          |          |      |     |
| 565- 570    | 60      | <u>Claystone</u> as above                             | 0.15  | 30        |           |          |          |      |     |
|             | 10      | <u>Siltstone</u> as above                             |       |           |           |          |          |      |     |
|             |         |                                                       |       |           |           |          |          |      |     |

| WELL: McEA | CHERN | CHERN NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 15 OF    |       |           |     |    |    |      |     |
|------------|-------|----------------------------------------------------------------|-------|-----------|-----|----|----|------|-----|
|            | T     |                                                                |       |           | GAS |    |    | FLU  | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                             | TOTAL | <b>C1</b> | G2  | С3 | C4 | NAT. | CUT |
|            | 30    | Sandstone as above, dom lt greenish gry to lt gry, com calc    |       |           |     |    |    |      |     |
|            |       | cmt                                                            |       |           |     |    |    |      |     |
|            | tr    | Coal as above                                                  |       |           |     |    |    |      |     |
| 570- 575   | 60    | <u>Claystone</u> as above                                      | 0.3   | 58        |     |    |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|            | 20    | Sandstone as above, dom med green gry, tr calc cmt tr-com mica |       |           |     |    |    |      |     |
| 575- 580   | 60    | <u>Claystone</u> as above                                      |       |           |     |    |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|            | 20    | Sandstone as above, dom med green gry, tr calc cmt tr-com mica |       |           | 1   |    |    |      |     |
| 580- 585   | 70    | <u>Claystone</u> as above                                      |       |           |     |    |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|            | 10    | Sandstone as above                                             |       |           |     |    |    |      |     |
| 585- 590   | 70    | <u>Claystone</u> as above                                      | 0.39  | 70        |     |    |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|            | 10    | Sandstone as above                                             |       |           |     |    |    |      |     |
| 590- 595   | 65    | <u>Claystone</u> as above                                      |       |           |     |    |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|            | 15    | Sandstone as above                                             |       |           |     |    |    |      |     |
|            |       |                                                                |       |           |     |    |    |      |     |

| WELL: McEA | CHERN | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 16 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |     | SHOWS |    |      |     |
|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----|-------|----|------|-----|
|            |       | I The state of the |       |            | GAS |       |    | FLU  | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL | <b>C</b> 1 | C2  | С3    | C4 | NAT. | CUT |
| 595- 600   | 65    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.25  | 48         |     |       |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |     |       |    |      |     |
|            | 15    | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |     |       |    |      |     |
| 600- 605   | 65    | Claystone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3   | 60         |     |       |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |     |       |    |      |     |
|            | 15    | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |     |       |    |      |     |
| 605- 610   | 65    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.18  | 36         |     |       |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |     |       |    |      |     |
|            | 15    | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |     |       |    |      |     |
| 610- 615   | 85    | Claystone as above, occ med gry brn in part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |     |       |    |      |     |
|            | 15    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |     |       |    |      |     |
|            | 5     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |     |       |    |      |     |
| 615- 620   | 80    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07  | 13         |     |       |    |      |     |
|            | 15    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |     |       |    |      |     |
|            | 5     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |     |       |    |      |     |
| 620- 625   | 80    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |     |       |    |      |     |
|            | 15    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |     |       |    |      |     |
|            | 5     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |     |       |    |      |     |
|            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            |     |       |    |      |     |

| WELL.                                   | McEAC  | CHERN | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 17 OF   |       |    |     | SHOWS |    |      |     |
|-----------------------------------------|--------|-------|---------------------------------------------------------|-------|----|-----|-------|----|------|-----|
| *************************************** | TICLIA |       | NO.1 DATA. EZ-12-07 GRONGISI. A. IADASSI IAGE. 17 OF    |       |    | GAS |       |    | FLU  | OR  |
| DEPTH                                   | (m)    | ક     | SAMPLE DESCRIPTION                                      | TOTAL | C1 | G2  | С3    | C4 | NAT. | CUT |
| 625-                                    | 630    | 80    | <u>Claystone</u> as above                               | 0.3   | 58 |     |       |    |      |     |
|                                         |        | 10    | Siltstone as above                                      |       |    |     |       |    |      |     |
|                                         |        | 5     | Sandstone as above                                      |       |    |     |       |    |      |     |
| 630-                                    | 635    | 70    | Claystone as above, occ subfis in part, blocky in part. | 0.2   | 40 |     |       |    |      |     |
|                                         |        | 25    | <u>Siltstone</u> as above                               |       |    |     |       |    |      |     |
|                                         |        | 5     | Sandstone as above                                      |       |    |     |       |    |      |     |
|                                         |        | tr    | Coal as above                                           |       |    |     |       |    |      |     |
| 635-                                    | 640    | 70    | <u>Claystone</u> as above                               | 0.2   | 39 |     |       |    |      |     |
|                                         |        | 25    | <u>Siltstone</u> as above                               |       |    |     |       |    |      |     |
|                                         |        | 5     | Sandstone as above                                      |       |    |     |       |    |      |     |
| İ                                       |        | tr    | <u>Coal</u> as above                                    |       |    |     |       |    |      |     |
| 640-                                    | 645    | 70    | <u>Claystone</u> as above                               | 0.42  |    |     |       |    |      |     |
|                                         |        | 30    | <u>Siltstone</u> as above                               |       |    |     |       |    |      |     |
|                                         |        | tr    | <u>Coal</u> as above                                    |       |    |     |       |    |      |     |
| 645-                                    | 650    | 70    | <u>Claystone</u> as above                               | 0.21  | 41 |     |       |    |      |     |
|                                         |        | 30    | <u>Siltstone</u> as above                               |       |    |     |       |    |      |     |
|                                         |        | tr    | <u>Coal</u> as above                                    |       |    |     |       |    |      |     |
| 650-                                    | 655    | 60    | <u>Claystone</u> as above                               | 0.36  | 56 |     |       |    |      |     |
|                                         |        |       |                                                         |       |    |     |       |    |      |     |

| WELL: | McEA | CHERN | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 18 OF | SHOWS |           |           |    |           |      |     |
|-------|------|-------|-------------------------------------------------------|-------|-----------|-----------|----|-----------|------|-----|
|       |      |       | T                                                     |       |           | GAS       |    |           | FLU  | OR  |
| DEPTH | (m)  | ક     | SAMPLE DESCRIPTION                                    | TOTAL | <b>C1</b> | <b>C2</b> | С3 | <b>C4</b> | NAT. | CUT |
|       |      | 30    | <u>Siltstone</u> as above                             |       |           |           |    |           |      |     |
|       |      | 10    | Sandstone as above                                    |       |           |           |    |           |      |     |
| 655-  | 660  | 60    | <u>Claystone</u> as above                             | 0.21  | 41        |           |    |           |      |     |
|       |      | 30    | <u>Siltstone</u> as above                             |       |           |           |    |           |      |     |
|       |      | 10    | <u>Sandstone</u> as above                             |       |           |           |    |           |      |     |
| 660-  | 665  | 60    | <u>Claystone</u> as above                             |       |           |           |    |           |      |     |
|       |      | 30    | <u>Siltstone</u> as above                             |       |           |           |    |           |      |     |
|       |      | 10    | <u>Sandstone</u> as above                             |       |           |           |    |           |      |     |
| 665-  | 670  | 60    | <u>Claystone</u> as above                             | 0.21  | 41        |           |    |           |      |     |
|       |      | 30    | <u>Siltstone</u> as above                             |       |           |           |    |           |      |     |
|       |      | 10    | Sandstone as above                                    |       |           |           |    |           |      |     |
| 670-  | 675  | 60    | Claystone as above, occ v lt brn gry, subfis in part  | 0.2   | 40        |           |    |           |      |     |
|       |      | 30    | <u>Siltstone</u> as above                             |       |           |           |    |           |      |     |
|       |      | 10    | <u>Sandstone</u> as above                             |       |           |           |    |           |      |     |
|       |      | tr    | Coal as above                                         |       |           |           |    |           |      |     |
| 675-  | 680  | 60    | <u>Claystone</u> as above                             | 0.20  | 40        |           |    |           |      |     |
|       |      | 30    | <u>Siltstone</u> as above                             |       |           |           |    |           |      |     |
|       |      | 10    | <u>Sandstone</u> as above                             |       |           |           |    |           |      |     |
|       |      |       |                                                       |       |           |           |    |           |      |     |

| WRII. Mara | CHEDN | NO.1 DATE: 22-12-89 GEOLOGIST: A. TABASSI PAGE: 19 OF      | SHOWS |           |     |           |    |      |     |
|------------|-------|------------------------------------------------------------|-------|-----------|-----|-----------|----|------|-----|
| WELL. MCEA | T     | NO.1 DATE. 22-12-09 GEOLOGISI. A. TADASSI FAGE. 19 OF      |       |           | GAS |           |    | FLU  | OR  |
| DEPTH (m)  | *     | SAMPLE DESCRIPTION                                         | TOTAL | <b>C1</b> | G2  | <b>C3</b> | C4 | NAT. | CUT |
|            | tr    | <u>Coal</u> as above                                       |       |           |     |           |    |      |     |
| 680- 685   | 50    | Claystone as above, subfis to fis in part                  | 0.78  | 156       |     |           |    |      |     |
|            | 35    | Siltstone as above                                         |       |           |     |           |    |      |     |
|            | 10    | Sandstone as above                                         |       |           |     |           |    |      |     |
|            | 5     | Coal as above, subfis in part, sub conchoidal fracture, no |       |           |     |           |    |      |     |
|            |       | fluor no cut                                               |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |
|            |       |                                                            |       |           |     |           |    |      |     |

| WET.I. | McFA | CHERN | NO.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 20 OF          | SHOWS |           |     |    |    |      |     |
|--------|------|-------|----------------------------------------------------------------|-------|-----------|-----|----|----|------|-----|
| W2122. |      |       | No.1 Bill. 25-12 07 Gibboldi. A. Inbilli Indi. 20 01           |       |           | GAS |    |    | FLU  | OR  |
| DEPTH  | (m)  | *     | SAMPLE DESCRIPTION                                             | TOTAL | <b>C1</b> | C2  | C3 | C4 | NAT. | CUT |
| 685-   | 690  | 50    | <u>Claystone</u> as above                                      | 0.37  | 73        |     |    |    |      |     |
|        |      | 35    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|        |      | 10    | Sandstone as above, with tr-com calc cmt, poor vis Ø           |       |           |     |    |    |      |     |
|        |      | 5     | Coal as above                                                  |       |           |     |    |    |      |     |
| 690-   | 695  | 50    | <u>Claystone</u> as above                                      | 0.75  | 150       |     |    |    |      |     |
|        |      | 35    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|        |      | 10    | Sandstone as above                                             |       |           |     |    |    |      |     |
|        |      | 5     | <u>Coal</u> as above                                           |       |           |     |    |    |      |     |
| 695-   | 700  | 50    | <u>Claystone</u> as above                                      | 0.48  | 96        |     |    |    |      |     |
|        |      | 35    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|        |      | 10    | Sandstone as above                                             |       |           |     |    |    |      |     |
|        |      | 5     | Coal as above                                                  |       |           |     |    |    |      |     |
| 700-   | 705  | 50    | <u>Claystone</u> as above                                      | 0.84  | 168       |     |    |    |      |     |
|        |      | 40    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|        |      | 10    | Sandstone as above, with tr-com calc cmt, poor vis $\emptyset$ |       |           |     |    |    |      |     |
|        |      | tr    | <u>Coal</u> as above                                           |       |           |     |    |    |      |     |
| 705-   | 710  | 50    | <u>Claystone</u> as above                                      | 0.33  | 66        |     |    |    |      |     |
|        |      | 45    | <u>Siltstone</u> as above                                      |       |           |     |    |    |      |     |
|        |      |       |                                                                |       |           |     |    |    |      |     |

| WELL: McEA | CHERN | NO.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 21 OF       |       |           |     | SHOWS |    |      |            |
|------------|-------|-------------------------------------------------------------|-------|-----------|-----|-------|----|------|------------|
|            |       |                                                             |       |           | GAS |       |    | FLU  | <b>JOR</b> |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                          | TOTAL | <b>C1</b> | C2  | С3    | C4 | NAT. | CUT        |
|            | 10    | Sandstone as above                                          |       |           |     |       |    |      |            |
|            | 5     | <u>Coal</u> as above                                        |       |           |     |       |    |      |            |
| 710- 715   | 50    | <u>Claystone</u> as above                                   |       |           |     |       |    |      |            |
|            | 35    | <u>Siltstone</u> as above                                   |       |           |     |       |    |      |            |
|            | 5     | Sandstone as above                                          |       |           |     |       |    |      |            |
|            | tr    | <u>Coal</u> as above                                        |       |           |     |       |    |      |            |
| 715- 720   | 60    | Claystone as above                                          | 0.96  | 192       |     |       |    |      |            |
|            | 35    | Siltstone as above                                          |       |           |     |       |    |      |            |
|            | 15    | Sandstone as above                                          |       |           |     |       |    |      |            |
| 720- 725   | 50    | Claystone generally as above, lt-med greenish gry, lt med   | 1.46  | 290       |     |       |    |      |            |
|            |       | bluish gry, occ lt-med brn gry, soft-firm, occ hd, blocky & |       |           |     |       |    |      |            |
|            |       | subfis in part, rarely disp in part, tr-com fine mica,      |       |           |     |       |    |      |            |
|            |       | rarely carbonaceous, in part very silty, grading in part    |       |           |     |       |    |      |            |
|            |       | and/or interlam with;                                       |       |           |     |       |    |      |            |
|            | 25    | Siltstone as above, interbd/interlam with;                  |       |           |     |       |    |      |            |
|            | 25    | Sandstone as above, lt-med gry green, lt-med brn gry, occ   |       |           |     |       |    |      |            |
|            |       | lt brn, rarely off white to v lt gry, speckled, fri-firm,   |       |           |     |       |    |      |            |
|            |       | occ hd, silt size to fine, occ med, dom fine, SA-SR, mod-   |       |           |     |       |    |      |            |
|            |       |                                                             |       |           |     |       |    |      |            |

| WELL: McEAC | CHERN | NO.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 22 OF      |       |           |           | SHOWS |    |      |     |
|-------------|-------|------------------------------------------------------------|-------|-----------|-----------|-------|----|------|-----|
|             |       | T                                                          | GAS   |           |           |       |    |      | OR  |
| DEPTH (m)   | 8     | SAMPLE DESCRIPTION                                         | TOTAL | <b>C1</b> | <b>C2</b> | С3    | C4 | NAT. | CUT |
|             |       | well sorted qtz, multi-col volcanolithics & occ mica       |       |           |           |       |    |      |     |
|             | i     | (biotite & mascovite), tr-abundant arg mtx, lt-med green   |       |           |           |       |    |      |     |
|             |       | gry, lt-med brn gry, occ white and kaolinitic, tr-com calc |       |           |           |       |    |      |     |
|             |       | cmt, mod strong, occ strong, tr-rare pyr cmt & crystal,    |       |           |           |       |    | i    |     |
|             |       | rare carb det, rare partially altered feldspar(?), poor-   |       |           |           |       |    |      |     |
|             |       | nil vis Ø                                                  |       |           |           |       |    |      |     |
| 725- 730    | 50    | <u>Claystone</u> as above                                  | 0.84  | 168       |           |       |    |      | ·   |
|             | 25    | <u>Siltstone</u> as above                                  |       |           |           |       |    |      |     |
|             | 25    | Sandstone as above                                         |       |           |           |       |    |      |     |
| 730- 735    | 70    | <u>Claystone</u> as above                                  | 0.6   | 120       |           |       |    |      |     |
|             | 20    | <u>Siltstone</u> as above                                  |       |           |           |       |    |      |     |
|             | 10    | Sandstone as above                                         |       |           |           |       |    |      |     |
| 735- 740    | 70    | <u>Claystone</u> as above                                  | 0.70  | 141       |           |       |    |      |     |
|             | 20    | <u>Siltstone</u> as above                                  |       |           |           |       |    |      |     |
|             | 10    | <u>Sandstone</u> as above                                  |       |           |           |       |    |      |     |
| 740- 745    | 70    | <u>Claystone</u> as above                                  |       |           |           |       |    |      |     |
|             | 15    | <u>Siltstone</u> as above                                  |       |           |           |       |    |      |     |
|             | 15    | <u>Sandstone</u> as above                                  |       |           |           |       |    |      |     |
|             |       |                                                            |       |           |           |       |    |      |     |

| WELL: McEAC | HERN N | 0.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 23 OF |       |     |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|-----|-----|-------|----|------|------|
| WEBB. HeBAO |        | O.I DATE. 25 12 09 GEOLOGIST. A. TADASSI TAGE. 25 OF |       |     | GAS |       |    | FI   | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                   | TOTAL | Cl  | C2  | С3    | C4 | NAT. | CUT  |
| 745 750     | 60     | <u>Claystone</u> as above                            | 2.19  | 749 |     |       |    |      |      |
|             | 20     | Siltstone as above                                   |       |     |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 750- 755    | 60     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 755- 760    | 50     | <u>Claystone</u> as above                            | 0.6   | 120 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 760- 765    | 50     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |     |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 765- 770    | 50     | <u>Claystone</u> as above                            | 0.42  | 90  |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 770- 775    | 40     | Claystone as above                                   |       |     |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |     |     |       |    |      |      |
|             | 30     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             |        |                                                      |       |     |     |       |    |      |      |

| WELL: McEAC | HERN N | O.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 24 OF |       |     |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        | O.1 DATE: 25 12 05 OHOHOUTOI. N. INDANDI INGH. 24 OF |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | Z      | SAMPLE DESC-RIPTION                                  | TOTAL | Cĺ  | C2  | С3    | C4 | NAT. | CUT  |
| 775 780     | 40     | <u>Claystone</u> as above                            | 0.90  | 290 |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |     |     |       |    |      |      |
|             | 30     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 780- 785    | 60     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 785- 790    | 60     | <u>Claystone</u> as above                            | 0.54  | 89  |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 790- 795    | 40     | Claystone as above                                   |       |     |     |       |    |      |      |
|             | 20     | Siltstone as above                                   |       |     |     |       |    |      |      |
|             | 40     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 795- 800    | 40     | <u>Claystone</u> as above                            | 0.6   | 130 |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |     |     |       |    |      |      |
|             | 30     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 800- 805    | 60     | Claystone as above                                   |       |     |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             |        |                                                      |       |     |     |       |    |      |      |

| WELL: McEAC | urdn N | 0.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 25 OF |       |    |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|----|-----|-------|----|------|------|
| WEDE: NCEAC | T      | U.I DAIE. 25-12-09 GEOLOGISI: A. IABASSI FAGE: 25 OF |       |    | GAS |       |    | F    | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                   | TOTAL | C1 | C2  | С3    | C4 | NAT. | CUT  |
| 805- 810    | 60     | Claystone as above                                   | 0.36  | 64 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |    |     |       |    |      |      |
| 810- 815    | 60     | <u>Claystone</u> as above                            | 0.12  | 45 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |    |     |       |    |      |      |
| 815- 820    | 60     | <u>Claystone</u> as above                            | 0.18  | 32 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |    |     |       |    |      |      |
| 820- 825    | 50     | <u>Claystone</u> as above                            | 0.15  | 26 |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |    |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |    |     |       |    |      |      |
| 825- 830    | 50     | Claystone as above                                   | 0.3   | 58 |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |    |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |    |     |       |    |      |      |
| 830- 835    | 50     | Claystone as above                                   | 0.2   | 42 |     |       |    |      |      |
|             | 30     | Siltstone as above                                   |       |    |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |    |     |       |    |      |      |
|             |        |                                                      |       |    |     |       |    |      |      |

| WELL: McEAC | HERN N | IO.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 26 OF |       |    |     | SHOWS |    |      |      |
|-------------|--------|-------------------------------------------------------|-------|----|-----|-------|----|------|------|
|             |        |                                                       |       |    | GAS |       |    | F    | LUOR |
| DEPTH (m)   | 2      | SAMPLE DESCRIPTION                                    | TOTAL | C1 | C2  | C3    | C4 | NAT. | CUT  |
| 835- 840    | 50     | Claystone as above, dom med brn gry in part           | 0.2   | 42 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                             |       |    |     |       |    |      |      |
|             | 20     | Sandstone as above                                    |       |    |     |       |    |      |      |
| 840- 845    | 60     | Claystone as above                                    | 0.18  | 36 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                             |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                    |       |    |     |       |    |      |      |
| 845- 850    | 60     | <u>Claystone</u> as above                             | 0.36  | 70 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                             |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                    |       |    |     |       |    |      |      |
| 850- 855    | 60     | <u>Claystone</u> as above                             | 0.36  | 80 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                             |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                    |       |    |     |       |    |      |      |
| 855- 860    | 60     | Claystone as above, dom med brn gry in part           | 0.18  | 36 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                             |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                    |       |    |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                  |       |    |     |       |    |      |      |
| 860- 865    | 50     | Claystone as above                                    | 0.24  | 48 |     |       |    |      |      |
|             | 45     | Siltstone as above, occ v pale green gry to off white |       |    |     |       |    |      |      |
|             |        |                                                       |       |    |     |       |    |      |      |

| WELL: McEAC | нгри и | O.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 27 OF |       |     |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|-----|-----|-------|----|------|------|
| WELL: MCEAC | TERN N | O.1 DATE: 23-12-09 GEOLOGIST: A. TABASSI FAGE: 27 OF |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                   | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT  |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
| 865- 870    | 60     | <u>Claystone</u> as above                            | 0.6   | 120 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                 |       |     |     |       |    |      |      |
| 870- 875    | 55     | Claystone as above                                   | 0.72  | 182 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 15     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 875- 880    | 60     | <u>Claystone</u> as above                            | 0.72  | 180 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                 |       |     |     |       |    |      |      |
| 880- 885    | 55     | Claystone as above                                   | 0.66  | 112 |     |       |    |      |      |
|             | 25     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | tr     | Coal as above                                        |       |     |     |       |    |      |      |
| 885- 890    | 50     | <u>Claystone</u> as above                            | 0.9   | 208 |     |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             |        |                                                      |       |     |     |       |    |      |      |

| WELL: McEAC | HERN N | 0.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 28 OF |       |     |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        | O.1 DATE: 25 12 05 GEOEGETT. A. TADASST TAGE. 20 OF  |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | Z      | SAMPLE DESCRIPTION                                   | TOTAL | C1  | C2  | C3    | C4 | NAT. | CUT  |
| 895- 900    | 70     | Claystone as above                                   | 0.3   | 60  |     |       |    |      |      |
|             | 25     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
| 900- 905    | 70     | <u>Claystone</u> as above                            | 0.48  | 92  |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            | _     |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 905- 910    | 75     | Claystone as above                                   | 0.57  | 108 |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                 |       |     |     |       |    |      |      |
| 910- 915    | 75     | <u>Claystone</u> as above                            | 0.47  | 92  |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
| 915- 920    | 75     | Claystone as above                                   | 0.57  | 114 |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
| 920- 925    | 70     | Claystone as above                                   | 0.36  | 72  |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | !      |                                                      |       |     |     |       |    |      |      |

| WELL: McEAC | HERN N | O.1 DATE: 23-12-89 GEOLOGIST: A. TABASSI PAGE: 29 OF  |       |     |     | SHOWS |    |      |      |
|-------------|--------|-------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        |                                                       |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | Z      | SAMPLE DESCRIPTION                                    | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT  |
|             | 10     | Sandstone as above                                    |       |     |     |       |    |      |      |
| 925- 930    | 70     | Claystone as above                                    | 0.69  | 118 |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                             |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                    |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                  |       |     |     |       |    |      |      |
| 930 934     | 70     | <u>Claystone</u> as above                             | 0.3   | 60  |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                             |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                    |       |     |     |       |    |      |      |
|             |        | (Changed bit, Repaired generator(s), Resumed drilling |       |     |     |       |    |      |      |
|             |        | @ 3.00P.M. 24-12-89)                                  |       |     |     |       |    |      |      |
| 934- 940    | 50     | Claystone as above                                    | 0.3   | 60  |     |       |    |      |      |
|             | 40     | <u>Siltstone</u> as above                             |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                    |       |     |     |       |    |      |      |
|             | tr     | Coal as above                                         |       |     |     |       |    |      |      |
|             |        |                                                       |       |     |     |       |    |      |      |
|             |        | •                                                     |       |     |     |       |    |      |      |
|             |        |                                                       |       |     |     |       |    |      |      |
|             |        |                                                       |       |     |     |       |    |      |      |
|             |        |                                                       |       |     |     |       |    |      |      |

| TIDYY   | Votac | אמסני | NO.1 DATE: 24-12-89 GEOLOGIST: A. TABASSI PAGE: 30 OF              |         |     |    | SHOWS |    |      |      |
|---------|-------|-------|--------------------------------------------------------------------|---------|-----|----|-------|----|------|------|
| WELLAL: | MCLAC | nekn  | NU.I DAIE: 24-12-09 GEOLOGISI: A. IADASSI FAGE: 30 OF              | - GAS I |     |    |       |    |      | LUOR |
| DEPTH   | (m)   | ક     | SAMPLE DESCRIPTION                                                 | TOTAL   | C1  | C2 | С3    | C4 | NAT. | CUT  |
| 940-    | 945   | 50    | Claystone as above, becoming firm-hd with depth, subfis-fis        | 0.3     | 60  |    |       |    |      |      |
|         |       |       | in part                                                            |         |     |    |       |    |      |      |
|         |       | 35    | Siltstone as above, becoming slightly firmer with depth            |         |     |    |       |    |      |      |
|         |       |       | poor o                                                             |         |     |    |       |    |      |      |
|         |       | 15    | Sandstone as above, with mod strong calc and/or sil cmt            |         |     |    |       |    |      |      |
|         |       |       | poor o                                                             |         |     |    |       |    |      |      |
|         |       | tr    | Coal as above                                                      |         |     |    |       |    |      |      |
| 945-    | 950   | 50    | <u>Claystone</u> as above                                          | 1.2     | 240 |    |       |    |      |      |
|         |       | 35    | <u>Siltstone</u> as above                                          |         |     |    |       |    |      |      |
|         |       | 15    | Sandstone as above                                                 |         |     |    |       |    |      |      |
|         |       | tr    | <u>Coal</u> as above                                               |         |     |    |       |    |      |      |
| 950-    | 955   | 40    | <u>Claystone</u> as above                                          | .4      | 60  |    |       |    |      |      |
|         |       | 40    | <u>Siltstone</u> as above                                          |         |     |    |       |    |      |      |
|         |       | 15    | Sandstone as above                                                 |         |     |    |       |    |      |      |
|         |       | tr    | <u>Coal</u> generally as above, dk brn-black, firm, blocky in part |         |     |    |       |    |      |      |
|         |       |       | subfis-fis in part, arg in part, sub conchoidal frac in part       |         |     |    |       |    |      |      |
| 955-    | 960   | 40    | <u>Claystone</u> as above                                          | .3      | 60  |    |       |    |      |      |
|         |       | 40    | <u>Siltstone</u> as above                                          |         |     |    |       |    |      |      |
|         |       |       |                                                                    | ,       |     |    |       |    |      |      |

| WELL: McEAC | HERN N | O.1 DATE: 24-12-89 GEOLOGIST: A. TABASSI PAGE: 31 OF |       |     |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        |                                                      |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                   | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT  |
|             | 15     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             | 5      | <u>Coal</u> as above                                 |       |     |     |       |    |      |      |
| 960- 965    | 40     | Claystone as above, occ med brn                      | . 4   | 80  |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             | 5      | <u>Coal</u> as above                                 |       |     |     |       |    |      |      |
| 965- 970    | 45     | <u>Claystone</u> as above                            | 1.1   | 220 |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                 |       |     |     |       |    |      |      |
| 970- 975    | 35     | <u>Claystone</u> as above                            | .5    | 100 |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 20     | Sandstone as above                                   |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                 |       |     |     |       |    |      |      |
| 975- 980    | 40     | <u>Claystone</u> as above                            | .5    | 100 |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 15     | <u>Sandstone</u> as above                            |       |     |     |       |    |      |      |
|             | tr     | Coal as above                                        |       |     |     |       |    |      |      |
|             |        |                                                      |       |     |     |       |    |      |      |

| WELL: McEAC | HERN N | O.1 DATE: 24-12-89 GEOLOGIST: A. TABASSI PAGE: 32 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |     | SHOWS |    |      |      |
|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        | The state of the s |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | z      | SAMPLE DESC-RIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL | C1  | C2  | C3    | C4 | NAT. | CUT  |
| 980- 985    | 40     | Claystone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .6    | 120 |     |       |    |      |      |
|             | 50     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |     |       |    |      |      |
| 985- 990    | 40     | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3   | 640 |     |       |    |      |      |
|             | 50     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |     |     |       |    |      |      |
| 990- 995    | 45     | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .8    | 160 |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |     |       |    |      |      |
| 995-1000    | 45     | Claystone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .8    | 160 |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |     |       |    |      |      |
| 1000-1005   | 45     | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1   | 220 |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |     |     |       |    |      |      |
| 1           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |       |    |      |      |
|             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |       |    |      |      |

| WELL: McEAC | HERN N | O.1 DATE: 24-12-89 GEOLOGIST: A. TABASSI PAGE: 33 OF |       |     |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        |                                                      |       |     | GAS |       |    | F.   | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                   | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT  |
| 1005-1010   | 40     | Claystone as above                                   | 1.3   | 260 |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 15     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 1010-1015   | 45     | Claystone as above                                   | . 4   | 80  |     |       |    |      |      |
|             | 50     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
| 1015-1020   | 45     | <u>Claystone</u> as above                            | .6    | 60  |     |       |    |      |      |
|             | 50     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
| 1020-1025   | 45     | <u>Claystone</u> as above                            | .5    | 100 |     |       |    |      |      |
|             | 50     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
| 1025-1030   | 45     | Claystone as above                                   | .3    | 60  |     |       |    |      |      |
|             | 45     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | Sandstone as above                                   |       |     |     |       |    |      |      |
| 1030-1035   | 55     | Claystone as above                                   | .3    | 60  |     |       |    |      |      |
|             | 40     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             | 5      | Sandstone as above                                   |       |     |     |       |    |      |      |
|             |        |                                                      |       |     |     |       |    |      |      |

| игри и                                 | O 1 DATE: 2/_12_80 CEOLOCIST: A TABASSI DACE: 2/ OF                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    | SHOWS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
|----------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| II | O.I DAIB. 24-12-09 GEOLOGISI: A. IADASSI FAGE: 54 OF                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | GAS                |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                                                                                                                | LUOR                                                             |
| z                                      | SAMPLE DESCRIPTION                                                        | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1                 | C2                 | C3                                   | C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAT.                                                                                                             | CUT                                                              |
| 45                                     | Claystone as above                                                        | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160                |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | Siltstone as above                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 10                                     | Sandstone as above                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | <u>Claystone</u> as above                                                 | .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180                |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | <u>Siltstone</u> as above                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 10                                     | Sandstone as above                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | Claystone as above                                                        | .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180                |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 50                                     | <u>Siltstone</u> as above                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 5                                      | Sandstone as above                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| tr                                     | <u>Coal</u> as above                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | <u>Claystone</u> as above                                                 | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | <u>Siltstone</u> as above                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 10                                     | Sandstone as above                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | <u>Claystone</u> as above                                                 | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 45                                     | <u>Siltstone</u> as above                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 10                                     | Sandstone as above                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
|                                        | (Circulated Return @ 1063m, Fast drilling 1061-1063, No Show)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
| 50                                     | Claystone as above, dom soft & disp                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                |                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                  |
|                                        | 2<br>45<br>45<br>10<br>45<br>45<br>10<br>45<br>45<br>10<br>45<br>45<br>10 | Claystone as above  Siltstone as above  Claystone as above  Siltstone as above  Siltstone as above  Claystone as above  Claystone as above  Siltstone as above  Siltstone as above  Claystone as above  Claystone as above  Claystone as above  Sandstone as above  Claystone as above  Claystone as above  Claystone as above  Claystone as above  Siltstone as above  Siltstone as above  Siltstone as above  Claystone as above  Claystone as above  Claystone as above  Siltstone as above  Claystone as above | SAMPLE DESCRIPTION | SAMPLE DESCRIPTION | SAMPLE DESCRIPTION   TOTAL   C1   C2 | Cas   Cas | ### HERN NO.1 DATE: 24-12-89 GEOLOGIST: A. TABASSI PAGE: 34 OF    SAMPLE DESCRIPTION   TOTAL   C1   C2   C3   C4 | EERN NO.1 DATE: 24-12-89 GEOLOGIST: A. TABASSI PAGE: 34 OF   CAS |

| WELL: McEA | CHERN | NO.1 DATE: 24-12-89 GEOLOGIST: A. TABASSI PAGE: 35 OF         |       |           |           | SHOWS    |    |      |     |
|------------|-------|---------------------------------------------------------------|-------|-----------|-----------|----------|----|------|-----|
|            |       | I I I I I I I I I I I I I I I I I I I                         |       |           | GAS       |          |    | FLU  | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                            | TOTAL | <b>C1</b> | <b>C2</b> | С3       | C4 | NAT. | CUT |
|            | 45    | <u>Siltstone</u> as above                                     |       |           |           |          |    |      |     |
|            | 5     | Sandstone as above                                            |       |           |           |          |    |      |     |
| 1065-1070  | 50    | <u>Claystone</u> as above                                     | .2    | 40        |           |          |    |      |     |
|            | 50    | <u>Siltstone</u> as above                                     |       |           |           |          |    |      |     |
|            | 10    | Sandstone as above                                            |       |           |           |          |    |      |     |
|            | tr.   | Carb. clay grading into <u>Coal</u> as above                  |       |           |           |          |    |      |     |
| 1070-1075  | 40    | <u>Claystone</u> as above                                     | .2    | 40        |           |          |    |      |     |
|            | 40    | <u>Siltstone</u> as above                                     |       |           |           |          |    |      |     |
|            | 20    | Sandstone, lt-med green gry, lt brn, speckled, unconsolidated |       |           |           |          |    |      |     |
|            |       | in part, fri-firm in part, Vf-f, dom f, SA-SR, mod-well       |       |           |           |          |    |      |     |
|            |       | sorted qtz, trcom multi-col lithics (some rare pink & red     |       |           |           |          |    |      |     |
|            |       | but don't appear to be garnet?), no apparent mtx in           |       |           |           |          |    |      |     |
|            |       | unconsolidated portion, com to abundant lt-med green gry,     |       |           |           |          |    |      |     |
|            |       | lt-med brn gry and occ white Kaolinitic clay mtx in the       |       |           |           |          |    |      |     |
|            |       | remaining portion, com calc cmt v rare mica & pyr,            |       |           |           |          |    |      |     |
|            |       | rare carb det, good-poor vis O no shows.                      |       |           |           |          |    |      |     |
|            |       |                                                               |       |           |           |          |    |      |     |
|            |       |                                                               |       |           |           |          |    |      |     |
|            |       |                                                               |       |           |           | <u> </u> |    |      |     |

| WELL: McEA( | CHERN | NO.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 36 OF |       |           |           | SHOWS |    |      |     |
|-------------|-------|-------------------------------------------------------|-------|-----------|-----------|-------|----|------|-----|
|             |       |                                                       |       |           | GAS       |       |    | FLU  | OR. |
| DEPTH (m)   | ક     | SAMPLE DESCRIPTION                                    | TOTAL | <b>C1</b> | <b>G2</b> | С3    | С4 | NAT. | CUT |
|             |       | rare carb det, good-poor vis Ø no shows.              |       |           |           |       |    |      |     |
| 1075-1080   | 45    | <u>Claystone</u> as above                             | .3    | 60        |           |       |    |      |     |
|             | 45    | <u>Siltstone</u> as above                             |       |           |           |       |    |      |     |
|             | 10    | Sandstone as above, dom fri-firm                      |       |           |           |       |    |      |     |
| 1080-1085   | 45    | <u>Claystone</u> as above                             | .3    | 60        |           |       |    |      |     |
|             | 45    | <u>Siltstone</u> as above                             |       |           |           |       |    |      |     |
|             | 10    | Sandstone as above                                    |       |           |           |       |    |      |     |
| 1085-1090   | 45    | <u>Claystone</u> as above                             | .3    | 60        |           |       |    |      |     |
|             | 45    | <u>Siltstone</u> as above                             |       |           |           |       |    |      |     |
|             | 10    | Sandstone as above                                    |       |           |           |       |    |      |     |
|             | tr    | <u>Coal</u> as above                                  |       |           |           |       |    |      |     |
| 1090-1095   | 45    | <u>Claystone</u> as above                             | . 4   | 80        |           |       |    |      |     |
|             | 45    | <u>Siltstone</u> as above                             |       |           |           |       |    |      |     |
|             | 10    | Sandstone as above                                    |       |           |           |       |    |      |     |
|             | tr    | <u>Coal</u> as above                                  |       |           |           |       |    |      |     |
| 1095-1100   | 40    | <u>Claystone</u> as above                             | .3    | 60        |           |       |    |      |     |
|             | 50    | <u>Siltstone</u> as above                             |       |           |           |       |    |      |     |
|             | 10    | <u>Sandstone</u> as above                             |       |           |           |       |    |      |     |
|             |       |                                                       |       | <b>,</b>  |           |       |    |      |     |

| WELL: McEA                              | CHERN | NO.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 37 OF        |       |    |     | SHOWS |    |      |     |
|-----------------------------------------|-------|--------------------------------------------------------------|-------|----|-----|-------|----|------|-----|
| *************************************** |       | Maria 23 12 07 Cachotal M. Maria I Maria 37 01               |       |    | GAS |       |    | FLU  | OR  |
| DEPTH (m)                               | *     | SAMPLE DESCRIPTION                                           | TOTAL | C1 | C2  | С3    | C4 | NAT. | CUT |
| 1100-1105                               | 40    | <u>Claystone</u> as above                                    | . 4   | 80 |     |       |    |      |     |
|                                         | 45    | <u>Siltstone</u> as above                                    |       |    |     |       |    |      |     |
|                                         | 15    | Sandstone as above, rarely f-med, rare med, occ coarse clear |       |    |     |       |    |      |     |
|                                         |       | qtz sand grains and few overgrowth qtz.                      |       |    |     |       |    |      |     |
| 1105-1110                               | 40    | <u>Claystone</u> as above                                    | .4    | 80 |     |       |    |      |     |
|                                         | 45    | <u>Siltstone</u> as above                                    |       |    |     |       |    |      |     |
|                                         | 15    | Sandstone as above                                           |       |    |     |       |    |      |     |
| 1110-1115                               | 45    | <u>Claystone</u> as above                                    | .4    | 80 |     |       |    |      |     |
|                                         | 45    | <u>Siltstone</u> as above                                    |       |    |     |       |    |      |     |
|                                         | 10    | Sandstone as above                                           |       |    |     |       |    |      |     |
| 1115-1120                               | 45    | <u>Claystone</u> as above                                    | .3    | 60 |     |       |    |      |     |
|                                         | 50    | <u>Siltstone</u> as above                                    |       |    |     |       |    |      |     |
|                                         | 5     | Sandstone as above                                           |       |    |     |       |    |      |     |
| 1120-1125                               | 50    | <u>Claystone</u> as above                                    | .4    | 80 |     |       |    |      |     |
|                                         | 50    | <u>Siltstone</u> as above                                    |       |    |     |       |    |      |     |
| 1125-1130                               | 50    | <u>Claystone</u> as above                                    | .4    | 80 |     |       |    |      |     |
|                                         | 50    | <u>Siltstone</u> as above                                    |       |    |     |       |    |      |     |
| 1130-1135                               | 50    | <u>Claystone</u> as above                                    | .4    | 80 |     |       |    |      |     |
|                                         |       | ,                                                            |       |    |     |       |    |      |     |

| WELL: McEA | CHERN | NO.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 38 OF   |       |     |     | SHOWS |    |      |     |
|------------|-------|---------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|            |       |                                                         |       |     | GAS |       |    | FLU  | OR. |
| DEPTH (m)  | 8     | SAMPLE DESCRIPTION                                      | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
|            | 50    | <u>Siltstone</u> as above                               |       |     |     |       |    |      |     |
| 1135-1140  | 50    | <u>Claystone</u> as above                               | .3    | 60  |     |       |    |      |     |
|            | 50    | <u>Siltstone</u> as above                               |       |     |     |       |    |      |     |
| 1140-1145  | 50    | <u>Claystone</u> as above                               | .3    | 60  |     |       |    |      |     |
|            | 50    | <u>Siltstone</u> as above                               |       |     |     |       |    |      |     |
|            | tr    | Coal as above, extremely arg in part, grading into Carb |       |     |     |       |    |      |     |
|            |       | Claystone in part.                                      |       |     |     |       |    |      |     |
| 1145-1150  | 50    | Claystone as above                                      | 1.2   | 240 |     |       |    |      |     |
|            | 50    | <u>Siltstone</u> as above                               |       |     |     |       |    |      |     |
|            | tr.   | Coal as above, grading into Carb Claystone as above     |       |     |     |       |    |      |     |
| 1150-1155  | 50    | <u>Claystone</u> as above                               |       |     |     |       |    |      |     |
|            | 50    | <u>Siltstone</u> as above                               |       |     |     |       |    |      |     |
|            | tr.   | Coal as above, grading into Carb Claystone as above     |       |     |     |       |    |      |     |
| 1155-1160  | 45    | <u>Claystone</u> as above                               | .5    | 100 |     |       |    |      |     |
|            | 50    | <u>Siltstone</u> as above                               |       |     |     |       |    |      |     |
|            | tr.   | <u>Coal</u> as above                                    |       |     |     |       |    |      |     |
| 1160-1165  | 45    | <u>Claystone</u> as above                               | .17   |     |     |       |    |      |     |
| 1160-1165  | 45    | <u>Claystone</u> as above                               | .17   |     |     |       |    |      |     |
|            |       |                                                         |       |     |     |       |    |      |     |

| WRII. MORA | CHERN | NO.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 39 OF          |       |    |           | SHOWS |           |      |     |
|------------|-------|----------------------------------------------------------------|-------|----|-----------|-------|-----------|------|-----|
| HEIM. RCEA | JIEKN | NO.1 DATA. 25-12-07 GEOLOGISI. A. IADASSI IAGE. 37 OF          |       |    | GAS       |       |           | FLU  | OR  |
| DEPTH (m)  | *     | SAMPLE DESCRIPTION                                             | TOTAL | C1 | <b>C2</b> | С3    | <b>C4</b> | NAT. | CUT |
|            | 50    | <u>Siltstone</u> as above                                      |       |    |           |       |           |      |     |
|            | 5     | Sandstone as above                                             |       |    |           |       |           |      |     |
|            | tr.   | Coal as above grading into Carb Claystone in part              |       |    |           |       |           |      |     |
| 1165-1170  | 45    | Claystone as above, lt-med gry, lt med green gry in part, med  | 1.7   |    |           |       |           |      |     |
|            |       | brn gry in part, rarely med-dk gry, firm-hd, dom firm, v       |       |    |           |       |           |      |     |
|            |       | rarely soft & disp, blocky in part, subfis-fis in part, dom    |       |    |           |       |           |      |     |
|            |       | subfis, dom rarely carbonaceous, occ very carbonaceous and     |       |    |           |       |           |      |     |
|            |       | grading into arg Coal, trace mica, dom rarely silty, occ       |       |    |           |       |           |      |     |
|            |       | extremely silty and grading into and interlam with             |       |    |           |       |           |      |     |
|            | 45    | Siltstone, as above, lt to med green gry, lt-med brn gry, occ  |       |    |           |       |           |      |     |
|            |       | med-dk brn, rarely off white to v lt gry, speckled in part,    |       |    |           |       |           |      |     |
|            |       | soft-firm, occ hd, disp in part, blocky in part, subfis in     |       |    |           |       |           |      |     |
|            |       | part extremely arg, rarely micaceous, rarely to occ mod card,  |       |    |           |       |           |      |     |
|            |       | interbd. interlam with,                                        |       |    |           |       |           |      |     |
|            | 10    | Sandstone, as above, lt occ med green gry, lt gry to brn gry,  |       |    |           |       |           |      |     |
|            |       | lt-med gry, rarely off-white to v lt gry, speckled in part,    |       |    |           |       |           |      |     |
|            |       | fri-firm, occ had, vf-f dom f, rarely f-med, SA-SR, mod sorted |       |    |           |       |           |      |     |
|            |       | qtz & multi-col lithics including volcanolithics, com-abundant |       |    |           |       |           |      |     |
|            |       |                                                                |       |    |           |       |           |      |     |

| WELL: McEA | CHERN I | NO.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 40 OF          | SHOWS |    |     |    |    |      |     |
|------------|---------|----------------------------------------------------------------|-------|----|-----|----|----|------|-----|
|            |         |                                                                |       |    | GAS |    |    | FLU  | OR  |
| DEPTH (m)  | ક       | SAMPLE DESCRIPTION                                             | TOTAL | C1 | C2  | С3 | С4 | NAT. | CUT |
|            |         | arg mtx, lt-med gry, lt-med green gry, lt-med brn in part,     |       |    |     |    |    |      |     |
|            |         | off-white Kaolinite clay in part, disp in part, tr-com cale    |       |    |     |    |    |      |     |
|            |         | cmt, com carb flecks, rare mica, rare pyrite, rare med-c. occ  |       |    |     |    |    |      |     |
|            |         | v, clear to translucent to frosty loose qtz semd grains, some  |       |    |     |    |    |      |     |
|            |         | appear to be qtz overgrowth, v rare partially altered feldspar |       |    |     |    |    |      |     |
|            |         | (?), mod-poor vis $\emptyset$ , interlam with;                 |       |    |     |    |    |      |     |
|            | tr.     | Coal & Carbonaceous Claystone as above                         |       |    |     |    |    |      |     |
| 1170-1175  | 40      | <u>Claystone</u> as above                                      | .17   |    |     |    |    |      |     |
|            | 55      | <u>Siltstone</u> as above                                      |       |    |     |    |    |      |     |
|            | 5       | Sandstone as above                                             |       |    |     |    |    |      |     |
|            | tr      | Coal & Carbonaceous Claystone as above                         |       |    |     |    |    |      |     |
| 1175-1180  | 45      | Claystone as above                                             | .23   |    |     |    |    |      |     |
|            | 50      | Siltstone as above                                             |       |    |     |    |    |      |     |
|            | 5       | Sandstone as above                                             |       |    |     |    |    |      |     |
|            | tr      | Coal & Carbonaceous Claystone as above                         |       |    |     |    |    |      |     |
| 1180-1185  | 40      | Claystone as above                                             | .19   |    |     |    |    |      |     |
|            | 60      | Siltstone as above                                             |       |    |     |    |    |      |     |
|            | tr      | Sandstone as above                                             |       |    |     |    |    |      |     |
|            |         |                                                                |       |    |     |    |    |      |     |

|             |        | TARREST DATE (1.00                                   |       |    |     | SHOWS | т  |          |      |
|-------------|--------|------------------------------------------------------|-------|----|-----|-------|----|----------|------|
| WELL: McEAC | HERN N | O.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 41 OF |       |    | GAS |       |    | FI       | JUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                   | TOTAL | C1 | C2  | C3    | C4 | NAT.     | CUT  |
|             | tr     | <u>Coal</u> as above                                 |       |    |     |       |    |          |      |
| 1185-1190   | 35     | Claystone as above, becoming dominantly med-dk gry   | .17   |    |     |       |    |          |      |
|             | 55     | <u>Siltstone</u> as above                            |       |    |     |       |    |          |      |
|             | 10     | Sandstone as above                                   |       |    |     |       |    |          |      |
|             | tr     | Coal & Carb Claystone as above                       |       |    |     |       |    |          |      |
| 1190-1195   | 40     | Claystone as above, becoming dominantly med-dk gry   | .17   |    |     |       |    |          |      |
|             | 55     | Sandstone as above                                   |       |    |     |       |    |          |      |
| 1195-1200   | 40     | Claystone as above. becoming dominantly med-dk gry   | .25   |    |     |       |    |          |      |
|             | 55     | <u>Siltstone</u> as above                            |       |    |     |       |    |          |      |
|             | 5      | Sandstone as above                                   |       |    |     |       |    |          |      |
| 1200-1205   | 25     | Claystone as above, dominantly med-dk gry            | .28   |    |     |       |    |          |      |
|             | 45     | <u>Siltstone</u> as above                            |       |    |     |       |    |          |      |
|             | 30     | Sandstone as above                                   |       |    |     |       |    |          |      |
| 1205-1210   | 25     | Claystone as above                                   | .41   |    |     |       |    |          |      |
|             | 45     | <u>Siltstone</u> as above                            |       |    |     |       |    |          |      |
|             | 30     | Sandstone as above                                   |       |    |     |       |    |          |      |
| 1210-1215   | 30     | <u>Claystone</u> as above                            | .5    |    |     |       |    |          |      |
|             | 60     | <u>Siltstone</u> as above                            |       |    |     |       |    |          |      |
|             |        |                                                      |       |    |     |       |    | <u> </u> |      |

| WELL: McEA | CHERN | NO.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 42 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |    |     | SHOWS |    |      |      |
|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|-------|----|------|------|
|            |       | The state of the s |       |    | GAS |       |    | F    | LUOR |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL | C1 | C2  | С3    | C4 | NAT. | CUT  |
|            | 10    | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |       |    | •    |      |
|            | tr    | <u>Coal</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |    |     |       |    |      |      |
| 1215-1220  | 30    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .5    |    | :   |       |    |      |      |
|            | 60    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |      |
|            | 10    | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |       |    |      |      |
|            | tr    | <u>Coal</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |    |     |       |    |      |      |
| 1220-1225  | 30    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .5    |    |     |       |    |      |      |
|            | 50    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |      |
|            | 20    | Sandstone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |       |    |      |      |
|            | tr    | <u>Coal</u> as above with minor carb Claystone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |    |     |       |    |      |      |
| 1225-1230  | 30    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2   |    |     |       |    |      |      |
|            | 40    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |      |
|            | 30    | Sandstone as above with minor portion of it being med-c, mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |     |       |    |      |      |
|            |       | strong calc cmt & com Kaolinitic clay matrix, v poor vis Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |    |     |       |    |      |      |
|            | tr    | <u>Coal</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |    |     |       |    |      |      |
| 1230-1235  | 40    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .22   |    |     |       |    |      |      |
|            | 45    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |     |       |    |      |      |
|            | 15    | Sandstone as above vf-f, occ med as before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |    |     |       |    |      |      |
|            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |     |       |    |      |      |

| WRII · McFA  | CHEBN | NO.1 DATE: 25-12-89 GEOLOGIST: A. TABASSI PAGE: 45 OF          | SHOWS |           |           |    |    |      |     |
|--------------|-------|----------------------------------------------------------------|-------|-----------|-----------|----|----|------|-----|
| WELLS. FICEA | OHERN | NO.1 DAIL. 23-12-09 GEOLOGISI. A. IADASSI FAGE. 43 OF          |       |           | GAS       |    |    | FLU  | OR. |
| DEPTH (m)    | ક     | SAMPLE DESCRIPTION                                             | TOTAL | <b>C1</b> | <b>C2</b> | С3 | C4 | NAT. | CUT |
|              | tr    | Sandstone, lt-med brn, med gry brn in part, firm, occ hd, f-c, |       |           |           |    |    |      |     |
|              |       | dom med, SA-SR, poor-mod sorted qtz, clear to frosty, minor    |       |           |           |    |    |      |     |
|              |       | multi-col lithics, tr lt-med brn gry arg mtx, com-abundant     |       |           |           |    |    |      |     |
|              |       | calc cmt (including dolomite) some qtz grains are lt brn       |       |           |           |    |    |      |     |
|              |       | stained, poor vis Ø                                            |       |           |           |    |    |      |     |
| 1290-1205    | 50    | <u>Claystone</u> as above                                      | .22   |           |           |    |    |      |     |
|              | 45    | <u>Siltstone</u> as above                                      |       |           |           |    |    |      |     |
|              | 5     | Sandstone as above                                             |       |           |           |    |    |      |     |
|              | tr    | <u>Brown Sandstone</u> as above                                |       |           |           |    |    |      |     |
| 1295-1300    | 50    | <u>Claystone</u> as above                                      | .17   |           |           |    |    |      |     |
|              | 45    | <u>Siltstone</u> as above                                      |       |           |           |    |    |      |     |
|              | 5     | Sandstone as above                                             |       |           |           |    |    |      |     |
|              | tr    | Brown Sandstone as above                                       |       |           |           |    |    |      |     |
|              |       |                                                                |       |           |           |    |    |      |     |
|              |       |                                                                |       |           |           |    |    |      |     |
|              |       |                                                                |       |           |           |    |    |      |     |
|              |       |                                                                |       |           |           |    |    |      |     |
|              |       |                                                                |       |           |           |    |    |      |     |
|              |       |                                                                |       |           |           |    |    |      |     |

| WELL: McEAC  | HERN N     | 0.1 DATE: 26-12-89 GEOLOGIST: A. TABASSI PAGE: 46 OF | SHOWS |     |     |    |    |      |      |
|--------------|------------|------------------------------------------------------|-------|-----|-----|----|----|------|------|
| WBBB. Hebrie | II DICK IN | O.I DAID. 20 12 05 GEORGEST. A. IABASSI FAGE. 40 OF  |       | y-t | GAS |    |    | F    | LUOR |
| DEPTH (m)    | z          | SAMPLE DESCRIPTION                                   | TOTAL | C1  | C2  | С3 | C4 | NAT. | CUT  |
| 1300-1305    | 55         | <u>Claystone</u> as above                            | .22   |     |     |    |    |      |      |
|              | 45         | Siltstone as above                                   |       |     |     |    |    |      |      |
|              | tr         | Brown Sandstone as above                             |       |     |     |    |    |      |      |
| 1305-1310    | 55         | <u>Claystone</u> as above                            | .7    |     |     |    |    |      |      |
|              | 45         | Siltstone as above                                   |       |     |     |    |    |      |      |
|              | tr         | Brown Sandstone as above                             |       |     |     |    |    |      |      |
| 1310-1315    | 50         | <u>Claystone</u> as above                            | . 4   |     |     |    |    |      |      |
|              | 45         | <u>Siltstone</u> as above                            |       |     |     |    |    |      |      |
|              | 5          | Coal as above                                        |       |     |     |    |    |      |      |
| 1315-1320    | 50         | <u>Claystone</u> as above                            | 2.6   |     |     |    |    |      |      |
|              | 45         | <u>Siltstone</u> as above                            |       |     |     |    |    |      |      |
|              | tr         | Sandstone as above                                   |       |     |     |    |    |      |      |
|              | 5          | Coal as above                                        |       |     |     |    |    |      |      |
| 1320-1325    | 60         | <u>Claystone</u> as above                            | .44   |     |     |    |    |      |      |
|              | 40         | <u>Siltstone</u> as above                            |       |     |     |    |    |      |      |
| 1325-1330    | 60         | <u>Claystone</u> as above                            | .39   |     |     |    |    |      |      |
|              | 40         | <u>Siltstone</u> as above                            |       |     |     |    |    |      |      |
| 1330-1335    | 55         | <u>Claystone</u> as above                            | .33   |     |     |    |    |      |      |
|              |            |                                                      |       |     |     |    |    |      |      |

| WELL: McEAC | HERN N | O.1 DATE: 26-12-89 GEOLOGIST: A. TABASSI PAGE: 47 OF        | SHOWS |    |     |    |    |      |      |
|-------------|--------|-------------------------------------------------------------|-------|----|-----|----|----|------|------|
| "BBB. Hebri |        | DATE: 20 12 05 GEOLOGIST: A. TABASSI TAGE. 47 OF            |       |    | GAS | •  |    | F    | LUOR |
| DEPTH (m)   | Z      | SAMPLE DESCRIPTION                                          | TOTAL | C1 | C2  | С3 | C4 | NAT. | CUT  |
|             | 40     | <u>Siltstone</u> as above                                   |       |    |     |    |    |      |      |
|             | 5      | Sandstone as above                                          |       |    |     |    |    |      |      |
| 1335-1340   | 60     | <u>Claystone</u> as above                                   | .22   |    |     |    |    |      |      |
|             | 40     | <u>Siltstone</u> as above                                   |       |    |     |    |    |      |      |
|             | tr     | Brown Sandstone as above                                    |       |    |     |    | ,  |      |      |
| 1340-1345   | 60     | <u>Claystone</u> as above                                   | .36   |    |     |    |    |      |      |
|             | 40     | <u>Siltstone</u> as above                                   |       |    |     |    |    |      |      |
| 1345-1350   | 55     | <u>Claystone</u> as above                                   | .36   |    |     |    |    |      |      |
|             | 40     | <u>Siltstone</u> as above                                   |       |    |     |    |    |      |      |
|             | 5      | Sandstone as above                                          |       |    |     |    |    |      |      |
|             | tr     | Coal as above                                               |       |    |     |    |    |      |      |
| 1350-1355   | 55     | <u>Claystone</u> as above                                   | .41   |    |     |    |    |      |      |
|             | 40     | <u>Siltstone</u> as above                                   |       |    |     |    |    |      |      |
|             | 5      | Sandstone as above                                          |       |    |     |    |    |      |      |
| 1355-1360   | 55     | <u>Claystone</u> as above                                   | .41   |    |     |    |    |      |      |
|             | 40     | <u>Siltstone</u> as above                                   |       |    |     |    |    |      |      |
|             | 5      | Sandstone as above with tr. of loose, med-c, SA-SR qtz sand |       |    |     |    |    |      |      |
|             |        | grains                                                      |       |    |     |    |    |      |      |
|             |        |                                                             |       |    |     |    |    |      |      |

| WELL: McFA | CHERN | NO.1 DATE: 26-12-89 GEOLOGIST: A. TABASSI PAGE: 48 OF                | SHOWS |     |     |    |    |      |     |
|------------|-------|----------------------------------------------------------------------|-------|-----|-----|----|----|------|-----|
| WIND. HOLE |       | NO.1 DAID. 20-12-07 GEOLOGISI. A. IADASSI IAGE. 40 OF                |       |     | GAS |    |    | FLU  | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                                   | TOTAL | C1  | C2  | С3 | C4 | NAT. | CUT |
| 1360-1365  | 50    | <u>Claystone</u> as above, occ med-dk brn gry                        | 3.6   | 620 | 12  | tr | tr |      |     |
|            | 40    | <u>Siltstone</u> as above                                            |       |     |     |    |    |      |     |
|            | 5     | <u>Sandstone</u> as above                                            |       |     |     |    |    |      |     |
|            | 5     | <u>Coal</u> as above                                                 |       |     |     |    |    |      |     |
| 1365-1370  | 40    | <u>Claystone</u> generally as above, med-dk gry, med-dk brn gry, occ | .3    |     |     |    |    |      |     |
|            |       | med green gry, rarely off white to v lt gry, firm, occ hd, off       |       |     |     |    |    |      |     |
|            |       | white claystone is soft, disp & mod silty/sandy, the other           |       |     |     |    |    |      |     |
|            |       | Claystone is blocky in part, subfis to fis in part, v rarely         |       |     |     |    |    |      |     |
|            |       | micaceous, rarely carbonaceous, some strongly carbonaceous, mod      |       |     |     |    |    |      |     |
|            |       | silty in part, grading in part into;                                 |       |     |     |    |    |      |     |
|            | 30    | Siltstone, generally as above, lt-med gry, lt-med green gry,         |       |     |     |    |    |      |     |
|            |       | occ lt-med brn gry, firm, rarely hard, abundantly arg in part,       |       |     |     |    |    |      |     |
|            |       | rare Carb & micaceous, interbd/interlam with;                        |       |     |     |    |    |      |     |
|            | 30    | Sandstone, lt gry, lt brn gry, pale greenish gry in part, med        |       |     |     |    |    |      |     |
|            |       | brn gry in part, fri-firm, occ firm, vf-f, occ vf-med, v             |       |     |     |    |    |      |     |
|            |       | rarely c, dom f, SA-SR, mod sorted qtz and minor med green           |       |     |     |    |    |      |     |
|            |       | gry & med brn gry lithics, qtz are clear-frosty, lt brn stained      |       |     |     |    |    |      |     |
|            |       | in part, tr in part com arg mtz, lt green gry in part, Kaolinitic    |       |     |     |    |    |      |     |
|            |       |                                                                      |       |     |     |    |    |      |     |

| WELL: MCEA | CHERN 1 | NO.1 DATE: 26-12-89 GEOLOGIST: A. TABASSI PAGE: 49 OF           | SHOWS |           |     |    |    |      |     |
|------------|---------|-----------------------------------------------------------------|-------|-----------|-----|----|----|------|-----|
|            |         | TOTAL TO LE OF CHOMOLOI. III IIIIIII IIII TOTAL                 | -     |           | GAS |    |    | FLU  | OR  |
| DEPTH (m)  | ફ       | SAMPLE DESCRIPTION                                              | TATAL | <b>C1</b> | C2  | С3 | C4 | NAT. | CUT |
|            |         | in part,tr in part com arg mtz,lt green gry in part,Kaolinitic  |       |           |     |    |    |      |     |
|            |         | in part, tr-com mod strong Cale cmt in part, rare biotite and   |       |           |     |    |    |      |     |
|            |         | muscovite, rare Carb det, v rare med brn dull dolomite crystal, |       |           |     |    |    |      |     |
|            |         | poor occ mod vis $arnothing$ , interlam with minor;             | i     |           |     |    |    |      |     |
|            | tr.     | Coal as above, black v dk brn, v dk gry brn in part, firm,      |       |           |     |    |    |      |     |
|            |         | rarely hd in part, blocky in part, subfis in part, arg & dirty  |       |           |     |    |    |      |     |
|            |         | in part, rarely sub-conehoidal fracture in part, no fluor,      |       |           |     | ļ  |    |      |     |
|            |         | no cut.                                                         |       |           |     |    |    |      |     |
|            |         | - Circulated Return @ 1370m. No Shows                           |       |           |     |    |    |      |     |
|            |         | - POOH to change bit, lost power                                |       |           |     |    |    |      |     |
|            |         | - By Passed SCR, Continued to POOH, Changed bit &               |       |           |     |    |    |      |     |
|            |         | RIH to casing Shoe                                              |       |           |     |    |    |      |     |
|            |         | - Wait on repairs to SCR                                        |       |           | į   |    |    |      |     |
|            |         | - On bottom to resume drilling @ 10.30 A.M. (approx) on         |       |           |     |    |    |      |     |
|            |         | Saturday 30-12-89.                                              |       |           |     |    |    |      |     |
|            |         | (For more details see "Daily Drilling Reports").                |       |           |     |    |    |      |     |
|            |         |                                                                 |       |           |     |    |    |      |     |
|            |         |                                                                 |       |           |     |    |    |      |     |
|            |         |                                                                 |       |           |     |    |    |      |     |

| WELL: McEAC | HEDN N | 0.1 DATE: 30-12-89 GEOLOGIST: A. TABASSI PAGE: 50 OF           |       |    |     | SHOWS |    |      |      |
|-------------|--------|----------------------------------------------------------------|-------|----|-----|-------|----|------|------|
| WEED. MCERO |        | O.I DAIE. 30-12-09 GEOLOGISI. A. IABASSI FAGE. 30 OF           |       |    | GAS |       |    | FI   | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                             | TOTAL | C1 | C2  | С3    | C4 | NAT. | CUT  |
| 1370-1375   | 55     | Claystone as above dom med-dk gry, dom blocky & subfis (Partly | .2    | 40 | tr. |       |    |      |      |
|             |        | due to caving and/or reaming the side of the hole rather than  |       |    |     |       |    |      |      |
|             |        | being grinded by the centre of the bit at the bottom?), v rare |       |    |     |       |    |      |      |
|             |        | gypsum, rare loose med-C grained SA-SR qtz in soft part,       |       |    |     |       | !  |      |      |
|             | 35     | Siltstone as above                                             |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above, dom vf-f, v rarely med with trace of       |       |    |     |       |    |      |      |
|             |        | partially altered feldspar, v poor vis O                       |       |    |     |       |    |      |      |
|             | tr     | Dolomite, med yel brn, dull, firm, occ hrd, amorphose to       |       |    |     |       |    |      |      |
|             |        | cryptocrystalline                                              |       |    |     |       |    |      |      |
| 1375-1380   | 55     | Claystone as above, dom soft & disp                            | .15   | 30 | tr. |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                                      |       |    |     |       |    |      |      |
|             | 15     | Sandstone as above                                             |       |    |     |       |    |      |      |
| 1380-1385   | 60     | Claystone as above, dom soft & disp                            | . 4   | 80 | tr. |       |    |      |      |
|             | 30     | <u>Siltstone</u> as above                                      |       |    |     |       |    |      |      |
|             | 10     | Sandstone as above                                             |       |    |     |       |    |      |      |
|             | tr     | <u>Coal</u> & Carbonaceous Claystone (Coally Shale) as above   |       |    |     |       |    |      |      |
| 1385-1390   | 60     | Claystone as above, dom blocky & Subfis, dom med-dk gry, dom   | .15   | 30 |     |       |    |      |      |
|             |        | firm-hd                                                        |       |    |     |       |    |      |      |
|             |        |                                                                |       |    |     |       |    |      |      |

| WELL: McEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HERN N | O.1 DATE: 30-12-89 GEOLOGIST: A. TABASSI PAGE: 51 OF      |       |     |     | SHOWS |    |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------|-------|-----|-----|-------|----|------|------|
| The state of the s |        |                                                           |       | ·   | GAS |       |    | F    | LUOR |
| DEPTH (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | z      | SAMPLE DESC'RIPTION                                       | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30     | Siltstone as above, com to abundantly micaceous           |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10     | Sandstone as above, the med-grained Sst has com partially |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | altered feldspar                                          |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr     | Coal & Carbonaceous Claystone as above                    |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr     | Dolomite as above                                         |       |     |     |       |    |      |      |
| 1390-1395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60     | Claystone as above, dom med-dk gry, dom blocky & subfis,  | .2    | 40  | tr. |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | dom had                                                   |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35     | Siltstone as above, com micaceous,                        |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5      | Sandstone as above                                        |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr     | <u>Coal</u> as above                                      |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr     | <u>Dolomite</u> as above                                  |       |     |     |       |    |      |      |
| 1395-1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60     | Claystone dom med-dk gry, dom hd, dom blocky f subfis     | .6    | 120 | tr. |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35     | Siltstone as above, com micaceous, com carb.              |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5      | Sandstone as above                                        |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tr     | Dolomite as above                                         |       |     |     |       |    |      |      |
| 1400-1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60     | Claystone as above, dom med-dk gry, dom hd, dom blocky,   | .3    | 60  | tr. |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | dom subfis-fis                                            |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35     | <u>Siltstone</u> as above,                                |       |     |     |       |    |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                           |       |     |     |       |    |      |      |

| WELL: McEAC | HERN N | 0.1 DATE: 30-12-89 GEOLOGIST: A. TABASSI PAGE: 52 OF    | SHOWS |     |     |    |    |      |      |
|-------------|--------|---------------------------------------------------------|-------|-----|-----|----|----|------|------|
| WEED. HEEKO |        | O.I DAIL. 30 12-09 GEOLOGISI. A. IABASSI FAGE: 32 OF    |       |     | GAS |    |    | FI   | LUOR |
| DEPTH (m)   | z      | SAMPLE DESC'RIPTION                                     | TOTAL | C1  | C2  | C3 | C4 | NAT. | CUT  |
|             | 5      | Sandstone as above                                      |       |     |     |    |    |      |      |
|             | tr     | Coal as above                                           |       |     |     |    |    |      |      |
|             | tr     | <u>Dolomite</u> as above                                |       |     |     |    |    |      |      |
|             | 35     | Siltstone as above, com micaceous,                      |       |     |     |    |    |      |      |
|             | 5      | Sandstone as above                                      |       |     |     |    |    |      |      |
|             | tr     | Coal as above                                           |       |     |     |    |    |      |      |
|             | tr     | <u>Dolomite</u> as above                                |       |     |     |    |    |      |      |
| 1395-1400   | 60     | Claystone dom med-dk gry, dom hd, dom blocky f subfis   | .6    | 120 | tr. |    |    |      |      |
|             | 35     | Siltstone as above, com micaceous, com carb.            |       |     |     |    |    |      |      |
|             | 5      | Sandstone as above                                      |       |     |     |    |    |      |      |
|             | tr     | <u>Dolomite</u> as above                                |       |     |     |    |    |      |      |
| 1400-1405   | 60     | Claystone as above, dom med-dk gry, dom hd, dom blocky, | .3    | 60  | tr. |    |    |      |      |
|             |        | dom subfis-fis                                          |       |     |     |    |    |      |      |
|             | 35     | <u>Siltstone</u> as above,                              |       |     |     |    |    |      |      |
|             | 5      | <u>Sandstone</u> as above                               |       |     |     |    |    |      |      |
|             | tr     | <u>Coal</u> as above                                    |       |     |     |    |    |      |      |
|             | tr     | <u>Dolomite</u> as above                                |       |     |     |    |    |      |      |
| 1405-1410   | 60     | Claystone as above dom med-dk gry,                      | .2    | 40  | tr. |    |    |      |      |

| WELL: McEACH   | IFRN N   | 0.1 DATE: 30-12-89 GEOLOGIST: A. TABASSI PAGE: 53 OF       |       |     |         | SHOWS |          |      |      |
|----------------|----------|------------------------------------------------------------|-------|-----|---------|-------|----------|------|------|
| WELLE. PICEACI | LILLY IV | O.1 DAID. 30-12-09 GEOLOGISI: A. INDASSI FAGE: 35 OF       |       |     | GAS     |       |          | FI   | LUOR |
| DEPTH (m)      | z        | SAMPLE DESCRIPTION                                         | TOTAL | C1  | C2      | С3    | C4       | NAT. | CUT  |
|                | 35       | <u>Siltstone</u> as above                                  |       |     |         |       |          |      |      |
|                | 5        | Sandstone as above                                         |       |     |         |       |          |      |      |
|                | tr       | Dolomite as above                                          |       |     |         |       |          |      |      |
| 1410-1415      | 60       | Claystone as above                                         | .3    | 60  | tr.     |       |          |      |      |
|                | 35       | Siltstone as above,                                        |       |     |         |       |          |      |      |
|                | 5        | Sandstone as above                                         |       |     |         |       |          |      |      |
|                | tr       | <u>Coal</u> as above                                       |       |     |         |       |          |      |      |
|                | tr       | <u>Dolomite</u> as above                                   |       |     |         |       |          |      |      |
| 1415-1420      | 50       | Claystone as above                                         | .25   | 50  | tr.     |       |          |      |      |
|                | 40       | Siltstone as above, dom. med-dk gry brn, subfis in part    |       |     |         |       |          |      |      |
|                | 5        | Sandstone as above                                         |       |     |         |       |          |      |      |
|                | tr       | Carbonaceous Claystone as above grading into Coal as above |       |     |         |       |          |      |      |
| 1420-1425      | 50       | <u>Claystone</u> as above                                  | .25   | 50  | tr.     |       |          |      |      |
|                | 50       | <u>Siltstone</u> as above                                  |       |     |         |       |          |      |      |
|                | tr       | Sandstone as above                                         |       |     |         |       |          |      |      |
|                | i        | Drilling break @ 1426.4m - 1429.5m                         |       |     |         |       |          |      |      |
|                | i        | Minor gas & minor fluorescence & cut                       |       |     |         |       |          |      |      |
| 1425-1426.5    | 50       | <u>Claystone</u> as above                                  | .7    | 150 | tr.     |       |          |      |      |
|                |          |                                                            |       |     | <u></u> |       | <u> </u> |      | 1    |

| WELL: McEA  | CHERN I | NO.1 DATE: 30-12-89 GEOLOGIST: A. TABASSI PAGE: 54 OF           |       |    |     | SHOWS |    |      |     |
|-------------|---------|-----------------------------------------------------------------|-------|----|-----|-------|----|------|-----|
| WELD: HELF  |         | DATE. 50 12 05 CHOROLOI. N. INDINDE INCH. 54 OF                 |       |    | GAS |       |    | FLU  | OR  |
| DEPTH (m)   | ક       | SAMPLE DESCRIPTION                                              | TOTAL | C1 | G2  | С3    | C4 | NAT. | CUT |
|             | 50      | <u>Siltstone</u> as above                                       |       |    |     |       |    |      |     |
|             | tr      | Sandstone as above                                              |       |    |     |       |    |      |     |
|             |         | PRETTY HILL SANDSTONE                                           |       |    |     |       |    |      |     |
| 1426.5-1430 | 60      | Sandstone, off white to v lt gry, clear in part, v rare lt      | .11   | 22 | tr  |       |    | /    | /   |
|             |         | yell gry in part, loosely consolidated to fri, rarely loose,    |       |    |     |       |    |      |     |
|             |         | rarely firm in part, f-C, dom med, occ VC, SA-SR, dom SA,       |       |    |     |       |    |      |     |
|             |         | poorly sorted qtz, clear-transluscent, occ frosty, tr-com       |       |    |     |       |    |      |     |
|             |         | med gry & med green gry lithics, some reworked shale fragments, |       |    |     |       |    |      |     |
|             |         | tr-com white Kaolinitic clay mtx, disp in part tr mod weak      |       |    |     |       |    |      |     |
|             |         | calcite cmt, rare clear to translucent pink and med red garnet, |       |    |     |       |    |      |     |
|             |         | mod good vis Ø.                                                 |       |    |     |       |    |      |     |
|             |         | The Sandstone has +-5% pin-point dull-occ med bright bluish     |       |    |     |       |    |      |     |
|             |         | yell fluor with slow occ mod fast, diffusing and occ streaming  |       |    |     |       |    |      |     |
|             |         | V dull pale yell blue cut fluor with no natural cut colour,     |       |    |     |       |    |      |     |
|             |         | the tight sandstone has no cut but it has slow occ mod fast     |       |    |     |       |    |      |     |
|             |         | streaming occ radiating dull greenish yell crush cut with       |       |    |     |       |    |      |     |
|             |         | patchy dull yell residual ring.                                 |       |    |     |       |    |      |     |
|             |         | The sample also has 5%-10% dull med blue & dull med yell brn    |       |    |     |       |    |      |     |
|             |         |                                                                 |       |    |     |       |    |      |     |

| WETT · Mara | ו זאסקוטי | NO.1 DATE: 30-12-89 GEOLOGIST: A. TABASSI PAGE: 55 OF                    |       |         |     | SHOWS |    |      |     |
|-------------|-----------|--------------------------------------------------------------------------|-------|---------|-----|-------|----|------|-----|
| WEID. NCEA  |           | NO.1 DATE. 30-12-09 GEOLOGIST. A. IADASSI TAGE. 33 OF                    |       |         | GAS |       |    | FLU  | OR. |
| DEPTH (m)   | ¥         | SAMPLE DESC'RIPTION                                                      | TOTAL | C1      | C2  | С3    | C4 | NAT. | CUT |
|             |           | mineral fluor.                                                           |       |         |     |       |    |      |     |
|             | 20        | <u>Claystone</u> , med-dk gry, med-dk brn gry, rarely med-dk green       |       |         |     |       |    |      |     |
|             |           | gry in part, firm, occ hd, rarely soft & disp in part, rarely            | '     |         |     |       |    |      |     |
|             |           | finely micaceous, mod carbonaceous, occ grading into <u>Carbonaceous</u> |       |         |     |       |    |      |     |
|             |           | Claystone (Shaley Coal, occ mod silty, in part grading into -            |       |         |     |       |    |      |     |
|             | 20        | Siltstone, med gry, med brn gry, med green gry in part,                  |       |         |     |       |    |      |     |
|             |           | speckled in part firm, occ hd, mod arg, tr-com finely                    |       |         |     |       |    |      |     |
|             |           | micaceous, tr carb det,                                                  |       |         |     |       |    |      |     |
|             | tr        | Coal, black-dk brn & dk brn gry, firm, block in part, subfis-fis         |       |         |     |       |    |      |     |
|             |           | in part, slafy clevage in part, dull, earthy or abundantly arg           |       |         |     |       |    |      |     |
|             |           | in part, occ with subconshoidal fracture with no fluor. cut or           |       |         |     |       |    |      |     |
|             |           | crush cut                                                                |       |         |     |       |    |      |     |
| 1430-1435   | 40        | Sandstone as above with tr-5 fluor. cut and/or crush cut as              |       |         |     |       |    |      |     |
|             |           | aboye                                                                    | 2.9   | 570     | 12  | 3     |    | /    | /   |
|             | 40        | Claystone as above with minor with Kaolinitic Claystone, soft,           |       |         |     |       |    |      |     |
|             |           | disp & Sandy                                                             |       |         |     |       |    |      |     |
|             | 20        | <u>Siltstone</u> as above                                                |       |         |     |       |    |      |     |
|             | tr        | <u>Coal</u> and <u>Carbonaceous Claystone</u> as above                   |       |         |     |       |    |      |     |
|             |           |                                                                          |       | <u></u> |     |       |    |      |     |

| WELL: McEA | CHERN 1 | NO.1 DATE: 30-12-89 GEOLOGIST: A. TABASSI PAGE: 56 OF         |       |     |     | SHOWS |    |      |     |
|------------|---------|---------------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|            |         |                                                               |       |     | GAS |       |    | FLU  | OR. |
| DEPTH (m)  | ક       | SAMPLE DESCRIPTION                                            | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
| 1435-1440  | 40      | Sandstone as above with 5%-10% Fluor; cut and/or Crush cut as | 2.0   | 380 | 12  | tr.   |    | /    | /   |
|            |         | above                                                         |       |     |     |       |    |      |     |
|            | 35      | Claystone as above with minor Kaolinitic Claystone as above   |       |     |     |       |    |      |     |
|            | 25      | <u>Siltstone</u> as above                                     |       |     |     |       |    |      |     |
|            | tr      | Coal and Carbonaceous Claystone as above                      |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    | ,    |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       | ļ   |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |
|            |         |                                                               |       |     |     |       |    |      |     |

| WELL: McEA | CHERN I | NO.1 DATE: 31-12-89 GEOLOGIST: A. TABASSI PAGE: 57 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ··· |     | SHOWS |    |      |     |
|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|            |         | The state of the s |       |     | GAS |       |    | FLU  | JOR |
| DEPTH (m)  | 8       | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
| 1440-1445  | 40      | Sandstone as above, 5%-10% fluor; and cut as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.25  | 223 | 6   | tr.   |    | /    | /   |
|            | 20      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
|            | 30      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
| 1445-1450  | 40      | Sandstone as above, 5%-10% fluor; and cut as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .6    | 120 | tr. |       |    | /    | 1   |
|            | 20      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
|            | 30      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
| 1450-1454  | 80      | Sandstone as above, dom loosely unconsolidated, v good-good vis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0   | 183 | 4   |       |    | /    | /   |
|            |         | O with up to 20% fluor & cut as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |     |     |       |    |      |     |
|            | 10      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
|            | 10      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
|            |         | Drilling Break @ 1452-1454m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |     |     |       |    |      |     |
| 1454-1456  | 80      | Sandstone as above, fluor; cut as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.15  | 410 | 6   | tr.   |    | /    | /   |
|            | 10      | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
|            | 10      | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |     |       |    |      |     |
|            |         | CONDUCTED DST-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |       |    |      |     |
|            |         | 1445.7-1456.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |     |     |       |    |      |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |       |    |      |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |       |    |      |     |
|            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |     |       |    |      |     |

| WRII. MCEV  | HERN!   | NO.1 DATE: 01-01-90 GEOLOGIST: A. TABASSI PAGE: 58 OF           | SHOWS |           |           |     |    |      |     |
|-------------|---------|-----------------------------------------------------------------|-------|-----------|-----------|-----|----|------|-----|
| WEILL. MCEA | TIERN 1 | NO.1 PAIL. 01-01-70 GEOLOGISI. A. IADASSI IAGE. 70 OF           |       |           | GAS       |     |    | FLU  | OR. |
| DEPTH (m)   | 8       | SAMPLE DESCRIPTION                                              | TOTAL | <b>C1</b> | <b>C2</b> | С3  | C4 | NAT. | CUT |
| 1456-1460   | 60      | Sandstone, with tr-5% fluor & cut as above, dom dull med yell b | n 1.5 | 290       | 5         | tr. |    | /    | /   |
|             | 25      | <u>Claystone</u> as above                                       |       |           |           |     |    |      |     |
|             | 15      | <u>Siltstone</u> as above                                       |       |           |           |     |    |      |     |
| 1460-1465   | 20      | Sandstone, with tr. of fluor & cut as above                     | 0.8   | 161       | 3         |     |    | /    | /   |
|             | 40      | <u>Claystone</u> as above                                       | .3    | 60        |           |     |    |      |     |
|             | 40      | <u>Siltstone</u> as above                                       |       |           |           |     |    |      |     |
| 1465-1470   | 20      | Sandstone as above with tr. of fluor & cut as above             | 0.9   | 175       | 4         | tr. |    | /    | 1   |
|             | 45      | <u>Claystone</u> as above                                       |       |           |           |     |    |      |     |
|             | 35      | <u>Siltstone</u> as above                                       |       |           |           |     |    |      |     |
| 1470-1475   | 60      | Sandstone as above, dom loose, tr fluor & cut as above          | 1.6   | 238       | 4         |     |    | /    | /   |
|             | 15      | Claystone as above                                              |       |           |           |     |    |      |     |
|             | 25      | <u>Siltstone</u> as above                                       |       |           |           |     |    |      |     |
| 1475-1480   | 15      | Sandstone as above, tr. fluor & cut as above                    | 0.9   | 175       | 4         |     |    | /    | /   |
|             | 45      | <u>Claystone</u> as above                                       |       |           |           |     |    |      |     |
|             | 40      | <u>Siltstone</u> as above                                       |       |           |           |     |    |      |     |
| 1480-1485   | 70      | Sandstone as above, dom loose, tr fluor & cut as above          | 2.05  | 405       | 7         | tr. |    | /    | /   |
|             | 15      | <u>Claystone</u> as above                                       |       |           |           |     |    |      |     |
|             | 15      | <u>Siltstone</u> as above                                       |       |           |           |     |    |      |     |
|             |         |                                                                 |       |           |           |     |    |      |     |

| WELL: McEAC | י אסשטי | O.1 DATE: 01-01-90 GEOLOGIST: A. TABASSI PAGE: 59 OF  |       |     |     | SHOWS |    |      |      |
|-------------|---------|-------------------------------------------------------|-------|-----|-----|-------|----|------|------|
| WELL: MCEAC | IIEKN N | O.1 DATE: 01-01-90 GEOLOGISI: A. IABASSI FAGE: 39 OF  |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | z       | SAMPLE DESCRIPTION                                    | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT  |
| 1485-1490   | 50      | Sandstone as above with few specks of fluor as above  | 0.5   | 95  | tr. |       |    | 1    | 1    |
|             | 20      | Claystone as above                                    |       |     |     |       | !  |      |      |
|             | 30      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |      |
| 1490-1495   | 15      | Sandstone as above, with few specks of fluor as above | .6    | 109 | 3   |       |    | 1    | 1    |
|             | 40      | <u>Claystone</u> as above                             |       |     |     |       |    |      |      |
|             | 45      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |      |
| 1495-1500   | 10      | Sandstone as above                                    | 0.6   | 112 | 4   |       |    |      |      |
|             | 40      | <u>Claystone</u> as above                             |       |     |     |       |    |      |      |
|             | 50      | Siltstone as above                                    |       |     |     |       |    |      |      |
| 1500-1505   | 50      | Claystone as above                                    | 1.9   | 354 | 10  | tr.   |    |      |      |
|             | 50      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |      |
|             | tr.     | Sandstone as above                                    |       |     |     |       |    |      |      |
| 1505-1510   | 50      | <u>Claystone</u> as above                             | 1.5   | 291 | 6   | tr.   |    |      |      |
|             | 50      | Siltstone as above                                    |       |     |     |       |    |      |      |
| 1510-1515   | 50      | <u>Claystone</u> as above                             | 1.3   | 254 | 6   | tr.   |    |      |      |
|             | 50      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |      |
| 1515-1520   | 40      | Claystone as above                                    | 1.1   | 218 | 4   | tr.   |    |      |      |
|             | 60      | Siltstone as above                                    |       |     |     |       |    |      |      |
|             |         |                                                       |       |     |     |       |    |      |      |

| WELL: McEAC | игри и | 0.1 DATE: 01-01-90 GEOLOGIST: A. TABASSI PAGE: 60 OF        | SHOWS |      |     |     |    |      |      |
|-------------|--------|-------------------------------------------------------------|-------|------|-----|-----|----|------|------|
| WELL: MCEAC | HEKN N | O.I DAIE. 01-01-90 GEOLOGISI: A. IABASSI FAGE: 00 OF        |       |      | GAS |     |    | FI   | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                          | TOTAL | C1   | C2  | С3  | C4 | NAT. | CUT  |
| 1520-1525   | 40     | Claystone as above                                          | 2.9   | 542  | 15  | tr. |    |      |      |
|             | 60     | <u>Siltstone</u> as above                                   |       |      |     |     |    |      |      |
|             | tr     | Coal and Carbonaceous Claystone                             |       |      |     |     |    |      |      |
| 1525-1530   | 40     | <u>Claystone</u> as above                                   | 2     | 390  | 10  | tr. |    |      |      |
|             | 60     | <u>Siltstone</u> as above                                   |       |      |     |     |    |      |      |
|             | tr     | Coal as above                                               |       |      |     |     |    |      |      |
| 1530-1535   | 50     | <u>Claystone</u> as above                                   | 2.6   | 500  | 13  | tr. |    |      |      |
|             | 50     | <u>Siltstone</u> as above                                   |       |      |     |     |    |      |      |
|             | tr     | Coal as above                                               |       |      |     |     |    |      |      |
| 1535-1540   | 50     | <u>Claystone</u> as above                                   | 2.4   | 471  | 11  | tr. |    |      |      |
|             | 50     | <u>Siltstone</u> as above                                   |       |      |     |     |    |      |      |
| 1540-1545   | 80     | Sandstone as above with tr-5% dull orange brn mineral fluor | 5.3   | 1029 | 18  | tr. |    |      |      |
|             | 10     | <u>Claystone</u> as above                                   | 2.6   | 500  | 13  | tr. |    |      |      |
|             | 10     | <u>Siltstone</u> as above                                   |       |      |     |     |    |      |      |
| 1545-1550   | 80     | Sandstone as above with tr-5% dull orange brn mineral fluor | 0.9   | 178  | 4   |     |    |      |      |
|             | 10     | <u>Claystone</u> as above                                   |       |      |     |     |    |      |      |
|             | 10     | <u>Claystone</u> as above                                   |       |      |     |     |    |      |      |
|             | 10     | <u>Siltstone</u> as above                                   |       |      |     |     |    |      |      |
|             |        |                                                             |       |      |     |     |    |      |      |

| WELL: McEAC | HERN N | IO.1 DATE: 01-01-90 GEOLOGIST: A. TABASSI PAGE: 61 OF    | SHOWS |     |     |              |    |      |      |
|-------------|--------|----------------------------------------------------------|-------|-----|-----|--------------|----|------|------|
|             |        |                                                          |       | ,   | GAS | <del>y</del> | ·  | F    | LUOR |
| DEPTH (m)   | 7      | SAMPLE DESC'RIPTION                                      | TOTAL | C1  | C2  | C3           | C4 | NAT. | CUT  |
| 1550-1555   | 10     | Sandstone as above with tr dull orange brn mineral fluor | 0.8   | 155 | tr. |              |    |      |      |
|             | 50     | <u>Claystone</u> as above                                | 2.6   | 500 | 13  | tr.          |    |      |      |
|             | 40     | <u>Siltstone</u> as above                                |       |     |     |              |    |      |      |
| 1555-1560   | 10     | Sandstone as above with tr mineral fluor as above        | 1.2   | 241 | 7   |              |    |      |      |
|             | 50     | <u>Claystone</u> as above                                |       |     |     |              |    |      |      |
|             | 40     | <u>Siltstone</u> as above                                |       |     |     |              |    |      |      |
| 1560-1565   | 20     | Sandstone as above with tr mineral fluor as above        | 1.5   | 294 | 5   |              |    | ,    |      |
|             | 50     | Claystone as above partly soft & disp.                   |       |     |     |              |    |      |      |
|             | 30     | <u>Siltstone</u> as above                                |       |     |     |              |    |      |      |
| 1565-1570   | 25     | Sandstone as above with tr-5% mineral fluor as above     | 2.0   | 400 | 9   | tr.          |    |      |      |
|             | 50     | Claystone as above, partly soft & disp.                  |       |     |     |              |    |      |      |
|             | 25     | Siltstone as above                                       |       |     |     |              |    |      |      |
| 1570-1575   | 20     | Sandstone as above, with tr-5% mineral fluor as above    |       | ·   |     |              |    |      |      |
|             | 50     | Claystone as above, partly soft & disp.                  |       |     |     |              |    |      |      |
|             | 25     | <u>Siltstone</u> as above                                |       |     |     |              |    |      |      |
| 1570–1575   | 20     | Sandstone as above, with tr-5% mineral fluor as above    |       |     |     |              |    |      |      |
|             | 50     | Claystone as above, partly soft & disp.                  |       |     |     |              |    |      |      |
|             | 30     | <u>Siltstone</u> as above                                |       |     |     |              |    |      |      |
|             |        |                                                          |       |     |     |              |    |      |      |

| WELL: McEA | CHERN 1 | NO.1 DATE: 01-01-90 GEOLOGIST: A. TABASSI PAGE: 62 OF            | SHOWS |     |     |    |    |      |     |
|------------|---------|------------------------------------------------------------------|-------|-----|-----|----|----|------|-----|
|            |         |                                                                  |       |     | GAS |    |    | FLU  | OR  |
| DEPTH (m)  | ક       | SAMPLE DESCRIPTION                                               | TOTAL | Ċ1  | C2  | С3 | C4 | NAT. | CUT |
| 1575-1580  | 25      | Sandstone as above with tr-5% mineral flour as above, lt brn     | 1.6   | 156 | tr  | tr |    |      |     |
|            |         | sandstone has mod strong calc cmt                                |       |     |     |    |    |      |     |
|            | 50      | Claystone as above partly soft and disp.                         |       |     |     |    |    |      |     |
|            | 25      | <u>Siltstone</u> as above                                        |       |     |     |    |    |      |     |
| 1580-1585  | 50      | Sandstone generally as above, dom loose-friable, dom med, well   |       |     |     |    |    |      |     |
|            |         | sorted with apparent very disp. arg. mtx. (no mtx. in the        |       |     |     |    |    |      |     |
|            |         | sample) V.good vis Ø                                             |       |     |     |    |    |      |     |
|            | 40      | Claystone as above, partly soft and disp                         |       |     |     |    |    |      |     |
|            | 10      | <u>Siltstone</u> as above                                        |       |     |     |    |    |      |     |
| 1585-1590  | 70      | Sandstone as above, the lt. brn. sandstone has mod. strong calc. | 2.1   | 410 | 7   | tr |    |      |     |
|            |         | cmt. (possibly responsible for slower drilling within the        |       |     |     |    |    |      |     |
|            |         | interval) with tr-5% mineral fluor                               |       |     |     |    |    |      |     |
|            | 30      | <u>Claystone</u> as above, dom. soft of disp.                    |       |     |     |    |    |      |     |
| 1590-1595  | 100     | Sandstone generally as above, clear - V lt. gry, v occ lt. brn,  | 4.0   | 790 | 31  | tr |    |      |     |
|            |         | unconsolidated to friable, lt. brn. Sst. firm-hd, dom. med.      |       |     |     |    |    |      |     |
|            |         | occ f, v rarely c, SA-SR, mod. sorted qtz, com. white-lt gry     |       |     |     |    |    |      |     |
|            |         | arg mtx, disp, (matrix is easily washed away), v rare weak       |       |     |     |    |    |      |     |
|            |         | calc. cmt. mod. strong in lt brn. sandstone, tr-rare lithics,    |       |     |     |    |    |      |     |
|            |         |                                                                  |       |     |     |    |    |      |     |

| WEII · MoFAC | THERN I | NO.1 DATE: 01-01-90 GEOLOGIST: A. TABASSI PAGE: 63 OF                    |       |    |     | SHOWS |    |      |     |
|--------------|---------|--------------------------------------------------------------------------|-------|----|-----|-------|----|------|-----|
| WELL. NCEAC  |         | NO.1 DAID. 01-01-90 GEOLOGISI. A. IADASSI IAGE. 09 01                    |       |    | GAS |       |    | FLU  | OR  |
| DEPTH (m)    | *       | SAMPLE DESCRIPTION                                                       | TOTAL | C1 | C2  | С3    | C4 | NAT. | CUT |
|              |         | med green gry, rare lt and med pink and med red garnet, tr               |       |    |     |       |    |      |     |
|              |         | biotite and muscovite very good vis $\emptyset$ , tr-5% dull orange brn. |       |    |     |       |    |      |     |
|              |         | mineral fluor.                                                           |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |
|              |         |                                                                          |       |    |     |       |    |      |     |

| WELL: McEAC | HERN N | IO.1 DATE: 02-01-90 GEOLOGIST: A. TABASSI PAGE: 64 OF           |       |     |     | SHOWS |    |      |      |
|-------------|--------|-----------------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        |                                                                 |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)   | z      | SAMPLE DESC'RIPTION                                             | TOTAL | C1  | C2  | C3    | C4 | NAT. | CUT  |
| 1595-1600   | 100    | Sandstone as above                                              | 4.0   | 790 | 31  | tr    |    |      |      |
| 1600-1605   | 50     | Sandstone as above, c grains become more frequent, min fluor    | 0.8   | 130 | 3   | tr    |    |      |      |
|             |        | as above                                                        |       |     |     |       |    |      |      |
|             | 40     | Claystone as above, dom soft and disp.                          |       |     |     |       |    |      |      |
|             | 10     | <u>Siltstone</u> as above                                       |       |     |     |       |    |      |      |
| 1605-1610   | 35     | Sandstone as above, c grains more frequent, min fluor as above  |       |     |     |       |    |      |      |
|             | 55     | Claystone as above dom soft and disp.                           |       |     |     |       |    |      |      |
|             | 10     | <u>Siltstone</u> as above                                       |       |     |     |       |    |      |      |
| 1610-1615   | 50     | Sandstone as above, C grains more frequent, min fluor as above  | 2.2   | 420 | 8   | tr    |    |      |      |
|             | 50     | Claystone as above, dom soft and disp.                          |       |     |     |       |    |      |      |
|             | tr     | <u>Siltstone</u> as above                                       |       |     |     |       |    |      |      |
| 1615-1620   | 40     | Sandstone as above, C grains more frequent, min fluor as above  | 0.8   |     |     |       |    |      |      |
|             | 60     | Claystone a above, dom soft and disp.                           |       |     |     |       |    |      |      |
| 1620-1625   | 70     | Sandstone as above, C grains more frequent, min fluor as above  | 0.8   |     |     |       |    |      |      |
|             | 30     | Claystone as above, occ soft and disp.                          |       |     |     |       |    |      |      |
|             | tr     | <u>Coal</u> and Carbonaceous claystone as above                 |       |     |     |       |    |      |      |
| 1625-1630   | 70     | Sandstone as above, occ dom fine, firm, mod strong calc. cmt.,  | 2.9   | 550 | 9   | tr    |    |      |      |
|             |        | with occ C-VC loose grains (disp. clay mtx. is possibly washed) | ,     |     |     |       |    |      |      |

| WELL: McEA | CHERN | NO.1 DATE: 02-01-90 GEOLOGIST: A. TABASSI PAGE: 65 OF          |       |     |     | SHOWS |    |      |      |
|------------|-------|----------------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|            | I     |                                                                |       |     | GAS |       |    | F    | LUOR |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                             | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT  |
|            |       | lt. brn. sandstone with mod. strong-strong calc. cmt., mod. to |       |     |     |       |    |      |      |
|            |       | occ good vis ∅, tr-5% dull orange brn mineral fluor            |       |     |     |       |    |      |      |
|            | 25    | Claystone as above, occ soft and disp.                         |       |     |     |       |    |      |      |
|            | 5     | <u>Siltstone</u> as above                                      |       |     |     |       |    |      |      |
| 1635-1640  | 90    | Sandstone as above                                             | 1.0   | 190 | 5   | tr    |    |      |      |
|            | 10    | <u>Claystone</u> as above                                      |       |     |     |       |    |      |      |
| 1640-1645  | 90    | Sandstone as above                                             | 0.9   | 177 | 5   | tr    |    |      |      |
|            | 10    | <u>Claystone</u> as above                                      |       |     |     |       |    |      |      |
| 1645-1650  | 10    | Sandstone as above                                             | 1.2   | 221 | 5   | tr    |    |      |      |
|            | 70    | <u>Claystone</u> as above                                      |       |     |     |       |    |      |      |
|            | 20    | <u>Siltstone</u> as above                                      |       |     |     |       |    |      |      |
| 1650-1655  | 10    | Sandstone as above                                             | 1.3   | 261 | 7   | tr    |    |      |      |
|            | 60    | <u>Claystone</u> as above                                      |       |     |     |       |    |      |      |
|            | 30    | <u>Siltstone</u> as above                                      |       |     |     |       |    |      |      |
| 1655-1660  | 10    | <u>Sandstone</u> as above                                      | 3.7   | 699 | 20  | tr    |    |      |      |
|            | 60    | <u>Claystone</u> as above                                      |       |     |     |       |    |      |      |
|            | 30    | <u>Siltstone</u> as above                                      |       |     |     |       |    |      |      |
| 1660-1665  | 10    | <u>Sandstone</u> as above                                      | . 4.6 | 822 | 20  | tr    |    |      |      |
|            |       |                                                                |       |     |     |       |    |      |      |

| WELL: McEA | CHERN | NO.1 DATE: 02-01-90 GEOLOGIST: A. TABASSI PAGE: 66 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     | SHOWS |    |      |     |
|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|-------|----|------|-----|
|            | I     | TOTAL SELECTION OF |       |      | GAS |       |    | FLU  | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL | C1   | C2  | С3    | C4 | NAT. | CUT |
|            | 60    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |       |    |      |     |
|            | 30    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |       |    |      |     |
| 1665-1670  | 70    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |       |    |      |     |
| 1          | 30    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |       |    |      |     |
| 1670-1675  | 80    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2   | 221  | 5   | tr    |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |       |    |      |     |
| 1675-1680  | 70    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |       |    |      |     |
|            | 30    | <u>Siltstone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |       |    |      |     |
|            |       | P.O.O.H. to change bit @ 1683 m (test B.O.P.s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,     |      |     |       |    |      |     |
| 1680-1685  | 40    | Claystone as above, med-dk gry, occ med. brn. gry and med.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4   | 66   | tr  |       |    |      |     |
|            |       | green gry, dom. firm, occ. hd., rarely soft & disp, blocky,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |     |       |    |      |     |
|            |       | subfis-fis, rare micaceous, occ com carb, com silty in part,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |     |       |    |      |     |
|            |       | grading and/or intebd/interlam with;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |     |       |    |      |     |
|            | 60    | Siltstone as above, med-dk gry, occ lt green gry, rarely med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |     |       |    |      |     |
|            |       | brn gry, soft to firm, hd in part, block and subfis in part,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |     |       |    |      |     |
|            |       | com micaceous and carbonaceous, interlam with minor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |     |       |    |      |     |
|            | tr    | <u>Coal</u> and carbonaceous claystone as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |     |       |    |      |     |
| 1685-1690  | 40    | <u>Claystone</u> as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 0.3 | . 63 | tr  |       |    |      |     |
|            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |     |       |    |      |     |

| WELL: McEA | CHERN | NO.1 DATE: 02-01-90 GEOLOGIST: A. TABASSI PAGE: 67 OF           | SHOWS |    |     |    |    |      |     |
|------------|-------|-----------------------------------------------------------------|-------|----|-----|----|----|------|-----|
|            |       |                                                                 |       |    | GAS |    |    | FLU  | OR  |
| DEPTH (m)  | 용     | SAMPLE DESCRIPTION                                              | TOTAL | C1 | C2  | С3 | C4 | NAT. | CUT |
|            | 60    | <u>Siltstone</u> as above                                       |       |    |     |    |    | ,    |     |
| 1690-1695  | 40    | <u>Claystone</u> as above                                       | 0.35  | 69 | tr  |    |    |      |     |
|            | 55    | <u>Siltstone</u> as above                                       | :     |    |     |    |    |      |     |
|            | 5     | Sandstone, lt-med gry, occ lt green gry, firm, friable in part, |       |    |     |    |    |      |     |
|            |       | vf-f, dom f, SA-SR, mod-well sorted qtz, abundant white         |       |    |     |    |    |      |     |
|            |       | kaolinitic and lt gry arg mtx, disp in part, tr-com lithics     |       |    |     |    |    |      |     |
|            |       | including partially altered feldspar, tr-com mica (biotite and  |       |    |     |    |    |      |     |
|            |       | Muscovite), v rare-nil med red garnet, poor vis Ø               |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    | -   |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |
|            |       |                                                                 |       |    |     |    |    |      |     |

| WELL: MCEAC | CHERN I  | NO.1 DATE: 03-01-90 GEOLOGIST: A. TABASSI PAGE: 68 OF      |       |     |     | SHOWS |    |      |     |
|-------------|----------|------------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|             | <u>1</u> | MOLE BRIEF, OF OF SHOREETER, IV, HISTORY INCH., OF OF      |       |     | GAS |       |    | FLU  | OR  |
| DEPTH (m)   | ક        | SAMPLE DESCRIPTION                                         | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
| 1695-1700   | 40       | Claystone as above, drilling break @ 1699.5m               | 1.2   | 248 | 4   |       |    |      |     |
|             | 55       | Siltstone as above, circulated return @ 1702.5m no shows   |       |     |     |       |    |      |     |
|             | 5        | Sandstone as above                                         |       |     |     |       |    |      |     |
| 1700-1705   | 80       | Sandstone clear-trans, milky-off white in part, occ lt brn | 1.2   |     |     |       |    |      |     |
|             |          | gry ease-firm dom med occ C, SA-SR, mod sorted qtz, tr-com |       |     |     |       |    |      |     |
|             |          | white-lt gry mtx, disp tr calc cmt, tr lithics, v rare lt  |       |     |     |       |    |      |     |
|             |          | & med pink and med red garnet, good vis Ø                  |       |     |     |       |    |      |     |
|             | 10       | <u>Claystone</u> as above                                  |       |     |     |       |    |      |     |
|             | 10       | <u>Siltstone</u> as above                                  |       |     |     |       |    |      |     |
| 1705-1710   | 40       | <u>Sandstone</u> as above                                  | 0.8   | 158 | 5   | tr    |    |      |     |
|             | 30       | <u>Claystone</u> as above                                  |       |     |     |       |    |      |     |
|             | 30       | <u>Siltstone</u> as above                                  |       |     |     |       |    |      |     |
| 1710-1715   | 10       | Sandstone as above                                         | 0.9   | 170 | 5   | tr    |    |      |     |
|             | 40       | <u>Claystone</u> as above                                  |       |     |     |       |    |      |     |
|             | 50       | <u>Siltstone</u> as above                                  |       |     |     |       |    |      |     |
| 1715-1720   | 10       | Sandstone as above                                         | 1.2   | 209 | 5   | tr    |    |      |     |
|             | 30       | <u>Claystone</u> as above                                  |       |     |     |       |    |      |     |
|             | 60       | <u>Siltstone</u> as above                                  |       |     |     |       |    |      |     |
| ·           |          |                                                            |       |     |     |       |    |      |     |

| WEII. MCFAC   | CHERN | NO.1 DATE: 03-01-90 GEOLOGIST: A. TABASSI PAGE: 69 OF | SHOWS |     |     |    |    |          |     |  |
|---------------|-------|-------------------------------------------------------|-------|-----|-----|----|----|----------|-----|--|
| WILLIAM TOTAL |       | Dill. 05 01 70 OBOROLO1. II. IIIDINO1 IIIO. 07 01     |       |     | GAS |    |    | FLU      | OR. |  |
| DEPTH (m)     | 8     | SAMPLE DESCRIPTION                                    | TOTAL | C1  | C2  | С3 | C4 | NAT.     | CUT |  |
|               |       | Drilling break @ 1724.5m                              |       |     |     |    |    |          |     |  |
|               |       | Circulated return @ 1727.5m no shows                  |       |     |     |    |    |          |     |  |
| 1720-1725     | 60    | Sandstone as above                                    | 2.9   | 550 | 12  | tr |    |          |     |  |
|               | 20    | <u>Claystone</u> as above                             |       |     |     |    |    |          |     |  |
|               | 20    | <u>Siltstone</u> as above                             |       |     |     |    |    |          |     |  |
|               | tr    | <u>Coal</u> as above                                  |       |     |     |    |    | ·        |     |  |
| 1725-1730     | 30    | Sandstone as above                                    | 0.8   | 156 | tr  |    |    |          |     |  |
|               | 30    | <u>Claystone</u> as above                             |       |     |     |    |    |          |     |  |
|               | 40    | <u>Siltstone</u> as above                             |       |     |     |    |    |          |     |  |
| 1730-1735     | 60    | Sandstone as above                                    | 1.0   | 179 | 4   |    |    |          |     |  |
|               | 20    | <u>Claystone</u> as above                             |       |     |     |    |    |          |     |  |
|               | 20    | <u>Siltstone</u> as above                             |       |     |     |    |    |          |     |  |
| 1735-1740     | 30    | Sandstone as above dom firm                           | 1.2   | 225 | 7   | tr |    |          |     |  |
|               | 30    | <u>Claystone</u> as above                             |       |     |     |    |    |          |     |  |
|               | 40    | <u>Siltstone</u> as above                             |       |     |     |    |    |          |     |  |
| 1740-1745     | 60    | <u>Sandstone</u> as above, dom med - c                | 4.1   | 788 | 17  | tr |    |          |     |  |
|               | 30    | Claystone as above                                    |       |     |     |    |    |          |     |  |
|               | 10    | Siltstone as above                                    |       |     |     |    |    |          |     |  |
|               |       |                                                       |       |     |     |    |    | <u> </u> |     |  |

| TTTT T . 10 - 17 4 / | niena a | NO.1 DATE: 03-01-90 GEOLOGIST: A. TABASSI PAGE: 70 OF              |       |      |     | SHOWS |    |      |     |
|----------------------|---------|--------------------------------------------------------------------|-------|------|-----|-------|----|------|-----|
| WELL: MCEAG          | JHEKN I | NO.1 DAIE: 03-01-90 GEOLOGISI: A. IABASSI FAGE. 70 OF              |       |      | GAS |       |    | FLU  | OR  |
| DEPTH (m)            | 8       | SAMPLE DESCRIPTION                                                 | TOTAL | C1   | C2  | C3    | C4 | NAT. | CUT |
| 1745-1750            | 40      | Sandstone as above                                                 | 2.0   | 417  | 9   | tr    |    |      |     |
|                      | 30      | Claystone as above                                                 |       |      |     |       |    |      |     |
|                      | 30      | Siltstone as above                                                 |       |      |     |       |    |      |     |
| 1750-1755            | 10      | Sandstone as above                                                 | 1.0   | 179  | 4   |       |    |      |     |
|                      | 40      | Claystone as above                                                 |       |      |     |       |    |      |     |
|                      | 50      | Siltstone as above                                                 |       |      |     |       |    |      |     |
|                      |         | Drilling Break @ 1754.4m                                           |       |      |     |       |    |      |     |
|                      |         | Circulated Return @ 1757.0 m No Shows                              |       |      |     |       |    |      |     |
| 1755-1760            | 90      | Sandstone as above, generally as above, dom med-C, dom firm,       | 1.0   | 185  | 5   |       |    |      |     |
|                      |         | with med strong calc cmt in part fair occ good vis $\emptyset$     |       |      |     |       |    |      |     |
|                      | 5       | Claystone as above                                                 |       |      |     |       |    |      | ·   |
|                      | 5       | Siltstone as above                                                 |       |      |     |       |    |      |     |
| 1760-1765            | 80      | Sandstone as above                                                 | 2.0   | 380  | 5   |       |    |      |     |
|                      | 10      | Claystone as above                                                 |       |      |     |       |    |      |     |
|                      | 10      | Siltstone as above                                                 |       |      |     |       |    |      |     |
| 1765-1770            | 100     | Sandstone as above, clear-lt gry, dom loose, dom med-C, good       | 1.4   | 271  | 5   |       |    |      |     |
|                      |         | vis 0                                                              |       |      |     |       |    |      |     |
| 1770-1775            | 100     | Sandstone as above, clear-lt gry, dom loose, dom med-C, good vis Ø | . 2.2 | .427 | 7   |       |    |      |     |

| LIETT · Maga | спери и | NO.1 DATE: 03-01-90 GEOLOGIST: A. TABASSI PAGE: 71 OF              |       |     |     | SHOWS   |    |      |     |
|--------------|---------|--------------------------------------------------------------------|-------|-----|-----|---------|----|------|-----|
| WELL: FICEA  | T MAGIN | W.I DAIL. 03-01-70 GEOLOGISI. A. IADASSI IAGI. 71 OF               |       |     | GAS |         |    | FLU  | OR  |
| DEPTH (m)    | *       | SAMPLE DESCRIPTION                                                 | TOTAL | C1  | C2  | С3      | C4 | NAT. | CUT |
| 1775-1790    | 100     | Sandstone as above, clear-lt gry, dom loose, dom med-C, good vis O | 1.8   | 354 | 7   |         |    |      |     |
| 1780-1785    | 100     | Sandstone as above, clear-lt gry, dom loose, dom med-C, fair-good  |       |     | !   |         |    |      |     |
|              |         | vis Ø                                                              | 1.2   | 238 | 5   |         |    |      |     |
| 1785-1790    | 100     | Sandstone as above, clear-lt gry, dom loose, dom med-C, good vis O | 2.1   | 410 | 6   | tr      |    |      |     |
| 1790-1795    | 100     | Sandstone as above, clear-lt gry, dom loose, dom med-C, good vis O | 2.2   | 423 | 6   | tr      |    |      |     |
| 1795-1800    | 90      | Sandstone as above, clear-lt gry, dom loose, dom med-C, fair-good  |       |     |     |         |    |      |     |
|              |         | vis Ø                                                              | 0.7   | 127 | 3   |         |    |      |     |
|              | 10      | <u>Claystone</u> as above                                          |       |     |     |         |    |      |     |
|              | tr      | <u>Siltstone</u> as above                                          |       | ·   |     |         |    |      |     |
| 1800-1805    | 40      | Sandstone as above                                                 | 0.8   | 127 | 3   |         |    |      |     |
|              | 30      | <u>Claystone</u> as above                                          |       |     |     |         |    |      |     |
|              | 30      | <u>Siltstone</u> as above                                          |       |     |     |         |    |      |     |
| 1805-1810    | 10      | Sandstone as above                                                 | 1.0   | 180 | 5   | tr      |    |      |     |
|              | 40      | <u>Claystone</u> as above                                          |       |     |     |         |    |      |     |
|              | 50      | <u>Siltstone</u> as above                                          |       |     |     |         |    |      |     |
| 1810-1815    | 10      | Sandstone as above                                                 | 0.8   | 150 | 4   | tr      |    |      |     |
|              | 50      | Claystone as above, hd in part                                     |       |     |     |         |    |      |     |
|              | 40      | Siltstone as above, hd in part                                     |       |     |     |         |    |      |     |
|              |         |                                                                    |       |     |     | <u></u> |    |      |     |

| WELL: McEA | CHERN | NO.1 DATE: 04-01-90 GEOLOGIST: A. TABASSI PAGE: 72 OF | SHOWS |     |     |          |    |      |     |
|------------|-------|-------------------------------------------------------|-------|-----|-----|----------|----|------|-----|
|            |       |                                                       |       |     | GAS |          |    | FLU  | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                    | TOTAL | C1  | C2  | С3       | C4 | NAT. | CUT |
| 1815-1820  | 60    | <u>Claystone</u> as above, hd in part                 | 1.1   | 224 | 7   | tr       |    |      |     |
|            | 40    | <u>Siltstone</u> as above, hd in part                 |       |     |     |          |    |      |     |
| 1820-1825  | 70    | <u>Claystone</u> as above, hd in part                 | 1.2   | 226 | 7   | tr       |    |      |     |
|            | 30    | <u>Siltstone</u> as above, hd in part                 |       |     |     |          |    |      |     |
| 1825-1830  | 60    | <u>Claystone</u> as above, hd in part                 | 2.9   | 558 | 10  |          |    |      |     |
|            | 40    | <u>Siltstone</u> as above, hd in part                 |       |     |     |          |    |      |     |
| 1830-1835  | 90    | Sandstone as above, dom f-med, friable, good vis ø    | 2.4   |     |     |          |    |      |     |
|            | 10    | <u>Claystone</u> as above                             |       |     |     |          |    |      |     |
|            | tr    | <u>Siltstone</u> as above                             |       |     |     |          |    |      |     |
|            |       | DRILLING BREAK @ 1830.5m                              |       |     |     |          |    |      |     |
|            |       | CIRCULATED RETURN @ 1833.0m NO SHOW                   |       |     |     |          |    |      |     |
| 1835-1840  | 40    | Sandstone as above                                    | 0.9   | 170 | tr  | tr       |    |      |     |
|            | 30    | <u>Claystone</u> as above                             |       |     |     |          |    |      |     |
|            | 30    | <u>Siltstone</u> as above                             |       |     |     |          |    |      |     |
| 1840-1845  | 90    | Sandstone as above, dom f-med, friable, good vis Ø    | 0.9   |     |     |          |    |      |     |
|            | 10    | <u>Claystone</u> as above                             |       |     |     |          |    |      |     |
| 1845-1850  | 40    | Sandstone as above                                    | 1.8   | 292 | 7   | tr       |    |      |     |
|            | 50    | Claystone as above                                    |       |     |     |          |    |      |     |
|            |       |                                                       |       |     |     | <u> </u> |    |      |     |

| WELL: McEA | CHERN 1 | NO.1 DATE: 04-01-90 GEOLOGIST: A. TABASSI PAGE: 73 OF         | SHOWS    |     |     |    |    |      |     |
|------------|---------|---------------------------------------------------------------|----------|-----|-----|----|----|------|-----|
|            |         |                                                               |          |     | GAS |    |    | FLU  | OR  |
| DEPTH (m)  | ક       | SAMPLE DESCRIPTION                                            | TOTAL    | C1  | C2  | С3 | C4 | NAT. | CUT |
|            | 10      | <u>Siltstone</u> as above                                     |          |     |     |    |    | ,    |     |
| 1850-1855  | 10      | Sandstone as above                                            | 1.4      |     |     |    |    |      |     |
|            | 50      | <u>Claystone</u> as above                                     |          |     |     |    |    |      |     |
|            | 40      | <u>Siltstone</u> as above                                     |          |     |     |    |    |      |     |
|            | tr      | <u>Coal</u> as above                                          |          |     |     |    |    |      |     |
| 1855-1860  | 60      | <u>Claystone</u> as above                                     | 0.8      | 156 | tr  | tr |    |      |     |
|            | 40      | <u>Siltstone</u> as above                                     |          |     |     |    |    |      |     |
| 1860-1865  | 50      | <u>Claystone</u> as above                                     | 1.6      | 317 | 6   | tr |    |      |     |
| :          | 50      | Siltstone as above, occ grading into v f sandstone in part    |          |     |     |    |    |      |     |
| 1865-1870  | 40      | Sandstone as above                                            | 3.8      | 735 | 11  | tr |    |      |     |
|            | 30      | <u>Claystone</u> as above                                     |          |     |     |    |    |      |     |
|            | 30      | <u>Siltstone</u> as above                                     |          |     |     |    |    |      |     |
| 1870-1875  | 100     | Sandstone generally as above, dom loose, dom med-c dom SR,    | 3.2      | 629 | 10  | tr |    |      |     |
|            |         | no apparent matrix (the possible kaolinitic clay mtx is disp  |          |     |     |    |    |      |     |
|            |         | and washed away), very good vis $\varnothing$                 |          |     |     |    |    |      |     |
| 1875-1880  | 80      | Sandstone as above, dom friable - firm with tr calc cmt, fair | 1        | 198 | 5   | tr |    |      |     |
|            |         | vis 0                                                         |          |     |     |    |    |      |     |
|            | 10      | <u>Claystone</u> as above                                     |          |     |     |    |    |      |     |
|            |         |                                                               | <u> </u> |     |     |    |    |      |     |

|             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | TO 1 DAMES OF OLD OF OCCUPE. A MADAGET DAGE. 7/ OF                                               |       |      | SHOWS |    |    |      |     |
|-------------|----------------------------------------|--------------------------------------------------------------------------------------------------|-------|------|-------|----|----|------|-----|
| WELL: MCEAC | HERN I                                 | NO.1 DATE: 04-01-90 GEOLOGIST: A. TABASSI PAGE: 74 OF                                            |       |      | GAS   |    |    | FLU  | OR. |
| DEPTH (m)   | 8                                      | SAMPLE DESCRIPTION                                                                               | TOTAL | C1   | C2    | С3 | C4 | NAT. | CUT |
|             | 10                                     | <u>Siltstone</u> as above                                                                        |       |      |       |    |    |      |     |
| 1880-1885   | 30                                     | Sandstone as above, firm-hd, dom f-med, tr-com mod strong                                        | 2.4   | 450  | 11    | tr |    |      |     |
|             |                                        | calc cmt, far-poor vis O                                                                         |       |      |       |    |    |      |     |
| -           | 40                                     | Claystone as above, dom firm, hd in part                                                         |       |      |       |    |    |      |     |
|             | 30                                     | Siltstone as above, dom firm, hd in part                                                         |       |      |       |    |    |      |     |
| 1885-1890   | 10                                     | Sandstone as above                                                                               | 1.3   | 251  | 5     | tr |    |      |     |
|             | 60                                     | <u>Claystone</u> as above                                                                        |       |      |       |    |    |      |     |
|             | 30                                     | <u>Siltstone</u> as above                                                                        |       |      |       |    |    |      |     |
| 1890-1895   | tr                                     | Sandstone as above                                                                               | 2.4   | 463  | 10    | tr |    |      |     |
|             | 70                                     | <u>Claystone</u> as above                                                                        |       |      |       |    |    |      |     |
|             | 30                                     | <u>Siltstone</u> as above                                                                        |       |      |       |    |    |      |     |
|             | tr                                     | <u>Coal</u> and Carbonaceous claystone as above                                                  |       |      |       |    |    |      |     |
| 1895-1900   | tr                                     | Sandstone as above                                                                               | 2.5   | 477  | 13    | tr |    |      |     |
|             | 60                                     | <u>Claystone</u> as above                                                                        |       |      |       |    |    |      |     |
|             | 30                                     | <u>Siltstone</u> as above                                                                        |       |      |       |    |    |      |     |
| 1900-1905   | 50                                     | <u>Claystone</u> as above, occ hd in part                                                        | 1.1   | 211  | 5     |    |    |      |     |
|             | 50                                     | Siltstone as above, grading into hd vf sandstone in part                                         |       |      |       |    |    |      |     |
| 1905-1910   | 10                                     | $oxed{	ext{Sandstone}}$ generally as above, dom f-med, friable-hd, poor vis $oldsymbol{arkappa}$ | . 2.2 | .424 | 10    | tr |    |      |     |
| ·           |                                        |                                                                                                  |       |      |       |    |    |      |     |

WELL: McEACHERN NO.1 DATE: 04-01-90 GEOLOGIST: A. TABASSI PAGE: 75 OF

SHOWS

|           |          |                                                                                 |       |     |    | FLUOR |    |      |     |
|-----------|----------|---------------------------------------------------------------------------------|-------|-----|----|-------|----|------|-----|
| DEPTH (m) | <u> </u> | SAMPLE DESCRIPTION                                                              | TOTAL | C1  | C2 | С3    | C4 | NAT. | CUT |
|           | 40       | Claystone as above, occ hd in part.                                             |       |     |    |       |    |      |     |
|           | 50       | Siltstone as above, grading into hd vf sandstone in part                        |       |     |    |       |    |      |     |
| 1910-1915 | 10       | Sandstone as above, dom f-med, friable - hd, v hd in part poor                  |       |     |    |       |    |      |     |
|           |          | poor vis Ø                                                                      | 1.5   | 291 | 6  | tr    |    |      |     |
|           | 40       | Claystone as above, occ hd in part                                              |       |     |    |       |    |      |     |
|           | 50       | Siltstone as above, grading into vh vf sandstone in part                        |       |     |    |       |    |      |     |
| 1915-1920 | 10       | Sandstone as above, dom f-med, v rarely c, friable - hd, poor                   |       |     |    |       |    |      |     |
| 1         |          | occ fair vis Ø                                                                  |       |     |    |       |    |      |     |
|           | 40       | Claystone as above, occ hd in part                                              |       |     |    |       |    |      |     |
|           | 50       | Siltstone as above, grading into hd vf sandstone in part                        |       |     |    |       |    |      |     |
| 1920-1925 | 80       | <u>Sandstone</u> as above, f-c, dom med, loose - friable good vis $\varnothing$ | 3.5   | 680 | 13 | tr    |    |      |     |
|           | 10       | <u>Claystone</u> as above                                                       |       |     |    |       |    |      |     |
|           | 10       | <u>Siltstone</u> as above                                                       |       |     |    |       |    |      |     |
|           |          | Drilling Break @ 1923.0m                                                        |       |     |    |       |    |      |     |
|           |          | Circulated Return @ 1925.5m No Shows                                            |       |     |    |       |    |      |     |
| 1925-1930 | 60       | Sandstone as above                                                              | 0.9   | 170 | 6  | tr    |    |      |     |
|           | 10       | <u>Claystone</u> as above                                                       |       |     |    |       |    |      |     |
|           | 30       | <u>Siltstone</u> as above                                                       |       |     |    |       |    |      |     |
|           |          |                                                                                 |       |     |    |       |    |      |     |
|           |          | *                                                                               |       |     |    |       |    |      |     |

| WELL: McEA | CHERN I | NO.1 DATE: 04-01-90 GEOLOGIST: A. TABASSI PAGE: 76 OF |       |     |     | SHOWS |    |      |     |
|------------|---------|-------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|            |         |                                                       | _     |     | GAS |       |    | FLU  | OR  |
| DEPTH (m)  | 8       | SAMPLE DESCRIPTION                                    | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
| 1930-1935  | 50      | Sandstone as above                                    | 1.2   | 228 | 6   | tr    |    |      |     |
|            | 20      | <u>Claystone</u> as above                             |       |     |     |       |    |      |     |
|            | 30      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |     |
| 1935-1940  | tr      | Sandstone as above                                    | 1.5   | 270 | 8   | tr    |    |      |     |
|            | 40      | <u>Claystone</u> as above                             |       |     |     |       |    |      |     |
|            | 60      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |     |
| 1945-1950  | 10      | Sandstone as above                                    | 2.3   | 430 | 10  | tr    | tr |      |     |
|            | 40      | <u>Claystone</u> as above                             |       |     |     |       |    |      |     |
|            | 50      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |     |
|            | tr      | Coal and carbonaceous claystone as above              |       |     |     |       |    |      |     |
| 1950-1955  | 30      | Sandstone as above                                    | 1.3   |     |     |       |    |      |     |
|            | 20      | <u>Claystone</u> as above                             |       |     |     |       |    |      |     |
|            | 50      | <u>Siltstone</u> as above                             |       |     |     |       |    |      |     |
|            |         |                                                       |       |     |     |       |    |      |     |
|            |         |                                                       |       |     |     |       |    |      |     |
|            |         |                                                       |       |     |     |       |    |      |     |
|            |         |                                                       |       |     |     |       |    |      |     |
|            |         |                                                       |       |     |     |       |    |      |     |
| ·          |         |                                                       |       |     |     |       |    |      |     |

| WELL: McEA | CHERN 1 | NO.1 DATE: 05-01-90 GEOLOGIST: A. TABASSI PAGE: 77 OF                               |       |     |     | SHOWS |          |      |     |
|------------|---------|-------------------------------------------------------------------------------------|-------|-----|-----|-------|----------|------|-----|
|            |         |                                                                                     |       | -   | GAS |       |          | FLUC | )R  |
| DEPTH (m)  | ક       | SAMPLE DESCRIPTION                                                                  | TOTAL | C1  | C2  | С3    | C4       | NAT. | CUT |
| 1955-1960  | 10      | Sandstone as above, com white - lt gry arg mtx & com calc                           |       |     |     |       |          |      |     |
| 1          |         | cmt, poor vis $\mathscr A$                                                          | 1.5   | 264 | 8   | tr    | tr       |      |     |
|            | 30      | <u>Claystone</u> as above                                                           |       |     |     |       |          |      |     |
|            | 60      | <u>Siltstone</u> as above                                                           |       |     |     |       |          |      |     |
| 1960-1965  | 70      | Sandstone as above, dom loose, dom med-c, in part with no                           |       |     |     |       |          |      |     |
|            |         | apparent mtx (disp and washed way?) good - ${	t v}$ good vis ${	t arkappa}$         | 3.9   | 744 | 14  | 3     | tr       |      |     |
|            | 10      | <u>Claystone</u> as above                                                           |       |     |     |       |          |      |     |
|            | 20      | <u>Siltstone</u> as above                                                           |       |     |     |       |          |      |     |
|            |         | Drilling Break @ 1963.0m                                                            |       |     |     |       |          |      |     |
|            |         | Circulated returns @ 1965.0m No Shows                                               |       |     |     |       |          |      |     |
|            |         | (The presence of C <sub>3</sub> and C <sub>4</sub> , increase in background gas and |       |     |     |       |          |      |     |
|            |         | connection gas together with the convincing drilling break                          |       |     |     |       |          |      |     |
|            |         | warranted the circulation of returns)                                               |       |     |     |       |          |      |     |
| 1965-1970  | 40      | Sandstone as above                                                                  | 1.5   | 283 | 7   | 2     | tr       |      |     |
|            | 20      | <u>Claystone</u> as above                                                           |       |     |     |       |          |      |     |
|            | 40      | <u>Siltstone</u> as above                                                           |       |     |     |       |          |      |     |
| 1970-1975  | 10      | Sandstone as above                                                                  | 1.6   | 299 | 8   | 3     | tr       |      |     |
|            | 30      | <u>Claystone</u> as above                                                           |       |     |     |       |          |      |     |
| ,          | <u></u> |                                                                                     |       |     |     |       | <u> </u> |      |     |

| WELL: McEA | CHERN | NO.1 DATE: 05-01-90 GEOLOGIST: A. TABASSI PAGE: 78 OF      |          |          |          | SHOWS    |          | · · · · · · · · · · · · · · · · · · · |     |
|------------|-------|------------------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------|-----|
|            |       |                                                            |          |          | GAS      |          |          | FLU                                   | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                         | TOTAL    | C1       | C2       | С3       | C4       | NAT.                                  | CUT |
|            | 60    | <u>Siltstone</u> as above                                  |          |          |          |          |          | ·                                     |     |
| 1975-1980  | 80    | Sandstone generally as above, off white lt gry, med gry in | 4.1.     | 782      | 15       | 3        | tr       |                                       |     |
|            |       | part, occ clear loose - friable, firm in part, f-med, dom  |          |          |          |          |          |                                       |     |
|            |       | med, occ C, SA-SR, dom SA mod sorted qtz, clear to frosty, |          |          |          |          |          |                                       |     |
|            |       | com-abundant kaolinitic clay mtx, (mtx of loose sand is    |          |          |          |          |          |                                       |     |
|            |       | washed away), tr-occ com calc cmt, occ mod strong, tr med  |          |          |          |          |          |                                       |     |
|            |       | green of med gry lithics, tr partially altered feldspar    |          |          |          |          |          |                                       |     |
|            |       | tr micas v rare lt & med pink & med red garnet, fair-good  |          |          |          |          |          |                                       |     |
|            |       | occ v good vis Ø                                           |          |          |          |          |          |                                       |     |
|            | 10    | <u>Claystone</u> as above                                  |          |          |          |          |          |                                       |     |
|            | 10    | <u>Siltstone</u> as above                                  |          |          |          |          |          |                                       |     |
| 1980-1985  | 90    | Sandstone as above                                         | 1.4      | 260      | 8        | 2        | tr       |                                       |     |
|            | 5     | <u>Claystone</u> as above                                  |          |          |          |          |          |                                       |     |
|            | 5     | <u>Siltstone</u> as above                                  |          |          |          |          |          |                                       |     |
| 1985-1990  | 90    | Sandstone as above                                         | 1.1      | 210      | 6        | 2        | tr       |                                       |     |
|            | 5     | <u>Claystone</u> as above                                  |          |          |          |          |          |                                       |     |
|            | 5     | <u>Siltstone</u> as above                                  |          |          |          |          |          |                                       |     |
| 1990-1995  | 40    | Sandstone as above                                         | . 1.3    | .238     | 7        | 2        | tr       |                                       |     |
|            |       |                                                            | <u> </u> |                                       |     |

| WELL: McEA | CHERN | NO.1 DATE: 05-01-90 GEOLOGIST: A. TABASSI PAGE: 79 OF             |       |     |     | SHOWS |    |      |     |
|------------|-------|-------------------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|            |       |                                                                   |       |     | GAS |       |    | FLUC | OR. |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                                | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
|            | 30    | <u>Claystone</u> as above                                         |       |     |     |       |    | ·    |     |
|            | 30    | <u>Siltstone</u> as above                                         |       |     |     |       |    |      |     |
| 1995-2000  | 10    | <u>Sandstone</u> as above                                         | 1.4   | 257 | 6   | 2     | tr |      |     |
|            | 50    | Claystone generally as above, med-dk gry, med-dk brn gry, dom     |       |     | ,   |       |    |      |     |
|            |       | firm, occ soft & disp, rarely hd, block & subfis in part, tr-     |       |     |     |       |    |      |     |
|            |       | com micaceous rarely carbonaceous, moderately silty and in part   |       |     |     |       |    |      |     |
|            |       | grading into;                                                     |       |     |     |       |    |      |     |
| i          | 40    | Siltstone generally as above, med-dk gry, med-dk brn gry speckled |       |     |     | •     |    |      |     |
| 1          |       | in part, firm, occ hd, blocky, subfis in part. com micaceous,     |       |     |     |       |    |      |     |
|            |       | rarely carbonaceous com to abundantly argillaceous, in place      |       |     |     |       |    |      |     |
|            |       | grading into vf hd sandstone interlam with;                       |       |     |     |       |    |      | ·   |
|            | tr    | Coal and carbonaceous claystone as above                          |       |     |     |       |    |      |     |
| 2000-2005  | 60    | Sandstone as above                                                | 3.4   | 641 | 15  | 3     | tr |      |     |
|            | 20    | <u>Claystone</u> as above                                         |       |     |     |       |    |      |     |
|            | 20    | <u>Siltstone</u> as above                                         |       |     |     |       |    |      |     |
| 2005-2010  | 80    | <u>Sandstone</u> as above                                         | 1.8   | 330 | 9   | 3     | tr |      |     |
|            | 10    | <u>Claystone</u> as above                                         |       |     |     |       |    |      |     |
|            | 10    | <u>Siltstone</u> as above                                         |       |     |     |       |    |      |     |
|            |       |                                                                   |       |     |     |       |    |      |     |

| WELL: McEAC | HERN N | 0.1 DATE: 05-01-90 GEOLOGIST: A. TABASSI PAGE: 80 OF |       |          |     | SHOWS |         |      |      |
|-------------|--------|------------------------------------------------------|-------|----------|-----|-------|---------|------|------|
|             |        | O.1 Dill. 03 01 70 GEOLOGISI. II. IMMOST TAGE. 00 01 |       |          | GAS |       |         | FI   | LUOR |
| DEPTH (m)   | Z      | SAMPLE DESCRIPTION                                   | TOTAL | C1       | C2  | C3    | C4      | NAT. | CUT  |
| 2010-2015   | 60     | Sandstone as above                                   | 3.3   | 630      | 13  | 2     | tr      |      |      |
|             | 20     | Claystone as above                                   |       |          |     |       |         |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |          |     | '     |         |      |      |
| 2015-2020   | 20     | Sandstone as above                                   | 1.3   | 249      | 8   | 2     | tr      |      |      |
|             | 50     | Claystone as above                                   |       |          |     |       |         |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |          |     |       |         |      |      |
| 2020-2025   | 30     | Sandstone as above                                   | 1.5   | 278      | 8   | 3     | tr      |      |      |
|             | 40     | Claystone as above                                   |       |          |     |       |         |      |      |
|             | 30     | <u>Siltstone</u> as above                            |       |          |     |       |         |      |      |
| 2025-2030   | 10     | Sandstone as above                                   | 1.2   | 228      | 6   | 1     | tr      |      |      |
|             | 50     | Claystone as above                                   |       |          |     |       |         |      |      |
|             | 40     | <u>Siltstone</u> as above                            |       |          |     |       |         |      |      |
| 2030-2035   | 10     | Sandstone as above                                   | 2.0   | 370      | 11  | 3     | tr      |      |      |
|             | 50     | <u>Claystone</u> as above                            |       |          |     |       |         |      |      |
|             | 40     | <u>Siltstone</u> as above                            |       |          |     |       |         |      |      |
| 2035-2040   | 20     | Sandstone as above, dom firm, dom med                | 2.2   | 414      | 13  | 4     | tr      |      |      |
|             | 40     | <u>Claystone</u> as above                            |       |          |     |       |         |      |      |
|             | 40     | <u>Siltstone</u> as above                            |       |          |     |       |         |      |      |
|             |        |                                                      |       | <u> </u> |     |       | <u></u> |      |      |

| WELL: McEAC | HERN N | O.1 DATE: 05-01-90 GEOLOGIST: A. TABASSI PAGE: 81 OF |       |     |     | SHOWS |    |      |      |
|-------------|--------|------------------------------------------------------|-------|-----|-----|-------|----|------|------|
|             |        | DALLS OF OL SO GEOLOGISI. A. INDREST FAGE: OI OF     |       |     | GAS | •     |    | FI   | LUOR |
| DEPTH (m)   | z      | SAMPLE DESCRIPTION                                   | TOTAL | C1  | C2  | C3    | C4 | NAT. | CUT  |
| 2040-2045   | 20     | Sandstone as above, dom firm, dom med                | 1.6   | 243 | 9   | 3     | tr |      |      |
|             | 40     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 40     | Siltstone as above                                   |       |     |     |       |    |      |      |
| 2045-2050   | 10     | Sandstone as above                                   | 1.8   | 344 | 10  | 3     | tr |      |      |
|             | 40     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 50     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
| 2050-2055   | tr     | Sandstone as above                                   | 1.8   |     |     |       |    |      |      |
|             | 50     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 50     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
| 2055-2060   | 50     | Sandstone as above, dom firm, dom med                | 3.0   |     |     |       |    |      |      |
|             | 30     | Claystone as above                                   |       |     |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
| 2060-2065   | 70     | Sandstone as above, dom firm, dom med                | 4.5   | 836 | 20  | 4     | tr |      |      |
|             | 20     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 10     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
| 2065-2070   | 50     | Sandstone as above                                   | 1.8   |     |     |       |    |      |      |
|             | 30     | <u>Claystone</u> as above                            |       |     |     |       |    |      |      |
|             | 20     | <u>Siltstone</u> as above                            |       |     |     |       |    |      |      |
|             |        |                                                      |       |     |     |       |    |      |      |

| WELL: McEA | CHERN | NO.1 DATE: 05-01-90 GEOLOGIST: A. TABASSI PAGE: 82 OF        |       |          |     | SHOWS    |    |      |          |
|------------|-------|--------------------------------------------------------------|-------|----------|-----|----------|----|------|----------|
|            |       |                                                              |       |          | GAS |          |    | FLUC | OR.      |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                           | TOTAL | C1       | C2  | С3       | C4 | NAT. | CUT      |
| 2070-2075  | 40    | Sandstone as above                                           | 1.7   | 314      | 10  | 3        | tr | ·    |          |
|            | 30    | <u>Claystone</u> as above                                    |       |          |     |          |    |      |          |
|            | 30    | <u>Siltstone</u> as above                                    |       |          |     |          |    |      |          |
| 2075-2080  | 70    | Sandstone as above, dom firm with com kaolinitic clay mtx,   | 2.0   |          |     |          |    |      |          |
|            |       | tr-com mod strong calc cmt, fair vis Ø                       |       |          |     |          |    |      |          |
|            | 20    | <u>Claystone</u> as above                                    |       |          |     |          |    |      |          |
|            | 10    | <u>Siltstone</u> as above                                    |       |          |     |          |    |      |          |
| 2080-2085  | 60    | Sandstone as above, dom firm, com kaolinitic clay mtx, tr-   | 1.6   | 294      | 10  | 3        | tr |      |          |
|            |       | com mod strong calc cmt, fair vis $\mathscr O$               |       |          |     |          |    |      |          |
|            | 20    | <u>Claystone</u> as above                                    |       |          |     |          |    |      |          |
|            | 20    | <u>Siltstone</u> as above                                    |       |          |     |          |    |      |          |
| 2085-2090  | 40    | Sandstone as above, dom firm com Kaolinitic clay mtx, tr-com | 2     | 374      | 12  | 3        | tr |      |          |
|            |       | mod strong calc cmt, fair vis X                              |       |          |     |          |    |      |          |
|            | 30    | <u>Claystone</u> as above                                    |       |          |     |          |    |      |          |
|            | 30    | <u>Siltstone</u> as above                                    |       |          |     |          |    |      |          |
|            |       |                                                              |       |          |     |          |    |      |          |
|            |       |                                                              |       |          |     |          |    |      |          |
|            |       |                                                              |       |          |     |          |    |      |          |
|            |       |                                                              |       | <u> </u> |     | <u> </u> |    |      | <u> </u> |

| WELL: McFAC | CHERN    | NO.1 DATE: 06-01-90 GEOLOGIST: A. TABASSI PAGE: 83 OF                                |       |      |     | SHOWS |    |         |     |
|-------------|----------|--------------------------------------------------------------------------------------|-------|------|-----|-------|----|---------|-----|
| - Telli     | 71111111 | No.1 Billi. 00 01 70 Globotti. N. Hiblioti Holl. 03 01                               |       |      | GAS |       |    | FLU     | OR  |
| DEPTH (m)   | ક        | SAMPLE DESCRIPTION                                                                   | LATOT | C1   | C2  | С3    | С4 | NAT.    | CUT |
| 2090-2095   | 60       | Sandstone as above, as above, firm in part fair-good vis &                           | 2.6   | 494  | 14  | 3     | tr |         |     |
|             | 15       | <u>Claystone</u> as above                                                            |       |      |     |       |    |         |     |
|             | 25       | <u>Siltstone</u> as above                                                            |       |      |     |       |    |         |     |
| 2095-2100   | 90       | Sandstone as above, in part dom firm, fair-good vis $\aleph$                         | 5.6   | 1048 | 27  | 6     | tr |         |     |
|             | 5        | <u>Claystone</u> as above                                                            |       |      |     |       |    |         |     |
|             | 5        | <u>Siltstone</u> as above                                                            |       |      |     |       |    |         |     |
| 2100-2105   | 80       | $rac{	ext{Sandstone}}{	ext{Sandstone}}$ as above, dom good vis $oldsymbol{arOmega}$ | 1.5   | 274  | 9   | 3     | tr |         |     |
|             | 10       | Claystone as above                                                                   |       |      |     |       |    |         |     |
|             | 10       | <u>Siltstone</u> as above                                                            |       |      |     |       |    |         |     |
| 2105-2110   | 90       | Sandstone as above, f-vc, dom med-c, dom loose v good vis &                          | 4.8   | 906  | 21  | 4     | tr |         |     |
|             | 5        | <u>Claystone</u> as above                                                            |       |      |     |       |    |         |     |
|             | 5        | <u>Siltstone</u> as above                                                            |       |      |     |       |    |         |     |
| 2110-2115   | 80       | Sandstone as above, as above, f-vc, dom med-c, dom SR, dom                           | 2.4   | 445  | 13  | 3     | tr |         |     |
|             |          | loose, v good &                                                                      |       |      |     |       |    |         |     |
|             | 10       | <u>Claystone</u> as above                                                            |       |      |     |       |    |         |     |
|             | 10       | <u>Siltstone</u> as above                                                            |       |      |     |       |    |         |     |
| 2115-2120   | 80       | Sandstone as above, f-c, dom med, dom loose, in part with                            | 6.8   | 1269 | 32  | 9     | tr |         |     |
|             | i        | mod strong calc cmt, good - v good, occ fair vis Ø                                   |       |      |     |       |    |         |     |
|             |          |                                                                                      |       |      |     |       |    | <u></u> |     |

| WELL: McEA | CHERN | NO.1 DATE: 06-01-90 GEOLOGIST: A. TABASSI PAGE: 84 OF                                                |       |      |     | SHOWS    |    |      |          |
|------------|-------|------------------------------------------------------------------------------------------------------|-------|------|-----|----------|----|------|----------|
|            |       | INC. 2011. 00 01 30 CHOLOGIST. N. HEMOST TROIL 04 01                                                 |       |      | GAS |          |    | FLU  | OR       |
| DEPTH (m)  | *     | SAMPLE DESCRIPTION                                                                                   | TOTAL | C1   | C2  | С3       | C4 | NAT. | CUT      |
|            | 10    | <u>Claystone</u> as above                                                                            |       |      |     |          |    |      |          |
|            | 10    | <u>Siltstone</u> as above                                                                            |       |      |     |          |    |      |          |
| 2120-2125  | 100   | Sandstone as above, dom loose, med to vc, dom C, poorly                                              | 4.8   | 905  | 20  | 5        | tr |      |          |
|            |       | sorted vis Ø                                                                                         |       |      |     |          |    |      |          |
| 2120-2125  | 100   | Sandstone as above, dom loose, med to vc, dom C, poorly                                              | 4.8   | 905  | 20  | 5        | tr |      |          |
|            |       | sorted vis Ø                                                                                         |       |      |     |          |    |      |          |
| 2125-2130  | 100   | Sandstone as above, dom loose, med - VC, dom C, poorly                                               | 6.8   | 1300 | 23  | 3        | tr |      |          |
|            |       | sorted good vis &                                                                                    |       |      |     |          |    |      |          |
| 2130-2135  | 100   | Sandstone as above, dom loose, med - VC, dom C, poorly                                               | 6.4   | 1230 | 20  | 3        | tr |      |          |
|            |       | sorted tr qtz overgrowth, v good vis $arkappa$                                                       |       |      |     |          |    |      |          |
| 2135-2138  | 100   | $\overline{	ext{Sandstone}}$ as above, loose, dom med, fairly sorted v good vis $oldsymbol{arOmega}$ |       |      |     |          |    |      |          |
|            |       | "Bit Changed"                                                                                        |       |      |     |          |    |      |          |
| 2138-2140  | 100   | Sandstone as above, loose, med - VC, dom C, rare qtz                                                 | 7.5   | 1420 | 31  | 7        | tr |      |          |
|            |       | overgrowth, v good vis $arnothing$ (claystone and siltstone are                                      |       |      |     |          |    |      |          |
|            |       | possibly caving)                                                                                     |       |      |     |          |    |      |          |
| 2140-2145  | 100   | Sandstone as above, loose, med - VC, dom C, rare qtz                                                 | 1.8   | 320  | 7   | tr       | tr |      |          |
|            |       | overgrowth, v good vis $\mathscr S$ (some cavings!)                                                  |       |      |     |          |    |      |          |
| 2145-2150  | 90    | Sandstone generally as above, loose, very rare friable -                                             | . 1.8 | .320 | 7   | tr       | tr |      |          |
|            |       |                                                                                                      |       |      |     | <u> </u> |    |      | <u> </u> |

| WELL: McEA | .CHERN | NO.1 DATE: 06-01-90 GEOLOGIST: A. TABASSI PAGE: 85 OF           |       |     |     | SHOWS |    |      |     |
|------------|--------|-----------------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|            |        |                                                                 |       |     | GAS |       |    | FLU  | OR  |
| DEPTH (m)  | ક્ર    | SAMPLE DESCRIPTION                                              | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
|            |        | firm, med-VC,dom C, dom SA, rare qtz overgrowth, v good vis Ø   |       |     |     |       |    |      |     |
|            | 5      | <u>Claystone</u> as above                                       |       |     |     |       |    |      |     |
|            | 5      | <u>Siltstone</u> as above                                       |       |     |     |       |    |      |     |
| 2150-2155  | 95     | Sandstone as above, loose, med-VC, dom C, dom SA, arg in        | 2.9   | 554 | 9   | tr    | tr |      |     |
|            |        | part, rare qtz overgrowth, v good vis $arkappa$                 |       |     |     |       |    |      |     |
|            | 5      | <u>Claystone</u> as above                                       |       |     |     |       |    |      |     |
| 2155-2160  | 100    | Sandstone , generally as above, clear, off-white, rarely        | 3.3   | 628 | 9   | tr    | tr |      |     |
|            |        | v lt gry and vlt brn gry, loose, very rarely fri, f - VC, dom   |       |     |     |       |    |      |     |
|            |        | C - VC, occ granule A-SA, rarely SR, poorly occ fairly sorted   |       |     |     |       |    |      |     |
|            |        | qtz, clear, translucent occ frosty, no apparent mtx (kaolinitic |       |     |     |       |    |      |     |
|            |        | clay mtx easily washed away) rare - v rare multi - coloured     |       |     |     |       |    |      |     |
|            |        | metamorphic lithics (including phyllite, chert? quartzite,      |       |     |     |       |    |      |     |
|            |        | serpentine (?), garnets, reworked med green shale fragment),    |       |     |     |       |    |      |     |
|            |        | rare mica flecks, v rare coal fragments, v rare pyrite, rare    |       |     |     |       |    |      |     |
|            |        | qtz overgrowth, some qtz grain has v f dk gry - black           |       |     |     |       |    |      |     |
|            |        | inclusions, excellent vis ø                                     |       |     |     |       |    |      |     |
| 2160-2165  | 100    | Sandstone as above                                              | 2.4   | 424 | 9   | tr    | tr |      |     |
| 2165-2170  | 100    | <u>Sandstone</u> as above                                       | . 3.2 | 596 | 10  | tr    | tr |      |     |
|            |        |                                                                 |       |     |     |       |    |      |     |

| WELL: MORA   | THERN | NO.1 DATE: 06-01-90 GEOLOGIST: A. TABASSI PAGE: 86 OF        |       |     |     | SHOWS |    |      |         |
|--------------|-------|--------------------------------------------------------------|-------|-----|-----|-------|----|------|---------|
| WELLI. FICEA | - I   | NO.1 BILL. OU OL 70 GLOLOGISI. M. HIBRORI HAGE. OU OI        |       |     | GAS |       |    | FLUC | OR .    |
| DEPTH (m)    | 8     | SAMPLE DESCRIPTION                                           | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT     |
| 2170-2175    | 100   | Sandstone as above, granule grains increase with depth, rare | 2.5   | 466 | 8   | tr    |    |      |         |
|              |       | calc cmt v good vis Ø                                        |       |     |     |       |    |      |         |
| 2175-2180    | 100   | Sandstone as above, granule grains increase with depth, rare | 1.0   | 174 | 5   | tr    |    |      |         |
|              |       | calc cmt v good vis Ø                                        |       |     |     |       |    |      |         |
| 2180-2185    | 100   | Sandstone as above, granule grains increase with depth, rare | 1.7   | 314 | 6   | tr    |    |      | ,       |
|              |       | calc cmt v good vis Ø                                        |       |     |     |       |    |      |         |
| 2185-2190    | 100   | Sandstone as above, granule grains increase with depth, rare | 1.5   |     |     |       |    |      |         |
|              |       | calc cmt v good vis Ø                                        |       |     |     |       |    |      |         |
| 2190-2195    | 100   | Sandstone as above, granule grains increase with depth, rare | 3.5   | 668 | 12  | tr    |    |      |         |
|              |       | calc cmt v good vis Ø                                        |       |     |     |       |    |      |         |
| 2195-2200    | 100   | Sandstone as above, dom VC, tr-com granule grains, rare calc | 1.1   | 196 | 4   | tr    |    |      |         |
|              |       | cmt v good vis $\mathscr X$                                  |       |     |     |       |    |      |         |
| 2200-2205    | 100   | Sandstone as above, dom VC, tr-com granule grains, rare calc | 1.8   | 343 | 6   | tr    |    |      |         |
|              |       | cmt v good vis &                                             |       |     |     |       |    |      |         |
| 2205-2210    | 100   | Sandstone as above, dom VC, tr-com granule grains, rare calc | 2.4   | 458 | 7   | tr    |    |      |         |
|              |       | cmt v good vis Ø                                             |       |     |     |       |    |      |         |
|              |       |                                                              |       |     |     |       |    |      |         |
|              |       |                                                              |       |     |     |       |    |      |         |
|              |       |                                                              |       |     |     |       |    |      | <u></u> |

| WELL: McEA | CHERN | NO.1 DATE: 06-01-90 GEOLOGIST: A. TABASSI PAGE: 87 OF        |       |          |     | SHOWS |    |      |      |
|------------|-------|--------------------------------------------------------------|-------|----------|-----|-------|----|------|------|
|            |       |                                                              |       |          | GAS |       |    | FLU  | OR - |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                           | TOTAL | C1       | G2  | С3    | C4 | NAT. | CUT  |
| 2210-2215  | 100   | Sandstone as above, dom VC, tr-com granule grains, rare calc | 3.7   | 710      | 10  | tr    |    |      |      |
|            |       | cmt v good vis Ø                                             |       |          |     |       |    |      |      |
| 2215-2220  | 100   | Sandstone as above, dom VC, tr-com granule grains, rare calc | 1.0   |          |     |       |    |      |      |
|            |       | cmt v good vis &                                             |       |          |     |       |    |      |      |
| 2220-2225  | 100   | Sandstone as above, dom VC, tr-com granule grains, rare calc | 1.3   |          |     |       |    |      |      |
| :<br>:     |       | cmt v good vis &                                             |       |          |     |       |    |      |      |
| 2225-2230  | 100   | Sandstone as above, dom VC, tr- granule grain, rare calc     | 1.8   | 345      | 5   |       |    |      |      |
|            |       | cmt v good vis &                                             |       |          |     |       |    |      |      |
| 2230-2235  | 100   | Sandstone as above, dom VC, tr- granule grain, rare calc     | 1.4   |          |     |       |    |      |      |
|            |       | cmt v good vis &                                             |       |          |     |       |    |      |      |
| 2235-2240  | 100   | Sandstone as above, dom VC, tr- granule grain, rare calc     | 1.1   | 208      | 4   |       |    |      | -    |
|            |       | cmt v good vis &                                             |       |          |     |       |    |      |      |
| 2240-2245  | 100   | Sandstone as above, dom C, rare granule grains, rare calc    | 1.4   |          |     |       |    |      |      |
|            |       | cmt v_good vis &                                             |       |          |     |       |    |      |      |
| 2245-2250  | 100   | Sandstone as above, dom C, rare granule grains, rare calc    | 2.6   | 496      | 7   | tr    |    |      |      |
|            |       | cmt v good vis &                                             |       |          |     |       |    |      |      |
| 2250-2255  | 100   | Sandstone as above, dom C, rare granule grains, rare calc    | 1.2   |          |     |       |    |      |      |
|            |       | cmt v good vis &                                             | ,     |          |     |       |    |      |      |
|            |       |                                                              |       | <u> </u> |     |       |    |      |      |

| WELL: McEA | CHERN    | NO.1 DATE: 07-01-90 GEOLOGIST: A. TABASSI PAGE: 88 OF                                                 |       |     |     | SHOWS   |    |      |     |
|------------|----------|-------------------------------------------------------------------------------------------------------|-------|-----|-----|---------|----|------|-----|
|            |          |                                                                                                       |       |     | GAS |         |    | FLU  | OR  |
| DEPTH (m)  | 8        | SAMPLE DESCRIPTION                                                                                    | TOTAL | C1  | C2  | С3      | C4 | NAT. | CUT |
| 2255-2260  | 100      | Sandstone as above, dom C, rare granule, rare calc cmt in                                             | 1.2   | 224 | 4   | tr      |    | ·    |     |
|            |          | part, v good vis Ø                                                                                    |       |     |     |         |    |      |     |
| 2260-2265  | 100      | Sandstone as above, dom C, rare granule, rare calc cmt in                                             | 1.7   | 318 | 5   | tr      |    |      |     |
|            |          | part, v good vis Ø                                                                                    |       |     |     |         |    |      |     |
| 2265-2270  | 100      | Sandstone as above, dom C, rare granule, rare calc cmt in                                             | .7    | 146 | 3   | tr      |    |      |     |
| !          |          | part, v good vis Ø                                                                                    |       |     |     |         |    |      |     |
| 2270-2275  | 100      | $rac{	ext{Sandstone}}{	ext{andstone}}$ as above, dom C, rare granule, v good vis $lpha$              | 1.6   | 310 | 7   | tr      |    |      |     |
| 2275-2280  | 100      | Sandstone as above, dom C, rare granule, v good vis &                                                 | 2.4   |     |     |         |    |      |     |
| 2280-2285  | 100      | $rac{	ext{Sandstone}}{	ext{can}}$ as above, dom C, rare granule, v good vis $oldsymbol{\mathscr{A}}$ | .7    |     |     |         |    |      |     |
| 2285-2290  | 80       | Sandstone as above, rare granule, v good vis 0 (including some                                        | 1.4   | 265 | 7   | tr      |    |      |     |
|            |          | cavings?)                                                                                             |       |     |     |         |    |      | ·   |
|            | 10       | Claystone lt green, lt green gry, med-dk gry, med-dk brn gry                                          |       |     |     |         |    |      |     |
|            |          | in part, firm-hd, occ vh, rarely soft & disp. blocky subfis -                                         |       |     |     |         |    |      |     |
|            |          | fis, com carb in part tr mica in part, mod silty and in part                                          |       |     |     |         |    |      |     |
|            |          | grading into and/or interlam with;                                                                    |       |     |     |         |    |      |     |
|            | 10       | Siltstone lt-med green, med-dk gry, med brn gry in part,                                              | .8    | 157 | 3   | tr      |    |      |     |
|            |          | speckled in part, firm-hd,occ v hd, dom blocky, tr mica flecks                                        |       |     |     |         |    |      |     |
|            |          | & streaks, tr-mod carb in part, mod arg in part, rarely                                               |       |     |     |         |    |      |     |
|            | <u> </u> |                                                                                                       |       |     |     | <u></u> |    |      |     |

| TIETT - MaEA | י עבטאי | NO.1 DATE: 07-01-90 GEOLOGIST: A. TABASSI PAGE: 89 OF                                               |       |     |     | SHOWS |            |      |     |
|--------------|---------|-----------------------------------------------------------------------------------------------------|-------|-----|-----|-------|------------|------|-----|
| WELL. MCEA   | JUENN   | NO.1 DATE. 07-01-90 GEOLOGISI. A. IADADSI INCD. 09 01                                               |       |     | GAS |       |            | FLU  | OR  |
| DEPTH (m)    | 8       | SAMPLE DESCRIPTION                                                                                  | TOTAL | C1  | C2  | С3    | <b>C</b> 4 | NAT. | CUT |
|              |         | grading into vf sandstone                                                                           |       |     |     |       |            | ,    |     |
| 2290-2295    | 80      | Sandstone as above                                                                                  |       |     |     |       |            |      |     |
|              | 10      | Claystone as above                                                                                  |       |     |     |       |            |      |     |
|              | 10      | <u>Siltstone</u> as above                                                                           |       |     |     |       |            |      |     |
| 2295-2300    | 80      | Sandstone as above                                                                                  | 2.4   | 460 | 8   | tr    |            |      |     |
|              | 10      | <u>Claystone</u>                                                                                    |       |     |     |       |            |      |     |
|              | 10      | <u>Siltstone</u>                                                                                    |       |     |     |       |            |      |     |
| 2300-2305    | 100     | Sandstone as above                                                                                  | 3.2   | 620 | 9   | tr    |            |      |     |
| 2305-2310    | 100     | <u>Sandstone</u> as above                                                                           | 1.9   | 360 | 8   | tr    |            |      |     |
| 2310-2315    | 100     | Sandstone as above                                                                                  | 3.6   | 710 | 11  | tr    |            |      |     |
| 2315-2320    | 100     | Sandstone as above                                                                                  | 1.0   | 195 | 3   |       |            |      |     |
| 2320-2325    | 100     | Sandstone as above                                                                                  | 1.4   | 261 | 5   | tr    |            |      |     |
| 2325-2330    | 100     | $oxed{	ext{Sandstone}}$ as above, tr med strong silliceous cmt good vis $oldsymbol{\mathscr{D}}$    | 3.3   | 640 | 10  | tr    |            |      |     |
| 2330-2335    | 100     | Sandstone as above, tr med strong silliceous cmt good vis &                                         | 1.0   | 204 | 4   | tr    |            |      |     |
| 2335-2340    | 100     | $\underline{\underline{Sandstone}}$ as above, tr med-c, tr dom strong sil cmt,good vis $\mathscr S$ | 3.2   | 620 | 11  | tr    |            |      |     |
| 2340-2344    | 100     | $\underline{\underline{Sandstone}}$ as above, dom med-c, v good vis $\mathscr X$                    | .7    | 129 | tr  | tr    |            |      |     |
|              |         | "CASTERTON FORMATION"                                                                               |       |     |     |       |            |      |     |
| 2344-2350    | 30      | Claystone med-dk brn gry, med gry, dk gry in part, firm-hd, soft                                    | 6     | 99  | 3   | tr    |            |      |     |

| WELL: McEA | CHERN    | NO.1 DATE: 07-01-90 GEOLOGIST: A. TABASSI PAGE: 90 OF                |       |      |     | SHOWS |    |         |     |
|------------|----------|----------------------------------------------------------------------|-------|------|-----|-------|----|---------|-----|
|            |          |                                                                      |       |      | GAS |       |    | FLU     | OR  |
| DEPTH (m)  | ક        | SAMPLE DESCRIPTION                                                   | TOTAL | C1   | C2  | С3    | C4 | NAT.    | CUT |
|            |          | and disp in part, blocky & subfis in part, speckled in part,         |       |      |     |       |    |         |     |
|            |          | com micaceous, tr-com carbonaceous, mod silty, in part grading       |       |      |     |       |    |         |     |
|            |          | into and/or interlam with;                                           |       |      |     |       |    |         |     |
|            | 70       | Siltstone, med-dk gry, med brn gry, occ lt brn gry, r rarely         |       |      |     |       |    |         |     |
| -          |          | med green gry, firm-hd, occ v hd, rarely soft, dom blocky,           |       |      |     |       |    |         |     |
| :          |          | subfis in part, com micaceous, com carb flecks & streaks,            |       |      |     |       |    |         |     |
|            |          | trace fine partially altered feldspar, tr fine lithics, com          |       |      |     |       |    |         |     |
|            |          | arg, tr-com vf qtz sand grains, in part grading into minor           |       |      |     |       |    |         |     |
|            |          | vf, hd <u>sandstone</u> , v lt brn gry, v slightly calc cmt, poor-no |       |      |     |       |    |         |     |
|            |          | vis O                                                                |       |      |     |       |    |         |     |
|            | ?        | Sandstone as above (possibly all caving?)                            |       |      |     |       |    |         |     |
| 2350-2355  | 25       | <u>Claystone</u> as above                                            | .6    | 45   | 5   | tr    |    |         |     |
|            | 75       | Siltstone as above                                                   |       |      |     |       |    |         |     |
| 2355-2360  | 20       | Claystone as above                                                   | .7    | 120  | 4   | tr    |    |         |     |
|            | 80       | <u>Siltstone</u> as above                                            |       |      |     |       |    |         |     |
| 2365-2370  | 20       | <u>Claystone</u> as above                                            | 1.0   | 168  | 6   | 3     |    |         |     |
|            | 80       | <u>Siltstone</u> as above                                            |       |      |     |       |    |         |     |
| 2370-2375  | 10       | <u>Claystone</u> as above                                            | . 1.0 | . 16 | 7   | 3     |    |         |     |
|            | <u> </u> |                                                                      |       |      |     |       |    | <u></u> |     |

| WELL: McEA | CHERN | NO.1 DATE: 07-01-90 GEOLOGIST: A. TABASSI PAGE: 91 OF |       |     |     | SHOWS |    |      |     |
|------------|-------|-------------------------------------------------------|-------|-----|-----|-------|----|------|-----|
|            |       |                                                       |       |     | GAS |       |    | FLU  | OR  |
| DEPTH (m)  | ક     | SAMPLE DESCRIPTION                                    | TOTAL | C1  | C2  | С3    | C4 | NAT. | CUT |
|            | 90    | Siltstone                                             |       |     |     |       |    |      |     |
| 2375-2380  | 10    | <u>Claystone</u> as above                             | 1.2   | 198 | 10  | 4     |    |      |     |
|            | 75    | <u>Siltstone</u> as above                             |       |     |     |       |    |      |     |
| 2380-2385  | 100   | <u>Siltstone</u> as above                             | 1.1   | 167 | 7   | 4     |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
| 1          |       |                                                       |       |     |     |       |    |      |     |
|            |       | TOTAL DEPTH OF 2,384.0 METRES                         |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       | WAS REACHED @ 0200 HOURS                              |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       | MONDAY, JANUARY 8TH, 1990                             |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |
|            |       |                                                       |       |     |     |       |    |      |     |

# 5. CORE DESCRIPTION

# SIDEWALL CORE DESCRIPTIONS

| 14/5-1         |                        |           |                          | -                |                |        |             |        |          |         |       |          |          |          |             |      |           |          |         |          |                      |          |       |          |          |              |                           |                    |
|----------------|------------------------|-----------|--------------------------|------------------|----------------|--------|-------------|--------|----------|---------|-------|----------|----------|----------|-------------|------|-----------|----------|---------|----------|----------------------|----------|-------|----------|----------|--------------|---------------------------|--------------------|
| WE             | <u>_L</u> _            | McEACHERN | NO. 1                    | T 01             | A) (           | T 01   |             |        |          | ·       |       |          | 1        | ···      | <del></del> |      |           | ·        |         | DAT      | ΓE:                  | 10       | _/_   | 1/       | 1990     | ~~~          |                           | PAGE_1_OF_5        |
|                | ERY<br>tres)           |           |                          | 9                | .AY<br>ZE<br>6 | SI     | フロ L        | TYP    |          | %       | SIZ   | E        | CEM      | MENT     | Dia         | agen | esis      | ត្តិ     | ŋ       | SS       | <br> ≿%              | A        | CCE   | SSOF     | IIES     | SNOS         | 4RY<br>RES                |                    |
| DEPTH (metres) | RECOVERY (centimetres) | ROCK TYPE | COLOUR                   | CLAY<br>MINERALS | MICRITE        | QUARTZ | CALCITE     | QUARTZ | SKELETAL | CALCITE | RANGE | DOMINANT | TYPE & % | TYPE & % | TYPE        | %    | TEXTURE   | ROUNDING | SORTING | HARDNESS | POROSITY<br>TYPE & % | TYPE & % | 5     | TYPE & % | TYPE & % | HYDROCARBONS | SEDIMENTARY<br>STRUCTURES | SUPPLEMENTARY DATA |
| 2378           | 0                      | ,         |                          |                  |                |        |             |        |          |         |       |          |          |          |             |      |           |          |         |          |                      |          |       |          | ·        |              |                           |                    |
| 2366.6         | 0                      |           |                          |                  |                |        |             |        |          |         |       |          |          |          |             |      |           |          |         |          |                      |          |       |          |          | · · · · ·    |                           |                    |
| 2354.6         | 0                      |           |                          |                  |                |        |             |        |          |         |       |          |          |          |             |      |           |          |         |          |                      |          |       |          |          |              |                           | •                  |
| 2344.6         | . 0                    |           |                          |                  |                |        |             |        |          |         |       |          |          |          |             |      |           |          |         |          |                      | ,        |       |          |          |              |                           |                    |
| 2330.6         | 2.7                    | Sandstone | off wh/lt grey           | 10               | -              | -      | -           | 90     | -        | - f-    | -c    | М        | -        | -        |             |      |           | SA       | М       | VS       | g15                  | Lf       | tr H  | m tr     | _        | _            | _                         | tr garnets         |
| 2259.6         | 1.0                    | 11 11     | 11 11                    | 7                | -              | -      | -           | 93     | -        | - f.    | -c    | М        |          |          |             |      |           |          |         |          |                      |          |       |          |          |              |                           |                    |
| 2226.6         | 1.7                    | 11 11     | Lt-med grey              | 10               | -              | -      | -           | 85     | -        | - vi    | ſ-c   | М        | Q 5%     | 1        |             |      |           | SA       | P       | Н        | g 5                  | Lf       | tr H  | n tr     | -        |              | _                         | tr garnets         |
| 2202.6         | 1.0                    | 11 11     | Lt-med grey-<br>brn grey | 10               |                | _      | - 9         | 90 -   | -        | - vf    | `-m   | М        | -        | _        |             |      |           | SA       | Р       | s        | g10                  | Lf       | tn Hn |          |          |              |                           |                    |
| 2148.6         | 2.0                    | и . и     | off wh/lt grey           | 10               | -              | -      | <b>-</b>  9 | 90 -   | -        | - f-    | vc    |          |          | _        |             |      |           | SA<br>SR |         |          |                      | Lf i     |       |          |          |              |                           | tr garnet          |
| 2116.6         | 0                      | *****     |                          |                  |                |        |             |        |          |         |       |          |          |          |             |      |           |          |         |          |                      |          |       |          |          |              |                           |                    |
|                |                        |           |                          |                  |                |        |             |        |          |         |       |          | A        | BBRE     | VIAT        | ION  | <u>ıs</u> |          | 4.      |          | ·····                |          |       |          | l        |              |                           |                    |
| GRAIN S        | IZE                    |           | CEMENT                   |                  |                |        |             | RO     | UNDII    | 4G      |       |          |          | SORT     | ING         |      |           |          |         |          | HARD                 | NESS     | •     |          |          | POF          | OSITY                     | ACCESSORIES        |

VF Very Fine
F Fine
M Medium
C Course
VC Very Course
G Granule & larger

Q Silica
Py Pyrite
C Calcite
D Dolomite

Sd Siderite

R Rounded SR Subrounded SA Subangular A Angular P Poor
M Moderate
W Well
VW Very Well

U Unconsolidated
VS Very Soft
S Soft
M Moderate

H Hard

porosity
g Intergranular
v Vogular
i Intraskeletal

ACCESSORIES
Py Pyrite
Mc Mica

Mc Mica Ch Chert Co Lignite/Coal

Hm Heavy minerals Lf Lithic fragments

GI Glauconite

# SIDEWALL CORE DESCRIPTIONS

| WEL                                   | _L                     | McEACHERN NO.1 |             |                  |          |            | <del></del> |        |              |       |          |               |          |          |           |     |                   |          | D       | AT       | E : <u>1</u>         | <u> </u> | 1_/      | 1990     |              |                           | PAGE_2_OF5         |
|---------------------------------------|------------------------|----------------|-------------|------------------|----------|------------|-------------|--------|--------------|-------|----------|---------------|----------|----------|-----------|-----|-------------------|----------|---------|----------|----------------------|----------|----------|----------|--------------|---------------------------|--------------------|
| · · · · · · · · · · · · · · · · · · · | 37<br>es).             |                |             | CL<br>SIZ<br>%   | AY<br>ZE | SIL<br>SIZ | T<br>E      | TYP    | GR/<br>≣ & 9 | AINS  | SIZE     |               | СЕМ      | ENT      | l<br>Diag | епе | is<br>∫           | 5 6      | 5       | SS       | <b>≽</b> %           | ACC      | ESSOF    | RIES     | BONS         | TARY                      | ·                  |
| DEPTH<br>(metres)                     | RECOVERY (centimetres) | ROCK TYPE      | COLOUR      | CLAY<br>MINERALS | MICRITE  | QUARTZ     | CALCITE     | QUARTZ | SKELETAL     | RANGE | DOMINANT | I NOW INCOME. | TYPE & % | TYPE & % | TYPE      | %   | IEXIONE<br>100 HE | ROUNDING | SOHIING | HARDNESS | POROSITY<br>TYPE & % | TYPE & % | TYPE & % | TYPE & % | HYDROCARBONS | SEDIMENTARY<br>STRUCTURES | SUPPLEMENTARY DATA |
| 2076.1                                | 0                      |                |             |                  |          |            |             |        |              |       |          |               |          |          |           |     |                   |          |         |          |                      |          |          |          |              |                           | ·                  |
| 2041.6                                | 0                      |                |             |                  |          |            |             |        |              |       |          |               |          |          |           |     |                   |          |         |          |                      |          |          |          |              |                           |                    |
| 2023.6                                | 0.7                    | Sandstone      | dk. grey    | 10               |          | 10         | _           | 80     | _            | - vf  | vi       | ſ             | -        | -        |           |     | S                 | SR       | W H     | i        | g tr                 | Lf tr    | HM tr    | _        | -            | -                         | rare garnet        |
| 1992.6                                | 0                      | -              |             |                  |          |            |             |        |              |       |          |               |          |          |           |     |                   |          |         |          |                      |          |          |          |              |                           |                    |
| 1946.1                                | 0.5                    | Claystone      | dk grey     | 95               | -        | 5          | -           | -      | -            | -   - |          | -             | -        |          |           |     |                   | -        | - F     | ·I       | -                    | Lf tr    |          | -        | -            | -                         | blocky in part     |
| 1924.6                                | 0                      | -              |             |                  |          |            |             | ·      |              |       |          |               |          |          |           |     |                   |          |         |          |                      |          |          |          |              |                           |                    |
| 1895.6                                | 0                      | -              |             |                  |          |            |             |        |              |       |          |               |          |          |           |     |                   |          |         |          |                      |          |          | ļ        |              |                           |                    |
| 1857.6                                | 3.0                    | Claystone      | v dk grey   | 100              | -        | -          | -           |        | -            | -   - |          | -             |          | -        | -         | -   |                   | -        | - \     | VH       | -                    | Lf. tı   | -        | -        | -            | -                         | blocky and subfis  |
| 1824.6                                | 0                      |                |             |                  |          |            |             |        |              |       |          |               |          |          |           |     |                   |          |         |          |                      |          |          |          |              |                           |                    |
| 1801.6                                | 1.5                    | Claystone      | dk-vdk grey | 100              |          | tr         | -           | -      | -            | - ] - |          | -             | -        |          |           |     |                   |          |         | SM       | _                    | Lf: ti   |          |          | -            | -                         | blocky in part     |
|                                       |                        |                |             |                  |          |            |             |        |              |       |          |               | Ā        | ABBRE    | VIAT      | ION | <u>s</u>          |          |         |          |                      |          |          |          |              | DOO!TY                    | ACCESSORIES        |

VF Very Fine F Fine M Medium C Course VC Very Course

G Granule & larger

GRAIN SIZE

CEMENT Q Silica Py Pyrite C Calcite D Dolomite Sd Siderite

POUNDING

R Rounded SR Subrounded SA Subangular A Angular

P Poor M Moderate W Well

SORTING

V/V Very Well

**HARDNESS** 

U Unconsolidated VS Very Soft S Soft M Moderate H Hard

POROSITY

g intergranular v Vugular i Intraskeletal

ACCESSORIES

Py Pyrite Mc Mica Ch Chert

Co Lignite/Coal Hm Heavy minerals Lf Lithic fragments

Gl. Glauconite

# SIDEWALL CORE DESCRIPTIONS

| WEL               | <u>_L</u> _            | McEACHERN NO. | 1                        | · · · · · · · · · · · · · · · · · · · |              | ·      |               | -      |          |         |       |          |          |          |      |              |         |          | D        | ATE     | : :_     | 10 /              | _1_/              | <u> 1990 </u>     | <del></del>  |                           | PAGE 3 OF 5                      |
|-------------------|------------------------|---------------|--------------------------|---------------------------------------|--------------|--------|---------------|--------|----------|---------|-------|----------|----------|----------|------|--------------|---------|----------|----------|---------|----------|-------------------|-------------------|-------------------|--------------|---------------------------|----------------------------------|
| RY<br>RY          | RY<br>res)             |               |                          | CL<br>SI                              | AY<br>ZE     | SI     | LT<br>ZE<br>% | TYF    | GRAINS   |         |       | E        | CEN      | CEMENT   |      | l Diagenesis |         | ā ,      | , ,      | 3 >     | ж.       | ACC               | ESSOF             | RIES              | SONS         | 4RY<br>3ES                |                                  |
| DEPTH<br>(metres) | RECOVERY (centimetres) | ROCK TYPE     | COLOUR                   | CLAY<br>MINERALS                      | MICRITE      | QUARTZ | CALCITE       | QUARTZ | SKELĖTAL | CALCITE | RANGE | DOMINANT | TYPE & % | TYPE & % | TYPE | 8            | TEXTURE | ROUNDING | BYII HOU | POROSIT | TYPE & % | TYPE & %          | TYPE & %          | TYPE & %          | HYDROCARBONS | SEDIMENTARY<br>STRUCTURES | SUPPLEMENTARY DATA               |
| 1796.6            | 1.0                    | Sandstone     | off wh/lt.<br>grey       | 10                                    | -            |        | -             | 85     | -        | -       | f.c   | М        | _        | -        |      |              | s       | SA I     | vs       | -s g1   | 15       | Lf 5              | C <sub>O</sub> tr | Hm tr             | -            | -                         | rare garnet/drilling mud invasio |
| 776.6             | 1.0                    | Sandstone     |                          | 10                                    | -            | -      | -             | . 85   | -        | -       | f.c   | м        | -        | -        |      |              | s       | SA I     | s        | g1      | 15       | Ļf 5              | C <sub>O</sub> tr | Hm tr             | -<br>-       | -                         | rare garnet                      |
| 741.1             | 0.5                    | Claystone     | dk grey                  | 70                                    | <del>-</del> | 25     | -             | 5      | -        | -       | vf    | vf       | -        | _        |      |              |         | -   -    | - М      |         | - 1      | Lf tr             | Mc tr             | Hm tr             | -            | -                         | mod. carb. vr garnet             |
| 674.6             | 2.5                    | 11            | dk grey                  | 95                                    | _            | 5      | -             | -      | -        | -       | _     | -        | _        | -        |      |              |         | - -      | . M-     | н -     | -        | Lf tr             | Mc tr             |                   | -            | -                         | tr. carb. det. blocky in part    |
| 649.1             | 1.5                    | 11            | dk grey - dk<br>br, grey | 95                                    | -            | 5      | -             | _      | -        | -       | -     | -        | -        | -        |      |              |         |          | . s-     | М -     | _        | Mc tr             | -                 | -                 | -            | -                         | tr. carb. det. blocky in part    |
| 607.6             | 2.0                    | 11            | dk-vdk grey              | 95                                    | -            | 5      | -             | _      | -        | -       | ~     | -        | -        | _        |      |              |         | - -      | . M-     | Н -     | - 1      | Mc tr             | -                 | L d tr            | -            | -                         | tr. carb. det. blocky in part    |
| 593.6             | 1.5                    | Sandstone     | off wh/lt grey           | 10                                    | -            | 5      | -             | 80     | -        | -       | vf-c  | М        | _        | -        |      |              | s       | SA F     | s        | M g1    | 15 [     | Lf 5              | Hm tr             | -                 | _            | -                         | tr. carb. det. blocky in part    |
| 573.6             | 3.0                    | Claystone     | dk grey - dk<br>br, grey | 90                                    | -            | 10     | -             | -      | -        | -       | _     |          | _        | -        |      |              |         | - -      | . М      | -       | - (      | C <sub>0</sub> tr | Mc tr             | -                 |              | -                         | Carb blocky                      |
| 545.6             | 2.0                    | Sandstone     | off wh/lt grey           | 10                                    | _            | tr     | -             | 85     | -        | -  ,    | vf-c  | М        | -        |          |      |              | s       | A F      | s        | g1      | 10 L     | f 5               | Hm tr             | C <sub>0</sub> tr |              | -                         | tr garnet                        |
| 523.6             | 2.5                    | Claystone     | v dk grey -<br>br. grey  | 100 <sub></sub>                       | _            | _      |               | -      | -        | -       |       | -        |          | -        |      |              |         | - -      | Н        |         | -        | _                 | -                 | -                 | _            | -                         | very carb., fissile              |

# VF Very Fine F Fine M Medium C Course VC Very Course G Granule & larger

**GRAIN SIZE** 

CEMENT

Q Silica Py Pyrite C Calcite

C Calcite
D Dolomite
Sd Siderite

ROUNDING

R Rounded SR Subrounded SA Subangular A Angular SORTING

P Poor M Moderate W Well VW Very Well HARDNESS

U Unconsolidated
VS Very Soft
S Soft
M Moderate

M Moderate H Hard POROSITY

g Intergranular v Vugular I Intraskeletal ACCESSORIES

Py Pyrite Mc Mica

Ch Chert Co Lignite/Coal Hm Heavy minerals

Lf Lithic fragments Gl Glauconite

# SIDEWALL CORE DESCRIPTIONS

| WEL               | _L_                    | McEACHERN N | 0.1                       | <del></del>      |               |                   |         |                   |          |         |            |          |          |          |          |            |           |          | Ε       | TAC      | E : 1                | 0 /               | _1_/     | 1990     |              |                           | PAGE_4_OF_5                                   |
|-------------------|------------------------|-------------|---------------------------|------------------|---------------|-------------------|---------|-------------------|----------|---------|------------|----------|----------|----------|----------|------------|-----------|----------|---------|----------|----------------------|-------------------|----------|----------|--------------|---------------------------|-----------------------------------------------|
|                   | ج۲<br>es)              | ROCK TYPE   |                           | CL<br>SIZ<br>%   | AY<br>ZE<br>á | SILT<br>SIZE<br>% |         | GRAIN<br>TYPE & % |          |         | SIZE       |          |          |          | Dia<br>L | Diagenesis |           |          | 9       | SS       | <b>≿</b> %           | ACC               | ESSOF    | RIES     | BONS         | RES                       |                                               |
| DEPTH<br>(metres) | RECOVERY (centimetres) |             | COLOUR                    | CLAY<br>MINERALS | MICRITE       | QUARTZ            | CALCITE | QUARTZ            | SKELETAL | CALCITE | RANGE      | DOMINANT | TYPE & % | TYPE & % | TYPE     | %          | TEXTURE   | ROUNDING | SORTING | HARDNESS | POROSITY<br>TYPE & % | TYPE & %          | TYPE & % | TYPE & % | HYDROCARBONS | SEDIMENTARY<br>STRUCTURES | SUPPLEMENTARY DATA                            |
| 1504.6            | 3.0                    | Claystone · | dk grey                   | 100              |               | tr                | -       | tr                | -        | -       | <u></u>    | -        | -        | _        |          |            |           | -        | -       | М-Н      |                      | Lf tr             | -        | -        | -            | _                         | blocky, mod carb.                             |
| 1461.6            | 3.0                    | 11          | 11 11                     | 100              | _             | tr                | -       | -                 | -        | -       | _          | -        | -        | -        |          |            |           | -        | -       | М        | -                    | _                 | -        | -        | -            | -                         | blocky, mod carb.                             |
| 1435.1            | 0                      | -           |                           |                  |               |                   |         |                   |          |         |            |          |          |          |          |            |           |          |         |          |                      |                   |          |          |              |                           |                                               |
| 1414.1            | 3.0                    | Claystone   | dk grey                   | 95               | -             | 5                 | -       | -                 | -        | -       | _          | -        | -        | -        |          |            |           | -        | -       | М        | -                    | Mc tr             | -        | -        | _            | -                         | blocky, mod carb.                             |
| 1384.1            | 0                      | -           |                           |                  |               |                   |         |                   |          |         |            |          |          |          |          |            |           |          |         |          |                      |                   |          |          |              |                           |                                               |
| 1364.6            | 2.5                    | Claystone   | med brn                   | 50               | -             | -                 | -       |                   | -        | -       | _          | -        | -        | -        | -        | -          | -         | -        | -       | s        | -                    | -                 | -        | -        | -            | -                         | ) coal is soft-firm ) blocky in part, arg. in |
|                   |                        | Coal        | black-v dk bri            | -                | -             | -                 | -       | -                 |          | -       | -          | -        | -        | -        | -        | -          | -         | -        | 1       | s        | -                    | C <sub>0</sub> 50 | -        | -        | -            | -                         | ) part, rarely sub conch frac                 |
| 1293.6            | 0                      | -           | ·                         |                  |               |                   |         |                   |          |         |            |          |          |          |          |            |           |          |         |          |                      |                   |          |          |              |                           |                                               |
| 1289.5            | 3.0                    | Claystone   | med-dk grey               | 100              | -             | tr                | -       | -                 | -        | -       | _          | -        | -        | -        | -        | -          | -         | -        | -       | М        | -                    | Mc tr             | -        | -        | -            | -                         | tr cab, blocky in part                        |
| 1174.5            | 3.5                    | Claystone   | med gry, med<br>green gry | 100              |               | tr                | _       | _                 | -        | -       | _          | -        | -        | -        | -        | -          | -         |          | -       | М        | -                    | Mc tr             | _        | -        | -            | -                         | n 11 11 11 11                                 |
|                   |                        |             |                           |                  |               |                   | ليحسب   |                   | •        |         | ·········· |          |          | ABBRI    | EVIA     | 1OIT       | <u>18</u> |          |         |          | <del>*</del>         |                   |          |          |              |                           |                                               |

VF Very Fine F Fine M Medium C Course VC Very Course G Granule & larger

GRAIN SIZE

CEMENT Q Silica

Py Pyrite C Calcite D Dolomite Sd Siderite

POUNDING

R Rounded SR Subrounded SA Subangular A Angular

SORTING

P Poor M Moderate W Well VW Very Well **HARDNESS** 

H Hard

U Unconsolidated VS Very Soft s soft M Moderate

POROSITY

g Intergranular v Vugular i Intraskeletal

ACCESSORIES

Py Pyrite Mc Mica

Ch Chert Co Lignite/Coal Hm Heavy minerals

Lf Lithic fragments GI Glauconite

# SIDEWALL CORE DESCRIPTIONS

| WEI                         | _L                        | McEACHERN NO.             | !                                       | ······································ | ······································ |            |         |        |          |         |       |          |          |          |      |                      |              |          | Ι       | TAC      | E:                   | 10                | 1            | 1990                |              |                           | PAGE 5 OF 5                            |
|-----------------------------|---------------------------|---------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|------------|---------|--------|----------|---------|-------|----------|----------|----------|------|----------------------|--------------|----------|---------|----------|----------------------|-------------------|--------------|---------------------|--------------|---------------------------|----------------------------------------|
|                             | RY<br>res)                |                           |                                         | CL<br>SI                               | ZE                                     | SIL<br>SIZ | E       | GRAIN  |          |         | SIZE  | E        | CEM      | ENT      | Dia: | l<br>Diagenesis<br>I |              | 2        | G       | SS       | ≥%                   | AC                | CESSORIES    |                     | SNOE         | ARY<br>RES                | C C C C C C C C C C C C C C C C C C C  |
| DEPTH<br>(metres)           | RECOVERY<br>(centimetres) | ROCK TYPE                 | COLOUR                                  | CLAY<br>MINERALS                       | MICRITE                                | QUARTZ     | CALCITE | QUARTZ | SKELETAL | CALCITE | HANGE | DOMINANT | TYPE & % | TYPE & % | TYPE | %                    | TEXTURE      | ROUNDING | SORTING | HARDNESS | POROSITY<br>TYPE & % | TYPE & %          | TYPE & %     | TYPE & %            | HYDROCARBONS | SEDIMENTARY<br>STRUCTURES | SUPPLEMENTARY DATA                     |
| 1146.6                      | 3.5                       | Claystone/<br>Carb Chyst. | dk grey/dk<br>brn grey                  | 90                                     | -                                      | tr         | -       | -      | -        |         | -     | -        | -        | _        |      |                      |              | -        | -       | s:-M     | -                    | C <sub>0</sub> 10 | -            | -                   | -            | -                         | blocky-sub fis. dom carb clay          |
| 1113.6                      | 2.0                       | Siltst/Sst                | med grey/med<br>green fewy              | 20                                     | -                                      | 65         | -       | 15     | -        | - ví    | ſ     | vf       | -        | _        |      |                      |              | SR       | W       | S        | g tr                 | Lf t              | r Mc tr      | -                   | <u>-</u>     | -                         | Siltstone inter lam with Sst.          |
| 1048.6                      | 1.5                       | Siltst/Sst                | f-med green<br>grey                     | 5                                      |                                        | 55         | -       | 35     | -        | - ví    |       | vf       | -        | -        |      |                      |              | SR       | W       | s        | g tr                 | Lf t              | r Mc tr      | -                   | -            | _                         |                                        |
| 905.6                       | 1.5                       | Claystone                 | med grey/med<br>green grey              | 95                                     | _                                      | 5          | -       | -      | -        | -   -   | -     | -        | -        | -        |      |                      |              | -        | -       | S-M      | -                    | Lf t              | r Mc tr      | -                   | _            | -                         | blocky in part, med carb.              |
| 793.1                       | 2.0                       | Sandstone                 | med grey/<br>speckled med<br>green grey | tr                                     | -                                      | 10         | -       | 85     | -        | - ví    |       | vf       | -        | -        |      |                      |              | SR       | vw      | s        | g tr                 | Lf t              | r Mc tr      | C <sub>o</sub>      | -            | -                         | Lithics dom Volcanogenic               |
| <sup>.</sup> 699 <b>.</b> 6 | 2.5                       | ti                        | med green gre                           | tr                                     |                                        | 10         | -       | 85     | -        | tr ví   | 7     | vf       | -        | -        |      |                      |              | SR       | vw      | s        | g tr                 | Lf t              | r Mc tr      | C <sub>O</sub> rare | -            | -                         | п п                                    |
| 594.6                       | 2.0                       | Claystone                 | med green<br>med grey                   | 95                                     | tr                                     | 5          | -       | -      | -        |         | -     | -        | -        | _        |      |                      |              | -        | -       | S-M      | -                    | Lf t              | r Mc tr      | -                   | -            | -                         | disp in part, blocky in part mod carb. |
| 504.6                       | 3.2                       | 11                        | med grey                                | 95                                     | -                                      | 5          | -       | -      | -        | -       | -     | -        | -        | -        |      |                      |              | -        | -       | vs-ș     | -                    | Lf t              | r Mc<br>rare | -                   | _            | -                         | disp in part, mod carb.                |
| 402.6                       | 3.2                       | Sandstone                 | Lt-med green<br>grey                    | 5                                      | -                                      | 10         | -       | 80     | -        | - vf    | r-f   | vſ       | -        | _        |      |                      |              | SR       | N       | s        | g tr                 | Lf 5              | Mc tr        | -                   | _            | -                         | Lithics dom Volcanogenic mod carb.     |
|                             |                           |                           |                                         |                                        |                                        |            |         |        |          |         |       |          |          |          |      |                      |              |          |         |          |                      |                   |              |                     |              |                           |                                        |
|                             |                           |                           |                                         |                                        |                                        | 4l.        |         |        |          |         |       |          | <u>A</u> | BBRE     | VIAT | NOF                  | <br><u>S</u> |          |         |          | <u> </u>             | L                 |              | 1                   |              | I                         | <u> </u>                               |
| GRAIN                       | SIZE                      |                           | CEMENT                                  |                                        |                                        |            |         | RC     | NONDI    | 4G      |       |          |          | SORT     | ING  |                      | -            |          |         |          | HARE                 | NESS              |              |                     | PO           | ROSITY                    | ACCESSORIES                            |

VF Very Fine F Fine M Medium C Course VC Very Course G Granule & larger CEMENT Q Silica Py Pyrite

C Calcite D Dolomite Sd Siderite

R Rounded SR Subrounded SA Subangular A Angular

P Poor M Moderate W Well VW Very Well

H Hard

U Unconsolidated VS Very Soft S Soft M Moderate

g intergranular v Vugular i Intraskeletal

Py Pyrite

Mc Mica Ch Chert Co Lignite/Coal Hm Heavy minerals Lf Lithic fragments

GI Glauconite

6. VELOCITY
SURVEY

# **Velocity Data**



WELL VELOCITY SURVEY

McEACHERN #1

PEP 119

VICTORIA

for

# GAS & FUEL EXPLORATION N/L

recorded by

VELOCITY DATA PTY LITD

processed by



**Integrated Seismic Technologies** 

Brisbane, Australia

April 12, 1990

# CONTENTS

| SUMMARY                                    | • • •              | • • •                      | 1                   |
|--------------------------------------------|--------------------|----------------------------|---------------------|
| GENERAL INFORMATION                        | • • •              | • • •                      | 1                   |
| EQUIPMENT                                  | • • •              | • • •                      | 2                   |
| RECORDING                                  | • • •              | • • •                      | 3                   |
| PROCESSING                                 |                    |                            |                     |
| Elevation Data                             | • • •              | • • •                      | 3                   |
| Recorded Data                              | • • •              | • • •                      | 4                   |
| Correction for Inst<br>Delay and Shot Offs |                    | • • •                      | 4                   |
| Correction to Datum                        | • • •              | • • •                      | 4                   |
| Calibration of Soni                        | c Log              |                            |                     |
| Method                                     | • • •              | • • •                      | 5                   |
| Results                                    | • • •              | • • •                      | 5                   |
| Trace Playouts                             | • • •              | •••                        | 6                   |
| Tie to Seismic Sect                        | ion                | • • •                      | 6                   |
| FIGURES                                    |                    |                            |                     |
| Figure 1                                   | Well lo            | ocation map                |                     |
| Figure 2                                   | Shot lo            | ocation ske                | tch                 |
| Figure 3                                   | Time-de            | epth and ve                | locity curves       |
| Figure 4                                   | Trace p            | olayouts                   |                     |
| Figure 5                                   | Time-de            | epth points                | and seismic section |
| Tables                                     |                    |                            |                     |
| Table 1                                    | Time-de            | pth values                 |                     |
| Enclosures 1.                              | Calcula            | ntion Sheet                | S                   |
| 2.                                         | Trace I<br>First A | Display and<br>Arrival Plo | ts                  |





# MCEACHERN #1

GAS AND FUEL EXPLORATION SHOT POINT LOCATION SKETCH



Figure 2

#### SUMMARY

Velocity Data Pty Ltd conducted a velocity survey for Gas and Fuel Exploration N/L in the McEachern No.1 well PEP 119, Victoria , Australia. The survey was carried out on the 9th January 1990.

The results of the survey, which are considered to be reliable, have been used to calibrate the sonic log. The calibrated logs were used to produce synthetic seismograms these are covered in a separate report.

Explosives were used as an energy source with shots being fired in the mud pit.

#### GENERAL INFORMATION

Name of Well : McEachern #1

Location (Figure 1) : PEP 119

Coordinates : Latitude 037 33' 51"

: Longitude 141 11' 26"

Date of Survey : 9th January 1990.

Wireline Logging : Gearhart

Weather : Fine

Operational Base : Brisbane

Operator : N. Delfos

Shooter : J. Brown

Client Representative : Mr A. Tabassi

## **EQUIPMENT**

## Downhole Tool

Veldata Camlock 100 (90 mm) - three conductor model

#### Sensors:

6 HSI 4.5 Hz 215 ohm, high temperature (300 degrees F) detectors connected in series parallel. Frequency response 8-300 Hz within 3 dB.

## Preamplifier:

48 dB fixed gain. Frequency response 5-200 Hz within 3 dB.

# Reference Geophone

Mark Products L1 4.5 Hz

## Recording Instrument

VDLS 11/10 software controlled digital recording system utilizing SIE OPA-10 floating point amplifiers for digital recording and SIE OPA-4 amplifiers for analog presentation. The system includes a DEC LSI-11 CPU, twin cassette tape unit and printer.

#### RECORDING

Energy Source : Explosive, AN-60

Shot Location : Mud pit

Charge Size : 0.5 to 2.0 (125 grm) sticks

Average Shot Depth : 2.0 metres

Average Shot Offset : 30.0 metres

Recording Geometry : Figure 2

Shots were recorded on digital cassette tape. Printouts of the shots used are included with this report. (Enclosure 2)

The sample rate was 1 ms with 0.5 ms sampling over a 200 ms window encompassing the first arrivals. The scale of the graphic display varies with signal strength and is noted on each playout.

The times were picked from the printouts using the numerical value of the signal strength. (Enclosure 2)

#### **PROCESSING**

#### Elevation Data

Elevation of KB : 81.7 metres above sea level

Elevation of Ground : 76.4 metres above sea level

Elevation of Seismic Datum : 0.0 metres above sea level

Depth Surveyed : 2372.0 metres below KB

Total Depth : 2384.0 metres below KB

Depth of Casing : 354.0 metres below KB

Sonic Log Interval : 354.4 to 2377.5 metres below KB

#### **PROCESSING**

#### Recorded Data

Number of Shots Used : 32

Number of Levels Recorded : (23)

Data Quality : Good

Noise Level : Low

Rejected Shots : 6

# Correction for Instrument Delay and Shot Offset

The 'corrected' times shown on the calculation sheet have been obtained via:

- (i) Subtraction of the instrument delay (4msec) from the recorded arrival times
- (ii) geometric correction for non-verticality of ray paths resulting from shot offset.
- (iii) shot static correction to correct for the depth of shot below ground level at the well head using a correction velocity of 760.0m/sec
  - (iv) readdition of the instrument delay (4msec).

#### Correction to Datum

A datum of 0.0 metres ASL has been specified and this level was shot four times during the survey. The average corrected value was calculated to be 51.1msecs. This is the effective datum correction.

#### **PROCESSING**

## Calibration of Sonic Log - Method

The sonic log was modified by deleting values that lay within the casing.

Sonic times were adjusted to checkshot times using a linear correction of the sonic transit times.

These differences arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

# Calibration of Sonic Log - Results (Enclosure 1)

The discrepancies between shot and sonic interval velocities were generally small. The largest adjustment was 55.34  $\mu$ s/m on the interval 447.0 to 550.0 metres below KB.

In aggregate, the shot and sonic interval times differed by 19.1 msec over the logged portion of the well.

#### **PROCESSING**

# Trace Playouts (Figure 4)

Figure 4A is a plot of all traces used. No filter or gain recovery has been applied.

Figure 4B is a plot to scale in depth and time of selected traces. No filter or gain recovery has been applied.

Figure 4C is a plot to scale in depth and time of selected traces with a  $5~\mathrm{Hz}$  -  $40~\mathrm{Hz}$  filter and a gain recovery function of  $t^2$  applied.

Figures 4D is a plot of selected surface traces. No filter or gain recovery has been applied.

Tie to Seismic Section ( Figure 5 )

A tie was effected between the seismic section and the well velocity data using a two way time correction of 8 msecs. This adjustment arises due to differences in well velocity and seismic datum corrections.

Sotitoro

Per Geoffrey Bell Geophysical Analyst.

This is an enclosure indicator page.

The enclosure PE906721 is enclosed within the container PE902115 at this location in this document.

The enclosure PE906721 has the following characteristics:

ITEM\_BARCODE = PE906721
CONTAINER\_BARCODE = PE902115

NAME = Time-Depth and Velocity Curves

BASIN = OTWAY
PERMIT = PEP119
TYPE = WELL

SUBTYPE = VELOCITY\_CHART

DESCRIPTION = Time-Depth and Velocity Curves,

McEarchern-1

REMARKS =

DATE\_CREATED = 9/01/90 DATE\_RECEIVED = 27/01/90

 $W_NO = W1017$ 

WELL\_NAME = McEARCHERN-1
CONTRACTOR = VELSEIS PTY LTD
CLIENT\_OP\_CO = GFE RESOURCES LTD







VELOCITY SURVEY TRACE DISPLAY Filter OUT-OUT No gain recovery



Figure 4B





# Time-Depth curve values

Page 1.

Well: MCEACHERN #1

Client : GAS AND FUEL EXPLORATION

Survey units : METRES

Datum: 0.0

| <b>5</b> | <b>O</b> | و معروق و     | 00171 | p==     | <b>5 .</b> | <b></b>  | , ,,,,,, |                  | 7 F.C         |
|----------|----------|---------------|-------|---------|------------|----------|----------|------------------|---------------|
| Datum    | One-way  | VEI           |       |         | Datum      | One-way  |          |                  | IES           |
| Depth    | time(ms) | Average       | RMS I | nterval | Depth      | time(ms) | Average  | RMS :            | Interval      |
| 5.0      | 2.7      | 1868          | 1868  | 1868    | 205.0      | 104.8    | 1956     | 1956             | 1961          |
| 10.0     | 5.3      | 1890          | 1890  | 1913    | 210.0      | 107.4    | 1956     | 1956             | 1961          |
| 15.0     | 7.9      | 1905          | 1905  | 1936    | 215.0      | 109.9    | 1956     | 1956             | 1961          |
| 20.0     | 10.4     | 1916          | 1916  | 1948    | 220.0      | 112.5    | 1956     | 1956             | 1961          |
| 25.0     | 13.0     | 1923          | 1924  | 1954    | 225.0      | 115.0    | 1956     | 1956             | 1961          |
|          |          |               |       |         |            |          |          |                  |               |
| 30.0     | 15.6     | 1929          | 1929  | 1958    | 230.0      | 117.6    | 1956     | 1956             | 1961          |
| -35.0    | 18.1     | 1 <b>93</b> 3 | 1933  | 1959    | 235.0      | 120.1    | 1956     | 1957             | 1961          |
| 40.0     | 20.7     | 1937          | 1937  | 1960    | 240.0      | 122.7    | 1957     | 1957             | 1961          |
| 45.0     | 23.2     | 1939          | 1939  | 1960    | 245.0      | 125.2    | 1957     | 1957             | 1962          |
| 50.0     | 25.8     | 1941          | 1941  | 1960    | 250.0      | 127.8    | 1957     | 1957             | 1963          |
| 55.0     | 28.3     | 1943          | 1943  | 1961    | 255.0      | 130.3    | 1957     | 1957             | 1966          |
| 60.0     | 30.9     | 1944          | 1945  | 1961    | 260.0      | 132.8    | 1957     | 1957             | 1972          |
|          |          | 1946          | 1946  |         |            |          |          |                  |               |
| 65.0     | 33.4     | 1940          |       | 1961    | 265.0      | 135.4    | 1958     | 1958             | 1983          |
| 70.0     | 36.0     |               | 1947  | 1961    | 270.0      | 137.9    | 1959     | 1959             | 2005          |
| 75.0     | 38.5     | 1948          | 1948  | 1961    | 275.0      | 139.8    | 1968     | 1960             | 2042          |
| 80.0     | 41.1     | 1948          | 1949  | 1961    | 280.0      | 142.3    | 1968     | 1960             | 1974          |
| 85.0     | 43.6     | 1949          | 1949  | 1961    | 285.0      | 144.8    | 1968     | 1961             | 2001          |
| 90.0     | 46.2     | 1950          | 1950  | 1961    | 290.0      | 147.2    | 1970     | 1963             | 2063          |
| 95.0     | 48.7     | 1950          | 1951  | 1961    | 295.0      | 149.6    | 1972     | 1965             |               |
| 100.0    | 51.3     | 1951          | 1951  | 1961    | 300.0      | 151.9    | 1974     | 1967             | 2141          |
|          |          |               |       |         |            |          |          |                  |               |
| 105.0    | 53.8     | 1951          | 1951  | 1961    | 305.0      | 154.0    | 1980     | 1974             | 2427          |
| 110.0    | 56.4     | 1952          | 1952  | 1961    | 310.0      | 156.0    | 1987     | 1982             | 2527          |
| 715.0    | 58.9     | 1952          | 1952  | 1961    | 315.0      | 158.0    | 1994     | 1989             | 2477          |
| .20.0    | 61.5     | 1953          | 1953  | 1961    | 320.0      | 160.1    | 1999     | 1996             | 2428          |
| 125.0    | 64.0     | 1953          | 1953  | 1961    | 325.0      | 162.2    | 2004     | 2000             | 2341          |
| 130.0    | 66.6     | 1953          | 1953  | 1961    | 330.0      | 164.2    | 2009     | 2007             | 2452          |
| 135.0    | 69.1     | 1953          | 1954  | 1961    | 335.0      | 166.2    | 2016     | 2014             | 2568          |
| 140.0    | 71.7     | 1954          | 1954  | 1961    | 340.0      | 168.1    | 2023     | 2023             | 2668          |
| 145.0    | 74.2     | 1954          | 1954  | 1961    | 345.0      | 170.1    | 2029     | 2029             |               |
| 150.0    | 76.8     | 1954          | 1754  | 1961    | 350.0      | 172.0    | 2035     | 2035             | 2542          |
| 10010    | ,0.0     | 1,04          | 1,04  | 1701    | 330.0      | 172.0    | 2000     | 2000             | An to The Air |
| 155.0    | 79.3     | 1954          | 1954  | 1961    | 355.0      | 174.1    | 2040     | 2041             | 2470          |
| 160.0    | 81.7     | 1955          | 1955  | 1961    | 360.0      | 176.1    | 2045     | 2047             | 2482          |
| 165.0    | 84.4     | 1955          | 1955  | 1961    | 365.0      | 178.2    | 2048     | 2050             | 2334          |
| 170.0    | 87.0     | 1955          | 1955  | 1961    | 370.0      | 180.7    | 2048     | 2050             | 2045          |
| 175.0    | 89.5     | 1955          | 1955  | 1961    | 375.0      | 183.2    | 2047     | 2049             |               |
| 180.0    | 92.1     | 1955          | 1955  | 1961    | 380.0      | 185.7    | 2047     | 2049             | 2030          |
| 185.0    | 94.6     | 1955          | 1955  | 1961    | 385.0      | 188.1    | 2047     | 2049             |               |
| 190.0    | 97.2     | 1955          | 1956  | 1961    | 390.0      | 190.6    | 2046     | 2048             | 2013          |
| 795.0    | 99.7     | 1956          | 1956  | 1961    | 395.0      | 193.0    | 2047     | 2049             |               |
| _00.0    | 102.3    | 1956          | 1956  | 1961    | 400.0      | 195.4    | 2047     | 2050             | 2124          |
| 2000     |          | 2700          | *     | a rada  |            | .,.,.    |          | AND THE PART THE | and the same  |

Well: MCEACHERN #1

Client : GAS AND FUEL EXPLORATION Datum : 0.0

Survey units : METRES Datum :

| Datum | One-way  | VE      | LOCITIE | S                  | Datum | One-way  | VEI  | _ociti | ES                  |
|-------|----------|---------|---------|--------------------|-------|----------|------|--------|---------------------|
| Depth | time(ms) | Average | RMS In  | terval             | Depth | time(ms) |      |        |                     |
|       |          |         |         |                    |       |          | -    |        |                     |
| 405.0 | 197.7    | 2048    | 2050    | 2112               | 605.0 | 280.9    | 2154 | 2165   | 2379                |
| 410.0 | 200.1    | 2049    | 2051    | 2082               | 610.0 | 283.1    | 2155 | 2166   | 2286                |
| 415.0 | 202.6    | 2049    | 2051    | 2054               | 615.0 | 285.3    | 2155 | 2166   | 2261                |
| 420.0 | 204.9    | 2049    | 2051    | 2101               | 620.0 | 287.5    | 2157 | 2168   | 2331                |
| 425.0 | 207.3    | 2050    | 2052    | 2147               | 625.0 | 289.6    | 2158 | 2169   | 2312                |
| 470 A | 200 /    | 0051    | ~~==    | 0.4.07             |       |          |      |        |                     |
| 430.0 | 209.6    | 2051    | 2053    | 2123               | 630.0 | 291.8    | 2159 | 2170   | 2332                |
| 35.0  | 212.0    | 2052    | 2054    | 2133               | 635.0 | 293.9    | 2161 | 2172   | 2365                |
| 440.0 | 214.4    | 2052    | 2054    | 2079               | 640.0 | 296.0    | 2162 | 2173   | 2407                |
| 445.0 | 216.8    | 2053    | 2055    | 2098               | 645.0 | 298.1    | 2164 | 2175   | 2377                |
| 450.0 | 219.1    | 2054    | 2056    | 2145               | 650.0 | 300.2    | 2165 | 2176   | 2400                |
| 455.0 | 221.5    | 2054    | 2056    | 2097               | 655.0 | 302.2    | 2168 | 2179   | 2480                |
| 460.0 | 223.9    | 2055    | 2057    | 2097               | 660.0 | 304.2    | 2170 | 2181   | 2500                |
| 465.0 | 226.2    | 2055    | 2057    | 2114               | 665.0 | 306.1    | 2172 | 2183   | 2546                |
| 470.0 | 228.5    | 2057    | 2059    | 2234               | 670.0 | 308.1    | 2175 | 2186   | 2572                |
| 475.0 | 230.4    | 2061    | 2064    | 2541               | 675.0 | 310.1    | 2177 | 2188   | 2470                |
|       |          |         |         | ~ ~ <del>~</del> * | 0,010 | 510,1    | 21// | 2100   | 2470                |
| 480.0 | 232.4    | 2065    | 2068    | 2521               | 680.0 | 312.2    | 2178 | 2189   | 2370                |
| 485.0 | 234.4    | 2069    | 2072    | 2524               | 685.0 | 314.2    | 2180 | 2192   | 2560                |
| 490.0 | 236.4    | 2073    | 2076    | 2518               | 690.0 | 316.0    | 2183 | 2195   | 2685                |
| 495.0 | 238.3    | 2077    | 2081    | 2564               | 695.0 | 317.8    | 2187 | 2199   | 2823                |
| 500.0 | 240.3    | 2081    | 5086    | 2596               | 700.0 | 319.8    | 2189 | 2201   | 2494                |
| 505.0 | 242.2    | 2005    | 2000    | 0E07               | 705 0 | *****    |      |        |                     |
| 510.0 | 244.1    | 2085    | 2090    | 2583               | 705.0 | 321.9    | 2190 | 2203   | 2449                |
| 310.0 |          | 2087    | 2095    | 2619               | 710.0 | 323.9    | 2192 | 2205   | 2485                |
| 15.0  | 246.0    | 2094    | 2100    | 2661               | 715.0 | 325.9    | 2194 | 2206   | 2485                |
| 520.0 | 247.9    | 2098    | 2104    | 2643               | 720.0 | 327.9    | 2196 | 2208   | 2481                |
| 525.0 | 249.8    | 2102    | 2109    | 2627               | 725.0 | 329.9    | 2198 | 2210   | 2536                |
| 530.0 | 251.8    | 2105    | 2112    | 2465               | 730.0 | 331.7    | 2201 | 2213   | 2665                |
| 535.0 | 253.8    | 2108    | 2115    | 2514               | 735.0 | 333.7    | 2202 | 2215   | 2519                |
| 540.0 | 255.7    | 2112    | 2120    | 2627               | 740.0 | 335.7    | 2204 | 2217   | 2539                |
| 545.0 | 257.6    | 2116    | 2124    | 2631               | 745.0 | 337.7    | 2206 | 2219   | 2532                |
| 550.0 | 259.5    | 2119    | 2128    | 2627               | 750.0 | 339.6    | 2208 | 2221   | 2532                |
|       |          |         |         |                    |       |          |      |        | aller for "ar" day. |
| 555.0 | 261.4    | 2123    | 2132    | 2651               | 755.0 | 341.6    | 2210 | 2223   | 2586                |
| 560.0 | 263.2    | 2128    | 2137    | 2751               | 760.0 | 343.5    | 2212 | 2225   | 2570                |
| 565.0 | 265.1    | 2131    | 2141    | 2672               | 765.0 | 345.6    | 2214 | 2227   | 2419                |
| 570.0 | 266.9    | 2135    | 2146    | 2696               | 770.0 | 347.5    | 2216 | 2229   | 2656                |
| 575.0 | 268.8    | 2139    | 2149    | 2609               | 775.0 | 349.2    | 2219 | 2233   | 2845                |
| 580.0 | 270 7    | 21.62   | 2157    | 944 <b>5</b>       | 700 0 | -        | 0001 |        |                     |
| 585.0 | 270.7    | 2142    | 2153    | 2665               | 780.0 | 351.2    | 2221 | 2235   | 2549                |
|       | 272.7    | 2145    | 2156    | 2538               | 785.0 | 353.2    | 2223 | 2236   | 2526                |
| 590.0 | 274.7    | 2148    | 2159    | 2473               | 790.0 | 355.2    | 2224 | 2238   | 2519                |
| 75.0  | 276.7    | 2150    | 2161    | 2481               | 795.0 | 357.1    | 2226 | 2240   | 2545                |
| 0.00  | 278.8    | 2152    | 2163    | 2379               | 800.0 | 359.1    | 2228 | 2242   | 2537                |

TABLE 1.

# Time-Depth curve values

Page 3.

Well: MCEACHERN #1 Client: GAS AND FUEL EXPLORATION Survey units: METRES Datum: 0.0

| / (C) I A 1    | ordiced so         | III. Landa and the Committee of the Comm | 1 467 | A # 1 # 7 # 7 # 7 # 7 | useu iio     | 11 12/01/5          |                |                              |                |
|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|--------------|---------------------|----------------|------------------------------|----------------|
| Datum          | One-way            | VEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | acit  | IES                   | Datum        | One-way             | VEL            | _OCIT                        | IES            |
| Depth          | time(ms)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                       | Depth        | time(ms)            |                |                              | Interval       |
| Duprer.        |                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                       |              |                     |                |                              |                |
| 9 <b>05.</b> 0 | 361.1              | 2229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2243  | 2480                  | 1005.0       | 435.8               | 2306           | 2324                         | 2703           |
| 810.0          | 363.1              | 2231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2244  | 2508                  | 1010.0       | 437.6               | 2308           | 2326                         | 2788           |
| 815.0          | 365.0              | 2233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2246  | 2598                  | 1015.0       | 439.4               | 2310           | 2328                         | 2826           |
| 820.0          | 366.9              | 2235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2249  | 2721                  | 1020.0       | 441.1               | 2312           | 2331                         | 2810           |
| 3 <b>25.</b> 0 | 368.8              | 2237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2251  | 2518                  | 1025.0       | 442.8               | 2315           | 2333                         | 2983           |
|                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                       |              |                     |                |                              |                |
| 830.0          | 370.7              | 2239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2253  | 2634                  | 1030.0       | 444.5               | 2317           | 2336                         | 2962           |
| 35.0           | 372.6              | 2241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2255  | 2738                  | 1035.0       | 446.3               | 2319           | 2338                         | 2752           |
| ~540.0         | 374.5              | 2243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2257  | 2618                  | 1040.0       | 448.1               | 2321           | 2340                         | 2856           |
| 845.0          | 376.4              | 2245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2259  | 2643                  | 1045.0       | 449.8               | 2323           | 2343                         |                |
| 8 <b>50.0</b>  | 378.2              | 2247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2262  | 2668                  | 1050.0       | 451.5               | 2325           | 2345                         | 2874           |
|                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                       |              |                     |                |                              |                |
| 355.0          | 380.0              | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2264  |                       | 1055.0       | 453.3               | 2327           | 2347                         |                |
| 860.0          | 381.9              | 2252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2266  |                       | 1060.0       | 455.1               | 2329           | 2349                         |                |
| 3 <b>65.</b> 0 | 383.9              | 2253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2268  |                       | 1065.0       | 456.7               | 2332           | 23 <b>5</b> 2                |                |
| 370.0          | 385.9              | 2254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2269  |                       | 1070.0       | 458.4               | 2334           | 2355                         |                |
| 875.0          | 387.8              | 2256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2271  | 2609                  | 1075.0       | 460.0               | 2337           | 23 <b>5</b> 7                | 3005           |
|                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                       |              |                     |                |                              |                |
| 8 <b>80.</b> 0 | 389.8              | 2258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2272  |                       | 1080.0       | 461.6               | 2339           | 2360                         |                |
| 885.0          | 391.7              | 2259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2274  |                       | 1085.0       | 463.3               | 2342           | 2363                         |                |
| 890.0          | 393.6              | 2261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2276  |                       | 1090.0       | 465.1               | 2344           | 2365                         |                |
| 895.0          | 395.6              | 2262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2277  |                       | 1095.0       | 466.9               | 2345           | 2366                         |                |
| 900.0          | 397.6              | 2264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2278  | 2483                  | 1100.0       | 468.7               | 2347           | 2368                         | 271 i          |
|                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                       |              | and Combined Street | and the second | manage e pro-                | ير روسونس      |
| 905.0          | 399.6              | 2265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2280  |                       | 1105.0       | 470.6               | 2348           | 2369                         |                |
| 910.0          | 401.4              | 2267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2282  |                       | 1110.0       | 472.3               | 2350           | 2372                         |                |
| 15.0           | 403.3              | 2269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2284  |                       | 1115.0       | 473.9               | 2 <b>35</b> 3  | 2374                         |                |
| 720.0          | 405.1              | 2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2287  |                       | 1120.0       | 475.6               | 2355           | 2377                         |                |
| 925.0          | 406.6              | 2275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2291  | 3267                  | 1125.0       | 477.4               | 2357           | 2379                         | 2740           |
| رون رون موسوم  | 800 8              | programmy may may                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~   |                       | 4470 0       | 470 4               | 2750           | <u>ግፖርነ</u>                  | 2020           |
| 930.0          | 408.4              | 2277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2293  |                       | 1130.0       | 479.1               | 2359           | 2381                         |                |
| 935.0          | 410.4              | 2278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2295  |                       | 1135.0       | 480.9               | 2360           | 2382                         |                |
| 940.0          | 412.2              | 2280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2297  |                       | 1140.0       | 482.7               | 2362           | 2384                         |                |
| 945.0          | 414.2              | 2282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2298  |                       | 1145.0       | 484.4               | 2364           | 23 <b>86</b><br>23 <b>87</b> |                |
| 950.0          | 416.0              | 2284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2300  | 2695                  | 1150.0       | 486.3               | 2365           | 2007                         | 20/2           |
| 955.0          | 417.9              | 2285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2302  | <b>267</b> 3          | 1155.0       | 488.1               | 2367           | 2389                         | 2847           |
| 960.0          | 419.7              | 2287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2304  |                       | 1160.0       | 489.9               | 2368           | 2390                         |                |
| 965.0          | 421.5              | 2289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2304  |                       | 1165.0       | 491.7               | 2369           | 2392                         |                |
| 970.0          | 423.4              | 2291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2308  |                       | 1170.0       | 493.5               | 2371           | 2393                         |                |
| 975.0          | 425.1              | 2294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2310  |                       | 1175.0       | 495.2               | 2373           | 2395                         |                |
| ,, U           | Market all all all | 4474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2010  | ت این اسانید          | E E F W # CF | ~ / W = &           | and the second | المام الروابيو               | - And the test |
| 980.0          | 426.8              | 2296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2313  | 2973                  | 1180.0       | 497.0               | 2374           | 2397                         | 2823           |
| 9 <b>85.</b> 0 | 428.4              | 2299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2317  |                       | 1185.0       | 498.7               | 2376           | 2399                         |                |
| 990.0          | 430.2              | 2301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2319  |                       | 1190.0       | 500.4               | 2378           | 2401                         |                |
| 75.0           | 432.1              | 2303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2321  |                       | 1195.0       | 502.1               | 2380           | 2403                         |                |
| 1000.0         | 433.9              | 2304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2322  |                       | 1200.0       | 503.7               | 2382           | 2405                         |                |
|                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | - <del>-</del>        | ·            |                     |                |                              |                |

Well : MCEACHERN #1 Survey units : METRES Client : GAS AND FUEL EXPLORATION

Gurvey units : METRES Datum : 0.0

| 1210.0     506.5     2389     2414     3886     1410.0     572.0     2465     2497     34       1215.0     508.0     2392     2417     3137     1415.0     573.3     2468     2500     36       1220.0     509.7     2393     2419     2958     1420.0     574.9     2470     2503     32       1225.0     511.6     2395     2420     2721     1425.0     576.5     2472     2505     31       1230.0     513.4     2396     2421     2790     1430.0     578.0     2474     2507     33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3412<br>3429<br>3683<br>3290<br>3104<br>3304<br>3417<br>3384<br>3358<br>3252<br>3474<br>3918 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 1210.0     506.5     2389     2414     3886     1410.0     572.0     2465     2497     34       1215.0     508.0     2392     2417     3137     1415.0     573.3     2468     2500     36       1220.0     509.7     2393     2419     2958     1420.0     574.9     2470     2503     32       1225.0     511.6     2395     2420     2721     1425.0     576.5     2472     2505     31       1230.0     513.4     2396     2421     2790     1430.0     578.0     2474     2507     33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3429<br>3683<br>3290<br>3104<br>3304<br>3417<br>3384<br>3358<br>3252<br>3474<br>3918         |
| 1210.0     506.5     2389     2414     3886     1410.0     572.0     2465     2497     34       1215.0     508.0     2392     2417     3137     1415.0     573.3     2468     2500     36       1220.0     509.7     2393     2419     2958     1420.0     574.9     2470     2503     32       1225.0     511.6     2395     2420     2721     1425.0     576.5     2472     2505     31       1230.0     513.4     2396     2421     2790     1430.0     578.0     2474     2507     33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3429<br>3683<br>3290<br>3104<br>3304<br>3417<br>3384<br>3358<br>3252<br>3474<br>3918         |
| 1215.0     508.0     2392     2417     3137     1415.0     573.3     2468     2500     36       1220.0     509.7     2393     2419     2958     1420.0     574.9     2470     2503     32       1225.0     511.6     2395     2420     2721     1425.0     576.5     2472     2505     31       1230.0     513.4     2396     2421     2790     1430.0     578.0     2474     2507     33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3683<br>3290<br>3104<br>3304<br>3417<br>3384<br>3358<br>3252<br>3474<br>3918                 |
| 1220.0     509.7     2393     2419     2958     1420.0     574.9     2470     2503     32       1225.0     511.6     2395     2420     2721     1425.0     576.5     2472     2505     31       1230.0     513.4     2396     2421     2790     1430.0     578.0     2474     2507     33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3290<br>3104<br>3304<br>3417<br>3384<br>3358<br>3252<br>3474<br>3918                         |
| 1225.0 511.6 2395 2420 2721 1425.0 576.5 2472 2505 31<br>1230.0 513.4 2396 2421 2790 1430.0 578.0 2474 2507 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3104<br>3304<br>3417<br>3384<br>3358<br>3252<br>3474<br>3918                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3417<br>3384<br>3358<br>3252<br>3474<br>3918                                                 |
| ▼₹5 ∩ 515 0 0₹97 0700 0770 +775 ∧ 570 A 0477 074 ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3384<br>3358<br>3252<br>3474<br>3918                                                         |
| <b>√</b> 35.0 515.2 2397 2422 2779 1435.0 579.4 2477 2510 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33 <b>5</b> 8<br>3252<br>3474<br>3918                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3252<br>3474<br>3918                                                                         |
| 1245.0 518.6 2401 2426 2922 1445.0 582.4 2481 2515 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3474<br>3918                                                                                 |
| 1250.0 520.4 2402 2427 2730 1450.0 583.9 2483 2517 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3918                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3288                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
| 1270.0 526.9 2410 2437 2959 1470.0 589.7 2493 2528 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3198                                                                                         |
| 1275.0 528.6 2412 2438 2919 1475.0 591.2 2495 2531 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3407                                                                                         |
| 1280.0 530.4 2413 2439 2722 1480.0 592.7 2497 2533 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3404                                                                                         |
| 1285.0 532.4 2414 2440 2527 1485.0 594.1 2499 2536 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                              |
| 1290.0 534.1 2415 2441 2933 1490.0 595.6 2502 2538 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3400                                                                                         |
| 1295.0 535.8 2417 2443 2955 1495.0 597.0 2504 2541 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3521                                                                                         |
| 1300.0 537.5 2419 2445 3017 1500.0 598.4 2507 2544 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3681                                                                                         |
| 1305.0 539.2 2420 2447 2848 1505.0 599.8 2509 2547 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3619                                                                                         |
| A MARIE A MARIE AND MARIE MARI |                                                                                              |
| The second secon |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
| A WEAR ALL AND A MARKET AND A M |                                                                                              |
| 1330.0 547.6 2429 2456 3012 1530.0 607.1 2520 2559 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3247                                                                                         |
| 1. THE STATE OF THE PARTY AND  | 3266                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3425                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3948                                                                                         |
| A MARKET ALL SHOULD AND A MARKET AND A MARKE | 3351                                                                                         |
| 1355.0 555.5 2439 2467 2976 1555.0 614.4 2531 2571 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3313                                                                                         |
| A 1980 S. Mr. 1980 1980 M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3217                                                                                         |
| A THE A STATE OF THE PARTY OF T | 3193                                                                                         |
| A PROPERTY AND A STATE AND A STATE AND ADDRESS OF THE ADDRESS OF T | 3160                                                                                         |
| A COMPANIENT ALL SPACE AND ALL | 3226                                                                                         |
| 1380.0 563.1 2451 2480 3282 1580.0 622.2 2539 2580 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3193                                                                                         |
| 1385.0 564.6 2453 2483 3415 1585.0 623.7 2541 2582 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3314                                                                                         |
| 1290.0 566.1 2455 2486 3304 1590.0 625.4 2542 2584 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3023                                                                                         |
| 75.0 567.6 2458 2488 3365 1595.0 627.1 2544 2585 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2940                                                                                         |
| 1400.0 569.1 2460 2491 3366 1600.0 628.7 2545 2586 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                              |

TABLE 1. Time-Depth curve values Page 5.

Weil: MCEACHERN #1 Client: GAS AND FUEL EXPLORATION
Survey units: METRES Datum: 0.0

| <b>.</b> .       | _            |                 |      | W 255 155                 | <b>.</b>                | and.     |                   |               |          |
|------------------|--------------|-----------------|------|---------------------------|-------------------------|----------|-------------------|---------------|----------|
| Datum            | One-way      |                 |      | IES                       | Datum                   | One-way  |                   |               | IES      |
| Depth            | time(ms)     | Average         | RMS  | Interval                  | Depth                   | time(ms) | Average           | RMS           | Interval |
| 1605.0           | 630.3        | 2546            | 2588 | 3073                      | 1805.0                  | 687.3    | 2626              | 2677          | 3519     |
| 1610.0           | 631.9        | 2548            | 2589 |                           | 1810.0                  | 688.7    | 2628              | 2679          |          |
| 1615.0           | 633.4        | 2550            | 2591 |                           | 1815.0                  | 690.1    | 2630              | 2681          | 3540     |
| 1620.0           | 634.8        | 2552            | 2594 |                           | 1820.0                  | 691.6    | 2632              | 2683          |          |
| 1625.0           | 636.2        | 2554            | 2597 |                           | 1825.0                  | 692.9    | 2634              | 2685          |          |
| 1020.0           | 030.2        | 2004            | LUTT | <b>4730</b>               | 1025.0                  | 072.7    | 2004              | 2000          | 3770     |
| 1630.0           | 637.7        | 2556            | 2598 |                           | 1830.0                  | 694.2    | 2636              | 2688          |          |
| " / <b>35.</b> 0 | 639.2        | 2558            | 2600 | 3409                      | 1835.0                  | 695.7    | 2638              | 2690          | 3474     |
| .40.0            | 640.7        | 2560            | 2602 | 3336                      | 1840.0                  | 697.0    | 2640              | 2692          | 3613     |
| 1645.0           | 642.1        | 2562            | 2605 | 3508                      | 1845.0                  | 698.4    | 2642              | 2694          | 3767     |
| 1650.0           | 643.4        | 2565            | 2608 | 3913                      | 1850.0                  | 699.8    | 2644              | 2696          | 3527     |
| 1655.0           | 644.8        | 2567            | 2610 | 3443                      | 1855.0                  | 701.2    | 2645              | 2698          | 3519     |
| 1660.0           | 646.1        | 2569            | 2613 |                           | 1860.0                  | 702.6    | 2647              | 2700          |          |
|                  |              |                 |      |                           |                         |          |                   |               |          |
| 1665.0           | 647.3        | 2572            | 2617 |                           | 1865.0                  | 703.8    | 2650              | 2703          |          |
| 1670.0           | 648.7        | 2574            | 2620 |                           | 1870.0                  | 705.1    | 2652              | 2706          |          |
| 1675.0           | 650.1        | 2577            | 2622 | 3607                      | 1875.0                  | 706.5    | 2654              | 2708          | 3586     |
| 1680.0           | 651.4        | 2579            | 2625 | 3880                      | 1880.0                  | 707.8    | 2 <b>65</b> 6     | 2710          | 3739     |
| 1685.0           | 652.9        | 2581            | 2627 | 3383                      | 1885.0                  | 709.1    | 2658              | 2713          | 3804     |
| 1690.0           | 654.4        | 2582            | 2628 |                           | 1890.0                  | 710.5    | 2660              | 2715          |          |
| 1695.0           | 656.0        | 2584            | 2630 |                           | 1895.0                  | 711.8    | 2662              | 2718          |          |
| 1700.0           | 657.4        | 2586            | 2632 |                           | 1900.0                  | 713.1    | 2665              | 2720          |          |
| 170010           | 00,.4        | ******          |      | 34.0                      | 1700.0                  | ,10.1    | 2,000             | dia 7 dia 31° | 5077     |
| 1705.0           | 658.8        | 2588            | 2635 | 3601                      | 1905.0                  | 714.4    | 2667              | 2722          | 3785     |
| 1710.0           | 660.2        | 2590            | 2637 | 3722                      | 1910.0                  | 715.7    | 2669              | 2725          | 3840     |
| 1715.0           | 661.5        | 2593            | 2640 | 3727                      | 1915.0                  | 717.0    | 2671              | 2727          | 3838     |
| 20.0             | 662.9        | 2595            | 2642 |                           | 1920.0                  | 718.2    | 2673              | 2730          |          |
| 1725.0           | 664.4        | 2596            | 2644 |                           | 1925.0                  | 719.6    | 2675              | 2732          |          |
| */ =0.0          |              | Man Sec. A. Am. |      | Seed Company Seed Company | an in all and the first | ,,,,,    | State Cap. 7 'va' |               |          |
| 1730.0           | 665.9        | 2598            | 2646 | 3290                      | 1930.0                  | 721.1    | 2676              | 2733          | 3312     |
| 1735.0           | 667.5        | 2599            | 2647 | 3298                      | 1935.0                  | 722.6    | 2678              | 2735          | 3319     |
| 1740.0           | 668.9        | 2601            | 2649 | 3367                      | 1940.0                  | 724.1    | 2679              | 2736          | 3536     |
| 1745.0           | 670.3        | 2603            | 2651 |                           | 1945.0                  |          | 2681              | 2738          | 3435     |
| 1750.0           | 671.6        | 2606            | 2654 |                           | 1950.0                  |          | 2682              | 2740          |          |
|                  |              |                 |      |                           |                         |          |                   |               |          |
| 1755.0           | 673.1        | 2607            | 2656 | 3402                      | 1955.0                  | 728.4    | 2684              | 2741          | 3365     |
| 1760.0           | 674.5        | 2609            | 2658 | 3517                      | 1960.0                  | 729.9    | 2685              | 2742          | 3344     |
| 1765.0           | 675.9        | 2611            | 2660 | 3553                      | 1965.0                  | 731.4    | 2687              | 2744          | 3352     |
| 1770.0           | 677.3        | 2613            | 2663 | 3541                      | 1970.0                  | 732.9    | 2688              | 2745          | 3416     |
| 1775.0           | 678.7        | 2615            | 2665 |                           | 1975.0                  | 734.3    | 2690              | 2747          |          |
|                  |              |                 |      |                           |                         |          |                   |               |          |
| 130.0            | <b>680.2</b> | 2617            | 2667 |                           | 1980.0                  | 735.6    | 2692              | 2750          |          |
| 1785.0           | 681.6        | 2619            | 2669 | 3475                      | 1985.0                  | 736.9    | 2694              | 2752          | 3655     |
| 1790.0           | 683.0        | 2621            | 2671 | 3569                      | 1990.0                  | 738.4    | 2695              | 2753          | 3421     |
| 75.0             | <b>584.4</b> | 2623            | 2673 | 3524                      | 1995.0                  | 739.7    | 2697              | 2755          | 3715     |
| 1.000.0          | 685.9        | 2624            | 2675 | 3381                      | 2000.0                  | 740.9    | 2699              | 2758          | 4124     |
|                  |              |                 |      |                           |                         |          |                   |               |          |

TABLE 1.

# Time-Depth curve values

Page 6.

Well : MCEACHERN #1 Survey units : METRES

Client : GAS AND FUEL EXPLORATION Datum : 0.0

| Datum<br>Depth | One-way<br>time(ms) |              |      | IES<br>Interval | Datum<br>Depth | One-way<br>time(ms) |               |      | IES<br>Interval |
|----------------|---------------------|--------------|------|-----------------|----------------|---------------------|---------------|------|-----------------|
|                |                     | _            |      |                 | •              |                     |               |      |                 |
| 2005.0         | 742.4               | 2701         | 2760 | 3524            | 2150.0         | 780.7               | 2754          | 2819 | 4008            |
| 2010.0         | 743.7               | 2703         | 2762 | 3628            | 2155.0         | 782.1               | 2756          | 2821 | 3687            |
| 2015.0         | 745.0               | 2705         | 2764 | 3855            | 2160.0         | 783.4               | 2757          | 2823 | 3756            |
| 2020.0         | 746.3               | 2707         | 2766 | 3882            | 2165.0         | 784.7               | 2759          | 2825 | 3924            |
| 2025.0         | 747.6               | 2709         | 2768 | 3856            | 2170.0         | 785.9               | 2761          | 2827 |                 |
| 2030.0         | 748.9               | 2711         | 2771 | 3899            | 2175.0         | 787.1               | 2763          | 2830 | 4181            |
| 35.0           | 750.2               | 2713         | 2773 | 3846            | 2180.0         | 788.3               | 2765          | 2832 | 3996            |
| 2040.0         | 751.4               | 2715         | 2776 | 4119            | 2185.0         | 789.6               | 2767          | 2834 | 3886            |
| 2045.0         | 752.7               | 2717         | 2778 | 4017            | 2190.0         | 791.0               | 2769          | 2836 | 3554            |
| 2050.0         | 754.0               | 2719         | 2780 | 3626            | 2195.0         | 792.4               | 2770          | 2838 | 3771            |
| 2055.0         | 755.5               | 2720         | 2781 | 3357            | 2200.0         | 793.7               | 2772          | 2839 | 3834            |
| 2060.0         | 757.1               | 2721         | 2782 | 3259            | 2205.0         | 794.9               | 2774          | 2842 | 3970            |
| 2065.0         | 758.7               | 2722         | 2783 | 3144            | 2210.0         | 796.2               | 2776          | 2844 | 4032            |
| 2070.0         | 760.2               | 2723         | 2784 | 3284            | 2215.0         | 797.3               | 2778          | 2846 | 4301            |
| 2075.0         | 761.7               | 2724         | 2785 | 3348            | 2220.0         | 798.7               | 2780          | 2848 | 3665            |
| 2080.0         | 763.0               | 2726         | 2787 | 3667            | 2225.0         | 800.0               | 2781          | 2850 | 3905            |
| 2085.0         | 764.4               | 2728         | 2789 | 3620            | 2230.0         | 801.2               | 2783          | 2852 | 3962            |
| 2090.0         | 765.7               | 2 <b>729</b> | 2791 | 3756            | 2235.0         | 802.6               | 2785          | 2854 | 3625            |
| 2095.0         | 767.0               | 2731         | 2793 | 38 <b>78</b>    | 2240.0         | 803.9               | 2786          | 2856 | 3808            |
| 2100.0         | 768.2               | 2734         | 2796 | 4316            | 2245.0         | 805.2               | 2788          | 2857 | 3783            |
| 2105.0         | 769.4               | 2736         | 2799 | 4108            | 2250.0         | 806.6               | 2789          | 2859 | 3569            |
| 2110.0         | 770.6               | 2738         | 2801 | 4151            | 2255.0         | 807.9               | 2791          | 2861 | 3832            |
| 15.0           | 771.9               | 2740         | 2803 | 3884            | 2260.0         | 809.2               | 2793          | 2863 | 4036            |
| 2120.0         | 773.1               | 2742         | 2806 | 4023            | 2265.0         | 810.4               | 2795          | 2865 | 4138            |
| 2125.0         | 774.5               | 2744         | 2808 | 3785            | 2270.0         | 811.6               | 2797          | 2867 | 4141            |
| 2130.0         | 775.8               | 2746         | 2810 | 3805            | 2275.0         | 812.8               | 2 <b>79</b> 9 | 2869 | 4039            |
| 2135.0         | 777.1               | 2743         | 2812 | 3919            | 2280.0         | 814.2               | 2800          | 2871 | 3770            |
| 2140.0         | 778.2               | 2750         | 2815 | 4292            | 2285.0         | 815.6               | 2802          | 2872 | 3523            |
| 2145.0         | 779.4               | 2752         | 2817 | 4064            | 2290.0         | 817.0               | 2803          | 2874 | 3660            |

This is an enclosure indicator page.

The enclosure PE906722 is enclosed within the container PE902115 at this location in this document.

The enclosure PE906722 has the following characteristics:

ITEM\_BARCODE = PE906722

CONTAINER\_BARCODE = PE902115

NAME = Shot Calculations, 1 of 2

BASIN = OTWAY

PERMIT = PEP119

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Shot Calculations, 1 of 2, Appendix 6,

McEarchern-1

REMARKS =

 $DATE\_CREATED = 9/01/90$ 

 $DATE\_RECEIVED = 27/01/90$ 

 $W_NO = W1017$ 

WELL\_NAME = McEARCHERN-1

CONTRACTOR = VELSEIS PTY LTD

CLIENT\_OP\_CO = GFE RESOURCES LTD

# LSEIS PTY LTD

#### WELL SURVEY CALCULATIONS Page 1

Company : GAS AND FUEL EXPLORATION

Well : MCEACHERN #1

76.4 Kelly: 0.0 Ground : Elevations : Datum : Shot data : Location Elevation Offset Α 76.4 7.5 76.4 15.0 В DEPT. NAT. RES & ENV 22.4 76.4 C 75.3 30.0 D

Latitude : 037 33 51

Longitude : 141 11 26

81.7

Rig identification : G.D.S 2 Energy source : AN60

Logger : GEARHART DDL6

Near surface velocity

for shot statics: 760 Instrument delay: 4.0 ms

Survey date : 09-JAN-90 Survey units : METRES Times in milliseconds.

# SHOT CALCULATIONS

| Shot<br>No | Geophone<br>Kelly | •                | Shot<br>Locn | Shot<br>Depth | (<br>Record | - Corr.         | TIMES                                                            | Below datum    | Check shot<br>Distance    | Time               | Average -                 | elocities<br>RMS                |               |
|------------|-------------------|------------------|--------------|---------------|-------------|-----------------|------------------------------------------------------------------|----------------|---------------------------|--------------------|---------------------------|---------------------------------|---------------|
|            | 76.4              | -5.3             | Α            | 0.1           | 46.0        | 45.9            | nds water enter deter these their team apply good toner source w |                |                           |                    |                           |                                 |               |
| _ 4        | 76.4              | -5.3             | В            | 0.1           | 46.0        | 45.2            |                                                                  |                |                           |                    |                           |                                 |               |
| 5          | 76.4              | -5.3             | C            | 0.1           | 48.0        | 46.1            |                                                                  |                |                           |                    |                           |                                 |               |
| 6          | 76.4              | -5.3             | a            | 1.2           | 44.0        | 43.7            | 45.2                                                             |                |                           |                    |                           |                                 |               |
| DATUM      |                   |                  |              |               |             | COMP .547. 4090 |                                                                  |                |                           |                    |                           |                                 |               |
| 35         | 81.7              | 0.0              | D            | 1.8           | 52.0        | 52.3            |                                                                  |                |                           |                    |                           |                                 |               |
| 36         | 81.7              | 0.0              | C            | 0.1           | 53.0        | 51.1            |                                                                  |                |                           |                    |                           |                                 |               |
| 37         | 81.7              | 0.0              | В            | 0.1           | 51.0        | 50.2            | m 4 4                                                            | 0.0            |                           |                    |                           |                                 |               |
| 38         | 31.7              | 0.0              | A            | 0.1           | 51.0        | 50.9            | 51.1                                                             | 0.0            | 270.3                     | 138.0              |                           |                                 | 1958.7        |
|            |                   |                  |              |               | 404.0       | 100 1           | 189.1                                                            | 138.0          | dia / 1/2 ts 4*           | 20010              | 1958.7                    | 1958.7                          |               |
| 34         | 352.0             | 270.3            | D            | 1.8           | 186.0       | 189.1           | 107:1                                                            | 100.0          | 32.0                      | 15.1               |                           | <b></b> • • • • •               | 2119.2        |
|            |                   | ang 20, 200, ang | ***          |               | 201.0       | 204.2           | 204.2                                                            | 153.1          | - marsher M. An           | (A. 100 M          | 1974.5                    | 1975.1                          |               |
| 33         | 384.0             | 302.3            | D            | 1.8           | 201.0       | 204.2           | 204:2                                                            | 10011          | 63.0                      | 25.1               |                           |                                 | 2510.0        |
| erre .pre. | 80° 8             | ~, = ~           | D            | 1.8           | 226.0       | 229.3           | 229.3                                                            | 178.2          |                           |                    | 2049.9                    | 2058.9                          |               |
| 32         | 447.0             | 365.3            | IJ           | 1.0           | 22010       |                 | day day 7 H W                                                    | an 7 mm        | 103.0                     | 49.6               |                           |                                 | 2076.6        |
| 31         | 550.0             | 468.3            | a            | 1.8           | 275.5       | 278.9           | 278.9                                                            | 227.8          |                           |                    | 2055.8                    | 2062.7                          |               |
| 21         | 330.0             | 400.0            | 2.7          | 1             | 2           |                 |                                                                  |                | 126.0                     | 48.6               |                           |                                 | 2592.6        |
| 30         | 676.0             | 594.3            | a            | 1.8           | 324.0       | 327.5           | 327.5                                                            | 276.4          |                           |                    | 2150.1                    | 2165.3                          |               |
| 20         | 0/0#0             | 0,410            | •            |               |             |                 |                                                                  |                | 65.0                      | 27.5               |                           |                                 | 2363.6        |
| 29         | 741.0             | 659.3            | D            | 1.8           | 351.5       | 355.0           | 355.0                                                            | 303.9          |                           |                    | 2169.5                    | 2184.0                          |               |
|            | ,                 |                  | •            |               |             |                 |                                                                  |                | 134.1                     | 52.6               |                           |                                 | 2549.4        |
| 28         | 875.1             | 793.4            | D            | 1.8           | 404.0       | 407.6           | 407.6                                                            | 356.5          |                           |                    | 2225.5                    | 2241.7                          | 0/00 T        |
|            |                   |                  |              |               |             |                 |                                                                  |                | 230.0                     | 85.8               |                           |                                 | 2680.7        |
| 7          | 1105.1            | 1023.4           | D            | 1.8           | 490.0       |                 |                                                                  |                |                           |                    | , may make at any of make | 2333.3                          |               |
| 27         | 1105.1            | 1023.4           | D            | 1.8           | 489.5       | 493.1           | 493.4                                                            | 442.3          | 4 A ****                  | 40.0               | 2313.8                    | 2000.0                          | 2889.7        |
|            |                   |                  |              |               |             |                 |                                                                  | a moment       | 117.9                     | 40.8               | 2362.5                    | 2385.3                          | 2007.7        |
| 26         | 1223.0            | 1141.3           | D            | 1.8           | 530.5       | 534.2           | 534.2                                                            | 483.1          |                           | 26.0               | 2002.0                    | Taba + A                        | 2961.5        |
|            |                   |                  |              |               |             |                 | ,                                                                | ****** *       | 77.0                      | 20.0               | 2393.0                    | 2418.1                          | die Frank War |
| 25         | 1300.0            | 1218.3           | D            | 1.8           | 556.5       | 560.2           | 560.2                                                            | 509.1          | 110.0                     | 38.0               | 20/010                    | Aller Toronto de Service de des | 2894.7        |
|            |                   |                  |              | , Jan.        |             | mae a           | 598.2                                                            | 547.1          | 110.0                     | www.m.w            | 2427.9                    | 2454.2                          |               |
| 24         | 1410.0            | 1328.3           | D            | 1.8           | 374.3       | 598.2           | 370.2                                                            | ~54/ a T       | 91.0                      | 27.5               | the town a gr &           |                                 | 3309.1        |
| .eea       | A 1900 M. A       | A 51 A 100       | 504          | 4 @           | 400 0       | 625.7           | 625.7                                                            | 574.6          | ,                         | other of the time. | 2470.1                    | 2501.8                          |               |
| 21         | 1501.0            | 1417.3           | D            | 1.8           | 022.0       | 0.4U . /        | <i>∵‱⊍•/</i>                                                     | ~              | 104.1                     | 30.5               |                           |                                 | 3413.1        |
| 4          | 4 4 M 200 A       | 4 ET PATE A      | Th.          |               | 人間つ 間       | 656.2           | 656.2                                                            | 605.1          | *** APA - APA - APA - APA |                    | 2517.6                    | 2555.5                          | · ·           |
| 19         | 1605.1            | 1020.4           | D            | 1.8           | 002.0       | که د داد        | www.as                                                           | ********* # ** |                           |                    |                           |                                 |               |

This is an enclosure indicator page. The enclosure PE906723 is enclosed within the container PE902115 at this location in this document.

The enclosure PE906723 has the following characteristics:

ITEM\_BARCODE = PE906723
CONTAINER\_BARCODE = PE902115

NAME = Shot Calculations, 2 of 2

BASIN = OTWAY
PERMIT = PEP119
TYPE = WELL

SUBTYPE = DIAGRAM

REMARKS =

DATE\_CREATED = 9/01/90 DATE\_RECEIVED = 27/01/90

 $W_NO = W1017$ 

WELL\_NAME = McEARCHERN-1
CONTRACTOR = VELSEIS PTY LTD
CLIENT\_OP\_CO = GFE RESOURCES LTD

# YELSEIS PTY LTD

2372.0 2290.3

# WELL SURVEY CALCULATIONS

Survey date : 09-JAN-90

Survey units # METRES

2803.0

2871.1

Times in milliseconds.

Company : GAS AND FUEL EXPLORATION

Well: MCEACHERN #1

Elevations : Datum : 0.0 Ground : Shot data : Location Elevation Offset 76.4 7.5 B 76.4 15.0 76.4 22.4 C D 75.3

Latitude : 037 33 51 Longitude : 141 11 26

81.7

Rig identification : G.D.S 2 Energy source : AN60

Logger : GEARHART DDL6

Near surface velocity

for shot statics: 760 Instrument delay: 4.0 ms

SHOT CALCULATIONS

|      | base endry alper upper state from strue come plant plans being after men being after fr |      |      | ing waters stayed under attent attent beliefs access appear, rather crease befor where we are realis ablifts i | barat reids ablice depth septh, septh sector sector secto appet barbo alesto alabh desta debta depth depth sector sector desta debth de | مهمه جماعة جانبات متباه هدين منحود شميد ديمار فيهده بيهيد بالمان بيديد مادان يومد جانبان منحود ميدي ميديد مندود ميدود                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r entres andres sedan states (artes açuna acusa acusa acusa acusa acidas | s place titule water cooks cours bellet allow states copies cross; appear place pater serve state |
|------|-----------------------------------------------------------------------------------------|------|------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Shot | Geophone depth                                                                          | Shot | Shot | C motion admit speeds speeds without adding motif graphs action regard actions occurs actionly spaigue.        | TIMES                                                                                                                                   | Check shot interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                        | elocities                                                                                         |
| No   | Kelly Datum                                                                             |      | -    |                                                                                                                | Avg Below datum                                                                                                                         | Distance Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Average -                                                                | - RMS Inter                                                                                       |
| 19   | 1605.1 1523.4                                                                           |      | 1.8  | 652.5 656.2                                                                                                    | 656.2 605.1                                                                                                                             | 1991 taken taken tifon dalah d | 2517.6                                                                   | 2555.5                                                                                            |

76.4 Kelly:

DEPT. NAT. RES & ENV

PE906723

30.0

864.5 868.2

| Kelly -             | - Datum                                                                      | Loen | Depth                                                                                                                                           | Record                                                                                                                                                                              | - Corr.                                                                                                                                                                                                                                   | Avg                                                                                                                                                                                                                                                                                                   | Below datum                                                                                                                                                                                                                                                                                                                                                                        | Distance -                                                                                                                                                                                                                                                                                                                                                                                                                   | Time                                                                                                                                                                                                                                                                                                                                                                                      | Average -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1605.1              | 1523.4                                                                       | q    | 1.8                                                                                                                                             | 652.5                                                                                                                                                                               | 656.2                                                                                                                                                                                                                                     | 656.2                                                                                                                                                                                                                                                                                                 | 605.1                                                                                                                                                                                                                                                                                                                                                                              | n olesa canno quinte sultre duna papa, anno spaza cappa capto aguas ca                                                                                                                                                                                                                                                                                                                                                       | Para pacera menana derivir America danana derivapa Tababat atapapa delitar<br>derivapa danana danangan bandana                                                                                                                                                                                                                                                                            | 2517.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2555.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1900 0100 0200 1200 0200 PPOT 0200 2200 1200 1200 1200                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1771 C              | 4 / 200 000 000                                                              | **   |                                                                                                                                                 | /m/ ==                                                                                                                                                                              | رسر سيورسي و                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 127.8                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.3                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3302.8                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                              |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1734.9              | 1653.2                                                                       | D    | 1.8                                                                                                                                             | 692.0                                                                                                                                                                               | 695.7                                                                                                                                                                                                                                     | 695.5                                                                                                                                                                                                                                                                                                 | 644.4                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           | 2565.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2607.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                              |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 165.1                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.7                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3535.3                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1900.0              | 1818.3                                                                       | D    | 1.8                                                                                                                                             | 738.5                                                                                                                                                                               | 742.2                                                                                                                                                                                                                                     | 742.2                                                                                                                                                                                                                                                                                                 | 691.1                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           | 2631.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2680.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                              |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 110.0                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 5                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3728.8                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2010.0              | 1972 3                                                                       | n    | 1 0                                                                                                                                             | 748 A                                                                                                                                                                               | 771 7                                                                                                                                                                                                                                     | 771 7                                                                                                                                                                                                                                                                                                 | 720 4                                                                                                                                                                                                                                                                                                                                                                              | *****                                                                                                                                                                                                                                                                                                                                                                                                                        | A. / 1 W                                                                                                                                                                                                                                                                                                                                                                                  | 7272 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73-73 PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J/20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20204               | * ******                                                                     | 1.7  | 110                                                                                                                                             | 700.0                                                                                                                                                                               | // * * /                                                                                                                                                                                                                                  | . // **/                                                                                                                                                                                                                                                                                              | /20.0                                                                                                                                                                                                                                                                                                                                                                              | AND STREET AND                                                                                                                                                                                                                                                                                                                                                                                                               | ATL 00 AL                                                                                                                                                                                                                                                                                                                                                                                 | 20/0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/30.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , an , an , an , an | Jan. 24. 4 may may                                                           |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 85.0                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.0                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3541.7                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2095.0              | 2013.3                                                                       | D    | 1.8                                                                                                                                             | 792.0                                                                                                                                                                               | 795.7                                                                                                                                                                                                                                     | 795.7                                                                                                                                                                                                                                                                                                 | 744.6                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           | 2703.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2760.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                              |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 76.1                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.0                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3623.8                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2171.1              | 2089.4                                                                       | D    | 1.8                                                                                                                                             | 813.5                                                                                                                                                                               | 817.2                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2171.1              | 2089.4                                                                       | D    | 1.8                                                                                                                                             | 812.5                                                                                                                                                                               | 816.2                                                                                                                                                                                                                                     | 816.7                                                                                                                                                                                                                                                                                                 | 765 - 6                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           | 2729 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2700 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                              |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           | ~~~~                                                                                                                                                                                                                                                                                                  | 7 mm 4 m                                                                                                                                                                                                                                                                                                                                                                           | 120 4                                                                                                                                                                                                                                                                                                                                                                                                                        | 70 E                                                                                                                                                                                                                                                                                                                                                                                      | dia Falia F E di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W. 1. 47.77. 8.74.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "" ("                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2200 7              | 2212 0                                                                       | 7%   | 4 (**)                                                                                                                                          |                                                                                                                                                                                     | ~~~                                                                                                                                                                                                                                       | ~*~ ~                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                    | 120.0                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.3                                                                                                                                                                                                                                                                                                                                                                                      | AND 1000 Mars. 144.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3956.9                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2277.1              | 2218.0                                                                       | IJ   | 1.2                                                                                                                                             | 840.0                                                                                                                                                                               | 847.2                                                                                                                                                                                                                                     | 849.2                                                                                                                                                                                                                                                                                                 | 798.1                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           | 2779.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2845.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                              |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                    | 60.1                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.5                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3877.4                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2359.8              | 2278.1                                                                       | D    | 1.8                                                                                                                                             | 861.0                                                                                                                                                                               | 864.7                                                                                                                                                                                                                                     | 864.7                                                                                                                                                                                                                                                                                                 | 813.6                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                           | 2800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2868.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                              |      |                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                  | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3485.7                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | 1605.1<br>1734.9<br>1734.9<br>1900.0<br>2010.0<br>2095.0<br>2171.1<br>2171.1 |      | 1605.1 1523.4 D 1734.9 1653.2 D 1734.9 1653.2 D 1900.0 1818.3 D 2010.0 1928.3 D 2095.0 2013.3 D 2171.1 2089.4 D 2171.1 2089.4 D 2299.7 2218.0 D | 1605.1 1523.4 D 1.8 1734.9 1653.2 D 1.8 1734.9 1653.2 D 1.8 1700.0 1818.3 D 1.8 2010.0 1928.3 D 1.8 2095.0 2013.3 D 1.8 2171.1 2089.4 D 1.8 2171.1 2089.4 D 1.8 2299.7 2218.0 D 1.8 | 1605.1 1523.4 D 1.8 652.5 1734.9 1653.2 D 1.8 691.5 1734.9 1653.2 D 1.8 692.0 1900.0 1818.3 D 1.8 738.5 2010.0 1928.3 D 1.8 768.0 2095.0 2013.3 D 1.8 792.0 2171.1 2089.4 D 1.8 813.5 2171.1 2089.4 D 1.8 813.5 2299.7 2218.0 D 1.8 845.5 | 1605.1 1523.4 D 1.8 652.5 656.2  1734.9 1653.2 D 1.8 691.5 695.2 1734.9 1653.2 D 1.8 692.0 695.7  1900.0 1818.3 D 1.8 738.5 742.2  2010.0 1928.3 D 1.8 768.0 771.7  2095.0 2013.3 D 1.8 792.0 795.7  2171.1 2089.4 D 1.8 813.5 817.2 2171.1 2089.4 D 1.8 813.5 816.2  2299.7 2218.0 D 1.8 845.5 849.2 | 1605.1 1523.4 D 1.8 652.5 656.2 656.2  1734.9 1653.2 D 1.8 691.5 695.2  1734.9 1653.2 D 1.8 692.0 695.7 695.5  1900.0 1818.3 D 1.8 738.5 742.2 742.2  2010.0 1928.3 D 1.8 768.0 771.7 771.7  2095.0 2013.3 D 1.8 792.0 795.7 795.7  2171.1 2089.4 D 1.8 813.5 817.2  2171.1 2089.4 D 1.8 813.5 817.2  2171.1 2089.4 D 1.8 813.5 816.2 816.7  2299.7 2218.0 D 1.8 845.5 849.2 849.2 | 1605.1 1523.4 D 1.8 652.5 656.2 656.2 605.1  1734.9 1653.2 D 1.8 691.5 695.2  1734.9 1653.2 D 1.8 692.0 695.7 695.5 644.4  1900.0 1818.3 D 1.8 738.5 742.2 742.2 691.1  2010.0 1928.3 D 1.8 768.0 771.7 771.7 720.6  2095.0 2013.3 D 1.8 792.0 795.7 795.7 744.6  2171.1 2089.4 D 1.8 813.5 817.2  2171.1 2089.4 D 1.8 813.5 817.2  2171.1 2089.4 D 1.8 812.5 816.2 816.7 765.6  2299.7 2218.0 D 1.8 845.5 849.2 849.2 798.1 | 1605.1 1523.4 D 1.8 652.5 656.2 656.2 605.1  1734.9 1653.2 D 1.8 691.5 695.2 1734.9 1653.2 D 1.8 692.0 695.7 695.5 644.4  1900.0 1818.3 D 1.8 738.5 742.2 742.2 691.1  2010.0 1928.3 D 1.8 768.0 771.7 771.7 720.6  2095.0 2013.3 D 1.8 792.0 795.7 795.7 744.6  2171.1 2089.4 D 1.8 813.5 817.2 2171.1 2089.4 D 1.8 812.5 816.2 816.7 765.6  2299.7 2218.0 D 1.8 845.5 849.2 849.2 798.1 | 1605.1       1523.4       D       1.8       652.5       656.2       656.2       605.1       127.8       39.3         1734.9       1653.2       D       1.8       691.5       695.7       695.5       644.4       165.1       46.7         1900.0       1818.3       D       1.8       738.5       742.2       742.2       691.1       110.0       29.5         2010.0       1928.3       D       1.8       768.0       771.7       771.7       720.6       85.0       24.0         2095.0       2013.3       D       1.8       792.0       795.7       795.7       744.6       76.1       21.0         2171.1       2089.4       D       1.8       813.5       817.2       816.7       765.6       128.6       32.5         2299.7       2218.0       D       1.8       845.5       849.2       849.2       798.1       60.1       15.5         2359.8       2278.1       D       1.8       861.0       864.7       864.7       813.6 | 1605.1       1523.4       D       1.8       652.5       656.2       656.2       605.1       2517.6         1734.9       1653.2       D       1.8       691.5       695.2       129.8       39.3         1734.9       1653.2       D       1.8       692.0       695.7       695.5       644.4       165.1       46.7         1900.0       1818.3       D       1.8       738.5       742.2       742.2       691.1       110.0       29.5         2010.0       1928.3       D       1.8       768.0       771.7       771.7       720.6       85.0       24.0         2095.0       2013.3       D       1.8       792.0       795.7       795.7       744.6       85.0       24.0         2171.1       2089.4       D       1.8       813.5       817.2       816.2       816.7       765.6       2729.1         2299.7       2218.0       D       1.8       845.5       849.2       849.2       798.1       60.1       15.5         2359.8       2278.1       D       1.8       861.0       864.7       864.7       813.6       2800.0 | 1605.1 1523.4 D 1.8 652.5 656.2 656.2 605.1 2517.6 2555.5 1734.9 1653.2 D 1.8 691.5 695.2 2607.2 1734.9 1653.2 D 1.8 692.0 695.7 695.5 644.4 2565.5 2607.2 1900.0 1818.3 D 1.8 738.5 742.2 742.2 691.1 110.0 29.5 2631.0 2680.1 2010.0 1928.3 D 1.8 768.0 771.7 771.7 720.6 85.0 24.0 2703.9 2760.8 2171.1 2089.4 D 1.8 813.5 817.2 2171.1 2089.4 D 1.8 812.5 816.2 816.7 765.6 128.6 32.5 2299.7 2218.0 D 1.8 845.5 849.2 849.2 798.1 60.1 15.5 2800.0 2868.1 |

817.1

868.2

This is an enclosure indicator page.

The enclosure PE906724 is enclosed within the container PE902115 at this location in this document.

The enclosure PE906724 has the following characteristics:

ITEM\_BARCODE = PE906724
CONTAINER\_BARCODE = PE902115

NAME = Sonic Drift Data

BASIN = OTWAY PERMIT = PEP119

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Sonic Drift Data, Appendix 6,

McEarchern-1

REMARKS =

DATE\_CREATED = 9/01/90

DATE\_RECEIVED = 27/01/90

 $W_NO = W1017$ 

WELL\_NAME = McEARCHERN-1

CONTRACTOR = VELSEIS PTY LTD

CLIENT\_OP\_CO = GFE RESOURCES LTD

# ELSEIS PTY LTD

Elevations : Datum :

# WELL SURVEY CALCULATIONS

Company : GAS AND FUEL EXPLORATION

Well: MCEACHERN #1

0.0 Ground : 76.4 Kelly:

Latitude : 037 33 51 Longitude : 141 11 26

DEPT. NAT. RES & ENV

Survey date : 09-JAN-90 Survey units : METRES Times in milliseconds.

81.7

| J | I | C | D | R | I | - | T |  |  |  |  |
|---|---|---|---|---|---|---|---|--|--|--|--|
|---|---|---|---|---|---|---|---|--|--|--|--|

|                                         |                   |        |       | sc                                                                                            | ONIC DE                                                                      | RIFT                                                               |                                                                         | PE906724 |                     |                          |
|-----------------------------------------|-------------------|--------|-------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|----------|---------------------|--------------------------|
| uga guntus anden biladi dellan tagdi au | Geophone<br>Kelly | •      |       | shot times<br>- Below datum                                                                   |                                                                              | interval<br>Time                                                   |                                                                         |          | sonic drift<br>msec | Cumulative<br>drift msec |
| w. A. W. 154                            | 76.4              |        | 45.2  | anns apper seems annes anno anno anno entre entre antre dette dette space anno anno anno anno | -d-fire makes antice coping places dell'es believ makes calcus person correc | is trains some ages about about 1940, Comb Oray dagle 1964 (1964 1 | and dang these place peak court races only court after their leaves and |          | ,                   |                          |
| DATUM                                   | 81.7              | 0.0    | 51.1  | 0.0                                                                                           | 270 7                                                                        | 138.0                                                              |                                                                         |          |                     |                          |
|                                         | 352.0             | 270.3  | 189.1 | 138.0                                                                                         | 270.3                                                                        |                                                                    | 4.6.77                                                                  | 25 00    | 0.8                 | 0.8                      |
|                                         | 384.0             | 302.3  | 204.2 | 153.1                                                                                         | 32.0                                                                         | 15.1                                                               | 14.3                                                                    | 25.00    |                     |                          |
| )                                       | 447.0             | 365.3  | 229.3 | 178.2                                                                                         | 63.0                                                                         | 25.1                                                               | 27.8                                                                    | -42.86   | -2.7                | -1.9                     |
|                                         | 550.0             | 468.3  | 278.9 | 227.8                                                                                         | 103.0                                                                        | 49.6                                                               | 43.9                                                                    | 55.34    | 5.7                 | 3.8                      |
|                                         | 676.0             | 594.3  | 327.5 | 276.4                                                                                         | 126.0                                                                        | 48.6                                                               | 51.4                                                                    | -22.22   | -2.8                | 1.0                      |
|                                         | 741.0             | 659.3  | 355.0 | 303.9                                                                                         | 65.0                                                                         | 27.5                                                               | 26.4                                                                    | 16.92    | 1.1                 | 2.1                      |
|                                         | 875.1             | 793.4  | 407.6 | 356.5                                                                                         | 134.1                                                                        | 52.6                                                               | 49.9                                                                    | 20.13    | 2.7                 | 4.8                      |
|                                         |                   |        |       |                                                                                               | 230.0                                                                        | 85.8                                                               | 81.1                                                                    | 20.43    | 4.7                 | 9.5                      |
|                                         |                   | 1023.4 | 493.4 | 442.3                                                                                         | 117.9                                                                        | 40.8                                                               | 40.8                                                                    | 0.00     | 0.0                 | 9.5                      |
|                                         |                   | 1141.3 | 534.2 | 483.1                                                                                         | 77.0                                                                         | 26.0                                                               | 25.6                                                                    | 5.19     | 0.4                 | 9.9                      |
|                                         | 1300.0            | 1218.3 | 560.2 | 509.1                                                                                         | 110.0                                                                        | 38.0                                                               | 34.4                                                                    | 32.73    | 3.6                 | 13.5                     |
|                                         | 1410.0            | 1328.3 | 598.2 | 547.1                                                                                         | 91.0                                                                         | 27.5                                                               | 28.3                                                                    | -8.79    | -0.8                | 12.7                     |
|                                         | 1501.0            | 1419.3 | 625.7 | 574.6                                                                                         | 104.1                                                                        | 30.5                                                               | 28.9                                                                    | 15.37    | 1.6                 | 14.3                     |
|                                         | 1605.1            | 1523.4 | 656.2 | 605.1                                                                                         | 129.8                                                                        | 39.3                                                               | 37.1                                                                    | 16.95    | 2.2                 | 16.5                     |
|                                         | 1734.9            | 1653.2 | 695.5 | 644.4                                                                                         | 165.1                                                                        | 46.7                                                               | 45.4                                                                    | 7.87     | 1.3                 | 17.8                     |
|                                         | 1900.0            | 1818.3 | 742.2 | 691.1                                                                                         | 110.0                                                                        | 29.5                                                               | 29.1                                                                    | 3.64     | 0.4                 | 18.2                     |
|                                         | 2010.0            | 1928.3 | 771.7 | 720.6                                                                                         | 85.0                                                                         | 24.0                                                               | 22.6                                                                    | 16.47    | 1.4                 | 19.6                     |
|                                         | 2095.0            | 2013.3 | 795.7 | 744.6                                                                                         |                                                                              |                                                                    | 20.1                                                                    | 11.83    | 0.9                 | 20.5                     |
|                                         | 2171.1            | 2089.4 | 816.7 | 765.6                                                                                         | 76.1                                                                         | 21.0                                                               |                                                                         |          |                     | 19.0                     |
|                                         | 2299.7            | 2218.0 | 849.2 | 798.1                                                                                         | 128.6                                                                        | 32.5                                                               | 34.0                                                                    | -11.66   | -1.5                |                          |
|                                         | 2359.8            | 2278.1 | 864.7 | 813.6                                                                                         | 60.1                                                                         | 15.5                                                               | 15.8                                                                    | -4.99    | -0.3                | 18.7                     |
|                                         | 2372.0            | 2290.3 | 868.2 | 817.1                                                                                         | 12.2                                                                         | 3.5                                                                | 3.1                                                                     | 32.79    | 0.4                 | 19.1                     |

This is an enclosure indicator page. The enclosure PE906725 is enclosed within the container PE902115 at this location in this document.

The enclosure PE906725 has the following characteristics:

ITEM\_BARCODE = PE906725
CONTAINER\_BARCODE = PE902115

NAME = Sonic Calibrations Data, 1 of 2

BASIN = OTWAY
PERMIT = PEP119
TYPE = WELL

SUBTYPE = DIAGRAM

REMARKS =

DATE\_CREATED = 9/01/90 DATE\_RECEIVED = 27/01/90

 $W_NO = W1017$ 

WELL\_NAME = McEARCHERN-1
CONTRACTOR = VELSEIS PTY LTD
CLIENT\_OP\_CO = GFE RESOURCES LTD

# YELSEIS PTY LTD

# WELL SURVEY CALCULATIONS

Company : GAS AND FUEL EXPLORATION

Well: MCEACHERN #1

Elevations : Datum : 0.0 Ground : 76.4 Kelly:

Latitude : 037 33 51 Longitude : 141 11 26

Survey date : 09-JAN-90 Survey units : METRES

Times in milliseconds.

# SONIC CALIBRATION

81.7

DEPT. NAT. RES & ENV

|         |           | ne depth<br>Datum | Interval<br>Distance                                                                     |                                                                              | sonic times<br>Cumulative                                                                |      | sonic times<br>Calibrated |        | Velocities<br>RMS | -              |
|---------|-----------|-------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|---------------------------|--------|-------------------|----------------|
| DATUM   | 76.4      |                   | eggi proet namo spila sama titoja donti tretti surat, quita petra apira dipar vilan cità | an group court about states are arrest states court court court group beauti | arian dada egata belah belah selam dada jejuh dejeh dejeh selah selam dalam dada sebab t |      |                           |        |                   |                |
| <i></i> | 81.7      | 0.0               | 270.3                                                                                    |                                                                              |                                                                                          |      |                           |        |                   | 1958.7         |
|         | 352.0     | 270.3             | 32.0                                                                                     | 14.3                                                                         |                                                                                          | 15.1 |                           | 1958.7 | 1701.0            | 2119.2         |
|         | 384.0     | 302.3             | 63.0                                                                                     | 27.8                                                                         | 14.3                                                                                     | 25.1 | 153.1                     | 1974.5 | 1736.4            | 2510.0         |
| )       | 447.0     | 365.3             | 103.0                                                                                    | 43.9                                                                         | 42.1                                                                                     | 49.6 | 178.2                     | 2049.9 | 1839.6            | 2076.6         |
|         | 550.0     | 468.3             | 126.0                                                                                    | 51.4                                                                         | 86.0                                                                                     | 48.6 | 227.8                     | 2055.8 | 1884.9            | 2592.6         |
|         | 676.0     | 594.3             | 65.0                                                                                     | 26.4                                                                         | 137.4                                                                                    | 27.5 | 276.4                     | 2150.1 | 2007.9            | 2363.0         |
|         | 741.0     | 659.3             | 134.1                                                                                    | 49.9                                                                         | 163.8                                                                                    | 52.6 | 303.9                     | 2169.5 | 2038.2            | 2549.4         |
|         | 875.1     | 793.4             | 230.0                                                                                    | 81.1                                                                         | 213.7                                                                                    | 85.8 | 356.5                     | 2225.5 | 2112.2            | 2680.          |
|         | 1105.1    | 1023.4            | 69.6                                                                                     | 23.9                                                                         | 294.8                                                                                    | 23.9 | 442.3                     | 2313.8 | 2222.8            | 2912.          |
| TOP PR  | ETTY HILL | . FM              | G7.0                                                                                     | 2.W * 7                                                                      |                                                                                          | 2017 |                           |        |                   | £ / J. ≤. tt : |
|         | 1174.7    | 1093.0            | 48.3                                                                                     | 16.9                                                                         | 318.7                                                                                    | 16.9 | 466.2                     | 2344.5 | 2259.7            | 2858.          |
|         | 1223.0    | 1141.3            | 77.0                                                                                     | 25.6                                                                         | 335.6                                                                                    | 26.0 | 483.1                     | 2362.5 | 2281.3            | 2961.          |
|         | 1300.0    | 1218.3            | 110.0                                                                                    | 34.4                                                                         | 361.2                                                                                    | 38.0 | 509.1                     | 2393.0 | 2317.6            | 2894.          |
|         | 1410.0    | 1328.3            | 15.7                                                                                     | 4.8                                                                          | 395.6                                                                                    | 4.7  | 547.1                     | 2427.9 | 2358.9            | 3367.          |
| INTRA   | PRETTY H  | (LL FM            | 2017                                                                                     | 7.0                                                                          |                                                                                          | 747  |                           |        |                   |                |
|         | 1425.7    | 1344.0            | 75.3                                                                                     | 23.5                                                                         | 400.4                                                                                    | 22.8 | 551.8                     | 2435.8 | 2368.4            | 3297.          |
|         | 1501.0    | 1419.3            | 104.1                                                                                    | 28.9                                                                         | 423.9                                                                                    | 30.5 | 574.6                     | 2470.1 | 2409.0            | 3413.          |
|         | 1605.1    | 1523.4            | 129.8                                                                                    | 37.1                                                                         | 452.8                                                                                    | 39.3 | 605.1                     | 2517.6 | 2465.3            | 3302.          |
|         | 1734.9    | 1653.2            | 165.1                                                                                    | 45.4                                                                         | 489.9                                                                                    | 46.7 | 644.4                     | 2565.5 | 2520.5            | 3535.          |
|         | 1900.0    | 1818.3            | 110.0                                                                                    | 29.1                                                                         | 535.3                                                                                    | 29.5 | 691.1                     | 2631.0 | 2596.7            | 3728.          |
|         | 2010.0    | 1928.3            | 85.0                                                                                     |                                                                              | 564.4                                                                                    | 24.0 | 720.6                     | 2676.0 | 2649.3            | 3541.          |
|         | 2095.0    | 2013.3            |                                                                                          | 22.6                                                                         | 587.0                                                                                    |      | 744.6                     | 2703.9 | 2680.8            |                |
|         | 2171.1    | 2089.4            | 76.1                                                                                     | 20.1                                                                         | 607.1                                                                                    | 21.0 | 765.6                     | 2729.1 | 2709.3            | 3623.          |
|         |           |                   |                                                                                          |                                                                              |                                                                                          |      |                           |        |                   |                |

This is an enclosure indicator page. The enclosure PE906726 is enclosed within the container PE902115 at this location in this document.

The enclosure PE906726 has the following characteristics:

ITEM\_BARCODE = PE906726
CONTAINER\_BARCODE = PE902115

NAME = Sonic Calibrations Data, 2 of 2

BASIN = OTWAY
PERMIT = PEP119
TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Sonic Calibrations Data, 2 of 2,

Appendix 6, McEarchern-1

REMARKS =

DATE\_CREATED = 9/01/90 DATE\_RECEIVED = 27/01/90

 $W_NO = W1017$ 

WELL\_NAME = McEARCHERN-1
CONTRACTOR = VELSEIS PTY LTD
CLIENT\_OP\_CO = GFE RESOURCES LTD

# ELSEIS PTY LTD

# WELL SURVEY CALCULATIONS

Company : GAS AND FUEL EXPLORATION

Well : MCEACHERN #1

Elevations : Datum : 0.0 Ground :

76.4 Kelly :

Latitude : 037 33 51 Longitude : 141 11 26

DEPT. NAT. RES & ENV

Survey date : 09-JAN-90 Survey units : METRES Times in milliseconds.

# SONIC CALIBRATION

| PE906726 |  |
|----------|--|

| state with man same man, when daily many east exact while gains sails said; tack took too | o many tang daired desired beared beared towns of the virtue better forthe t | white state, more baby perce despe pean tages with white plant worth sales of | and the color teach teach teach segue and the teach teach teach teach | ماسا مداون عداوا جبوبد وربود هيهم بوقل مخالته ماناته هومن عيداد عديي جابات خدات عصاد و | the major arrive states forther forthe states about depays strong a               |                           | 20   man same same man same man | م ووالود دغدمه مستحد جماعة جماعة جماعة حالجة و | COLOS SINGLE SPANE AND                          |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|---------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                                                           | one depth<br>Datum                                                           | Interval<br>Distance                                                          | <del></del>                                                           | sonic times<br>Cumulative                                                              | _                                                                                 | sonic times<br>Calibrated |                                 | Velocities<br>RMS                              |                                                                                     |
| 2171.1                                                                                    | 2089.4                                                                       |                                                                               |                                                                       | 607.1                                                                                  | unia delang agase, antima dandes katalè Erande delang adung 20000. Melan sebita d | 765.6                     | 2729.1                          | 2709.3                                         | nako milako allifik alaigu dusina Cinasa arusu etilida apunko kaluu guzilip, milagu |
|                                                                                           |                                                                              | 128.6                                                                         | 34.0                                                                  |                                                                                        | 32.5                                                                              |                           |                                 |                                                | 3956.9                                                                              |
| 2299.7                                                                                    | 2218.0                                                                       |                                                                               |                                                                       | 641.1                                                                                  |                                                                                   | 798.1                     | 2779.1                          | 2767.8                                         |                                                                                     |
|                                                                                           |                                                                              | 43.3                                                                          | 11.6                                                                  |                                                                                        | 11.4                                                                              |                           |                                 |                                                | 3803.6                                                                              |
| TOP CASTERTON                                                                             | I FM                                                                         |                                                                               |                                                                       |                                                                                        |                                                                                   |                           |                                 |                                                |                                                                                     |
| 2343.0                                                                                    | 2261.3                                                                       |                                                                               |                                                                       | 652.7                                                                                  |                                                                                   | 809.5                     | 2793.5                          | 2784.2                                         |                                                                                     |
|                                                                                           |                                                                              | 16.8                                                                          | 4.2                                                                   |                                                                                        | 4.1                                                                               |                           |                                 |                                                | 4081.5                                                                              |
| 2359.8                                                                                    | 2278.1                                                                       |                                                                               |                                                                       | 656.9                                                                                  |                                                                                   | 813.6                     | 2800.0                          | 2791.8                                         |                                                                                     |
|                                                                                           |                                                                              | 12.2                                                                          | 3.1                                                                   |                                                                                        | 3.5                                                                               |                           |                                 |                                                | 3485.7                                                                              |
| 2372.0                                                                                    | 2290.3                                                                       |                                                                               |                                                                       | 660.0                                                                                  |                                                                                   | 817.1                     | 2803.0                          | 2795.0                                         | - · · · · · · · · · · · · · · · · · · ·                                             |

This is an enclosure indicator page. The enclosure PE902116 is enclosed within the container PE902115 at this location in this document.

```
The enclosure PE902116 has the following characteristics:
```

ITEM\_BARCODE = PE902116
CONTAINER\_BARCODE = PE902115

NAME = Well Velocity survey - trace display &

1st arrival plots

BASIN = OTWAY
PERMIT = PEP 119
TYPE = WELL

SUBTYPE = VELOCITY\_CHART

DESCRIPTION = Well Velocity survey - trace display & 1st arrival plots (enclosure from appendix 6-Velocity Survey-of WCR

vol.2) for McEachern-1

REMARKS =

 $DATE\_CREATED = 9/01/90$ 

DATE\_RECEIVED =

 $W_NO = W1017$ 

WELL\_NAME = McEachren-1

CONTRACTOR = Velocity Data Pty Ltd

CLIENT\_OP\_CO = Gas and Fuel Exploration NL.

7. SYNTHETIC SEISMOGRAMS.

# **Velocity Data**



SYNTHETIC SEISMOGRAMS

MCEACHERN #1

PEP 119

**VICTORIA** 

for

# GAS & FUEL EXPLORATION N/L

recorded by

VELOCITY DATA PTY LITD

processed by



**Integrated Seismic Technologies** 

Brisbane, Australia

April 6, 1990

# **CONTENTS**

| SUMMARY                           | • • • | 1 |
|-----------------------------------|-------|---|
| GENERAL INFORMATION               | • • • | 1 |
| CHECKSHOT DATA                    | • • • | 2 |
| SONIC DATA                        | • • • | 2 |
| DENSITY DATA                      | • • • | 3 |
| CALIBRATION OF SONIC LOG          |       |   |
| Method                            | • • • | 3 |
| Results                           | • • • | 3 |
| CALIBRATION OF DENSITY DATA       | • • • | 3 |
| REFLECTION COEFFICIENT GENERATION | N     | 4 |
| MULTIPLES                         | • • • | 4 |
| WAVELETS                          | • • • | 4 |
| SEISMOGRAM DISPLAYS               | • • • | 4 |

# Tables

Table 1

Time-depth values

# Enclosures

Synthetic Seismogram Displays

#### SUMMARY

Synthetic seismograms have been produced for the McEachern #1 well, PEP 119, Victoria for Gas and Fuel Exploration N/L.

These seismograms have been computed using a combination of check shot, sonic and density data. Velocity Data Pty Ltd acquired the check shot data and Gearhart Australia provided the other wireline services.

The sonic data was calibrated using the checkshot information. Reflection coefficients were derived from combinations of calibrated sonic and density data and then convolved with three specified wavelets to produce the synthetic seismograms. Both phases of the wavelet were generated at either polarity. This resulted in a total of twelve seismograms all plotted at a time scale of 15 cm/sec.

### GENERAL INFORMATION

Name of Well : McEachern #1

Location : PEP 119

Coordinates : Latitude 037 33' 51"

: Longitude 141 11' 26"

Velocity Survey : Velocity Data Pty Ltd

Wireline Logging : Gearhart

Elevation of KB : 81.7 metres above sea level

Elevation of Ground : 76.4 metres above sea level

Elevation of Seismic Datum : 0.0 metres above sea level

Borehole total depth : 2384.0 metres below KB

#### CHECK SHOT DATA

Recorded by : Velocity Data Pty Ltd

Date : 9th January 1990.

Energy source : AN-60

Shot Location : Mud pit

Charge Size : 0.5 to 2 (125 grm) sticks

Average Shot Depth : 2.0 metres

Average Shot Offset : 30.0 metres

Number of shots used : 32

Number of levels recorded : 23

#### SONIC DATA

Recorded by : Gearhart

Top logged interval used : 354.8 metres below KB

Bottom logged interval used : 2377.5 metres below KB

Logging units : Microseconds/foot converted

Comments : The sonic log was calibrated

to check shot data from 352.0 metres below KB. It was also extended to 2600m for processing

purposes.

#### DENSITY DATA

Recorded by : Gearhart

Top logged interval : 1350.4 metres below KB

Bottom logged interval : 2367.3 metres below KB

Logging units : Grams/cc

## Calibration of Sonic Log - Method

The sonic log was modified by deleting values that lay within the casing. A search of the file was also made and anomalous values deleted.

Sonic times were adjusted to checkshot times using a linear correction of the sonic transit times.

These differences arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

## Calibration of Sonic Log - Results

The discrepancies between shot and sonic interval velocities were generally small. The largest adjustment was 55.34  $\mu s/metres$  on the interval 447.0 to 550.0 metres below KB.

In aggregate, the shot and sonic interval times differed by 19.1 msec over the logged portion of the well.

#### CALIBRATION OF DENSITY DATA

The density data is calibrated using the adjusted and integrated sonic time.

#### REFLECTION COEFFICIENT GENERATION

Reflection coefficients were generated from a combination of sonic and density data, as noted on the display. The display shows that the sonic data set has been extended to 2600 metres the reason for this is to maximize the range of the synthetic. Failure to extend the sonic in this fashion would be to truncate the synthetic by one half wavelength of the wavelet being convolved with the reflection coefficient series.

#### MULTIPLES

Only the primary response of the reflection coefficient series has been generated.

#### WAVELETS

Three wavelets were convolved with the reflection coefficient series to produce the seismograms:

- 1) Band Pass 15-40 Hz, Zero/Min phase, Both Polarity.
- 2) Band Pass 15-50 Hz, Zero/Min phase, Both Polarity.
- 3) Band Pass 15-60 Hz, Zero/Min phase, Both Polarity.

#### SEISMOGRAM DISPLAYS

The seismograms that were generated were plotted at a scale of 15.0cm/sec. A total of twelve seismograms are presented. The final displays show the contributing logs in schematic form, with time and depth scales. The seismogram is displayed for each wavelet, against two-way time below the check shot datum. Although no balancing window has been used on the seismograms, the trace amplitudes are normalized against their maxima. A sub-datum two-way time of 282.0 msecs for the start of the sonic was taken from the check shot results.

Geoffrey Bell.

Geophysical Analyst.

TABLE 1.

# Time-Depth curve values

Page 1.

Well: MCEACHERN #1 Survey units: METRES Client : GAS AND FUEL EXPLORATION

Datum : 0.0

| Datum         | One-way  | VEI      | _0011 | IES    | Datum | One-way        | VEL          | _OCIT        | IES      |
|---------------|----------|----------|-------|--------|-------|----------------|--------------|--------------|----------|
| Depth         | time(ms) |          |       |        | Depth |                |              |              | Interval |
| ·             |          | _        |       |        | •     |                |              |              |          |
| 5.0           | 2.7      | 1868     | 1868  |        | 205.0 | 104.8          | 1956         | 1956         | 1961     |
| 10.0          | 5.3      | 1890     | 1890  | 1913   | 210.0 | 107.4          | 1956         | 1956         | 1961     |
| 15.0          | 7.9      | 1905     | 1905  |        | 215.0 | 109.9          | 1956         | 1956         | 1961     |
| 20.0          | 10.4     | 1916     | 1916  |        | 220.0 | 112.5          | 1956         | 1956         | 1961     |
| 25.0          | 13.0     | 1923     | 1924  | 1954   | 225.0 | 115.0          | 1956         | 1956         | 1961     |
|               |          |          |       |        |       |                |              |              |          |
| 30.0          | 15.6     | 1929     | 1929  |        | 230.0 | 117.6          | 1956         | 1956         |          |
| <b>₩</b> 35.0 | 18.1     | 1933     | 1933  |        | 235.0 | 120.1          | 1956         | 1957         |          |
| 40.0          | 20.7     | 1937     | 1937  |        | 240.0 | 122.7          | 1957         | 1957         |          |
| 45.0          | 23.2     | 1939     | 1939  |        | 245.0 | 125.2          | 1957         | 1957         |          |
| 50.0          | 25.8     | 1941     | 1941  | 1960   | 250.0 | 127.8          | 1957         | 1957         | 1963     |
|               | ~~ =     | 4.00.000 |       |        |       |                |              |              |          |
| 55.0          | 28.3     | 1943     | 1943  |        | 255.0 | 130.3          | 1957         | 1957         |          |
| 60.0          | 30.9     | 1944     | 1945  |        | 260.0 | 132.8          | 1957         | 1957         |          |
| 65.0          | 33.4     | 1946     | 1946  |        | 265.0 | 135.4          | 1958         | 1958         |          |
| 70.0          | 36.0     | 1947     | 1947  |        | 270.0 | 137.9          | 1959         | 1959         |          |
| 75.0          | 38.5     | 1948     | 1948  | 1961   | 275.0 | 139.8          | 1968         | 1960         | 2042     |
| 80.0          | 41.1     | 1948     | 1949  | 1961   | 280.0 | 140 7          | 10/0         | 10/0         | 1974     |
| 85.0          | 43.6     | 1949     | 1949  |        | 285.0 | 142.3<br>144.8 | 1968         | 1960         |          |
| 90.0          | 46.2     | 1950     | 1950  |        | 290.0 |                | 1968         | 1961         |          |
| 95.0          | 48.7     | 1950     | 1951  |        | 295.0 | 147.2          | 1970         | 1963         |          |
| 100.0         | 51.3     | 1951     | 1951  |        | 300.0 | 149.6<br>151.9 | 1972<br>1974 | 1965<br>1967 |          |
| 100.0         | 01.0     | 1/31     | 1751  | 1701   | 300.0 | 131.7          | 17/4         | 170/         | 2141     |
| 105.0         | 53.8     | 1951     | 1951  | 1961   | 305.0 | 154.0          | 1980         | 1974         | 2427     |
| 410.0         | 56.4     | 1952     | 1952  |        | 310.0 | 156.0          | 1987         | 1982         |          |
| 115.0         | 58.9     | 1952     | 1952  |        | 315.0 | 158.0          | 1994         | 1989         |          |
| 120.0         | 61.5     | 1953     | 1953  |        | 320.0 | 160.1          | 1999         | 1996         |          |
| 125.0         | 64.0     | 1953     | 1953  |        | 325.0 | 162.2          | 2004         | 2000         |          |
|               |          |          |       |        |       |                |              |              |          |
| 130.0         | 66.6     | 1953     | 1953  | 1961   | 330.0 | 164.2          | 2009         | 2007         | 2452     |
| 135.0         | 69.1     | 1953     | 1954  |        | 335.0 | 166.2          | 2016         | 2014         |          |
| 140.0         | 71.7     | 1954     | 1954  | 1961   | 340.0 | 168.1          | 2023         | 2023         |          |
| 145.0         | 74.2     | 1954     | 1954  | 1961   | 345.0 | 170.1          | 2029         | 2029         |          |
| 150.0         | 76.8     | 1954     | 1954  | 1961   | 350.0 | 172.0          | 2035         | 2035         | 2542     |
|               |          |          |       |        |       |                |              |              |          |
| 155.0         | 79.3     | 1954     | 1954  | 1961   | 355.0 | 174.1          | 2040         | 2041         | 2470     |
| 160.0         | 81.9     | 1955     | 1955  |        | 360.0 | 176.1          | 2045         | 2047         | 2482     |
| 165.0         | 84.4     | 1955     | 1955  |        | 365.0 | 178.2          | 2048         | 2050         | 2334     |
| 170.0         | 87.0     | 1955     | 1955  | 1961   | 370.0 | 180.7          | 2048         | 2050         | 2045     |
| 175.0         | 89.5     | 1955     | 1955  | 1961   | 375.0 | 183.2          | 2047         | 2049         | 1961     |
| 100 0         | 00.4     | 4.000    |       | 4.00.0 |       |                |              |              | <u></u>  |
| 180.0         | 92.1     | 1955     | 1955  |        | 380.0 | 185.7          | 2047         | 2049         |          |
| 185.0         | 94.6     | 1955     | 1955  |        | 385.0 | 188.1          | 2047         | 2049         |          |
| V190.0        | 97.2     | 1955     | 1956  |        | 390.0 | 190.6          | 2046         | 2048         |          |
| 200.0         | 99.7     | 1956     | 1956  |        | 395.0 | 193.0          | 2047         | 2049         |          |
| 200.0         | 102.3    | 1956     | 1956  | 1961   | 400.0 | 195.4          | 2047         | 2050         | 2124     |

TABLE 1. Time-Depth curve values

Page 2.

Well: MCEACHERN #1 Client: GAS AND FUEL EXPLORATION
Survey units: METRES Datum: 0.0
Calibrated sonic interval velocities used from 275.0 to 2290.0

| Datum          | One-way  | VE      | LOCITIE | :S     | Datum     | One-way     | VE   | LOCITIE | ES      |
|----------------|----------|---------|---------|--------|-----------|-------------|------|---------|---------|
| Depth          | time(ms) | Average | RMS In  | terval | Depth     | time(ms)    |      | RMS I   | nterval |
| •              |          | _       |         |        | •         |             | -    |         |         |
| 405.0          | 197.7    | 2048    | 2050    | 2112   | 605.0     | 280.9       | 2154 | 2165    | 2379    |
| 410.0          | 200.1    | 2049    | 2051    | 2082   | 610.0     | 283.1       | 2155 | 2166    | 2286    |
| 415.0          | 202.6    | 2049    | 2051    | 2054   | 615.0     | 285.3       | 2155 | 2166    | 2261    |
| 420.0          | 204.9    | 2049    | 2051    | 2101   | 620.0     | 287.5       | 2157 | 2168    | 2331    |
| 425.0          | 207.3    | 2050    | 2052    | 2147   | 625.0     | 289.6       | 2158 | 2169    | 2312    |
|                |          |         |         |        |           |             |      |         |         |
| 430.0          | 209.6    | 2051    | 2053    | 2123   | 630.0     | 291.8       | 2159 | 2170    | 2332    |
| <b>435.0</b>   | 212.0    | 2052    | 2054    | 2133   | 635.0     | 293.9       | 2161 | 2172    | 2365    |
| 440.0          | 214.4    | 2052    | 2054    | 2079   | 640.0     | 296.0       | 2162 | 2173    | 2407    |
| 445.0          | 216.8    | 2053    | 2055    | 2098   | 645.0     | 298.1       | 2164 | 2175    | 2377    |
| 450.0          | 219.1    | 2054    | 2056    | 2145   | 650.0     | 300.2       | 2165 | 2176    | 2400    |
|                |          |         |         |        |           |             |      |         |         |
| 455.0          | 221.5    | 2054    | 2056    | 2097   | 655.0     | 302.2       | 2168 | 2179    | 2480    |
| 460.0          | 223.9    | 2055    | 2057    | 2097   | 660.0     | 304.2       | 2170 | 2181    | 2500    |
| 465.0          | 226.2    | 2055    | 2057    | 2114   | 665.0     | 306.1       | 2172 | 2183    | 2546    |
| 470.0          | 228.5    | 2057    | 2059    | 2234   | 670.0     | 308.1       | 2175 | 2186    | 2572    |
| 475.0          | 230.4    | 2061    | 2064    | 2541   | 675.0     | 310.1       | 2177 | 2188    | 2470    |
|                |          |         |         |        | 0.0.0     | <b>0.0.</b> |      |         |         |
| 480.0          | 232.4    | 2065    | 2068    | 2521   | 680.0     | 312.2       | 2178 | 2189    | 2370    |
| 485.0          | 234.4    | 2069    | 2072    | 2524   | 685.0     | 314.2       | 2180 | 2192    | 2560    |
| 490.0          | 236.4    | 2073    | 2076    | 2518   | 690.0     | 316.0       | 2183 | 2195    | 2685    |
| 495.0          | 238.3    | 2077    | 2081    | 2564   | 695.0     | 317.8       | 2187 | 2199    | 2823    |
| 500.0          | 240.3    | 2081    | 2086    | 2596   | 700.0     | 319.8       | 2189 | 2201    | 2494    |
|                |          |         |         |        | , , , , , | 027.0       |      |         |         |
| 505.0          | 242.2    | 2085    | 2090    | 2583   | 705.0     | 321.9       | 2190 | 2203    | 2449    |
| 510.0          | 244.1    | 2089    | 2095    | 2619   | 710.0     | 323.9       | 2192 | 2205    | 2485    |
| <b>₩</b> 15.0  | 246.0    | 2094    | 2100    | 2661   | 715.0     | 325.9       | 2194 | 2206    | 2485    |
| 520.0          | 247.9    | 2098    | 2104    | 2643   | 720.0     | 327.9       | 2196 | 2208    | 2481    |
| 525.0          | 249.8    | 2102    | 2109    | 2627   | 725.0     | 329.9       | 2198 | 2210    | 2536    |
|                |          |         |         |        |           |             |      |         |         |
| 530.0          | 251.8    | 2105    | 2112    | 2465   | 730.0     | 331.7       | 2201 | 2213    | 2665    |
| 535.0          | 253.8    | 2108    | 2115    | 2514   | 735.0     | 333.7       | 2202 | 2215    | 2519    |
| 540.0          | 255.7    | 2112    | 2120    | 2627   | 740.0     | 335.7       | 2204 | 2217    | 2539    |
| 545.0          | 257.6    | 2116    | 2124    | 2631   | 745.0     | 337.7       | 2206 | 2219    | 2532    |
| 550.0          | 259.5    | 2119    | 2128    | 2627   | 750.0     | 339.6       | 2208 | 2221    | 2532    |
|                |          |         |         |        |           |             |      |         |         |
| 555.0          | 261.4    | 2123    | 2132    | 2651   | 755.0     | 341.6       | 2210 | 2223    | 2586    |
| 560.0          | 263.2    | 2128    | 2137    | 2751   | 760.0     | 343.5       | 2212 | 2225    | 2570    |
| 565.0          | 265.1    | 2131    | 2141    | 2672   | 765.0     | 345.6       | 2214 | 2227    | 2419    |
| 570.0          | 266.9    | 2135    | 2146    | 2696   | 770.0     | 347.5       | 2216 | 2229    | 2656    |
| 575.0          | 268.8    | 2139    | 2149    | 2609   | 775.0     | 349.2       | 2219 | 2233    | 2845    |
|                |          |         |         |        |           |             |      |         |         |
| 580.0          | 270.7    | 2142    | 2153    | 2665   | 780.0     | 351.2       | 2221 | 2235    | 2549    |
| 585.0          | 272.7    | 2145    | 2156    | 2538   | 785.0     | 353.2       | 2223 | 2236    | 2526    |
| 590.0          | 274.7    | 2148    | 2159    | 2473   | 790.0     | 355.2       | 2224 | 2238    | 2519    |
| <b>⊸</b> 695.0 | 276.7    | 2150    | 2161    | 2481   | 795.0     | 357.1       | 2226 | 2240    | 2545    |
| 600.0          | 278.8    | 2152    | 2163    | 2379   | 800.0     | 359.1       | 2228 | 2242    | 2537    |
|                |          |         |         |        |           |             |      |         |         |

Well : MCEACHERN #1 Survey units : METRES Client : GAS AND FUEL EXPLORATION

ETRES Datum : 0.0

|                | _              | 1.15    |      |          | D-4    | <b>5</b> |         | OCIT  | IES      |
|----------------|----------------|---------|------|----------|--------|----------|---------|-------|----------|
| Datum          | One-way        |         |      | IES      | Datum  | One-way  |         |       |          |
| Depth          | time(ms)       | Average | RMS  | Interval | Depth  | time(ms) | Average | KMS   | Incerval |
| 805.0          | 361.1          | 2229    | 2243 | 2480     | 1005.0 | 435.8    | 2306    | 2324  | 2703     |
| 810.0          | 363.1          | 2231    | 2244 | 2508     | 1010.0 | 437.6    | 2308    | 2326  | 2788     |
| 815.0          | 365.0          | 2233    | 2246 |          | 1015.0 | 439.4    | 2310    | 2328  | 2826     |
| 820.0          | 366.9          | 2235    | 2249 |          | 1020.0 | 441.1    | 2312    | 2331  |          |
| 825.0          | 368.8          | 2237    | 2251 |          | 1025.0 | 442.8    | 2315    | 2333  |          |
| 020.0          | 300.0          | 220/    | 2201 | 2010     | 102010 | 442.0    |         |       |          |
| 330.0          | 370.7          | 2239    | 2253 |          | 1030.0 | 444.5    | 2317    | 2336  |          |
| <b>₩</b> 835.0 | 372.6          | 2241    | 2255 | 2738     | 1035.0 | 446.3    | 2319    | 2338  |          |
| 840.0          | 374.5          | 2243    | 2257 | 2618     | 1040.0 | 448.1    | 2321    | 2340  |          |
| 845.0          | 376.4          | 2245    | 2259 | 2643     | 1045.0 | 449.8    | 2323    | 2343  | 2904     |
| 850.0          | 378.2          | 2247    | 2262 | 2668     | 1050.0 | 451.5    | 2325    | 2345  | 2874     |
|                |                |         |      |          |        |          |         | 07.47 | 0047     |
| 855.0          | 380.0          | 2250    | 2264 |          | 1055.0 | 453.3    | 2327    | 2347  |          |
| 860.0          | 381.9          | 2252    | 2266 |          | 1060.0 | 455.1    | 2329    | 2349  |          |
| 865.0          | 383.9          | 2253    | 2268 |          | 1065.0 | 456.7    | 2332    | 2352  |          |
| 870.0          | 3 <b>85.</b> 9 | 2254    | 2269 |          | 1070.0 | 458.4    | 2334    | 2355  |          |
| 875.0          | 387.8          | 2256    | 2271 | 2609     | 1075.0 | 460.0    | 2337    | 2357  | 3005     |
| 8 <b>80.</b> 0 | 389.8          | 2258    | 2272 | 2558     | 1080.0 | 461.6    | 2339    | 2360  | 3067     |
| 885.0          | 391.7          | 2259    | 2274 |          | 1085.0 | 463.3    | 2342    | 2363  |          |
| 890.0          | 393.6          | 2261    | 2276 |          | 1090.0 | 465.1    | 2344    | 2365  |          |
|                |                |         |      |          | 1075.0 | 466.9    | 2345    | 2366  |          |
| 895.0          | 395.6          | 2262    | 2277 |          |        |          |         |       |          |
| 900.0          | 397.6          | 2264    | 2278 | 2483     | 1100.0 | 468.7    | 2347    | 2368  | 2/11     |
| 905.0          | 399.6          | 2265    | 2280 | 2573     | 1105.0 | 470.6    | 2348    | 2369  | 2766     |
| 910.0          | 401.4          | 2267    | 2282 | 2662     | 1110.0 | 472.3    | 2350    | 2372  | 2914     |
| ¥915.0         | 403.3          | 2269    | 2284 | 2661     | 1115.0 | 473.9    | 2353    | 2374  | 3057     |
| 920.0          | 405.1          | 2271    | 2287 |          | 1120.0 | 475.6    | 2355    | 2377  |          |
| 925.0          | 406.6          | 2275    | 2291 |          | 1125.0 | 477.4    | 2357    | 2379  |          |
|                |                |         |      |          |        |          |         |       |          |
| 930.0          | 408.4          | 2277    | 2293 |          | 1130.0 | 479.1    | 2359    | 2381  |          |
| 935.0          | 410.4          | 2278    | 2295 | 2596     | 1135.0 | 480.9    | 2360    | 2382  |          |
| 940.0          | 412.2          | 2280    | 2297 | 2681     | 1140.0 | 482.7    | 2362    | 2384  |          |
| 945.0          | 414.2          | 2282    | 2298 | 2578     | 1145.0 | 484.4    | 2364    | 2386  | 2854     |
| 950.0          | 416.0          | 2284    | 2300 | 2695     | 1150.0 | 486.3    | 2365    | 2387  | 2672     |
| OFF 4          | A 4 7 . C      | 2225    | 2700 | 2477     | 1125 ^ | 488.1    | 2367    | 2389  | 2847     |
| 955.0          | 417.9          | 2285    | 2302 |          | 1155.0 |          |         |       |          |
| 960.0          | 419.7          | 2287    | 2304 |          | 1160.0 | 489.9    | 2368    | 2390  |          |
| 965.0          | 421.5          | 2289    | 2306 |          | 1165.0 | 491.7    | 2369    | 2392  |          |
| 970.0          | 423.4          | 2291    | 2308 |          | 1170.0 | 493.5    | 2371    | 2393  |          |
| 975.0          | 425.1          | 2294    | 2310 | 2853     | 1175.0 | 495.2    | 2373    | 2395  | 2866     |
| 980.0          | 426.8          | 2296    | 2313 | 2973     | 1180.0 | 497.0    | 2374    | 2397  | 2823     |
| 985.0          | 428.4          | 2299    | 2317 |          | 1185.0 | 498.7    | 2376    | 2399  |          |
| 990.0          | 430.2          | 2301    | 2319 |          | 1190.0 | 500.4    | 2378    | 2401  |          |
| <b>→</b> 995.0 | 432.1          | 2303    | 2321 |          | 1195.0 | 502.1    | 2380    | 2403  |          |
| 1000.0         | 433.9          | 2304    | 2322 |          | 1200.0 | 503.7    | 2382    | 2405  |          |
| 1000.0         | 400.7          | 2004    | £9££ | . 20/3   | 1200.0 | JUJ./    | LUCZ    | ~~V~  |          |

TABLE 1. Time-Depth curve values Page 4.

Calibrated sonic interval velocities used from

Well: MCEACHERN #1 Client: GAS AND FUEL EXPLORATION Survey units: METRES Datum: 0.0

275.0 to

2290.0

----VELOCITIES--------VELOCITIES----. Datum One-way Datum One-way time(ms) Average RMS Interval time(ms) Average RMS Interval Depth Depth 2409 2494 3412 1205.0 505.2 2385 3515 1405.0 570.5 2463 1210.0 506.5 2389 2414 3886 1410.0 572.0 2465 2497 3429 508.0 573.3 2468 2500 3683 1215.0 2392 2417 3137 1415.0 2503 3290 2393 2419 2958 574.9 2470 1220.0 509.7 1420.0 3104 511.6 2395 2420 2721 1425.0 576.5 2472 2505 1225.0 2790 2474 2507 3304 513.4 2396 2421 1430.0 578.0 1230.0 2422 579.4 2477 2510 3417 515.2 2397 2779 1435.0 **№**235.0 580.9 2399 2975 2479 2512 3384 516.8 2424 1440.0 1240.0 2922 2481 2515 3358 1245.0 518.6 2401 2426 1445.0 582.4 520.4 2402 2427 2730 1450.0 583.9 2483 2517 3252 1250.0 3474 522.0 2404 2430 3112 1455.0 585.4 2486 2520 1255.0 2489 2524 3918 523.5 2407 2433 3276 586.7 1260.0 1460.0 2526 2979 1265.0 525.2 2409 2435 1465.0 588.2 2491 3288 2437 2959 1470.0 589.7 2493 2528 3198 1270.0 526.9 2410 528.6 3407 1275.0 2438 2919 1475.0 591.2 2495 2531 2412 3404 592.7 2497 2533 1280.0 530.4 2413 2439 2722 1480.0 2536 3435 1285.0 532.4 2414 2440 2527 1485.0 594.1 2499 1290.0 534.1 2415 2441 2933 1490.0 595.6 2502 2538 3400 1295.0 2955 2504 2541 3521 535.8 2417 2443 1495.0 597.0 2544 2419 2445 3017 598.4 2507 3681 1300.0 537.5 1500.0 1305.0 2509 3619 539.2 2420 2447 2848 1505.0 599.8 2547 540.9 2422 2448 2969 1510.0 601.2 2512 2550 3571 1310.0 2423 2450 2903 2514 2553 3591 JS15.0 542.6 1515.0 602.6 2555 2990 2517 3436 1320.0 544.3 2425 2452 1520.0 604.0 1325.0 546.0 2427 2454 3027 1525.0 605.6 2518 2557 3146 547.6 2429 2456 3012 607.1 2520 2559 3247 1330.0 1530.0 549.2 2458 608.7 2522 2561 3266 1335.0 2431 3199 1535.0 550.7 2433 2461 3300 1540.0 610.1 2524 2564 3425 1340.0 2464 2527 2567 1345.0 552.1 2436 3552 1545.0 611.4 3948 553.8 2438 2466 2943 1550.0 612.9 2529 2569 3351 1350.0 2531 555.5 2439 2467 2571 3313 1355.0 2976 1555.0 614.4 2470 3157 616.0 2533 2573 3217 1360.0 557.1 2441 1560.0 1365.0 558.7 2443 2472 3077 1565.0 617.5 2534 2575 3193 2446 2475 3444 619.1 2536 2577 3160 1370.0 560.1 1570.0 1375.0 2448 2478 3481 1575.0 620.7 2538 2579 3226 561.6 2539 3193 1380.0 563.1 2451 2480 3282 1580.0 622.2 2580 623.7 1385.0 564.6 2453 2483 3415 1585.0 2541 2582 3314 2455 3304 625.4 2542 2584 3023 1390.0 566.1 2486 1590.0 2544 2585 2940 ₩375.0 567.6 2458 2488 3365 1595.0 627.1 2545 3135 1400.0 569.1 2460 2491 3366 1600.0 628.7 2586

TABLE 1. Time-Depth curve values Page 5.

Well: MCEACHERN #1 Client: GAS AND FUEL EXPLORATION Survey units: METRES Datum: 0.0 Calibrated sonic interval velocities used from 275.0 to 2290.0

| Datum              | One-way        | VE       | 00171  | =0           | Datin  | O        |         |      | T=0                   |
|--------------------|----------------|----------|--------|--------------|--------|----------|---------|------|-----------------------|
| Depth              | time(ms)       |          |        |              | Datum  | One-way  |         |      | IES                   |
| Deptii             | C1386 (1112)   | use Lada | KNO II | ICELVET      | Depth  | CIME(MS) | Average | KMS  | Interval <sub>l</sub> |
| 1605.0             | 630.3          | 2546     | 2588   | 3073         | 1805.0 | 687.3    | 2626    | 2677 | 3519                  |
| 1610.0             | 631.9          | 2548     | 2589   | 3163         | 1810.0 | 688.7    | 2628    | 2679 |                       |
| 1615.0             | 633.4          | 2550     | 2591   | 3223         | 1815.0 | 690.1    | 2630    | 2681 | 3540                  |
| 1620.0             | 634.8          | 2552     | 2594   | 3630         | 1820.0 | 691.6    | 2632    | 2683 |                       |
| 1625.0             | 636.2          | 2554     | 2597   | 3735         | 1825.0 | 692.9    | 2634    | 2685 |                       |
|                    |                |          |        |              |        | 0,21,    |         | 2000 | 0,,0                  |
| £30.0              | 637.7          | 2556     | 2598   | 3245         | 1830.0 | 694.2    | 2636    | 2688 | 3709                  |
| 7635.0             | 639.2          | 2558     | 2600   | 3409         | 1835.0 | 695.7    | 2638    | 2690 | 3474                  |
| 1640.0             | 640.7          | 2560     | 2602   | 3336         | 1840.0 | 697.0    | 2640    | 2692 | 3613                  |
| 1645.0             | 642.1          | 2562     | 2605   | 3508         | 1845.0 | 698.4    | 2642    | 2694 | 3767                  |
| 1650.0             | 643.4          | 2565     | 2608   | 3913         | 1850.0 | 699.8    | 2644    | 2696 | 3527                  |
| 1655.0             | 444.0          | 05/7     | 0440   | 744          |        |          |         |      |                       |
| 1660.0             | 644.8          | 2567     | 2610   | 3443         | 1855.0 | 701.2    | 2645    | 2698 |                       |
|                    | 646.1<br>647.3 | 2569     | 2613   | 3901         | 1860.0 | 702.6    | 2647    | 2700 |                       |
| 1665.0<br>1670.0   |                | 2572     | 2617   | 4228         | 1865.0 | 703.8    | 2650    | 2703 |                       |
|                    | 648.7          | 2574     | 2620   | 3504         | 1870.0 | 705.1    | 2652    | 2706 |                       |
| 1675.0             | 650.1          | 2577     | 2622   | 3607         | 1875.0 | 706.5    | 2654    | 2708 | 3586                  |
| 1680.0             | 651.4          | 2579     | 2625   | 3880         | 1880.0 | 707.8    | 2656    | 2710 | 3739                  |
| 1685.0             | 652.9          | 2581     | 2627   | 3383         | 1885.0 | 709.1    | 2658    | 2713 |                       |
| 1690.0             | 654.4          | 2582     | 2628   | 3159         | 1890.0 | 710.5    | 2660    | 2715 |                       |
| 1695.0             | 656.0          | 2584     | 2630   | 3257         | 1895.0 | 711.8    | 2662    | 2718 |                       |
| 1700.0             | 657.4          | 2586     | 2632   | 3410         | 1900.0 | 713.1    | 2665    | 2720 | 3877                  |
|                    |                |          |        | 0.420        | 1,0010 | 710.1    | 2000    | 2/20 | 3677                  |
| 1705.0             | 658.8          | 2588     | 2635   | 3601         | 1905.0 | 714.4    | 2667    | 2722 | 3785                  |
| 710.0              | 660.2          | 2590     | 2637   | 3722         | 1910.0 | 715.7    | 2669    | 2725 | 3840                  |
| <sub>x</sub> 715.0 | 661.5          | 2593     | 2640   | 3727         | 1915.0 | 717.0    | 2671    | 2727 | 3838                  |
| 1720.0             | 662.9          | 2595     | 2642   | 3542         | 1920.0 | 718.2    | 2673    | 2730 | 4041                  |
| 1725.0             | 664.4          | 2596     | 2644   | 3360         | 1925.0 | 719.6    | 2675    | 2732 | 3551                  |
| 4                  |                |          |        |              |        |          |         |      |                       |
| 1730.0             | 665.9          | 2598     | 2646   | 3290         | 1930.0 | 721.1    | 2676    | 2733 | 3312                  |
| 1735.0             | 667.5          | 2599     | 2647   | 3298         | 1935.0 | 722.6    | 2678    | 2735 | 3319                  |
| 1740.0             | 668.9          | 2601     | 2649   | 3367         | 1940.0 | 724.1    | 2679    | 2736 | 3536                  |
| 1745.0             | 670.3          | 2603     | 2651   | 3622         | 1945.0 | 725.5    | 2681    | 2738 | 3435                  |
| 1750.0             | 671.6          | 2606     | 2654   | 3842         | 1950.0 | 727.0    | 2682    | 2740 | 3442                  |
| 1755.0             | 673.1          | 2607     | 2656   | 3402         | 1955.0 | 700 4    | 2404    | 0744 | 77/5                  |
| 1760.0             | 674.5          | 2609     | 2658   | 3517         |        | 728.4    | 2684    | 2741 | 3365                  |
| 1765.0             | 675.9          | 2611     | 2660   |              | 1960.0 | 729.9    | 2685    | 2742 | 3344                  |
| 1770.0             | 677.3          | 2613     | 2663   | 3553         | 1965.0 | 731.4    | 2687    | 2744 | 3352                  |
| 1775.0             | 678.7          |          |        | 3541<br>3530 | 1970.0 | 732.9    | 2688    | 2745 | 3416                  |
| 1//040             | 0/0./          | 2615     | 2665   | 3529         | 1975.0 | 734.3    | 2690    | 2747 | 3580                  |
| 1780.0             | 680.2          | 2617     | 2667   | 3491         | 1980.0 | 735.6    | 2692    | 2750 | 3983                  |
| 1785.0             | 681.6          | 2619     | 2669   | 3475         | 1985.0 | 736.9    | 2694    | 2752 | 3655                  |
| 790.0              | 683.0          | 2621     | 2671   | 3569         | 1990.0 | 738.4    | 2695    | 2753 | 3421                  |
| ~i'795.0           | 684.4          | 2623     | 2673   | 3524         | 1995.0 | 739.7    | 2697    | 2755 | 3715                  |
| 1800.0             | 685.9          | 2624     | 2675   | 3381         | 2000.0 | 740.9    | 2699    | 2758 | 4124                  |
|                    |                |          |        |              |        |          | -       |      |                       |

TABLE 1.

# Time-Depth curve values

Page 6.

Well : MCEACHERN #1 Survey units : METRES Client : GAS AND FUEL EXPLORATION

Datum : 0.0

Calibrated sonic interval velocities used from 275.0 to 2290.0

| Datum        | One-way  | VE      | LOCITI | ES      | Datum  | One-way  | VEI     | _0СІТІ | ES      |
|--------------|----------|---------|--------|---------|--------|----------|---------|--------|---------|
| Depth        | time(ms) | Average | RMS I  | nterval | Depth  | time(ms) | Average | RMS I  | nterval |
| 2005.0       | 742.4    | 2701    | 2760   | 3524    | 2150.0 | 780.7    | 2754    | 2819   | 4008    |
| 2010.0       | 743.7    | 2703    | 2762   | 3628    | 2155.0 | 782.1    | 2756    | 2821   | 3687    |
| 2015.0       | 745.0    | 2705    | 2764   | 3855    | 2160.0 | 783.4    | 2757    | 2823   | 3756    |
| 2020.0       | 746.3    | 2707    | 2766   | 3882    | 2165.0 | 784.7    | 2759    | 2825   | 3734    |
| 2025.0       | 747.6    | 2709    | 2768   | 3856    | 2170.0 | 785.9    | 2761    | 2827   | 4055    |
| 2020.0       | ,4,.0    | 2/0/    | 2700   | 3030    | 21/0.0 | 700.7    | 2/01    | 2027   | 4000    |
| 2030.0       | 748.9    | 2711    | 2771   | 3899    | 2175.0 | 787.1    | 2763    | 2830   | 4181    |
| <b>035.0</b> | 750.2    | 2713    | 2773   | 3846    | 2180.0 | 788.3    | 2765    | 2832   | 3996    |
| 2040.0       | 751.4    | 2715    | 2776   | 4119    | 2185.0 | 789.6    | 2767    | 2834   | 3886    |
| 2045.0       | 752.7    | 2717    | 2778   | 4017    | 2190.0 | 791.0    | 2769    | 2836   | 3554    |
| 2050.0       | 754.0    | 2719    | 2780   | 3626    | 2195.0 | 792.4    | 2770    | 2838   | 3771    |
|              |          |         |        |         |        |          |         |        |         |
| 2055.0       | 755.5    | 2720    | 2781   | 3357    | 2200.0 | 793.7    | 2772    | 2839   | 3834    |
| 2060.0       | 757.1    | 2721    | 2782   | 3259    | 2205.0 | 794.9    | 2774    | 2842   | 3970    |
| 2065.0       | 758.7    | 2722    | 2783   | 3144    | 2210.0 | 796.2    | 2776    | 2844   | 4032    |
| 2070.0       | 760.2    | 2723    | 2784   | 3284    | 2215.0 | 797.3    | 2778    | 2846   | 4301    |
| 2075.0       | 761.7    | 2724    | 2785   | 3348    | 2220.0 | 798.7    | 2780    | 2848   | 3665    |
|              |          |         |        |         |        |          |         |        |         |
| 2080.0       | 763.0    | 2726    | 2787   | 3667    | 2225.0 | 800.0    | 2781    | 2850   | 3905    |
| 2085.0       | 764.4    | 2728    | 2789   | 3620    | 2230.0 | 801.2    | 2783    | 2852   | 3962    |
| 2090.0       | 765.7    | 2729    | 2791   | 3756    | 2235.0 | 802.6    | 2785    | 2854   | 3625    |
| 2095.0       | 767.0    | 2731    | 2793   | 3878    | 2240.0 | 803.9    | 2786    | 2856   | 3808    |
| 2100.0       | 768.2    | 2734    | 2796   | 4316    | 2245.0 | 805.2    | 2788    | 2857   | 3783    |
|              |          |         |        |         |        |          |         |        |         |
| 2105.0       | 769.4    | 2736    | 2799   | 4108    | 2250.0 | 806.6    | 2789    | 2859   | 3569    |
| 2110.0       | 770.6    | 2738    | 2801   | 4151    | 2255.0 | 807.9    | 2791    | 2861   | 3832    |
| 115.0        | 771.9    | 2740    | 2803   | 3884    | 2260.0 | 809.2    | 2793    | 2863   | 4036    |
| 2120.0       | 773.1    | 2742    | 2806   | 4023    | 2265.0 | 810.4    | 2795    | 2865   | 4138    |
| 2125.0       | 774.5    | 2744    | 2808   | 3785    | 2270.0 | 811.6    | 2797    | 2867   | 4141    |
|              |          |         |        |         |        |          |         |        |         |
| 2130.0       | 775.8    | 2746    | 2810   | 3805    | 2275.0 | 812.8    | 2799    | 2869   | 4039    |
| 2135.0       | 777.1    | 2748    | 2812   | 3919    | 2280.0 | 814.2    | 2800    | 2871   | 3770    |
| 2140.0       | 778.2    | 2750    | 2815   | 4292    | 2285.0 | 815.6    | 2802    | 2872   | 3523    |
| 2145.0       | 779.4    | 2752    | 2817   | 4064    | 2290.0 | 817.0    | 2803    | 2874   | 3660    |

This is an enclosure indicator page. The enclosure PE902117 is enclosed within the container PE902115 at this location in this document.

```
The enclosure PE902117 has the following characteristics:
```

ITEM\_BARCODE = PE902117 CONTAINER\_BARCODE = PE902115

NAME = Synthetic Seismogram Displays

BASIN = OTWAY

PERMIT = PEP 119

TYPE = WELL

SUBTYPE = SYNTH\_SEISMOGRAM

DESCRIPTION = Synthetic Seismogram Displays

(enclosure from appendix 7-Synthetic

Seismograms-of WCR vol.2) for

McEachern-1

REMARKS =

DATE\_CREATED =

DATE\_RECEIVED =

 $W_NO = W1017$ 

WELL\_NAME = McEachren-1

CONTRACTOR = Velseis

CLIENT\_OP\_CO = Gas and Fuel Exploration NL.

This is an enclosure indicator page. The enclosure PE902118 is enclosed within the container PE902115 at this location in this document.

The enclosure PE902118 has the following characteristics:

ITEM\_BARCODE = PE902118
CONTAINER\_BARCODE = PE902115

NAME = Synthetic Seismogram Displays

BASIN = OTWAY
PERMIT = PEP 119

TYPE = WELL

SUBTYPE = SYNTH\_SEISMOGRAM

DESCRIPTION = Synthetic Seismogram Displays

(enclosure from appendix 7-Synthetic

Seismograms-of WCR vol.2) for

McEachern-1

REMARKS = DATE\_CREATED =

DATE\_RECEIVED =

 $W_NO = W1017$ 

WELL\_NAME = McEachren-1

CONTRACTOR = Velseis

CLIENT\_OP\_CO = Gas and Fuel Exploration NL.

This is an enclosure indicator page. The enclosure PE902119 is enclosed within the container PE902115 at this location in this document.

The enclosure PE902119 has the following characteristics:

ITEM\_BARCODE = PE902119
CONTAINER\_BARCODE = PE902115

NAME = Synthetic Seismogram Displays

BASIN = OTWAY
PERMIT = PEP 119
TYPE = WELL

SUBTYPE = SYNTH\_SEISMOGRAM

DESCRIPTION = Synthetic Seismogram Displays

(enclosure from appendix 7-Synthetic

Seismograms-of WCR vol.2) for

McEachern-1

REMARKS = DATE\_CREATED = DATE\_RECEIVED =

 $W_NO = W1017$ 

WELL\_NAME = McEachren-1
CONTRACTOR = Velseis

CLIENT\_OP\_CO = Gas and Fuel Exploration NL.

This is an enclosure indicator page.

The enclosure PE902120 is enclosed within the container PE902115 at this location in this document.

The enclosure PE902120 has the following characteristics:

ITEM\_BARCODE = PE902120
CONTAINER\_BARCODE = PE902115

NAME = Synthetic Seismogram Displays

BASIN = OTWAY
PERMIT = PEP 119

TYPE = WELL

SUBTYPE = SYNTH\_SEISMOGRAM

DESCRIPTION = Synthetic Seismogram Displays (enclosure from appendix 7-Synthetic

Seismograms-of WCR vol.2) for

McEachern-1

REMARKS =

DATE\_CREATED =

DATE\_RECEIVED =

 $W_NO = W1017$ 

WELL\_NAME = McEachren-1
CONTRACTOR = Velseis

CLIENT\_OP\_CO = Gas and Fuel Exploration NL.

# 8. X-RAY DIFFRACTION ANALYSIS



# PETROLOGICAL AND X-RAY DIFFRACTION ANALYSES REPORT

McEACHERN #1

OTWAY BASIN

Dr. S.E. PHILLIPS

Amdel Core Services G.P.O. Box 109 Eastwood, S.A. 5063

April 1990

# INDEX

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAGE                                                           |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
| 1. | SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |  |  |  |  |
| 2. | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |  |  |  |  |
| 3. | METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                              |  |  |  |  |
| 4. | PETROLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |  |  |  |  |
|    | 4.1 McEachern #1, swc 5, depth 2330.6m 4.2 McEachern #1, swc 6, depth 2259.6m 4.3 McEachern #1, swc 8, depth 2202.6m 4.4 McEachern #1, swc 9, depth 2148.6m 4.5 McEachern #1, swc 21, depth 1796.0m 4.6 McEachern #1, swc 22, depth 1766.0m 4.7 McEachern #1, swc 27, depth 1993.6m 4.8 McEachern #1, swc 29, depth 1545.6m                                                                                                                                                                                                                                                                                                                                      | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                       |  |  |  |  |
| 5. | X-RAY DIFFRACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |  |  |  |  |
|    | 5.1 McEachern #1, swc 18, depth 1857.6m 5.2 McEachern #1, swc 22, depth 1766.0m 5.3 McEachern #1, swc 24, depth 1674.6m 5.4 McEachern #1, swc 26, depth 1607.0m 5.5 McEachern #1, swc 29, depth 1545.6m 5.6 McEachern #1, swc 31, depth 1504.6m 5.7 McEachern #1, swc 36, depth 1364.6m 5.8 McEachern #1, swc 38, depth 1239.5m 5.9 McEachern #1, swc 40, depth 1146.6m 5.10 McEachern #1, swc 41, depth 1113.6m 5.11 McEachern #1, swc 43, depth 905.6m 5.12 McEachern #1, swc 44, depth 793.1m 5.13 McEachern #1, swc 45, depth 699.6m 5.14 McEachern #1, swc 46, depth 594.6m 5.15 McEachern #1, swc 47, depth 504.6m 5.16 McEachern #1, swc 48, depth 504.6m | 14<br>14<br>14<br>15<br>15<br>15<br>15<br>16<br>16<br>16<br>16 |  |  |  |  |
| 6. | CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                             |  |  |  |  |
| 7. | FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                             |  |  |  |  |

#### 1. SUMMARY

This report contains the results of a petrological and X-ray diffraction study of selected sidewall core from McEachern #1 in the Otway Basin. Eight samples were provided for thin section description and sixteen for bulk X-ray diffraction.

Quartzarenites and subarkose from McEachern #1 are similar in terms of sediment provenance and depositional environment. The rocks are mineralogically submature to mature. Some contain relatively high proportions of feldspar and lithic fragments. Variations in provenance of lithics are reflected by the number of volcanic and metasedimentary rock fragments. The predominant detrital phases are plutonic quartz, microcline and sodic plagioclase and ubiquitous (though not abundant) garnet. The provenance area is thought, therefore, to have had exposed granitic and metamorphic rocks.

Whatever the ultimate depositional environment, transportation of detritus was sufficiently prolonged to yield mineralogically submature to mature sands. Slight variations in feldspar and lithic abundance probably reflect subtle differences in the distance of transport. Texturally mature sands are likely to have been deposited in high energy regimes, possibly fluvial, alluvial fan or beach environments. Submature sediments, and interbedding of mudstone and sandstone, suggests lower energy environments with current activity. These sediments may represent lagoonal, neritic or overbank deposits. Although terrestrial environments are considered more likely, there is no definitive evidence as to the type of depositional environment.

Sediments analysed by X-ray diffraction all contain quartz, feldspar and clay. Several different types of feldspar were identified, namely, calcian albite, oligoclase, anorthite and microcline. There are significant variations in the relative abundance of clay minerals. In particular, the amount of smectite (?montmorillonite), clinochlore IIB and randomly interstratified material changes noticeably. Below a depth of approximately 1,364m there is significantly less montmorillonite. Other minerals detected include illite/muscovite, dickite, kaolinite, siderite and almandite.

# 2. INTRODUCTION

A series of sidewall core samples from McEachern #1, Otway Basin, were received by Amdel Core Services from Gas and Fuel Exploration N/L. The client requested petrographic descriptions and X-ray diffraction analyses of selected samples. Furthermore, they requested comments on the depositional environment and sediment provenance. The following samples were supplied;

Sidewall core for petrology

| No. | Depth (m) |
|-----|-----------|
| 5   | 2330.6    |
| 6   | 2259.6    |
| 8   | 2202.6    |
| 9   | 2148.6    |
| 21  | 1796.0    |
| 22  | 1766.0    |
| 27  | 1993.6    |
| 29  | 1545.6    |

Sidewall core for X-ray diffraction

| No. | Depth (m) |
|-----|-----------|
| 18  | 1857.6    |
| 22  | 1766.0    |
| 24  | 1674.6    |
| 26  | 1607.0    |
| 29  | 1545.6    |
| 31  | 1504.6    |
| 36  | 1364.6    |
| 38  | 1239.5    |
| 40  | 1146.6    |
| 41  | 1113.6    |
| 43  | 905.6     |
| 44  | 793.1     |
| 45  | 699.6     |
| 46  | 594.6     |
| 47  | 504.6     |
| 48  | 402.6     |

#### 3. METHODS

Sidewall core were impregnated with araldite prior to thin section preparation. Blue dye was used in the araldite to facilitate description of porosity and permeability. Thin sections were systematically scanned to determine lithology, composition, porosity and textural relationships. All percentages given in brief descriptions are based on visual estimates, not point counts.

To determine bulk mineralogy by X-ray diffraction, samples were prepared by hand grinding in acetone and then smeared onto a glass slide. Smears were used as the method of sample preparation to enhance clay peaks. Continuous scans were run from  $3^{\circ}$  to  $75^{\circ}$  2 theta, at  $4^{\circ}$ /minute, using Co K alpha radiation, 50kV and 35mA, on a Philips PW1050 diffractometer. Peaks were identified by comparison with JCPDS files stored in a computer program called XPLOT.

#### 4. PETROLOGY

Many of the samples examined have been extensively damaged during sidewall collection. Detrital grains have been fractured and drilling mud has penetrated into the samples. Due to this damage only brief descriptions of relatively undisturbed areas were possible.

### 4.1 McEachern #1, swc 5, depth 2330.6m

#### Thin section description

The sample is a very fine to medium grained, moderately sorted, mineralogically mature and texturally submature quartzarenite. It has been highly disrupted by sidewall collection.

Framework grains consist dominantly of quartz with minor to trace amounts of feldspar, lithics, muscovite and garnet. Quartz grains vary in the degree of roundness with variations in grain size. Typically, larger grains are rounded, whilst finer grains are subrounded. Most quartz consists of single crystals and there are rare polycrystalline varieties. Extinction in the quartz grains is straight to slightly undulose and there are rare to moderate numbers of inclusions. These characteristics suggest a plutonic source. Feldspars include microcline, plagioclase and K-feldspar which shows some alteration to patchy clays. Several types of lithic clast were recognised, namely chert, shale and metamorphic rock fragments. Several colourless grains with very high relief are probably garnet.

The matrix consists of illite, fractured quartz and possibly kaolin. Some of the kaolin may be authigenic since it forms booklets and rarely is vermiform. Other authigenic minerals and cements include minor amounts of opaque material and carbonate. The opaque material replaces and rims detrital grains and is possibly pyrite. Microspar and micrite cement occurs in blotches and embays quartz grains which float within the cement. It is likely that the micrite has recrystallized to microspar during burial. The very brown colour of the micrite suggests it is Fe rich, probably siderite.

Due to the highly disrupted nature of this sample it is difficult to identify grain relationships. The fact that some muscovite flakes are bent and broken indicates the influence of mechanical compaction. Any primary porosity has been at least partially reduced by the introduction of carbonate and kaolin cements.

#### Interpretation

Sediment provenance, based on the presence of garnet and metamorphic rock fragments, is probably from an amphibole bearing metamorphic terrain. However, the quartz is probably plutonic in provenance suggesting multiple sources. The relative lack of feldspar and lithics indicates the sediment is mineralogical mature. This may be attributed to either long distances of transport or tectonic quiescence in the source region. It is not possible to comment on the depositional environment based on this thin section.

#### 4.2 McEachern #1, swc 6, depth 2259.6m

#### Thin section description

The sample is a highly disrupted, interbedded siltstone - sandstone. In the sandstone, which is a quartzarenite, grains are very fine to coarse in size, with an average of fine, and subround to round in outline. The lack of matrix and good sorting in the quartzarenite indicates that it is mineralogically and texturally mature.

Framework grains are dominantly quartz with minor to trace amounts of feldspar, mica, garnet and lithic fragments. Quartz consists of single crystals with straight to slightly undulose extinction and relatively few mineral and/or fluid inclusions. Feldspars are both fresh and highly altered. They include well rounded plagioclase, microcline and K-feldspar. There are several grains of detrital garnet similar to those observed in sidewall core 5. Several types of lithic fragments were recognised, namely shale and other metamorphic clasts and one igneous clast. The latter is a felted, feldspathic rock with an average length of the elongate feldspar crystals of about 0.03mm.

It is difficult to distinguish the matrix from authigenic minerals and cements in this sample. Illite, which rims detrital quartz grains, was part of an original matrix. There are patches of intergranular kaolin some of which fill pores, and therefore can be interpreted as authigenic. Rare euhedral rhombohedra of carbonate spar are also present, and micrite is replacing mica. Opaque material which partially rims grains could be part of the original matrix or an authigenic mineral. One patch, which is dark olive green in colour, is probably chlorite replacing another mineral.

#### Interpretation

This sample had a similar sediment source to that of sidewall core 5. There is definite evidence of mixed sediment provenance from metamorphic and igneous sources. This is based on the presence of both fresh and altered feldspars, garnet and lithological differences in the rock fragments. The garnet would appear to be of particular significance in identifying the source area. Feldspars and lithics are only minor components of the rock which suggests either long distances of transport or derivation from a tectonically quiescent terrain.

Fluctuations in current activity are suggested by the interbedding of siltstone and sandstone, possibly in a fluvial environment. This terrestrial environment of deposition is a highly speculative suggestion based on the lack of glauconite which typifies so many shallow marine environments.

#### 4.3 McEachern #1, swc 8, depth 2202.6m

#### Thin section description

The sample is a moderately well sorted, very fine to coarse grained subarkose. Average grain size is 0.25mm.

Framework grains consist of quartz, feldspar, lithics, garnet and mica. Quartz grains occur as single crystals with straight to slightly undulose extinction and rare to moderate numbers of inclusions. They are equant and show considerable evidence of rounding. Feldspars are more abundant than in sidewall cores 5 and 6, and consist of angular and rounded, fresh and altered, coarse grained microcline, K-feldspar and plagioclase. Other detrital grains include garnet and rock fragments of metamorphic origin.

There is a high proportion of carbonate cement in this sample. Red-brown micrite has recrystallized to microspar which rims and replaces framework quartz grains. In addition, there are isolated euhedral rhombs of spar which do not have the distinctive red-brown colour. It is possible that there are at least two phases of carbonate present with the red-brown colour indicative of an Fe rich carbonate, possibly siderite. Kaolin booklets also form a distinctive cement where they fill oversized pores. Since micritic carbonate frequently partially rims pores filled with kaolin, it would appear that the carbonate predates precipitation of kaolin. Quartz overgrowths represent a third type of cement and are obvious due to the presence of straight contacts between grains. This silica cement is rare where there is abundant micrite, again indicating that the micrite was an early cement. The final type of authigenic mineral recognised in this sample is an opaque material which fills pores.

The fact that micas are bent indicates considerable mechanical compaction of this sample. Contacts between quartz grains are concavo-convex and long, particularly in the cleaner parts of the thin section. Where carbonate is abundant framework grains float within this cement. Only rare intergranular porosity has been preserved.

#### Interpretation

Framework components in this sample are very similar to those in sidewall cores 5 and 6. However, there is a significant increase in the proportion of feldspar which suggests either a change of sediment provenance, reduced distances of transport or tectonic activity in the source region. A change of sediment provenance is unlikely since detrital garnet is consistent in all the above samples.

There has been considerable diagenetic alteration of the subarkose after burial. Mechanical compaction, recrystallization of an early micritic cement, dissolution of labile components to form oversized pores and precipitation of kaolin in those pores have all significantly reduced porosity and permeability.

Again it is very difficult to identify a depositional environment. If the micrite is siderite then this favours a terrestrial environment, possibly swampy. The fact that this subarkose is only moderately well sorted suggests rapid deposition which could also explain the preservation of feldspar.

#### 4.4 McEachern #1, swc 9, depth 2148.6m

#### Thin section description

The sample is a very fine to coarse grained, poor to moderately sorted, mineralogically mature quartzarenite. Coarse grains, up to 0.6mm in diameter, tend to be subangular to subrounded. Finer grains are mostly subangular and angular.

Framework grains consist dominantly of quartz, with minor to trace amounts of feldspar, mica, lithics, garnet and sphene. Single and rare polycrystalline quartz grains have slightly undulose extinction and rare inclusions. There are some quartz grains with significant numbers of vacuole trails and contacts within polycrystalline grains are highly sutured. Rare coarse grains of microcline and K-feldspar are present, but the proportion is significantly less than in sidewall core 8. Microcline is typically fresh whilst the K-feldspar generally shows minor turbidity and fracturing. Micas are dominantly muscovite, lithics consist of both shale and chert, and there are a few grains of sphene and garnet.

Matrix in this quartzarenite consists of silt sized quartz and illite. There are three different authigenic minerals present, namely micrite, kaolin and an opaque material. The micrite occurs as brownish blotches which have recrystallized to microspar. Kaolin booklets and the opaque material are pore filling. Rare single cubic crystals suggest that the opaque material may be pyrite. There is no evidence of quartz overgrowths.

Texturally, detrital quartz grains float within a matrix (plus cement) of very fine grained quartz, illite, kaolin and micrite. Due to the relative abundance of matrix (plus cement) there is limited development of long and curved contacts between detrital grains. Lithic fragments and micas are commonly bent, indicating some mechanical compaction.

#### Interpretation

Sediment provenance is slightly different to sidewall cores 5, 6, and 8 described above. There is less feldspar, in particular no plagioclase was recognised, sphene was not present in previous samples and there are no volcanic rock fragments. However, the presence of garnet is consistent and rock fragments are typically metasedimentary in origin. These characteristics suggest that sediments were derived from at least one source in common with other sidewall cores lower in the well.

Texturally the quartzarenite is submature which suggests deposition in a low energy environment such as a flood plain, alluvial fan, neritic or lagoonal environment.

#### 4.5 McEachern #1, swc 21, depth 1796.0m

#### Thin section description

The sample is a laminated mudstone, interbedded with a sandstone. There is a gradual decrease in the proportion of quartz from the sandstone into the mudstone, indicating graded bedding. Without knowing the orientation of the sample it is not possible to identify whether this is coarsening or fining upwards.

The laminated mudstone contains abundant illite, with rare, angular silt sized quartz, opaques and micas. The latter are aligned parallel to laminae. Minor patches of Fe staining and micrite are evident, with rare sparry carbonate. The latter is probably authigenic and related to cementation in the sandstone.

The sandstone is a carbonate cemented, well sorted sandstone. Framework grains consist of quartz, mica (biotite), feldspars, lithics, garnet and sphene. Typically quartz grains are fractured due to sidewall collection. Detrital grains are subrounded single crystals, with straight to slightly undulose extinction and rare inclusions. Feldspars include coarse grained fresh microcline, K-feldspar altering to sericite and some which are partially dissolved, and plagioclase which has dissolved along preferred crystallographic axes. Lithics of shale and chert are rare, as are grains of garnet and sphene.

Carbonate spar is the dominant authigenic cement. Kaolin booklets also fill pores. Dust rims on quartz grains indicate the presence of quartz overgrowths. These are most abundant in zones with nominal carbonate cement.

The sandstone has a high proportion of intergranular pores and some micropores due to feldspar dissolution. Contacts between framework grains are typically point and tangential.

#### Interpretation

The relative abundance of feldspars in this sample suggests either a short distance of transport or tectonic activity in the source region. Sediment provenance is similar to that of sidewall core 9 in that garnet and sphene are present and lithics consist of shale and chert.

Diagenetic alteration of the sandstone has significantly altered the nature of porosity and permeability. Carbonate spar and kaolin have significantly reduced primary porosity. The carbonate is likely to be a relatively late diagenetic event. However, the partial dissolution of feldspars has contributed to secondary porosity. Flushing by fresh ground waters would usually cause the dissolution of garnets therefore it is possible that alkaline waters associated with the precipitation of carbonates were responsible for the dissolution of feldspars.

There is no definitive evidence of the depositional environment. Interbedding of mudstone and sandstone is possible in a number of environments although fluvial, neritic, and alluvial fans are the most likely.

#### 4.6 McEachern #1, swc 22, depth 1766.0m

#### Thin section description

The sample is a fine to very coarse grained, well sorted, subarkose. Average grain size is medium (0.3mm) and most grains are subangular to subrounded.

Framework grains consist of quartz, feldspar, mica, lithics and garnet. Quartz grains are characteristically single crystals with undulose extinction and rare inclusions. Feldspar is relatively abundant (5-10%) with fresh microcline and plagioclase, and some dissolution of K-feldspar. The plagioclase has both albite and perthite twins and extinction angles Lithics of chert, shale, that indicate the presence of anorthite. The latter contain metamorphic and volcanic rock fragments are evident. phenocrysts of feldspar in a quartz and feldspathic groundmass. There is a small proportion of metasedimentary lithic fragments,, which consist of fine-grained phyllosilicate minerals and quartz or feldspathic material. Garnets concentrate as a distinct band in the sample. Opaque material associated with the garnet is probably Mg oxide.

Matrix was not recognised and there are only minor proportions of cements and authigenic minerals. These occur as traces of quartz overgrowths, kaolin booklets which fill pores and one isolated crystal of carbonate spar.

Most detrital grains have only point contacts with rare suturing in places. This texture has resulted in a high proportion of intergranular porosity. Rare bent micas are the result of mechanical compaction.

#### Interpretation

The relatively high proportion of feldspars and lithics in this mineralogically submature subarkose indicate either short distances of transport or tectonic activity in the source region. The reintroduction of volcanic lithics implies some kind of change in sediment source when compared to sidewall core 21. High Mg garnets which readily decompose to Mg oxide fall within the almandite-pyrope range that can be derived from either amphibole-bearing metamorphic rocks or mafic igneous rocks. Either source is possible given the nature of lithics in this sample.

Since the subarkose is texturally mature it implies a depositional environment with a high energy regime. Heavy mineral bands are typical of beach deposits and less commonly fluvial sediments. The second environment is favoured because detrital grains are not very well rounded.

# 4.7 McEachern #1, swc 27, depth 1993.6m

#### Thin section description

The sample is a well sorted, mineralogically submature, medium grained subarkose. Grains are typically subangular in outline.

Framework grains are dominated by quartz, with minor feldspar, and trace amounts of garnet, mica and lithic fragments. The quartz is a common or plutonic variety, characterised by straight to slightly undulose extinction and minor inclusions. Feldspar, both sodic and potassic varieties, represents up to 10% of the total rock composition. Some of the K-feldspars are altering to sericite and others are partially dissolved. Albite and carlsbad twins indicate the presence of fresh oligoclase, labradorite and andesine. Isolated grains of garnet have a typical rim of Mg oxide. Lithics include shale and other metasedimentary rock fragments.

Four groups of authigenic minerals and cements are present in minor proportions. Kaolin booklets fill intergranular and oversized pores. There are minor overgrowths on quartz and feldspars grains, and traces of twinned spar which embay adjacent quartz grains.

Grain contacts are generally at points with rare suturing and tangential arrangements evident. Suturing indicates chemical compaction of the sediment. Bent micas and deformed lithics demonstrate the effects of mechanical compaction. Pores are typically intergranular and oversized.

#### Interpretation

The mineralogical and textural maturity of this sample is very similar to that of sidewall core 22. However, there has been a slight change in sediment source since volcanic rock fragments are not apparent. The presence of detrital garnet indicates that at least one sediment source has remained constant throughout the sampled interval.

Diagenetic alteration is restricted to mechanical and chemical compaction, dissolution of labile components to produce oversized pores and the precipitation of authigenic minerals. It is possible that feldspar dissolution has released Si and Al for the precipitation of kaolin and silica cements.

#### 4.8 McEachern #1, swc 29, depth 1545.6m

#### Thin section description

The sample is a very fine to medium grained, moderately well sorted quartzarenite. Extensive damage due to sidewall collection is evident.

Framework grains consist dominantly of quartz, feldspar, lithics, mica and garnet. Quartz grains are of the common or plutonic variety, with straight to slightly undulose extinction, and rare inclusions. Detrital quartz grains are well rounded. Fresh microcline is the most abundant feldspar present. There are examples of feldspars altering to sericite, and plagioclase (albite and possibly andesine) which have not been weathered. Micas are typically present as muscovite and some flakes are up to 0.6mm in length. Lithic fragments consist of large clasts of shale, and volcanic and metamorphic rock fragments. The shale has a characteristic Fe staining in places. Isolated grains of garnet with Mg oxide alteration rims were the only other framework grains recognised.

The matrix in this sample is difficult to identify because of the infiltration of drilling mud. Abundant kaolin is present filling pores and replacing grains, and there is some silt size quartz. It is possible that the latter is due to fracturing. In addition, there is an opaque material which fills pores and there are minor quartz overgrowths.

In coarser grained areas of the thin section grain contacts are typically sutured and tangential. Elsewhere framework grains only have point contacts because of the higher proportion of kaolin and very fine quartz in the matrix.

#### Interpretation

There are less feldspars and lithic fragments than in sidewall core 27 which suggests either longer distances of transport or changes in the source region. Since the assemblage of detrital minerals has not changed it must be assumed that longer distances of transport are responsible for the decline in feldspar abundance. The fact that kaolin is replacing grains (probably feldspar) further indicates the degree of alteration in this sample.

Mineralogically this quartzarenite is mature, but texturally it is submature. The latter indicates a lower energy regime was responsible for deposition than applied for sidewall core 27.

# 5. X-RAY DIFFRACTION

Although relative abundance of mineral phases are described in terms of dominance, subdominance, minor and trace proportions, caution is required in the interpretation of this data. The descriptions are based on peak height which is a function of a number of factors including crystallinity, crystal size and abundance. Due to this bias clay minerals give disproportionately small peaks when compared to highly crystalline minerals such as quartz. Therefore the descriptions are not a true indication of relative abundance. However, they do provide a means of comparing the same mineral in two different samples. Furthermore some minerals (e.g. feldspar) have a tendency to orient in a preferred direction when prepared as a smear. This preferred orientation can result in disproportionately high peaks.

Minerals present in less than approximately 5% of the total rock composition are unlikely to be detected by X-ray diffraction.

Where high backgrounds are recorded in XRD traces these can be attributed to the presence of either randomly interstratified clays or amorphous material. The latter could be organic or inorganic.

#### 5.1 McEachern #1, swc 18, depth 1857.6m

Bulk XRD trace (Fig. 1) indicates that quartz is the dominant mineral present in this sample. There are minor to trace amounts of illite/muscovite, dickite, microcline, oligoclase, siderite and other clay minerals. A very broad background in the clay region suggests the presence of randomly interstratified material. In particular, clinochlore IIB (Fe rich chlorite) and montmorillonite may be present. To positively identify these clays an oriented sample of a less than 2 micron fraction is required.

#### 5.2 McEachern #1, swc 22, depth 1766.0m

Bulk XRD trace (Fig. 2) indicates that quartz is the dominant mineral present. Feldspars are also relatively abundant and include microcline and anorthite. There are minor amounts of dickite and manganese rich almandite (garnet).

#### 5.3 McEachern #1, swc 24, depth 1674.6m

Bulk XRD trace (Fig. 3) shows that quartz is the dominant mineral with subdominant dickite. A high degree of crystallinity is indicated by the sharpness of dickite peaks. This suggests the dickite is authigenic. There is a minor amount of oligoclase, ?albite and illite/muscovite. A broad background in the clay region suggests the presence of clinochlore IIB and montmorillonite, which could be interstratified.

#### 5.4 McEachern #1, swc 26, depth 1607.0m

Bulk XRD trace (Fig. 4) indicates that quartz is the dominant mineral present. There is minor highly crystalline dickite which is probably authigenic. Calcian albite was the only feldspar detected.

Illite/muscovite (2M1), ?clinochlore IIB and ?montmorillonite are present in trace amounts. There is a high background in the clay region and under the major quartz peak. The latter indicates that there may be some organic and/or amorphous material in the sample. Interstratification of clays is also a possible explanation.

#### 5.5 McEachern #1, swc 29, depth 1545.6m

Bulk XRD trace (Fig. 5) demonstrates that quartz is dominant with minor dickite, microcline and albite. There are trace amounts of kaolinite and illite/muscovite.

#### 5.6 McEachern #1, swc 31, depth 1504.6m

Bulk XRD trace (Fig. 6) of this sample, indicates that quartz is dominant with subdominant clinochlore IIB and kaolinite. Minor albite, microcline, siderite and illite/muscovite (2M1) are present. A high background in the clay region indicates the possible presence of montmorillonite and interstratified material.

#### 5.7 McEachern #1, swc 36, depth 1364.6m

Bulk XRD trace (Fig. 7) again shows the dominance of quartz. There is minor dickite and albite and a pronounced broad smectite (?montmorillonite) peak. The very high background is probably due to the presence of smectite.

#### 5.8 McEachern #1, swc 38, depth 1239.5m

Bulk XRD trace (Fig. 8) of this sample illustrates that quartz is the dominant mineral present. Minor dickite, kaolinite, illite/muscovite and albite (calcian) were detected. There is possibly some clinochlore and/or randomly interstratified material.

#### 5.9 McEachern #1, swc 40, depth 1146.6m

Bulk XRD trace (Fig. 9) illustrates that quartz is the dominant mineral present. There is minor dickite/kaolinite and trace amounts of illite/muscovite and albite. The very broad peak at 13 Angstroms is probably montmorillonite.

#### 5.10 McEachern #1, swc 41, depth 1113.6m

Bulk XRD trace (Fig. 10) of this sample demonstrates that quartz is the dominant mineral present. Minor calcian albite, dickite, illite and clinochlore IIB were also detected. The relative proportion of montmorillonite is much greater in this sample than swc 40.

#### 5.11 McEachern #1, swc 43, depth 905.6m

Bulk XRD trace (Fig. 11) indicates the dominance of quartz. There is a minor amount of microcline, calcian albite, clinochlore IIb, kaolinite and illite/muscovite. A relatively high background in the clay region suggests that there may be some smectite or randomly interstratified material present.

#### 5.12 McEachern #1, swc 44, depth 793.1m

Bulk XRD trace (Fig. 12) demonstrates the dominance of quartz with subdominant to minor albite, illite/muscovite and clinochlore IIB. Again the broad clay peak is probably montmorillonite.

#### 5.13 McEachern #1, swc 45, depth 699.6m

Bulk XRD trace (Fig. 13) of this sample indicates that quartz is dominant with subdominant albite and minor illite/muscovite, clinochlore IIB and kaolinite. There is only a trace of montmorillonite when compared to sidewall cores 41 and 46.

#### 5.14 McEachern #1, swc 46, depth 594.6m

Bulk XRD trace (Fig. 14) indicates the dominance of quartz and albite (calcian). There is a trace amount of illite/muscovite, kaolinite and possibly calcite. The relative proportion of montmorillonite is high in this sample.

#### 5.15 McEachern #1, swc 47, depth 504.6m

Bulk XRD trace (Fig. 15) of this sample shows quartz to be the dominant mineral present with minor albite and kaolinite. There are trace amounts of illite/muscovite and clinochlore IIB. The high clay background suggests there may be some randomly interstratified material present.

# 5.16 McEachern #1, swc 48, depth 402.6m

Bulk XRD trace (Fig. 16) again indicates the dominance of quartz and albite. There is minor illite/muscovite and clinochlore IIB in the sample.

#### 6. CONCLUSIONS

#### a) Petrology

Quartzarenites and subarkose from McEachern #1 are all very similar in terms of likely sediment provenance and type of depositional environment. There are subtle variations in mineral and textural maturity which reflect minor differences between samples.

Proportions of feldspars and lithics are variable and suggest either differences in distances of sediment transport or slight changes in provenance. Garnet is ubiquitous to all samples and indicates that metamorphic rocks were probably exposed to erosion during the entire period of deposition. Intermittent introduction of volcanic rock fragments are likely to be the result of tectonic activity in the source area.

Some of the sediments, which are texturally mature, reflect depositional environments with high energy regimes. There is no definitive evidence as to the nature of this environment. It is possible that either fluvial, alluvial fan or beach environments are implicated. Texturally submature samples and interbedding of sandstones and mudstones, reflect lower energy environments with fluctuations in current activity. These samples may represent lagoonal, neritic or overbank deposits. A terrestrial environment is tentatively favoured for both hydraulic regimes because of the lack of fossils and glaucony which usually characterise shallow marine conditions.

Diagenetic alteration is pronounced in those sidewall core where there is a recrystallized carbonate cement (?siderite). Elsewhere, mechanical compaction, kaolinization and minor silicification are important controls on porosity and permeability. Minor dissolution of feldspars has also contributed to porosity in one sample.

#### b) X-ray diffraction

Bulk mineralogy demonstrates that quartz is the dominant mineral in all samples. Feldspars are the next most abundant mineral with calcian albite and microcline occurring in many samples. The relative proportions of clay minerals are highly variable and where abundant are probably associated with mudstones. Dickite concentrates in samples with a low clay content, it is crystalline in most samples and possibly authigenic in origin. There are varying amounts of randomly interstratified material, clinochlore and montmorillonite which could cause formation damage because they are highly reactive. Below approximately 1,364m the relative proportion of montmorillonite is significantly reduced. The only carbonate mineral detected was siderite. A Mg rich variety of almandite was detected in sidewall core 22. All the illite/muscovite present in these samples is a 2M1 variety which is likely to be detrital in origin.

# 7. FIGURES

Bulk XRD traces of each sample have been labelled to indicate only the strongest peak for each mineral. The following labels have been used;

A = almandite
Al = albite
An = anorthite
C = clinochlore IIB
D = dickite
I = illite/muscovite (2M1)
K = kaolinite
M = microcline
Mo = montmorillonite
O = oligoclase
Q = quartz
Sm = smectite
S = siderite



FILENAME: MCE-18, CPI











ELENAME: MCE-31.CPI





FILEMAME: MCE-38,CPI













FILENAME: MCE-46.CPI



EILENAME: mce-47.cpi



# 9. VITRINITE REFLECTANCE

Registered Office: 171 Flinders St., Melbourne, 3000. Address all mail to Box 1841Q, G.P.O. Melbourne, 3001. Cable Address: 'Gafcor'. Telephone: 652 4222. Telex: AA31422.

When replying please quote

27th April, 1990

Mrs Joan Cook
Director
Keiraville Konsultants Pty Ltd
7 Dallas Street
KEIRAVILLE NSW 2500

Dear Mrs Cook

Re: McEACHERN NO. 1

T.O.C. VITRINITE REFLECTANCE

In reference to my telephone conversation of today, I am sending you the following washed - dried cutting samples for T.O.C measurement and vitrinite reflectance evaluation.

| No. | Depth (m)   |
|-----|-------------|
| 1   | 2355        |
| 2   | 2360        |
| 3   | 2365        |
| 4   | 2370        |
| 5   | 2375        |
| 6   | 2380        |
| 7   | 2384 (T.D.) |
|     |             |

These samples have been taken from the Casterton Formation in the well McEachern No. 1 which was recently drilled in PEP 119 in the Otway Basin of Victoria.

Please do not hesitate to contact me on (03) 652 4807 if there is any problems regarding the samples.

Yours sincerely

V. Skkeri

V. Akbari Senior Geologist



TELEPHONE: (042) 29 9843 INTERNATIONAL: 61-42-299843 TELEX: PUBTLX AA29262 - NBR WG083

# KEIRAVILLE KONSULTANTS PTY. LTD.

7 DALLAS STREET, KEIRAVILLE, N.S.W. AUSTRALIA, 2500

V. Akbari Gas and Fuel Exploration 171 Flinders Street MELBOURNE 3000 Victoria

28.3.90

Dear Mr. Akbari

Please find enclosed Vitrinite Reflectance results sheets, work sheets and Total Organic Carbon results for 18 samples from McEACHERN No.1 and an account on Invoice No. 1662.

Yours sincerely

Koan Cook

Enc1

| K.K.  | Depth  | SWC |       |            | A2/1 |
|-------|--------|-----|-------|------------|------|
| No.   | (m)    | No. | TOC   |            |      |
|       |        |     |       |            |      |
| v2202 | 402.6  | 48  | 0.32  |            |      |
| v2203 | 504.6  | 47  | 0.53  | Ave. 0.38  |      |
| v2204 | 699.6  | 45  | 0.16  | Ave : 0.38 |      |
| v2205 | 793.1  | 44  | 0.48  |            |      |
| v2206 | 1048.6 | 42  | 0.40  |            |      |
| v2207 | 1113.6 | 41  | 0.40  |            |      |
| v2208 | 1174.5 | 39  | 0.63  |            |      |
| v2209 | 1289.5 | 38  | 0.56  |            |      |
| v2210 | 1364.6 | 36  | 16.10 |            |      |
| v2211 | 1414.1 | 34  | 0.67  |            |      |
| v2212 | 1461.6 | 32  | 0.34  |            |      |
| v2213 | 1504.6 | 31  | 0.31  | 0-53       |      |
| v2214 | 1573   | 28  | 1.20  | ,          |      |
| v2215 | 1674.6 | 24  | 0.46  |            |      |
| v2216 | 1741   | 23  | 0.53  |            |      |
| v2217 | 1857.6 | 18  | 0.45  |            |      |
| v2218 | 2023.6 | 13  | 0.36  |            |      |
| v2219 | 2226.6 | 7   | 0.34  | 35.        |      |
|       |        |     |       | -85 0.47   |      |
|       |        |     | 1     | -85 0.47   |      |
|       |        |     | 71    |            |      |

A1/1

|             |                  |       |           |    | AI/I                                                                                                                                                                                                                                                                                                                                                     |
|-------------|------------------|-------|-----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K.K.<br>No. | Depth<br>(m)     | R max | Range     | N  | Description Including Liptinite (Exinite) Fluorescence                                                                                                                                                                                                                                                                                                   |
| V2202       | 402.6<br>SWC 48  | 0.41  | 0.27-0.50 | 27 | Sparse phytoplankton and liptodetrinite, yellow to orange, rare to sparse cutinite, yellow to orange. (Sandstone>siltstone>shaly coal. Shaly coal rare, V>>I>L. Vitrite. Dom common, I>V>or=L. Inertinite sparse to common, vitrinite and liptinite sparse. Pyrite common. Glauconite and iron oxide sparse.)                                            |
| v2203       | 504.6<br>SWC 47  | 0.38  | 0.26-0.54 | 28 | Sparse phytoplankton, yellow to orange, rare to sparse cutinite and liptodetrinite, yellow to orange, rare sporinite, yellow to dull orange. (Siltstone>sandstone. Dom common, I>V>L. Inertinite and vitrinite common, liptinite sparse. Sparse yellow oil droplets in siltstone. Pyrite common. Iron oxide sparse.)                                     |
| v2204       | 699.6<br>SWC 45  | 0.42  | 0.32-0.53 | 15 | Rare cutinite and liptodetrinite, yellow to orange, rare sporinite, yellow to dull orange, rare bituminite, brown. (Sandstone>carbonate>shaly coal. Shaly coal sparse, I>V>L. Inertinite>vitrinite>duroclarite= clarite. Dom sparse, I>V>L. Inertinite sparse, vitrinite rare to sparse, liptinite rare. Pyrite and iron oxide sparse.)                  |
| v2205       | 793.1<br>SWC 44  | 0.45  | 0.33-0.63 | 27 | Sparse cutinite, yellow to dull orange, rare sporinite, dinoflagellates/acritarch and liptodetrinite, yellow to orange. (Sandstone>>shaly coal. Shaly coal sparse, V>I>L. Vitrite>clarite=vitrinertite. Dom abundant, I>V>L. Inertinite abundant, vitrinite common to abundant, liptinite sparse. Pyrite sparse. Iron oxide rare.)                       |
| v2206       | 1048.6<br>SWC 42 | 0.50  | 0.34-0.63 | 26 | Rare to sparse cutinite, yellow to orange, rare sporinite, phytoplankton and liptodetrinite, yellow to orange. (Sandstone>>shaly coal>coal>siltstone. Coal common, I>>V>>L. Inertite>vitrite. Shaly coal common, I>>V>>L. Inertite. Dom abundant, I>V>L. Inertinite common, vitrinite sparse, liptinite rare to sparse. Pyrite sparse. Iron oxide rare.) |
| v2207       | 1113.6<br>SWC 41 | 0.49  | 0.40-0.61 | 26 | Sparse cutinite, yellow to dull orange, sparse ?dinoflagellate/acritarch, yellow to orange, rare <u>Botryococcus</u> related telalginite, yellow to orange. (Sandstone>siltstone>coal. Coal rare, I=V>>L. Vitrite=inertite. Dom abundant, I>L>V. INertinite common, liptinite sparse to common, vitrinite sparse. Pyrite and iron oxide sparse.)         |

A1/2

| K.K.<br>No. | Depth<br>(m)     | -<br>R max Range | N  | Description Including Liptinite (Eximite) Fluorescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------------------|------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v2208       | 1174.5<br>SWC 39 | 0.54 0.46-0.70   | 18 | Sparse cutinite, yellow to orange, rare <u>?Botryococcus</u> related telalginite, yellow, sparse phytoplankton and liptodetrinite, yellow to orange, rare sporinite, yellow to orange. (Siltstone>sandstone>claystone. Dom common, I>L>V. Inertinite common, liptinite sparse, vitrinite rare. Sparse ?oil droplets, yellow. Iron oxide common. Pyrite sparse.)                                                                                                                                                                                                                                                         |
| v2209       | 1289.5<br>SWC 38 | 0.55 0.44-0.69   | 12 | Sparse liptodetrinite, yellow to orange. rare to sparse sporinite, yellow to dull orange, rare cutinite, orange. (Calcareous siltstone>carbonate. Dom common, I>L>V. Inertinite common, liptinite sparse, vitrinite rare to sparse. Iron oxide sparse. Pyrite rare to sparse.)                                                                                                                                                                                                                                                                                                                                          |
| v2210       | 1364.6<br>SWC 36 | 0.49 0.40-0.67   | 27 | Major sporinite, bright yellow to orange, abundant cutinite and liptodetrinite, yellow to orange, sparse resinite, yellow to orange, rare suberinite and exsudatinite, orange to dull orange. (Claystone>shaly coal>coal>coal. Shaly coal major, L>V>I. Clarite>vitrite.  The composition of macerals;  Vitrinite = 20.0%  Liptinite = 79.8%  Inertinite = 0.2%  Coal abundant to major, L>V>I. Clarite>vitrite.  The composition of macerals;  Vitrinite = 40.0%  Liptinite = 59.4%  Inertinite = 0.6%  Dom abundant, V>L>I. Vitrinite abundant, liptinite common, inertinite sparse. Pyrite sparse. Iron oxide rare.) |
| v2211       | 1414.1<br>SWC 34 | 0.45 0.39-0.54   | 3  | Rare sporinite and liptodetrinite, orange to dull orange, rare phytoplankton and cutinite, orange. (Carbonate. Dom common, I>>L>V. Inertinite common, liptinite sparse and vitrinite rare. Rare shell fragments and other fossils. Mineral fluorescence major, green and orange. Rare bitumen, dull orange. Rare oil drops, yellow. Iron oxide and pyrite sparse.)                                                                                                                                                                                                                                                      |
| v2212       | 1461.6<br>SWC 32 | 0.58 0.41-0.68   | 7  | Rare liptodetrinite, orange to dull orange. (Carbonate. Dom sparse, L>>I>V. All three maceral groups rare. Rare shell fragments and other fossils. Mineral fluorescence major, green and orange. Pyrite common. Iron oxide common.)                                                                                                                                                                                                                                                                                                                                                                                     |

| K.K.<br>No. | Depth<br>(m)     | -<br>R max Range | N  | Description Including Liptinite (Exinite) Fluorescence                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|------------------|------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v2213       | 1504.6<br>SWC 31 | 0.47 0.42-0.52   | 5  | Rare liptodetrinite, orange to dull orange. (Calcareous siltstone>carbonate. Don sparse, I>>V>L. Inertinite sparse, vitrinite and liptinite rare. Mineral fluorescence abundant, yellow to orange. Pyrite common. Iron oxide rare.)                                                                                                                                                                                                      |
| v2214       | 1573<br>SWC 28   | 0.44 0.33-0.59   | 7  | Sparse cutinite, phytoplankton and liptodetrinite, yellow to orange, sparse sporinite, orange, rare suberinite, dull orange. (Calcareous siltstone>> claystone>>coal>shaly coal. Coal rare, I. Inertite. Shaly coal rare, V>>L. Clarite. Dom common, L>I>>V. LIptinite and inertinite common, vitrinite rare. Rare fossil fragments. Mineral fluorescence dominant, green. Bitumen rare, dull orange. Pyrite common. Iron oxide sparse.) |
| v2215       | 1674.6<br>SWC 24 | 0.48 -           | 1  | Rare phytoplankton and liptodetrinite, yellow to orange, rare sporinite and cutinite, orange. (Calcareous siltstone>>claystone>>shaly coal>coal. Coal rare, I. inertite. Shaly coal rare, I. Inertite. Dom common, I>L>>V. Inertinite common, liptinite sparse, vitrinite rare. Rare fossil fragments. Mineral fluorescence dominant, green. Pyrite common. Iron oxide sparse.)                                                          |
| v2216       | 1741<br>SWC 23   | 0.51 0.49-0.54   | 4  | Rare phytoplankton, liptodetrinite and cutinite, yellow to orange, rare sporinite, orange. (Calcareous siltstone. Don common, I>L>>V. Inertinite common, liptinite sparse, vitrinite rare. Rare fossil fragments. Mineral fluorescence dominant, green. Rare bitumen, orange. Pyrite common. Iron oxide common.)                                                                                                                         |
| v2217       | 1857.6<br>SWC 18 | 0.52 0.40-0.65   | 5  | Rare phytoplankton and liptodetrinite, orange. (Calcareous siltstone. Don common, I>>L>V. Inertinite common, liptinite and vitrinite rare. Rare fossil fragments. Mineral fluorescence dominant, green. Oil drops rare, yellow. Pyrite sparse. Iron oxide rare.)                                                                                                                                                                         |
| v2218       | 2023.6<br>SWC 13 | 0.59 0.47-0.64   | 14 | Rare phytoplankton and liptodetrinite, yellow to orange. (Calcareous siltstone>sandstone. Don sparse, I>>L>V. Inertinite sparse, liptinite and vitrinite rare. Rare fossil fragments. Mineral fluorescence dominant, green. Oil drops rare, yellow. Pyrite and iron oxide sparse.)                                                                                                                                                       |
| v2219       | 2226.6<br>SWC 7  | 0.58 0.46-0.73   | 27 | Rare liptodetrinite and phytoplankton, yellow to orange. (Siltstone>sandstone. Dom sparse to common, I>V>>L. Inertinite and vitrinite sparse, liptinite rare. Pyrite and iron oxide sparse.)                                                                                                                                                                                                                                             |

|      | ***** | Mc | Eacher. | n - | į |
|------|-------|----|---------|-----|---|
| WELL | MAMF. |    | Coccie  | /•  |   |

SAMPLE NO. V. 22.02 DEPTH. 402.6 m

FGV = First Generation Vitrinite -

1 = inectinite

| 7                    |      | 1              | T    | <del></del> | Υ                                              |          | iner1       | ·    | T               | Γ    | r               | ,    |                 |                 |          |      |                 | , ———       |             |          |                 |             |          |
|----------------------|------|----------------|------|-------------|------------------------------------------------|----------|-------------|------|-----------------|------|-----------------|------|-----------------|-----------------|----------|------|-----------------|-------------|-------------|----------|-----------------|-------------|----------|
| o <b>5</b>           | Read | Pop            | Type | Ro 🖇        | NO.<br>Read                                    | Rop      | Pop<br>Type | Ro ≸ | No.<br>Read     | Roge | Pope            | Ro ≸ | NO.<br>Read     | Rope            | Pope     | Ro ≴ | No.<br>Read     | Roge        | Pop<br>Type | Ro 1     | No.<br>Read     | Pop         | PS       |
| 0                    |      |                |      | .46         | 2                                              |          |             | .82  |                 |      |                 | 1.18 |                 |                 |          | 1.54 |                 |             |             | 1.90     |                 |             | T        |
| 1                    |      | 1              |      | .47         | 2                                              |          |             | . 83 |                 |      |                 | 1.19 |                 |                 |          | 1.55 |                 |             |             | 1.91     |                 |             | $\vdash$ |
| 2                    |      | 1              |      | .48         |                                                |          |             | . 84 |                 |      |                 | 1.20 |                 | · ·             |          | 1.56 |                 |             |             | 1.92     |                 |             | ├        |
| 3                    |      | <b>1</b>       |      | .49         | I                                              |          |             | .85  |                 |      |                 | 1.21 |                 | <u> </u>        |          | 1.57 |                 |             |             | 1.93     |                 |             | $\vdash$ |
| 4                    |      | 1              |      | .50         | 3                                              | <b>V</b> |             | . 86 |                 |      |                 | 1.22 |                 |                 |          | 1.58 |                 |             |             | 1.94     |                 |             | ┝        |
| 5                    |      |                |      | .51         |                                                | ¥        |             | .87  |                 |      |                 | 1.23 |                 |                 |          | 1.59 |                 |             | —           | 1.95     |                 |             | -        |
| 6                    |      |                |      | .52         |                                                |          |             | .88  |                 |      |                 | 1.24 |                 |                 |          | 1.60 |                 |             |             | 1.96     |                 |             | -        |
| 7                    |      |                |      | .53         |                                                |          |             | .89  |                 |      |                 | 1.25 |                 |                 |          | 1.61 |                 |             |             | 1.97     | -+              |             |          |
| 3                    |      |                |      | .54         |                                                |          |             | .90  |                 |      |                 | 1.26 |                 |                 |          | 1.62 |                 | <del></del> |             | 1.98     |                 |             |          |
| 7                    |      |                |      | . 55        |                                                |          |             | .91  |                 |      |                 | 1.27 |                 |                 |          | 1.63 |                 | -+          |             | 1.99     |                 |             |          |
| 7                    |      |                |      | .56         |                                                |          |             | .92  | $\neg \uparrow$ |      |                 | 1.28 |                 | _               |          | 1.64 |                 | -+          |             | 2.00     | $\dashv$        |             |          |
|                      |      |                |      | . 57        |                                                |          |             | .93  |                 |      |                 | 1.29 | $\neg \uparrow$ |                 | _        | 1.65 | -               |             |             | 3.01     |                 |             |          |
|                      |      |                |      | .58         |                                                |          |             | . 94 |                 |      |                 | 1.30 |                 |                 |          | 1.66 | $\dashv$        |             |             | 2.02     |                 |             |          |
|                      |      |                |      | . 59        |                                                | . 1      |             | .95  |                 |      |                 | 1.31 |                 |                 |          | 1.67 | $\neg \uparrow$ | -           |             | 2.03     | $\neg \uparrow$ |             |          |
| T                    |      |                |      | .60         | T                                              |          |             | .96  |                 |      |                 | 1.32 |                 |                 |          | 1.68 |                 |             |             | 2.04     | 一十              |             |          |
| I                    |      |                |      | .61         |                                                |          |             | .97  |                 |      | $\neg \uparrow$ | 1.33 | $\neg \uparrow$ | $\neg \uparrow$ | $\neg +$ | 1.69 | _               |             |             | 2.05     | $\dashv$        |             | _        |
| T                    |      |                |      | .62         |                                                | 1        |             | .98  |                 |      |                 | 1.34 |                 |                 |          | 1.70 |                 |             |             | 2.06     | $\neg \uparrow$ |             |          |
| I                    | ) .  | 个              |      | .63         |                                                |          |             | .99  |                 |      |                 | 1.35 |                 |                 |          | 1.71 |                 |             |             | 2.07     | $\dashv$        |             | _        |
|                      |      |                |      | .64         |                                                |          |             | 1.00 |                 |      |                 | 1.36 |                 |                 |          | 1.72 |                 |             |             | .08      |                 | <del></del> | _        |
| Ι                    |      |                |      | .65         |                                                |          |             | 1.01 |                 |      |                 | 1.37 |                 |                 |          | 1.73 |                 |             |             | .09      | 7               |             | _        |
| floor                |      |                |      | .66         |                                                |          |             | 1.02 |                 | 1    |                 | 1.38 |                 |                 |          | 1.74 |                 |             |             | 2.10     |                 |             | _        |
|                      | 2    |                |      | .67         |                                                |          |             | 1.03 |                 | •    |                 | 1.39 |                 |                 |          | 1.75 |                 |             |             | .11      |                 | - 1         | _        |
|                      |      |                |      | .68         |                                                |          |             | 1.04 |                 |      |                 | 1.40 |                 |                 |          | 1.76 |                 |             |             | .12      | $\top$          |             | _        |
| Ι                    | 2    |                | ·    | .69         |                                                |          | 1           | . 05 |                 |      |                 | 1.41 |                 |                 |          | 1.77 | 1               |             |             | ./3      |                 | —           | -        |
| I                    |      |                |      | .70         |                                                |          |             | . 06 |                 |      |                 | 1.42 |                 |                 |          | 1.78 |                 |             |             | .14      |                 |             | _        |
| L                    |      |                |      | .71         |                                                |          | 1           | 07   |                 |      | !               | 1.43 | ,               |                 |          | 1.79 |                 |             |             | .15      | $\neg \vdash$   |             | _        |
| Ш                    |      |                |      | .72         |                                                |          | 1           | .08  |                 |      | 1               | ,44  |                 |                 | ,        | . 80 |                 |             | Or          | ganic    | matte           | r Comp.     | 10       |
| 1                    |      | $\bot \bot$    |      | .73         | <u>.                                      </u> |          |             | .09  |                 |      | 1               | .45  |                 |                 | -1       | . 81 |                 |             | Ε×          | Inite    |                 | ginite      | 1.       |
| Ľ                    | 2    |                |      | .74         |                                                |          |             | .10  |                 |      | 1               | .46  |                 |                 | 1        | .82  |                 |             | 7           |          |                 | _           |          |
| +-                   | -    |                |      | .75         |                                                |          |             | .11  |                 |      |                 | .47  |                 |                 |          | . 83 |                 |             |             | 2 25     |                 |             |          |
| L                    | 3    |                |      | .76         |                                                |          |             | . 12 |                 |      |                 | .48  |                 |                 |          | . 84 |                 |             |             |          | 1.              |             |          |
| L                    |      | FQV            |      | .77         |                                                |          |             | .13  |                 |      |                 | .49  |                 |                 | . 1      | .85  |                 |             | VI          | tr init: | In              | ertinit     | •        |
| $\perp$              |      | $+ \downarrow$ |      | .78         |                                                |          |             | .14  |                 |      |                 | .50  |                 |                 | 1        | . 86 |                 |             |             |          | -               |             |          |
| $\perp \!\!\! \perp$ |      | $\bot \bot$    |      | . 19        |                                                |          |             | . 15 | $\dashv$        | _    |                 | .51  |                 |                 | 1        | . 87 |                 |             |             | 6.3      |                 | 0.5         |          |
| $\perp$              | 2    | $\bot \bot$    |      | .80         |                                                |          |             | . 16 |                 |      |                 | .₽   |                 |                 | 1        | .88  |                 |             |             | <u> </u> | - 1 (           | د ٠ ر       |          |
|                      | -    |                | i    | .81         | - 1                                            |          | 1           | . 17 |                 | - 1  | 1               | . 53 |                 |                 | T,       | . B9 | $\Gamma$        | T           |             |          |                 |             |          |

WELL NAME MC Eachern-1

SAMPLE NO. N. 22 03 DEPTH. 504 6 M TYPE SNC.

FGV = First Generation Vitrinite -

| કે જ     | No.<br>Read                                      | Pope                                             | Pop                                              | Ro 1       | NO.<br>Read                                      | Pop           | Pop      | Ro S         | No.<br>Read | Pop               | Pop          | Ro \$   | NO.             | Pop                | Pop.        | Ro \$ | No.<br>Read       | Pop   | Pop<br>Type         | Do .            | No.                | Pop      | Pop  |
|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------|--------------------------------------------------|---------------|----------|--------------|-------------|-------------------|--------------|---------|-----------------|--------------------|-------------|-------|-------------------|-------|---------------------|-----------------|--------------------|----------|------|
|          |                                                  | +                                                | <del>                                     </del> | 1          | <del>                                     </del> | - <del></del> |          | <del></del>  |             | - 3               | .,,,         | <b></b> |                 | 11.90              | 1770        |       | KEBU              | raige | Туре                |                 | KEBO               | Knge     | Тур  |
| 10       |                                                  | <del> </del>                                     |                                                  | .46        | <del>                                     </del> |               | <b> </b> | .82          |             |                   |              | 1.18    |                 |                    | ·           | 1.54  |                   |       |                     | 1.90            |                    |          |      |
| 11       |                                                  | +                                                |                                                  | .47        | -                                                |               |          | .83          |             |                   |              | 1.19    |                 |                    |             | 1.55  |                   |       |                     | 1.91            |                    | •        |      |
| 12       |                                                  | <del> </del>                                     |                                                  | .48        | 1                                                | <del></del>   |          | . 84         |             |                   |              | 1.20    |                 |                    |             | 1.56  |                   |       |                     | 1.92            |                    |          |      |
| 13<br>14 |                                                  | <del> </del>                                     |                                                  | .49        | 2                                                | <b></b>       |          | .85          |             |                   |              | 1.21    |                 |                    |             | 1.57  |                   |       |                     | 1.93            |                    |          |      |
| 15       |                                                  | <del> </del>                                     |                                                  |            |                                                  |               |          | .86          |             |                   |              | 1.22    |                 |                    |             | 1.58  |                   |       |                     | 1.94            |                    |          |      |
|          |                                                  | ļ                                                |                                                  | .51<br>.52 |                                                  |               |          | .87          |             |                   |              | 1.23    |                 |                    |             | 1.59  |                   |       |                     | 1.95            |                    |          |      |
| 16       |                                                  | -                                                |                                                  |            |                                                  |               | <u> </u> | .88          |             |                   |              | 1.24    |                 |                    |             | 1.60  |                   |       |                     | 1.96            |                    |          |      |
| 8        |                                                  | <del> </del>                                     |                                                  | .গ্ৰ       |                                                  | <del>\</del>  |          | . 89<br>. 90 |             |                   |              | 1.25    |                 |                    |             | 1.61  |                   |       |                     | 1.97            |                    |          |      |
| 19       |                                                  | -                                                |                                                  | .55        |                                                  |               |          |              |             |                   |              | 1.26    |                 |                    |             | 1.62  |                   |       |                     | 1.98            |                    |          |      |
|          |                                                  |                                                  |                                                  | .56        |                                                  |               |          | .91          |             |                   |              | 1.27    |                 |                    |             | 1.63  |                   |       |                     | 1.99            |                    |          |      |
| 20       |                                                  | -                                                |                                                  | .57        |                                                  |               |          | .92          |             | $\longrightarrow$ |              | 1.28    |                 |                    |             | 1.64  | $\longrightarrow$ |       |                     | 2.00            |                    |          |      |
| 2        |                                                  |                                                  |                                                  | .58        |                                                  |               |          | .93          | +           |                   | <del>}</del> | 1.29    |                 |                    |             | 1.65  |                   |       |                     | 5.01            |                    |          |      |
| 3        | -                                                |                                                  |                                                  | .59        |                                                  |               |          | .95          |             |                   |              |         |                 | $\dashv$           |             | 1.66  |                   |       |                     | 2.02            |                    |          |      |
| 4        |                                                  |                                                  |                                                  | .60        |                                                  |               |          | .96          |             |                   |              | 1.31    |                 |                    |             | 1.67  | -+                |       |                     | 2.03            |                    |          |      |
| 5        |                                                  | <del>  </del>                                    |                                                  | .61        |                                                  |               |          | .97          |             |                   |              | 1.32    |                 |                    |             | 1.68  |                   |       |                     | 2.04            |                    |          |      |
| 6        | 7                                                | 不                                                | <del> </del>                                     | .62        | +                                                |               |          | .98          |             |                   |              | 1.33    | $\dashv$        | $\dashv$           |             | 1.69  |                   |       |                     | 2.05            |                    |          |      |
| 7        | <del>!                                    </del> | ╀┤╌┨                                             |                                                  | .63        | <del> -</del>                                    |               |          | .99          |             |                   |              | 1.35    |                 |                    |             | 1.70  |                   |       |                     | 2.06            | $\dashv$           |          |      |
|          | 2                                                | <del>                                     </del> |                                                  | .64        |                                                  |               |          | 1.00         |             |                   |              | 1.36    |                 |                    |             | 1.71  | -+                |       |                     | -07             |                    |          |      |
| 9        | <del>/</del>                                     | ╂                                                |                                                  | .65        |                                                  |               |          | 1.01         |             |                   |              | 1.37    | -               |                    |             | 1.73  |                   |       |                     | .08             |                    |          |      |
| 0        | 2                                                | -+-1                                             |                                                  | .66        |                                                  |               |          | 1.02         |             | <del></del> +     |              | 1.38    |                 |                    |             |       |                   |       |                     | .09             | -+                 |          |      |
| _        |                                                  |                                                  |                                                  | .67        |                                                  |               |          | 1.03         |             |                   |              | 1.39    |                 |                    |             | 1.74  |                   |       |                     | 2.10            |                    |          |      |
| 2        | 2                                                | <del></del>                                      |                                                  | .68        |                                                  |               |          | 1.04         |             |                   |              | 1.40    | _               |                    |             | 1.75  |                   |       |                     | <u>: ] ]   </u> |                    |          |      |
| +        | + 1                                              |                                                  |                                                  | .69        |                                                  |               |          | 1.05         | -+          |                   |              | 1.41    |                 |                    |             | 1.76  | $\dashv$          |       |                     | 12              | -                  | <u> </u> |      |
| +        | 4                                                | -                                                |                                                  | .70        |                                                  | -+            |          | 1.06         |             |                   |              | 1.42    |                 |                    |             | 1.77  | _                 |       |                     | ·/3             |                    |          |      |
| 5        | <del>,  </del>                                   |                                                  |                                                  | .71        |                                                  |               |          | 1.07         | -           | -+                |              | 1.43    | $\dashv$        | -                  |             | 1.78  | -+                |       | 12                  | .14             |                    |          |      |
| 5        | <del>`</del> ;                                   |                                                  |                                                  | .72        |                                                  |               |          | 1.08         |             | <b></b> ├-        |              | 1,44    | `-              |                    |             | 1,80  | -                 |       |                     |                 |                    |          | (2.) |
| 7        | <del>/  </del>                                   |                                                  |                                                  | .73        | . †                                              |               |          | 1.09         |             |                   |              | 1.45    | _               |                    |             | 1.81  |                   |       |                     |                 |                    | r Comp.  | (/e) |
| B        |                                                  | FQV                                              |                                                  | .74        | -+                                               | -             |          | 1.10         | -           |                   |              | 1.46    | <del>-</del>  - | $\overline{\cdot}$ |             | 1.82  |                   |       | —-{ <sup>E</sup> }  | cinite          | ^'                 | ginite   |      |
| ;        |                                                  | 1 77                                             |                                                  | ,75        |                                                  |               |          | 1, 11        |             |                   |              | 1.47    | _               |                    |             | 1.83  |                   |       |                     | 6.3             | - [                |          |      |
|          | 1                                                |                                                  |                                                  | .76        |                                                  |               |          | 1.12         |             |                   |              | .48     |                 |                    |             | 1.84  |                   |       |                     | . ,             |                    |          |      |
| +        | 2                                                | $\dashv \dagger$                                 |                                                  | .77        |                                                  |               |          | 1.13         |             |                   |              | .49     | $\dashv$        |                    | <del></del> | .85   |                   | _     | - \rac{1}{\sqrt{1}} | tr in it        | 110                | rtinit   |      |
|          | 2                                                |                                                  |                                                  | .78        |                                                  | $\neg \neg$   |          | 1.14         |             | $\neg +$          |              | .50     |                 | -+                 |             | . 86  | -+                |       | ── ' '              | ,1              | "   ' <sup>m</sup> | = 11011  | •    |
| 1        |                                                  | -++                                              |                                                  | . 19       |                                                  |               |          | . 15         |             |                   |              | , 51    |                 |                    |             | .87   | $\neg \vdash$     | -     |                     |                 |                    |          |      |
| 1        | 7                                                |                                                  |                                                  | .80        |                                                  |               |          | . 16         | $\neg$      |                   |              | .57     | 1               |                    |             | .88   |                   |       | 7                   | ) e (           |                    | 0.9      |      |
| 5        |                                                  |                                                  |                                                  | .81        |                                                  |               |          | . 17         |             |                   |              | .53     |                 |                    |             | . 89  |                   |       | $\overline{}$       |                 |                    | 1        |      |

| WELL NAME | MAC   | Eachern-1 |  |
|-----------|-------|-----------|--|
| WELL NAME | 1,016 | CUCKEYNO  |  |

SAMPLE NO. V 2704

DEPTH. 699.6 m

TYPE SWC

FGV = First Generation Vitrinite -

| o \$    | No.<br>Read | Roge          | Type     | Ro \$ | NO.<br>Read | Roga     | Pop<br>Type | Ro \$ | No.<br>Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Roge      | Pope           | Ro \$ | NO.<br>Read | Pop<br>Rnge     | Pop<br>Type | Ro ≴ | No.<br>Read | Poge<br>Rige | Pop<br>Type       | Ro 1      | No.<br>Read | Pop             | Po       |
|---------|-------------|---------------|----------|-------|-------------|----------|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------|-------------|-----------------|-------------|------|-------------|--------------|-------------------|-----------|-------------|-----------------|----------|
| 10      |             |               | <u> </u> | .46   | 2           |          |             | .82   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.18  |             |                 |             | 1.54 |             |              |                   | 1.90      |             |                 |          |
| 11      | <u> </u>    |               |          | .47   | 1           |          |             | .83   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.19  |             |                 |             | 1.55 |             |              |                   | 1.91      |             |                 |          |
| 12      |             |               |          | .48   |             |          |             | . 84  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.20  |             |                 |             | 1.56 |             |              |                   | 1.92      |             |                 | ┝        |
| 3       |             |               |          | .49   |             |          |             | .85   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.21  |             |                 |             | 1.57 |             |              |                   | 1.93      |             |                 | <u> </u> |
| 4       |             |               |          | .50   |             |          |             | .86   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.22  |             |                 |             | 1.58 |             |              |                   | 1.94      |             |                 |          |
| 5       |             |               |          | . 51  |             |          |             | .87   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.23  |             |                 |             | 1.59 | _           |              |                   | 1.95      |             |                 |          |
| 6       |             |               |          | .52   |             |          |             | .88   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.24  |             |                 |             | 1.60 | -           |              |                   | 1.96      |             |                 |          |
| 7       |             |               |          | .53   | )           | V        |             | .89   | $\neg \uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.25  |             |                 |             | 1.61 |             |              |                   | 1.97      |             |                 |          |
| 8       |             |               |          | .54   |             |          |             | .90   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.26  |             |                 |             | 1.62 |             |              |                   | 1.98      | -+          |                 |          |
| 9       |             |               |          | . 55  |             |          |             | .91   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.27  |             |                 |             | 1.63 |             |              |                   | 1.99      |             |                 |          |
| 0       |             |               |          | .56   |             |          |             | .92   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.28  |             | $\dashv$        |             | 1,64 |             | -+           |                   | 2.00      |             |                 |          |
| 1       |             |               |          | .57   |             |          |             | .93   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.29  |             |                 | -+          | 1.65 | $\dashv$    |              |                   |           | +           |                 |          |
| 2       |             |               |          | .58   |             |          |             | .94   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.30  | _           | -+              |             | 1.66 |             |              |                   | 2.01      | $\dashv$    |                 |          |
| 3       |             |               |          | . 59  |             |          |             | .95   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.31  |             | $\neg \dagger$  |             | 1.67 | -+          |              |                   | 2.03      | $\dashv$    |                 |          |
| 4       |             |               |          | .60   |             |          |             | .96   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.32  |             | $\neg \uparrow$ |             | 1.68 |             |              |                   |           | -           |                 |          |
| 5       |             |               |          | .61   |             |          |             | .97   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.33  | _           |                 |             | 1.69 |             |              |                   | 05        |             |                 |          |
| 6       |             |               | 1        | .62   |             | Ī        |             | .98   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.34  |             |                 |             | 1.70 | -           |              |                   | .06       | $\dashv$    |                 |          |
| 7]      |             |               |          | .63   |             |          |             | .99   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.35  |             |                 |             | 1.71 | -           |              |                   | .07       | $\dashv$    |                 |          |
| 3       |             |               |          | .64   |             |          |             | 1.00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.36  |             |                 |             | 1.72 |             |              |                   | .08       | -           |                 |          |
| 7       |             | T             |          | .65   |             |          |             | 1.01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.37  |             |                 |             | 1.73 |             | _            |                   | 09        | $\dashv$    |                 |          |
| )       |             |               |          | .66   |             |          |             | 1.02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.38  |             | _               |             | 1.74 | -+          |              |                   | 10        | $\dashv$    |                 |          |
| T       |             |               |          | .67   |             |          |             | 1.03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1              | 1.39  |             |                 |             | 1.75 | $\neg +$    |              |                   | . ] ]     |             |                 |          |
| i       | /           | 不丁            |          | .68   |             |          |             | 1.04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 1.40  | _           |                 |             | 1.76 |             |              |                   | 12        |             |                 |          |
|         |             |               | •        | .69   |             |          |             | 1.05  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | .41   |             |                 |             | .77  |             |              |                   | 13        |             | —               | _        |
| T       | 1           | $\top$        |          | .70   |             |          |             | . 06  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | .42   |             |                 |             | 78   |             |              |                   | 14        | +           |                 |          |
|         |             |               |          | .71   |             |          | 1           | . 07  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1              | .43   |             |                 |             | 1.79 |             |              | 2                 | 15        | $\top$      |                 |          |
| $\perp$ |             |               |          | .72   |             |          | 1           | .08   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1              | ,44   |             |                 |             | .80  |             |              |                   |           |             | Comp.           | 10/      |
| 1       | 1           |               |          | .73   |             |          |             | . 09  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | .45   |             |                 |             | .81  |             |              | Fy                | inite     | AI          | ginite          | 1/6      |
| $\perp$ | 1           |               |          | .74   |             |          |             | .10   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | .46   |             | • ]             |             | .82  |             |              | — 1 <sup>-^</sup> | ,         |             | • · · · · · · · |          |
| $\perp$ |             | $+$ $\Gamma$  |          | .75   |             |          | 1           | .11   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1              | .47   |             |                 | 1           | . 83 |             |              |                   | e`o j     | 1           |                 |          |
| $\perp$ |             | $\perp \perp$ |          | .76   |             |          | 1           | . 12  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | $-\frac{1}{1}$ | .48   |             |                 |             | . 84 |             |              | 7                 | ,         | 1           |                 |          |
| 1.      | 2           |               |          | .77   |             |          | 1           | . 13  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\perp L$ | I              | .49   |             |                 |             | .85  |             |              | VI-               | tr In Its | Ine         | rtinit          | •        |
| $\perp$ | F           | GV            |          | .78   |             |          | 1           | .14   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 1              | . 50  |             |                 |             | . 86 |             |              |                   |           | 1           |                 |          |
| $\perp$ |             |               |          | . 19  | $\bot$      |          |             | . 15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | . 51  |             |                 |             | .87  |             |              |                   | , i,      |             | 0:45            | , —      |
|         | 2           |               |          | 80    |             | <u> </u> | 1           | . 16  | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}$ |           | 1              | 27    |             |                 |             | .88  |             |              | 7                 | 15        | 1           | - 4             | i        |
|         | 2           |               | Ι.       | .81   |             |          | 1           | . 17  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         | 1              | .53   |             |                 |             | . 89 |             |              |                   |           | 1           |                 |          |

WELL NAME MC Eachern

SAMPLE NO V 2205

DEPTH 793.1

TYPE SWC

FGV = First Generation Vitrinite -

| £ 6. | No.<br>Read    | Pop<br>Rnge | Pop<br>Type | Ro 🕽 | NO.<br>Read | Pop<br>Rnga | Pop<br>Type | Ro \$ | No.<br>Read | Pop<br>Rnge | Pope | Ro ≸ | NO.<br>Read | Pop<br>Rnge | Pope<br>Type | Ro \$ | No.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro 💈       | No.<br>Read | Pop<br>Rnge | For  |
|------|----------------|-------------|-------------|------|-------------|-------------|-------------|-------|-------------|-------------|------|------|-------------|-------------|--------------|-------|-------------|-------------|-------------|------------|-------------|-------------|------|
| 10   |                |             |             | .46  |             |             |             | . 82  |             |             |      | 1.18 |             |             |              | 1,54  |             |             |             | 1.90       |             |             |      |
| 11   |                |             |             | .47  |             |             |             | . 83  |             |             |      | 1.19 | ,           |             |              | 1.55  |             |             |             | 1.91       |             | •           |      |
| 12   |                |             |             | .48  |             |             |             | . 84  |             |             |      | 1.20 |             |             |              | 1.56  |             |             |             | 1.92       |             |             |      |
| 13   |                |             |             | .49  | 1           |             |             | .85   |             |             |      | 1.21 |             |             |              | 1.57  |             |             |             | 1.93       |             |             |      |
| 14   |                |             |             | .50  |             |             |             | .86   |             |             | •    | 1.22 |             |             |              | 1.58  |             |             |             | 1.94       |             |             |      |
| 15   |                |             |             | .51  | 2           |             |             | .87   |             |             |      | 1.23 |             |             |              | 1.59  |             |             |             | 1.95       |             |             |      |
| 16   |                |             |             | .52  | 1           |             |             | .88   |             |             |      | 1.24 |             |             |              | 1.60  |             | ·           |             | 1.96       |             |             |      |
| 17   |                |             |             | .53  | 7           |             |             | .89   |             |             |      | 1.25 |             |             |              | 1.61  |             |             |             | 1.97       |             |             |      |
| IB   |                |             |             | .54  | 1           |             |             | .90   |             |             |      | 1.26 |             |             |              | 1.62  |             |             |             | 1.98       |             |             |      |
| 19   |                |             |             | . 55 |             |             |             | .91   |             |             |      | 1.27 |             |             |              | 1.63  |             |             |             | 1.99       |             |             |      |
| 20   |                |             |             | .56  | 2           |             |             | .92   |             |             |      | 1.28 |             |             |              | 1.64  |             |             |             | 2.00       |             |             |      |
| 21   |                |             |             | .57  |             |             |             | . 93  |             |             |      | 1.29 |             |             |              | 1.65  |             |             |             | 2.01       |             |             | _    |
| 22   |                |             |             | .58  | T           |             |             | . 94  |             |             |      | 1.30 |             |             |              | 1.66  |             |             |             | 2.02       |             |             |      |
| 3    |                |             |             | . 59 |             |             |             | .95   |             |             |      | 1.31 |             |             |              | 1.67  |             |             |             | 2.03       |             |             |      |
| 4    |                | - 1         |             | .60  |             |             |             | .96   |             |             |      | 1.32 |             |             |              | 1.68  |             |             |             | 2.04       |             | T           |      |
| 25   |                |             |             | .61  | 7           |             |             | .97   |             |             |      | 1.33 |             |             |              | 1.69  |             |             |             | 2.05       |             |             |      |
| 26   |                |             |             | .62  |             |             |             | .98   |             |             |      | 1.34 |             |             |              | 1.70  |             |             |             | 2.06       |             |             |      |
| 27   |                |             |             | .63  |             | V           |             | .99   |             |             |      | 1.35 |             |             |              | 1.71  |             |             |             | 2.07       |             |             |      |
| 28   |                |             |             | .64  |             |             |             | 1.00  |             |             |      | 1.36 |             |             |              | 1.72  |             |             |             | 2.08       |             |             |      |
| 9    |                |             |             | .65  |             |             |             | 1.01  |             |             |      | 1.37 |             |             |              | 1.73  |             |             |             | 2.09       |             |             |      |
| 0    |                |             |             | .66  |             |             |             | 1.02  |             |             |      | 1.38 |             |             |              | 1.74  |             |             |             | 2.10       |             |             |      |
| 1    |                |             | 1           | .67  |             |             |             | 1.03  | 1           | •           |      | 1.39 |             |             |              | 1.75  |             |             |             | 2.11       |             | ·           |      |
| 2    |                |             |             | .68  |             |             |             | 1.04  |             |             |      | 1.40 |             |             |              | 1.76  |             |             |             | 2.12       |             |             |      |
| 3    | <del>- 1</del> | 不           |             | .69  | $\neg \neg$ |             |             | 1.05  |             |             |      | 1.41 |             |             |              | 1.77  |             |             |             | 2./3       |             |             |      |
| 4    | पं ।           | _           |             | .70  |             |             |             | 1.06  |             |             |      | 1.42 |             |             |              | 1.78  |             |             |             | 2.14       |             |             |      |
| 5    | 7              |             |             | .71  |             |             |             | 1.07  |             |             |      | 1.43 |             |             |              | 1.79  |             |             |             | 2.15       |             |             |      |
|      | 2              |             |             | .72  |             |             |             | 1.08  |             |             |      | 1,44 |             |             |              | 1,80  |             |             | o           | rganic     | matte       | er Comp     | .(%) |
| 7    |                |             |             | .73  |             |             |             | 1.09  |             |             |      | 1.45 |             |             |              | 1.81  |             |             |             | ×inite     | 1           | Iginite     |      |
| 8    |                |             |             | .74  |             |             |             | 1.10  |             |             |      | 1.46 |             | ·           |              | 1.82  |             |             |             |            |             |             |      |
| 9    | 1              |             |             | ,75  |             |             |             | 1,11  |             | $\Box$      |      | 1,47 | $\Box$      |             |              | 1.83  |             |             |             | 0.3        | - [         | •           |      |
| 0    |                |             |             | .76  |             |             |             | 1.12  |             |             |      | 1.48 |             |             |              | 1.84  |             |             |             |            | 1           |             |      |
| 1    | $\top$         |             |             | .77  |             |             |             | 1.13  |             | $\perp I$   |      | 1.49 |             |             |              | 1.85  |             |             |             | itr in it  | 9   II      | ertini      | te   |
| 2    | 7              |             |             | .78  |             |             |             | 1.14  |             | $\bot$      |      | 1.50 |             |             |              | 1.86  |             |             |             | <u>م</u> - | , 1         | _ 4         |      |
| 3    | 2              |             |             | . 19 |             |             |             | 1.15  |             |             |      | 1,51 |             |             |              | 1,87  |             |             |             | 2. 3       | 2           | 3.1         | 1    |
| 4    |                |             |             | .80  |             |             |             | 1.16  |             |             |      | 1.5  |             |             |              | 1.88  |             |             |             |            | 1           |             |      |
| 15   |                | FGV         | - 1         | .81  | •           |             |             | 1.17  |             |             | T    | 1.53 |             | . 1         |              | 1.89  | 1           | 1           | 1           |            | 1           |             |      |

WELL NAME MC Eachern-1

SAMPLE NO. V 2206

DEPTH 1048.6

TYPE SWC

FGV = First Generation Vitrinite -

| Ro 💈     | No.<br>Read     | Pop<br>Rnge | Pop<br>Type | Ro \$ | NO.<br>Read   | Pop       | Pop<br>Type | Ro \$                                            | No.<br>Read                                                                 | Pop<br>Rnge | Pope | Ro ≸ | NO.<br>Read | Pop<br>Rnge                                    | Pop  | Ro \$ | No.<br>Read     | Pop<br>Rnge | Pop<br>Type | Ro 💈    | No.<br>Read     | Pop    | Pop                                              |
|----------|-----------------|-------------|-------------|-------|---------------|-----------|-------------|--------------------------------------------------|-----------------------------------------------------------------------------|-------------|------|------|-------------|------------------------------------------------|------|-------|-----------------|-------------|-------------|---------|-----------------|--------|--------------------------------------------------|
| .10      |                 |             |             | .46   | 2             |           |             | . 82                                             |                                                                             |             |      | 1.18 |             |                                                |      | 1.54  |                 |             |             | 1.90    |                 |        | <del>                                     </del> |
| .11      |                 |             |             | .47   |               |           |             | . 83                                             |                                                                             |             |      | 1.19 |             |                                                |      | 1.55  |                 |             |             | 1.91    |                 |        | _                                                |
| . 12     |                 |             |             | .48   |               |           |             | . 84                                             |                                                                             |             |      | 1.20 |             |                                                |      | 1.56  |                 |             |             | 1.92    |                 |        | -                                                |
| .13      |                 |             |             | .49   |               |           |             | .85                                              |                                                                             |             |      | 1.21 |             | Ì                                              |      | 1.57  |                 |             |             | 1.93    |                 |        |                                                  |
| 14       |                 |             |             | . 50  | 2             | FCiV      |             | . 86                                             |                                                                             |             | •    | 1.22 |             |                                                |      | 1.58  |                 |             |             | 1.94    |                 |        |                                                  |
| 15       |                 |             |             | . 51  |               |           |             | .87                                              |                                                                             |             |      | 1.23 |             |                                                |      | 1.59  |                 |             |             | 1.95    |                 |        |                                                  |
| 16       |                 |             |             | .57   |               |           |             | .88                                              |                                                                             |             |      | 1.24 |             |                                                |      | 1.60  |                 | <del></del> | <del></del> | 1.96    | $\rightarrow$   |        |                                                  |
| 17       |                 |             |             | . ១   | 1             |           |             | .89                                              | T                                                                           |             |      | 1.25 |             |                                                |      | 1.61  |                 |             |             | 1.97    |                 |        |                                                  |
| 18       |                 |             |             | .54   | 2             |           |             | .90                                              |                                                                             |             |      | 1.26 | •           |                                                |      | 1.62  |                 |             |             | 1.98    |                 |        |                                                  |
| 19       |                 |             |             | . 55  |               |           |             | .91                                              |                                                                             |             |      | 1.27 |             |                                                |      | 1.63  |                 |             |             | 1.99    | $\dashv$        |        |                                                  |
| 20       |                 |             |             | .56   | 3             |           |             | .92                                              |                                                                             |             |      | 1.28 |             |                                                |      | 1.64  | $\neg \vdash$   |             |             | 2.00    | $\dashv$        |        |                                                  |
| 21       |                 |             |             | .57   |               |           |             | . 93                                             |                                                                             |             |      | 1.29 |             |                                                |      | 1.65  |                 |             |             | 2.01    |                 |        |                                                  |
| 22       |                 |             |             | . 58  |               |           |             | . 94                                             |                                                                             |             |      | 1.30 |             |                                                |      | 1.66  |                 |             |             | 2.02    | $\dashv$        |        |                                                  |
| 23       |                 |             |             | . 59  |               |           |             | . 95                                             |                                                                             |             |      | 1.31 |             |                                                |      | 1.67  |                 |             |             | 2.03    |                 |        |                                                  |
| 4        |                 |             |             | .60   |               |           |             | . 96                                             |                                                                             |             |      | 1.32 |             |                                                |      | 1.68  | $\neg \uparrow$ |             |             | 2.04    | _               |        |                                                  |
| 25       |                 |             |             | .61   | '/            |           |             | .97                                              |                                                                             |             |      | 1.33 |             |                                                |      | 1.69  | $\neg \uparrow$ |             |             | 2.05    | _               |        |                                                  |
| 26       |                 |             |             | .62   | 1.            |           |             | .98                                              |                                                                             |             |      | 1.34 |             |                                                |      | 1.70  |                 |             |             | 2.06    | _               |        |                                                  |
| 27       |                 |             |             | .63   | 2             | $\sqrt{}$ |             | .99                                              |                                                                             |             |      | 1.35 |             |                                                |      | 1.71  |                 |             |             | .07     | $\neg \uparrow$ |        |                                                  |
| 8        |                 |             |             | .64   |               |           |             | 1.00                                             |                                                                             |             |      | 1.36 |             |                                                |      | 1.72  |                 |             |             | .08     |                 |        |                                                  |
| 9        |                 |             |             | .65   |               |           |             | 1.01                                             |                                                                             |             |      | 1.37 |             |                                                |      | 1.73  |                 |             |             | .09     |                 |        |                                                  |
| 0        |                 |             |             | .66   |               |           |             | 1.02                                             |                                                                             |             |      | 1.38 |             |                                                |      | 1.74  |                 |             |             | 10      | _               |        |                                                  |
| 1        |                 |             |             | .67   |               |           |             | 1.03                                             |                                                                             |             |      | 1.39 |             |                                                |      | 1.75  |                 |             |             | 11      |                 |        |                                                  |
| 2        |                 |             |             | .68   |               |           |             | 1.04                                             |                                                                             |             |      | 1.40 |             |                                                |      | 1.76  |                 |             |             | ./2     |                 |        |                                                  |
| 3        |                 |             |             | .69   |               |           |             | 1.05                                             |                                                                             |             |      | 1.41 |             |                                                |      | .77   |                 |             |             | ./3     | 1               | —- † · | _                                                |
| 4        | 4               | 41          |             | .70   |               |           |             | 06                                               |                                                                             |             | 1    | .42  |             |                                                | 1    | 78    |                 |             |             | .14     |                 |        |                                                  |
| 5        |                 | ++          |             | .71   |               |           |             | 07                                               |                                                                             |             | !    | .43  |             |                                                | 1    | .79   |                 |             | 2           | ·15     |                 |        |                                                  |
|          | 2               | +           |             | .72   |               |           |             | . 08                                             |                                                                             |             |      | ,44  |             |                                                | 1    | .80   |                 |             | or          | ganic : | atter           | Comp.  | (%)                                              |
|          | 1 .             | ++          |             | .73   |               |           |             | .09                                              |                                                                             |             |      | .45  |             |                                                | 1    | . 81  |                 |             | Ex          | inite   |                 | ginite |                                                  |
| В        |                 | +           |             | .74   |               |           |             | .10                                              | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | _           |      | .46  |             | <u>·                                      </u> |      | .82   |                 |             |             |         | 1               |        |                                                  |
| 9   1    | -               |             |             | .75   |               |           |             | <u>. 11                                     </u> |                                                                             |             |      | .47  |             |                                                | 1    | . 83  |                 |             |             | 0.1     |                 |        |                                                  |
| 0        |                 |             |             | .76   |               |           |             | . 12                                             |                                                                             |             |      | .48  |             |                                                | _1   | . 84  |                 |             |             |         |                 |        |                                                  |
| <u>\</u> |                 | 4-4-        |             | .77   |               |           |             | .13                                              | $-\!\!\!\!\!+$                                                              |             |      | .49  |             |                                                |      | .85   |                 |             | V1          | etlni t | Ine             | ctinit | •                                                |
| 2        |                 | +           |             | .78   | <del> -</del> |           |             | .14                                              |                                                                             |             |      | . 50 |             |                                                |      | . 86  |                 |             |             |         | 1               | ,      | ,                                                |
| 3        | <del>-  -</del> | +           |             | . 19  |               |           |             | . 15                                             |                                                                             |             |      | .51  |             |                                                |      | . 87  |                 |             | <b>∸</b>    | 0 •4    | 4               | 401    | /                                                |
| 4        | _               | +++         |             | 80    |               | -+        |             | . 16                                             |                                                                             |             |      | .57  |             | _                                              |      | .88   |                 |             |             |         |                 | •      |                                                  |
| 5        | 2               |             |             | .81   |               |           |             | . 17                                             |                                                                             |             | 1.   | .53  |             |                                                | ] 1. | . B9  | - 1             | 1           |             |         |                 |        | - 1                                              |

WELL NAME MC Eachern-1

SAMPLE NO. V 2207

DEPTH. 1113:6 m

TYPE SWC

FGV = First Generation Vitrinite

|      | - 7173        |             |             |       | Υ           |     | - 11163             |              |             |             |      |      |             |             |             |      |             |                |             |        |             |          |          |
|------|---------------|-------------|-------------|-------|-------------|-----|---------------------|--------------|-------------|-------------|------|------|-------------|-------------|-------------|------|-------------|----------------|-------------|--------|-------------|----------|----------|
| Ro ≸ | No.<br>Read   | Pop<br>Rnge | Pop<br>Type | Ro \$ | NO.<br>Read | Rop | Pop                 | Ro \$        | No.<br>Read | Pop<br>Rnge | Pope | Ro ≸ | NO.<br>Read | Pop<br>Rnge | Pope        | Ro ≴ | No.<br>Read | Pop<br>Roge    | Pop<br>Type | Ro ≴   | No.<br>Read | Pop      | Pope     |
| .10  |               |             |             | .46   | 2           |     |                     | .82          |             |             |      | 1.18 |             |             |             | 1.54 |             |                |             | 1.90   |             |          |          |
| .11  |               |             |             | .47   | 2           |     |                     | .83          |             |             |      | 1.19 |             |             |             | 1.55 |             |                |             | 1.91   |             | 1.       |          |
| . 12 |               |             |             | .48   | 7           |     |                     | . 84         |             |             |      | 1.20 |             |             |             | 1.56 |             |                |             | 1.92   |             |          |          |
| .13  |               |             |             | .49   | 4           | FCN | /                   | .85          |             |             |      | 1.21 |             |             |             | 1.57 |             |                |             | 1.93   |             |          |          |
| .14  |               |             |             | .50   |             |     |                     | . 86         |             |             | •    | 1.22 |             |             |             | 1.58 |             |                |             | 1.94   |             |          |          |
| .15  |               |             |             | .51   | 1           |     |                     | .87          |             |             |      | 1.23 |             |             |             | 1.59 |             |                |             | 1.95   |             |          |          |
| . 16 |               |             |             | .52   | 2           |     |                     | .88          |             |             |      | 1.24 |             |             |             | 1.60 |             | •              |             | 1.96   |             |          |          |
| .17  |               |             |             | .១    | 3           |     |                     | 89           |             |             |      | 1.25 |             |             |             | 1.61 |             |                |             | 1.97   |             |          |          |
| . 18 |               |             |             | .54   | 1           |     |                     | <b>. 9</b> 0 |             |             |      | 1.26 |             |             |             | 1.62 |             |                |             | 1.98   |             |          |          |
| . 19 |               | ·           |             | . 55  | 1           |     |                     | .91          |             |             |      | 1.27 |             |             |             | 1.63 |             |                |             | 1.99   |             |          |          |
| .20  |               |             |             | .56   | 1           |     |                     | . 92         |             |             |      | 1.28 |             |             |             | 1.64 |             |                |             | 2.00   |             |          |          |
| .21  |               |             |             | . 57  |             |     |                     | . 93         |             |             |      | 1.29 |             |             |             | 1.65 |             |                |             | 2.01   |             |          |          |
| .22  |               |             |             | . 58  |             |     |                     | . 94         |             |             |      | 1.30 |             |             |             | 1.66 |             |                |             | 2.02   |             |          |          |
| .23  |               |             |             | . 59  |             |     |                     | . 95         |             |             |      | 1.31 |             |             |             | 1.67 |             |                |             | 2.03   |             |          |          |
| .24  |               |             |             | .60   |             |     |                     | .96          |             |             |      | 1.32 |             |             |             | 1.68 |             |                |             | 2.04   |             |          |          |
| .25  |               |             |             | .61   | 1           |     |                     | .97          |             |             |      | 1.33 |             |             |             | 1.69 |             |                |             | 2.05   |             |          |          |
| .26  |               |             |             | .62   | 1           |     |                     | .98          |             |             |      | 1.34 |             |             |             | 1.70 |             |                |             | 2.06   |             |          |          |
| .27  |               |             |             | .63   |             |     |                     | .99          |             |             |      | 1.35 |             |             |             | 1.71 |             |                |             | 2.07   |             |          |          |
| .28  |               |             |             | .64   |             |     |                     | 1.00         |             |             |      | 1.36 |             |             |             | 1.72 |             |                | _           | 2.08   |             |          |          |
| . 29 |               |             |             | .65   |             |     |                     | 1.01         |             |             |      | 1.37 |             |             |             | 1.73 |             |                |             | 2.09   |             |          |          |
| .30  |               |             |             | .66   |             |     | $L \longrightarrow$ | 1.02         |             |             |      | 1.38 |             |             |             | 1.74 |             |                |             | 2.10   |             |          |          |
| .31  |               |             |             | .67   |             |     |                     | 1.03         |             |             |      | 1.39 |             |             |             | 1.75 |             |                |             | 2.11   |             |          |          |
| .32  |               |             |             | .68   |             |     |                     | 1.04         |             |             |      | 1.40 |             |             |             | 1.76 |             |                |             | 2.12   |             |          |          |
| .33  |               |             |             | .69   |             |     |                     | 1.05         |             |             |      | 1.41 |             |             |             | 1.77 |             |                |             | 2./3   |             |          |          |
| 34   |               |             |             | .70   |             |     |                     | 1.06         |             |             |      | 1.42 |             |             |             | 1,78 |             |                |             | 2.14   |             |          |          |
| 35   |               |             |             | .71   |             |     |                     | 1-07         |             |             |      | 1.43 | <b>`</b>    |             |             | 1.79 |             |                |             | 2.15   |             |          | $\dashv$ |
| .36  |               |             |             | .72   | ——∔         |     |                     | 1.08         |             | -+          |      | 1,44 |             |             |             | 1,80 |             |                | ∤º          | rganic | matt        | er Comp. | .(%)     |
| .37  |               |             |             | .73   | - +         |     |                     | 1.09         |             |             |      | 1.45 |             |             |             | 1.81 | -+          |                | E           | xinite | 1           | lginite  | - 1      |
| .38  |               |             |             | .74   |             |     |                     | 1.10         |             |             |      | 1.46 |             |             |             | 1.82 |             |                |             |        |             | / 0      | , [      |
| .39  |               | +           |             | ,75   |             |     |                     | 1,11         |             |             |      | 1.47 |             | -+          |             | 1.83 |             |                |             | 0.5    |             | 40.      | /        |
| .40  | 2             | $\triangle$ |             | .76   | —-;∤        |     |                     | 1.12         |             |             |      | 1.48 | -+          |             | <del></del> | 1.84 | -+          | -+             | <del></del> |        |             |          |          |
| .41  |               | +           |             | .77   |             |     |                     | 1.13         |             |             |      | 1.49 |             |             |             | 1.85 |             |                | ^V          |        | - 1         | nertinit | •        |
| 42   |               |             |             | .78   |             |     |                     | 1.14         | -+          | <del></del> |      | 1.50 |             |             |             | 1.86 |             | -+             |             | 0.4    | <i>‡</i>    | 1.8      |          |
| 43   | $\frac{1}{2}$ | +-+         |             | . 19  |             |     |                     | 1.15         |             |             |      | 1,51 |             |             |             | 1.87 | -+          |                |             | •      |             | 1. O.    | 1        |
|      | 31            |             |             | .80   |             |     | _                   | 1.16         |             |             |      | 1.2  |             |             |             | 1.88 | -+          | <del></del>  - |             |        |             | -        | - 1      |
| .45  | 2             |             |             | .81   |             |     |                     | 1.17         |             |             |      | 1.53 |             |             |             | 1.89 |             |                |             |        |             |          |          |

WELL NAME MC Eachern-1

SAMPLE NO. V. 2208

DEPTH 1174.5m TYPE SWC.

FGV = First Generation Vitrinite -

| Ro ≸ |              |    | Pop  | Ro \$ | l NO           | T               | p<br>ga                  |       |            | No.             | Вор      | Pop  | Ro \$ | NO.      | Pop<br>Roge       | Pop  | 5 4  | No.<br>Read      | Pop<br>Roge | Pop  |           | No.      | Pop        | Pon  |
|------|--------------|----|------|-------|----------------|-----------------|--------------------------|-------|------------|-----------------|----------|------|-------|----------|-------------------|------|------|------------------|-------------|------|-----------|----------|------------|------|
|      |              | 90 | 1,77 |       | 1              | 17              |                          | 1,700 |            | 7.000           | raige    | Type |       | REBU     | ringe             | Type |      | KEDO             | Rnge        | Type | Ro 🕽      | Read     | Pop        | Туре |
| .10  |              |    |      | .46   | 2              | ++              |                          |       | .82        |                 |          |      | 1.18  |          |                   |      | 1.54 |                  |             |      | 1.90      |          |            |      |
| .12  |              |    |      | .48   | -              | +               |                          |       | .83<br>.84 |                 |          |      | 1.19  |          | · · · -           |      | 1.55 |                  |             |      | 1.91      |          | <u> </u>   |      |
| .13  |              |    |      | .49   |                | $\vdash$        |                          |       | .85        |                 |          |      | 1.20  |          |                   |      | 1.56 |                  |             |      | 1.92      |          |            |      |
| .14  |              |    |      | .50   | 2              |                 | $\dashv$                 |       | .86        |                 |          |      | 1.21  |          |                   |      | 1.57 |                  |             |      | 1.93      |          |            |      |
| .15  | <del></del>  |    |      | .51   | 1              | $\vdash$        |                          |       | .87        |                 |          |      | 1.22  |          |                   |      | 1.58 |                  |             |      | 1.94      |          |            |      |
| . 16 |              |    |      | .57   | 2              |                 | $\dashv$                 |       | .88        |                 | ∤        |      | 1.23  |          |                   |      | 1.59 |                  |             |      | 1.95      |          |            |      |
| .17  |              |    |      | .53   | -              | $\vdash$        | -                        |       | .89        |                 |          |      | 1.25  | -        |                   |      | 1.60 |                  |             |      | 1.96      |          |            |      |
| . 18 |              |    |      | .54   | 1              | FC.             | $\overline{\mathcal{I}}$ |       | .90        |                 |          |      | 1.26  |          |                   |      | 1.61 |                  |             |      | 1.97      |          |            |      |
| . 19 |              |    |      |       | 9              | 7               | ┵                        |       | .91        |                 |          |      | 1.27  |          | $\longrightarrow$ |      | 1.62 |                  |             |      | 1.98      |          |            |      |
| .20  |              |    |      | .56   | <u> </u>       | $\vdash \vdash$ | +                        |       | .92        | -+              |          |      | 1.28  |          |                   |      | 1.63 |                  |             |      | 1.99      |          |            |      |
| .21  |              |    |      | .57   |                | -               | +                        |       | .93        |                 |          |      | 1.29  |          |                   |      | 1.65 |                  |             |      | 2.00      |          |            |      |
| .22  | <del> </del> |    |      | .58   |                |                 | +                        |       | .94        | +               |          | -    | 1.30  |          |                   |      | 1.66 |                  |             |      | 5.01      | -+       |            |      |
| 23   |              |    |      | . 59  | 7              | -               | +                        |       | .95        |                 |          |      | 1.31  |          |                   |      | 1.67 |                  |             |      | 2.02      |          |            |      |
| 24   |              |    |      | .60   | 3              | $\neg$          | +                        |       | .96        | +               |          |      | 1.32  |          |                   |      | 1.68 | -                |             |      | 2.03      | -        |            |      |
| 25   |              |    |      | .61   | -/-            | -+              | $\dashv$                 | -+    | .97        | -+              |          |      | 1.33  |          |                   |      | 1.69 |                  |             |      | .04       |          |            |      |
| 26   |              |    |      | .62   |                | $\neg$          | 十                        |       | .98        |                 | $\neg +$ |      | 1.34  |          |                   |      | 1.70 |                  |             |      | 05        | $\dashv$ | -+         |      |
| 27   |              |    |      | .63   |                | $\neg$          | 十                        |       | .99        |                 |          |      | 1.35  |          | $\dashv$          |      | 1.71 | <del>-  </del> - |             |      | 2.06      | $\dashv$ |            |      |
| 28   |              |    |      | .64   |                | $\neg$          | +                        |       | 1.00       | $\neg \uparrow$ |          |      | 1.36  |          |                   |      | 1.72 |                  |             |      | .07       |          |            | -    |
| 29   |              |    |      | .65   |                |                 | 1                        |       | 1.01       |                 | _        |      | 1.37  | $\neg +$ |                   |      | 1.73 |                  | -+          |      | .09       |          | -+         |      |
| 30   |              |    |      | .66   |                |                 | 十                        |       | 1.02       |                 |          |      | 1.38  |          |                   |      | 1.74 | $\dashv$         | -           |      | 10        |          |            |      |
| 31   |              |    |      | .67   |                |                 | $\top$                   |       | 1.03       |                 |          |      | 1.39  |          |                   |      | 1.75 | _                |             |      | .11       | -+       |            |      |
| 32   |              |    |      | .68   |                | $\top$          | $\top$                   |       | 1.04       |                 |          | 1    | 1.40  |          |                   |      | 1.76 |                  |             |      | 12        | $\dashv$ |            |      |
| 33   |              |    | •    | .69   |                | $\top$          | $\top$                   |       | 1. 05      |                 |          |      | 1.41  |          | $\neg \uparrow$   |      | 1.77 |                  |             |      | ·/3       | $\dashv$ | —          |      |
| 34   |              |    |      | .70   | 1              |                 |                          |       | . 06       |                 |          | 1    | .42   |          |                   |      | 1.78 |                  | _           |      | .14       | $\dashv$ |            |      |
| 35   |              |    |      | .71   |                |                 |                          | 1     | . 07       |                 |          |      | .43   |          |                   |      | .79  |                  |             |      | .15       |          |            |      |
| 36   |              |    |      | .72   |                |                 | $oldsymbol{\perp}$       | 1     | . 08       |                 |          | 1    | .44   |          |                   |      | .80  |                  |             |      |           |          | Comp       | 10/1 |
| 37   |              |    |      | .73   |                |                 | 丄                        |       | .09        |                 |          | 1    | .45   |          |                   |      | .81  |                  |             | Ex   | Inite     | IAI      | r Comp.    | 1    |
| 38   |              |    |      | .74   |                |                 |                          |       | .10        | , l             |          | 1    | .46   |          |                   | 1    | . 82 |                  |             |      | 2.4       | Ι.       | KO.        | 1    |
| 39   | —∔           |    |      | .75   |                |                 | 4                        | 1     | .11        |                 |          | !    | .47   |          |                   | 1    | . 83 |                  |             |      | 1.8       | ,        | 00.        |      |
| 40   |              |    |      | .76   |                |                 | $\perp$                  |       | . 12       |                 |          |      | .48   |          |                   |      | . 84 |                  |             |      | - 0       |          | J - 0      | `    |
| 41   |              |    |      | .77   | $-\!\!\!\perp$ |                 | 4                        |       | . 13       |                 |          |      | .49   | $\perp$  |                   | . 1  | .85  |                  |             | V 1  | tr in it: | i lne    | rtinit     | •    |
| 42   |              |    |      | .78   |                |                 | 4                        |       | .14        |                 |          |      | . 50  |          |                   | 1    | . 86 |                  |             |      |           | 1        |            |      |
| 43   |              |    |      | . 19  | -+             |                 | +                        |       | . 15       |                 | $\dashv$ |      | , 51  |          |                   |      | . 87 |                  |             | ر [ن | 20.1      |          | 1.0<br>3.0 |      |
| 44   |              |    |      | 80    |                |                 | 4                        |       | . 16       |                 |          |      | .∇    |          |                   | 1    | .88  |                  |             |      |           |          | 3,0        | 1.   |
| 15   |              |    |      | .81   |                |                 | $\perp$                  | 1.    | . 17       |                 |          | 1.   | . 53  |          |                   | 1    | . 89 |                  |             | 7    |           |          |            | . [  |

WELL NAME MC EACHERN-1

1289.5M

SW C

FGV = First Generation Vitrinite -

|          | - rars        |               |      | <del></del> |      |        |                    |      |      | T    | 900  | T    |      | 1.00                                                                        | 0     |       |      |                 |             |             | <del> </del> |             | <del></del> |          |
|----------|---------------|---------------|------|-------------|------|--------|--------------------|------|------|------|------|------|------|-----------------------------------------------------------------------------|-------|-------|------|-----------------|-------------|-------------|--------------|-------------|-------------|----------|
| % ≸      | Read          | Ringe         | Type | Ro \$       | Read | Ring   | 30                 | Type | Ro ≸ | Read | Roge | Type | Ro ≸ | Read                                                                        | Ringe | Type  | Ro ≴ | No.<br>Read     | Pop<br>Roge | Pop<br>Type | Ro 💈         | No.<br>Read | Pop         | 망        |
| 10       |               |               |      | .46         |      |        |                    |      | .82  |      |      |      | 1.18 |                                                                             |       |       | 1.54 |                 |             |             | 1.90         |             |             |          |
| 11       |               |               |      | .47         | 1    |        |                    |      | .83  |      |      |      | 1.19 |                                                                             |       |       | 1.55 |                 |             |             | 1.91         |             |             |          |
| 12       |               |               |      | .48         |      |        |                    |      | . 84 |      |      |      | 1.20 |                                                                             |       |       | 1.56 |                 |             |             | 1.92         | •           |             | 1        |
| 13       |               |               |      | .49         | 7    |        | $\neg$             |      | .85  |      |      |      | 1.21 |                                                                             |       |       | 1.57 |                 |             |             | 1.93         |             |             | 1        |
| 14       |               |               |      | . 50        |      |        |                    |      | . 86 |      |      | ·    | 1.22 |                                                                             |       |       | 1.58 |                 |             |             | 1.94         |             |             |          |
| 15       |               |               |      | .51         |      |        | П                  |      | .87  |      |      |      | 1.23 |                                                                             |       |       | 1.59 |                 |             |             | 1.95         |             |             | <u> </u> |
| 16       |               |               |      | .52         | 7    |        |                    |      | .88  |      |      |      | 1.24 |                                                                             |       |       | 1.60 |                 |             | <del></del> | 1,96         |             |             | _        |
| 17       |               |               |      | .53         |      |        | Ŧ                  |      | .89  |      |      |      | 1.25 |                                                                             |       |       | 1.61 |                 |             |             | 1.97         |             |             | -        |
| 18       |               |               |      | .54         |      | 76     | U                  |      | .90  | 1    |      |      | 1.26 | •                                                                           |       |       | 1.62 |                 |             |             | 1.98         | $\neg$      |             |          |
| 19       |               |               |      | . 55        |      | 7      | T                  |      | .91  |      |      |      | 1.27 |                                                                             |       |       | 1.63 | $\neg \uparrow$ |             |             | 1.99         |             |             |          |
| 20       |               |               |      | .56         |      |        | T                  |      | .92  |      |      |      | 1.28 |                                                                             |       |       | 1.64 |                 |             |             | 2.00         |             |             |          |
| 21       |               |               |      | .57         | 7    |        | T                  |      | . 93 |      |      |      | 1.29 | $\neg \neg$                                                                 |       |       | 1.65 |                 |             |             | 2.01         |             |             |          |
| 22       |               |               |      | .58         |      |        | I                  |      | . 94 |      |      |      | 1.30 |                                                                             |       |       | 1.66 |                 |             |             | 2.02         |             |             |          |
| 3        |               |               |      | . 59        |      |        |                    |      | . 95 |      |      |      | 1.31 |                                                                             |       |       | 1.67 |                 |             |             | 2.03         |             |             |          |
| 4        |               |               |      | .60         | 1    |        | T                  |      | .96  |      |      |      | 1.32 |                                                                             |       |       | 1.68 |                 |             |             | .04          |             |             |          |
| 5        |               |               |      | .61         |      |        | I                  |      | .97  |      |      |      | 1.33 |                                                                             |       |       | 1.69 |                 |             |             | 05           |             |             |          |
| 6        |               | 1             |      | .62         | /    |        | 1                  |      | .98  |      |      |      | 1.34 | T                                                                           |       |       | 1.70 |                 |             |             | .06          | $\neg$      |             |          |
| 7        |               |               |      | .හ          |      |        |                    |      | . 99 |      |      |      | 1.35 |                                                                             |       |       | 1.71 |                 |             |             | .07          |             |             |          |
| В        |               |               |      | .64         |      |        | $\perp$            |      | 1.00 |      |      |      | 1.36 |                                                                             |       |       | 1.72 |                 |             |             | .08          |             |             |          |
| 9        |               |               |      | .65         |      |        | $\mathbf{I}$       |      | 1.01 |      |      |      | 1.37 |                                                                             |       |       | 1.73 |                 |             |             | .09          | $\neg$      |             |          |
| 0        |               |               |      | .66         |      |        |                    |      | 1.02 |      |      |      | 1.38 |                                                                             |       |       | 1.74 |                 |             |             | 10           |             |             |          |
| 1        |               |               |      | .67         | 1    |        |                    |      | 1.03 | ·    | • ]  | •    | 1.39 |                                                                             |       |       | 1.75 |                 |             |             | .]]          |             |             |          |
| 2        |               |               |      | .68         |      | $\Box$ | $\mathbf{I}$       |      | 1.04 |      |      |      | 1.40 |                                                                             |       |       | 1.76 |                 |             |             | ./2          | $\neg$      |             |          |
| 3        |               |               |      | .69         | 2    | V      | I                  |      | 1.05 |      |      |      | 1.41 |                                                                             |       |       | 1.77 |                 |             |             | ·/3          |             |             | . —      |
|          |               |               |      | .70         |      |        |                    | 1    | 1.06 |      |      |      | 1.42 |                                                                             |       |       | 1.78 |                 |             |             | .14          |             |             |          |
| 5        |               |               |      | .71         |      |        | $\perp$            |      | 07   |      |      |      | 1.43 | <u> </u>                                                                    |       |       | 1.79 |                 |             | 2           | .15          |             |             |          |
| 6        |               |               |      | .72         |      |        | 1                  |      | 80.1 |      |      |      | , 44 |                                                                             |       |       | ,80  |                 |             | Or          | ganic        | matte       | r Comp.     | (%)      |
| 7        |               |               |      | .73         |      |        | 丄                  |      | . 09 |      |      |      | .45  |                                                                             |       |       | 1.81 |                 |             | E×          | Inite        | AI          | ginite      |          |
| 3        |               |               |      | .74         |      |        | 1                  |      | .10  |      |      |      | 1.46 |                                                                             | ·     |       | . 82 |                 |             |             |              | i           |             |          |
|          | <del></del> - |               |      | ,75         |      |        | 1                  |      | . 11 |      |      |      | .47  | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | _     |       | . 83 |                 |             |             | 0.2%         |             |             |          |
| 1        | 1             | 1             |      | .76         |      |        | _                  | 1    | - 12 |      |      |      | .48  |                                                                             |       |       | . 84 |                 |             |             |              |             |             |          |
| 4        |               | $\perp \perp$ |      | .77         |      |        | $\perp$            |      | .13  | -    |      |      | .49  |                                                                             |       | .   1 | .85  |                 |             | VI          | tr in its    | · In        | ertinit     | •        |
| <u> </u> |               |               |      | .78         |      |        | $\downarrow$       |      | .14  |      |      |      | . 50 |                                                                             |       |       | . 86 | $\perp \Gamma$  |             |             |              | 1           |             |          |
| 1        |               | 44            |      | . 19        |      |        | $oldsymbol{\perp}$ |      | . 15 |      |      |      | , 51 |                                                                             |       | 1     | .87  |                 |             |             | 0,10,        | /           | m (         | برك      |
| •        |               | $\bot \bot$   |      | .80         |      |        |                    |      | .16  |      |      |      | .⊽   |                                                                             |       |       | .88  |                 |             |             | 0,1%         | ر           | U- 6        | 1        |
| 5        | 1             | 11            |      | .81         | ŀ    |        |                    | 1    | . 17 | - 1  | ı    | 1    | .53  |                                                                             |       | 11    | . 89 |                 | T           |             | J            |             |             |          |

Mc EAchern -1

SAMPLE NO. V2210

1364.6 M

rype Sw C

FGV = First Generation Vitrinite "

|      |      | Pon  | τ    | <del> </del> | T           | T   | <del></del> - | artinite | l No        | Pop  | l Boo | г     | lun    | T 0   | l p.s |      |             |                |             | <del>1</del>       |             | <del></del>       |                                                  |
|------|------|------|------|--------------|-------------|-----|---------------|----------|-------------|------|-------|-------|--------|-------|-------|------|-------------|----------------|-------------|--------------------|-------------|-------------------|--------------------------------------------------|
| o \$ | Read | Roge | Type | Ro ≸         | NO.<br>Read | Rng | Pol           | e Ro \$  | Read        | Roge | Type  | Ro \$ | Read   | Ringe | Type  | Ro ≴ | No.<br>Read | Roge           | Pop<br>Type | Ro I               | No.<br>Read | Roge              | Po                                               |
| 10   |      |      |      | .46          |             |     | j             | . 82     |             |      |       | 1.18  |        |       |       | 1,54 |             |                |             | 1.90               |             |                   |                                                  |
| 11   |      |      |      | .47          | 4           |     |               | . 83     |             |      |       | 1.19  |        |       |       | 1.55 |             |                |             | 1.91               |             |                   |                                                  |
| 12   |      |      |      | .48          |             |     | 1             | .84      |             |      |       | 1.20  |        |       |       | 1.56 |             |                |             | 1.92               |             |                   |                                                  |
| 13   |      |      |      | .49          |             |     |               | .85      |             |      |       | 1.21  |        | ``    |       | 1.57 |             |                |             | 1.93               |             |                   | <del>                                     </del> |
| 14   |      |      |      | .50          | 3           |     |               | .86      |             |      | ·     | 1.22  |        |       |       | 1.58 |             |                |             | 1.94               |             |                   | _                                                |
| 15   |      |      |      | .51          |             |     |               | .87      |             |      |       | 1.23  |        |       |       | 1.59 |             |                |             | 1.95               |             |                   | _                                                |
| 16   |      |      |      | .52          | 1           |     | 1             | .88      |             |      |       | 1.24  |        |       |       | 1.60 |             |                |             | 1.96               |             |                   |                                                  |
| 17   |      |      |      | .53          |             |     | F             | 89       |             |      |       | 1.25  |        |       |       | 1.61 |             |                |             | 1.97               |             |                   |                                                  |
| 18   |      |      |      | .54          |             | F6  | 7             | .90      | 1           |      |       | 1.26  | •      |       |       | 1.62 |             |                |             | 1.98               |             |                   |                                                  |
| 19   |      |      |      | . 55         |             |     | 1             | .91      |             |      |       | 1.27  |        |       |       | 1.63 |             |                |             | 1.99               |             |                   |                                                  |
| 20   |      |      |      | .56          |             | 1   | 1             | .92      |             |      |       | 1.28  |        |       |       | 1.64 |             |                |             | 2.00               |             |                   |                                                  |
| 21   |      |      |      | .57          | 1           |     |               | .93      |             |      |       | 1.29  |        |       |       | 1.65 |             |                |             | 2.01               |             |                   |                                                  |
| 22   |      |      |      | .58          |             |     | 1             | .94      |             |      |       | 1.30  |        |       |       | 1.66 |             | $\neg \neg$    |             | 2.02               | $\neg$      |                   |                                                  |
| 3    |      |      |      | . 59         |             |     |               | -95      |             |      |       | 1.31  |        |       |       | 1.67 |             |                |             | 2.03               |             |                   |                                                  |
| 4    |      |      |      | .60          | /           |     | T             | .96      | $\neg \neg$ |      |       | 1.32  |        |       |       | 1.68 |             |                |             | :04                |             |                   |                                                  |
| 5    |      |      |      | .61          |             |     | 1             | .97      |             |      |       | 1.33  |        |       |       | 1.69 |             |                |             | .05                | _           |                   |                                                  |
| 6    |      |      |      | .62          |             |     | 1             | .98      |             | 1    |       | 1.34  |        |       |       | 1.70 |             |                |             | .06                |             |                   |                                                  |
| 7    |      |      |      | .63          |             |     | 1             | .99      |             |      |       | 1.35  |        |       |       | 1.71 | 一十          |                |             | .07                |             |                   |                                                  |
| В    |      |      |      | .64          | 2           |     |               | 1.00     |             |      |       | 1.36  |        |       |       | 1.72 |             |                |             | .08                |             |                   |                                                  |
| 9    |      |      |      | .65          |             |     |               | 1.01     |             |      |       | 1.37  |        |       |       | 1.73 |             |                |             | .09                |             |                   |                                                  |
| 0    |      |      |      | .66          |             |     |               | 1.02     |             |      |       | 1.38  |        |       |       | 1.74 |             |                |             | 10                 |             |                   | _                                                |
| 1    |      |      |      | .67          | 7) ]        |     | Π             | 1.03     | 1           |      |       | 1.39  |        |       |       | 1.75 |             |                |             | .11                |             |                   |                                                  |
| 2    |      |      |      | .68          |             |     |               | 1.04     |             |      |       | 1.40  |        |       |       | 1.76 |             |                |             | ./2                |             |                   |                                                  |
| 3    |      |      |      | .69          |             |     |               | 1.05     |             |      |       | 1.41  |        |       |       | 1.77 |             |                |             | ./3                | $\neg$      | —                 |                                                  |
| 4    |      |      |      | .70          |             |     |               | 1.06     |             |      |       | 1.42  |        |       |       | 1.78 |             |                | 2           | .14                |             |                   |                                                  |
| 5    |      |      |      | .71          |             |     |               | 1.07     |             |      |       | 1.43  |        |       |       | 1.79 |             |                | 12          | ·15                |             |                   |                                                  |
| 6    |      |      |      | .72          |             |     |               | 1.08     |             |      |       | 1,44  |        |       |       | 1.80 |             |                | Or          | ganic              | matte       | r Comp.           | 1%                                               |
| 7    |      |      |      | .73          |             |     |               | 1.09     |             |      |       | 1.45  |        |       |       | 1.81 |             |                | E×          | inite              | ٨١          | r Comp.<br>ginite | 1                                                |
| В    |      |      |      | .74          |             |     |               | 1.10     |             |      |       | 1.46  |        | ·     |       | 1.82 |             |                |             |                    |             |                   |                                                  |
| 9    |      |      |      | .75          |             |     |               | 1.11     |             |      |       | 1,47  |        |       |       | 1,83 |             |                | P,          | 2.5%               |             | _                 |                                                  |
| 0    | 3    | 1    |      | .76          |             |     |               | 1.12     |             |      |       | 1.48  |        |       |       | 1.84 |             |                |             |                    | i           |                   |                                                  |
|      | 1    |      |      | .77          |             |     |               | 1.13     |             |      |       | .49   |        |       | . [   | . 85 |             |                | Vi          | tr in it:          | in          | o.7               | •                                                |
|      | 2    |      |      | .78          |             |     |               | 1, 14    |             |      |       | . 50  | $\bot$ |       |       | . 86 |             |                |             | سنى ب              | 1           |                   |                                                  |
| 3    |      |      |      | . 19         |             |     |               | 1.15     |             |      |       | , 51  |        |       |       | .87  |             | $\perp \Gamma$ |             | <del>/ 6</del> . 5 |             | ٥.٦               | ری                                               |
| 4    | 4    |      |      | .80          |             |     |               | 1.16     |             |      |       | .⊽    |        |       | 1     | .88  |             |                |             |                    | 0           | ~ 7               | ί,                                               |
| 5    | 1    |      |      | .81          | . T         |     |               | 1.17     | 1           | 1    |       | .53   |        |       | 11    | . 89 |             | 7.             |             |                    | 1           |                   |                                                  |

WELL NAME MCEACHERN -1

SAMPLE NO. V2211

DEPTH 1414.1 M

TYPE SWC

FGV = First Generation Vitrinite -

|     |             |      |     | <del> </del> | <del></del>       |     | Iner        |       |             | T           |      | · · · · · · · · | 1           | T                                             |      |      |              | т                                                                           | ·           |          |             |             |      |
|-----|-------------|------|-----|--------------|-------------------|-----|-------------|-------|-------------|-------------|------|-----------------|-------------|-----------------------------------------------|------|------|--------------|-----------------------------------------------------------------------------|-------------|----------|-------------|-------------|------|
| % ≸ | No.<br>Read | Roge | Pop | Ro \$        | NO.<br>Read       | Rop | Pop<br>Type | Ro \$ | No.<br>Read | Roge        | Type | Ro ≸            | NO.<br>Read | Roge                                          | Pope | Ro 🖇 | No.<br>Read  | Roge                                                                        | Pop<br>Type | Ro I     | No.<br>Read | Pop<br>Roge | For  |
| 10  |             |      |     | .46          |                   |     |             | . 82  |             |             |      | 1.18            |             |                                               |      | 1.54 |              |                                                                             |             | 1.90     |             |             |      |
| 11  |             |      |     | .47          |                   |     |             | . 83  |             |             |      | 1.19            |             |                                               |      | 1.55 |              |                                                                             |             | 1.91     |             | ŀ           |      |
| 12  |             |      |     | .48          |                   |     |             | . 84  |             |             |      | 1.20            |             |                                               |      | 1.56 |              |                                                                             |             | 1.92     |             |             |      |
| 13  |             |      |     | .49          |                   |     |             | . 85  |             |             |      | 1.21            |             |                                               |      | 1.57 |              |                                                                             |             | 1.93     |             |             |      |
| 14  |             |      |     | .50          |                   |     |             | . 86  |             |             | ·    | 1.22            |             |                                               |      | 1.58 |              |                                                                             |             | 1.94     |             |             |      |
| 15  |             |      |     | .51          |                   |     |             | .87   |             |             |      | 1.23            |             |                                               |      | 1.59 |              |                                                                             |             | 1.95     |             |             |      |
| 16  |             |      |     | .52          |                   |     |             | .88   |             |             |      | 1.24            |             |                                               |      | 1.60 |              | ·                                                                           |             | 1.96     |             |             |      |
| 17  |             |      |     | .53          |                   |     |             | 89    |             |             |      | 1.25            |             |                                               |      | 1.61 |              |                                                                             |             | 1.97     |             |             |      |
| 18  |             |      |     | .54          |                   |     |             | .90   |             |             |      | 1.26            |             |                                               |      | 1.62 |              |                                                                             |             | 1.98     |             |             |      |
| 19  |             |      |     | . 55         |                   |     |             | .91   |             |             |      | 1.27            |             |                                               |      | 1.63 |              |                                                                             |             | 1.99     |             |             |      |
| 20  |             |      |     | .56          |                   |     |             | .92   |             |             | 7    | 1.28            |             |                                               |      | 1.64 |              |                                                                             |             | 2.00     |             |             |      |
| 21  |             |      |     | .57          |                   |     |             | . 93  |             |             |      | 1.29            |             |                                               |      | 1.65 |              |                                                                             |             | 2.01     |             |             |      |
| 22  |             |      |     | .5€          |                   |     |             | . 94  |             |             |      | 1.30            |             |                                               |      | 1.66 |              |                                                                             |             | 2.02     |             |             |      |
| 23  |             |      |     | . 59         |                   |     |             | .95   |             |             |      | 1.31            |             | 1                                             |      | 1.67 |              |                                                                             |             | 2.03     |             |             |      |
| 24  |             |      |     | .60          |                   |     |             | .96   |             |             |      | 1.32            |             |                                               |      | 1.68 |              |                                                                             |             | 2.04     |             |             |      |
| 25  |             |      |     | .61          |                   |     |             | .97   |             |             |      | 1.33            |             |                                               |      | 1.69 |              |                                                                             |             | 2.05     |             |             |      |
| 26  |             |      |     | .62          |                   | 1   |             | .98   |             |             |      | 1.34            |             |                                               |      | 1.70 |              |                                                                             |             | 2.06     |             |             |      |
| 27  |             |      |     | .63          |                   |     |             | .99   |             |             |      | 1.35            |             |                                               |      | 1.71 | 7            |                                                                             |             | 2.07     |             |             |      |
| 28  |             |      |     | .64          |                   |     |             | 1.00  |             |             |      | 1.36            |             |                                               |      | 1.72 |              |                                                                             |             | 2.08     |             |             |      |
| 29  |             |      |     | .65          |                   |     |             | 1.01  |             |             |      | 1.37            |             |                                               |      | 1.73 |              |                                                                             |             | 2.09     | 7           |             |      |
| 50  |             |      |     | .66          |                   |     |             | 1.02  |             |             |      | 1.38            |             |                                               |      | 1.74 |              |                                                                             |             | 2.10     |             |             |      |
| 31  |             |      |     | .67          |                   |     |             | 1.03  |             |             |      | 1.39            |             |                                               |      | 1.75 |              |                                                                             |             | 2.11     |             |             |      |
| 2   |             |      |     | .68          |                   |     |             | 1.04  |             |             |      | 1.40            |             |                                               |      | 1.76 |              |                                                                             |             | 2./2     |             |             |      |
| 3   |             |      | - 1 | .69          |                   |     |             | 1.05  |             |             |      | 1.41            |             |                                               |      | 1.77 |              |                                                                             |             | 2./3     |             |             |      |
| 4   |             |      |     | .70          |                   |     |             | 1.06  |             |             |      | 1.42            |             |                                               |      | 1.78 |              |                                                                             |             | 2.14     |             |             |      |
| 5   |             |      |     | .71          |                   |     |             | 1-07  |             |             |      | 1.43            | <u> </u>    |                                               |      | 1.79 |              |                                                                             |             | 2.15     | 1           | L           |      |
| 6   |             |      |     | .72          |                   |     |             | 1.08  |             | $-\bot$     |      | 1,44            |             |                                               |      | 1,80 |              |                                                                             | lo          | rganic   | -           | er Comp     | .(%) |
| 7   |             |      |     | .73          |                   |     |             | 1.09  |             |             |      | 1.45            |             |                                               |      | 1.81 |              |                                                                             | E           | xinite   | ^           | iginite     |      |
| 8   |             |      |     | .74          |                   |     | L           | 1.10  |             |             |      | 1.46            |             | <u>·                                     </u> |      | 1.82 |              |                                                                             |             |          | - 1         |             |      |
| 9   | 1           | 不    |     | ,75          |                   |     |             | 1.11  |             |             |      | 1.47            |             |                                               |      | 1.83 |              |                                                                             |             | 0.2      | -           |             |      |
| 10  |             |      |     | .76          | <u>·</u> _        |     |             | 1.12  |             |             |      | 1.48            |             |                                               |      | 1.84 |              |                                                                             |             |          |             |             |      |
| 11  |             |      |     | .77          |                   |     |             | 1.13  |             | $\bot \bot$ |      | 1.49            |             |                                               |      | 1.85 |              | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | ^           | itr in i | te   I      | nertini     | te   |
| 12  |             |      |     | .78          |                   |     |             | 1.14  |             |             |      | 1.50            |             |                                               |      | 1.86 |              |                                                                             |             |          |             | Λ -1        |      |
| 13  | $\perp$     |      |     | . 19         | $\longrightarrow$ |     |             | 1.15  |             |             |      | 1,51            |             |                                               |      | 1.87 |              |                                                                             |             | 10.1     |             | 0.7         |      |
| 14  |             |      |     | .80          |                   |     |             | 1.16  |             |             |      | 1.52            |             |                                               |      | 1.88 | $-\!\!\!\!+$ |                                                                             | ^           | V. 1     |             |             |      |
| 45  | l           | FGV  | ı   | .81          |                   |     |             | 1. 17 | 1           | 1_          | 1    | 1.53            |             |                                               |      | 1.89 |              |                                                                             |             |          |             |             |      |

SAMPLE NO. 12212 DEPTH 1461.6 M TYPE SWC

FGV = First Generation Vitrinite

| FGV • |             |      |      |       |          |      |      |       | T           | <u> </u> |      |      | 1        | Γ.   |      |      | Т           |         |             | <del>i - 1</del> |             | T -         |      |
|-------|-------------|------|------|-------|----------|------|------|-------|-------------|----------|------|------|----------|------|------|------|-------------|---------|-------------|------------------|-------------|-------------|------|
| Ro∮   | No.<br>Read | Rnge | Type | Ro \$ | Read     | Rnga | Type | Ro \$ | No.<br>Read | Rnge     | Type | Ro 🖇 | Read     | Roge | Type | Ro ≴ | No.<br>Read | Roge    | Type        | Ro 💈             | No.<br>Read | Pop<br>Rnge | Pop. |
| .10   |             |      |      | .46   |          |      |      | .82   |             |          |      | 1.18 |          |      |      | 1.54 |             |         |             | 1.90             |             |             |      |
| .11   |             |      |      | .47   |          |      |      | . 83  |             |          |      | 1.19 |          |      |      | 1.55 |             |         |             | 1.91             |             |             |      |
| . 12  |             |      |      | .48   |          |      |      | . 84  |             |          |      | 1.20 |          | ,    |      | 1.56 |             |         |             | 1.92             |             |             |      |
| .13   |             |      |      | .49   |          |      |      | .85   |             |          |      | 1.21 |          |      |      | 1.57 |             |         |             | 1.93             |             |             |      |
| .14   |             |      |      | .50   | 1        |      |      | . 86  |             |          | ·    | 1.22 |          |      |      | 1.58 |             |         |             | 1.94             |             |             |      |
| .15   |             |      |      | . 51  |          |      |      | .87   |             |          |      | 1.23 |          |      |      | 1.59 |             |         |             | 1.95             |             |             |      |
| 16    |             |      |      | .52   |          |      |      | .88   |             |          |      | 1.24 |          |      |      | 1.60 |             | ·       |             | 1.96             |             |             |      |
| .17   |             |      |      | .53   |          |      |      | 89    |             |          |      | 1.25 |          |      |      | 1.61 |             |         |             | 1.97             |             |             |      |
| . 18  |             |      |      | .54   |          |      |      | .90   |             |          |      | 1.26 |          |      |      | 1.62 |             |         |             | 1.98             |             |             |      |
| . 19  |             | ·    |      | . 55  |          |      | ·    | .91   |             |          |      | 1.27 |          |      |      | 1.63 |             |         |             | 1.99             |             |             |      |
| .20   |             |      |      | . 56  |          |      |      | . 92  |             |          |      | 1.28 |          |      |      | 1.64 |             |         |             | 2.00             |             |             |      |
| .21   |             |      |      | .57   |          |      |      | .93   |             |          |      | 1.29 |          |      |      | 1.65 |             |         |             | 2.01             |             |             |      |
| .22   |             |      |      | .58   | 1        | FGV  |      | . 94  |             |          |      | 1.30 |          |      |      | 1.66 |             |         |             | 2.02             |             |             |      |
| 23    |             |      |      | . 59  |          |      |      | .95   |             |          |      | 1.31 |          |      |      | 1.67 |             |         |             | 2.03             |             |             |      |
| 24    |             |      |      | .60   |          |      |      | .96   |             |          |      | 1.32 |          |      |      | 1.68 |             |         |             | 2.04             |             |             |      |
| 25    |             |      |      | .61   | 7        |      |      | .97   |             |          |      | 1.33 |          |      |      | 1.69 |             |         |             | 2.05             |             |             |      |
| 26    |             |      |      | .62   |          |      |      | .98   |             |          |      | 1.34 |          |      |      | 1.70 |             |         |             | 2.06             |             |             |      |
| 27    |             |      |      | .63   |          |      |      | .99   |             |          |      | 1.35 |          |      |      | 1.71 |             |         |             | 2.07             |             |             |      |
| 28    |             |      |      | .64   |          |      |      | 1.00  |             |          |      | 1.36 |          |      |      | 1.72 |             |         |             | 2.08             |             |             |      |
| 29    | Ī           |      |      | .65   | 1        |      |      | 1.01  |             |          |      | 1.37 |          |      |      | 1.73 |             |         |             | 2.09             |             |             |      |
| 30    |             |      |      | .66   |          |      |      | 1.02  |             |          |      | 1.38 |          |      |      | 1.74 |             |         |             | 2.10             |             |             |      |
| 31    |             |      |      | .67   |          |      |      | 1.03  |             | ·        |      | 1.39 |          |      |      | 1.75 |             |         |             | 2.11             | 1           |             |      |
| 32    |             |      |      | .68   | 7        | V    |      | 1.04  |             |          |      | 1.40 |          |      |      | 1.76 |             |         |             | 2.12             |             |             |      |
| 33    |             |      |      | .69   |          |      |      | 1.05  |             |          |      | 1.41 |          |      |      | 1.77 |             |         |             | 2./3             |             |             |      |
| 34    |             |      |      | .70   |          |      |      | 1.06  |             |          |      | 1.42 |          |      |      | 1.78 |             |         |             | 2.14             |             |             |      |
| 35    |             |      |      | .71   |          |      |      | 1.07  |             |          |      | 1.43 | <u> </u> |      |      | 1.79 |             |         |             | 2.15             |             | L           |      |
| 36    |             |      |      | .72   |          |      |      | 1.08  |             |          |      | 1,44 |          |      |      | 1,80 |             |         |             | rganic           |             | er Comp.    |      |
| 37    |             |      |      | .73   |          |      |      | 1.09  |             |          |      | 1.45 |          |      |      | 1.81 |             |         | E           | xinite           | ٨           | Iginite     |      |
| 38    |             |      |      | .74   |          |      |      | 1.10  |             |          |      | 1.46 |          |      |      | 1.82 |             |         |             | ,,               | -           |             |      |
| 39    |             |      |      | ,75   |          |      |      | 1.11  |             |          |      | 1.47 |          |      |      | 1.83 |             |         | <del></del> | (0.1             | - 1         |             |      |
| 40    |             |      |      | .76   | <u>·</u> |      |      | 1.12  |             |          |      | 1.48 |          |      | ·    | 1.84 |             |         |             |                  |             |             |      |
| 41    |             | 不    |      | .77   |          |      |      | 1.13  |             |          |      | 1.49 |          |      |      | 1.85 |             |         |             | itr in it        | 9   11      | ertinit     | re   |
| 42    |             |      |      | .78   |          |      |      | 1.14  |             |          |      | 1.50 |          |      |      | 1.86 |             |         |             | , .              | 1           |             | l    |
| 43    |             |      |      | . 19  |          |      |      | 1.15  |             |          |      | 1,51 |          |      |      | 1.87 |             | <u></u> |             | (0.1             | 1           | CO.1        |      |
| 44    |             |      |      | .80   |          |      |      | 1.16  |             |          |      | 1.52 |          |      |      | 1.88 |             |         |             | V.               | 1           | (-)         | 1    |
| 45    |             |      | 1    | .81"  |          | }    |      | 1.17  | 1           | 1        | 1    | 1.53 |          |      |      | 1.89 | 1           | 1       | 1           |                  |             |             |      |

WELL NAME MC Eachern-1

SAMPLE NO. V. 2213

DEPTH. 1504:6M TYPE SWC.

FGV = First Generation Vitrinite

| FGV • |             |             |             |       |             | <u> </u>    |             |       |             |      |             | <del></del> |             | r            |     |      |                | ·           |      | ,         |             |             |             |
|-------|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------|-------------|------|-------------|-------------|-------------|--------------|-----|------|----------------|-------------|------|-----------|-------------|-------------|-------------|
| Ro ≸  | No.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro \$ | NO.<br>Read | Pop<br>Rnga | Pop<br>Type | Ro \$ | No.<br>Read | Roge | Pop<br>Type | Ro 🖇        | NO.<br>Read | Pop<br>Ringe | Pop | Ro ≴ | No.<br>Read    | Pop<br>Rnge | Pope | Ro 💈      | No.<br>Read | Pop<br>Rnge | Pop<br>Type |
| .10   |             |             |             | .46   |             |             |             | .82   |             |      |             | 1.18        |             |              |     | 1.54 |                |             |      | 1.90      |             |             |             |
| .11   |             |             |             | .47   |             | FCV         |             | . 83  |             |      |             | 1.19        |             |              |     | 1.55 |                |             |      | 1.91      |             | 1.          |             |
| . 12  |             |             |             | .48   |             |             |             | . 84  |             |      |             | 1.20        |             |              |     | 1.56 |                |             |      | 1.92      |             |             |             |
| .13   |             |             |             | .49   | 2           |             |             | .85   |             |      |             | 1.21        |             |              |     | 1.57 |                |             |      | 1.93      |             |             |             |
| .14   |             |             |             | .50   |             |             |             | .86   |             |      | ·           | 1.22        |             |              |     | 1.58 |                |             |      | 1.94      |             |             |             |
| .15   |             |             |             | .51   | ·           |             |             | .87   |             |      |             | 1.23        |             |              |     | 1.59 |                |             |      | 1.95      |             |             |             |
| . 16  |             |             |             | .52   |             | 1           |             | .88   |             |      |             | 1.24        |             |              |     | 1.60 |                | •           |      | 1,96      |             | 1           |             |
| .17   |             |             |             | .53   |             |             |             | 89    |             | i    |             | 1.25        |             |              |     | 1.61 |                |             |      | 1.97      |             | 1 1         |             |
| . 18  |             |             |             | .54   |             |             |             | .90   |             |      | $\neg \neg$ | 1.26        | •           |              |     | 1.62 |                |             |      | 1.98      |             |             |             |
| . 19  |             |             |             | . 55  |             |             |             | .91   |             |      |             | 1.27        |             |              |     | 1.63 |                |             |      | 1.99      |             |             |             |
| .20   |             |             |             | .56   |             |             | $\neg \neg$ | .92   |             |      |             | 1.28        |             |              |     | 1.64 |                |             |      | 2.00      |             | 1 1         |             |
| .21   |             |             |             | .57   |             |             |             | .93   |             |      |             | 1.29        |             |              |     | 1.65 |                |             |      | 2.01      |             |             |             |
| .22   |             |             |             | .5€   |             |             |             | .94   |             |      |             | 1.30        |             |              |     | 1.66 |                |             |      | 2.02      |             |             |             |
| .23   |             |             |             | . 59  |             |             |             | .95   |             |      |             | 1.31        |             |              |     | 1.67 |                |             |      | 2.03      |             |             |             |
| .24   |             |             |             | .60   |             |             |             | .96   |             |      |             | 1.32        |             |              |     | 1.68 |                |             |      | 2.04      |             |             |             |
| .25   |             |             |             | .61   |             |             |             | .97   |             |      |             | 1.33        |             |              |     | 1.69 |                |             |      | 2.05      |             |             |             |
| .26   |             |             |             | .62   |             | 1           |             | .98   |             |      |             | 1.34        |             |              |     | 1.70 |                |             |      | 2.06      |             |             |             |
| .27   |             |             |             | .63   |             |             |             | .99   |             |      |             | 1.35        |             |              |     | 1.71 |                |             |      | 2.07      |             |             |             |
| .28   |             |             | 1           | .64   |             |             |             | 1.00  |             |      |             | 1.36        |             |              |     | 1.72 |                |             |      | 2.08      |             |             |             |
| .29   |             |             |             | .65   |             |             |             | 1.01  |             |      |             | 1.37        |             |              |     | 1.73 |                |             | :    | 2.09      |             |             |             |
| .30   |             |             |             | .66   |             |             |             | 1.02  |             |      |             | 1.38        |             |              |     | 1.74 |                |             |      | 2.10      |             |             |             |
| .31   |             |             |             | .67   |             |             |             | 1.03  |             | •    |             | 1.39        |             |              |     | 1.75 |                |             |      | 2.11      |             | •           |             |
| .32   |             |             |             | .68   |             |             |             | 1.04  |             |      |             | 1.40        |             |              |     | 1.76 |                |             |      | 2-12      |             |             |             |
| .33   |             |             |             | .69   |             |             |             | 1.05  |             |      |             | 1.41        |             |              |     | 1.77 |                |             |      | 2./3      |             |             |             |
| .34   |             |             |             | .70   |             |             |             | 1.06  |             |      |             | 1.42        |             |              |     | 1.78 |                |             |      | 2.14      |             |             |             |
| .35   |             |             |             | .71   |             |             |             | 1.07  |             |      |             | 1.43        | `           |              |     | 1.79 |                |             |      | 2.15      |             |             |             |
| .36   |             |             |             | .72   |             |             |             | 1.08  |             |      |             | 1,44        |             |              |     | 1,80 |                |             | 0    | rganic    | ma11        | er Comp     | .(%)        |
| .37   |             |             |             | .73   |             |             |             | 1.09  |             |      |             | 1.45        |             |              |     | 1.81 |                |             |      | xinite    | 7           | Alginite    |             |
| .38   |             |             |             | .74   |             |             |             | 1.10  |             |      |             | 1.46        |             | ·            |     | 1.82 |                |             |      |           |             |             | 1           |
| .39   |             |             |             | ,75   |             |             |             | 1, 11 |             |      |             | 1.47        |             |              |     | 1.83 |                |             |      | 40.1      | ,           |             | ı           |
| 40    |             |             |             | .76   | J           |             |             | 1.12  |             |      |             | 1.48        |             |              |     | 1.84 |                |             |      |           |             | <del></del> |             |
| .41   |             |             |             | .77   |             |             |             | 1, 13 |             |      |             | 1.49        |             |              |     | 1.85 |                |             | v    | itr in li | i   et      | nertinit    | te ]        |
| .42   | 1           | 个           |             | .78   |             |             |             | 1.14  |             |      |             | 1.50        |             |              |     | 1.86 |                |             |      |           |             |             |             |
| .43   |             |             |             | . 19  |             |             |             | 1.15  |             |      |             | 1,51        |             |              |     | 1.87 | $-\!\!\!\!\!+$ |             |      | 40.       | ,           | 0.2         |             |
| .44   |             |             |             | .80   |             |             |             | 1.16  |             |      |             | 1.57        |             |              |     | 1.88 |                |             |      |           |             |             | - 1         |
| .45   |             | TT          |             | .81   | - 1         |             | - 1         | 1. 17 | 1           |      |             | 1.53        |             |              |     | 1.89 |                | 1           |      |           |             |             |             |

WELL NAME MC ENCHERN -1

SAMPLE NO V2214

DEPTH 1573.0 M

TYPE SEUC

FGV = First Generation Vitrinite -

| Ro \$ | No.             | Pop<br>Rnge     | Pop<br>Type         | Ro \$     | NO.<br>Read      | Pop          | Pop<br>Type                                      | Ro \$ | No.<br>Read   | Pop<br>Rnge | Pope | Ro ≸ | NO.<br>Read             | Pop<br>Rnge        | Pope     | Ro \$ | No.<br>Read    | Pop<br>Ringe | Pop<br>Type | Ro 1      | No.<br>Read | Pop<br>Rnge   | Pop      |
|-------|-----------------|-----------------|---------------------|-----------|------------------|--------------|--------------------------------------------------|-------|---------------|-------------|------|------|-------------------------|--------------------|----------|-------|----------------|--------------|-------------|-----------|-------------|---------------|----------|
|       | KEBU            | raige           | Type                |           | Kebo             | raiga        | Type                                             |       | KEBO          | raige       | Type |      | Nego                    | raige              | Type     |       | KEBU           | ruige        | Type        | 1         | Kead        | ringe         | Type     |
| .10   |                 |                 |                     | .46       |                  |              |                                                  | .82   |               |             |      | 1.18 |                         |                    | <u> </u> | 1.54  | <u> </u>       |              |             | 1.90      |             |               | <u> </u> |
| .11   |                 |                 |                     | .47       |                  |              |                                                  | .83   |               |             |      | 1.19 |                         | · · · ·            |          | 1.55  |                |              |             | 1.91      |             | ·             |          |
| . 12  |                 |                 |                     | .48       |                  | $\vdash$     |                                                  | . 84  |               |             | · ·  | 1.20 |                         | <u>``</u>          |          | 1.56  |                |              |             | 1.92      |             |               |          |
| .13   |                 |                 |                     | .49       |                  |              | <del>                                     </del> | .85   |               |             |      | 1.21 |                         |                    |          | 1.57  |                |              |             | 1.93      |             |               |          |
| 14    |                 |                 |                     | .50       |                  |              |                                                  | . 86  |               | {           |      | 1.22 |                         |                    |          | 1.58  |                |              |             | 1.94      |             |               |          |
| 15    |                 |                 |                     | .51       |                  |              |                                                  | .87   |               |             |      | 1.23 |                         |                    |          | 1.59  |                |              |             | 1.95      |             | L             |          |
| 16    |                 |                 |                     | .₽        |                  |              |                                                  | .88   |               |             |      | 1,24 |                         |                    |          | 1.60  |                |              |             | 1.96      |             |               |          |
| 17    |                 |                 |                     | .53       |                  |              |                                                  | 89    |               |             |      | 1.25 |                         |                    |          | 1.61  |                |              |             | 1.97      |             |               |          |
| 18    |                 |                 |                     | .54       |                  |              |                                                  | .90   |               |             |      | 1.26 |                         |                    |          | 1.62  |                |              |             | 1.98      |             |               |          |
| 19    |                 |                 |                     | . 55      |                  |              | <b>  </b>                                        | .91   |               |             |      | 1.27 |                         |                    |          | 1.63  |                |              |             | 1.99      |             |               |          |
| 20    |                 |                 |                     | .56       |                  |              |                                                  | .92   |               |             |      | 1.28 |                         |                    |          | 1.64  |                |              |             | 2.00      |             |               |          |
| 21    |                 |                 |                     | .57       | 1                |              |                                                  | .93   | +             |             |      | 1.29 | $-\!\!\!\!-\!\!\!\!\!+$ |                    |          | 1.65  |                |              |             | 5.01      |             |               |          |
| 22    |                 |                 |                     | .5€       | <del>- ,  </del> |              |                                                  | . 94  | +             |             |      | 1.30 |                         |                    |          | 1.66  |                |              |             | 2.02      |             |               |          |
| 23    |                 |                 |                     | . 59      | 1                | V            |                                                  | .95   |               |             |      | 1.31 |                         |                    |          | 1.67  |                |              |             | 2.03      |             |               |          |
| 24    |                 |                 |                     | .60       |                  |              |                                                  | .96   |               |             |      | 1.32 |                         |                    |          | 1.68  |                |              |             | 2.04      |             |               |          |
| 25    |                 |                 |                     | .61       |                  |              |                                                  | .97   |               |             |      | 1.33 |                         |                    |          | 1.69  |                |              |             | 2.05      |             |               |          |
| 26    |                 |                 |                     | .62       |                  |              |                                                  | .98   |               |             |      | 1.34 |                         | $\longrightarrow$  |          | 1.70  | $-\!\!\!\!\!+$ |              |             | 2.06      |             |               |          |
| 27    |                 |                 |                     | .63       |                  |              |                                                  | .99   |               |             |      | 1.35 |                         |                    |          | 1.71  |                |              |             | 2.07      |             |               |          |
| 28    |                 |                 |                     | .64       |                  |              |                                                  | 1.00  |               |             |      | 1.36 |                         |                    |          | 1.72  |                |              | _           | 2.08      |             |               |          |
| 29    |                 |                 |                     | .65       |                  |              |                                                  | 1.01  |               |             |      | 1.37 | +                       |                    |          | 1.73  |                |              |             | 2.09      |             |               |          |
| 30    |                 |                 |                     | .66       |                  |              |                                                  | 1.02  |               |             |      | 1.38 |                         |                    |          | 1.74  |                |              |             | 2.10      | $\dashv$    | <del></del> + |          |
| 31    |                 |                 |                     | .67       |                  |              |                                                  | 1.03  | <del></del> ‡ |             |      | 1.39 |                         |                    |          | 1.75  |                |              |             | 2.11      |             |               |          |
| 32    |                 | $\rightarrow$   |                     | .68       |                  |              |                                                  | 1.04  |               |             |      | 1.40 |                         |                    |          | 1.76  |                |              |             | 2.12      |             | <u> </u>      |          |
| 33    |                 | 41              |                     | .69       |                  |              |                                                  | 105   |               |             |      | 1.41 |                         |                    |          | 1.77  |                |              |             | 2./3      |             |               |          |
| 34    |                 |                 |                     | .70       | +                |              |                                                  | 1.06  |               | +           |      | 1.42 |                         | +                  |          | 1.78  |                |              |             | 2.14      |             |               |          |
| 35    |                 |                 |                     | -71       |                  |              |                                                  | 1.07  |               | }           |      | 1.43 | <del>`  </del>          |                    |          | 1.79  |                |              |             |           |             |               | 10.1     |
| 36    |                 | +               |                     | .72       |                  |              |                                                  | 1.08  |               | -+          |      | 1,44 |                         | $\dashv$           |          | 1,80  |                |              |             |           |             | or Comp       |          |
| 37    |                 |                 |                     | .73       |                  |              |                                                  | 1.09  |               |             |      | 1.45 |                         | $\overline{\cdot}$ |          | 1.81  |                |              | E           | xinite    | ^           | Iginite       |          |
| 38    | ╅╉              |                 | $\longrightarrow$   | .74       |                  |              |                                                  | 1.10  |               |             |      | 1.46 |                         | -+                 |          | 1.82  |                |              | <del></del> | 0.8       | - 1         |               |          |
| 39    | 2               |                 |                     | •75<br>76 |                  |              |                                                  |       |               | -+          |      |      | -                       |                    |          |       | $\dashv$       |              |             | 0.0       | -           |               |          |
| 40    | <del>-,  </del> |                 |                     | .76       |                  |              |                                                  | 1. 12 | -+            |             |      | 1.48 | -+                      | <del></del> -      |          | 1.84  |                |              | <del></del> | itr in it | -+-         | ertinit       |          |
| 41    | 1-1             | +               | $-\!\!\!+\!\!\!\!+$ | .77       |                  |              |                                                  | 1.13  |               |             |      | 1.50 | -                       |                    |          | 1.86  |                |              |             |           |             |               | •        |
| 42    |                 | <del>- - </del> |                     | .78       | <del></del>      |              |                                                  | 1.15  |               |             |      | 1,51 |                         |                    |          | 1.87  |                |              | <del></del> | 1,1       |             | 0/-           |          |
| 43    |                 | FGV             | <del></del> +       | .19       |                  |              |                                                  | 1. 16 | -+            | -+          |      | 1.57 | -                       | -                  |          | 1.88  | -+             |              |             | (0.1      | -   4       | 0.0           |          |
| 44    |                 | FUV             |                     |           | +                | <del>!</del> |                                                  |       | -+            |             |      |      |                         |                    |          |       | $\dashv$       |              |             | •         |             |               | 1        |
| 45    | - 1             |                 | 1                   | .B1       |                  | 1            |                                                  | 1.17  |               | L           |      | 1.53 |                         |                    |          | 1.89  |                |              |             |           |             |               |          |

WELL NAME MCEACHERN - 1

SAMPLE NO. V2215

DEPTH. 1674.6

TYPE SWC

FGV = First Generation Vitrinite "

| Ro ≸ | No.<br>Read | Pop | Pop<br>Type | Ro \$ | NO.<br>Read | Pop<br>Rnga | Pop<br>Type | Ro \$ | No.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro 💈 | NO.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro ≴ | No.<br>Read   | Pop<br>Rnge | Pop<br>Type   | Ro 💈      | No.<br>Read | Pop<br>Roge       | Pop  |
|------|-------------|-----|-------------|-------|-------------|-------------|-------------|-------|-------------|-------------|-------------|------|-------------|-------------|-------------|------|---------------|-------------|---------------|-----------|-------------|-------------------|------|
| 10   |             |     |             | .46   |             |             |             | . 82  |             |             |             | 1.18 |             |             |             | 1,54 |               |             |               | 1.90      |             |                   |      |
| .11  |             |     |             | .47   |             |             |             | . 83  |             |             |             | 1.19 |             |             |             | 1.55 |               |             |               | 1.91      |             | ·                 |      |
| 12   |             |     |             | .48   | 1           | FCV         |             | . 84  |             |             |             | 1.20 |             |             |             | 1.56 |               |             |               | 1.92      |             |                   |      |
| 13   |             |     |             | .49   |             |             |             | .85   |             |             |             | 1.21 |             |             |             | 1.57 |               |             |               | 1.93      |             |                   |      |
| 14   |             |     |             | .50   |             |             |             | . 86  |             |             | ·           | 1.22 |             |             |             | 1.58 |               |             |               | 1.94      |             |                   |      |
| 15   |             |     |             | .51   |             |             |             | .87   |             |             |             | 1.23 |             |             |             | 1.59 |               |             |               | 1.95      | •           |                   |      |
| 16   |             |     |             | .₽    |             |             |             | .88   |             |             |             | 1.24 |             |             |             | 1.60 |               | •           |               | 1.96      |             |                   |      |
| 17   |             |     |             | .53   |             |             |             | 89    |             |             |             | 1.25 |             |             |             | 1.61 |               |             |               | 1.97      |             |                   |      |
| 18   |             |     |             | .54   |             |             |             | .90   |             | ì           |             | 1.26 |             |             |             | 1.62 |               |             |               | 1.98      |             |                   |      |
| 19   |             |     |             | . 55  |             |             |             | .91   |             |             |             | 1.27 |             |             |             | 1.63 |               |             |               | 1.99      |             |                   |      |
| 20   |             |     |             | .56   |             |             |             | .92   |             |             |             | 1.28 |             |             |             | 1.64 |               |             |               | 2.00      |             |                   |      |
| 21   |             |     |             | .57   |             |             |             | . 93  |             |             |             | 1.29 |             |             |             | 1.65 |               |             |               | 2.01      |             |                   |      |
| 22   |             |     |             | .58   |             |             |             | .94   | T           |             |             | 1.30 |             |             |             | 1.66 |               |             |               | 2.02      |             |                   |      |
| 23   |             |     |             | .59   |             |             |             | .95   |             |             |             | 1.31 |             |             |             | 1.67 |               |             |               | 2.03      |             |                   |      |
| 24   |             |     |             | .60   |             |             |             | .96   |             | 1           |             | 1.32 |             |             |             | 1.68 |               |             |               | 2.04      |             |                   |      |
| 25   |             |     |             | .61   |             |             |             | .97   |             |             |             | 1.33 |             |             |             | 1.69 |               |             |               | 2.05      |             |                   |      |
| 26   |             |     |             | .62   |             | 1           |             | .98   |             |             |             | 1.34 | }           |             |             | 1.70 |               |             |               | 2.06      |             |                   |      |
| 27   |             |     |             | .63   |             |             |             | .99   |             |             |             | 1.35 |             |             |             | 1.71 |               |             |               | 2.07      |             |                   |      |
| 28   |             |     |             | .64   |             |             |             | 1.00  |             |             |             | 1.36 |             |             |             | 1.72 |               |             |               | 2.08      |             |                   |      |
| 29   |             |     |             | .65   |             |             |             | 1.01  |             |             |             | 1.37 |             |             |             | 1.73 |               |             |               | 2.09      |             | i                 |      |
| 30   |             |     |             | .66   |             |             |             | 1.02  |             |             |             | 1.38 |             |             |             | 1.74 |               |             |               | 2.10      |             |                   |      |
| 31   |             |     |             | .67   |             |             |             | 1.03  |             |             | T           | 1.39 |             |             |             | 1.75 |               |             |               | 2.11      |             | ·                 |      |
| 32   |             |     |             | .68   |             |             |             | 1.04  |             |             |             | 1.40 |             |             |             | 1.76 |               |             |               | 2.12      | 1           | L                 |      |
| 33   |             |     |             | .69   |             |             |             | 1.05  |             |             |             | 1.41 |             |             |             | 1.77 |               |             |               | 2./3      |             |                   |      |
| 34   |             |     |             | .70   |             |             |             | 1.06  |             |             |             | 1.42 |             |             |             | 1.78 |               |             |               | 2.14      |             |                   |      |
| 35   |             |     |             | .71   |             |             |             | 1.07  |             |             |             | 1.43 |             |             |             | 1.79 |               |             |               | 2.15      | 1           |                   |      |
| 36   |             |     |             | .72   |             |             |             | 1.08  |             |             |             | 1,44 |             |             |             | 1,80 |               |             | kc            | rganic    | matt        | er Comp.          | .(%) |
| 37   |             |     |             | .73   |             |             |             | 1.09  |             |             |             | 1.45 |             |             |             | 1.81 |               |             | E             | xInite    | ٨           | iginite           |      |
| 38   |             |     |             | .74   |             |             |             | 1.10  |             |             |             | 1.46 |             | ·           |             | 1.82 |               |             |               | 00        | - 1         |                   |      |
| 39   |             |     |             | ,75   |             |             |             | 1,11  |             |             |             | 1,47 |             |             |             | 1.83 |               |             |               | 0.2       |             |                   |      |
| 40   |             |     |             | .76   | <u>·</u> ]  |             |             | 1.12  |             |             |             | 1.48 |             |             |             | 1.84 |               | $\bot$      | $\perp \perp$ |           |             |                   |      |
| 41   |             |     |             | .77   |             |             |             | 1.13  |             |             |             | 1.49 |             |             |             | 1.85 |               |             |               | itr in it | il et       | n <b>erti</b> nii | r•   |
| 42   |             |     |             | .78   |             |             |             | 1.14  |             |             |             | 1.50 |             |             |             | 1.86 |               |             |               |           |             | . /               |      |
| 43   |             |     |             | .19   |             |             |             | 1.15  |             |             |             | 1,51 |             |             |             | 1.87 | $\rightarrow$ |             |               | /n1       |             | 0.6               | ,    |
| 44   |             |     |             | .80   |             |             |             | 1.16  |             |             |             | 1.52 |             |             |             | 1.88 |               |             |               | (0.)      |             | - ~               |      |
| 45   |             |     |             | .81   |             |             |             | 1.17  |             |             | T           | 1.53 |             |             |             | 1.89 |               | 1           |               |           |             |                   |      |

WELL NAME MCRACIERN-1

SAMPLE NO. V2216

DEPTH 1741 M

TYPE SUIC

FGV = First Generation Vitrinite

| 101 - | 7 1751      |     |                   |       |             |       |             | , ,   |             | ······      |             |      |             | ,           |      |      |             |     |             |           |             |             |         |
|-------|-------------|-----|-------------------|-------|-------------|-------|-------------|-------|-------------|-------------|-------------|------|-------------|-------------|------|------|-------------|-----|-------------|-----------|-------------|-------------|---------|
| Ro ≸  | No.<br>Read | Pop | Pop<br>Type       | Ro \$ | NO.<br>Read | Rop   | Pop<br>Type | Ro \$ | No.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro ≴ | NO.<br>Read | Pop<br>Rnge | Pope | Ro ≴ | No.<br>Read | Pop | Pop<br>Type | Ro I      | No.<br>Read | Pop<br>Roge | Pop     |
| .10   |             |     |                   | .46   |             |       |             | . 82  |             |             |             | 1.18 |             |             |      | 1.54 |             |     |             | 1.90      |             |             |         |
| .11   |             |     |                   | .47   |             |       |             | .83   |             |             |             | 1.19 |             |             |      | 1.55 |             |     |             | 1.91      |             |             |         |
| .12   |             |     |                   | .48   |             |       |             | . 84  |             |             |             | 1.20 |             |             |      | 1.56 |             |     |             | 1,92      |             |             |         |
| .13   |             |     |                   | .49   |             | 不     |             | .85   |             |             |             | 1.21 |             | · ·         |      | 1.57 |             |     |             | 1.93      |             | 1           | <b></b> |
| .14   |             |     |                   | .50   |             |       |             | . 86  |             |             |             | 1.22 |             |             |      | 1.58 |             |     |             | 1.94      |             |             |         |
| .15   |             |     |                   | .51   | 2           | r=CiV |             | .87   |             |             |             | 1.23 |             |             |      | 1.59 |             |     |             | 1.95      |             |             |         |
| . 16  |             |     |                   | .57   |             |       |             | .88   |             |             |             | 1.24 |             |             |      | 1.60 |             |     |             | 1.96      |             |             |         |
| .17   |             |     |                   | .53   |             |       |             | 89    |             |             |             | 1.25 |             |             |      | 1.61 |             |     |             | 1.97      |             |             |         |
| .18   |             |     |                   | .54   | 1           |       |             | .90   |             | 1           | 1           | 1.26 |             |             |      | 1.62 |             |     |             | 1.98      |             |             |         |
| .19   |             |     |                   | . 55  |             |       |             | .91   |             |             |             | 1.27 |             |             |      | 1.63 |             |     |             | 1.99      |             |             |         |
| .20   |             |     |                   | .56   |             |       |             | . 92  |             |             |             | 1.28 |             |             |      | 1.64 | 1           |     | 1           | 2.00      |             |             |         |
| .21   |             |     |                   | .57   |             |       |             | .93   |             |             |             | 1.29 |             |             |      | 1.65 |             |     |             | 2.01      |             |             | -       |
| .22   |             |     |                   | .5€   |             |       |             | . 94  |             |             |             | 1.30 |             |             |      | 1.66 |             |     |             | 2.02      |             |             |         |
| .23   |             |     |                   | . 59  |             |       |             | - 95  |             |             |             | 1.31 |             |             |      | 1.67 |             |     |             | 2.03      |             |             |         |
| .24   |             |     |                   | .60   |             |       |             | .96   |             |             |             | 1.32 |             |             |      | 1.68 |             |     |             | 2.04      |             |             |         |
| . 25  |             |     |                   | .61   |             |       |             | .97   |             |             |             | 1.33 |             |             |      | 1.69 |             |     |             | 2.05      |             |             |         |
| .26   |             |     | 1                 | .62   |             |       |             | .98   | 1           |             |             | 1.34 |             |             |      | 1.70 |             |     |             | 2.06      |             |             |         |
| .27   |             |     |                   | .63   |             |       |             | .99   |             |             |             | 1.35 |             |             |      | 1.71 |             |     |             | 2.07      |             |             |         |
| . 28  |             |     |                   | .64   |             |       |             | 1.00  |             |             |             | 1.36 |             |             |      | 1.72 |             |     |             | 2.08      |             |             |         |
| . 29  |             |     |                   | .65   |             |       |             | 1.01  |             |             |             | 1.37 |             |             |      | 1.73 |             |     |             | 2.09      |             |             |         |
| .30   |             |     |                   | .66   |             |       |             | 1.02  |             |             |             | 1.38 |             |             |      | 1.74 |             |     |             | 2.10      | _           |             |         |
| .31   |             |     |                   | .67   |             |       |             | 1.03  |             |             |             | 1.39 |             |             |      | 1.75 |             |     |             | 2.11      |             |             |         |
| .32   |             |     |                   | .68   |             |       |             | 1.04  |             |             |             | 1.40 |             |             |      | 1.76 |             |     |             | 2.12      |             |             |         |
| .33   |             |     |                   | .69   |             |       |             | 1.05  |             |             |             | 1.41 |             |             |      | 1.77 |             |     |             | 2./3      |             |             |         |
| .34   |             |     |                   | .70   |             |       |             | 1.06  |             |             |             | 1.42 |             |             |      | 1.78 |             |     |             | 2.14      |             |             |         |
| .35   |             |     |                   | .71   |             |       |             | 1.07  |             |             |             | 1.43 |             |             |      | 1.79 |             |     |             | 2.15      |             |             |         |
| .36   |             |     |                   | .72   |             |       |             | 1.08  |             |             |             | 1,44 |             |             |      | 1,80 |             |     |             |           |             | er Comp.    |         |
| .37   |             |     |                   | .73   |             |       |             | 1.09  |             |             |             | 1.45 | -           |             |      | 1.81 |             |     | E           | xinite    | 1^          | Iginite     |         |
| .38   |             |     |                   | .74   | -           |       |             | 1.10  |             |             |             | 1.46 |             |             |      | 1.82 |             |     |             |           |             |             |         |
| .39   |             |     |                   | .75   |             |       |             | 1.11  |             |             |             | 1.47 |             |             |      | 1.83 | $\dashv$    |     |             | 0.2       | 1           |             |         |
| 40    |             |     |                   | .76   |             |       |             | 1.12  |             |             |             | 1.48 |             |             |      | 1.84 |             |     |             |           | -4-         |             |         |
| 41    |             |     |                   | .77   |             |       |             | 1.13  | -+          |             |             | 1.49 |             |             |      | 1.85 |             |     |             | itr in it | 9     I     | nertinit    | ř•      |
| .42   |             |     | $\longrightarrow$ | .78   |             |       |             | 1.14  |             |             |             | 1.50 |             |             |      | 1.86 |             |     |             | / ,       |             | ^ 1         |         |
| .43   |             |     |                   | . 19  |             |       |             | 1.15  | -+          |             |             | 1,51 |             |             |      | 1.87 |             |     |             | (0.1      | 1           | 0.7         |         |
| .44   |             |     |                   | .80   | -+          |       |             | 1.16  |             |             |             | 1.52 |             |             |      | 1.88 |             |     |             | `         |             | •           |         |
| .45   |             |     |                   | :B1   |             |       |             | 1.17  |             |             |             | 1.53 |             |             |      | 1.89 |             |     |             |           |             |             |         |

WELL NAME MCELCHERN - 1

SAMPLE NO. V2217 DEPTH 1857-6 M TYPE SWC

FGV = First Generation Vitrinite -

| % <b>≸</b> | No.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro \$ | NO.<br>Read | Ro     | Sa                      | Pop<br>Type | Ro \$          | No.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro 🖇 | NO.<br>Read | Pop<br>Rnge | Pop<br>Type | Ro ≸ | No.<br>Read   | Pop<br>Rnge | Pop<br>Type | Ro 1             | No.<br>Read | Pop<br>Ringe      | Pop  |
|------------|-------------|-------------|-------------|-------|-------------|--------|-------------------------|-------------|----------------|-------------|-------------|-------------|------|-------------|-------------|-------------|------|---------------|-------------|-------------|------------------|-------------|-------------------|------|
| .10        |             |             |             | .46   |             |        |                         |             | . 82           |             |             |             | 1.18 |             |             |             | 1.54 |               |             |             | 1.90             |             |                   |      |
| .11        |             |             |             | .47   | 1           |        |                         |             | . 83           |             |             |             | 1.19 |             |             |             | 1.55 |               |             |             | 1.91             |             | ·                 |      |
| 12         |             |             |             | .48   |             |        | T                       |             | . 84           |             |             |             | 1.20 |             |             |             | 1.56 |               |             |             | 1.92             |             |                   |      |
| .13        |             |             |             | .49   |             |        | $\exists$               |             | .85            |             |             |             | 1.21 |             |             |             | 1.57 |               |             |             | 1.93             |             |                   |      |
| 14         |             |             |             | .50   |             | FG     | V                       |             | .86            |             |             | •           | 1.22 |             |             |             | 1.58 |               |             |             | 1.94             |             |                   |      |
| 15         |             |             |             | .51   |             | Ī      |                         |             | .87            |             |             |             | 1.23 |             |             |             | 1.59 |               |             |             | 1.95             | ,           |                   |      |
| 16         |             |             |             | .52   |             |        | 十                       |             | .88            |             |             |             | 1.24 |             |             |             | 1.60 |               | ·           |             | 1.96             |             |                   |      |
| 17         |             |             |             | .53   |             | $\Box$ | T                       |             | .89            |             |             |             | 1.25 |             |             |             | 1.61 |               |             |             | 1.97             |             |                   |      |
| 18         |             |             |             | .54   | 1           |        | 1                       |             | .90            |             |             |             | 1.26 |             |             |             | 1.62 |               |             |             | 1.98             |             | ·                 |      |
| 19         |             |             |             | . 55  |             |        | T                       |             | .91            |             |             |             | 1.27 |             |             |             | 1.63 |               |             |             | 1.99             |             |                   |      |
| 20         |             |             |             | .56   |             |        | $\top$                  |             | .92            |             |             |             | 1.28 |             |             |             | 1.64 |               |             |             | 2.00             |             |                   |      |
| 21         |             |             |             | . 57  |             |        | $\top$                  |             | .93            |             |             |             | 1.29 |             |             |             | 1.65 |               |             |             | 2.01             |             |                   |      |
| 22         |             |             |             | .58   |             |        | $\top$                  |             | . 94           |             |             |             | 1.30 |             |             |             | 1.66 |               |             |             | 2.02             |             |                   |      |
| 23         |             |             |             | . 59  |             |        | T                       |             | .95            |             |             |             | 1.31 |             |             |             | 1.67 |               |             |             | 2.03             |             |                   |      |
| 24         |             |             |             | .60   |             |        | Т                       |             | .96            |             |             |             | 1.32 |             |             |             | 1.68 |               |             |             | 2.04             |             |                   |      |
| 25         |             |             |             | .61   |             |        |                         |             | .97            |             |             |             | 1,33 |             |             |             | 1.69 |               |             |             | 2.05             |             |                   |      |
| 26         |             |             |             | .62   |             |        | 1                       |             | .98            |             |             |             | 1.34 |             |             |             | 1.70 |               |             |             | 2.06             |             | 1                 |      |
| 27         |             |             |             | .63   |             |        | T                       |             | .99            |             |             |             | 1.35 |             |             |             | 1.71 |               |             |             | 2.07             |             |                   |      |
| 28         |             |             |             | .64   |             |        | $\perp$                 |             | 1.00           |             |             |             | 1.36 |             |             |             | 1.72 |               |             |             | 2.08             |             |                   |      |
| 29         | 1           |             |             | .65   | 1           | V      | Т                       |             | 1.01           |             |             |             | 1.37 |             |             |             | 1.73 |               |             |             | 2.09             |             |                   |      |
| 30         |             |             |             | .66   |             |        | $oldsymbol{\mathbb{I}}$ |             | 1.02           |             |             |             | 1.38 |             |             |             | 1.74 |               |             |             | 2.10             |             |                   |      |
| 31         |             |             |             | .67   |             |        | T                       |             | 1.03           |             |             |             | 1.39 |             |             |             | 1.75 |               |             |             | 2.11             |             | <u> </u>          |      |
| 52         |             |             |             | .68   |             |        | T                       |             | 1.04           |             |             |             | 1,40 |             |             |             | 1.76 |               |             |             | 2-12             |             |                   |      |
| 53         |             |             |             | .69   |             |        | 7                       |             | 1.05           |             |             |             | 1.41 |             |             |             | 1.77 |               |             |             | 2./3             |             |                   |      |
| 34         |             | $\neg \neg$ |             | .70   |             |        |                         |             | 1.06           |             |             |             | 1.42 |             |             |             | 1.78 |               |             |             | 2.14             |             |                   |      |
| 35         |             |             |             | .71   |             |        |                         |             | 1.07           |             |             |             | 1.43 |             |             |             | 1.79 |               |             |             | 2.15             |             |                   |      |
| 36         |             |             |             | .72   |             |        | 丄                       |             | 1.08           |             |             |             | 1,44 |             |             |             | 1.80 |               |             | <u>b</u>    | rganic<br>xinite | matte       | er Comp           | .(%) |
| 37         |             |             |             | .73   |             |        | 丄                       |             | 1.09           |             |             |             | 1.45 |             |             |             | 1.81 |               |             | E           | xinite           | ٨           | iginite           | •    |
| 38         |             |             |             | .74   |             |        |                         |             | 1.10           |             |             |             | 1.46 |             | ·           |             | 1.82 |               |             |             | 1.1              | -           | _                 |      |
| 39         |             |             |             | ,75   |             |        | 1                       |             | <u>1.11   </u> |             |             |             | 1.47 |             |             |             | 1.83 |               |             |             | <0.1             |             |                   |      |
| 40         | 1           | 不           |             | .76   |             |        | $\bot$                  |             | 1.12           |             |             |             | 1.48 |             |             |             | 1.84 |               |             |             |                  |             |                   |      |
| 41         |             |             |             | .77   |             |        |                         |             | 1.13           |             |             |             | 1.49 |             |             |             | 1.85 |               |             | \           | itr init         | 9   11      | n <b>erti</b> nit | te   |
| 42         |             |             |             | .78   |             |        |                         |             | 1.14           |             |             |             | 1.50 |             |             |             | 1.86 |               |             |             | ,                |             | . 6               |      |
| 43         |             |             |             | . 19  |             |        |                         |             | 1.15           |             |             |             | 1,51 |             | -           |             | 1.87 |               |             |             | (0.1             |             | 0.8               |      |
| 44         |             |             |             | .80   |             |        | $\perp$                 |             | 1.16           |             |             |             | 1.2  |             |             |             | 1.88 | $\rightarrow$ | $\bot$      |             | / ,              | 1.          | . <del>-</del>    |      |
| 45         | 1           |             |             | .81   | 1           |        | 1                       |             | 1.17           | - 1         | - 1         | 1           | 1.53 |             | - 1         | - 1         | 1.89 | - 1           |             | }           |                  | 1           |                   |      |

WELL NAME MCEACHERN-1

SAMPLE NO VZ218

DEPTH 2023-6 M

TYPE SWC

FGV = First Generation Vitrinite "

| Ro \$ | No.         | Pop  | Pop<br>Type  | Ro \$ | NO.<br>Read       | Pop                                              | Pop<br>Type    | Ro K                                             | No.             | Pop   | Pope  | Ro 1 | NO.<br>Read                                                                 | Pop                 | Pope     | Ro \$ | No.<br>Read   | Pop             | Pop.           | Ro «      | No.         | Pop<br>Roge | Pope |
|-------|-------------|------|--------------|-------|-------------------|--------------------------------------------------|----------------|--------------------------------------------------|-----------------|-------|-------|------|-----------------------------------------------------------------------------|---------------------|----------|-------|---------------|-----------------|----------------|-----------|-------------|-------------|------|
|       | REBU        | Mige | Type         |       | 1                 | 19                                               | 1777           | <del>                                     </del> | 1.000           | isige | 1,700 |      |                                                                             | raige               | 1,700    |       | KEBU          | raige           | Type           |           | NE BU       | range       | туре |
| .10   |             |      |              | .46   |                   | <del> </del> *                                   | +              | . 82                                             |                 |       |       | 1.18 | ļ                                                                           |                     | <u> </u> | 1.54  |               |                 |                | 1.90      |             |             |      |
| .11   |             |      |              | .47   | 1                 |                                                  | +              | . 83                                             |                 |       |       | 1.19 |                                                                             |                     |          | 1.55  |               |                 |                | 1.91      |             | -           |      |
| . 12  |             |      |              | .48   |                   | $\vdash$                                         |                | .85                                              |                 |       |       | 1.21 |                                                                             |                     |          | 1.57  |               |                 |                | 1.92      |             |             |      |
| .13   |             |      |              | .50   |                   |                                                  |                | .86                                              |                 |       |       | 1.22 |                                                                             |                     |          | 1.58  |               |                 |                | 1.93      |             |             |      |
| .14   |             |      |              | .51   | ,                 | $\vdash$                                         | +              | .87                                              |                 |       |       | 1.23 |                                                                             |                     |          | 1.59  |               |                 |                | 1.94      |             |             |      |
| . 15  |             |      |              | .52   |                   | <del>                                     </del> |                | .88                                              |                 |       |       | 1.24 |                                                                             |                     |          | 1.60  |               |                 |                | 1.96      |             |             |      |
| . 10  |             |      |              | .53   |                   |                                                  |                | 89                                               |                 |       |       | 1.25 |                                                                             |                     |          | 1.61  |               |                 |                | 1.97      |             |             |      |
| .18   |             |      |              | .54   |                   | <del></del>                                      | +              | .90                                              |                 |       |       | 1.26 |                                                                             |                     |          | 1.62  | -             |                 |                | 1.98      |             | ,           |      |
| 19    |             |      |              | .55   | 2                 |                                                  | <del> </del> - | .91                                              |                 |       |       | 1.27 |                                                                             |                     |          | 1.63  |               |                 |                | 1.99      |             | · ·         |      |
| 20    |             |      |              | .56   | 7                 | <del>                                     </del> | +              | .92                                              |                 |       |       | 1.28 |                                                                             |                     |          | 1.64  |               | -+              |                | 2.00      |             |             |      |
| 21    | <del></del> |      |              | .57   | -                 |                                                  | +              | .93                                              |                 |       |       | 1.29 |                                                                             |                     |          | 1.65  |               |                 |                | 2.01      |             |             |      |
| 22    |             |      | <del>1</del> | .58   |                   | Fav                                              | <del> </del>   | .94                                              |                 |       |       | 1.30 |                                                                             |                     |          | 1.66  |               |                 |                | 2.02      |             |             |      |
| 23    |             |      |              | .59   |                   | 1 4                                              |                | .95                                              |                 |       |       | 1.31 |                                                                             |                     |          | 1.67  |               |                 |                | 2.03      |             |             |      |
| 24    |             |      |              | .60   | 7                 |                                                  | 11             | .96                                              |                 |       |       | 1.32 |                                                                             |                     |          | 1.68  |               |                 |                | 2.04      |             |             |      |
| 25    |             |      |              | .61   | -3-1              | _                                                | 1-1            | .97                                              |                 |       |       | 1.33 |                                                                             | $\neg \neg \dagger$ |          | 1.69  |               |                 |                | 2.05      | $\neg \neg$ |             |      |
| 26    |             |      |              | .62   | 7                 | _                                                | 1              | .98                                              |                 |       | 7     | 1.34 |                                                                             |                     |          | 1.70  |               |                 |                | 2.06      |             |             |      |
| 27    |             |      |              | .63   | 1                 | $\dashv$                                         | 11             | .99                                              | $\neg \uparrow$ |       |       | 1.35 |                                                                             |                     |          | 1.71  | $\overline{}$ | $\neg \uparrow$ |                | 2.07      |             |             |      |
| 28    |             |      |              | .64   | 2                 |                                                  |                | 1.00                                             |                 |       |       | 1.36 |                                                                             |                     |          | 1.72  |               |                 |                | 2.08      |             |             |      |
| 29    |             |      |              | .65   |                   |                                                  |                | 1.01                                             |                 |       |       | 1.37 |                                                                             |                     |          | 1.73  |               |                 |                | 2.09      |             |             |      |
| 30    |             |      |              | .66   |                   |                                                  |                | 1.02                                             |                 |       |       | 1.38 |                                                                             |                     |          | 1.74  |               |                 |                | 2.10      |             |             |      |
| 31    |             |      |              | .67   |                   |                                                  |                | 1.03                                             |                 |       |       | 1.39 |                                                                             |                     |          | 1.75  |               | 7               |                | 2.11      |             | •           |      |
| 32    |             |      |              | .68   |                   |                                                  |                | 1.04                                             |                 |       |       | 1.40 |                                                                             |                     |          | 1.76  |               |                 |                | 2./2      |             |             |      |
| 33    |             |      |              | .69   |                   |                                                  |                | 1.05                                             |                 |       |       | 1.41 |                                                                             |                     |          | 1.77  |               |                 |                | 2./3      |             |             |      |
| 34    |             |      |              | .70   |                   |                                                  |                | 1.06                                             |                 |       |       | 1.42 |                                                                             |                     |          | 1.78  |               |                 |                | 2.14      |             |             |      |
| 35    |             |      |              | .71   |                   |                                                  |                | 107                                              |                 |       |       | 1.43 |                                                                             |                     |          | 1.79  |               |                 | :              | 2.15      |             |             |      |
| 36    |             |      |              | .72   |                   |                                                  |                | 1.08                                             |                 |       |       | 1,44 |                                                                             |                     |          | 1,80  |               |                 |                | rganic    | matte       | er Comp     | .(%) |
| 37    |             |      |              | .73   |                   |                                                  |                | 1.09                                             |                 |       |       | 1.45 |                                                                             |                     |          | 1.81  |               |                 | E              | xInite    | ٨           | Iginite     |      |
| 38    |             |      |              | .74   |                   |                                                  |                | 1.10                                             |                 |       |       | 1.46 |                                                                             |                     |          | 1.82  |               |                 |                | 1.1       | 1           |             |      |
| 39    |             |      |              | ,75   |                   |                                                  |                | 1,11                                             |                 |       |       | 1.47 |                                                                             |                     |          | 1.83  |               | $-\!\!\!\!+$    |                | (0.1      | - 1         |             |      |
| 40    |             |      |              | .76   |                   |                                                  |                | 1.12                                             |                 |       |       | 1.48 |                                                                             |                     | · }      | 1.84  |               |                 |                |           | -           |             |      |
| 41    |             |      |              | .77   |                   |                                                  |                | 1.13                                             |                 |       |       | 1.49 |                                                                             |                     |          | 1.85  |               |                 | \ <sup>v</sup> | itr in it | 9   I 1     | nertini:    | te   |
| 42    |             |      |              | .78   | $\longrightarrow$ |                                                  |                | 1.14                                             |                 |       |       | 1.50 |                                                                             |                     |          | 1.86  |               |                 |                | / A       |             | . 1         |      |
| 43    |             |      |              | . 19  |                   |                                                  |                | 1.15                                             | $-\!\!\!\!+$    |       |       | 1,51 |                                                                             |                     |          | 1.87  |               | <del></del> [   |                | (0.1      | -   .       | 0.4         |      |
| 44    |             |      |              | .80   |                   |                                                  |                | 1.16                                             |                 |       |       | 1.52 | $-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |                     |          | 1.88  | $\dashv$      | $-\!\!\!+$      |                |           |             | - ,         |      |
| 45    |             |      | 1            | .81   |                   |                                                  | L J            | 1.17                                             |                 |       |       | 1.53 |                                                                             |                     |          | 1.89  |               |                 |                |           | 丄           |             | ]    |

WELL NAME. MC Eachem-1

SAMPLE NO. V 2219

DEPTH 2226.6m

TYPE SNC

FGV = First Generation Vitrinite -

I = inertinite

| Ro ≸ | No.<br>Read   | Pop<br>Rnge | Pop<br>Type | Ro ≸ | NO.<br>Read | Pop | Pop<br>Type | Ro \$ | No.<br>Read | Pop<br>Rnge | Pope | Ro ≸ | NO.<br>Read | Pop<br>Rnge | Pope | Ro \$ | No.<br>R∉ad | Pop     | Pop<br>Type | Ro 1     | No.<br>Read | Pop<br>Ringe | Pop         |
|------|---------------|-------------|-------------|------|-------------|-----|-------------|-------|-------------|-------------|------|------|-------------|-------------|------|-------|-------------|---------|-------------|----------|-------------|--------------|-------------|
| .10  |               |             |             | .46  | 2           |     |             | .82   |             |             |      | 1.18 |             |             |      | 1.54  |             |         |             | 1.90     |             |              |             |
| .11  |               |             |             | .47  |             |     |             | . 83  |             |             |      | 1.19 |             |             |      | 1.55  |             |         |             | 1.91     |             | ļ            |             |
| . 12 |               |             |             | .48  |             |     |             | . 84  |             |             |      | 1.20 |             |             |      | 1.56  |             |         |             | 1.92     |             |              |             |
| .13  |               |             |             | .49  | 1           |     |             | .85   |             |             |      | 1.21 |             |             |      | 1.57  |             |         |             | 1.93     |             |              |             |
| .14  |               |             |             | .50  |             |     |             | . 86  |             |             | •    | 1.22 |             |             |      | 1.58  |             |         |             | 1.94     |             |              |             |
| .15  |               |             |             | .51  |             |     |             | .87   |             |             |      | 1.23 |             |             |      | 1.59  |             |         |             | 1.95     | -           |              |             |
| 16   |               |             |             | .₽   | 1           |     |             | .88   |             | 1           |      | 1.24 |             |             |      | 1.60  |             | •       |             | 1.96     |             |              |             |
| .17  |               |             |             | .53  | 4           |     |             | 89    |             |             |      | 1.25 |             |             |      | 1.61  |             |         |             | 1.97     |             |              |             |
| .18  |               |             |             | .54  | 4           |     |             | .90   |             |             |      | 1.26 |             |             |      | 1.62  |             |         |             | 1.98     |             |              |             |
| . 19 |               |             |             | . 55 |             |     |             | .91   |             |             |      | 1.27 |             |             |      | 1.63  |             |         |             | 1.99     |             |              | <del></del> |
| .20  |               |             |             | .56  |             |     |             | . 92  |             |             |      | 1.28 |             |             |      | 1.64  |             |         |             | 2.00     |             |              |             |
| .21  |               |             |             | .57  | 2           |     |             | .93   |             |             |      | 1.29 |             |             |      | 1.65  |             |         |             | 2.01     |             |              |             |
| .22  |               |             |             | . 58 |             | Fav |             | . 94  |             |             |      | 1.30 |             |             |      | 1.66  |             |         |             | 2.02     |             |              |             |
| 23   |               |             |             | . 59 |             | 1   |             | .95   |             |             |      | 1.31 |             |             |      | 1.67  |             |         |             | 2.03     |             |              |             |
| 24   |               |             |             | .60  | 1           |     |             | .96   |             |             |      | 1.32 |             |             |      | 1.68  |             | $-\tau$ |             | 2.04     |             |              |             |
| 25   |               |             |             | .61  |             |     |             | .97   |             |             |      | 1.33 |             |             |      | 1.69  |             |         |             | 2.05     |             |              |             |
| 26   | [             | I           |             | .62  |             |     |             | .98   |             |             |      | 1.34 |             | T           |      | 1.70  |             |         |             | 2.06     | $\neg \neg$ |              |             |
| 27   |               |             |             | .63  | i I         |     |             | .99   |             |             |      | 1.35 |             |             |      | 1.71  |             |         |             | 2.07     |             |              |             |
| 28   |               |             |             | .64  | 2           |     |             | 1.00  |             |             | 1    | 1.36 |             |             |      | 1.72  |             |         |             | 2.08     | $\neg \neg$ |              |             |
| 29   |               |             |             | .65  |             |     |             | 1.01  |             |             |      | 1.37 |             |             |      | 1.73  |             |         | 12          | 2.09     |             |              |             |
| 30   |               |             |             | .66  | 4           |     |             | 1.02  |             |             |      | 1.38 |             |             |      | 1.74  |             |         |             | 2.10     |             |              |             |
| 31   |               |             |             | .67  |             |     |             | 1.03  |             |             |      | 1.39 |             |             |      | 1.75  |             |         |             | 2.11     |             | •            |             |
| 32   | 1             | T           |             | .68  |             |     |             | 1.04  |             |             |      | 1.40 |             |             |      | 1.76  |             |         |             | 2.12     |             |              |             |
| 33   |               |             |             | .69  |             |     |             | 1.05  |             |             |      | 1.41 |             |             |      | 1.77  |             |         |             | 2./3     |             |              |             |
| 34   |               |             |             | .70  |             |     |             | 1.06  |             |             |      | 1.42 |             |             |      | 1.78  |             |         | [2          | 2.14     |             |              |             |
| 35   |               |             |             | .71  | 1           |     |             | 1.07  |             |             |      | 1.43 | `           |             |      | 1.79  |             |         | 12          | 2.15     |             |              |             |
| 36   |               |             |             | .72  |             |     |             | 1.08  |             |             |      | 1,44 |             |             |      | 1,80  |             |         | o           | rganic   | matte       | or Comp.     | (%)         |
| 37   |               |             |             | .73  | 11          | V   |             | 1.09  |             |             |      | 1.45 |             |             |      | 1.81  |             |         |             | Exinite  |             | Alginite     |             |
| 38   |               |             |             | .74  |             |     |             | 1.10  |             |             |      | 1.46 |             |             |      | 1.82  |             |         |             |          | - 1         |              | 1           |
| 39   |               |             |             | .75  |             |     |             | 1,11  | _           |             |      | 1.47 |             |             |      | 1.83  |             |         |             | :40:1    |             |              | Ì           |
| 40   |               |             |             | .76  | <u>·</u>    |     |             | 1.12  |             |             |      | 1.48 |             |             |      | 1.84  |             |         |             |          |             |              |             |
| 41   | $\perp \perp$ |             |             | .77  |             |     |             | 1.13  |             |             |      | 1.49 |             |             |      | 1.85  |             |         |             | etinitiv |             | 1            |             |
| 42   | $\bot$        |             |             | .78  |             |     |             | 1.14  |             |             |      | 1.50 |             |             |      | 1.86  |             |         |             |          |             |              |             |
| 43   |               |             |             | . 19 |             |     |             | 1.15  |             |             |      | 1,51 |             |             |      | 1.87  | -           |         |             |          |             |              |             |
| 44   |               |             |             | .80  |             |     |             | 1.16  |             |             |      | 1.∑  |             |             |      | .88   |             |         |             |          |             |              |             |
| 15   | - 1           | - 1         | 1           | .81  |             |     |             | 1.17  | 1           |             | 1    | 1.53 |             |             | ] 1  | 1. B9 | 1           | _       |             |          | l           |              |             |

10. Source Rock ANALYSIS



25 June 1990

Gas & Fuel Exploration NL GPO Box 18410 MELBOURNE VIC 3001

Attention: Val Akbari



# REPORT: 009/304

**CLIENT REFERENCE:** 

Letter V Akbari

MATERIAL:

Cuttings Samples

LOCALITY:

McEachern -1

WORK REQUIRED:

TOC and Rock-Eval Analyses

Please direct technical enquiries regarding this work to the signatory below under whose supervision the work was carried out.

Q: thete.

**BRIAN L WATSON** 

Petroleum Geochemistry Supervisor on behalf of Amdel Core Services Pty Ltd

Amdel Core Services Pty Limited shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

#### 1. INTRODUCTION

Total organic carbon (TOC) and Rock-Eval analyses were carried out on seven cuttings samples from McEachern -1. This report contains the results of these analyses along with brief details of the analytical procedures used, graphical displays of the data and some preliminary interpretative comments.

#### ANALYTICAL PROCEDURE

### 2.1 Sample Preparation

Cuttings samples (as received) were ground in a Siebtechnik mill for 20-30 seconds.

# 2.2 <u>Total Organic Carbon (TOC)</u>

Total organic carbon was determined by digestion of a known weight (approximately 0.2 g) of powdered rock in 50% HCl to remove carbonates, followed by combustion in oxygen and measurement of the resultant  ${\rm CO_2}$  by infra-red detection.

#### 2.3 Rock-Eval Analyses

A 100 mg portion of powdered rock was analysed by the Rock-Eval pyrolysis technique (Girdel IFP-Fina Mark 2 instrument; operating mode, Cycle 1).

#### 3. RESULTS

TOC and Rock-Eval data for McEachern -1 are listed in Table 1. Figure 1 is a cross plot of Tmax versus Hydrogen Index illustrating kerogen Type and maturity for each of the samples examined.

#### 4. PRELIMINARY INTERPRETATION

#### 4.1 Maturity

Rock-Eval Tmax values are very consistent over the interval studied and indicate that these sediments are marginally mature for the generation of hydrocarbons (Tmax = 439 - 442°C, VR = 0.6 - 0.7%, Table 1, Figure 1).

Production indices increase slightly with depth and suggest that migrated hydrocarbons are absent from the interval studied.

# 4.2 Organic and Source Richness

Organic richness is, for the most part, fair in these cuttings (TOC = 1.10-1.18%). However, cuttings from 2355 metres depth contain slightly less organic matter (TOC = 0.75%) and have poor organic richness.

Source richness for the generation of hydrocarbons uniformly poor ( $S_1 + S_2 = 1.08 - 1.82$  kg of hydrocarbons/tonne) in most samples but is fair in the cuttings sample from 2384 metres depth ( $S_1 + S_2 = 2.33$  kg of hydrocarbons/tonne).

# 4.3 Kerogen Type and Source Quality

Hydrogen Index and Tmax values indicate that the samples examined have the bulk composition of Type III kerogen (Figure 1).

# AMDEL CORE SERVICES

|                                                      |                                               |                                                      |                                              | is                                                   | 15/06/90                                             |                                                      |                                              |                                                      |                                                      |                                               |                                           |  |  |
|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--|--|
| Client:                                              | GAS AND FUEL EXPLORATION N/L                  |                                                      |                                              |                                                      |                                                      |                                                      |                                              |                                                      |                                                      |                                               |                                           |  |  |
| Well:                                                | McEACHERN-1                                   | L                                                    |                                              |                                                      |                                                      |                                                      |                                              |                                                      |                                                      |                                               |                                           |  |  |
| Depth<br>(m)                                         | T Max                                         | \$1                                                  | \$2                                          | \$3                                                  | \$1+\$2                                              | PI                                                   | \$2/\$3                                      | PC                                                   | TOC                                                  | ні                                            | OI                                        |  |  |
| 2355<br>2360<br>2365<br>2370<br>2375<br>2380<br>2384 | 441<br>441<br>441<br>441<br>441<br>442<br>439 | 0.14<br>0.25<br>0.25<br>0.22<br>0.26<br>0.25<br>0.41 | 0.94<br>1.54<br>1.54<br>1.47<br>1.56<br>1.46 | 0.89<br>1.27<br>1.06<br>0.99<br>1.08<br>1.13<br>1.00 | 1.08<br>1.79<br>1.79<br>1.69<br>1.82<br>1.71<br>2.33 | 0.13<br>0.14<br>0.14<br>0.13<br>0.14<br>0.15<br>0.18 | 1.05<br>1.21<br>1.45<br>1.48<br>1.44<br>1.29 | 0.09<br>0.14<br>0.14<br>0.14<br>0.15<br>0.14<br>0.19 | 0.75<br>1.11<br>1.10<br>1.14<br>1.10<br>1.11<br>1.18 | 125<br>138<br>140<br>128<br>141<br>131<br>162 | 118<br>114<br>96<br>86<br>98<br>101<br>84 |  |  |

### KEY TO ROCK-EVAL PYROLYSIS DATA SHEET

SPECIFICITY

### PARAMETER

| T max                           | position of $S_2$ peak in temperature program ( $^{\circ}$ C) | Maturity/Kerogen type                  |
|---------------------------------|---------------------------------------------------------------|----------------------------------------|
| S 1                             | kg hydrocarbons (extractable)/tonne rock                      | Kerogen type/Maturity/Migrated oil     |
| S2                              | kg hydrocarbons (kerogen pyrolysate)/tonne rock               | Kerogen type/Maturity                  |
| S3                              | kg CO <sub>2</sub> (organic)/tonne rock                       | Kerogen type/Maturity *                |
| S <sub>1</sub> + S <sub>2</sub> | Potential Yield                                               | Organic richness/Kerogen type          |
| PI                              | Production Index $(S_1/S_1 + S_2)$                            | Maturity/Migrated Oil                  |
| PC                              | Pyrolysable Carbon (wt. percent)                              | Organic richness/Kerogen type/Maturity |
| TOC                             | Total Organic Carbon (wt. percent)                            | Organic richness                       |
| HI                              | Hydrogen Index (mg h'c (S <sub>2</sub> )/g TOC)               | Kerogen type/Maturity                  |
| OI                              | Oxygen Index (mg CO <sub>2</sub> (S <sub>3</sub> )/g TOC)     | Kerogen type/Maturity *                |
|                                 |                                                               |                                        |

<sup>\*</sup>Also subject to interference by  ${\rm CO_2}$  from decomposition of carbonate minerals.

### HYDROGEN INDEX vs T max

Company: GAS AND FUEL EXPLORATION N/L Location: McEACHERN-1





9 March 1990

RECEIVED

GAS & FUEL EXPLORATION N.L.

Gas and Fuel Exploration NL GPO Box 1841Q MELBOURNE VIC 3001

Attention: V Akbari

REPORT: 009/171

**CLIENT REFERENCE:** 

MATERIAL:

Sidewall Core Samples

LOCALITY:

McEachern -1

WORK REQUIRED:

Source Rock Analysis

Please direct technical enquiries regarding this work to Brian L Watson (Adelaide) under whose supervision the work was carried out.

Dr Brian G Steveson Manager Australasia

on behalf of Amdel Core Services Pty Ltd

Amdel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

### 1. INTRODUCTION

Fourteen sidewall core samples from McEachern -1 were received for TOC and Rock-Eval pyrolysis. This report is a formal presentation of the results of this study. Petrology and XRD results will be presented in a subsequent report.

### 2. ANALYTICAL PROCEDURE

### 2.1 <u>Sample Preparation</u>

Cuttings samples (as received) were ground in a Siebtechnik mill for 20-30 seconds.

### 2.2 <u>Total Organic Carbon (TOC)</u>

Total organic carbon was determined by digestion of a known weight (approximately 0.2 g) of powdered rock in 50% HCl to remove carbonates, followed by combustion in oxygen and measurement of the resultant  $\mathrm{CO_2}$  by infra-red detection.

### 2.3 Rock-Eval Analyses

A 100 mg portion of powdered rock was analysed by the Rock-Eval pyrolysis technique (Girdel IFP-Fina Mark 2 instrument; operating mode, Cycle 1).

### 3. RESULTS

TOC and Rock-Eval data are presented in Table 1. Figure 1 is a plot of Hydrogen Index versus Tmax illustrating kerogen Type and maturity.

### 4. INTERPRETATION

### 4.1 Maturity

Hydrogen Index and Tmax values indicate that the sediments examined from the McEachern -1 location are marginally mature (VR = 0.55-0.7%).

Production indicies although maturation dependent are also sensitive to the presence of migrated hydrocarbons. High production indices indicate the presence of migrated hydrocarbons in the following samples: 1414.1 and 1461.4 metres depth. Elevated production indices in the sidewall core samples from 1174.5, 1504.6 and 1857.6 metres depth are unreliable due to the small size of the  $S_1$  and  $S_2$  peaks in these samples.

### 4.2 Organic Richness and Source Richness

Organic richness is commonly poor in the samples studied (TOC <1%). However samples from 905.6, 1365.0 and 1649.1 have TOC values which are indicative of fair to excellent organic richness (TOC = 1.06 - 14.60%).

Source richness for the generation of hydrocarbons is generally similarly poor ( $S_1 + S_2 < 2$  kg hydrocarbons/tonne). However, samples from 905.6, 1365.0, 1414.1 and 1649.1 metres depth have  $S_1 + S_2$  values, indication of fair to excellent source richness ( $S_1 + S_2 = 2.11$ -11.21 kg of hydrocarbons/tonne).

### 4.3 Kerogen Type

Hydrogen Index and Tmax values indicate that the majority of the samples examined contain organic matter with the bulk composition of Type III to Type IV kerogen. Sidewall cores containing better quality Type II-III kerogen occur at 905.6, 1414.1 and 1649.1 metres depth.

Page No 1

### AMDEL CORE SERVICES

|                 |            |          |            |            | Rock-Eva | l Pyrolys | is.   |      |              | 0   | 2/03/90 |
|-----------------|------------|----------|------------|------------|----------|-----------|-------|------|--------------|-----|---------|
| Client:         | GAS AND FU | EL EXPLO | RATION N/L |            |          |           |       |      |              |     | ٠       |
| Well:           | Nceachern- | ł        |            |            |          |           |       |      |              |     |         |
| Depth<br>(m)    | T Max      | S1       | <b>S</b> 2 | <b>5</b> 3 | S1+S2    | PI        | S2/S3 | PC   | TOC          | HI  | 10      |
| 504.6<br>699.6  | 443        | 0.01     | 0.05       | 0.02       | 0.06     | 0.17      | 2.51  | 0.00 | 0.58<br>0.26 | 9   | 3       |
| 905.6<br>1048.6 | 437        | 0.09     | 2.85       | 0.44       | 2.94     | 0.03      | 6.47  | 0.24 | 1.06<br>0.32 | 269 | 42      |
| 1174.5          | 442        | 0.05     | 0.12       | 0.40       | 0.17     | 0.31      | 0.30  | 0.01 | 0.53         | 23  | 75      |
| 1289.5          | 386        | 0.07     | 0.39       | 0.51       | 0.45     | 0.15      | 0.76  | 0.03 | 0.40         | 65  | 85      |
| 1365.0          | 434        | 0.45     | 10.76      | 0.20       | 11.21    | 0.04      | 53.80 | 0.93 | 14.60        | 74  | 1       |
| 1414.1          | 429        | 0.48     | 1.63       | 0.00       | 2.11     | 0.23      | 0.00  | 0.17 | 0.82         | 199 | 0       |
| 1461.6          | 339        | 0.07     | 0.25       | 8.29       | 0.32     | 0.22      | 0.03  | 0.02 | 0.38         | 66  | 2182    |
| 1504.6          | 271        | 0.04     | 0.07       | 2.17       | 0.11     | 0.40      | 0.03  | 0.00 | 0.35         | 20  | 620     |
| 1523.6          | 439        | 0.05     | 0.63       | 0.25       | 0.68     | 0.07      | 2.52  | 0.05 | 0.93         | 88  | 27      |
| 1649.1          | 439        | 0.18     | 3.65       | 0.54       | 3.83     | 0.05      | 6.75  | 0.31 | 1.38         | 264 | 39      |
| 1857.6          | 444        | 0.05     | 0.00       | 0.39       | 0.05     | 1.00      | 0.00  | 0.00 | 0.48         | 0   | 81      |
| 1946.1          | 442        | 0.04     | 0.26       | 0.56       | 0.30     | 0.13      | 0.46  | 0.02 | 0.58         | 45  | 97      |





# 11. PALYNOLOGY



### PALYNOLOGY OF GAS AND FUEL McEACHERN-1,

OTWAY BASIN, AUSTRALIA

BY

ROGER MORGAN
BOX 161
MAITLAND 5573
SOUTH AUSTRALIA

PHONE: (088) 322795

FAX: (088) 322658

REF:SD:OTW.MCEACHER

### PALYNOLOGY OF GAS AND FUEL McEACHERN-1,

### OTWAY BASIN, AUSTRALIA

BY

### ROGER MORGAN

| CONT | ENTS                                                                                                     | PAGE |
|------|----------------------------------------------------------------------------------------------------------|------|
| I    | SUMMARY                                                                                                  | 3    |
| II   | INTRODUCTION                                                                                             | 4    |
| III  | PALYNOSTRATIGRAPHY                                                                                       | 5    |
| IV   | CONCLUSIONS                                                                                              | 10   |
| v    | REFERENCES                                                                                               | 11   |
|      | FIGURE 1. CRETACEOUS REGIONAL FRAMEWORK, OTWAY BASIN FIGURE 2. MATURITY PROFILE, GAS AND FUEL MCEACHERN- | L    |
|      | APPENDIX I PALYNOMORPH DISTRIBUTION DATA                                                                 |      |

### I SUMMARY

Final study of 14 new swcs plus the existing 6 cuttings samples yielded the following results.

- 504.6m (swc) : lower <u>C. paradoxa</u> Zone : mid Albian : immature : slightly brackish : usually mid Eumeralla
- 699.6m (swc) : <u>C. striatus</u> Zone : early Albian : non-marine : immature : usually mid Eumeralla
- 905.6m (swc)-1048.6m (swc) : <u>C. hughesi</u> Zone : Aptian : non-marine : marginally mature : usually lower Eumeralla
- 1174.5m (swc)-1946.lm (swc): <u>F. wonthaggiensis</u> zone: late Neocomian: non-marine with minor lacustrine influence especially near the top: marginally mature to early mature: usually Pretty Hill
- 2070m (cutts)-2354m (cutts): upper <u>C. australiensis</u> Zone: early Neocomian: non-marine: mature: usually lower Pretty Hill: note that cuttings may have made this base too low through caving
- 2364m (cutts)-2384m (cutts): lower <u>C. australiensis-?R.</u>

  <u>watherooensis</u> Zones: earliest Neocomian to ?Latest

  Jurassic: non-marine: mature: usually Casterton Beds

### II INTRODUCTION

Fourteen sidewall cores and 6 cuttings of favourable lithology were processed, to provide information on age, encironment and maturity for the completion report.

Palynomorph occurence data are shown as Appendix I and form the basis for the assignment of the samples to sixe spore-pollen units of early Neocomian to mid Albian age. The Cretaceous spore-pollen zonation is essentially that of Dettmann and Playford (1969), but has been significantly modified and improved by various authors since, and most recently discussed in Helby et al (1987), as shown on figure 1 and modified by Morgan (1985) for application in the Otway Basin.

Maturity data was generated in the form of Spore Colour Index, and is plotted on figure 2 Maturity profile of Ultramar McEachern-1. The oil and gas windows in figure 2 follow the general consensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (Staplin Spore Colour Index of 2.7) to dark brown (3.6). These correspond to citrinite reflectance values of 0.6% to 1.3%.

|               | SPORE POLL                                    | EN             | MICRO-                      | ·           |           | LITHOSTRA                           | ATIGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|-----------------------------------------------|----------------|-----------------------------|-------------|-----------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGE           | ZONES                                         |                | PLANKTON<br>ZONES           |             | ·         | OFFSHORE                            | ONSHORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAASTRICHTIAN | T.longus                                      | Ites           | 1. drugg p                  | cida        | ~~        | TIMBOON SANDSTONE                   | y was a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | T.IIIei,                                      | Nothofagidites | Lkorojonense                | D.pellucida |           | PARATE                              | <b>\</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CAMPANIAN     | N.senečtus                                    | Not            | X.australis                 |             | GROUP     | PARATTE FORMATION                   | SHERBROOK GROUP (thin sandstories)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SANTONIAN     | Taaahuaulu                                    |                | N.aceras                    | <u>.</u>    |           |                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONIACIAN     | T.pachyexin                                   | u 3            | O.porifera                  |             | SHERBROOK | BELFAST MUDSTONE                    | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TURONIAN      | Catriplex                                     |                | C.striatoco                 | านธ         | 0         |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CENOMANIAN    | A.distocarina                                 | tus            | P.infusorio<br>D.multispinu |             |           | FLAXMANS FORMATION WAARE SANDSTONIE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALBIAN        | P.pannosus Up.C.paradi Low.C.paradi C.atriatu | joxa<br>Xa     |                             |             | ~         | 0000                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| APTIAN        | Upper C.hugl                                  | lesi           |                             |             |           | EUMERALLA FO                        | ORMATION Ecoaly facings coaly facing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | Low .C.hughe                                  | ısi —          | -                           |             |           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BARREMIAN     |                                               |                |                             |             | GROUP     | 4                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HAUTERIVIAN   | F. wonthaggler                                | 1918           |                             |             | OTWAY G   | San-                                | PRETTY HILL  dy FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VALAHGINIAN   |                                               |                |                             |             |           |                                     | " }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BERRIASIAN    | C. australle                                  | nsls           |                             |             |           |                                     | factor of the state of the stat |

FIGURE 1. CRETACEOUS REGIONAL FRAMEWORK, OTWAY BASIN

|                 |      | DEF           |     | im        | matuı            | re     |              | ş.          | ture       | dr    | y gas            |     | GAS/<br>CONDENSATE |
|-----------------|------|---------------|-----|-----------|------------------|--------|--------------|-------------|------------|-------|------------------|-----|--------------------|
| A               | ZONE | HIG           |     | i-m m a t | ure              |        | marq<br>-ina | mature      | <b>p</b>   | ost m | ature            |     | OIL                |
| AGE             | NE   | PTH (thous.m. |     |           |                  | yellow | ligh         | brow<br>mid | n<br>\ dar | -     | blac             | ck  | COLOUR             |
|                 |      | ıs.m          | 0.5 | 1,0       | 1 <sub>.</sub> 5 | 2.0    | 2.5          | 3.0         | 3.5        | 4.0   | 4 <sub>1</sub> 5 | 5.0 | TAI                |
| Apt  Late  Neoc |      | 3             |     |           |                  |        |              |             |            |       |                  |     |                    |

FIGURE 2 MATURITY PROFILE McEACHERN 1

### III PALYNOSTRATGRAPHY

A. 504.6m (swc) : lower C. paradoxa Zone

Assignment to the lower <u>Coptospora paradoxa</u> Zone of mid Albian age is indicated by youngest <u>Dictyotosporites</u>

<u>speciosus</u> and oldest <u>Coptospora paradoxa</u>. The absence of younger indicators, and the presence of oldest

<u>Perotriletes majus</u> confirms the assignment.

<u>Falcisporites similis</u> dominates the assemblage, with frequent <u>Microcachryidites antarcticus</u> and consistent <u>Cicatricosisporites australiensis</u>.

Slightly brackish environments are indicated by the very rare presence of spiny acritarchs (Micrhystridium) and dominance of diverse and abundant spores and pollen

These features are normally seen in the mid Eumeralla Formation.

Yellow to light brown spore colours indicate immaturity but approaching early marginal maturity for oil, and immaturity for gas/condensate.

B. 699.6m (swc): C. striatus Zone

Assignment to the early Albian <u>Crybelosporites striatus</u>
Zone is indicated by oldest <u>C. striatus</u> without younger indicators. Youngest <u>Pilosisporites notensis</u> occurs in this sample and confirms the assignment. Common taxa are <u>C. australiensis</u>, <u>F. similis</u>, <u>Osmundacidites</u> wellmanii and <u>Retitriletes</u> austroclavatidites.

Non-marine environments are indicated by the common and diverse spores and pollen, and absence of saline

indicators. Rare algal acritarchs (<u>Schizosporis</u> spp.) indicate minor lacustrine influence.

These features are normally seen in the mid Eumeralla Formation, often in coaly facies.

Yellow to light brown spore colours indicate immaturity for oil, but approaching early marginal maturity. The sample is clearly immature for gas/condensate.

C. 905.6m (swc)-1048.6m (swc) C. hughesi Zone

Assignment to the Aptian <u>Cyclosporite hughesi</u> Zone is indicated at the top by the absence of younger markers, and at the base by oldest <u>Pilosisporites notensis</u>.

<u>Cyathidites</u>, <u>Falcisporites</u> and <u>Retitriletes</u> are common in both samples, while <u>P. notensis</u> and <u>D. speciosus</u> and prominent at 905.6m.

Non-marine environments are indicated by the common and diverse spores and pollen, and absence of saline indicators. Amorphous sapropel and cuticle are common at 905.6m, suggesting anoxic swamp conditions.

These features are normally seen in the lower Eumeralla Formation, often associated with coaly lithologies.

Light brown to yellow spore colours indicate early marginal maturity for oil, but immaturity for gas/condensate.

D. 1174.5m (swc)-1946.lm (swc) : F. wonthaggiensis Zone

Assignment to the late Neocomian <u>Foraminisporis</u>
wonthaggiensis Zone is indicated at the top by youngest
Microfasta evansii and the absence of younger markers.

At the base, oldest <u>D. speciosus</u> indicates the assignment. Within the unit, oldest <u>C. australiensis</u> at 1174.5m suggests its assignment to an upper subunit, and the interval 1289.5-1946.lm to a lower subunit. A minor influx of <u>Contignisporites cooksoniae</u> occurs at 1174.5m. Within the interval, <u>M. evansii</u> is rare down to 1289.5m, and extremely scarce beneath, being seen only at 1523.6m. <u>Cyathidites</u>, <u>Falcisporites</u>, <u>O. wellmanii</u> and <u>Retitriletes</u> are the£most common forms. <u>Callialasporites dampieri</u> is consistently present beneath 1946.lm.

Non-marine environments are indicated by the common and diverse spores and pollen, abundant plant debris, and absence of saline indicators. Minor lacustrine influence is shown by the presence of algal acritarchs including M. evansii at the top of the interval. Common cuticle and amorphous sapropel at 1365m suggests swampy conditions.

These features are normally seen in the Pretty Hill Formation and its shaley equivalents, and therefore normally underlie the "top Pretty Hill unconformity".

Spore colours of light brown at 1174.5m to 1461.1m indicate marginal maturity for oil, but immaturity for gas condensate. Light to mid brown spore colours at 1504.6m to 1649.1m indicate early maturity for oil, and early marginal maturity for gas/condensate. Mid brown spore colours at 1857.6m and 1946.1m indicate maturity for oil, and marginal maturity for gas/condensate.

E. 2070m (cutts)-2354m (cutts): upper <u>C. australiensis</u>
Zone

Assignment to the upper part of the early Neocomian

Cicatricosisporites australiensis Zone is indicated at the top by the absence of younger indicators, and confirmed by youngest consistent <u>C. dampieri</u>. At the base, oldest <u>Cyclosporites hughesi</u> indicates the assignment. Unfortunately, swcs were not studied for palynology in this interval, and it is possible that oldest <u>C. hughesi</u> may be caved somewhat, causing this boundary to be picked low. Diversity is low, with <u>Cyathidites</u> and <u>Falcisporites</u> usually dominant. Minor Permian reworking was noted in some samples.

Non-marine environments are indicated by the common and diverse spores and pollen and absence of saline indicators.

These features are normally seen in the lower part of the Pretty Hill Formation.

Mid brown spore colours indicate maturity for oil, but only marginal maturity for gas/condensate.

F. 2364m (cutts)-2384m (cutts): lower <u>C. australiensis</u>
-?R. watherooensis

Assignment of this interval to the earliest Neocomian to late Jurassic lower <u>Cicatricosisporites</u>
<u>australiensis</u> Zone to <u>R. watherooensis</u> Zone is indicated at the top by the absence of younger indicators and at the base by oldest <u>Retitriletes</u>
<u>watherooensis</u> and <u>Ceratosporites equalis</u>. The base of the <u>C. australiensis</u> is usually picked on oldest <u>C. australiensis</u>, but this species is extremely rare at this level in the Otway Basin and is not a reliable indicator. A downhole influx of <u>C. dampieri</u> at 2384m is distinctive, and may have correlative value in the future. Above that sample, Cyathidites, O. wellmanii

and <u>Retitriletes</u> dominate. Caving is noted in all samples and included <u>M. evansii</u> and some Aptian forms.

Environments are probably non-marine, as the spores and pollen are dominant and diverse. Very rare Micrhystridium spp. at 2374 and 2384m suggest brackish influence, but could be caved in these cuttings samples.

These features are normally seen in the Casterton Beds in the Otway Basin.

Mid brown spore colours indicate maturity for oil, and marginal to early maturity for gas/condensate.

### IV CONCLUSIONS

- A. Sparse sampling has precluded tight resolution of the zone boundaries and the available subzones, especially at top Pretty Hill unconformity leval. Correlation to better sampled sections will rely on logs. The study of cuttings only in the bottom hole section has further limited the data, precluding crisp resolution of the age relationships of the Casterton Beds.
- B. Nevertheless, the sampled section comprises correlatives of the Casterton Beds, Pretty Hill Formation and Eumeralla Formation, mature below about 1800m, and almost all non-marine. Minor brackish influence is seen in the mid Albian Eumeralla Formation, and possible also in the Casterton Beds.

### V REFERENCES

- Dettmann, M.E. and Playford, G. (1969) Palynology of the Australian Cretaceous: a review <u>In</u> Stratigraphy and Palaeontology. Essays in honour of Dorothy Hill, <u>KSW Campbell Ed</u>. ANU Press, Canberra 174-210
- Helby, R.J., Morgan, R.P. and Partridge, A.D. (1987) A palynological zonation of the Australian Mesozoic In Studies in Australian mesozoic Palynology Assoc.

  Australas. Palaeontols. Mem 4 1-94
- Morgan, R.P. (1985) Palynology review of selected oil drilling, Otway basin, South Australia unpubl. rept. for Ultramar Australia

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Roger Morgan Ph.D., CONSULTANT PALYNOLOGIST |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCT # 1947AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Box 161, Maitland, South Australia, 5573.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE PROPERTY OF THE PROPERTY O | phone (088) 32 2795fax (088) 32 2658        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NI SHALLE HE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLIENT: Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gas & Fuel Exploration                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WELL: McEach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | chern #1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FIELD/AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R E A: Otway Basin                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The state of the s |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JEER 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | The state of the s |
| ANALYST:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Roger Morgan DATE: April '90                | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NOTES: all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l sample depths are in metres               | To the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

IICTYOPHYLLIDITES HARRISII

ALCISPORITES SIMILIS

ORONATISPORA PERFORATA

COROLLINA TOROSUS

PATHIDITES AUSTRALIS

### RANGE CHART OF GRAPHIC ABUNDANCES BY LOWEST APPEARANCE

Key to Symbols

= Very Rare

= Rare

= Few

= Common

= Abundant

? = Questionably Present

= Not Present

ICRHYSTRIDIUM
ICROFASTA EVANSII
UVLISPORITES LMNARIS
EQUITRIRADITES VERRUCOSUS
INAPICULATISPORITES PRISTIDENTATUS
IRAUCARIACITES AUSTRALIS
IACULATISPORITES SP.
IACLIALASPORITES DAMPIERI
IALLIALASPORITES TURBATUS
IERATOSPORITES EQUALIS

11CROCACHRYDITES ANTARCTICUS 1EORAISTRICKIA TRUNCATA 1ETITRILETES AUSTROCLAVATIDITES 1ETITRILETES NODOSUS

EPTOLEPIDITES VERRUCATUS

CLUKISPORITES SCABERIS

GLEICHENIDITES

SETITRILETES NODOSUS
SYATHIDITES MINOR
SYCADOPITES FOLLICULARIS
JUROSPORA FLORIDA
JSMUNDACIDITES WELLMANII

PILOSISPORITES NOTENSIS
SETITRILETES EMINULUS
SETITRILETES WATHAROOENSIS
DICTYOTOSPORITES COMPLEX
FALCISPORITES GRANDIS

EORAISTRICKIA SP

|                      |       | N    | ,<br>(V) | 寸    | ហ   | 9   | ~  | Ø                                       | ø١   | 10 |   | 12 | 13       | <b>क</b><br>न | 15 | 16 | - | 18 | σ\<br> | 20 | 21 | 22 | N<br>W | (A) | N<br>51 | 2 | 27  | γ<br>Ω | Ω<br>Ω | 30 | 31 | M<br>N | (M<br>(M |
|----------------------|-------|------|----------|------|-----|-----|----|-----------------------------------------|------|----|---|----|----------|---------------|----|----|---|----|--------|----|----|----|--------|-----|---------|---|-----|--------|--------|----|----|--------|----------|
|                      | ===== | ==== | ===      | ==== | === | === |    |                                         | ==== |    |   |    |          |               |    |    |   |    |        |    |    |    |        |     |         |   |     |        |        |    |    |        |          |
| 0 <b>56</b> 4.6 swc  | I     |      |          | 1    |     |     |    |                                         |      | П  | - |    |          | 1             |    |    |   | 1  |        |    | I  |    |        |     |         | l |     | 1      |        | •  |    |        |          |
| 0 <b>07.</b> 6 swc   |       |      |          |      |     |     |    |                                         |      | T  |   | -  |          |               |    |    |   |    | T      |    | 自  |    |        | ı   |         |   |     |        |        | *  |    | ı      |          |
| 0905.6 swc           |       |      |          |      |     |     |    |                                         |      |    |   |    |          | ı             | 7  |    | 1 |    |        |    |    |    |        |     |         | Ť |     |        | 1      | l  |    | 1      | l        |
| 1048.6 swc           |       |      |          | ı    |     | I   |    |                                         |      |    | 1 |    | Ť        | •             |    |    |   | i  |        |    |    |    | Ħ      | •   |         | ı | Ť   |        |        | i  | П  | i      |          |
| 1174.5 swc           |       | 1    |          | 1    |     | •   |    |                                         |      | 1  |   |    | å        | ı             | 7  |    |   | Ħ  | 1      |    |    |    |        |     |         |   | I . | ı      | 1      | ?  |    |        | I        |
| 1289.5 swc           | 2     | Ì    |          |      |     |     | I  | ì                                       |      |    | ı |    | <b>.</b> | İ             |    |    |   | 7  |        |    | Ť  | 1  |        | Ì   |         | Ŧ |     |        |        | ı  | ı  |        |          |
| 1365.0 swc           | =     | i    |          |      |     | I   |    |                                         |      |    |   |    | 1        |               |    |    | ! |    |        |    | İ  |    |        |     |         |   |     |        |        | !  | i  |        |          |
| 1414.1 SWC           |       |      |          | ı    |     |     | i. | 1                                       |      |    | 1 |    |          | ı             | Ŧ  |    | ı | ġ  |        |    |    | ı  | =      |     |         | 7 |     | 1      | ı      |    | I  |        | ĺ        |
| 1461.1 swc           |       |      |          |      |     | I   |    |                                         |      | i  | • |    | ĺ        |               | 1  |    | 1 | Ť  |        |    |    | 1  |        |     |         | 1 |     | 1      | 1      |    | i  |        | !        |
| 1504.6 swc           |       |      |          |      |     |     | 1  |                                         |      |    |   |    |          |               | 1  |    | ı |    |        |    | 1  |    |        |     |         |   |     |        |        |    |    |        |          |
| 1523.6 swc           |       | į    |          |      | =   |     | 1  | ı                                       | I    | ı  | I |    | l        |               | 1  |    | ! |    | 1      |    |    |    | 3      | I   |         |   |     | I      |        |    |    |        |          |
| 1649.1 swc           |       | 1    |          |      |     |     |    |                                         | 1    |    | 1 |    | •        |               |    |    | ł | 1  |        |    |    |    |        | 1   |         |   |     | !      |        |    |    |        | ı        |
| 1857.6 swc           |       |      |          |      |     |     |    |                                         |      | ı  | I |    | ı        |               | Ŧ  |    | 1 |    | •      |    |    |    |        |     |         | Ħ |     |        |        |    | ?  |        | ı        |
| 1946.1 swc 15        |       |      |          |      |     | I   |    | Į                                       |      | l  |   |    | l        |               |    | 1  |   |    | I      |    |    |    | Ħ      | I   |         |   |     | I      | -      |    | l  |        | Ī        |
| 2070-75 cutts        |       |      |          |      |     | Ì   | I  | I                                       |      | ł  |   | I  | ı        | 1             | Ŧ  | l  | Ī | I  | 1      | 1  | Ħ  | I  | Ħ      | l   |         | Ŧ |     | l      |        |    |    |        |          |
| 2115-20 cutts        | -     | _    | 2        | -    | _   | 1   |    | and and and and and and and and and and |      |    | I | I  |          |               |    |    | - |    | •      |    |    | l  |        |     | Ī       |   |     | 1      | I      | _  | I  | -      | Ī        |
| 2354- cutts          | -     |      | •        | i    | •   | 1   | 4  |                                         | -    | I  | • | •  | 1        | I             | l  | -  | 1 | l  | İ      | ļ  |    | -  | •      | Ī   | i       |   | •   | 1      | -      | ţ  | i  | •      |          |
| 2364- cutts          | •     | •    | •        | l    | •   | i   |    | Ī                                       | -    | Į  | • | •  |          |               |    | •  | • | i  |        | •  |    | •  | •      | •   | 1       | l | •   | •      | •      | I  |    | i      | -        |
| 2374- cutts          |       | Į    | •        | •    | •   | •   | 1  | 1                                       | •    | 1  | * | •  | 1        | -             | Ī  | -  | - | ļ  | I      | •  | 4  | 1  | 8      | i   | •       | 4 |     | l      | •      | į  |    | ļ      | 1        |
| 2 <u>39</u> 4- cutts | Ì     | !    |          | i    | •   | 1   |    |                                         | 1    | 1  | • |    |          |               |    |    | i |    |        | •  |    |    |        | !   | 1       |   | 1   | 1      | !      |    |    |        |          |

,

,

AEQUITRIRADITES ACUSUS CICATRICOSISPORITES AUSTRALIENSIS 35 II 36 II CONCAVISSIMISPORITES PENOLAENSIS 37 İ CONCAVISSIMISPORITES VARIVERRUCATUS 38 | COROLLINA SIMPLEX CRYBELOSPORITES STRIATUS 39 II CYATHIDITES ASPER 40 CYCLOSPORITES HUGHESI 41 FOVEOTRILETES PARVIRETUS 42 LEPTOLEPIDITES MAJOR 43 1 STERIESPORITES ANTIQUASPORITES 44 LAEVIGATOSPORITES BELFORDI 45 II 46 RETITRILETES CIRCOLUMENUS RETITRILETES FACETUS 47 48 ii SESTROSPORITES PSUEDOALVEOLATUS VELOSPORITES TRIQUETRUS 49 | 50 ii DICTYOTOSPORITES SPECIOSUS 51 PERINOPOLLENITES ELATOIDES STAPLINISPORITES CAMINUS 52 i CONTIGNISPORITES COOKSONIAE 53 ISCHYOSPORITES PUNCTATUS 54 II 55 LYCOPODIACIDITES ASPERATUS CIRCULISPORITES PARVUS 56 AEQUITRIRADITES SPINULOSUS 57 İ VITREISPORITES PALLIDUS 58 II 59 II FORAMINISPORIS DAILYI STAPLINISPORITES MANIFESTUS 60 ANNULISPORITES FOLLICULOSA 61 CONTIGNISPORITES FORNICATUS 62 II 63 | PEROTRILETES LINEARIS 64 | AEQUITRIRADITES TILCHAENESIS 65 | FORAMINISPORIS WONTHAGGIENSIS

66 | PILOSISPORITES PARVISPINOSUS

| 0504.6                                 | SWC    |   | ı | I |   |   | 1 |   |   |   |   | 1 |   |   |   |   |   | l |   |   |    | • |   |   | I |   | I |   |   |   |        | I |   |    |
|----------------------------------------|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|--------|---|---|----|
| 0699.6                                 | SWC    |   | 自 | ; |   |   |   |   |   |   |   | ĺ |   | I | 1 | • |   |   |   |   |    |   |   |   |   |   |   |   |   |   |        | • | 1 | ·= |
| 0905.6                                 | SWC    |   | Ŧ |   |   |   | : |   |   |   | ١ |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |        | 1 |   | ?  |
| 1248.6                                 | SWC    |   | ı |   |   | 1 |   |   |   |   | i |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   | =      |   | i | -  |
| 1 4.5                                  | SWC    |   | l |   |   | 1 |   |   |   | I | 1 | 1 |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   | I      |   |   |    |
| 1289.5                                 | SWC    |   | 1 |   |   | 1 |   |   | ı | Ì | l | ı |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   | i<br>• |   |   |    |
| 1365.0                                 | SWC    |   |   |   |   | ì |   | ? | i |   | ÷ | ı |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |        |   |   |    |
| 1414.1                                 | SWC    |   | - |   | * | ? |   |   | I | 1 | I | Ĭ | I |   |   | ì |   | 1 |   |   | į  |   |   |   | I | ı | • | ì |   |   |        |   |   |    |
| 1461.1                                 | SWC    |   |   |   |   |   |   |   | ŧ |   | ı | Ì | I |   |   |   |   |   |   |   |    |   |   |   | 1 | 1 |   |   |   |   |        |   |   |    |
| 1504.6                                 | SWC    |   |   |   |   |   |   |   |   |   | l | 1 |   |   |   |   |   |   |   |   |    |   |   | _ |   |   |   |   |   |   |        |   |   |    |
| 1523.6                                 | SWC    |   | = |   |   |   |   |   |   |   |   | I |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |        |   |   |    |
| 1649.1                                 | SWC    |   |   |   |   | 2 |   |   |   | , | 1 | 1 |   | 1 |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |        |   |   |    |
| 1857.6                                 | SWC    |   |   |   |   |   |   | • |   |   | l | - |   | 1 |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |        |   |   |    |
| 1946.1                                 | swc 15 |   |   |   |   |   |   |   |   | ï | ı |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   | •      |   |   |    |
| 2070-75                                |        |   |   |   |   |   |   |   |   |   |   |   | I |   |   | I |   | 1 | I | ! |    |   |   |   |   |   |   |   |   | - | _      | _ |   | _  |
| 2115-20                                | cutts  | - | - | _ | - | - | - | - |   | I |   | Ī | Ī | i | I | I | I | • | - | - | _  | - |   | _ | - | - | - | • | • | • |        | • | • | -  |
| 2354-                                  | cutts  | 5 | ī | ī | Ī | Ī | Ī | Ī | 1 | ī |   | 1 | _ | - | - | - | _ | - | - | - | ٠, | - | - | _ | - | • | • | - | - | • |        | _ | • | •  |
| 2364-                                  | cutts  | • | Ì | Ī | 1 | Ī | I | Í | 1 | l | ļ | I |   | - | • | • | • | • |   |   |    |   |   |   |   |   |   |   |   |   |        |   |   |    |
| 2374-                                  | cutts  | • | • | • | • | • | • | - | • | • | • | - | • | - | - | • | • | • | • | • |    | • | • | • | • | • | • | • | • | • | •      | • | • | •  |
| 2384-                                  | cutts  | = | • | 3 |   | • | • | - | 3 |   | • | * | • | * | • | • | = | • | • | • | •  | • |   | • | • | • | • | • |   | • |        | • |   | *  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |        | • | * |   | * | - | * | • | = | = | • | = |   |   |   | * | ¥ | * |   | = |    |   | * | = | * |   | = |   |   | * |        | * | * | *  |

0504.6 SWC

| VU / / LU | 374C    |   |        | i |  |   | 1   | ı  |   | VU//.U SWL    |
|-----------|---------|---|--------|---|--|---|-----|----|---|---------------|
| 0905.6    | SWC     | I | l      | i |  |   |     | i. | 1 | 0905.6 swc    |
| 1048.6    | SWC     | 1 | i<br>• |   |  |   |     | ı  | i | 1048.6 swc    |
| 1174.5    | SWC     |   |        | - |  |   | , . | i  |   | 1174.5 swc    |
| 1289.5    | SWC     |   |        |   |  |   | Ī   |    |   | 1289.5 swc    |
| 1345.0    | SWC     |   |        |   |  |   |     |    |   | 1365.0 swc    |
| 1 4.1     | SWC     |   |        |   |  |   |     |    |   | 1414.1 swc    |
| 1461.1    | SWC     |   |        |   |  |   |     |    |   | 1461.1 swc    |
| 1504.6    | SWC     |   |        |   |  |   |     |    |   | 1504.6 swc    |
| 1523.6    | SWC     |   |        |   |  |   |     |    |   | 1523.6 swc    |
| 1649.1    | SWC     |   |        |   |  |   |     |    |   | 1649.1 swc    |
| 1857.6    | SWC     | * |        |   |  |   |     |    |   | 1857.6 swc    |
| 1946.1    | swc 15  |   |        |   |  |   |     | ٠  |   | 1946.1 swc 15 |
| 2070-75   | 5 cutts |   |        |   |  |   |     |    |   | 2070-75 cutts |
| 2115-20   | ) cutts |   |        |   |  |   |     |    |   | 2115-20 cutts |
| 2354-     | cutts   |   |        |   |  |   |     |    |   | 2354- cutts   |
| 2364-     | cutts   |   |        |   |  | * |     |    |   | 2364- cutts   |
| 2374-     | cutts   |   |        |   |  |   |     |    |   | 2374- cutts   |
| 2384-     | cutts   |   |        |   |  |   |     |    |   | 2384- cutts   |

•

•

### SPECIES LOCATION INDEX

Index numbers are the columns in which species appear.

### INDEX SPECIES NUMBER AEQUITRIRADITES ACUSUS 34 AEQUITRIRADITES SPINULOSUS 57 64 AEQUITRIRADITES TILCHAENESIS AEQUITRIRADITES VERRUCOSUS 4 ANAPICULATISPORITES PRISTIDENTATUS 5 ANNULISPORITES FOLLICULOSA 61 ARAUCARIACITES AUSTRALIS 6 BACULATISPORITES SP. CALLIALASPORITES DAMPIERI $\Box$ 9 CALLIALASPORITES TURBATUS CERATOSPORITES EQUALIS 10 35 CICATRICOSISPORITES AUSTRALIENSIS 70 CINGUTRILETES CLAVUS 56 CIRCULISPORITES PARVUS 36 CONCAVISSIMISPORITES PENOLAENSIS 37 CONCAVISSIMISPORITES VARIVERRUCATUS 53 CONTIGNISPORITES COOKSONIAE 42 CONTIGNISPORITES FORNICATUS COPTOSPORA PARADOXA 38 COROLLINA SIMPLEX COROLLINA TOROSUS 12 CORONATISPORA PERFORATA 39 CRYBELOSPORITES STRIATUS 40 CYATHIDITES ASPER 13 CYATHIDITES AUSTRALIS 23 CYATHIDITES MINOR CYCADOPITES FOLLICULARIS 74 CYCLOSPORITES HUGHESI 41 14 DICTYOPHYLLIDITES HARRISII DICTYOTOSPORITES COMPLEX 30 DICTYOTOSPORITES SPECIOSUS 50 FALCISPORITES GRANDIS 31 FALCISPORITES SIMILIS 15 32 FORAMINISPORIS ASYMMETRICUS 59 FORAMINISPORIS DAILYI 65 FORAMINISPORIS WONTHAGGIENSIS FOVEOSPORITES CANALIS 40 2 FOVEOTRILETES PARVIRETUS 16 GLEICHENIDITES 54 ISCHYOSPORITES PUNCTATUS 17 KLUKISPORITES SCABERIS KUYLISPORITES LMNARIS 45 LAEVIGATOSPORITES BELFORDI 43 LEPTOLEPIDITES MAJOR LEPTOLEPIDITES VERRUCATUS 18 55 LYCOPODIACIDITES ASPERATUS 72 MATONISPORITES COOKSONIAE MICRHYSTRIDIUM 1 19 MICROCACHRYDITES ANTARCTICUS 2 MICROFASTA EVANSII 25 MUROSPORA FLORIDA उर NEORAISTRICKIA SP. 20 NEORAISTRICKIA TRUNCATA 26 OSMUNDACIDITES WELLMANII 51 PERINOPOLLENITES ELATOIDES 53 PEROTRILETES LINEARIS 3 PEROTRILETES MAJUS 27 PILOSISPORITES NOTENSIS PILOSISPORITES PARVISPINOSUS 21 RETITRILETES AUSTROCLAVATIDITES RETITRILETES CIRCOLUMENUS 46 28 RETITRILETES EMINULUS

47

RETITRILETES FACETUS

| DELTINEE CES MONOSCO            |
|---------------------------------|
| RETITRILETES WATHAROOENSIS      |
| SCHIZOSPORIS PARVUS             |
| SCHIZOSPORIS PSILATA            |
| SCHIZOSPORIS RETICULATA         |
| SESTROSPORITES PSUEDOALVEOLATUS |
| STAPLINISPORITES CAMINUS        |
| STAPLINISPORITES MANIFESTUS     |
| STERIESPORITES ANTIQUASPORITES  |
| TRIPOROLETES RADIATUS           |
| TRIPOROLETES RETICULATUS        |
| TRIPOROLETES SIMPLEX            |
| VELOSPORITES TRIQUETRUS         |
| VITREISPORITES PALLIDUS         |
|                                 |

# 12. FORMATION TESTING

# FORMATION TESTING SERVICE REPORT



# **NOMENCLATURE**

| В                | =    | Formation Volume Factor (Res Vol / Std Vol)                                                            | <del></del>                                    |
|------------------|------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Ct               | =    | System Total Compressibility                                                                           | (Vol / Vol) / psi                              |
| DR               | -    | Damage Ratio                                                                                           |                                                |
| h                | =    | Estimated Net Pay Thickness                                                                            | Ft                                             |
| k                | =    | Permeability                                                                                           | md                                             |
| m {              | =    | (Liquid) Slope Extrapolated Pressure Plot                                                              | psi/cycle<br>MM psi <sup>2</sup> /<br>cp/cycle |
| m(P*)            | =    | Real Gas Potential at P*                                                                               | MM psi <sup>2</sup> cp                         |
| $m(P_f)$         | · == | Real Gas Potential at P <sub>f</sub>                                                                   | MM psi <sup>2</sup> cp                         |
| AOF <sub>1</sub> | =    | Maximum Indicated Absolute Open Flow at Test Conditions                                                | MCFD                                           |
| AOF <sub>2</sub> | =    | $\label{thm:minimum indicated} \mbox{Minimum Indicated Absolute Open Flow at Test Conditions} \ . \ .$ | MCFD                                           |
| P*               | =    | Extrapolated Static Pressure                                                                           | Psig                                           |
| $P_{f}$          | =    | Final Flow Pressure                                                                                    | Psig                                           |
| Q                | =    | Liquid Production Rate During Test                                                                     | BPD                                            |
| $Q_1$            | =    | Theoretical Liquid Production w/ Damage Removed                                                        | BPD                                            |
| $Q_g$            | =    | Measured Gas Production Rate                                                                           | MCFD                                           |
| r <sub>i</sub>   | =    | Approximate Radius of Investigation                                                                    | Ft                                             |
| $r_w$            | =    | Radius of Well Bore                                                                                    | Ft                                             |
| S                | =    | Skin Factor                                                                                            |                                                |
| t                | =    | Total Flow Time Previous to Closed-in                                                                  | Minutes                                        |
| $\Delta t$       | =    | Closed-in Time at Data Point                                                                           | Minutes                                        |
| T                | =    | Temperature Rankine                                                                                    | °R                                             |
| ф                | =    | Porosity                                                                                               | <del></del>                                    |
| μ                | =    | Viscosity of Gas or Liquid                                                                             | ср                                             |
| Loa              | =    | Common Log                                                                                             |                                                |

# FORMATION TEST REPORT



# HALLIBURTON SERVICES



Customer: GAS AND FUEL EXPLORATION

Well Description: MCEACHERN #1

TEST NO. :DST #1

TEST DATE :31-DECEMBER-89

TICKET NO.: 352064

## HALLIBURTON SERVICES

REPORT TICKET NO: 352064 BT-GAUGE TICKET NO: 352064

DATE: 31/12/89

HALLIBURTON CAMP: ADELAIDE

TESTER: TREVOR BURKE WITNESS: C. McKAY

DRILLING CONTRACTOR: GEARHART RIG#2 LEGAL LOCATION: 37 33' 51.29"S

141 11' 25.50"E

OPERATOR: GAS & FUEL EXP. LEASE NAME: McEACHERN

WELL NO: 1 TEST NO: 1

TESTED INTERVAL: 4743.00 - 4777.00 ft

FIELD AREA: OTWAY BASIN

COUNTY/LSD:

STATE/PROVINCE: VICTORIA

COUNTRY: AUSTRALIA

NOTICE: THIS REPORT IS BASED ON SOUND ENGINEERING PRACTICES, BUT BECAUSE OF VARIABLE WELL CONDITIONS AND OTHER INFORMATION WHICH MUST BE RELIED UPON HALLIBURTON MAKES NO WARRANTY, EXPRESS OR IMPLIED AS TO THE ACCURACY OF THE DATA OR OF ANY CALCULATIONS OR OPINIONS EXPRESSED HEREIN. YOU AGREE THAT HALLIBURTON SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGE, WHETHER DUE TO NEGLIGENCE OR OTHERWISE ARISING OUT OF OR IN CONNECTION WITH SUCH DATA, CALCULATIONS OR OPINIONS.

### TABLE OF CONTENTS

| SECTION 1: TEST SUMMARY & INFORMATION |     |
|---------------------------------------|-----|
| Summary of Test Results               | 1.1 |
| Test Period Summary                   | 1.2 |
| Pressure vs. Time Plot                | 1.3 |
| Test and Formation Data               | 1.4 |
| Rate History Table                    | 1.5 |
| Tool String Configuration             | 1.6 |
| Operator Job Log                      | 1.7 |
| SECTION 2: ANALYSIS                   |     |
| Plots                                 | 2.1 |
| SECTION 3: MECHANICAL GAUGE DATA      |     |
| Gauge No. 7483                        | 3.1 |
| Gauge No. 7984                        | 3.2 |

Date: 31/12/89

Ticket No: 352064 Page No: 1.1

### SUMMARY OF TEST

Lease Owner: GAS & FUEL EXP.

Lease Name: McEACHERN

Well No.: 1

Test No.: 1

County/LSD:

State/Province: VICTORIA

Country: AUSTRALIA

Formation Tested: PRETTY HILL

Hole Temp:

172.00 F

Total Depth:

4777.00 ft

Net Pay:

13.00 ft

Gross Tested Interval: 4743.00 - 4777.00 ft

Perforated Interval (ft): 1445.7- [456 m

### RECOVERY:

41 bbls. SALTY GASSY WATER 9 bbls. SLIGHTY MUDDY GASSY WATER

### REMARKS:

ALL DOWN HOLE PRESSURES ARE IN ABSOLUTE PSIA

# TEST PERIOD SUMMARY

Gauge No.: 7483 Depth: 4774.00 ft Blanked off: Yes Hour of clock: 24

| ID | PERIOD | DESCRIPTION         | PRESSURE (psi) | DURATION (min) |
|----|--------|---------------------|----------------|----------------|
| A  |        | Initial Hydrostatic | 2348.41        |                |
| В  | 1      | Start Draw-down     | 517.64         |                |
| C  |        | End Draw-down       | 635.71         | 6.17           |
| С  | 2      | Start Build-up      | 635.71         |                |
| D  |        | End Build-up        | 2079.34        | 30.10          |
| E  | 3      | Start Draw-down     | 748.83         |                |
| F  |        | End Draw-down       | 1661.09        | 59.38          |
| F  | 4      | Start Build-up      | 1661.09        |                |
| G  |        | End Build-up        | 2083.81        | 61.27          |
| H  |        | Final Hydrostatic   | 2320.85        |                |

NOTE: for Pressure vs. Time Plot, see next page.



### TEST AND FORMATION DATA

Formation Tested: PRETTY HILL

All Depths Measured From: KELLY BUSHINGS

Elevation:

268.00 ft

Total Depth:

4777.00 ft

Net Pay:

13.00 ft

Hole or Casing Size: 0.000 in

Gross Tested Interval:

4743.00 - 4777.00 ft

Perforated Interval (ft):

1445.7 - 1456.

HOLE FLUID

HOLE TEMPERATURE

Type: Weight: DRILLING MUD

Depth:

0.00 ft 0.00 F

Viscosity:

9.30 lb/gal 45 seconds Estimated: Actual:

172.00 F

HYDROCARBON PROPERTIES

CUSHION DATA

Oil Gravity (API): 0.0 @ 60 F

TYPE

AMOUNT

Gas/Oil ratio (ScF/STB):

SG

WEIGHT

PH

Gas Gravity (SG):

0.0

0.00

FLUID PROPERTIES FOR RECOVERED MUD AND WATER

SOURCE

RESISTIVITY CHLORIDES **a** F PPM @ F PPM a F PPM @ F PPM@ F

> @ F

PPM PPM

SAMPLER DATA

Surface Pressure:

0 psi

Volume of Gas: Volume of Oil:

0 ft3

Volume of Water:

0 cc 0 cc

Volume of Mud: Total Liquids:

0 cc 0 cc

REMARKS:

ALL DOWN HOLE PRESSURES ARE IN

ABSOLUTE PSIA

Ticket No: 352064 Page No: 1.5 Date: 31/12/89

# RATE HISTORY TABLE

| Period<br>No | Test<br>Type | 2 1137 |     | Duration<br>(hrs) | Cum. Time t(j)<br>(hrs) |  |
|--------------|--------------|--------|-----|-------------------|-------------------------|--|
|              |              |        |     |                   |                         |  |
|              |              | 0      | 0.0 | 0.00              | 0.00                    |  |
| 1            | DD           | 1      |     | 0.11              | 0.11                    |  |
| 2            | BU           | 2      | 0.0 | 0.49              | 0.60                    |  |
| 3            | DD           | 3      |     | 0.99              | 1.58                    |  |
| 4            | BU           | 4      | 0.0 | 1.03              | 2.61                    |  |

Date:

Ticket no: 352064

Page no: 1.6.1

# TEST STRING CONFIGURATION

|            |                          | 0.D.<br>(in)   | I.D.<br>(in)   | LENGTH<br>(ft) | DEPTH<br>(ft) |
|------------|--------------------------|----------------|----------------|----------------|---------------|
|            | DRILL PIPE               | 4.500          | 3.820          | 4027.280       |               |
| 世工工工       | FLEX WEIGHT              | 4.500          | 2.870          | 120.960        |               |
| II<br>Ti   | DRILL COLLARS            | 6.250          | 2.810          | 454.730        |               |
|            | PUMP OUT REVERSING SUB   | 6.000          | 3.000          | 1.000          | 4603.00       |
|            | DRILL COLLARS            | 6.250          | 2.810          | 60.430         |               |
|            | IMPACT REVERSING SUB     | 6.000          | 3.000          | 1.000          | 4664.00       |
| III<br>Til | DRILL COLLARS            | 6.250          | 2.810          | 29.950         |               |
|            | BAR CATCHER SUB          | 5.750          | 1.120          | 1.000          |               |
|            | AP RUNNING CASE          | 5.000          | 2.250          | 4.140          | 4697.00       |
|            | CROSSOVER                | 5.750<br>5.750 | 2.250<br>2.250 | 1.000<br>0.620 |               |
|            | DUAL CIP VALVE           | 5.000          | 0.870          | 4.878          |               |
|            | SAMPLE CHAMBER           | 5.000          | 2.500          | 4.878          |               |
|            | DRAIN VALVE              | 5.000          | 2.200          | 0.860          |               |
|            | HYDROSPRING TESTER       | 5.000          | 0.750          | 5.310          | 4718.00       |
|            | AP RUNNING CASE          | 5.000          | 2.250          | 4.140          | 4719.00       |
|            | JAR                      | 5.000          | 1.750          | 5.000          |               |
|            | VR SAFETY JOINT          | 5.000          | 1.800          | 2.780          |               |
|            | OPEN HOLE PACKER         | 6.000          | 1.530          | 5.850          | 4735.00       |
|            | DISTRIBUTOR VALVE        | 5.000          | 1.680          | 2.888          |               |
|            | OPEN HOLE PACKER         | 6.000          | 1.530          | 5.850          | 4743.00       |
|            | ANCHOR PIPE SAFETY JOINT | 5.000          | 1.500          | 4.300          |               |
| i          | PERFORATED TAIL PIPE     | 5.000          | 2.370          | 25.000         | ,             |
|            | ued<br>Ted               |                |                |                |               |

Date:

Ticket no: 352064

Page no: 1.6.2

|   | TEST STRI                | NG CONFIGU   | RATION       |                |               |
|---|--------------------------|--------------|--------------|----------------|---------------|
|   |                          | 0.B.<br>(in) | I.D.<br>(in) | LENGTH<br>(ft) | DEPTH<br>(ft) |
| o | BLANKED-OFF RUNNING CASE | 5.000        | 2.440        | 4.260          | 4774.00       |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |
| , |                          |              |              |                |               |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |
|   |                          |              |              |                |               |

Test No: 1

## OPERATOR JOB LOG

CHOKE SURFACE GAS LIQUID

Type of Flow Measuring Device:

|          |                                           | PRESSURE<br>(psi)            |         |         | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-------------------------------------------|------------------------------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HH:MM:SS | 32/64<br>32/64<br>32/64<br>32/64<br>32/64 | 0.00<br>0.00<br>0.00<br>0.00 | (MCF/D) | (BDI/d) | SURFACE PRESSURE = PSIG LOAD B.T. GAUGES MAKE UP TOOLS RUN IN HOLE SET 25,0001bs. ON PACKERS TOOL OPEN WEAK-MODERATE BLOW MODERATE BLOW TOOL CLOSED FOR 1st C.I.P. TOOL OPEN WEAK-MODERATE BLOW MODERATE BLOW DECREASING SLIGHTLY WEAK BLOW TOOL CLOSED FOR 2nd C.I.P. BYPASS OPENED PACKERS FREE DROP BAR TO REVERSE CIRCULATE BEGIN TO REVERSE CIRCULATE FINISH REVERSE CIRCULATE P.O.O.H. TOOLS AT TABLE TOOLS LAID DOWN |
|          |                                           |                              |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                             |





# TEST PERIOD SUMMARY

| Gauge | No.:   | 7483            | Depth:   | 4774.00 |         | Blanked<br>of clo |          |       |  |  |
|-------|--------|-----------------|----------|---------|---------|-------------------|----------|-------|--|--|
| ID    | PERIOD | DESCRIPTION     |          | PRES    | SURE (p | si)               | DURATION | (min) |  |  |
| A     |        | Initi           | al Hydr  | 2       | 348.41  |                   |          |       |  |  |
| В     | 1      | Start Draw-down |          |         |         | 517.64            |          |       |  |  |
| С     |        | End Draw-down   |          |         | (       | 535.71            |          | 6.17  |  |  |
| С     | 2      | Start           | Build-   | up      | (       | 535.71            |          |       |  |  |
| D     |        | End B           | uild-up  |         | 20      | 079.34            |          | 30.10 |  |  |
| E     | 3      | Start           | Draw-de  | own     | •       | 748.83            |          |       |  |  |
| F     |        | End D           | raw-down | n.      | 16      | 561.09            |          | 59.38 |  |  |
| F     | 4      | Start           | Build-   | up      | 1661.09 |                   |          |       |  |  |
| G     |        | End Build-up    |          |         | 20      | 083.81            |          | 61.27 |  |  |
| Н     |        | Final           | Hydros   | tatic   | 23      | 320.85            |          |       |  |  |
|       |        |                 |          |         |         |                   |          |       |  |  |

NOTE: for Pressure vs. Time Plot, see next page.



PRESSURE VS TIME

MECHANICAL gauge no.: 7483 Gauge Depth: 4774.00 ft Clock no.: Hour: 24

Clock no..

TIME D TIME PRESSURE TEMP

HH:MM:SS (min) (psi) (F)

COMMENTS

| 31-DEC-89 | Data Prin | t Freque |                         |
|-----------|-----------|----------|-------------------------|
| 08:15:00  |           |          | SURFACE PRESSURE = PSIG |
| 08:15:00  |           |          | LOAD B.T. GAUGES        |
| 08:35:00  |           |          | MAKE UP TOOLS           |
| 08:44:26  | 14.091    | 172.0    |                         |
| 08:45:03  | 58.687    | 172.0    |                         |
| 08:46:14  | 19.688    | 172.0    |                         |
| 08:46:58  | 17.383    | 172.0    |                         |
| 08:47:25  | 40.590    | 172.0    |                         |
| 08:48:33  | 17.548    | 172.0    |                         |
| 08:56:51  | 17.054    | 172.0    |                         |
| 09:11:53  | 18.865    | 172.0    |                         |
| 09:17:44  | 20.511    | 172.0    |                         |
| 09:20:20  | 20.511    | 172.0    |                         |
| 09:23:32  | 26.766    | 172.0    |                         |
| 09:30:08  | 29.399    | 172.0    |                         |
| 09:37:33  | 41.248    | 172.0    |                         |
| 09:45:38  | 44.868    | 172.0    |                         |
| 09:50:00  |           |          | RUN IN HOLE             |
| 09:50:48  | 46.842    | 172.0    |                         |
| 09:56:34  | 87.960    | 172.0    |                         |
| 10:02:11  | 136.113   | 172.0    |                         |
| 10:08:43  | 214.092   | 172.0    |                         |
| 10:16:01  | 271.320   | 172.0    |                         |
| 10:22:51  | 348.792   | 172.0    |                         |
| 10:31:02  | 402.947   | 172.0    |                         |
| 10:32:05  | 429.107   | 172.0    |                         |
| 10:39:28  | 420.116   | 172.0    |                         |
| 10:48:48  | 406.054   | 172.0    |                         |
| 10:58:42  | 402.129   | 172.0    |                         |
| 11:09:16  | 401.312   | 172.0    |                         |
| 11:15:33  | 401.312   | 172.0    |                         |
| 11:17:37  | 460.811   | 172.0    |                         |
| 11:20:35  | 531.840   | 172.0    |                         |
| 11:23:40  | 594.148   | 172.0    |                         |
| 11:26:08  | 662.257   | 172.0    |                         |
| 11:29:15  | 734.521   | 172.0    |                         |
| 11:33:30  | 812.879   | 172.0    |                         |
| 11:37:13  | 895.037   | 172.0    |                         |
| 11:41:32  | 987.788   | 172.0    | ,                       |
| 11:44:42  | 1082.839  | 172.0    |                         |
| 11:48:53  | 1175.981  | 172.0    |                         |
| 11:53:00  | 1284.491  | 172.0    |                         |
| 11:55:53  | 1381.075  | 172.0    |                         |
| 11:58:23  | 1474.152  | 172.0    |                         |
| 12:01:19  | 1567.757  | 172.0    |                         |
| 12:05:33  | 1663.174  | 172.0    |                         |
|           |           |          |                         |

## PRESSURE VS TIME

TIME D TIME PRESSURE TEMP

MECHANICAL gauge no.: 7483 Gauge Depth: 4774.00 ft Clock no.: Hour: 24

COMMENTS

|   | T T1111  | D 111111 | TIMBBOIL  | 447444    | O STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |
|---|----------|----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | HH:MM:SS | (min)    | (psi)     | (F)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |          |          |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 | 1-DEC-89 |          | Data Prin | nt Freque | ency: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 12:10:10 |          | 1755.268  | 172.0     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 12:14:34 |          | 1845.655  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:19:45 |          | 1942.502  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:24:00 |          | 2034.445  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:28:32 |          | 2140.657  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:34:42 |          | 2233.829  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:38:39 |          | 2330.092  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ) | 12:39:34 |          | 2312.090  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:42:04 |          | 2329.614  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:42:19 |          | 2362.741  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:43:50 |          | 2362.104  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:43:58 |          | 2329.614  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:44:41 |          | 2394.425  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:45:03 |          | 2358.601  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:46:31 |          | 2354.142  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:47:50 |          | 2350.161  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:48:47 |          | 2348.409  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:49:00 |          | 2346.657  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:49:16 |          | 2320.852  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:49:22 |          | 2396.494  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:51:17 |          | 2393.947  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:51:28 |          | 2341.719  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:53:34 |          | 2335.667  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:55:26 |          | 2335.667  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:56:45 |          | 2332.640  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:57:51 |          | 2332.640  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ) | 12:59:02 |          | 2399.678  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 12:59:19 |          | 2394.584  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:00:38 |          | 2388.694  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:02:00 |          |           |           | SET 25,000lbs. ON PACKERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 13:02:02 |          | 2384.873  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:02:51 |          | 2383.600  | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:06:00 |          |           |           | TOOL OPEN WEAK-MODERATE BLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |          |          |           |           | iod 1 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 13:06:00 | 0.00     | 517.641   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:07:00 | 1.01     | 531.677   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:08:01 | 2.01     | 547.831   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:09:01 | 3.02     | 564.959   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:10:00 |          |           |           | MODERATE BLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 13:10:00 | 4.00     | 590.235   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:11:00 | 5.01     | 614.849   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:12:01 | 6.01     | 633.100   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 13:12:10 | 6.17     | 635.706   | 172.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |          |          | *** ₽~₫   | of Pori   | od 1 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

\*\*\* End of Period 1 \*\*\*

PRESSURE VS TIME

MECHANICAL gauge no.: 7483 Gauge Depth: 4774.00 ft Clock no.: Hour: 24

| TIME<br>HH:MM:SS                        | D TIME (min) | PRESSURE<br>(psi) | TEMP<br>(F) | COMMENTS                     |
|-----------------------------------------|--------------|-------------------|-------------|------------------------------|
| الله الله الله الله الله الله الله الله |              |                   |             |                              |
| 31-DEC-89                               |              | Data Prin         |             |                              |
|                                         |              |                   |             | riod 2 ***                   |
| 13:13:10                                | 1.01         | 689.121           | 172.0       |                              |
| 13:14:11                                | 2.01         | 1532.226          | 172.0       |                              |
| 13:15:11                                | 3.02         | 1880.245          | 172.0       |                              |
| 13:16:00                                |              |                   |             | TOOL CLOSED FOR 1st C.I.P.   |
| 13:16:10                                | 4.00         | 1942.982          | 172.0       |                              |
| 13:17:10                                | 5.01         | 1977.372          | 172.0       |                              |
| 13:18:11                                | 6.01         | 1998.319          | 172.0       |                              |
| 13:19:11                                | 7.02         | 2010.150          | 172.0       |                              |
| 13:20:10                                | 8.00         | 2022.298          | 172.0       |                              |
| 13:21:10                                | 9.01         | 2031.568          | 172.0       |                              |
| 13:22:11                                | 10.01        | 2037.961          | 172.0       |                              |
| 13:24:10                                | 12.00        | 2048.507          | 172.0       |                              |
| 13:26:11                                | 14.01        | 2055.378          | 172.0       |                              |
| 13:28:10                                | 16.00        | 2060.810          | 172.0       |                              |
| 13:30:11                                | 18.01        | 2066.082          | 172.0       |                              |
| 13:32:10                                | 20.00        | 2069.437          | 172.0       |                              |
| 13:34:11                                | 22.01        | 2071.834          | 172.0       |                              |
| 13:36:10                                | 24.00        | 2074.389          | 172.0       |                              |
| 13:38:11                                | 26.01        | 2075.987          |             |                              |
| 13:40:12                                | 28.03        | 2078.702          |             |                              |
| 13:42:12                                | 30.04        | 2079.820          | 172.0       |                              |
| 13:42:16                                | 30.10        | 2079.341          |             |                              |
|                                         |              |                   |             | Lod 2 ***                    |
|                                         |              |                   |             | ciod 3 ***                   |
| 13:45:10                                | 0.00         | 748.834           | 172.0       |                              |
| 13:46:00                                |              |                   |             | TOOL OPEN WEAK-MODERATE BLOW |
| 13:46:11                                | 1.01         | 750.949           |             |                              |
| 13:47:11                                | 2.01         |                   | 172.0       |                              |
| 13:48:11                                | 3.02         |                   | 172.0       |                              |
| 13:49:10                                | 4.00         | 824.901           | 172.0       |                              |
| 13:50:00                                |              |                   |             | MODERATE BLOW                |
| 13:50:10                                | 5.01         | 850.399           | 172.0       |                              |
| 13:51:11                                | 6.01         | 876.374           | 172.0       |                              |
| 13:52:11                                | 7.02         | 900.716           | 172.0       |                              |
| 13:53:10                                | 8.00         | 922.130           | 172.0       |                              |
| 13:54:10                                | 9.01         | 946.131           | 172.0       |                              |
| 13:55:13                                | 10.04        | 968.178           | 172.0       |                              |
| 13:57:10                                | 12.00        | 1013.547          | 172.0       | ,                            |
| 13:59:11                                | 14.01        | 1053.221          | 172.0       |                              |
| 14:01:10                                | 16.00        | 1090.929          | 172.0       |                              |
| 14:03:11                                | 18.01        | 1133.145          | 172.0       |                              |
| 14:05:10                                | 20.00        | 1170.002          | 172.0       |                              |
| 14:10:00                                |              |                   |             | DECREASING SLIGHTLY          |
| 14:10:10                                | 25.00        | 1252.698          | 172.0       |                              |
| 14:15:11                                | - 30.01      | 1330.138          | 172.0       |                              |

PRESSURE VS TIME Gauge Depth: 4774.00 ft MECHANICAL gauge no.: 7483 Hour: 24 Clock no.: TIME D TIME PRESSURE TEMP COMMENTS 3:

| HH:MM:SS  | (min) | (psi)     | (F)     |         |           |               |   |
|-----------|-------|-----------|---------|---------|-----------|---------------|---|
|           |       |           |         |         |           |               |   |
| 31-DEC-89 |       | Data Prin |         | ency:   | 1         |               |   |
| 14:20:11  | 35.02 | 1402.180  |         |         |           |               |   |
| 14:25:11  | 40.02 | 1467.875  | 172.0   |         |           |               |   |
| 14:30:00  |       | 1500 050  |         | WEAK    | BLOW      |               |   |
| 14:30:10  | 45.00 | 1523.059  |         |         |           |               |   |
| 14:35:10  | 50.01 | 1574.668  |         |         |           |               |   |
| 14:40:11  | 55.01 | 1621.262  |         |         |           |               |   |
| 14:44:33  | 59.38 | 1661.087  |         |         | tt.       |               |   |
|           |       |           | of Peri |         |           |               |   |
| 4         | 1 01  | *** Star  |         | 10a 4 ' | ***       |               |   |
| 14:45:33  | 1.01  | 1968.256  | 172.0   | moor    | ar oann n | 10D 0-3 G T D |   |
| 14:46:00  | 0 01  | 1005 000  | 170 0   | TOOL    | CLOSED F  | OR 2nd C.I.P. |   |
| 14:46:34  | 2.01  | 1995.282  |         |         |           |               |   |
| 14:47:34  | 3.02  | 2010.789  | 172.0   |         |           |               |   |
| 14:48:33  | 4.00  | 2019.741  |         |         |           |               |   |
| 14:,49:33 | 5.01  | 2027.093  |         |         |           |               |   |
| 14:50:34  | 6.01  | 2032.847  |         |         |           |               |   |
| 14:51:34  | 7.02  | 2038.121  |         |         |           |               |   |
| 14:52:33  | 8.00  | 2042.116  |         |         |           |               |   |
| 14:53:33  | 9.01  | 2045.312  |         |         |           |               |   |
| 14:54:34  | 10.01 | 2048.188  |         |         |           |               |   |
| 14:56:33  | 12.00 | 2052.822  |         |         |           |               |   |
| 14:58:34  | 14.01 | 2057.295  |         |         |           |               |   |
| 15:00:33  | 16.00 | 2060.651  |         |         |           |               |   |
| 15:02:33  | 18.01 | 2062.728  | 172.0   |         |           |               |   |
| 15:04:33  | 20.00 | 2064.964  | 172.0   |         |           |               |   |
| 15:09:33  | 25.00 | 2069.118  | 172.0   |         |           |               |   |
| 15:14:33  | 30.01 | 2072.473  | 172.0   |         |           |               |   |
| 15:19:34  | 35.02 | 2075.667  | 172.0   |         |           |               |   |
| 15:24:34  | 40.02 | 2077.584  | 172.0   |         |           |               |   |
| 15:29:33  | 45.00 | 2079.501  | 172.0   |         |           |               |   |
| 15:34:33  | 50.01 | 2081.578  | 172.0   |         |           |               |   |
| 15:39:34  | 55.01 | 2083.175  | 172.0   |         |           |               |   |
| 15:44:34  | 60.02 | 2084.453  | 172.0   |         |           |               |   |
| 15:45:49  | 61.27 | 2083.814  | 172.0   |         |           |               |   |
| 15:46:00  |       | _         |         |         | S OPENED  | PACKERS FREE  |   |
| 4         |       |           | of Peri | od 4 ** | **        |               |   |
| 15:46:02  |       | 2301.096  | 172.0   |         |           |               |   |
| 15:46:38  |       | 2246.106  | 172.0   |         |           |               |   |
| 15:47:21  |       | 2300.777  | 172.0   |         |           |               | ٠ |
| 15:47:39  |       | 2241.961  | 172.0   |         |           |               |   |
| 15:48:14  |       | 2330.570  | 172.0   |         |           |               |   |
| 15:48:36  |       | 2236.380  | 172.0   |         |           |               |   |

| 10:40:49 | 01.27 | 2003.014 | 1/2.0                      |
|----------|-------|----------|----------------------------|
| 15:46:00 |       |          | BYPASS OPENED PACKERS FREE |
|          |       | *** End  | of Period 4 ***            |
| 15:46:02 |       | 2301.096 | 172.0                      |
| 15:46:38 |       | 2246.106 | 172.0                      |
| 15:47:21 |       | 2300.777 | 172.0                      |
| 15:47:39 |       | 2241.961 | 172.0                      |
| 15:48:14 |       | 2330.570 | 172.0                      |
| 15:48:36 |       | 2236.380 | 172.0                      |
| 15:49:43 |       | 2309.222 | 172.0                      |
| 15:50:09 |       | 2339.649 | 172.0                      |
| 15:50:31 |       | 2331.047 | 172.0                      |
| 15:52:06 |       | 2324.357 | 172.0                      |
|          |       |          |                            |

DDECCIDE VC TIME

|   |                       |           | PRE                  | ESSURE VS      | TIME  |      |            |          |            |    |
|---|-----------------------|-----------|----------------------|----------------|-------|------|------------|----------|------------|----|
|   | MECHANICAL Clock no.: | gauge no. | : 7483               | Hour:          |       |      | auge<br>24 | Depth:   | 4774.00    | ft |
|   | TIME                  | ח יידאב   | PRESSURE             | ТЕМР           |       |      | COM        | IMENTS   |            |    |
|   | HH:MM:SS              |           |                      |                |       |      |            |          |            |    |
|   |                       |           |                      |                |       |      |            |          |            |    |
|   | 31-DEC-89             |           |                      | nt Frequer     | cy:   | 1    |            |          |            |    |
|   | 15:54:13              |           | 2322.605             |                |       |      |            |          |            |    |
|   | 15:57:05              |           | 2320.852             |                |       |      |            |          |            |    |
|   | 15:57:20              |           | 2321.011             | 172.0          | 2222  |      | m-0        | DEVERORE | OTDOUT AME |    |
|   | 16:00:00              |           | 2220 056             | 172.0          | DROP  | BAR  | 10         | REVERSE  | CIRCULATE  |    |
|   | 16:00:10              |           | 2320.056             |                |       |      |            |          |            |    |
|   | 16:01:27              |           | 2319.418<br>2296.475 |                |       |      |            |          |            |    |
|   | 16:01:38              |           | 2329.773             |                |       |      |            |          |            |    |
| , | 16:02:29<br>16:02:51  |           | 2360.671             |                |       |      |            |          |            |    |
|   | 16:02:55              |           | 2316.551             |                |       |      |            |          |            |    |
|   | 16:02:33              |           | 2345.542             |                |       |      |            |          |            |    |
|   | 16:04:00              |           | 2010.012             | 1,2.0          | BEGI  | OT V | REV        | ERSE CI  | RCULATE    |    |
|   | 16:04:56              |           | 2338.375             | 172.0          | 22021 |      |            |          |            |    |
|   | 16:05:32              |           | 2392.515             |                |       |      |            |          |            |    |
|   | 16:05:49              |           | 2364.812             |                |       |      |            |          |            |    |
|   | 16:06:33              |           | 2358.920             |                |       |      |            |          |            |    |
|   | 16:06:53              |           | 2331.844             |                |       |      |            |          |            |    |
|   | 16:07:35              |           | 2329.136             | 172.0          |       |      |            |          |            |    |
|   | 16:08:28              |           | 2644.196             | 172.0          |       |      |            |          |            |    |
|   | 16:09:30              |           | 2637.526             | 172.0          |       |      |            |          |            |    |
|   | 16:10:09              |           | 2612.750             | 172.0          |       |      |            |          |            |    |
|   | 16:11:18              |           | 2585.266             | 172.0          |       |      |            |          |            |    |
|   | 16:12:41              |           | 2386.624             | 172.0          |       |      |            |          |            |    |
|   | 16:14:23              |           | 2379.779             | 172.0          |       |      |            |          |            |    |
|   | 16:15:00              |           | 2409.387             | 172.0          |       |      |            |          |            |    |
|   | 16:15:31              |           | 2388.376             | 172.0          |       |      |            |          |            |    |
| ) | 16:16:02              |           | 2407.796             | 172.0          |       |      |            |          |            |    |
|   | 16:16:19              |           | 2367.359             | 172.0          |       |      |            |          |            |    |
|   | 16:16:50              |           | 2364.175             | 172.0          |       |      |            |          |            |    |
|   | 16:17:10              |           | 2288.825             |                |       |      |            |          |            |    |
|   | 16:18:11              |           | 2331.685             | 172.0          |       |      |            |          |            |    |
|   | 16:20:43              |           | 2353.505             | 172.0          |       |      |            |          |            |    |
|   | 16:22:22              |           | 2362.901             | 172.0          |       |      |            |          |            |    |
|   | 16:23:00              |           | 2556.186             | 172.0          |       |      |            |          |            |    |
|   | 16:23:31              |           | 2407.796             | 172.0          |       |      |            |          |            |    |
|   | 16:24:28              |           | 2534.093             | 172.0          |       |      |            |          |            |    |
|   | 16:25:38              |           | 2401.429<br>2578.116 | 172.0<br>172.0 |       |      |            |          |            |    |
|   | 16:26:45<br>16:27:11  |           | 2561.590             | 172.0          |       |      |            |          | ,          |    |
|   | 16:27:11              |           | 2625.139             | 172.0          |       |      |            |          | ,          |    |
|   | 16:27:38              |           | 2598.930             | 172.0          |       |      |            |          |            |    |
|   | 16:29:03              |           | 2611.797             | 172.0          |       |      |            |          |            |    |
|   | 16:30:54              |           | 2547.127             | 172.0          |       |      |            |          |            |    |
|   | 16:32:10              |           | 2491.800             | 172.0          |       |      |            |          |            |    |
|   | 16:33:25              |           | 2446.465             | 172.0          |       |      |            |          |            |    |
|   | 16:34:56              |           | 2430.077             | 172.0          |       |      |            |          |            |    |
|   | <del></del>           |           | · ·                  |                |       |      |            |          |            |    |

# PRESSURE VS TIME

| MECHANICAL Clock no.: | gauge no. | : 7483                | Hour:    | Gauge Depth: 4774.00<br>24 |
|-----------------------|-----------|-----------------------|----------|----------------------------|
| TIME                  | D TIME    | PRESSURE              | TEMP     | COMMENTS                   |
| HH:MM:SS              |           |                       |          |                            |
| 1 ppg 00              |           | Data Drin             | t Eromio | ncy: 1                     |
| 1-DEC-89<br>16:37:41  |           | Data Prin<br>2424.984 |          | ncy. I                     |
| 16:37:41              |           | 2473.987              |          |                            |
| 16:38:40              |           | 2445.829              |          |                            |
| 16:39:55              |           | 2440.578              |          |                            |
| 16:40:31              |           | 2595.593              |          |                            |
| 16:42:10              |           | 2608.461              |          |                            |
| 16:42:54              |           | 2569.377              |          |                            |
| 16:43:49              |           | 2579.388              |          |                            |
| 16:44:15              |           | 2603.378              |          |                            |
| 16:45:15              |           | 2585.108              |          |                            |
| 16:45:52              |           | 2594.481              |          |                            |
| 16:46:54              |           | 2593.846              |          |                            |
| 16:48:31              |           | 2581.135              |          |                            |
| 16:51:11              |           | 2581.294              |          |                            |
| 16:53:34              |           | 2582.565              |          |                            |
| 16:53:43              |           | 2592.734              |          |                            |
| 16:57:39              |           | 2587.491              |          |                            |
| 16:57:39              |           | 2464.443              |          |                            |
|                       |           | 2382.963              |          |                            |
| 17:00:00<br>17:02:08  |           | 2382.903              |          |                            |
| 17:02:08              |           | 2348.727              |          |                            |
| 17:02:34              |           | 2334.711              |          |                            |
| 17:03:55              |           | 2366.563              |          |                            |
| 17:03:33              |           | 2367.041              |          |                            |
| 17:10:00              |           | 2507.041              | 172.0    | FINISH REVERSE CIRCULATE   |
| 17:10:00              |           |                       |          | P.O.O.H.                   |
| 17:10:00              |           | 2364.493              | 172.0    | F.0.0.II.                  |
| 17:17:15              |           | 2364.015              |          |                            |
| 17:17:46              |           | 2414.958              |          |                            |
| 17:18:15              |           | 2401.429              |          |                            |
| 17:21:50              |           | 2396.654              |          |                            |
| 17:21:55              |           | 2366.722              | 172.0    | ·                          |
| 17:22:19              |           | 2373.569              | 172.0    |                            |
| 17:24:09              |           | 2373.569              | 172.0    |                            |
| 17:25:11              |           | 2321.808              | 172.0    |                            |
| 17:25:41              |           | 2379.301              | 172.0    |                            |
| 17:26:04              |           | 2365.130              | 172.0    |                            |
| 17:27:38              |           | 2360.034              | 172.0    |                            |
| 17:28:44              |           | 2298.227              | 172.0    |                            |
| 17:30:28              |           | 2275.597              | 172.0    |                            |
| 17:36:34              |           | 2216.924              | 172.0    |                            |
| 17:41:40              |           | 2145.765              | 172.0    |                            |
| 17:45:55              |           | 2067.361              | 172.0    |                            |
| 17:49:09              |           | 1995.282              | 172.0    |                            |
|                       |           | 1918.341              | 172.0    |                            |
| 17:53:55              |           |                       |          |                            |

PRESSURE VS TIME

| MECHANICAL g<br>Clock no.: | auge | no.: | 7483     | Hour: | Gauge<br>24 | Depth: | 4774.00 | ft |
|----------------------------|------|------|----------|-------|-------------|--------|---------|----|
| TIME                       | D TI | ME : | PRESSURE | TEMP  | COMM        | ENTS   |         |    |

|   |                   | ~ ~~~~ |                  |                |        | ************* |   |
|---|-------------------|--------|------------------|----------------|--------|---------------|---|
|   | HH:MM:SS          | (min)  | (psi)            | (F)            |        |               |   |
|   |                   |        |                  |                |        |               |   |
| 3 | 1-DEC-89          |        | Data Prin        | nt Freque      | ncy:   | 1             |   |
|   | 18:01:20          |        | 1762.964         |                | •      |               |   |
|   | 18:05:25          |        | 1681.312         | 172.0          |        |               |   |
|   | 18:12:25          |        | 1591.541         | 172.0          |        |               |   |
|   | 18:19:15          |        | 1502.310         | 172.0          |        |               |   |
|   | 18:23:10          |        | 1409.590         | 172.0          |        |               |   |
|   | 18:26:44          |        | 1333.524         | 172.0          |        |               |   |
|   | 18:29:29          |        | 1248.178         | 172.0          |        |               |   |
| 1 | 18:33:18          |        | 1154.970         | 172.0          |        |               |   |
|   | 18:37:20          |        | 1078.955         | 172.0          |        |               |   |
|   | 18:42:00          |        | 1007.878         | 172.0          |        |               |   |
|   | 18:45:32          |        | 927.644          | 172.0          |        |               |   |
|   | 18:49:03          |        | 845.689          | 172.0          |        |               |   |
|   | 18:53:14          |        | 759.730          | 172.0          |        |               |   |
|   | 18:57:21          |        | 665.351          | 172.0          |        |               |   |
|   | 19:00:57          |        | 567.895          | 172.0          |        |               |   |
|   | 19:05:21          |        | 473.880          | 172.0          |        |               |   |
|   | 19:09:05          |        | 380.538          | 172.0          |        |               |   |
|   | 19:14:38          |        | 282.628          | 172.0          |        |               |   |
|   | 19:22:36          |        | 191.776          | 172.0          |        |               |   |
|   | 19:29:30          |        | 123.956          | 172.0          | maar a |               |   |
|   | 19:35:00          |        | 66 054           | 170 0          | TOOLS  | AT TABLE      |   |
|   | 19:36:48          |        | 66.254           | 172.0          |        |               |   |
|   | 19:44:15          |        | 51.613           | 172.0          |        |               |   |
|   | 19:56:09          |        | 48.981           | 172.0          |        |               |   |
|   | 20:06:21          |        | 34.830           | 172.0          |        |               |   |
|   | 20:11:07          |        | 27.095           | 172.0          |        |               |   |
|   | 20:11:38 20:12:24 |        | 76.944           | 172.0<br>172.0 |        |               |   |
|   | 20:12:24          |        | 26.437<br>21.993 | 172.0          |        |               |   |
|   | 20:17:39          |        | 20.676           | 172.0          |        |               |   |
|   | 20:20:37          |        | 20.575           | 172.0          |        |               |   |
|   | 20:33:41          |        | 84.672           | 172.0          |        |               |   |
|   | 20:37:31          |        | 25.449           | 172.0          |        |               |   |
|   | 20:40:32          |        | 74.148           | 172.0          |        |               |   |
|   | 20:41:36          |        | 17.219           | 172.0          |        |               |   |
|   | 20:45:00          |        | 2.0223           | 1.200          | TOOLS  | LAID DOWN     |   |
|   | 20:49:47          |        | 48.323           | 172.0          |        |               |   |
|   | 20:50:48          |        | 16.890           | 172.0          |        |               |   |
|   | 20:59:44          |        | 13.762           | 172.0          |        |               | , |
|   | 21:07:48          |        | 12.774           | 172.0          |        |               |   |
|   |                   |        |                  |                |        |               |   |

### TEST PERIOD SUMMARY

Gauge No.: 7984 Depth: 4719.00 ft Blanked off : No Hour of clock: 24 PRESSURE (psi) DURATION (min) PERIOD DESCRIPTION ID Initial Hydrostatic 2314.07 A Start Draw-down 443.59 В 1 598.83 6.61 С End Draw-down С 2 Start Build-up 598.83 D End Build-up 2063.48 29.20 3 Start Draw-down 739.49 E End Draw-down 1645.01 59.18 F Start Build-up 1645.01 F 4 61.63 G End Build-up 2072.80 Н Final Hydrostatic 2307.75

NOTE: for Pressure vs. Time Plot, see next page.



## PRESSURE VS TIME

MECHANICAL gauge no.: 7984 Gauge Depth: 4719.00 ft

Clock no.: Hour: 24

TIME D TIME PRESSURE TEMP COMMENTS
HH:MM:SS (min) (psi) (F)

| 31-DEC-89 | Data Pri | nt Freque | ency: 1                 |  |
|-----------|----------|-----------|-------------------------|--|
| 08:15:00  |          |           | SURFACE PRESSURE = PSIG |  |
| 08:15:00  |          |           | LOAD B.T. GAUGES        |  |
| 08:35:00  |          |           | MAKE UP TOOLS           |  |
| 08:49:33  | 16.806   | 172.0     |                         |  |
| 09:01:32  | 16.806   | 172.0     |                         |  |
| 09:02:00  | 57.156   | 172.0     |                         |  |
| 09:02:20  | 18.406   | 172.0     |                         |  |
| 09:14:49  | 18.406   | 172.0     |                         |  |
| 09:25:33  | 18.406   | 172.0     |                         |  |
| 09:26:38  | 74.753   | 172.0     |                         |  |
| 09:27:15  | 18.050   | 172.0     |                         |  |
| 09:36:58  | 18.939   | 172.0     |                         |  |
| 09:47:41  | 22.316   | 172.0     |                         |  |
| 09:50:00  |          |           | RUN IN HOLE             |  |
| 09:52:50  | 30.671   | 172.0     |                         |  |
| 10:00:09  | 75.108   | 172.0     |                         |  |
| 10:06:01  | 151.346  | 172.0     |                         |  |
| 10:12:38  | 227.030  | 172.0     |                         |  |
| 10:22:04  | 309.618  | 172.0     |                         |  |
| 10:29:06  | 388.452  | 172.0     |                         |  |
| 10:32:46  | 409.399  | 172.0     |                         |  |
| 10:39:49  | 407.446  | 172.0     |                         |  |
| 10:43:02  | 411.707  | 172.0     |                         |  |
| 10:45:26  | 397.861  | 172.0     |                         |  |
| 10:51:53  | 388.985  | 172.0     |                         |  |
| 11:04:44  | 388.985  | 172.0     |                         |  |
| 11:15:06  | 388.985  | 172.0     |                         |  |
| 11:17:23  | 444.366  | 172.0     |                         |  |
| 11:21:03  | 531.318  | 172.0     |                         |  |
| 11:24:33  | 608.129  | 172.0     |                         |  |
| 11:27:23  | 686.155  | 172.0     |                         |  |
| 11:30:10  | 758.481  | 172.0     |                         |  |
| 11:33:54  | 834.681  | 172.0     |                         |  |
| 11:37:34  | 908.551  | 172.0     |                         |  |
| 11:40:29  | 991.600  | 172.0     |                         |  |
| 11:43:31  | 1069.305 | 172.0     |                         |  |
| 11:47:18  | 1145.386 | 172.0     |                         |  |
| 11:50:00  | 1219.315 | 172.0     |                         |  |
| 11:52:37  | 1297.986 | 172.0     | ,                       |  |
| 11:55:39  | 1378.918 | 172.0     |                         |  |
| 11:58:10  | 1462.108 | 172.0     |                         |  |
| 12:00:54  | 1543.316 | 172.0     |                         |  |
| 12:04:04  | 1627.306 | 172.0     |                         |  |
| 12:07:34  | 1710.547 | 172.0     |                         |  |
| 12:12:34  | 1812.597 | 172.0     |                         |  |
|           |          |           |                         |  |

1896.090 172.0

12:16:23

PRESSURE VS TIME MECHANICAL gauge no.: 7984 Gauge Depth: 4719.00 ft Clock no.: Hour: 24 TIME D TIME PRESSURE TEMP COMMENTS HH:MM:SS (min) (psi) (F) 31-DEC-89 Data Print Frequency: 1 1983.584 172.0 12:22:46 2066.803 172.0 12:25:08 12:28:29 2164.212 172.0 2254.877 172.0 12:35:13 2344.955 172.0 12:40:41 12:44:09 2320.035 172.0 12:46:23 2363.384 172.0 2310.212 172.0 12:47:40 2368.123 172.0 12:49:33 2290.904 172.0 12:50:35 2311.266 172.0 12:51:06 2314.250 172.0 12:53:11 2314.075 172.0 12:54:55 2313.548 172.0 12:55:55 2314.601 172.0 12:57:13 2359.877 172.0 12:57:58 2391.989 172.0 12:59:23 2364.271 172.0 13:01:49 13:02:00 SET 25,000lbs. ON PACKERS 13:04:32 2360.937 172.0 13:06:00 TOOL OPEN WEAK-MODERATE BLOW \*\*\* Start of Period 1 \*\*\* 0.00 13:06:00 443.594 172.0 13:07:01 1.02 448.208 172.0 2.02 471.456 172.0 13:08:01 13:09:01 3.01 496.298 172.0 13:10:00 MODERATE BLOW 4.00 529.832 172.0 13:10:00 13:11:00 5.00 557.684 172.0 13:12:01 6.02 579.679 172.0 13:12:37 6.61 598.835 172.0 \*\*\* End of Period 1 \*\*\* \*\*\* Start of Period 2 \*\*\* 1.02 691.751 172.0 13:13:38 2.02 1263.229 172.0 13:14:38 3.01 1949.992 172.0 13:15:37 13:16:00 TOOL CLOSED FOR 1st C.I.P. 4.00 1974.104 172.0 5.00 1991.351 172.0 13:16:37 13:17:36

13:18:38

13:19:37

13:20:37

13:21:37 13:22:38 13:24:37 13:26:36 6.02 2002.612 172.0 7.01 2012.114 172.0

8.01 2019.327 172.0

9.00 2025.309 172.0 10.02 2030.411 172.0 12.01 2038.855 172.0 14.00 2045.364 172.0

# PRESSURE VS TIME

MECHANICAL gauge no.: 7984 Gauge Depth: 4719.00 ft

Clock no.: Hour: 24

| D TIME | PRESSURE                                                                                                    | TEMP                                                                                                                                                                                                                                                                                                                                                                                                             | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (min)  | (psi)                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16 01  |                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                | ency: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29.20  |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | *** Star                                                                                                    | t of Per                                                                                                                                                                                                                                                                                                                                                                                                         | riod 3 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.00   | 739.490                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  | TOOL OPEN WEAK-MODERATE BLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.02   | 733.285                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.02   | 745.160                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.01   | 771.390                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.00   | 794.072                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  | MODERATE BLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.00   | 826.673                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6.02   | 855.372                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7.01   | 881.941                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.01   | 906.914                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9.00   | 930.466                                                                                                     | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10.02  |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 12.01  |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             | 2.20                                                                                                                                                                                                                                                                                                                                                                                                             | DECREASING SLIGHTLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 25.01  | 1251.417                                                                                                    | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            | DEGREE HOUSE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10100  | 21031003                                                                                                    | 1,2.0                                                                                                                                                                                                                                                                                                                                                                                                            | WEAK BLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45.00  | 1515 324                                                                                                    | 172 0                                                                                                                                                                                                                                                                                                                                                                                                            | WEAR BLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 39.10  |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  | - 3 2 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 02   |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  | LOG 4 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.02   | 1300.300                                                                                                    | 1/2.0                                                                                                                                                                                                                                                                                                                                                                                                            | EOOL GLOGED HOD C 1 ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2 02   | 1002 (11                                                                                                    | 170 0                                                                                                                                                                                                                                                                                                                                                                                                            | TOOL CLOSED FOR 2nd C.I.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.00   | 2011.236                                                                                                    | 172.0                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | (min)  16.01 18.00 20.02 22.00 24.02 26.00 28.02 29.20  0.00  1.02 2.02 3.01 4.00  5.00 6.02 7.01 8.01 9.00 | Data Printer 16.01 2050.289 18.00 2054.862 20.02 2057.852 22.00 2060.315 24.02 2060.667 26.00 2062.777 28.02 2063.481 *** Ender *** Stare 1.02 1985.980 2063.839 12.01 1002.878 14.00 1045.356 16.01 1090.125 18.00 125.331 20.02 1162.123 25.01 1251.417 30.01 328.653 35.00 1399.672 40.00 1515.324 50.02 1563.151 55.02 1612.198 59.18 1645.006 *** Ender *** Stare 1.02 1983.611 3.01 1995.929 4.00 2005.078 | Data Print Frequence 16.01 2050.289 172.0 18.00 2054.862 172.0 20.02 2057.852 172.0 22.00 2060.315 172.0 24.02 2060.667 172.0 26.00 2062.777 172.0 28.02 2063.832 172.0 29.20 2063.481 172.0 29.20 2063.481 172.0 29.20 2063.481 172.0 29.20 2745.160 172.0 3.01 771.390 172.0 4.00 794.072 172.0  5.00 826.673 172.0 6.02 855.372 172.0 7.01 881.941 172.0 8.01 906.914 172.0 9.00 930.466 172.0 10.02 953.839 172.0 10.02 953.839 172.0 10.02 953.839 172.0 10.02 953.839 172.0 12.01 1002.878 172.0 14.00 1045.356 172.0 16.01 1090.125 172.0 18.00 1125.331 172.0 20.02 1162.123 172.0 25.01 1251.417 172.0 30.01 1328.653 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0 45.00 1515.324 172.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## PRESSURE VS TIME

MECHANICAL gauge no.: 7984 Gauge Depth: 4719.00 ft

Clock no.: Hour: 24

|    | TIME<br>HH:MM:SS | D TIME (min) |           |         | COMMENTS                      |
|----|------------------|--------------|-----------|---------|-------------------------------|
|    |                  |              |           |         |                               |
| 31 | L-DEC-89         |              | Data Prin |         | ncy: 1                        |
|    | 14:50:20         |              |           |         |                               |
|    | 14:51:19         |              |           |         |                               |
|    | 14:52:19         |              | 2027.598  |         |                               |
|    |                  | 9.00         |           |         |                               |
|    | 14:54:20         | 10.02        | 2033.931  |         |                               |
|    | 14:56:19         | 12.01        | 2039.208  |         |                               |
|    | 14:58:18         | 14.00        | 2043.254  |         |                               |
| )  | 15:00:19         | 16.01        | 2046.596  |         |                               |
|    | 15:02:18         | 18.00        | 2049.938  |         |                               |
|    | 15:04:19         | 20.02        | 2051.872  |         |                               |
|    | 15:09:19         | 25.01        | 2055.390  |         |                               |
|    | 15:14:19         | 30.01        | 2060.139  |         |                               |
|    | 15:19:19         | 35.00        | 2063.129  |         |                               |
|    | 15:24:19         |              | 2065.415  |         |                               |
|    | 15:.29:18        |              |           |         |                               |
|    | 15:34:20         |              | 2069.109  | 172.0   |                               |
|    | 15:39:20         |              | 2070.164  |         |                               |
|    | 15:44:19         |              | 2071.923  |         |                               |
|    | 15:45:56         | 61.63        | 2072.802  | 172.0   |                               |
|    | 15:46:00         |              |           |         | BYPASS OPENED PACKERS FREE    |
|    |                  |              |           | of Peri | od 4 ***                      |
|    | 15:46:32         |              | 2298.437  |         |                               |
|    | 15:48:59         |              | 2340.043  | 172.0   |                               |
|    | 15:50:45         |              | 2312.138  |         |                               |
|    | 15:54:41         |              | 2309.506  | 172.0   |                               |
|    | 15:58:36         |              | 2307.750  | 172.0   |                               |
|    | 16:00:00         |              |           |         | DROP BAR TO REVERSE CIRCULATE |
|    | 16:01:20         |              | 2304.942  | 172.0   |                               |
|    | 16:01:31         |              | 2245.073  | 172.0   |                               |
|    | 16:02:40         |              | 2346.888  | 172.0   |                               |
|    | 16:03:36         |              | 2334.254  | 172.0   |                               |
|    | 16:04:00         |              | 0000 000  | 150.0   | BEGIN TO REVERSE CIRCULATE    |
|    | 16:05:13         |              | 2327.059  | 172.0   | •                             |
|    | 16:05:42         |              | 2369.528  | 172.0   |                               |
|    | 16:06:18         |              | 2352.158  | 172.0   |                               |
|    | 16:07:08         |              | 2320.044  | 172.0   |                               |
|    | 16:08:09         |              | 2314.779  | 172.0   |                               |
|    | 16:08:58         |              | 2626.374  | 172.0   |                               |
|    | 16:10:01         |              | 2622.347  | 172.0   | ,                             |
|    | 16:11:08         |              | 2574.190  | 172.0   |                               |
|    | 16:12:45         |              | 2375.583  | 172.0   |                               |
|    | 16:15:01         |              | 2363.302  | 172.0   |                               |
|    | 16:16:12         |              | 2389.090  | 172.0   |                               |
|    | 16:16:40         |              | 2286.256  | 172.0   |                               |
|    | 16:17:50         |              | 2311.533  | 172.0   |                               |
|    | 16:22:41         |              | 2346.280  | 172.0   |                               |

# PRESSURE VS TIME

MECHANICAL gauge no.: 7984 Gauge Depth: 4719.00 ft

Clock no.: Hour: 24

| TIME                 | D TIME |           | TEMP     | COMMENTS                 |
|----------------------|--------|-----------|----------|--------------------------|
| HH:MM:SS             | (min)  | (psi)     | (F)      |                          |
|                      |        |           |          |                          |
| 31-DEC-89            |        | Data Prin | t Freque | ncy: 1                   |
| 16:23:16             |        | 2530.742  | _        |                          |
| 16:24:12             |        | 2404.525  |          |                          |
| 16:24:49             |        | 2518.827  |          |                          |
| 16:25:30             |        | 2403.473  | 172.0    |                          |
| 16:28:01             |        | 2612.016  | 172.0    |                          |
| 16:29:02             |        | 2585.924  | 172.0    |                          |
| 16:30:06             |        | 2601.160  | 172.0    |                          |
| 16:31:39             |        | 2520.407  | 172.0    |                          |
| 16:33:18             |        | 2460.289  | 172.0    |                          |
| 16:33:44             |        | 2433.287  | 172.0    |                          |
| 16:36:03             |        | 2413.646  | 172.0    |                          |
| 16:38:38             |        | 2406.456  | 172.0    |                          |
| 16:38:55             |        | 2457.658  | 172.0    |                          |
| 16:39:13             |        | 2433.462  | 172.0    |                          |
| 16:40:13             |        | 2424.694  | 172.0    |                          |
| 16:40:59             |        | 2579.793  | 172.0    |                          |
| 16:42:29             |        | 2591.703  | 172.0    |                          |
| 16:44:45             |        | 2581.895  | 172.0    |                          |
| 16:48:32             |        | 2568.409  | 172.0    |                          |
| 16:53:18             |        | 2566.833  | 172.0    |                          |
| 16:54:27             |        | 2573.664  | 172.0    |                          |
| 16:58:20             |        | 2573.489  | 172.0    |                          |
| 16:59:20             |        | 2469.405  | 172.0    |                          |
| 17:00:21             |        | 2367.162  | 172.0    |                          |
| 17:02:37             |        | 2364.004  | 172.0    |                          |
| 17:03:44             |        | 2323.118  | 172.0    |                          |
| 17:04:29             |        | 2349.089  | 172.0    | FINISH REVERSE CIRCULATE |
| 17:10:00             |        |           |          | P.O.O.H.                 |
| 17:10:00             |        | 2349.089  | 172.0    | r.0.0.n.                 |
| 17:12:01<br>17:18:01 |        | 2349.089  | 172.0    |                          |
| 17:18:21             |        | 2394.702  | 172.0    |                          |
| 17:18:45             |        | 2382.598  | 172.0    |                          |
| 17:22:29             |        | 2380.493  | 172.0    |                          |
| 17:22:34             |        | 2352.423  | 172.0    |                          |
| 17:25:14             |        | 2357.511  | 172.0    |                          |
| 17:25:39             |        | 2310.656  | 172.0    |                          |
| 17:25:59             |        | 2354.879  | 172.0    |                          |
| 17:28:26             |        | 2347.685  | 172.0    |                          |
| 17:28:43             |        | 2299.773  | 172.0    |                          |
| 17:30:36             |        | 2261.325  | 172.0    |                          |
| 17:31:40             |        | 2277.302  | 172.0    |                          |
| 17:33:18             |        | 2280.637  | 172.0    |                          |
| 17:33:54             |        | 2295.734  | 172.0    |                          |
| 17:34:12             |        | 2240.428  | 172.0    |                          |
| 17:35:20             |        | 2219.352  | 172.0    |                          |
|                      |        |           |          |                          |

# PRESSURE VS TIME

MECHANICAL gauge no.: 7984 Gauge Depth: 4719.00 ft

|   | Clock no.:           | , ,          |                      | Hour:          |       | 24      | Jop Cili | 1713.00 10 |
|---|----------------------|--------------|----------------------|----------------|-------|---------|----------|------------|
|   | TIME<br>HH:MM:SS     | D TIME (min) | PRESSURE<br>(psi)    | TEMP<br>(F)    |       | сом     | MENTS    |            |
|   | 21 - DEG. 90         |              | Data Data            |                |       |         |          |            |
|   | 31-DEC-89            |              |                      | nt Freque      | ncy:  | L       |          |            |
|   | 17:36:53<br>17:38:26 |              | 2312.934             |                |       |         |          |            |
|   | 17:42:18             |              | 2170.161             |                |       |         |          |            |
|   | 17:42:18             |              | 2103.197             |                |       |         |          |            |
|   | 17:51:28             |              | 2020.545             |                |       |         |          |            |
|   | 17:56:22             |              | 1940.484<br>1841.707 |                |       |         |          |            |
|   | 18:01:09             |              | 1758.901             |                |       |         |          |            |
|   | 18:05:39             |              | 1665.998             | 172.0<br>172.0 |       |         |          |            |
| , | 18:13:24             |              | 1593.856             | 172.0          |       |         |          |            |
|   | 18:19:05             |              | 1508.266             | 172.0          |       |         |          |            |
|   | 18:23:01             |              | 1431.107             | 172.0          |       |         |          |            |
|   | 18:27:11             |              | 1340.482             | 172.0          |       |         |          |            |
|   | 18:30:23             |              | 1239.906             | 172.0          |       |         |          |            |
|   | 18:35:17             |              | 1128.656             | 172.0          |       |         |          |            |
|   | 18:40:57             |              | 1046.191             | 172.0          |       |         |          |            |
|   | 18:46:12             |              | 958.198              | 172.0          |       |         |          |            |
|   | 18:49:59             |              | 862.546              | 172.0          |       |         |          |            |
|   | 18:54:40             |              | 762.415              |                |       |         |          |            |
|   | 18:58:55             |              | 666.313              |                |       |         |          |            |
|   | 19:02:58             |              | 574.070              |                |       |         |          |            |
|   | 19:06:58             |              | 482.142              | 172.0          |       |         |          |            |
|   | 19:11:39             |              | 376.681              | 172.0          |       |         |          |            |
|   | 19:18:36             |              | 258.735              | 172.0          |       |         |          |            |
|   | 19:28:21             |              | 146.420              | 172.0          |       |         |          |            |
|   | 19:35:00             |              |                      |                | TOOLS | AT TABL | E        |            |
|   | 19:38:11             |              | 41.703               | 172.0          |       |         |          |            |
|   | 19:47:13             |              | 25.876               | 172.0          |       |         |          |            |
|   | 19:55:32             |              | 22.497               |                |       |         |          |            |
|   | 20:08:19             |              | 22.497               |                |       |         |          |            |
|   | 20:10:51             |              | 69.246               | 172.0          |       |         |          |            |
|   | 20:12:43             |              | 25.875               | 172.0          |       |         |          |            |
|   | 20:15:27             |              | 72.801               |                |       |         |          |            |
|   | 20:17:39             |              | 24.808               | 172.0          |       |         |          |            |
|   | 20:21:51             |              | 19.119               | 172.0          |       |         |          |            |
|   | 20:29:34             |              | 17.340               | 172.0          |       |         |          |            |
|   | 20:32:07             |              | 17.340               | 172.0          |       |         |          |            |
|   | 20:32:35             |              | 53.958               | 172.0          |       |         |          |            |
|   | 20:33:34             |              | 16.985               | 172.0          |       |         |          |            |
|   | 20:37:20             |              | 16.807               | 172.0          |       |         |          | •          |
|   | 20:38:12<br>20:39:06 |              | 64.267               | 172.0          |       |         |          |            |
|   | 20:39:06             |              | 14.139               | 172.0          |       |         |          |            |

TOOLS LAID DOWN

20:45:00

1-4-1- A 11-4-1-

THE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T

GF.E. HEEACHERN 1 DST 31-12-89. MIO BT 7984 24 MR CLOCK \$30075 @ 4718 FT BTH 87# 7483 244R CLOCK# 13446 @ 4774 FT

# **EQUATIONS FOR DST LIQUID WELL ANALYSIS**

Transmissibility

$$\frac{kh}{\mu} = \frac{162.6 \text{ QB}}{m}$$

Indicated Flow Capacity

$$kh = \frac{kh}{\mu} \mu$$

md-ft

Average Effective Permeability

$$k = \frac{kh}{h}$$

md

Skin Factor

$$S = 1.151 \left[ \frac{P^* - P_f}{m} - LOG \left( \frac{k(t/60)}{\phi \mu c_f r_w^2} \right) + 3.23 \right] -$$

Damage Ratio

$$DR = \frac{P^* - P_f}{P^* - P_f - 0.87 \text{ mS}}$$

Theoretical Potential w / Damage Removed

$$Q_1 = Q DR$$

BPD

Approx. Radius of Investigation

$$r_t = 0.032 \sqrt{\frac{k(t/60)}{\phi \mu c_t}}$$

ft

# **EQUATIONS FOR DST GAS WELL ANALYSIS**

Indicated Flow Capacity

$$kh = \frac{1637 Q_g T}{m}$$

md-ft

Average Effective Permeability

$$k = \frac{kh}{h}$$

md

Skin Factor

$$S = 1.151 \left[ \frac{m(P^*) - m(P_f)}{m} - LOG \left( \frac{k(t/60)}{d_0 \mu c_1 r_w^2} \right) + 3.23 \right] - \cdots$$

Damage Ratio

$$DR = \frac{m(P^*) - m(P_f)}{m(P^*) - m(P_f) - 0.87 \text{ mS}}$$

Indicated Flow Rate (Maximum)

$$AOF_1 = \frac{Q_g m(P^*)}{m(P^*) - m(P_f)}$$

MCFD

Indicated Flow Rate (Minimum)

$$AOF_2 = Q_g \sqrt{\frac{m(P^*)}{m(P^*) - m(P_f)}}$$

MCFD

Approx. Radius of Investigation

$$k_{t} = 0.032 \sqrt{\frac{k(t/60)}{\phi \mu c_{t}}}$$

ft