

BEACH PETROLEUM N.L.

(Incorporated in South Australia)

PEP 108 OTWAY BASIN

 $^{\circ}$ WA NO. 1

WELL COMPTUTOM FEBORT

BY A. BUFFIN OCTOBER 1988

APPENDIX 1

DETAILS OF DRILLING RIG

RIG #2

SUPERIOR MODEL 700E SCR CAPACITY 11,000FT, 3,350M NOMINAL

DRAWWORKS

ONE SUPERIOR MODEL 700E SCR ELECTRIC DRIVEN DRAWWORKS COMPLETE WITH AUXILIARY BRAKE AND SANDREEL. MAXIMUM INPUT H.P. 1000. DRIVEN BY EMD MOTOR.

ONE FOSTER MODEL 37 MAKE-UP SPINNING CATHEAD. MOUNTED ON DRILLERS SIDE.

ONE FOSTER MODEL 24 BREAK-OUT CATHEAD. MOUNTED OFF DRILLERS SIDE.

TRANSMISSION - 2 SPEED TRANSMISSION WITH HIGH CHAIN 1 1/4" TRIPLE 26T TO 24T. TWIN DISC PO218 AIR CLUTCH. LOW CHAIN 1 1/4" TRIPLE 20T TO 39T TWIN DISC PO218 AIR CLUTCH.

ENGINES

FOUR CATERPILLAR MODEL 3412 PCTA DIESEL ENGINES.

MAST

FLOOR MOUNTED CANTILEVER MAST DRECO - MODEL NO: M12713-510 DESIGNED IN ACCORDANCE WITH A.P.I. SPECIFICATION 4E 'DRILLING AND WELL SERVICING STRUCTURES'.

CLEAR WORKING HEIGHT - 127'

BASE WIDTH - 13' 6"

HOOK LOAD

GROSS NOMINAL CAPACITY - 510,000 LBS

HOOK LOAD CAPACITY WITH:

10 LINES STRUNG 410,000 LBS

8 LINES STRUNG 365,000 LBS

6 LINES STRUNG 340,000 LBS

4 LINES STRUNG 306,000 LBS MAXIMUM WIND LOAD 100 MPH - NO SETBACK

MAXIMUM WIND LOAD 100 MPH - NO SETBACK
MAXIMUM WIND LOAD 84 MPH - RATED SETBACK

ADJUSTABLE RACKING BOARD WITH CAPACITY FOR 108 STANDS OF 4 1/2" DRILL PIPE, 10 STANDS OF 6 1/2" DRILL COLLARS, 3 STANDS OF 8" DRILL COLLARS DESIGNED TO WITHSTAND AN A.P.I. WINDLOAD OF 84 MPH WITH PIPE RACKED.

CROWN BLOCK

215 TON WITH FIVE 36" SHEAVES, AND ONE 36" FASTLINE SHEAVE GROOVED 1 1/8".

SUBSTRUCTURE

ONE PIECE SUBSTRUCTURE. 14' H X 13' 6" W X 50' L W/ 12' BOP CLEARANCE. SET-BACK - 200,000 LBS - CASING = 210,000 LBS. RIG LIGHTING

EXPLOSION PROOF FLUORESCENT.

TRAVELLING BLOCK

ONE 667 CROSBY MCKISSICK 250 TONE COMBINATION BLOCK HOOK WEB WILSON 250 TON HYDRA - HOOK UNIT 5 - 36" SHEAVES.

KELLY DRIVE

ONE 20 HDP VARCO KELLY DRIVE BUSHING.

KELLY

ONE SQUARE KELLY DRIVE 4 1/4" X 40' COMPLETE WITH SCABBARD.

SWIVEL

ONE OILWELL PC-300 TON SWIVEL.

ROTARY TABLE

ONE OILWELL A 20 1/2" ROTARY TABLE TORQUE TUBE DRIVEN FROM DRAWWORKS.

AIR COMPRESSORS & RECEIVERS

TWO LEROI DRESSER MODEL 660A AIR COMPRESSOR PACKAGES C/W 10 H.P. MOTORS RATED AT 600 VOLT 60 HZ 3 PHASE. RECEIVERS EACH 120 GALLON CAPACITY AND FITTED WITH RELIEF VALVES.

INSTRUMENTATION

ONE (1) 6 PEN DRILL SENTRY RECORDER TO RECORD:
WEIGHT (D) 1-MARTIN DECKER SEALTITE
1-CAMERON DEADLINE TYPE
PENETRATION (FEET)
PUMP PRESSURE (0 - 6000 P.S.I.)
ELECTRIC ROTARY TORQUE
ROTARY SPEED (R.P.M.)
PUMP S.P.M. (WITH SELECTOR SWITCH)

INSTRUMENTATION (Cont)

ONE (1) DRILLERS CONSOLE INCLUDING THE FOLLOWING EQUIPMENT: MARTIN DECKER WEIGHT INDICATOR TYPE 'D' ELECTRIC ROTARY TORQUE GAUGE.

PIT SCAN.

S.P.M. GAUGE (2 PER CONSOLE).

ROTARY R.P.M. GAUGE.

ONE SET OF 'DOUBLE SHOT'

DEVIATION INSTRUMENT 'TOTCO'.

ONE SET OF MUD TESTING LABORATORY STANDARD KIT (BAROID).

DRILLING LINE

5000' OF 1 1/8" - TIGER BRAND.

MUD PUMPS

TWO GARDNER DENVER MUD PUMPS MODEL NO: PZHVE 750 EACH DRIVEN BY 800 HP EMD MOTOR.

GENERATOR

FOUR BROWN BOVERI 600 VOLT 3 PHASE 60 HZ AC GENERATORS. POWERED BY FOUR CAT 3412 PCTA DIESEL ENGINES.

B.O.P'S AND ACCUMULATOR

ONE HYDRIL 13 5/8" X 3000 P.S.I. SPHERICAL ANNULAR B.O.P., STUDDED TOP AND FLANGED BOTTOM. HEIGHT 14"

ONE HYDRIL 13 5/8" X 5000 P.S.I. FLANGED DOUBLE GATE B.O.P.

ONE GALAXIE 13 5/8" X 5000 P.S.I. 3000 DOUBLE STUDDED ADAPTOR FLANGES COMPLETE WITH STUDS AND NUTS.

ONE CUP TESTER. GRAY C/W TEST CUPS FOR 9-5/8" AND 13-3/8"

ONE WAGNER MODEL 130 - 160 3 BND 160 GALLON ACCUMULATOR CONSISTING OF:

SIXTEEN 11 GALLON BLADDER TYPE BOTTLES.

ONE 20 H.P. ELECTRIC DRIVEN TRIPLEX PUMP 600 VOLT 60 HZ 3 PHASE MOTOR AND CONTROLS.

ONE WAGNER MODEL A - 60 AUXILIARY AIR PUMP 4.5 GALS/MINUTE. ONE WAGNER MODEL UM2SCB5S MOUNTED HYDRAULIC CONTROL PANEL WITH FIVE (5) 1" STAINLESS STEEL FITTED SELECTOR VALVES AND TWO (2) STRIPPING CONTROLS AND PRESSURE REDUCING VALVES. THREE (3) 4" HYDRAULIC READOUT GAUGES:

- ONE FOR ANNULAR PRESSURE
- ONE FOR ACCUMULATOR PRESSURE
- ONE FOR MANIFOLD PRESSURE

ONE WAGNER MODEL GMSB - 5A 5 STATION REMOTE DRILLERS CONTROL WITH THREE PRESSURE READBACK GAUGES, INCREASE AND DECREASE CONTROL FOR ANNULAR PRESSURE.

SPOOLS

ONE SET FLANGED ADAPTOR SPOOLS TO MATE 13 5/8" LOT X 5000 P.S.I. A.P.I. B.O.P. FLANGE TO FOLLOWING WELLHEAD FLANGES:

12" X 900 SERIES, HEIGHT 14"

10" X 900 SERIES " "

8" X 900 SERIES " "

B.O.P. SPACER. FLANGE 12" 3000 R57 STUDDED X 6" 3000 R45 FLANGE, HEIGHT 16"

B.O.P. SPACER SPOOL (DRILLING SPOOL) 12" 5000 X 12" 5000 BX160, HEIGHT 14"

KELLY COCKS

ONE GRIFFITH LOWER KELLY COCK 6 1/2" O.D. WITH 4 1/2" X H CONNECTIONS. ONE GRIFFITH UPPER KELLY COCK 7 3/4" WITH 6 5/8" A.P.I. CONNECTIONS.

DRILL PIPE SAFETY VALVE

ONE GRIFFITH 6 1/2" INSIDE BLOWOUT PREVENTORS (4 1/2" X H) ONE GRIFFITH 6 1/2" STABBING VALVE (4 1/2" X H)

CHOKE MANIFOLD

ONE MCEVOY CHOKE AND KILL MANIFOLD 3" - 5000 P.S.I.

MUD SYSTEM

ONE PILL TANK CAPACITY 25 BBLS.
TWO MIX TANKS CAPACITY 108 BBLS. (EACH)
ONE RESERVE TANK CAPACITY 120 BBLS.
ONE DESILT TANK CAPACITY 120 BBLS.
ONE DESAND TANK CAPACITY 120 BBLS.
ONE SHAKER TANK CAPACITY 130 BBLS.
ONE SAND TRAP CAPACITY 15 BBLS.

FUEL TANKS

ONE 140 BBLS. ONE 6000 GALS - 30,000 LITRES.

WATER TANKS

ONE 400 BBLS

MIXING PUMPS

FIVE MISSION MAGNUM 5" X 6" X 14" CENTRIFUGAL PUMPS COMPLETE WITH 50 H.P. 600 VOLT HZ 3 PH EXPLOSION PROOF ELECTRIC MOTORS.

TRIP TANK PUMP

ONE MISSION MAGNUM 2" X 3" CENTRIFUGAL PUMP COMPLETE WITH 20 H.P. 600 VOLT 60 HZ 3 PH EXPLOSION PROOF MOTORS.

WATER TRANSFER PUMPS

THREE MISSION MAGNUM 2" X 3" CENTRIFUGAL PUMPS C/W 20 H.P. 600 VOLT 60 HZ 3 PH EXPLOSION PROOF MOTORS.

MUD AGITATORS

SIX GEOLOGRAPH/PIONEER 40 TD - 15" 'PITBULL' MUD AGITATORS WITH 15 H.P. 600 VOLT 60 HZ 3 PH ELECTRIC MOTORS.

SHALE SHAKER

ONE BRANDT - DUAL TANDEM SHALE SHAKER.

DESANDER

ONE PIONEER T8-6 'SANDMASTER' DESANDER.

DESILTER

ONE PIONEER T12-4 'SILTMASTER' DESILTER.

DRILL PIPE

10000 FT OF 4 1/2" GRADE 'E' 16.60 LBS/FT HARD BANDED DRILL PIPE 326 JOINTS.

DRILL COLLARS

- 1 6 1/2" OD DRILL COLLAR (SHORT) 15'
- 27 6 1/2" OD DRILL COLLARS.
- 3 ACTUAL 8" OD DRILL COLLARS.
- 9 ACTUAL JOINTS OF 4 1/2" HEVI-WATE DRILL PIPE.
- TWO (2) BIT SUBS 6-5/8" REG DBL BOX
- TWO (2) BIT SUBS 4-1/2" REG X 4-1/2" XH DBL BOX
- ONE (1) XO SUB 7-5/8" REG X 6-5/8" REG DBL BOX
- ONE (1) XO SUB 4-1/2" XH BOX X 4-1/2" IF PIN
- ONE (1) XO SUB 4-1/2" REG X 4-1/2" XH DBL PIN
- TWO (2) XO SUB 6-5/8" REG PIN X 4-1/2" XH BOX
- ONE (1) JUNK SUB 6-5/8" REG PIN X 6-5/8" REG BOX
- ONE (1) JUNK SUB 4-1/2" REG BOX X 4-1/2" REG PIN
- ONE (1) JUNK SUB 4-1/2" REG BOX X 4-1/2" XH BOX
- TWO (2) KELLY SAVER SUB S/W RUBBER 4-1/2" XH PXB
- TWO (2) CIRCULAR SUBS 4-1/2" XH X 1502 HAMMR UNION
- TWO (2) 12-1/4" EZI CHANGE S/STAB 6-5/8 REG PXB
- TWO (2) 8-1/2" INTEGRAL BLADE STABILIZERS 4-1/2" XH PXB

ELEVATORS

ONE (1) 4-1/2" BJ 250 TON 18 DEGREE TAPER D/P ELEVATORS

ONE (1) 2-7/8" IUS 100 TON TUBING ELEVATORS

ONE (1) 2-7/8" EUI 100 TON TUBING ELEVATORS

ONE (1) 13-3/8" BAASH ROSS 150 TON S/DOOR ELEVATORS

ONE (1) 13-3/8" S/JOINT P.U. ELEVATORS

ONE (1) 9-5/8" WEBB WILSON 150 TON S/DOOR ELEVATORS

ONE (1) 9-5/8" S/JOINT P.U. ELEVATORS

ONE (1) 7" BJ 200 TON S/DOOR ELEVATORS

ONE (1) 7" S/JOINT P.U. ELEVATORS

ALL P.U. ELEVATORS C/W SLINGS & SWIVEL

ONE (1) 8" WEBB WILSON 150 TON S/DOOR ELEVATORS D/C ONE (1) 5-3/4" WEBB WILSON 150 TON S/DOOR ELEVATORS D/C ABOVE C/W LIFT NUBBING AND BAILS

ROTARY SLIPS D/P TUBING

TWO (2) 4-1/2" VAR CO SDML D/P SLIPS ONE (1) 3-1/2" VARCO SDML TUBING SLIPS TWO (2) 8" - 6-1/2" DCS-R DRILL COLLAR SLLIPS

ROTARY TONGS

ONE (1) BJ TYPE 'B' C/W LATCH & LUG JAWS 13-3/8" - 3-1/2"

CASING SLIPS

THREE (3) 13-3/8" - 9-5/8" - 7" VARCO CSML CASING SLIPS

BIT BREAKERS

FOUR (4) 17-1/2" - 12-1/4" - 8-1/2" - 6"

FISHING TOOLS

ONE (1) 8-1/8" BOWEN SERIES 150 F.S. O/SHOT

ONE (1) 10-5/8" BOWEN SERIES 150 F.S. O/SHOT

C/W GRAPPLES & PACKOFFS TO FISH CONTRACTORS DOWN HOLE EQUIPMENT.

ONE (1) 8 O.D. FISHING MAGNET 4-1/2" REG PIN

ONE (1) REVERSE CIRC JUNK BASKET 4-1/2" XH BOX

ONE (1) JUNK BASKET MILL TYPE C/W MILL SHOE 4-1/2" REG PIN

ONE (1) JARS 6-1/2" O.D. GRIFFITHS FISHING 4-1/2" XH PXB

ONE (1) JAR ACCELERATOR GRIFFITHS FISHING 6-1/2" O.D. 4-1/2" XH PXB

ONE (1) BUMPER SUB 6-1/2" O.D. FISHING 4-1/2" XH PXB

ONE (1) 12" JUNK MILL - 6-5/8" REG PIN

ONE (1) 8" JUNK MILL 4-1/2" REG PIN

ROTARY REAMERS

ONE (1) 6-1/2" O.D. DRILCO N.B. ROLLER REAMER C/W TYPE K CUTTERS 8-1/2" HOLE

PUP JOINTS

THREE (3) 5' - 10; - 15; 4-1/2" O.D. GRADE 'G' PUP JOINTS

<u>AUGER</u>

ONE (1) 27-1/2" AUGER 4-1/2" XH BOX

RATHOLE DIGGER

ONE (1) FABRICATED ROTARY TABLE CHAIN DRIVEN

POWER TONG

ONE (1) FARR 13-5/8" - 5-1/2" HYDRAULIC POWER TONS C/W HYD. POWER PACK & HOSES & TORQUE GUAGE ASSY

Rig No. 2

APPENDIX 2

SIDE WALL CORE DESCRIPTION

IONA NO. 1

SIDE WALL CORE DESCRIPTION

SWC	Depth (m)	Rec. (mm)	Description
1.	1481m	45mm	SILTSTONE: medium grey, blocky, hard, occasional carbonaceous material, micromicaceous, arenaceous, occasionally grading to:-
			SANDSTONE: medium to medium dark grey, very fine to fine, hard, rounded, well sorted, tight, no visual porosity, no shows.
2.	1453m	30mm	LITHIC SANDSTONE: medium grey to medium grey green, very fine to medium, friable, angular to subrounded, moderate sorting, tight with pale green, soft, silty kaolinitic? clay matrix, abundant lithics. 100% Bright yellow fluorescence, with a weak pale yellow cut and a very thin pale yellow residual ring. Poor visual porosity.
3.	1441.5m		LITHIC SANDSTONE: light to medium grey light to medium grey green, fine to occasionally medium, hard, subrounded to rounded, well sorted, tight with a pale green clay matrix, abundant multicoloured lithics, mica. Poor visual porosity, no shows.
4.	1423m	30mm ,	LITHIC SANDSTONE: medium grey, very fine, friable, well sorted, rounded, tight, poor visual porosity, no shows, with occasional <u>COAL</u> , black, earthy, moderately hard.
5.	1407m	27mm	LITHIC SANDSTONE: grey green, fine to medium, friable, subangular to subrounded, poor to moderate sorting, abundant lithics, tight with green clay matrix. No visual porosity, no shows.
6.	1396.5m	-	No recovery.
7.	1391.5m	31mm	LITHIC SANDSTONE: speckled white to light medium grey to medium grey green, very fine to medium, loose to friable, subrounded, poor sorting, tight with white-light green matrix, multicoloured lithics, occasional coal fragments, occasional mica flakes. Dull pale yellow fluorescence with an occasional bright spot, dull yellow instant cut, very thin residual ring. Poor visual porosity.

8.	1383m	40mm	CLAYSTONE: medium grey, blocky, occasionally
			fissile, soft to moderate hard, occasionally hard, silty in part, micromicaceous abundant carbonaceous material, trace <u>COAL</u> , black subvibreous, blocky, micropyritic. No shows.
9.	1379m	-	No recovery.
10.	1347.5m	24mm	CLAYSTONE: dark grey, blocky to occasionally fissile, soft, micromicaceous. Very fine thin carbonaceous streaks, very occasional coal fragments, no shows.
11.	1336m	-	No recovery.
12.	1328m	25mm	SANDSTONE: light grey, very fine to fine, loose, subrounded to rounded, very well sorted, poor to moderate white calcareous matrix, occasional coal fragments, occasional mica. Poor visual porosity, no shows.
13.	1324m	28mm	SANDSTONE: light grey, fine, loose to friable, subrounded to rounded, well sorted, poor to moderate white calcareous matrix, occasional mica flakes. Strong yellow fluorescence, weak, pale white instant cut. Poor visual porosity.
14.	1321m	-	No recovery.
15.	1318m	-	No recovery.
16.	1301m	17mm	SANDSTONE: light to medium grey, medium to coarse, loose, angular to occasionally subrounded, moderately sorted, occasional coal fragments, poor matrix. Good visual porosity, no shows.
17.	1297m	17mm	CLAYSTONE: dark to very dark grey, soft, sticky, very arenaceous with abundant fine quartz grains, occasional green staining (glauconite?), carbonaceous material, no shows.
√ 18.	1287m	34mm	CLAYSTONE: light yellow-brown, light to medium grey, moderately hard, massive, micromicaceous, silty in part, occasionally fissile, common very fine carbonaceous material, no shows.
19.	1282m	33mm	CLAYSTONE: black, moderately hard, massive, micromicaceous, abundant fine to granule quartz fragments, abundant green staining, no shows.
20.	1276.5m	30mm	LITHIC SANDSTONE: dark grey green, fine, loose to friable, subrounded, very poor sorting, abundant white to pale green clay matrix, abundant lithics, common micromicaceous with occasional coarse

			mica, trace carbonaceous fragments, abundant glauconite, no visual porosity, no shows.
21.	1254m	30mm	CLAYSTONE: black, moderately hard, massive, occasionally fissile, abundant glauconitic pellets, silty in part, micromicaceous, no shows.
22.	1240m	34mm	CLAYSTONE: black, very hard, massive, silty in part, abundant green staining, abundant glauconitic pellets, abundant fine quartz grains, no shows.
23.	1185m	34mm	SANDSTONE: yellow-green, fine to medium, moderately hard, subangular to subrounded, poor sorting, tight, poor off-white matrix, abundant glauconite, quartz grains with occasional yellow staining, occasional mica. No visual porosity, no shows.
24.	1139m	37mm	SANDSTONE: light yellow green to olive green, a/a, becoming angular to subangular with increased glauconite, no shows.
25.	1135.5m	-	No recovery.
26.	1094m	34mm	SANDSTONE: patchy, medium to dark grey, fine to occasional very coarse, moderately hard, subangular to subrounded, poorly sorted, good dark grey, soft, matrix, occasional carbonaceous material, occasional green staining. Very poor visual porosity, no shows.
27.	1075.5m	45mm	CLAYSTONE: black, massive, micromicaceous, silty in part, carbonaceous in part, no shows.
28.	1054m	25mm	SANDSTONE: with interbedded CLAYSTONE.
·			SANDSTONE: light grey, fine, loose to friable, subangular to subrounded, moderate sorting, occasional black lithics, poor to moderate white matrix, very dispersive. Poor visual porosity, no shows.
			CLAYSTONE: dark grey, massive, soft, dispersive, with occasional quartz grains, no shows.
29.	1018m	20mm	SANDSTONE: with interbedded CLAYSTONE.
			SANDSTONE: very light grey, fine, friable, rounded, well sorted, poor white matrix, abundant coal. Poor visual porosity, no shows.

CLAYSTONE: a/a.

30.	942m	34mm	SANDSTONE: light grey a/a becoming fine to occasionally medium grained.
31.	858m	35mm	INTERBEDDED SANDSTONE/CLAYSTONE as Core # 29.
32.	820m	35mm	SANDSTONE: with occasional CLAYSTONE as Core # 29.
33.	772m	35mm	INTERBEDDED SANDSTONE/CLAYSTONE as Core # 29.
34.	704m	40mm	INTERBEDDED SANDSTONE/CLAYSTONE
			SANDSTONE: very dark grey, fine to coarse, friable, angular to subrounded, poor sorting, poor white matrix. Poor visual porosity, no shows.
			CLAYSTONE: a/a with abundant very coarse to granule quartz grains, subangular, abundant lithics, common pyrite, trace glauconite, common sandstone aggregates, no shows.
35.	664.5m	35mm	SANDSTONE: very dark grey, green to yellow grey green, very dirty, quartz grains displaying abundant staining, medium grained, loose to friable, subangular to subrounded, moderate to well sorted, common coal, common lithics, poor matrix. Moderate visual porosity, no shows.
36.	659.5m	36mm	SANDSTONE: a/a, becoming dark grey, fine grained with a moderate to good grey to brown matrix, poor visual porosity, no shows.
37.	652.5m	33mm	SILTSTONE: black, massive, moderately hard, subangular to subrounded, poor sorting, common multicoloured lithics, trace pyrite, micromicaceous, carbonaceous, occasional coarse quartz grains. No visual porosity, no shows.
38.	634.5m	31mm	SANDSTONE: very dark brown, fine to medium, very occasional coarse grain, with abundant quartz staining, loose to friable, subrounded, poor sorting, poor, dispersive brown clay matrix. Poor visual porosity, no shows.
39.	623m	34mm	SANDSTONE: a/a, becoming dark grey to black with coarse quartz grains, moderate clay matrix, very poor sorting. No visual porosity, no shows.
40.	621m	34mm	SANDSTONE: a/a, with abundant coarse to very coarse quartz grains.

41.	611.5m	-	No recovery.
42.	602m	38mm	CLAYSTONE: blue green to dark blue grey, silty, abundant quartz granules, moderately hard, subrounded, occasional pyrite, occasional micromicaceous, no shows.
43.	586m	37mm	CLAYSTONE: very dark grey with occasional green staining, silty, moderately hard, massive, micromicaceous, no shows.
44.	543m	37mm	INTERBEDDED SANDSTONE/CLAYSTONE.
			SANDSTONE: yellow brown, very fine, friable, rounded, well sorted, poor matrix, poor to moderate visual porosity, no shows.
			CLAYSTONE: light grey green with occasional green staining, light brown, massive fissile in part, silty in part, moderately hard, micromicaceous, occasional coally laminations, no shows.
45.	485.5m	35mm	SANDSTONE: black, fine grained, friable to loose, subrounded to rounded, good sorting, poor dark brown matrix. Poor to occasionally good visual porosity, no shows.
46.	402.5m	32mm	INTERBEDDED SANDSTONE/CLAYSTONE.
			SANDSTONE: a/a.
			CLAYSTONE: dark grey brown, silty in part, moderately hard, massive, micromicaceous, very occasional coally laminations, no shows.
47.	331m	36mm	CLAYSTONE: a/a with abundant fine quartz grading to:
			SANDSTONE: very dark brown, dirty with stained quartz grains, friable, fine grained, subrounded to well rounded, good sorting, poor to moderate dark grey dark brown matrix, occasional coarse mica grain, occasional coarse quartz. No visual porosity, no shows.
48.	301m	36mm	SANDSTONE: a/a.

•

APPENDIX 3

DRILLING FLUID RECAP

DRESSER MAGCOBAR ENGINEERS:

WELL SUMMARY

M. OLEJNICZAK

WELLSITE REP: V.SANTOSTEFANO OPERATOR: BEACH PETROLEUM CONTRACTOR REP: G. NICOT CONTRACTOR: GEARHART RIG: #2 WELL: IONA #1 TOTAL DRILLING DAYS: 11 SPUD DATE: 6.3.88 TOTAL DEPTH DATE: 17.3.88 TOTAL DAYS ON WELL: 17 MUD COST BY INTERVAL: DRILLING FLUID BY INTERVAL: SPUD MUD.... ...0 to 247 METRES\$ 491.04..... GEL POLYMER . . . 247 to 1490 METRES\$10663.37..... COMPLETION@ 1490 METRES\$ 3338.67....to.....to..... ...\$14493.08..... TOTAL MUD COST:

INTRODUCTION

INTRODUCTION

Iona #1 was drilled from surface to its 1490 metres T.D. with a fresh water Bentonite mud system.

In the original well programme it was felt that a fresh water mud system was quite adequate for the predominantly unconsolidated sandy sequence above the Eumarella formation, providing that hole erosion was minimised with low hydraulics. In particular, keeping bit nozzle velocity at 250 ft/sec or less.

The 12 1/4" surface hole was drilled with water with up to 3/4% of KCl, used to limit hydration and reduce water consumption through the Gelliband Marl. The 9 5/8" casing was run and cemented at 243.5 metres with cement returns one minute after displacement began indicating a near guage hole.

The 8 1/2" hole was drilled with a fresh water Bentonite Polymer mud with a circulating rate of between 190 and 200 gpm with bit nozzle velocities of 220-230 ft/sec. Filtration was controlled at 6-8 ccs through the Pebble Point formation, relaxed through the Paraate and again lowered from the Nullawarre Greensand to T.D. With this mud system the Skull Creek Mudstone and Belfast Mudstone were extremely sticky while being drilled, and on the first few trips, but subsequently improved. This appeared to be due to sticky clays binding on the bottom hole assembly in near guage hole.

The very good hole stability, and very good hole caliper achieved definitely showed that a fresh water mud can achieve the desired end results. The only minor drawbacks to this combination of a fresh water mud and low hydraulics, are poor samples in sticky dispersive mudstones, and tight hole associated with these as well.

It should also be pointed out that the drill stem test run on this well had a completely successful packer seat in the Belfast Mudstone. Packer seat failures in the past have been numerous both with fresh water muds and KCl muds.

From a cost point of view, this well was estimated at close to \$8000.00 for a dry hole mud bill. The final \$14493.08 cost far exceeded this, but a look at the cost versus depth curve clearly demonstrates the extra costs as being due to weighting up after testing, and the completion costs.

FORMATION TOPS

HEYTESBURY AND NIRRANDA GROUPS	SURE	PACE
DILWYN FORMATION	335	METRES
PEMBER MUDSTONE	542	METRES
PEBBLE POINT FORMATION	610	METRES
PARAATE FORMATION	660	METRES
SKULL CREEK MUDSTONE	1003	METRES
NULLAWARRE GREENSAND MEMBER	1138	METRES
BELFAST MUDSTONE MEMBER	1234	METRES
WAARRE FORMATION	1299	METRES
EUMERALLA (REWORKED)	1380	METRES
EUMERALLA FORMATION	1411	METRES
T.D.	1490	METRES

WELL

BEACH PETROLEUM

IONA #1

8 1/2" HOLE CALIPER (AVERAGE EACH 25 METRES)

DEPTH (M)	HOLE SIZE (INS)	DEPTH M)	HOLE SIZE (INS)
275 300 325 350 375 400 425 450 475	11 10 1/4 10 10 10 10 9 3/4 9 3/4	925 950 975 1000 1025 1050 1075 1100	8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 3/4 8 1/2 8 1/2
500 525 550 575 600	8 3/4 8 3/4 8 3/4 8 1/2 9	1150 1175 1200 1225 1250	8 1/2 9 10 (WASHED OUT)
625 650 675 700 725 750 775 800 825 850 875 900	8 1/2 8 3/4 8 3/4 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2	1275 1300 1325 1350 1375 1400 1425 1450 1475	8 1/2 8 3/4 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 1/2 8 3/4

MUD SUMMARY BY INTERVAL

OBSERVATIONS AND RECOMMENDATIONS

WELL

SUMMARY BY INTERVAL

INTERVAL: 0-247 METRES

12 1/4" HOLE

9 5/8" CASING

The very dispersive Gellibrand Marl was expected close to surface on this well, so the rathole and mousehole were dug into surface clay with water, and the $12\ 1/4$ " hole also spudded in with water at 22.30 hours on 6th March, 1988.

As water was being tanker trucked in, and the sump had been dug quite small, it was decided to reduce water consumption and mud disposal into the sump by reducing clay hydration with the additions of a small amount of Potassium Chloride.

The Gellibrand Marl was reached on the second single drilled, and 4 sacks of Lime and 20 sacks of KCl were quickly added to the circulating system. With this low level of 3/4% KCl, Marl cuttings were still slightly soft and sticky but were sufficient to cause a large build up of cuttings off the shakers.

Drilling continued at a steady controlled rate of approximately 3 singles per hour, through relatively uniform Marl, with the pump rate being increased from 220 gpm to 410 gpm after the first 5 singles.

As drilling progressed, water was added to control the viscosity below 40 seconds in order to reduce the chances of a mud ring forming. Near the 247 metres casing point, the viscosity was gradually allowed to rise, with the Marl cuttings becoming more dispersive, as the salinity was reduced by dilution.

At 247 metres the hole was circulated half an hour with an additional sack of Lime added to increase the viscosity to 52 seconds, and Yield Point to 37 lb/100 sq ft. A wiper trip was run to surface, and the hole circulated another half an hour before pulling out and running the 9 5/8" casing. During these circulations a lot of large cuttings and cavings were carried out by the high yield point mud. The casing was then run in with the last 4 metres having to be washed down, and cemented at 243.5 metres.

During cement displacement, cement returns reached surface one minute after displacement began, indicating a good guage hole.

INTERVAL:

247-1490 METRES 8 1/2" HOLE 5 1/2" CASING

With the loose sands of the Dilwyn formation anticipated soon after drilling out the casing shoe, approximately 250 bbl of the predominantly native clay mud from the $12\ 1/4$ " surface hole was retained, and only the sandtraps and degasser tanks dumped and washed out.

The cement and casing shoe were then drilled out using old diluted with water, circulating through the sandtrap, degasser and suction tanks only, and adding some Kwik Dril flocculant at shaker to improve solids settling.

After drilling 5 metres of new hole to 252 metres, a leak off test was run, giving a 16.2 ppg equivilent, and drilling then continued through Marl, adding water only and using the entire mud system.

The residual cement contamination was deliberately retained for added clay inhibition, and to provide a lightly flocculated mud of a low 34 seconds viscosity for avoiding mud rings, but with a sufficiently high Yield Point of 15 lb/100 sq ft to easily clean the hole.

With the top of the Dilwyn Sand formation reached at 334 metres the pump rate was reduced to 215 gpm to minimise hole washout. Bicarbonate, CMC EHV, Polysal and additional prehydrated Bentonite was added while drilling through the Dilwyn to defolcculate the mud, whilst maintaining Yield Point and reducing water loss. No problems with hole instability or excessive sand returns at surface were experienced indicating a relatively stable, guage hole with these drilling parameters.

After drilling through the Pember Mudstone with a constant 34 viscosity, Yield Point of 10-15 lb/100 sq ft, 8.8 ppg mud weight and filtrate reduced to 7.5 cc's, the Pebble Point Sand target was reached at 610 metres, but there was no show.

Drilling continued through the Paraate Sands with viscosity increased to 40-45 seconds, and the filtrate allowed to relax to around 10 ccs, with additions of prehydrated Bentonite and CMC EHV only. With very little native clay yielding into the mud, a significant amount of Bentonite had to be added. Mud weight rose gradually to 9.0 ppg.

At 976 metres, tripped for a bit change, adding stabilisers and jars,

WELL

stiffening up the bottom hole assembly. This required reaming back in at 539 metres and from 926 metres to bottom as the old bit had been 3/8" underguage.

While drilling through the Skull Creek Mudstone, there was very little to no sample over the shakers indicating it was very dispersive. At 1120 metres, pulled out for a washout, and had to work tight hole from 1105 metres to 894 metres, and also had to ream running back in at 900 metres, 1013 metres to 1030 metres and 1080 metres. This was most likely due to sticky clay being picked up by the bit and stabiliser from the Skull Creek Mudstone, in the near guage hole.

Drilling continued into the Nullawarre Greensand from 1138 metres, circulating out drill breaks. At 1230 metres tripped for a bit change with hole conditions much improved, only having to work a couple of spots when running back in.

Mud dilution rate was reduced, as orders had come to allow the mud weight to increase to 9.3 ppg for the Warre Sandstone target. Mud properties stabilised, and were held reasonably constant for the rest of the well at:- mud weight 9.3-9.5 ppg

viscosity 42-45 yield point 12-16 filtrate 6.4-7.2

The top of the Warre Sandstone target was reached at 1299 metres, with a drill break circulating out at 1304 metres. Another $1\ 1/2$ metres was then drilled, and a wiper trip run prior to testing, with tight spots up to 1012 metres. Then pulled out to pick up the test tools, but had to run back in and circulate till nearly midnight as it was too late to test that day. Another 10 stand wiper trip was run just prior to pulling out and running the test tools.

D.S.T. #1 was then run with no problems R.I.H or setting packers, with successful gas to surface and flare. However while attempting to reverse circulate through the choke there were no returns, indicating a formation breakdown, most likely in the Dilwyn Sands. The test string was then circulated out conventionally through the choke with high gas readings and gas cut mud from gas migration from below the test tool. The mud weight was raised to 9.5 ppg, and slow circulation through the choke continued until returns at surface reached a steady 9.4+ ppg for eight hours. After opening the well and confirming the annulus was static, a 10 stand wiper trip was run,

WELL

the hole circulated out again, and then the test string pulled out of the hole. A wiper trip with a bit was run into bottom and the hole circulated clean of residual gas.

A core barrel was then run in, with tight hole having to be reamed from 448 metres to 1173 metres over eleven hours to get to bottom. A core was then cut from 1305.5 metres to 1314.5 metres, and pulled out with 100% recovery of very loose Warre Sandstone.

Drilling then continued through the remainder of the Warre Sandstone, into the top of the Eumeralla formation at 1411 metres and the well T.D. at 1490 metres. Mud weight was gradually cut back to 9.3 ppg, with other mud properties held reasonably constant to T.D.

A wiper trip to the casing shoe was run, with the first 180 metres pulling tight and swabbing, through the Eumeralla, but the remainder of the trip out, and running back in, going well.

The drill string was then pulled out and began running Gearhart wireline logs. Logging proceeded for the best part of three days, with a wiper trip on the second day with no significant problems, despite extensive running of the S.F.T. tool, indicating very good hole stability. The Gearhart caliper log showed a very close to guage hole nearly all the way, confirming all indications.

With the completion of wireline logging the well completion programme was begun.

WELL COMPLETION

Having completed all wireline logging, a wiper trip was run back to bottom with no problems, circulating out and then laying out drill pipe on the way out.

The 5 1/2" casing was then run in, with a bridge at 1445 metres requiring washing through. While circulating the casing on bottom the mud Yield Point was reduced to 3 1b/100 sq ft with Spersene and Caustic Soda, but maintaining the mud weight at 9.3 ppg.

The casing was then cemented with full returns with a Bentonite mix water lead slurry, and a neat tail slurry. Full pressure of 3000 psi could not be held on the plug, after the cement job, as it kept leaking off. However after waiting on cement eleven hours, it held

a 2000 psi test.

After cutting casing and nippling up, a casing scraper was run in. A hi-viscosity Polypac sweep of 15 bbls was pumped around to clean out the casing, and it was then displaced with a 9.3 ppg Sodium Chloride brine containing Inhibitor 303, D-I Cide and Sodium Sulphite Oxygen scavenger.

Following the mud engineer's release, a packer was run and set on tubing, and the well left unperforated as a suspended completion.

GRAPHS

BIT AND HYDRAULICS RECORD

BIT & HYDRAULIC RECORD

							IT &	HYDE	RAUL	IC RE	COF	RD				
Contra	G		HART	Rig N	2	Location	PT. CA	MPBELI	. VI	CTORIA		PEP 1	08	Well I	ONA #1	
Operator BEACH PETROLEUM			M	Engineer M. OLEJNICZAK												
Pump N	ame	Size	Li	ner Size/St	roke	DRILL C	collars x Length	Pipe D	rill	Tool Join Type	' v	VI/FI	Pum Bb	p Output Is/Stks		
G.C). P	28	5½	,6 x 8		6½ x 2	7/8	41/2		IF	16	.61b	.057/	/.065		
Date	Run !	No.	Size	Make	Туре	Jet Size	Depth Out	Metres Drilled	Hours Run	Weight On Bit	RPM	Pump Pressure	Vert Dev.	Stks/min	Ann Vei Ft./min	Condition T-B-G
	1		12¼	HTC	OSCI		247	247	11	5-10	110	350	14	410	117	1-3-I
						1x16										
	2		8½	REED	S1:	1 3x11	976	729	31.5	15-25	110	500	14	215	159	7-8-3/8
	3		81/2	REED	S13	G 3x11	1230	254	21	15-25	90	750	1/2	191	141	7-8-3/4
	4		8½	REED	S13	G 3x11	1305.5	75.5	91/2	25-30	90	750	1/2	191	141	3-6-IN
														·		
	<u>C1</u>		8½	CHRIS	RC4	76 -	1314.5	9	3	2-10	65		<u> </u>	191	141	10% WOR
													<u> </u>			
	5		81/2	REED	\$13	G 3x11	1490	175.5	16½	25-30	75	800	3/4	191	141	4-4-I
													<u> </u>			
													<u> </u>			
										ļ			ļ			
										ļ			ļ		·	
									ļ	ļ			<u> </u>		·	
													<u> </u>			
													<u> </u>			
										-			ļ			
										<u> </u>						
										<u> </u>					·	
										<u> </u>	-					
														ļ		
									<u></u>	<u> </u>				<u></u>		
REMA	HKS															
																
																

Well: IONA #1 Client: BEACH PETROLEUM N.L.

Survey units : METRES Datum : 0.0

Calibrated sonic interval velocities used from 155.0 to 1325.0

Datum	One-way	VEI	_OCITIE	:S	Datum	One-way	VEI	_OCIT	IES
Depth	time(ms)	Average	RMS In	terval	Depth	time(ms)			
•									
5.0	2.8	1783	1783	1783	205.0	106.5	1925	1953	2236
10.0	5.6	1796	1796	1809	210.0	108.9	1929	1957	2092
15.0	8.3	1803	1803	1817	215.0	111.3	1932	1959	2066
20.0	11.1	1807	1807	1820	220.0	113.6	1936	1963	2140
25.0	13.8	1810	1810	1820	225.0	116.0	1939	1965	2081
20.0	10.0	1010	1010	1020	220.0	110.0	1707	7 100	2001
30.0	16.6	1812	1812	1821	230.0	118.4	1942	1968	2104
35.0	19.3	1813	1813	1821	235.0	120.7	1746	1972	2158
0.0	22.1	1814	1814	1821	240.0	123.2	1948	1973	2017
5.0	24.8	1815	1815	1821	245.0	125.6	1951	1976	2136
50.0	27.5	1815	1815	1821	250.0	128.1	1951	1976	1963
	27,50	10.10	1010	* (20010	******	1 / 1	1 / / C	1700
55.0	30.3	1816	1816	1821	255.0	130.4	1956	1980	2220
60.0	33.0	1816	1816	1821	260.0	132.8	1958	1982	2048
65.0	35.8	1817	1817	1821	265.0	135.2	1960	1984	2107
70.0	38.5	1817	1817	1821	270.0	137.5	1963	1987	2133
75.0	41.3	1817	1817	1821	275.0	139.8	1967	1990	2213
80.0	44.0	1817	1817	1821	280.0	142.1	1971	1993	2169
85.0	46.8	1818	1818	1821	285.0	144.2	1976	1999	2351
90.0	49.5	1818	1818	1821	290.0	146.4	1981	2004	2325
95.0	52.3	1818	1818	1821	295.0	148.6	1985	2007	2198
100.0	55.0	1813	1818	1822	300.0	150.9	1988	2011	2236
					000.0	200.,	1700		<u> </u>
105.0	57.7	1818	1819	1825	305.0	153.1	1992	2015	2246
110.0	60.5	1817	1819	1835	310.0	155.4	1995	2017	2162
115.0	63.2	1821	1821	1862	315.0	157.7	1997	2019	2151
0.0	65.8	1824	1824	1887	320.0	160.0	2001	2022	2248
5.0	68.4	1826	1827	1896	325.0	162.3	2002	2024	2102
	C.C. # 4	1020	1027	1070	020.0	10210	2002	2024	2102
130.0	71.1	1827	1829	1899	330.0	164.6	2005	2027	2246
135.0	73.7	1832	1832	1701	335.0	166.8	2009	2030	2281
140.0	76.3	1834	1835	1707	340.0	168.9	2013	2034	2285
145.0	78.9	1837	1838	1922	345.0	171.2	2015	2036	2173
150.0	81.5	1842	1842	1975	350.0	173.5	2017	2038	2174
20020	01.0	1042	1042	1770	0.0010	1/0.0	2017	2000	21/4
155.0	83.8	1847	1850	2103	355.0	175.8	2020	2040	2235
160.0	86.4	1852	1876	2592	360.0	177.8	2024	2045	2420
165.0	88.0	1875	1906	3106	365.0	180.0	2028	2049	2349
170.0	90.1	1887	1919	2408	370.0	182.1	2032	2053	2351
175.0	92.4	1894	1925	2136	375.0	184.3	2032	2055	2331 2260
1/0.0	12:4	1074	1/20	2100	3/3.0	104.0	2000	2000	2200
180.0	94.9	1896	1926	1974	380.0	186.4	2039	2059	2401
185.0	97.3	1901	1931	2117	385.0	188.3	2045	2066	2670
190.0	77.7	1906	1934	2081	390.0	190.4	2049	2070	2394
195.0	102.1	1910	1938	2084	395.0	192.5	2052	2073	2326
200.0	104.3								
20.U	104.5	1918	1947	2325	400.0	194.7	2054	2076	2261

TABLE 1.

Well : IONA #1

Survey units : METRES Datum : 0.0 Calibrated sonic interval velocities used from 155.0 to 1325.0

Client : BEACH PETROLEUM N.L.

Call	Jieren so.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,						
Dakee	Con-unv	VEI	OCIT	IES	Datum	One-way	VEL	LOCITI	ES
Datum	One-way time(ms)	Overane	RMS	Interval	Depth	time(ms)	Average	RMS 1	interval
Depth	Cime (ma)	HVEIBYE	11110	111661765	<u> </u>	-	-		
405.0	197.1	2054	2075	2060	605.0	274.8	2202	2231	2683
410.0	199.4	2056	2077		610.0	277.0	2202	2231	2296
415.0	201.7	2058	2078		615.0	279.0	2204	2233	2434
420.0	203.7	2062	2083		620.0	281.1	2206	2234	2446
425.0	205.7	2067	2088		625.0	283.1	2208	2236	2458
	2001								
430.0	207.6	2072	2093		630.0	285.1	2209	2237	2434
435.0	209.5	2076	2098		635.0	287.2	2211	2239	
0.0	211.5	2080	2102		640.0	289.2	2213	2241	2427
445.0	213.5	2084	2106		645.0	291.2	2215	2243	
450.0	215.6	2087	2109	7 2385	650.0	293.2	2217	2245	2536
					, rr 0	00E 1	2220	2247	2639
455.0	217.7	2090	2112		655.0	295.1 297.2	2221	2248	
460.0	219.7	2093	2116		660.0	297.Z 299.3	2222	2250	
465.0	221.7	2078	2120		665.0 670.0	301.1	2225	2252	
470.0	223.6	2102	2124		675.0	303.1	2227	2254	
475.0	225.7	2104	2127	7 2389	6/3.0	20011	ellen ellen ellen F	aller aller an	
400.0	007 7	2100	2131	1 2595	680.0	305.1	2229	2256	2512
480.0	227.7	2108 2113	2136		685.0	307.0	2231	2258	
485.0	229.6	2116	2140		690.0	309.0	2233	2260	
490.0	231.5	2122	2146		695.0	310.9	2236	2263	
495.0	233.2	2122	2154		700.0	312.8	2238	2265	
500.0	234.9	£1£7	210-	+ 0100	/ 5/5/				
EOS O	236.5	2135	2162	2 3027	705.0	314.7	2240	2268	2621
505.0	238.2	2141	2169		710.0	316.7	2242	2269	
510.0	240.0	2146	2173		715.0	318.7	2244	2271	2489
515.0	242.0	2149	2176		720.0	320.6	2245	2272	2541
20.0	242.0	2153	218		725.0	322.6	2248	2275	2613
525.0	£40 = 7	alle de ferfer		A	• — -				
570 O	245.7	2157	2185	5 2771	730.0	324.5	2250	2277	
530.0	243.7	2160	2188		735.0		2252	2279	2617
535.0	247.7 249.6	2164	219		740.0		2254	2281	2616
540.0		2166	219		745.0		2257	2284	2831
545.0	251.6	2169	219		750.0		2261	2289	7 3039
550.0	253.6	2107	A. A. I	/ 2000	, w = -				
EEE A	255.5	2172	220	0 2519	755.0	333.6	2263	2291	2594
555.0		2172	220		760.0		2266	2294	1 2829
560.0		2177	220		765.0		2268	2296	
565.0		2183	221		770.0		2270	2298	
570.0		2186	221		775.0		2272	2299	
575.0	263.0	2100	di	U EWEW					
580.0	264.9	2189	221	8 2570	780.0	343.1	2274	230	2588
585.0		2192	222		785.0		2274	2302	2 2389
590.0		2194	222		. 790.0		2275	2303	3 2469
595.0		2197	222		795.0		2276	2304	4 2434
375.0		2198	222		800.0		2277	2304	4 2389
0.0	2/2.7	2170	-E din siin	.,					

Well: IONA #1 Client: BEACH PETROLEUM N.L.

Survey units : METRES Datum : 0.0

Calibrated sonic interval velocities used from 155.0 to 1325.0

Deth	Datum	One-way		COCITI	EG	Datum	(T.m.,,	115**	DOIT	7 F-C
805.0 353.5 2277 2304 2322 1005.0 425.6 2361 2391 2908 810.0 355.5 2278 2305 2472 1010.0 427.3 2363 2394 2963 815.0 357.6 2279 2306 2418 1015.0 429.3 2364 2394 2963 815.0 357.6 2280 2307 2427 1020.0 431.1 2366 2394 2728 825.0 361.6 2282 2308 2605 1025.0 432.8 2368 2399 3038 830.0 363.6 2283 2309 2464 1030.0 434.4 2371 2401 3038 235.0 365.6 2284 2310 2487 1035.0 436.2 2373 2403 2872 2400.0 367.6 2285 2311 2460 1040.0 438.0 2374 2405 2728 250.0 369.4 2287 2314 2816 1045.0 439.9 2376 2405 2725 250.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 855.0 373.0 2292 2319 2817 1055.0 432.8 2378 2408 2542 260.0 374.8 2294 2321 2738 1060.0 441.8 2377 2407 2647 265.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 870.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 870.0 376.7 2296 2327 2676 1075.0 441.8 2377 2407 2777 865.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 860.0 382.1 2303 2333 2908 1085.0 455.1 2382 2412 2771 860.0 382.1 2303 2335 2767 1090.0 457.1 2384 2414 2706 895.0 383.8 2306 2333 2908 1085.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 700.0 372.8 2317 2344 2749 1105.0 462.8 2388 2417 253 2405 250.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 700.0 372.8 2317 2344 2749 1105.0 465.0 2387 2416 2363 2455 2465 378.0 394.4 2322 2347 2755 1115.0 467.2 2387 2416 2363 255.0 394.4 2322 2347 2755 1115.0 467.2 2387 2416 2363 255.0 394.0 2324 2352 2663 1125.0 471.2 2387 2416 2363 2363 2413 2363 2415 2616 260.0 394.1 2323 2351 3260 3149 1100.0 465.0 2387 2416 2363 2363 2361 2360 3149 1100.0 465.0 2387 2416 2363 2365 2367 2362 2867 1145.0 467.2 2387 2416 2363 2365 2467 1145.0 467.2 2387 2416 2365 356.0 394.0 2334 2352 2663 1125.0 471.2 2387 2416 2365 356.0 394.0 404.9 2334 2352 2663 1125.0 471.2 2387 2416 2365 356.0 394.1 2333 2362 2865 2867 1145.0 485.2 2		-					One-way			
815.0 357.6 2278 2305 2472 1010.0 427.3 2363 2394 2953 215.0 357.6 2279 2306 2418 1015.0 429.3 2364 2394 2551 820.0 359.6 2280 2307 2427 1020.0 431.1 2364 2394 2758 825.0 361.6 2282 2308 2605 1025.0 432.8 2368 2399 3038 2350.0 363.6 2283 2309 2464 1035.0 434.4 2371 2401 3052 2402 2308 365.6 2284 2310 2487 1035.0 436.2 2373 2403 2872 2400.0 367.6 2285 2311 2460 1040.0 438.0 2374 2405 2725 250.0 369.4 2287 2314 2816 1045.0 439.9 2376 2406 2643 250.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2647 2640.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 2640 376.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 270.0 376.7 2298 2325 2698 1070.0 449.4 2381 2411 2661 275.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 2880.0 383.8 2306 2333 2908 1085.0 455.3 2383 2413 2524 2655.0 383.8 2306 2333 2708 1085.0 457.1 2384 2414 2706 2895.0 387.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 295.0 387.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 295.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 295.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 295.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 295.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 295.0 396.1 2323 2352 2663 1125.0 471.2 2382 2412 2771 2563 256.0 396.2 2312 2339 2804 1100.0 460.8 2387 2416 2301 256.0 396.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2288 2415 2564 2560.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2288 256.0 396.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2288 256.0 396.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2288 256.0 396.0 2324 2352 2663 1125.0 471.2 2387 2416 2309 2309 2340 2336 2365 2365 2365 2365 2365 2365 2365	Depth	time(ms)	HAELSGE	RMS 1	nterval	nebru	time(ms)	Average	RMS	Interval
815.0 357.6 2279 2306 2418 1015.0 429.3 2344 2394 2551 2200 359.6 2280 2307 2427 1020.0 431.1 2366 2394 2728 255.0 361.6 2282 2308 2605 1025.0 432.8 2368 2399 3038 2405.0 361.6 2282 2308 2405 1025.0 432.8 2368 2399 3038 2405 361.6 2284 2310 2467 1035.0 434.4 2371 2401 3052 2403 367.6 2285 2311 2400 1040.0 438.0 2374 2405 2725 240.0 367.6 2285 2311 2400 1040.0 438.0 2374 2405 2725 240.0 367.6 2287 2314 2816 1045.0 439.9 2376 2406 2643 850.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2647 265.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2647 265.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 865.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 865.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 270.0 376.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 455.3 2383 2413 2524 885.0 383.8 2306 2333 2908 1085.0 455.3 2383 2413 2405 890.0 386.6 2308 2335 2787 1090.0 457.1 2384 2412 2771 895.0 387.5 2310 2337 2716 1095.0 457.0 2385 2415 2616 970.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 970.0 392.8 2312 2339 2804 1100.0 460.8 2387 2416 2763 970.0 392.8 2312 2337 2716 1095.0 457.0 2385 2415 2616 970.0 392.8 2312 2339 2804 1100.0 460.8 2387 2416 2268 2765 2300 394.1 2323 2351 2767 1105.0 467.2 2387 2416 2268 2765 2760 2382 2412 2771 276 276 276 276 276 276 276 276 276 276							425.6	2361	2391	2908
820.0		355.5			2472	1010.0	427.3	2363	2394	2963
825.0 361.6 2282 2308 2605 1025.0 432.8 2368 2399 3038 830.0 363.6 2283 2309 2464 1030.0 434.4 2371 2401 3052 835.0 365.6 2284 2310 2487 1035.0 436.2 2373 2403 2872 240.0 367.6 2285 2311 2460 1040.0 438.0 2374 2405 2725 850.0 367.6 2285 2314 2816 1045.0 439.9 2376 2406 2643 850.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 855.0 373.0 2292 2319 2817 1055.0 443.7 2378 2408 2542 860.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 865.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 870.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2382 2412 2771 880.0 382.1 2303 2330 2722 1080.0 455.3 2382 2412 2771 880.0 382.1 2303 2330 2722 1080.0 455.3 2382 2412 2771 880.0 387.5 2310 2337 2716 1095.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 700.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 905.0 391.1 2314 2341 2749 1105.0 462.8 2382 2415 2616 700.0 392.8 2317 2344 2749 1100.0 465.0 2387 2416 2303 911.0 392.8 2317 2344 2749 1100.0 465.0 2387 2416 2303 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2563 910.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2368 930.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2368 930.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2368 940.0 394.8 2326 2354 2731 1130.0 473.4 2387 2416 2288 940.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2368 940.0 394.6 2338 2356 2784 1135.0 475.6 2386 2415 2369 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 401.6 2328 2356 2784 1155.0 497.6 2388 2417 2565 945.0 401.6 2338 2355 2784 1150.0 490.2 2407 2439 2416 2369 945.0 408.3 2337 2368 2786 1135.0 475.6 2386 2415 2359 945.0 401.6 2338 2355 2784 1150.0 490.2 2407 2439 2416 2589 945.0 408.3 2335 2352 2382 2386 2784 1150.0 490.2 2407 2439 2416 2589 945.0 418.6 2355 2356 2784 1150.0 490.2 2407 2439 2465 955.0 408.3 2335 2362 2783 1165.0 490.2 2407 2439 2581 970.0 418.4 2346 2355 2382 2881 1190.0 49	815.0	357.6	2279	2306	2418	1015.0	429.3	2364	2394	2551
\$30.0 363.6 2283 2309 2464 1030.0 434.4 2371 2401 3052 355.0 365.6 2284 2310 2487 1035.0 436.2 2373 2403 2872 200.0 367.6 2285 2311 2460 1040.0 438.0 2374 2405 2725 255.0 367.4 2287 2314 2816 1045.0 439.9 2376 2407 2647 2647 2650.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2647 2650.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2650.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 865.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2558 270.0 378.5 2298 2325 2698 1070.0 447.5 2380 2410 2558 270.0 378.5 2298 2325 2698 1070.0 447.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 445.1 2382 2412 2771 2885.0 383.8 2306 2333 2708 1085.0 455.3 2383 2413 2524 885.0 383.8 2306 2333 2708 1085.0 455.3 2383 2413 2405 290.0 385.6 2308 2335 2787 1090.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2416 2763 2700.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 2700.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 2700.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 270.0 379.8 2312 2331 2360 1120.0 467.2 2387 2416 2301 275.0 374.4 2320 2337 2765 1150.0 467.2 2387 2416 2763 270.0 379.8 2312 2331 2360 1120.0 467.1 2387 2416 2301 275.0 374.4 2320 2337 2755 1115.0 467.2 2387 2416 2301 275.0 374.4 2320 2337 2765 1120.0 469.1 2387 2416 2301 275.0 374.4 2320 2337 2755 1115.0 477.2 2387 2416 2301 275.0 374.4 2320 2337 2755 1115.0 477.2 2387 2416 2301 275.0 374.4 2320 2337 2764 1120.0 469.1 2387 2416 2301 275.0 374.4 2320 2337 2764 1120.0 467.2 2387 2416 2301 275.0 374.4 2320 2337 2764 1120.0 469.1 2387 2416 2388 2417 2563 250.0 376.1 2323 2351 3026 1120.0 477.7 2386 2415 2378 2405 2378 2415 2379 2416 2378 2415 2379 2416 2388 2417 2389 2416 2388 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2417 2380 2418 2380 2417 2380 2417 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418 2380 2418	820.0	359.6	2280	2307	2427	1020.0	431.1	2366	2396	2728
835.0 365.6 2284 2310 2487 1035.0 436.2 2373 2403 2872 250.0 367.6 2285 2311 2460 1040.0 438.0 2374 2405 2725 250.0 369.4 2287 2314 2816 1045.0 439.9 2376 2406 2443 2850.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2650.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2650.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 2650.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 2650.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 270.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 275.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 2860.0 382.1 2303 2330 2922 1080.0 453.2 2383 2413 2524 2850.0 383.8 2306 2333 2908 1085.0 455.3 2383 2413 2405 2890.0 385.6 2308 2335 2787 1090.0 457.1 2384 2414 2706 2895.0 389.2 2312 2339 2804 1100.0 460.8 2387 2415 2616 700.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 2763 2763 2763 2763 2763 2763 276	825.0	361.6	2282	2308	2605	1025.0	432.8	2368	2399	3038
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	830.0	363.6	2283	2309	2464	1030.0	434.4	2371	2401	3052
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		365.6	2284	2310	2487	1035.0	436.2	2373	2403	2872
850.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 855.0 373.0 2292 2319 2817 1055.0 443.7 2378 2408 2542 860.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 865.0 376.7 2296 2325 2698 1070.0 449.4 2381 2410 2556 870.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2383 2413 2405 895.0 382.5 2308 2335 2708 1085.0 455.3 2383 2413 2406 895.0 387.5 2310 233		367.6	2285	2311	2460	1040.0	438.0	2374	2405	2725
850.0 371.2 2290 2316 2740 1050.0 441.8 2377 2407 2647 855.0 373.0 2292 2319 2817 1055.0 443.7 2378 2408 2542 860.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 865.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 870.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2383 2413 2524 885.0 383.8 2306 2333 2908 1085.0 455.3 2383 2413 2405 8970.0 385.6 2308 2335 2787 1090.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 905.0 391.1 2314 2341 2749 1105.0 462.8 2388 2417 2563 910.0 392.8 2317 2344 2949 1110.0 465.0 2387 2416 2301 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2301 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2368 930.0 399.8 2312 2331 3026 1120.0 469.1 2387 2416 2546 930.0 399.8 2326 2354 2731 1130.0 473.4 2387 2416 2546 930.0 399.8 2326 2354 2731 1130.0 471.2 2387 2416 2546 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2278 940.0 401.6 2328 2356 2784 1135.0 471.2 2387 2416 2278 945.0 401.6 2328 2356 2784 1135.0 477.6 2388 2415 2278 945.0 404.9 2334 2362 2867 1145.0 479.6 2388 2415 2278 945.0 404.9 2334 2362 2867 1145.0 479.6 2388 2415 2278 945.0 404.6 2328 2356 2784 1135.0 477.7 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2278 945.0 404.6 2328 2356 2784 1135.0 477.6 2388 2416 2685 955.0 408.3 2337 2368 2908 1155.0 482.5 2394 2423 3694 960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 955.0 408.3 2337 2368 2908 1155.0 482.5 2394 2423 3594 960.0 416.9 2351 2381 2901 1180.0 490.2 2407 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2408 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2408 2437 2923	5.0	369.4	2287	2314	2816	1045.0	439.9	2376	2406	2643
860.0 374.8 2294 2321 2738 1060.0 445.6 2379 2409 2717 865.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 870.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2383 2413 2524 885.0 383.8 2306 2333 2908 1085.0 455.3 2383 2413 2405 890.0 385.6 2308 2335 2787 1090.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 905.0 391.1 2314 2341 2749 1105.0 462.8 2388 2417 2563 910.0 392.8 2317 2344 2949 1110.0 465.0 2387 2416 2301 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2288 910.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2388 910.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2388 910.0 399.8 2326 2354 2731 1130.0 473.4 2387 2416 2388 910.0 399.8 2326 2354 2781 1150.0 467.2 2387 2416 2388 910.0 399.8 2326 2354 2731 1130.0 473.4 2387 2416 2388 910.0 399.8 2326 2354 2731 1130.0 473.4 2387 2416 2388 910.0 400.6 2328 2356 2887 1145.0 477.2 2387 2416 2378 910.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 910.0 406.6 2336 2365 2949 1150.0 481.1 2390 2419 3203 955.0 400.6 2334 2370 2961 1150.0 481.1 2390 2419 3203 955.0 406.6 2334 2373 2953 1165.0 482.5 2394 2423 3694 960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 950.0 406.6 2334 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2946 1170.0 486.8 2403 2435 3182 975.0 416.4 2355 2385 2881 1190.0 490.2 2407 2437 2923 980.0 416.9 2351 2381 2903 1175.0 488.5 2405 2437 2923 990.0 416.9 2355 2385 2881 1190.0 490.1 2408 2440 2554 995.0 422.1 2357 2387 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2881 1190.0 494.1 2408 2440 2554 995.0 422.1	850.0	371.2	2290	2316	2740	1050.0	441.8	2377	2407	2647
860.0 374.8 2294 2321 2738 1060.0 445.6 2379 2407 2717 865.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 870.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2383 2413 2524 885.0 383.8 2306 2333 2708 1085.0 455.3 2383 2413 2405 895.0 387.5 2310 2337 2716 1095.0 455.0 2387 2416 2763 905.0 391.1 2314 2341 2747 1105.0 462.8 2388 2417 2563 910.0 392.8 2317 234	855.0	373.0	2292	2319	2817	1055.0	443.7	2378	2408	2542
865.0 376.7 2296 2323 2730 1065.0 447.5 2380 2410 2556 870.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2383 2413 2524 885.0 383.8 2306 2333 2908 1085.0 455.3 2383 2413 2405 890.0 385.6 2308 2335 2787 1090.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 910.0 392.8 2317 2344 2749 1105.0 462.8 2388 2417 2563 910.0 392.8 2317 2344 2749 1105.0 467.2 2387 2416 2301 915.0 394.4 2320 2347 2755 1115.0 467.2 2387 2416 2586 910.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 910.0 399.8 2324 2352 2663 1125.0 471.2 2387 2416 2578 910.0 399.8 2324 2352 2663 1125.0 471.2 2387 2416 2288 915.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2288 915.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 915.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 915.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2359 945.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2359 945.0 404.9 2334 2362 2887 1145.0 477.7 2386 2415 2359 945.0 404.9 2334 2362 2887 1145.0 477.6 2388 2416 2685 950.0 406.6 2336 2365 2749 1150.0 483.9 2397 2428 3559 945.0 404.9 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2749 1150.0 483.9 2397 2428 3559 945.0 406.6 2336 2365 2749 1150.0 483.9 2397 2428 3559 945.0 406.6 2336 2365 2749 1150.0 486.2 2401 2432 3714 970.0 413.4 2344 2370 2761 1160.0 483.9 2397 2428 3559 945.0 406.6 2336 2365 2749 1150.0 486.2 2401 2432 3714 970.0 413.4 2346 2373 2753 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2373 2753 1165.0 486.5 2405 2435 2435 2582 9753 1165.0 486.5 2405 2435 2435 2582 9753 1165.0 486.5 2405 2435 2554 9750.0 416.6 2353 2382 2783 1165.0 486.5 2405 2405 2435 2554 9750.0 416.6 2353 2382 2783 1165.0 486.5 2405 2405 2435 2554 9750.0 416.6 2353 2382 2783 1165.0 490.2 2408 2435 2554 9750.0 416.6 2353 2382 2783 1185.0 470.2 2408 2435 2554 9750.0 420.1 2355 2385 2881 119	860.0	374.8	2294	2321	2738	1060.0	445.6	2379	2409	
870.0 378.5 2298 2325 2698 1070.0 449.4 2381 2411 2661 875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2922 1080.0 453.2 2383 2413 2524 885.0 383.8 2306 2333 2787 1090.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 990.0 387.2 2312 2337 2716 1095.0 459.0 2385 2415 2616 900.0 389.2 2312 2337 2804 1100.0 460.8 2387 2416 2763 905.0 391.1 2314 2341 2749 110.0 465.0 2387 2416 2381 905.0 394.1 2322 2347	865.0	376.7	2296							
875.0 380.4 2300 2327 2676 1075.0 451.2 2382 2412 2771 880.0 382.1 2303 2330 2722 1080.0 453.2 2383 2413 2524 885.0 383.8 2306 2333 2708 1085.0 455.3 2383 2413 2405 870.0 385.6 2308 2335 2787 1070.0 457.1 2384 2414 2706 879.0 387.5 2310 2337 2716 1075.0 459.0 2385 2415 2616 970.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 9705.0 371.1 2314 2341 2749 1105.0 462.8 2388 2417 2563 9710.0 372.8 2317 2344 2749 1110.0 465.0 2387 2416 2301 9715.0 374.4 2320 2347 2755 1115.0 467.2 2387 2416 2288 980.0 376.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 980.0 379.8 2324 2352 2663 1125.0 471.2 2387 2416 2378 930.0 379.8 2324 2352 2663 1125.0 471.2 2387 2416 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 404.6 2336 2354 2784 1150.0 471.2 2387 2416 2685 955.0 406.6 2336 2365 2749 1150.0 481.1 2379 2419 3203 955.0 406.6 2336 2365 2749 1150.0 481.1 2379 2419 3203 955.0 406.3 2334 2362 2887 1145.0 479.6 2388 2416 2685 960.0 410.0 2341 2370 2761 1160.0 483.9 2377 2428 3558 965.0 411.7 2344 2373 2753 1165.0 482.5 2374 2423 3674 970.0 413.4 2346 2376 2746 1160.0 483.9 2377 2428 3558 965.0 411.7 2344 2373 2753 1165.0 482.5 2394 2423 3674 970.0 413.4 2346 2376 2746 1160.0 483.9 2377 2428 3558 965.0 416.9 2351 2381 270 1160.0 486.8 2403 2435 3182 975.0 416.9 2351 2381 2701 1180.0 470.2 2407 2437 2723 980.0 416.9 2351 2381 2701 1180.0 470.2 2407 2437 2723 980.0 416.9 2351 2381 2701 1180.0 470.2 2407 2437 2723 980.0 416.9 2351 2381 2701 1180.0 470.2 2407 2437 2723 980.0 416.6 2353 2382 2783 1185.0 470.2 2407 2437 2723	870.0	378.5	2298							
885.0 383.8 2306 2333 2708 1085.0 455.3 2383 2413 2405 870.0 385.6 2308 2335 2787 1070.0 457.1 2384 2414 2706 875.0 387.5 2310 2337 2716 1095.0 457.0 2385 2415 2616 700.0 387.2 2312 2337 2804 1100.0 460.8 2387 2416 2763 705.0 371.1 2314 2341 2749 1105.0 460.8 2387 2416 2763 710.0 372.8 2317 2344 2749 1110.0 465.0 2387 2416 2301 715.0 374.4 2320 2347 2755 1115.0 467.2 2387 2416 2388 240.0 376.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 710.0 379.8 2324 2352 2663 1125.0 471.2 2387 2416 2546 710.0 379.8 2324 2352 2663 1125.0 471.2 2387 2416 2546 710.0 379.8 2326 2356 2784 1135.0 475.6 2386 2415 2278 710.0 379.8 2326 2356 2784 1135.0 475.6 2386 2415 2278 710.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 710.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 710.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 710.0 400.2 2331 2360 3147 1140.0 477.7 2386 2415 2359 7145.0 404.7 2334 2362 2887 1145.0 479.6 2388 2416 2685 750.0 406.6 2336 2365 2747 1150.0 481.1 2370 2417 3203 715.0 400.0 400.2 2341 2370 2761 1160.0 483.7 2377 2428 3558 765.0 410.0 2341 2370 2761 1160.0 483.7 2377 2428 3558 765.0 410.0 2341 2370 2761 1160.0 485.2 2401 2432 3714 770.0 413.4 2346 2376 2764 1170.0 486.8 2403 2435 3182 775.0 415.1 2347 2378 2723 1175.0 488.5 2405 2437 2723 780.0 416.6 2353 2382 2783 1165.0 489.5 2405 2437 2723 780.0 416.6 2353 2382 2783 1175.0 488.5 2405 2437 2723 780.0 416.6 2353 2382 2783 1175.0 488.5 2405 2437 2723 780.0 416.6 2353 2382 2783 1175.0 488.5 2405 2437 2723 780.0 416.6 2353 2382 2783 1185.0 470.2 2408 2437 2723 780.0 416.6 2353 2382 2783 1185.0 470.2 2408 2440 2554 770.0 416.6 2353 2382 2783 1185.0 470.2 2408 2440 2554 775.0 416.6 2353 2382 2783 1185.0 470.2 2408 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2557	875.0	380.4	2300							
885.0 383.8 2306 2333 2708 1085.0 455.3 2383 2413 2405 870.0 385.6 2308 2335 2787 1070.0 457.1 2384 2414 2706 875.0 387.5 2310 2337 2716 1075.0 457.0 2385 2415 2616 700.0 387.2 2312 2337 2804 1100.0 460.8 2387 2416 2763 705.0 371.1 2314 2341 2749 1105.0 460.8 2387 2416 2763 705.0 371.1 2314 2341 2749 1105.0 462.8 2388 2417 2563 710.0 372.8 2317 2344 2747 110.0 465.0 2387 2416 2301 715.0 374.4 2320 2347 2755 1115.0 467.2 2387 2416 2288 260.0 376.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 25.0 378.0 2324 2352 2663 1125.0 471.2 2387 2416 2546 25.0 378.0 2324 2352 2663 1125.0 471.2 2387 2416 2587 735.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 740.0 403.2 2331 2360 3147 1140.0 475.6 2388 2415 2278 745.0 404.9 2334 2362 2887 1145.0 477.7 2386 2415 2357 745.0 404.9 2334 2362 2887 1145.0 477.6 2388 2416 2685 750.0 406.6 2336 2365 2747 1150.0 481.1 2370 2417 3203 755.0 401.6 2328 2365 2747 1150.0 481.1 2370 2417 3203 755.0 406.6 2336 2365 2747 1150.0 481.1 2370 2417 3203 755.0 406.6 2336 2365 2747 1150.0 481.1 2370 2417 3203 755.0 406.6 2336 2365 2747 1150.0 485.2 2401 2432 3714 770.0 413.4 2346 2376 2761 1160.0 483.9 2377 2428 3558 765.0 411.7 2344 2373 2753 1165.0 485.2 2401 2432 3714 770.0 413.4 2346 2376 2764 1170.0 486.8 2403 2435 3182 775.0 415.1 2347 2378 2723 1175.0 488.5 2405 2437 2723 788.0 416.6 2353 2382 2783 1165.0 490.2 2407 2437 2723 788.0 416.6 2353 2382 2783 1175.0 488.5 2405 2437 2723 788.0 416.6 2353 2382 2783 1175.0 488.5 2405 2437 2723 788.0 416.6 2353 2382 2783 1185.0 479.2 2408 2437 2723 788.0 416.6 2353 2382 2783 1185.0 479.2 2408 2437 2723 7746 775.0 416.6 2353 2382 2783 1185.0 479.2 2408 2440 2554 775.0 416.6 2353 2382 2783 1185.0 479.2 2408 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2554 775.0 422.1 2357 2387 2869 1175.0 470.1 2409 2440 2557 775.0 422	880.0	382.1	2303	2330	2922	1080.0	453.2	2383	2413	2524
890.0 385.6 2308 2335 2787 1090.0 457.1 2384 2414 2706 895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 905.0 391.1 2314 2341 2749 1105.0 462.8 2388 2417 2563 910.0 392.8 2317 2344 2949 1110.0 465.0 2387 2416 2301 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2288 90.0 394.1 2323 2351 3026 1120.0 469.1 2387 2416 2378 91.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2378 935.0 401.6 2328 2356 2784 1135.0 471.2 2387 2416 2287 945.0 404.9 2334 2362 2867 1140.0 477.7 2386 2415 2278 945.0 404.9 2334 2362 2867 1145.0 477.6 2388 2416 2685 950.0 406.6 2336 2365 2949 1150.0 481.1 2390 2419 3203 955.0 401.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2946 1170.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2946 1170.0 486.8 2403 2435 3182 975.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 416.6 2353 2382 2783 1185.0 490.2 2407 2439 2946 985.0 416.6 2353 2382 2783 1185.0 490.2 2407 2439 2946 985.0 416.6 2355 2385 2881 1190.0 490.2 2407 2439 2946 985.0 418.6 2355 2385 2881 1190.0 490.2 2407 2439 2946 985.0 418.6 2355 2385 2881 1190.0 490.1 2409 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2554	885.0	383.8								
895.0 387.5 2310 2337 2716 1095.0 459.0 2385 2415 2616 900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 905.0 391.1 2314 2341 2749 1105.0 462.8 2388 2417 2563 910.0 392.8 2317 2344 2949 1110.0 465.0 2387 2416 2301 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2288 0.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2288 930.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2287 930.0 397.8 2326 2354 2731 1130.0 473.4 2387 2416 2287 930.0 397.8 2326 2354 2731 1130.0 475.6 2386 2415 2278 9	890.0	385.6	2308	2335	2787	1090.0				
900.0 389.2 2312 2339 2804 1100.0 460.8 2387 2416 2763 905.0 391.1 2314 2341 2749 1105.0 462.8 2388 2417 2563 910.0 392.8 2317 2344 2949 1110.0 465.0 2387 2416 2301 915.0 374.4 2320 2347 2955 1115.0 467.2 2387 2416 2288 0.0 376.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 5.0 378.0 2324 2352 2663 1125.0 471.2 2387 2416 2287 930.0 397.8 2326 2354 2731 1130.0 473.4 2387 2416 2287 930.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 <td>895.0</td> <td>387.5</td> <td>2310</td> <td>2337</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	895.0	387.5	2310	2337						
910.0 392.8 2317 2344 2949 1110.0 465.0 2387 2416 2301 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2288 20.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 5.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2378 930.0 397.8 2326 2354 2731 1130.0 473.4 2387 2416 2287 935.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2416 2685 950.0 404.7 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2949 1150.0 481.1 2390 2419 3203 95	900.0	389.2	2312	2339	2804	1100.0	460.8			
910.0 392.8 2317 2344 2949 1110.0 465.0 2387 2416 2301 915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2288 0.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 5.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2287 930.0 397.8 2326 2354 2731 1130.0 473.4 2387 2416 2287 935.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 404.7 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 <td>905.0</td> <td>391.1</td> <td>2314</td> <td>2341</td> <td>2749</td> <td>1105.0</td> <td>462.8</td> <td>2388</td> <td>2417</td> <td>2563</td>	905.0	391.1	2314	2341	2749	1105.0	462.8	2388	2417	2563
915.0 394.4 2320 2347 2955 1115.0 467.2 2387 2416 2288 6.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 5.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2378 930.0 397.8 2326 2354 2731 1130.0 473.4 2387 2416 2287 935.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 404.9 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2749 1150.0 481.1 2390 2419 3203 955.0 408.3 2337 2368 <td>910.0</td> <td>392.8</td> <td>2317</td> <td>2344</td> <td>2949</td> <td></td> <td></td> <td></td> <td></td> <td></td>	910.0	392.8	2317	2344	2949					
60.0 396.1 2323 2351 3026 1120.0 469.1 2387 2416 2546 5.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2378 930.0 399.8 2326 2354 2731 1130.0 473.4 2387 2416 2287 935.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2278 945.0 404.7 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2947 1150.0 481.1 2390 2417 3203 955.0 408.3 2337 2368 2908 1155.0 482.5 2394 2423 3694 960.0 410.0 2341 2370 </td <td>915.0</td> <td>394.4</td> <td>2320</td> <td>2347</td> <td>2955</td> <td></td> <td></td> <td></td> <td></td> <td></td>	915.0	394.4	2320	2347	2955					
95.0 398.0 2324 2352 2663 1125.0 471.2 2387 2416 2378 930.0 399.8 2326 2354 2731 1130.0 473.4 2387 2416 2287 935.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 404.9 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2949 1150.0 481.1 2390 2419 3203 955.0 408.3 2337 2368 2908 1155.0 482.5 2394 2423 3694 960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 358 965.0 411.7 2344 2373<	20.0	396.1	2323	2351						
935.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 404.9 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2749 1150.0 481.1 2390 2419 3203 955.0 408.3 2337 2368 2708 1155.0 482.5 2374 2423 3674 960.0 410.0 2341 2370 2761 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2753 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2746 1170.0 486.8 2403 2435 3182 975.0 416.7 2351 238	5.0									
935.0 401.6 2328 2356 2784 1135.0 475.6 2386 2415 2278 940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 404.9 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2749 1150.0 481.1 2390 2419 3203 955.0 408.3 2339 2368 2708 1155.0 482.5 2394 2423 3694 960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2746 1170.0 486.8 2403 2435 3182 975.0 416.9 2351 238	930.0	399.8	2326	2354	2731	1130.0	473.4	2387	2416	2287
940.0 403.2 2331 2360 3149 1140.0 477.7 2386 2415 2359 945.0 404.9 2334 2362 2887 1145.0 479.6 2388 2416 2685 950.0 406.6 2336 2365 2949 1150.0 481.1 2390 2419 3203 955.0 408.3 2339 2368 2908 1155.0 482.5 2374 2423 3694 960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2746 1170.0 486.8 2403 2435 3182 975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2581 <td< td=""><td>935.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	935.0									
745.0 404.9 2334 2362 2887 1145.0 479.6 2388 2416 2685 750.0 406.6 2336 2365 2749 1150.0 481.1 2390 2419 3203 955.0 408.3 2339 2368 2908 1155.0 482.5 2394 2423 3694 960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2946 1170.0 486.8 2403 2435 3182 975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 <td< td=""><td>940.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	940.0									
950.0 406.6 2336 2365 2949 1150.0 481.1 2390 2419 3203 955.0 408.3 2339 2368 2908 1155.0 482.5 2394 2423 3694 960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2746 1170.0 486.8 2403 2435 3182 975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	945.0	404.9								
960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2946 1170.0 486.8 2403 2435 3182 975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	950.0	406.6	2336	2365	2949	1150.0				
960.0 410.0 2341 2370 2961 1160.0 483.9 2397 2428 3558 965.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2946 1170.0 486.8 2403 2435 3182 975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	955.0	408.3	2339	2368	2908	1155.0	482.5	2394	2423	3694
765.0 411.7 2344 2373 2953 1165.0 485.2 2401 2432 3714 970.0 413.4 2346 2376 2946 1170.0 486.8 2403 2435 3182 975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	960.0	410.0	2341	2370	2961	1160.0		2397		
970.0 413.4 2346 2376 2946 1170.0 486.8 2403 2435 3182 975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	965.0	411.7	2344	2373	2953	1165.0	485.2	2401	2432	
975.0 415.1 2349 2378 2923 1175.0 488.5 2405 2437 2923 980.0 416.9 2351 2381 2901 1180.0 490.2 2407 2439 2946 985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	970.0	413.4	2346	2376	2946	1170.0	486.8			
985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2439 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	975.0	415.1	2349	2378	2923					
985.0 418.6 2353 2382 2783 1185.0 492.2 2408 2437 2581 990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	980.0	416.9	2351	2381	2901	1180.0	490.2	2407	2439	2946
990.0 420.4 2355 2385 2881 1190.0 494.1 2408 2440 2554 995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577	985.0		2353							
995.0 422.1 2357 2387 2869 1195.0 496.1 2409 2440 2577										
	995.0	422.1								
	1000.0	423.9								

Time-Depth curve values

Well : IONA #1

Datum :

Client : BEACH PETROLEUM N.L. 0.0

Survey units : METRES Calibrated sonic interval velocities used from

155.0 to 1325.0

Datum	One-way	VELOCITIES			Datum	One-way	VELOCITIES			
Depth	time(ms)	Average	RMS	Interval	Depth	time(ms)	Average	RMS	Interval	
1205.0	499.2	2414	2446	3129	1280.0	523.5	2445	2479	3208	
1210.0	500.9	2416	2447	2912	1285.0	525.3	2446	2481	2875	
1215.0	502.6	2417	2449	2945	1290.0	527.0	2448	2482	2932	
1220.0	504.3	2417	2451	2939	1295.0	528.7	2449	2484	2885	
1225.0	505.9	2421	2454	3175	1300.0	530.4	2451	2485	2945	
1230.0	507.5	2424	2456	3064	1305.0	532.1	2453	2487	2957	
1235.0	509.2	2425	2458	3 2936	1310.0	533.8	2454	2488	2952	
0.0	510.9	2427	2459	2965	1315.0	535.4	2456	2490	3070	
5.0	512.5	2429	2462	3121	1320.0	537.0	2458	2493	3174	
1250.0	514.0	2432	2465	3369	1325.0	538.5	2460	2495	3236	
1255.0	515.7	2434	2467	7 2992	1330.0	540.0	2463	2499	3502	
1260.0	517.4	2435	2469	7 2966	1335.0	541.3	2466	2502	3746	
1265.0	518.8	2438	2472	3375	1340.0	542.6	2470	2506	3832	
1270.0	520.5	2440	2474	3065	1345.0	543.9	2473	2510	3870	
1275.0	522.0	2443	2477	7 3361	1350.0	545.2	2476	2515	3916	

WELL SUMMARY

MUD CONSUMPTION BY INTERVAL

TOTAL MATERIAL CONSUMPTION

WELL

OPERATOR: BEACH PETROLEUM

WELL: IONA #1

HOLE SIZE...12 1/4 ..

INTERVAL...0 TO 247 METRES...

CASING SIZE...9 5/8..

PRODUCT	QUANTITY			COST
MAGCOGEL	9 x 100 lb sx		\$	146.34
CAUSTIC SODA	1 x 25 kg sx		\$	22.75
LIME	5 x 25 kg sx		\$	23.75
POTASSIUM CHLORIDE	20 x 50 kg sx		<u>\$</u>	298.20
	INTERVAL COST	:	\$	491.04

Magcogel and Caustic Soda actually used for cement mix water, for lead slurry, cementing 9 5/8" casing.

WELL SUMMARY

OPERATOR: BEACH PETROLEUM

WELL: IONA #1

HOLE SIZE....8 1/2"..

INTERVAL.247 TO 1490 METRES. CA

CASING SIZE...5 1/2".

PRODUCT	QUANTITY	COST
BARITE	348 x 50 kg sx	\$ 2331.60
MAGCOGEL	104 x 100 lb sx	\$ 1691.04
CAUSTIC SODA	24 x 25 kg sx	\$ 546.00
BICARBONATE	2 x 40 kg sx	\$ 33.96
LIME	8 x 25 kg sx	\$ 38.00
KWIK THIK	78 x 25 kg sx	\$ 842.40
POLYSAL	70 x 25 kg sx	\$ 2712.50
POLYPAC	11 x 25 kg sx	\$ 910.25
CMC EHV	24 x 25 kg sx	\$ 1285.68
KCL	2 x 50 kg sx	\$ 29.82
D.ICIDE	6 x 25 lt drum	\$ 222.30
KWIK DRIL	1 x 5 lt pail	<u>\$ 19.82</u>
	INTERVAL COST	: \$10663.37

WELL SUMMARY

OPERATOR: BEACH PETROLEUM

WELL: IONA #1

HOLE SIZE....8 1/2"..

INTERVAL...COMPLETION..... CASING SIZE...5 1/2".

PRODUCT	QUANTITY	COST
MAGCOGEL	12 x 100 lb sx	\$ 195.12
CAUSTIC SODA	3 x 25 kg sx	\$ 68.25
SPERSENE	6 x 25 kg sx	\$ 160.50
POLYPAC	2 x 25 kg sx	\$ 165.50
SALT	185 x 25 kg sx	\$ 1618.75
SALT	20 x 50 kg sx	\$ 350.00
D.ICIDE	1 x 25 lt drum	\$ 37.05
INHIBITOR 303	1 x 205 lt drum	\$ 660.00
SODIUM SULPHITE	1 x 50 kg sx	\$ 83.50
	INTERVAL COST	\$ 3338.67

WELL

TOTAL MATERIAL CONSUMPTION

OPERATOR: BEACH PETROLEUM

WELL: IONA #1

LOCATION: OTWAY BASIN, VICTORIA

PRODUCT	UNIT	COST	8
BARITE MAGCOGEL CAUSTIC SODA BICARBONATE LIME KWIK THIK POLYSAL	348 x 50 kg sx 125 x 100 lb sx 28 x 25 kg sx 2 x 40 kg sx 13 x 25 kg sx 78 x 25 kg sx 70 x 25 kg sx 13 x 25 kg sx	\$ 2331.60 \$ 2032.50 \$ 637.00 \$ 33.96 \$ 61.75 \$ 842.40 \$ 2712.50 \$ 1075.75	16.09 14.02 4.40 0.23 0.43 5.81 18.72 7.42
CMC EHV POTASSIUM CHLORIDE D.ICIDE	24 x 25 kg sx	\$ 1285.68 \$ 328.02 \$ 259.35 \$ 19.82	8.87 2.26 1.79 0.14 11.17 2.41 4.55 0.58 1.11
	TOTAL MATERIAL COST	: \$14493.08	100.00

NOTE: This includes 55 sacks of Barite which was old Beach Petroleum stock from Cobden Warehouse, written off at current price for consistency.

WELL SUMMARY

DAILY MUD REPORTS

				DRILLING MUD HE	=POHI NO.	/				
Drilling File Magcobar/IMCO A Dresse	IIGS (CO.	A	DATE 6 /3/	19_28	DEPTH 322				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SPUD DATE 6/3/	PRESEN	IT ACTIVITY				
P. OX 42842 ■ HOUSTON, TEX		JOA	CONTRACTO)B		∠RIG NO.				
PSINCH PHIROLEUM			11 .	(11.) Carre		SECTION, TOWNSHIP, RANGE				
VINIA SAMTUSTRI	1170	FIELD OR BLO	CK NO	COUNTY PARISH OR OF	C → T ESHORE	U				
TEL NAME AND NO. /OWA // /.		PA (CK NO. プロス	AREA O ZODA		STATE/PROVINCE				
DRILLING ASSEMBLY CA	SING		MUD VOLUME (BBL) CIRCULATION DATA							
2 1/4 056165 18/18/15 16" 1	IRFACE		W. 430 661:	PUMP SIZE 5'2 x 8 6 x 2 PUMP MAKE, MODEL	X IN.	ANNULAR VEL (H/min) (6") DP DC G2 CIRCULATION				
SIZE //	RMEDIATE		ATING VOLUME	GO P28	EFF 7 7 %	PRESSURE (psi)				
ILL PIPE TYPE LENGTH INTE	n. @ ft. RMEDIATE n. @ ft.	IN STORAGE	WEIGHT	bbl/stk -051/-065	stk/min	BOTTOMS UP (min) (strk) 2				
DRILL COLLAR SIZE LENGTH PRODUCT	ION OR LINER	MUD TYPE		5 2	217	TOTAL CIRC				
2/6 1/2 BAM in		<u> </u>	CARON CARTON	····	gal/min	(strk)				
	MUD PRO		WEIGHT	MUD PROPER VISCOSITY	IY SPECIFICA	FILTRATE				
Sample From	G.F.L. G PIT	FL PIT	-							
Temperature (°F)		24.00	RHMARKS	RECOMMENDE	D TOUR TREA	TMENT				
Depth (ft) (TVD / ft)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Continues	R146:~	· 6. u 1				
eight 12 (ppg) □ (lb/cu ft) □ (sp gr)		2.4	ARILLAN		Aras mo					
innel Viscosity (sec/qt) API @ °F		28	Sugrain			W. Garry No				
Plastic Viscosity cp @ °F		2	PRABLUM	S.						
eld Point (lb/100 ft²)		2		MAR TO RUP	PAIR SC	R Musing 11/2 119				
_al Strength (lb/100 ft²) 10 sec/10 min	1	2.13	SPUD IN			11x3 carre				
Filtrate API (cm³/30 min)		M.C.			EMARKS					
기 HTHP Filtrate (cm³/30 min) @ 약			GIN YOR.	REDCHAD	600000	mily more spor				
oake Thickness (32nd in. API/HTHP)		-+	2NO S.	116,14						
Solids Content (% by Vol) ☐ calculated ☐ retort		1			De Comm	· · · · · · · · · · · · · · · · · · ·				
quid Content (% by Vol) Oil/Water	 	- 179				HEO BOBBATION				
Sand Content (% by Vol)		TONE				SKIRS CHITTINE				
Methylene Blue Capacity ☐ hibbbl equiv ☐ cm³/cm³ mud		-	T			Trust print				
t ☑ Strip ☐ Meter @ °F	1	95	LRS\$ 12	erne be so	unt.					
Alkalinity Mud (P _m) Av Filtrate (P _f /M _f)	 , 	03/14								
nloride (mg/L)	 	4000	A 14: 21							
Total Hardness as Calcium (mg/L)		10.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mar Di	= 3/4 %	- MARC CUTTON				
4. Rec By col Socia	†	3/4	STICL & SUICHTER SOFT AND STICKE ALL							
		<u> </u>				Secret hier or				
				1 Ar Simi						
PRODUCT INVENTORY	///		////		/ / /	SOLIDS EQUIPMENT				
ARTING					C.	IAKER #1 1545 1 1560 me				
RECEIVED						HAKER #2 P42 / 1160 me				
ED LAST										
nr 4 2						UD CLEANER me				
INVENTORY 7 4.3						CENTRIFUGE hou				
onst LAST 17. tau 7:3-2						DESANDER hou				
(au)						DESILTERhou				
M-I REPRESENTATIVE	PHONE	WARE		DAILY COST	11	MULATIVE COST				
And the second s				\$ 317-20	4	317-20				

F.B.C.

100 66.

IN STORAGE

20 661

MUD TYPE

☐ F.L. ☐ PIT

27.30

9.0

52

12.

37

RuL

25/40

- 196

TANCE

7.4

15/12

2,000

50

• 3

WATHE

MUD PROPERTIES

☐ F.L. 🖰 PIT

07.64

3.7

3,7

LŞ

25

10 /20

NO CONT

.1.

-- 137

7. 13 E W

95

3 1.4

2500

100

3/4

PHONE

059-7810B

HOLE

	Drilling	g Fluids Co.
market and a second and a second as a second	MagcobarriNCC	A Dresser/Hailiburton Company
THE PROPERTY OF THE PARTY OF TH		CALLS BEAUTIFE CONTROL OF THE SECOND
3OX 4284	2 ■ HOUSTO	N. TEXAS 77242 USA

PRIROCLIA

N., 1

Smills Starmed

CASING

SURFACE

INTERMEDIATE

INTERMEDIATE

PRODUCTION OR LINER

in. @

(sp gr)

in @ 7/2

Panca

DRILLING ASSEMBLY

TYPE

14 6/2

TYPE

14200

VINCH

TOWN

JET SIZE

12/11/15

LENGTH

LENGTH

73-95%

LENGTH

154 94

(lb/cu ft)

٥Ę

PERATOR

PORT FOR

BIT SIZE

12/2

NLL PIPE

HLL PIPE

ZE 4 11,

Sample From me Sample Taken

Depth (ft) (TVD

eight [3 (ppg)

Plastic Viscosity cp @

eld Point (lb/100 ft2)

Filtrate API (cm3/30 min)

and Content (% by Vol)

Strip

ty Filtrate (P_f/M_f)

Total Hardness as Calcium (mg/L)

% 400

Aukalinity Mud (Pm)

hloride (mg/L)

M-I REPRESENTATIVE

CRILL COLLAR SIZE

8/6 % BUN

Temperature (°F)

innel Viscosity (sec/qt) API @

el Strength (lb/100 ft²) 10 sec/10 min

기 HTHP Filtrate (cm³/30 min) @

ake Thickness (32nd in. API/HTHP)

quid Content (% by Vol) Oil/Water

Methylene Blue Capacity Com to the control of the c

☐ Meter @

GIR MICHOR

SIZE 🔎

TLL NAME AND NO.

DRILLING MUD REPORT NO. 2 PRESENT ACTIVITY RIG HP To SPUD DATE CONTRACTOR RIG NO. Z GIFAPINA: SECTION, TOWNSHIP, RANGE REPORT FOR PY INMITERIA 30.7 MILLOS FIELD OF BLOCK NO. COUNTY, PARISH OR OFFSHORE STATE/PROVINCE AREA Wice. 07,004 Bosin CIRCULATION DATA MUD VOLUME (BBL) PITS PUMP SIZE X IN. ANNULAR VEL (ft/min) 5/2 8 300 164 77 _117 683 TOTAL CIRCULATING VOLUME PUMP MAKE, MODEL ASSUMED CIRCULATION EFF 7 7 PRESSURE (psi) 40 PZ 4.77 bil. 45. WEIGHT stk/min BOTTOMS UP (min) 10 FROGE 80/8. TOTAL CIRC 女年74 TIME (min) MARCO 41 bbl/min gal/min MUD PROPERTY SPECIFICATIONS WEIGHT VISCOSITY RECOMMENDED TOUR IREATMENT RAMMERS CANTINGENA 12.11 W. 12 % Com Korenn ak .. OF AFFRON 3 SINGLESTIE FILLOS. REMARKS (1. 1. 20% 11 247m parciors 656 Conver Hora Comme Alexander KAN WOODS YEV Cope Our Apapeas Survey hug Mic. DILLIPER WITH WATER MISSISHE MILA VISLO To GRADUNE " INTRUISE TOWNER CASING PRINT FOR CHEDNEY BELDING SULTED AND MORY 15 500 cheers Revision. 12 Car AND FRIENDS as Carme

PAGE PAGE Stagner, SUCCESSION SOME FORMIDE COUNGS AT Ruby. mining it . PRODUCT SOLIDS EQUIPMENT SHAKER #1 FL 126 . 139 RECEIVED SHAKER #2 25 0 145 ED LAST 9 MUD CLEANER_ OSING NVENTORY CENTRIFUGE now 23 Ŀ 40 130 COST LAST 4.75 22-75 1483 Noen-DESILTER___ CUMULATIVE COST

WAREHOUSE PHONE

DAILY COST

\$ 173.84

4411 04

							_		i		$\overline{}$	DF	RILLIN	IG ML	א סנ	EPORT	NO.	3
		<i>Prill</i>	ing	ı Fi	lu	ids (Go				1			- l	2.1	3	×	DEPTH 2 1_
	Ma	gcobar/IM	ICO ~	A Dre	sser/	Halliburton C	ompa	ny =		1	7	₽	ATE	<u> </u>	-}			IT ACTIVITY
F. 30X	(42842 I	■ HOU	JSTO	N, TE	XA	S 77242	USA				ט	s	PUD (DATE_	6/3	138	PR	West Town on
PERATOR				RUCI					1	CONTR	ACTO	OR .	ω,			·~ & .		RIG NO.
REPORT FOR						TENTAL O		REPORT FOR							SECTION, TOWNSHIP, RANGE			
"ELL NAME A		700				*** 11/ 17	FIEL	D OR BLO	CK NO.			COL	JNTY, F	ARISH (OR OF	FSHORE		STATE/PROVINCE
**************************************		10~	, /\	11/11	<u>'</u>			P to v	10	; <i>ì</i>		ARE	A C	٠٠١/ جر (1/1	BNS 11-		Circ Sen
	LLING ASS					ING	Ц	MUD V									JLATIO	
BIT SIZE	TYPE	JET S	IZE		SURI	FACE ab ft.	HOL		PI الم	rs 3,2 ພ	الطط	11	AP SIZE	ા ૪૮		x _6 \		ANNULAR VEL (ff/min) DP DC
RILL PIPE SIZE	TYPE	LENG	TH	IN		MEDIATE	11	L CIRCUL				PUN	AP MAH	E, MOD		ASSIII	MED	CIRCUII ATION
	7.05	1515	714		in.			TORAGE		EIGHT		bbl/s		C 2.	<u>o</u> _		stk/min	воттомѕ
ZE ZE	TYPE	LENG	iiH	, in		MEDIATE	ii .	hh!	- 1	go za co		11		1-06			SIKITIIII	UP (min) (strk)
DRILL COLLA	R SIZE	LENG	тн	PRODU	in. JCTIO	n OR LINER		TYPE		(1.4.64	. , ,	-		1-34				TOTAL CIRC
					in.	a ft.	r	4,5 + 6	Come			bbi/	min				gal/mın	TIME (min) (strk)
		I		·	T	MUD PRO							MU) PRO	PER	TY SPE	CIFICAT	rions
Sample From	n					🗆 F.L. 🗆 PIT	□ F.	L. 🗆 PIT	WEIG	HT.				VISCO	SITY			FILTRATE
Time Sample					\dashv													
	perature (°F				\dashv	No CIA	///	3.6.1.	Ŕ	PANAS	2.4.5		REG	OMME	NDE	D-TOUF	TREA	FM ENT
Depth (ft)	(TVD	,	,		ft)	- 610							۰~	. t.	Ϋ,	1,	654	11560 7 661
leight □ (<u> </u>	☐ (lb/cu f		☐ (sp			A-1.21	45)		. , ,			117 (4					Action Prince
	osity (sec/qt)		9		9.7	1,-4 1	71,747	- 3 /		7 161.) ((1)		<u> </u>		_
·			۰F		-+		 		 							him s		
Plastic Visco									 	313 (in)				20.				FRIGHT AT
ield Point (0					 	. ,	 	UKI OC				•				100 BIG PERILAND
	(lb/100 ft²) 1	U Sec/10 I	71413		\dashv				C	υ (. ≁ r-		1	131 2 1	1 ,		EMARK		***,6 4 (\$ 2; 6)
Filtrate API		0 =:=> 0		۰E	\dashv		-		├					····				166 K
	filtrate (cm³/3						├─		 				rici			<u> </u>		The same
	ess (32nd in			C rotori	_		├		1 1/2	18000	, 4	()	<u> </u>	آه بياه <u>ي پخم</u>	, ;	<u>' </u>	· <u> </u>	
	ent (% by Vol			LI TOTOT	-		├		 			۸.						well Some Ta
	ent (% by Vol	<u></u>	ſ				 		<u> </u>									
	nt (% by Vol)		iv		-		-		 				<u>, , , , , , , , , , , , , , , , , , , </u>					000 000 155
				°F	-		 		┼──	en :								
		☐ Meter (g .	<u> </u>	-		\vdash		1	7/1 016								Sec. 14. 7 Aug.
Alkalinity Mu					-+		-		 	-11 115					: ' , /	- '- '- '- '- '- '- '- '- '- '- '- '- '-	-1 :	or well related
-	trate (P _f /M _f)						├		 	G . ~		J. N.						
hloride (mo					\dashv		┼											
iotal Hardne	ess as Calciu	m (mg/L)			\dashv		 		┼									
							┼		 									
							-		╂									
	,,						-											
			. , .		ب		ــــــــــــــــــــــــــــــــــــــ		ــــــــــــــــــــــــــــــــــــــ									7
PRODUCT INVENTORY	المريمة المرايع	المحتاجي أ	/ j.	- J. C.	\;	s ^{**} / /						,			/	/ /	/ /	SOLIDS EQUIPMENT
ARTING VENTORY	2+4		- 1	130	6,							·					SH	AKER #1 <u>665 / 635</u> me
RECEIVED																		AKER #2 64 1 64 3 me
SED LAST	13	1	_	-													ми	JD CLEANER me
_OSING	222	34	ان	130	6													CENTRIFUGE ho
COST LAST /	2	2275		-	_	-												DESANDERho
,																		DESILTER ho
M-I REPRESE	NTATIVE				PI	HONE		WARE	HOUSE	PHONE	D.	AILY (COST	 				MULATIVE COST

MARINER DECTMICZON

0.2 787143

513 77

							_				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	RILLIN	G MUD	REPO	RT NO.	4
		Dril	ling	g F	ilu.	ids (Co	=		A)\[DATE	9/3/	/ 19	<u>37</u>	DEPTH 635 m.
	X 42842	سماله المحاشية	estra e		r se riçar	DE V		7		U	J	CDUD D	ATE 6/		PRES	ENT ACTIVITY CRITICAL
ERATOR	R					011242	USA		C	CONTRACTOR GEORGE DE LA CONTRACTOR ACTUALIZATION DE LA CONTRACTOR DE LA						2 RIG NO.
REPORT FOR		1611				•			R	EPORT F	OR C	CRO	11.15	DILLI	1 10.114	SECTION, TOWNSHIP, RANGE
LL NAME	AND NO.					8.90	(c)	OR BLO	CK NO.					OFFSHO	RE	STATE/PROVINCE
		10	MAG	_ ^	0/		P.	15.17	13	2	Al	REA C	RISH OR (プレバ)	1 1.	ASIM	VICIORIA
DR	RILLING AS	SEMBL	Y		CAS			MUD V								ION DATA
BIT SIZE	TYPE	1	SIZE		SURI		HOLE		PIT		- 11	JMP SIZE	;		(1	N. ANNULAR VEL (tt/min).
LL PIPE	TYPE	3 %	NGTH			@ 24 3 k		L CIRCUL				JMP MAKE	S , &		SSUMED	CIRCULATION
SIZE 4"	16.615		10111	"	in. (. .		565		11	0 02		E	FF } /	PRESSURE (psi)
LL PIPE	TYPE	LEI	NGTH	-		MEDIATE	IN ST	ORAGE		IGHT	bt	ol/stk			stk/m	
E 4 1/4	HILLOR	73	95		in. ((a)	١	60 h	ol: po	12 60		5//-	045		90	UP (min) (strk) ('7
DRILL COLLA		1	NGTH	PROC	OUCTIO	N OR LINER	11	TYPE	;		5	:13			215	TOTAL CIRC TIME (min)
. 6"4	Blin	169	36 -		in.			4. Gi	1 /0	m c	bt	ol/min			gal/m	
:					_	MUD PR			WEIGH	т			PROPE		SPECIFIC	CATIONS FILTRATE
Sample From						C F.L. 🖲 PIT	+	L. 🖲 PIT		•						
ne Sampl						07:00	24.	. 0~1	<u> </u>			BECCO	MMENI	ED T	THE THE	EATMENT
	mperature (°F	-)					+-		<u> </u>	KMA						
Depth (ft)	(TVD		1		ft)	3501~.		33 m.			RI					co. PRILLED DUT
ight 🖾		☐ (lb/ct		☐ (sp	gr)	8.7		· <u>8</u>	1							es CASIMA SILOS
	cosity (sec/qt)	API @		°F		34	4		 	Sinst		11720				RINNING
Plastic Visc			°F				13									MARTINE T.
	(lb/100 ft²)					15	1			-/6.				3061	115 60	Mich Still Danie
	h (lb/100 ft²)) min			5/10		107	150	/	17/0	CLA			5140	
	(cm³/30 min)					8.5		<u>. 4</u>	-				_===	REMA		1 2 2 6
	Filtrate (cm ³ /			<u>•</u> ₽					4.			7, 6	6-11 C	'11' ₁ .	7745	AT 257 L GIVE
	ness (32nd ir				_	1 /32		/32.	/6	1 pp						7
!	tent (% by Vo			⊔ reto	rt			1/2								Thomas Contino
·	tent (% by Vo	·	ter			- 197		196"								CATION, USUA 100
	ent (% by Vol		equiv			TROCE	7.4	ር ሌ ረ b				,		(.	371.00	TRAP TIMER,
	Blue Capacity						-		P.	(i paper,		1.2/1 / 6				
	Strip	☐ Mete	r @	<u>∘</u> F		कार ।।।	7	Ü	120							PHNGA SANAS I ROM
Alkalinity M							+									What Milly 84820-
-	iltrate (P _f /M _f)					.6 / - 69		1.4								and MATINE TO
iloride (m						1600		70								O TOP PRIMORE AT
lotal Hardn	ness as Calci	um (mg/l	-)		 -	240.	15	<u> </u>								11 34 UIS 5/15 PE
							-		Arvi	· 8.			٠٠.			
		····							-							LIVERS MARKETAGE
•							- 									MUIA AND BRING
	<u></u>					713	بل:	7.	1/1					7	1148 /	OR PARTIES POINT.
PRODUCT INVENTORY	A Tri		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TARL'	\J.	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13,RT		200 X	(3,	\(\frac{1}{\alpha^2}\)					SOLIDS EQUIPMENT
ATING ENTORY	128 322		142	130	(2)		25	2~	12	2 4	12	40				SHAKER #1 P & 1 B & 1 mes
RECEIVED	** ** *	-		1 3 4	İ		· ·		<u>,</u>		1					SHAKER #2 Fix / Bks mes
ED LAST	- 12	5	_ ,	31	17	. 10		2	-		_					MUD CLEANER mes
SING		T	 				3.			2.	1,5	1				
COST LAST	263 3 a4	27	9	31	3.4		2.4	23	1)	23	1.5	40			+	CENTRIFUGE hou
hr -		113.7	14 20	634.1	+	32.7.5		42.46	-	-		-			 	DESANDER 2+ hou
(tron	14/1000															DESILTER Pour
	14 11 1 1 4															CUMULATIVE COST

	Drilling Magcobar/IMCO	Fluids A Dresser/Halliburtor	CO. Company
The state of the s	は大変数性に対するとない。	A CHIMATINA	all self

(I)	UF
P	DA
\ 1	

RILLING MUD REPORT NO.

DEPTH_ PRESENT ACTIVITY R. 20 34 30X 42842 ■ HOUSTON, TEXAS 77242 USA SPUD DATE RIG NO. CONTRACTOR PERATOR SECTION, TOWNSHIP, RANGE REPORT FOR REPORT FOR 1.20 0 COUNTY, PARISH OR OFFSHORE STATE/PROVINCE ILL NAME AND NO. FIELD OR BLOCK NO. A1. " 2.: 0 1111 DRILLING ASSEMBLY **CASING** MUD VOLUME (BBL) CIRCULATION DATA TYPE JET SIZE SURFACE PUMP SIZE IN. ANNULAR VEL (ft/min)_ BIT SIZE 24 5, 1 2 / 2 × 3 77 in a 24 " 200 /11 6A 7 12.11 CIRCULATION PUMP MAKE, MODEL ASSUMED LENGTH INTERMEDIATE TOTAL CIRCULATING VOLUME ILL PIPE TYPE, PRESSURE (psi) SIZE 4. ... 3.3%. Gate a in. @ BOTTOMS IN STORAGE WEIGHT bbl/stk stk/min ILL PIPE TYPE LENGTH INTERMEDIATE UP (min) Έ 4 1 11.1.5 (strk) in. 🕢 MUD TYPE TOTAL CIRC PRODUCTION OR LINER DRILL COLLAR SIZE LENGTH 5 8% TIME (min) 1 11 bbl/min MUD PROPERTY SPECIFICATIONS MUD PROPERTIES WEIGHT VISCOSITY FILTRATE 🗆 F.L. 🖾 PIT ☐ F.L. ☐ PIT Sample From ne Sample Taken 112.6.5 16 00 RECOMMENDED TOUR TREATMENT A. 16. 15.13. 14 Temperature (°F) 916 Depth (ft) (TVD (lb/cu ft) (sp gr) 37 7.17 eight 🗅 (ppg) annel Viscosity (sec/qt) API @ Z, + Plastic Viscosity co @ 15 eld Point (lb/100 ft²) 180 14 al Strength (lb/100 ft²) 10 sec/10 min 113 114 REMARKS Filtrate API (cm³/30 min) 13.13 ----리 HTHP Filtrate (cm³/30 min) @ (.... , ake Thickness (32nd in. API/HTHP) Solids Content (% by Vol)

calculated 116 quid Content (% by Vol) Oil/Water -sand Content (% by Vol) رمودار فرسسه Methylene Blue Capacity C ib/bbl equiv 7. y ., ☐ Strip ☐ Meter @ . _ Alkalinity Mud (Pm) 41.6 ty Filtrate (P₁/M₁) 1 .4 Ast. ic Sec. hloride (mg/L) 8-31 V17 74 17 11:0 Total Hardness as Calcium (mg/L) Ç., 60 47 60 . . 150 PRODUCT SOLIDS EQUIPMENT 7 RECEIVED SHAKER #2 SED LAST 40 OSING INVENTORY 400 Ġ... 28 **** COST LAST . : 17.7 212.0 DESILTER 1 ... CUMULATIVE COST WAREHOUSE PHONE DAILY COST M-I REPRESENTATIVE PHONE

MUD CLEANER

CENTRIFUGE

DESANDER

DESILTER CUMULATIVE COST

11 4 14

\$ 4666.23

hour 2 1 3/7

د. سا

1

367.67

DRILLING MUD REPORT NO 1123 .. DEPTH. PRESENT ACTIVITY BOX 42842 🖿 HOUSTON, TEXAS 77242 USA SPUD DATE. CONTRACTOR BIG NO. **PERATOR** DRIVERSE PARHART Bunce PETROLINER REPORT FOR SECTION, TOWNSHIP, RANGE HEPORT FOR (ROINE UINILE SAMO255: 1111100 STATE/PROVINCE FIELD OR BLOCK NO. COUNTY, PARISH OR OFFSHORE LL NAME AND NO. Zanan NoI MUD VOLUME (BBL) CIRCULATION DATA DRILLING ASSEMBLY CASING PUMP SIZE IN. ANNULAR VEL (ft/min) BIT SIZE TYPE JET SIZE SUBFACE PITS 3/128 81,2 95/8 in. @243 1230 861 6×3 141 5130 3211 phl. DP. CIRCULATION ILL PIPE TYPE LENGTH INTERMEDIATE TOTAL CIRCULATING VOLUME PUMP MAKE, MODEL ASSUMED PRESSURE (psi) SIZE **EF**7 6614 635 60 P2 8 16.6/3 in. @ IN STORAGE WEIGHT bbl/stk BOTTOMS ILL PIPE LENGTH INTERMEDIATE TYPE E41, 24 2057 11WAP 2573 6 in. @ PRODUCTION OR LINER MUD TYPE TOTAL CIRC DRILL COLLAR SIZE LENGTH 6-18 7 TIME (min) 6"4 8:40 150 170.71 % F.W. bbl/min 🗳 /// gal/min MUD PROPERTIES MUD PROPERTY SPECIFICATIONS WEIGHT VISCOSITY FILTRATE Sample From ☐ F.L. ☐ PIT OFL PIT The Sample Taken 63.00 24.00 RECOMMENDED TOUR TREATMENT RHAMMERS Temperature (°F) ft) CONTINUED MILL MAIN TOIL Depth (ft) TVD 11250 (sp gr) 7.11 9.2 MICHAIN AND BERESONS , EXTERNAL (lb/cu ft) right 🔁 (ppg) nnel Viscosity (sec/qt) API @ 50 46 AS SECTION FORM MINES MY VALLE CLAISINNIT. Acount rus + 1 Plastic Viscosity cp @ mille 27 17 625 STRADING . RAMAINING STRADY WITH NA CAUSEL ₃ld Point (lb/100 ft²) A00-6-55 16 18 # Strength (lb/100 ft2) 10 sec/10 min INDICATIVE NO CO, COMMON 6 125 6 /15 AND 6.7 Filtrate API (cm3/30 min) 3.5 REMARKS 'I HTHP Filtrate (cm3/30 min) @ Acres 640 a ALMOS NIL Same ke Thickness (32nd in, API/HTHP) 2 132 132 ARICE ALL 370000 Solids Content (% by Vol) 2 calculated 2 retort 5 FOLIOS PARAGE 195 - 199 auid Content (% by Vol) Oil/Water 2 1. M. 19 13 1 Como . and Content (% by Vol) HORAL HIS MARK 70800 Sea 1 499 70 13 a TRACH Methylene Blue Capacity (1) cm³/cm³ mud Conw. 45 Daganne 17 Strip ☐ Meter @ 47.4 7.5 603505 METERIA, DOGO -___ Alkalinity Mud (Pm) OUT COMPLE AS 1600 y Filtrate (P_f/M_f) 3 1.65 3 1.65 P . G. W. 101414 100 HAD iloride (mg/L) 1000 Ball Same Scower - MEDPING 1000 Total Hardness as Calcium (mg/L) 4 Q line I Bus III so 115 1.00 P. 1 44 For I Sec 70 16336 1330 6 A care BR + W : 5 K105 4 Examp. Advant Co have go PRODUCT INVENTORY SOLIDS EQUIPMENT 18 ATING SHAKER #1_136.4 36 2 % 23 1360 RECEIVED SHAKER #2

WAREHOUSE PHONE

2

4 (-

74.1

DAILY COST

23

3,

10

V13742432

٠, ٠,

2 5

ED LAST

INVENTORY

COST LAST

M-I REPRESENTATIVE

9

. ,

٠ ;

2, 4,

(3.5)

PHONE

/ 1	
	1)
	ノー
1	1 /
١.	 /

DRILLING MUD REPORT NO.

DATE 12/3/19 33 DEPTH 14 STEEL SPUD DATE 4/3/88 PRESENT ACTIVITY

P. C. JOX	42842	H HC	DUST	ON. T	EXAS	77242	2 USA				ן ע:	SPUD 0	ATE 4	15/20	PHE	:2EN	DR.	26	
ERATOR			Pi						10	CONTR	ACTOR	690	2443:	, j	34444		A	JG NO.	
REPORT FOR		· / · / · / ·				~ MMU			F	REPORT F	OB.	-	DAN VI				SECTION, 1	OWNSHIP I	RANGE
LL NAME AN						7,7,4,0		O OR BLO	OCK NO.		C	OUNTY, P	ARISH OF	OFFSHO			STATE/PROVING		
	LING AS		·; /	105 /		NC				<u>'いみ</u>	- ^	REA	07.0					4.4.1.17	
BIT SIZE	TYPE		T SIZE		CASI		HOLI		PIT	E (BBL)	P	UMP SIZE			RCULA x		ANNULAR VEL	(ft/min)	
1.	5136	1	x !!	951		, 20-3	. 11	-		Se let	11		₹8,			- 1	Db dia	DC	1-1
LI PIPE	TYPE		NGTH		INTERM				LATING V			UMP MAK		Ι Δ	SCHMED		CIRCULATION		
SIZE 4 1.	6.614				in. @)	ft.	6	60 .	bete	!	SD P	? ?	E	FF	%	PRESSURE (ps	75.	ن.
ILL PIPE	TYPE	1 .	NGTH	1	INTERM	EDIATE	IN ST	TORAGE	WE	EIGHT	- 11	bl/stk	,				BOTTOMS UP (min)		
DRILL COLLAR S	11000		NGTH		in. @	OR LINEF	ft.	TYPE		,	-	·95 7/	.065			ા	(strk)	45	
6"1. ph		1	191m	ı			11		Com	Pacie		4,55			10	'	TIME (min) (strk)	145	
<u> </u>	,,,,		, , , , , ,		in. 6	MUD PI			T	7 (1. 7.			PROP	ERTY S		I/min			
Sample From	<u> </u>					EL. 🖰 PI			WEIGH	I T			VISCOSI				FILTRATE		
ne Sample 1	Taken					5 0 W	24	. ఆ బ	CUB	いろいりだ	the.	201	2400	اح د	> 0	L A	(101	·	
Tempe	erature (°	F)							1			RECO	MMEN	DED TO	T RUC	REAT	MENT		
Depth (ft)	TVD		1		ft)	12377	12.5	; es ~			Cial	C. e.	c 50	rm CLIF	Δ·	11	27 ~ /	در سی و	
ight 🗅 (pp	g)	☐ (lb/c	u ft)	☐ (sp	gr)	9.2	9	.3	11	41.								1107	·
nnel Viscosi	ty (sec/qt)	API @		۰F		4 60	4	•	no	gen es es	- F e -	1411	12.76.46	na Act	د.	e ³ , 1 €.	r-1000	17.20	r
Plastic Viscosii	ty cp @		۰F			1.7	1	<u>````</u>	00	(1)11-	.) /	1159.	. Л	r 13	7.,		110	90	1
₃ld Point (lb/	100 ft²)					1 4	1	>	1911	m-PAD	500	c no	وارات	1201	, m	.7.	0 P.	Calm	·f./;
I Strength (I	b/100 ft²)	10 sec/1	0 min			6-115	4	116	115	p. i	10	n, 5	t as a sac-	. //	A.m.	.,,;	عدوم ورو	0.14 -	~ • •
Filtrate API (cn	n3/30 min)				7.2	-	7.0				· .		REMA	RKS				
1 HTHP Filtr	ate (cm³/	30 min)	@	۰F					A.16	, _ ,	F		3/4	(1 mg/k)	e Call	060	Theren	z).	
ke Thicknes	s (32nd in	n. API/H	THP)			7 / 32	2	132			/ Liii	PR	BULA	- 5	P 6 1	, ,	mero p.	سربر وبره	irne
Solids Content	(% by Vo	ol) 🗅 ca	alculated	□ reto	rt	5 12		6	De.								111 160		311
uid Content	·		iter			- 195		194									MUZE A		
and Content	·	·	DOLLAY			RACH		<u> ያ</u>									Borre	. 100.	
Methylene Blue						15	-		110	٠		(0,00	*******	· 1	x 10	19.0 €	···		
S Si		☐ Mete	r @	°F		70	4	<u>. ∪</u>	+										,
Ali Filtra						· · ·		/ ->				7.7.					- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		
loride (mg/L			· · · · · · · · · · · · · · · · · · ·		-+-	2 1.6		1-7											
Total Hardness		ım (ma/l	1			40		ა <i>ს</i> - კ							,	. 1+1.cs	1600 6	£ 73 9 3 3	20 3
			-/		-+	43		<u> </u>	1 72	er great		en A							
							_										romana romana		
							-												
	*****						1		1 K	45K	7.	93/7	27 115	RA	· // / / / / / / / / / / / / / / / / /	1 7	By Gar	1P.R. 1	י ירי יו כ
	3/.	./	×~ / :	٧٠/	$\overline{}$	<i>.</i> / .	<u>e' / '</u>	k' / -	1/.	<u> </u>				^ ^			/		
PRODUCT INVENTORY	2 4	Car	J. W. T		/(# \	1.13/ 1.1°	Oricia.	/67 'S	15/ Q.\u	7.5			(E)				SOLIDS E	QUIPMEN	т
RTING ENTORY 2 7 3	204	71	9	41	3.4	ا در دے	, 0	25		2 %	; L	U. D	<i>L</i> ,	i		SHAI	KER #1 640	, 6. 6	, mesh
RECEIVED	1.5.	<u> </u>					1 0	~,				<u> </u>				1	KER #2 약조		
ED LAST	 	<u> </u>	_									 				1			
SING	+	'			1	10	1		-	 	**	 			 	1	CLEANER		
INVENTORY 20 3		1.5	7	41	34	L;	7	25	7 4	23	16.	1	, ·	1	<u> </u>	CE	NTRIFUGE		hours
COST LAST 1:14	<u> </u>	77.79		-	53.3	3675	32 75	-			-		-			4	SANDER (U)		111 hours
,																DE	SILTER 1.5.7	क अध	/ hours
M-I REPRESENT	ATIVE	************	****	******	PHO	NE		WARE	HOUSE F	PHONE	11 .	COST				СИМ	ULATIVE COST		
MANY	0	(3 Com.	C 200		100	4 737	103				1	. 430	.57			3	5,34 8	·\$()	

		Orillin agcobar/IMCO				H	DATE_	12/3/	19 <u>38</u>	DEPTH/:0 \ '	· 2. ha
		■ HOUSTO		AS 77242 I			SPUD	DATE 6/1/		NT ACTIVITY ハウォス ー でく ア	
ERATOR	3				004	CONTRACTO	OR			RIG NO.	
REPORT FOR		Banco Pa	1ROLLI	<u>^</u>		REPORT FOR		DRILL		SECTION, TOWNSHIP, F	RANGE
VL NAME	,	VINIE SI	1~/65711	Arro	Teres 2 22 21 2		5 100	11/2	211005	STATE/PROVINCE	, p* • e
L NAME	AND NO.	Juna	Mr. 1		FIELD OR BLO	CR NO. フォス	AREA A	PARISH OR OFFS アルバソ /	MS AM	VICTUR 10	
DR	ILLING AS	SEMBLY	CA	SING	MUD V	OLUME (BBL)			CIRCULATIO	N DATA	
BIT SIZE	TYPE	JET SIZE		RFACE	HOLE	PITS	PUMP SIZE			ANNULAR VEL (ft/min)	
31/2	5136	3×11			270 /	4: 340 641	PUMP MAK	2,6x	ASSUMED	DP G DC I	<u>````</u>
SIZE	TYPE	LENGTH		MEDIATE	}	ATING VOLUME	ł1		EFF 97 %	PRESSURE (psi)	1
[LL PIPE	16.61h	LENGTH		. @ ft. RMEDIATE	IN STORAGE	WEIGHT	bbl/stk	1. 2 0	stk/min	301.00	
41/2	House	24 44	in	. <i>a</i> p tt.	4.5 661	PARMIN	.057/.	065	20/	UP (min) (strk)	
DRILL COLLA		LENGTH	PRODUCT	ON OR LINER	MUD TYPE	_	4.51	-	171	TOTAL CIRC TIME (min)	
- 6"4	PAR	170 91	in			1. MOLYME	bbl/min	י פרטייייי	gal/min Y SPECIFICA	(strk) (+->	
: =====				MUD PRO		WEJGHT	MOL	VISCOSITY	SPECIFICA	FILTRATE	
Sample From						1					
Tor	perature (°F			01.00	24.60		REGO	OMMENDED	TOUR TREA	IMENT-	
Depth (ft)	(TVD	, ,	ft)			0.0		- 13 415	117.	Car Barrer	Pare
ight 🖫 (. `	☐ (lb/cu ft)	□ (sp gr)	9.3	4.3	773 ME 130					<u>******</u>
· —	osity (sec/qt)		•F	<i>u</i> .,	45	11200				PARAL CA	
Plastic Visco	sity cp @	۰F		115	16	0127			···		
Id Point (lb/100 ft ²)	***************************************		15	114	R	no as	721		1702 - m - m	- 4
Strength	(lb/100 ft²)	10 sec/10 min		4/16	3/17	SP015 70	1912	/	land An	14 121 ALIA	C12
Filtrate API	(cm³/30 min)			17:0	6.2				MARKS		
I HTHP F	iltrate (cm ³ /3	10 min) @	°F			Somer.	Comme		Eur B.S	T. A. S. Marie Marie	
		. API/HTHP)		7 /32	2/32	 				a 11/2 Mar Too	/١٠٠
ŧ		l) 🗓 calculated	□ retort	(.2	6	i	,	15 200	Kartager C	· DATE Come Co	. 1
·	ent (% by Vo	· · · · · · · · · · · · · · · · · · ·		- /14	-17:	7. Rum			· · · · · · · · · · · · · · · · · · ·		
	nt (% by Vol)			TRACE	TRACE		R.131		518 CH 1 3		
	Strip	☐ Meter @	°F		134	Parts 1		•	*	<u> 3 5- 1736 35</u> War 7750	1
Alkalinity Mo		C. Meter (b)	• ,	7.5	42510	Record R.	pp parent on the		28 · · · · · · · · · · · · · · · · · · ·	CARA TEAN	
	trate (P _f /M _f)			-2 /-8	-45/1.2	MURO	22 0 N Z		-18975 Pake	1 18-11-5	
loride (m				400	900	10.70+1		19. 3 Care 5		was a Value	
-	ess as Calciu	ım (mg/L)		رين	40	Dear 9			1 8 M 20 0	<u> </u>	
						<u> </u>	173	4			
			··								
										·	
	PIRALL	State R	· Carol	٠. يېر د							

3.4 9 2.3 23 16 ч, MUD CLEANER 11 SING 358 2.4 25 $i \in$ 4, CENTRIFUGE 53-5 421-17 8775 24 82. DESILTER 10 1 W 3 half Thours CUMULATIVE COST DAILY COST M-I REPRESENTATIVE PHONE WAREHOUSE PHONE

\$ 392.49 055-23/133 MANIFER ALKSNICENE NOTICE: THIS REPORT IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH ON REVERSE SIDE HEREOF.

\$ 6,241.25

Drilling Fluids Co. Magcobar/IMCO A Dresser/Halliburton Company

P

DRILLING MUD REPORT NO.

DATE_	14	/:		3	<u></u>	DEPTH	1308	· <u>'</u> .	·
SPUD	DATE	6/3	/ A K		PRESE	T ACTIVI	TY v.c.		

P. SOX 42	842	H C	JUST	ON, T	EXA	S 7724	2 USA	4	1			SPUD	DATE	1/10		7 7/7 29/7001
ERATOR		guar,		Parki					(CONTR	ACTO	i '/',1s.7+	90-1	BRILL	٨١/٠	RIG NO.
REPORT FOR		ואמינט		_		17000			F	REPORT F	OR	5	mail	jî.		SECTION, TOWNSHIP, RANGE
' LL NAME AND N	O.		۸۱۸	Niu			FIEL	D OR BLC	CK NO.	R	,	COUNTY,	PARISH O	OFFSH	ORE S//S/	STATE/PROVINCE
DRILLIN	IG AS	SEMBL	Y		CAS	SING		MUD V	OLUME	E (BBL)				С	RCULA	ation data
	YPE	JE	T SIZE			FACE	HOL		PIT		. 11	PUMP SIZ			x	IN. ANNULAR VEL (ft/min)
3/2								30 6h		··	1	5/2)	· ,	6 ×		DP 35 DC 45
SIZE 4 1/2	YPE	LE	NGTH		INTERI	MEDIATE	TOTA	AL CIRCUL			- 11		KE, MODE		SSUMED FE テン	CIRCULATION PRESSURE (psi)
	YPE	 	NGTH		in.	MEDIATE	ft.	TORAGE	30 L	EIGHT		obl/stk	23			% BOTTOMS
5,1/2					in.		n. 80		11 1	ARm O	.		1063	TA	stk / کا موجد/ نگم کیہ ج	UP (min)
DRILL COLLAR SIZE	<u> </u>	LE	NGTH	PROI		ON OR LINE		ZTYPE .		1313 C	2000	/				TOTAL CIRC
6'4 RH	3				ın	ut.	n. I	W Co	1/10	Cymai	- ,	Z - or 1 obl/min	>		$\mathcal{Z}_{gai}^{\epsilon_{p}}$	I/min (strk)
						MUD F	ROPER	TIES				MU	D PROF	ERTY:	SPECIF	FICATIONS
Sample From						OFL. 🖸 P	IT 🗆 F	L. 🖸 PIT	MÈIGH	I T			VISCOSI	TY		FILTRATE
ne Sample Take	en					06.00	24	(10)	1				<u></u>			
Temperati	ure (°f	F)							1			REC	OMMEN	DED T	DUR TI	REATMENT
Depth (ft) (TVD)		1		ft)						P.O.	1.1	nns	RAI	J 0	ST TOOLS IN HOLA
ight 🖾 (ppg)		☐ (lb/c	u ft)	☐ (st	gr)	43	9	· Š	41	2711	100	0 F	7 %	129	a /4.	CE WATER CUSINION
nnel Viscosity (s	sec/qt)	API @		۰F		45	4	7			RM	~ DS	7 ,	10 1		CI. MI NIC PRIBLISMS
Plastic Viscosity c	p @		۰F			16	1	3	R	114	(1 fè	5%	771~	6 /		ens pr 1277.60
∃ld Point (lb/100	ft²)					/3	٦,	2.	100	10 /2		> in .	(1	ICR's		
il Strength (lb/10	00 ft²)	10 sec/1	0 min			2/17	3	115	1		Pur	(RD	1951) U C	ree Ar 13001/A
Filtrate API (cm³/3	0 min))		**		6.7		7.2						REMA	RKS	
'I HTHP Filtrate	(cm³/:	30 min)	@	۰F					AY	TRME	~. ,	ア 」	Ro	11215		TRUMPIL BUT MAS
wake Thickness (3	32nd ir	1. API/H	THP)			2/2	, 2	132	No	R	7111	enis,	A.	120	RIC	660 Ur 75
Solids Content (%	by Vo	ol) 🗆 ca	lculated	☐ reto	rt	5		6	Cin	cuis.	ric .	مع مدم ورسم	4.119.	,~~	, ,	Stare in Garage
uid Content (%	by Vo	l) Oil/Wa	ter	,		19		. 194	٠	m : ~			ሮፈ/2 55፡			WILL TO FARE STEER WOOD
and Content (%	by Vol)				Tan.	, उद	0-1	۰۰۰۰	٠.٠ د د		~. ?	وروم 🗠	,		ELLICARIA 7213006
Methylene Blue Ca	apacity	/ □ cm³/cm	aguiv			**			Cin	15.4	10-17	20	7.7	101	221.	Asses Riversia
I 🖰 Strip		☐ Mete	r @	٩F		12.0	9	. <	07	11: +	Bar	1983 A.	271	ر ده	מ	Protomas Min 407
Alkalinity Mud (P _m	۱)								101	25	r.a.	Comi	المداد	por s		mant hoper
All Filtrate (I	P _f /M _f)				,	45 11	2 .3	1.3		,	· / U	•	DECA.	,		The Renger of
sloride (mg/L)						900		ρŲ							e .	BUBBLE BRIDE TOOL
Total Hardness as	Calciu	ım (mg/l	_)			4.3	4	ں ا	1		_					ur morning) (iac
			•						1							es men oussides
																Commence Family
																A State Pile
					-		_									un benen were.
	· / i [†]	<i>/ ./ .</i>	<u>x / .</u>	* /			r 7 21	Ŋř. / 3.	:/:	(T)	3/			1 7 700	7	Cont water.
PRODUCT INVENTORY	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ni (pi	.\ ^{\\} \}	18 C. F.	\(\frac{4}{4}	L'y Cul	Cut 'E	120.1	ويا روادر	, S. J.	8	(.33) H.	100		?	SOLIDS EQUIPMENT
ENTORY) 7 3	Ca	1'7	q	41	33	30	8	23	2.5	23	16	2, 3	44.0	1		SHAKER #1 PAC Calco mes
RECEIVED	-	<u> </u>			Ť	i							T			SHAKER #2 160 , 6,60 mes
ED LAST	 } b	3.			3	, ,	2	_	A-M					-		MUD CLEANER mes
DSING INVENTORY 5		<u> </u>	7	°-4 :	30			2 4	7 %	2.8	1	3.8	ر بسید	,		CENTRIFUGE hou
COST LAST		<u> </u>		 	1		<u> </u>			<u> </u>			+		 	
m 1/6,5-2 3	10 8	1275			160.	713875	165 5			-	-	 -	-	-	-	DESANDERhou
(III)			<u></u>								<u> </u>					DESILTER hou
M-I REPRESENTATIV	/E				Pi	HONE		WARE	HOUSE	PHONE	li .	Y COST				CUMULATIVE COST
MARTIE		ş • • · ·	2.	131		187.78	11.3.					923	36.5	(.		\$ 8,5 22.85

*	i .			_						T	7 1	ORILLIN	G MUD	REPO	ORT NO	. /0			
		Drill	ling			ids (DATE	15/2	.)	. રક	near	u /3	45 M2 1	/~
الله الله الله الله الله الله الله الله	M Salaharan	agcobar/II				lalliburton (Compan	y I		T	1 #				PRE	SENT ACT			
P. SOX	< 42842	■ HO	USTC	ON, TE	EXAS	77242	USA		-		ر	SPUD D	ATE_6/	<u>/3/3.</u>	<u>ಕ</u>			1 8.00	
PERATOR	3	Br	A) (m)	Ps	1600	211-00			C	CONTRA	CTOR	OKII OA	, j.	DRILL	1-16		2 ^{RIC}	NO.	
HEPORT FOR			NO			5 2 11 1 170	ان د		F	EPORT FO	18	(. m				SE		WNSHIP RAN	IGE
""TLL NAME	AND NO.		מא	nto		•	FIELD	OR BLO	CK NO.		C	OUNTY, PA	ARISH OR			STATE	PROVINCE		
				7776		NO.	╫──					REA (1 22/1 1			TION DAT		381A	
BIT SIZE	ILLING AS			-	CASI		HOLE	NUD VO	PIT	<u> </u>	PI	JMP SIZE			X	TION DAT		t/min)	
81/2	17.1.76	0850	SIZE いっか。 ・・	95%		243 n	II	0 60	1	50 /	- 11	51/1 x				1	75	DC //4	د
ILL PIPE	TYPE	LEN	GTH	11	TERM	EDIATE	11	CIRCUL	ATING V	OLUME		JMP MAK		. A	SSUMED	CIRCL	JLATION SURE (psi)	Alan, -1.	٠
SIZE4 1/2	16.616				in. a					16/5		40 0	28		iff,	%	······································	160	
E4";	TYPE	LEN 35	GTH	1	NTERM	EDIATE	IN ST	ORAGE	WE WE	IGHT	11	ol/stk	/		stki	min BOTTO	ın)		
DRILL COLLA	/(i~∩p R SIZE		GTH	PROD	in. @	OR LINER	MUD		***			"057	7.025		/	TOTAL	rk) CIRC		
	600	177			in, #	o f	1 0	w his	100	in th	- 11	y - 7-5 ol/min			.2 gal	_	(min) (strk)	155	
		<u> </u>				MUD PR		ries					PROP	ERTY :		ICATIONS	;		
Sample From	n				ſ	J.E.L. 🖸 PIT	□ F.L	. 🖰 PIT	WEIGH	IT			VISCOSIT	Υ		FILT	RATE		
The Sample	e Taken					08.00	21.	رن ت											
Tem	perature (°f	=)										RECC	MMEN	DED T	OUR TF	REATMEN	T		
Depth (ft)	(TVD		1		ft)				m	116 00	/) ~	ب دوری	r n	Cor-		Betel	met P.	77 m	، ، ،
∋ight 🖺 (ppg)	□ (lb/cu	ft)	🗆 (sp	gr)	7.5	9	· 5;	<i>-</i>	1000 6 2		. 11.	ceer.		A++2.5	1 11	Ber	1 11 100	
innel Visco	osity (sec/qt)	API @		°F		42	4	>	Din.	18 60	٠,	Cors	60	J 7 11	-1	يع دره	, C	1	٠
Plastic Visco	osity cp @		٥F			17	1	٠,٠	pte	•~	B	Main	(. 11	1 .		p. O.Se	r' ·	100 628	
eld Point (1b/100 ft²)					12	ı	ł	D. A	cast.	., • ,								
Strength	(lb/100 ft²)	10 sec/10	min			6 116	4	113	<u> </u>						-				
Filtrate API	(cm ³ /30 min)) 				7.1								REMA	RKS				
1	iltrate (cm³/:			°F			ļ	-	C	0007.00	ay, A	(126	310	 زر-	11:00	P 0.1	17.	ne Ste	.,~.
Lake Thickn	ess (32nd in					2 /3 2		132	1767 5	. T. 7.3	oc.				_	\$ 0.1 2(2 m ;	Piner	100 116	٠,
			alatad	☐ retor	t	6	1 .	د)	50.71	P. F.	(From		F-Marie		P.1:	,500	6 B. 1	<i>;</i>	
Solids Conte					,				-							_			
quid Conte	ent (% by Vo	i) Oil/Wate			_	/ 74	 	144	()	Rein							/		
quid Conte	ent (% by Vol	i) Oil/Wate	er			- 174 0-1					m. 70	, l		(rug)	Pr. Ver	/	ويمعود	.,	
quid Conte	ent (% by Vo nt (% by Vol Blue Capacity	Oil/Wate)	er uiv mud	000		0-1 —	-a	194 nc.	e e	<i>R</i> ·	т.па - 6 ж	i li		(rus) Vayry	17 m	1.40	eroen ur e	√2 1 - 7 - 22	
quid Conte	ent (% by Vo nt (% by Vol Blue Capacity Strip	i) Oil/Wate	er uiv mud	°F		0-1 7 R	-a	194	e e Ro	R.	00.00 6 si 12,	, 60 2000 2000	• • \$ p20	(1447) - /2 77) - 12	rona o to	t in the 100 time of	char.	75 11	23
quid Conterded Alkalinity Mu	ent (% by Vol nt (% by Vol Blue Capacity Strip ud (P _m)	Oil/Wate)	er uiv mud	°F		0-1 7 R	9.	194	Ro	R	00.00 6 si 12,	i li	• • \$ p20	(rus) Vayry	17 m	t in the 100 time of	eroen ur e	√2 1 - 7 - 22	23
Alkalinity Mu	ent (% by Vol the Capacity Strip ud (P _m) trate (P _t /M _t)	oil/Wate)	er uiv mud	°F		0-1 	9.03	/4·4 00 	Ro	R.	00.00 6 si 12,	, 60 2000 2000	• • \$ p20	(1447) - /2 77) - 12	rona o to	t in the 100 time of	char.	75 11	23
auid Conter and Conter Methylene 8 d	ent (% by Vol th (% by Vol strip and (P _m) trate (P _t /M _t))) Oil/Wate) □ Ib/bbl eq □ cm³/cm³	er uiv mud @	۰F		0-1 	7. 9. · · · · · · · · · · · · · · · · · ·	/4··	100 120 100 100	R. (A) (-) (K) (K) (K) (K) (K) (K) (K) (K) (K) (K	02.20 16 81 17.	7 60 2003 1103		14979 14979 1634	Park Park Fur	tina tanto tanto	Charles St	23 11 73 11 Roma	23
Alkalinity Mu	ent (% by Vol th (% by Vol strip and (P _m) trate (P _t /M _t))) Oil/Wate) □ Ib/bbl eq □ cm³/cm³	er uiv mud @	۰F		0-1 	7. 9. · · · · · · · · · · · · · · · · · ·	/4·4 00 	10 Rr 01	R. (A).	10.00 16.80 17.	en e		1000 1000 100 1000 1000	10 30 10 70 10 100 10 100 10 100	time of the second	America America America America	75 11 Rom	23
auid Conter and Conter Methylene 8 d	ent (% by Vol th (% by Vol strip and (P _m) trate (P _t /M _t))) Oil/Wate) □ Ib/bbl eq □ cm³/cm³	er uiv mud @	۰F		0-1 	7. 9. · · · · · · · · · · · · · · · · · ·	/4··	100 Rr 01 0	ROLLINGE	100,000 100,000 111 121 131	1 60 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1477 1477 113 113 ·	10 sm 2 To 1 Mars 1 Mars 2 Co	time of the second seco	Pran	23 11 75 11 Rossi	23
auid Conter and Conter Methylene 8 d	ent (% by Vol th (% by Vol strip and (P _m) trate (P _t /M _t))) Oil/Wate) □ Ib/bbl eq □ cm³/cm³	er uiv mud @	°F		0-1 	7. 9. · · · · · · · · · · · · · · · · · ·	/4··	100 Rr 01 0	R. (A).	100,000 100,000 111 121 131	en e		1477 1477 113 113 ·	10 sm 2 To 1 Mars 1 Mars 2 Co	time of the second	Pran	23 11 75 11 Rossi	23
auid Conter and Conter Methylene 8 d	ent (% by Vol th (% by Vol strip and (P _m) trate (P _t /M _t))) Oil/Wate) □ Ib/bbl eq □ cm³/cm³	er uiv mud @	۰F		0-1 	7. 9. · · · · · · · · · · · · · · · · · ·	/4··	100 Rr 01 0	ROLLINGE	100,000 100,000 111 121 131	1 60 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1477 1477 113 113 ·	10 sm 2 To 1 Mars 1 Mars 2 Co	time of the second seco	Pran	23 11 75 11 Rossi	23
auid Conter and Conter Methylene 8 d	ent (% by Vol th (% by Vol strip and (P _m) trate (P _t /M _t)	il) Oil/Wate) / Dibbbl eq / Com³/cm³ Meter	er uiv mud			0-1 	9.05	194 00 27 11-2 00 8 0	500 Sel	R. Carl	11 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tar		1477 1477 113 113 ·	10 sm 2 To 1 Mars 1 Mars 2 Co	me Code	Prince of the second	23 11 75 11 Rossi	23
Alkalinity Mu All Joride (mg Total Hardne	ent (% by Vont (% by Volume Capacity Strip and (Pm) trate (P ₁ /M ₁) g/L) ess as Calciu	il) Oil/Wate) / Dibbbl eq / Com³/cm³ Meter	er uiv mud			0.1	9:	14.2	500 See	2. (A). (Charles of the Charles of t	11 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Tar		(100) (100) (100) (100) (100) (100) (100)	10 sm 2 To 1 Mars 1 Mars 2 Co	me Cost	Property Comments of the Comme	23 - 11 - 12 - 14 - 14 - 14 - 14 - 14 - 14	73.
All	ent (% by Vont (% by Volume Capacity Strip Jud (Pm) Itrate (Pt/Mt) Jud (Pm)	il) Oil/Wate) b/bbl eq cm³/cm³ Meter	uiv mud	***\v**		0.1	9:	144 0 0 11.2 00 8 0	500 Sec. 100	2. (A)	10 (1)	1 10 10 10 10 10 10 10 10 10 10 10 10 10	5 pm	(100) (100) (100) (100) (100) (100) (100)	10 No. 10	SHAKER #	PORD COLIDS EQ	Control of the Contro	
All Wy Fill Noride (mg Total Hardner Newton) PRODUCT INVENTORY ARECEIVED 36- ED LAST	ent (% by Vont (% by Volume Capacity Strip Jud (Pm) Itrate (Pt/Mt) Jud (Pm)	il) Oil/Wate) Ibbbl eq Cm³/cm³ Meter	uiv mud	***\v**	3c:	0.1	9:	14.2	500 Sec. 100	2. (A)	10 (1)	1 10 10 10 10 10 10 10 10 10 10 10 10 10	5 pm	(100) (100) (100) (100) (100) (100) (100)	10 No. 10	SHAKER #	PONS PONS	UIPMENT	_ mes
PRODUCT INVENTORY ARECEIVED 36	ent (% by Vont (% by Volume Capacity Strip Jud (Pm) Itrate (Pt/Mt) Jud (Pm)	il) Oil/Wate Oil/Wate Oil/Wa	uiv mud	₩1 -	3c:	24 20 	9:000	194	500 500 500 500 200 200	2. (10) (10) (10) (10) (10) (10) (10) (10)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 pm	1000 1000 1000 1000 1000 1000 1000 100	7 10 10 10 10 10 10 10 10 10 10 10 10 10	SC SHAKER #	00000 EQ	UIPMENT	mes
PRODUCT INVENTORY ARCEIVED 36 RECEIVED 36 COST LAST	ent (% by Vont (% by Vollue Capacity Strip ud (Pm) trate (P ₁ /M ₁) grL) ess as Calciu	il) Oil/Wate Oil/Wate Oil/Wa	er uiv mud	41	30:	0.1 7.8 7.0 7.0 7.0 7.0 7.0 7.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	194 0 0 11-2 00 8 0	2 5 cc 2	2. (A)	7 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 pm	1000 1000 1000 1000 1000 1000 1000 100	France Co	SHAKER # MUD CLEA	PARA COLIDS EQUIDS EQUIPMENT COLIDS EQUI	UIPMENT 1 C. R. C.	
PRODUCT INVENTORY ARECEIVED 36 BO SING INVENTORY 36	ent (% by Vont (% by Vollue Capacity Strip ud (Pm) trate (P ₁ /M ₁) grL) ess as Calciu	il) Oil/Wate Oil/Wate Oil/Wa	uiv mud	₩1 -	3c:	0.1 7.8 7.0 7.0 7.0 7.0 7.0 7.0	9:000	194	500 500 500 500 200 200	2. (10) (10) (10) (10) (10) (10) (10) (10)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 pm	1000 1000 1000 1000 1000 1000 1000 100	7 10 10 10 10 10 10 10 10 10 10 10 10 10	SC SHAKER #	PARA COLIDS EQUIDS EQUIPMENT COLIDS EQUI	UIPMENT T. C. S. C.	mes
PRODUCT INVENTORY ARCEIVED 36 RECEIVED 36 COST LAST	ent (% by Vont (% by Volume Capacity Strip ud (Pm) trate (P ₁ /M ₁) g/L) ess as Calciu	il) Oil/Wate Oil/Wate Oil/Wa	uiv mud	₩1 -	30:	0.1 7.8 7.0 7.0 7.0 7.0 7.0 7.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144 0 25 11-2 00 8 0	2 5 cc 2	26 26 26 26 28 	7/3 (16)	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 pm	1000 1000 1000 1000 1000 1000 1000 100	7 10 10 10 10 10 10 10 10 10 10 10 10 10	SHAKER # MUD CLEA	Charles Education of the Control of	UIPMENT T. C. S. C.	_ mes _ mes _ hour

				t was was a safe						
						DRILLING M	1UD REPO	RT NO.	•	
	Drilling	g Flu	iids (Co.	$ \Phi $	DATE //	/3/19	88	DEPTH	Malle man
Me Me			r/Halliburton C	, ,		UNIL	- 13.	PRESEN	IT ACTIVITY	
P. BOX 42842	■ HOUSTC	N, TEX	AS 77242 I	JSA		SPUD DATE	6/3/83	_	211111	
'ERATOR	Basen	PATRO			CONTRACTO	OR VEDENDRY	DRICE	***		RIG NO.
REPORT FOR					REPORT FOR	5 mm			SECTION	TOWNSHIP RANGE
LL NAME AND NO.	MINICA		5 . e 1800 C		II CK NO.	COUNTY, PARISH	OR OFFSHO	RE	STATE/PROV	
	Jerun 1	V6/		FIELD OR BLOC	108	AREA O TINET	1 Ensu	^.	Viel	1000.13
DRILLING AS	SEMBLY		SING		DLUME (BBL)			RCULATIO		
BIT SIZE TYPE	JET SIZE		RFACE	HOLE	PITS	PUMP SIZE	X	C IN.	ANNULAR V	
3/2 SIBLE.	3 \ II	95/8 in	. ஓ ட்டிர் உர். IMEDIATE	では かん	TING VOLUME	5/2×6 (SUMED	OP	
SIZE 412 14.6/1	CENOM		. @ ft.	1	sa ble	60 PZ 3		デ ラン %	PRESSURE	
ILL PIPE TYPE	LENGTH		RMEDIATE	IN STORAGE	WEIGHT	bbl/stk			BOTTOMS	
ב ויצ אדיטף	25 4		. <i>(p</i> ft.			-057 1.06	5 ~	170	UP (min) (strk)	60
DRILL COLLAR SIZE	LENGTH	PRODUCT	ION OR LINER	MUD TYPE	1-	4.5>		171	TOTAL CIRC TIME (min)	
6"4 BHH	17/2	in			flor inner	bbl/min	ODEDTY O	gal/min	(strk)	/55
			MUD PRO		WEIGHT		OPERTY S	PECIFICA	FILTRATE	
Sample From			☐ F.L. 🗹 PIT	☐ FL ☐ PIT	•					
ne Sample Taken			14.00	24.00		RECOMM	ENDED TO	NIR TREA	TMENT	
Temperature (°F	·									_
Depth (ft) (TVD		ft)			7	MGGES P		13 W		ERM FORR
eight ☑ (ppg)	☐ (lb/cu ft)	(sp gr)	7.14	9.3		Our F			· • •	
nnel Viscosity (sec/qt)		°F	4.4	Ego. Squ	To 13	14.5 1~	1.0.1	t pr	D RA	CONTRACT
Plastic Viscosity cp @	° F		/4	13	100 10 .	<i>(</i>), ,				
eld Point (lb/100 ft²)	10 110 1-	· · · · · · · · · · · · · · · · · · ·	11.	13		PROSSUR.				40 (01
Strength (lb/100 ft²)			7/24	6/25	Our Con	a Corr	REMAI		1 14	
Filtrate API (cm³/30 min)		۰F	7.2	6.4						
'I HTHP Filtrate (cm³/3		<u> </u>	/2 /2 ::	. / 2 ::		716.07. passes		1.11	8'€	1'01 a
Solids Content (% by Vo		□ retort	2/32	1/32	Turneta		*	774-93 C	3 ~~ 2	1~1~
quid Content (% by Vo		- retort			Burney		<u></u>			
Sand Content (% by Vol			- 1744 TIACL	- 175		int Oct	. 34 /	14.14.	<u>,</u>	
Methylene Blue Capacity			10	-						-
I 🖪 Strip	☐ Meter @	°F	:0.0	9.0						
Alkalinity Mud (P _m)				-						
A" Filtrate (P _i /M _i)			·4 /j.7	45 /1.3		An. 30 - 23. 5	# 43 . 534	···· F		
nloride (mg/L)	•		1150	1150	Chart Source			C & 76.0	· · · · · · · · · · · · · · · · · · ·	1711 PRAMI
Total Hardness as Calciu	ım (mg/L)		20	30	Peternos		Say we	Marie	6.37	
**************************************					MOZILAN	_			00000	٠
	· · · · · · · · · · · · · · · · · · ·								•	
					,å.					
	7 . 7		1 / 5:	7 2 /	7 3 7 3	/ - / -	/			

Carie (di. النائر/ PRODUCT INVENTORY SOLIDS EQUIPMENT ARTING /ENTORY 3/4 7 24 2.8 11, 3.2 7 -, "<u>!</u> 4.4 RECEIVED SHAKER #2 ED LAST . -3. 2 1.4 15 1. 17 2 1 MUD CLEANER LOSING INVENTORY 45 2.8 9 26 3 36 4., 7 4 CENTRIFUGE COST LAST 2039 107-14 736751655 3/05 DESILTER M-I REPRESENTATIVE PHONE WAREHOUSE PHONE DAILY COST CUMULATIVE COST A 14 \$1 .94 \$ 10,135 57 nameters Our Inice are 057-737105

	. II			_							7	DRILLIN	IG MUE	REPO	RT NO) .	12		
	2337 M	Drii agcobar/	IMCO	$oldsymbol{g}_{_{ADr}}$	esser/	ids Halliburton	Comp			A		DATE_	17/	/ <u>; /</u> 19	36		DEPTH	149	°C p.
P. 3OX 4			م من المنظمة المنظمة المنظمة		2003年		al'ayat	10.00		(I	ل	SPUD D	ATE _	15/1		ESEN	T ACTIVITY	170%	
PERATOR		Bie	10.11	P3-1						CONTR		44184	117	Do				RIG NO	J.,
REPORT FOR						15 11/11	auc	······································	-	REPORT F			11111 C					I. TOWNS	HIP, RANGE
ELL NAME AND	NO.			N: 1				LD OR BLO	CK NO.	. 3		OUNTY, P	ARISH OF	OFFSHO	ORE		STATE/PROV	INCE	
DOUL	INC AC	SEMBL		T		ING	╫	P. IF I	<u>///</u>			INCA (ח דינייים		RCULA	ATION		r dy w i	
BIT SIZE	TYPE		SIZE	+		FACE	НС	MUD V				UMP SIZE			X		ANNULAR V	EL (ft/min	1
J. 1	134	ì	×. 11	97/		10 2.75 s		540 h	, 1		. 11	4728	2 6	×			OP		14.
SIZE	TYPE	LE	NGTH	'	NTERN	IEDIATE	το	TAL CIRCUL			- 11	UMP MAK		L A	SSUMED FF	,	CIRCULATIO	(OSI)	
SIZE //	TYPE	LE	NGTH	-	in. NTERN	@ IEDIATE	ft.		IWI	EIGHT		bl/stk	<u> </u>	L	SSUMED FF 7 /	% K/Min	BOTTOMS		100
ZE.	tuo:	1	٠.٠٠٠		in.		1. 2	STORAGE	,ε ^ρ	व ः	- 11	·057/	/ .665		20/-		UP (min) (strk)	ć.	; O
DRILL COLLAR SI		1	NGTH	PROD		N OR LINER	3 ML	JD TYPE	,			/ 4 56				7,	TOTAL CIRC		
10 to 60	n	1 7	'-		in.			W. Car	100	1400.	. ь	bl/mın				i/min	(strk)	1 '3	> <
					-	MUD P			WEIGH	нт		MUE	PROP VISCOSI		SPECIF	FICAT	IONS FILTRATE		
Sample From						□ F.L. □ PI		F.L. DEPIT	-										
me Sample Ta		=1				G6.00	۱ د	8.000	 			RECO	OMMEN	DED TO	OUR TI	REAT	MENT		
Depth (ft) (T	VD		1		ft)		+		+		(16						~ 1 × 16 ×		
eight [5] (ppg		☐ (lb/cı		☐ (sp		9.5	-	9.3t	 	711201							12 8 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7170	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
unnel Viscosity				∘F	3.7	46	+	46	 	14 71.4		2					(<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
Plastic Viscosity	cp @		۰F			15	\top	14			1024		11011						* #62 e2 e0
eld Point (lb/1	00 ft²)					13		13		000	For.	180	<u></u>	113	mie.				5 300
_el Strength (lb	/100 ft²)	10 sec/10) min			6/23	(121		3 646		1.51.4	P.	o /	429	ر ي د ر ۳	, p	Ante.	u 77.
Filtrate API (cm	³ /30 min))				6.5	_ _	6-8						REMA	RKS				
PI HTHP Filtra	<u> </u>			°F	_		+			P.Dra				3 7 Cum				011	د 1 بردست ؟
Cake Thickness					_	7 /32	· 2	/32	+	Say	i) 3						DEAR	1612 13.	ete na
Solids Content (□ reto	-	- / 7:		- 195	1 1/	er CK.									
Sand Content (-4.56		TRACE	Vu			Cocces of						<u> </u>	10 300
Methylene Blue			quiv		_	,	+			·						-	Mary	13.0	~ .1 ~
- Str		☐ Meter		۰F		70	\top	9.0	R	1000		106							
Alkalinity Mud (I	P _m)							~~			14	CK	TOK. A	٠, ۲.	و در دسر ک	:	Amura	٠ ،	Mus
* ty Filtrate	e (P _f /M _f)					14/1	ا د	1/1.4	_	11	1 64	2 ~3		11. S. J					
hloride (mg/L)						1100		1050											
Total Hardness	as Calciu	um (mg/L	_)			30		4 5	<u> </u>										
							_			Missi	Bit	المارية.	, , ,	5.0	<u> </u>	5 1000	المراجع والمراجع	5.0	;, w S
							_		1	0" 1									1 6.
				·				···	1	Helor	mis		en et et e			800	4274	<u> </u>	13 " < 1
***************************************	1-/ 3	/	<u>, , , , , , , , , , , , , , , , , , , </u>	٧./	- 	ز / زر	, ,	eh. \	1	37	.x* /		7	2/			/		
PRODUCT NVENTORY	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11 (A 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(E	(12 / Ca)	[a]	17, 6	1. 81. C	3,1		1.34	10				SOLIDS	EQUIPM	MENT
VENTORY 37 7	162	55	9	2.6	62	24	3	25	23	28	15	38	ر ريسية	,		SHA	KER #1_	34 1	17/34 mes
RECEIVED																	KER #2 !	36,	バカジ me:
SED LAST		2			,	L.,						_	_	-	-	7			
OSING			_	_	, .					١,,	-	+		 		7	CLEANER.		me:
COST LAST	16.2	93	<u> 1</u>	26	64		_3_	125	5 3	23	1-	<u> 3</u>	64 ,.z	1		- CE	ENTRIFUGE.		hou
th 2,10		455			6,5	117575					-	-		-	-	DE	ESANDER		272 hou
(triC)											<u> </u>				<u> </u>		ESILTER		hou
M-I REPRESENTA					PH	ONE		WARE	HOUSE I	PHONE	Н	COST	,~ _			1	ULATIVE CO		
05.1												49 %					4:0,6		
NC	TICE:	THIS	REPO	HT IS S	suB.	ECT TO	THE	TERMS	5 AND	COND	NOITIC	IS SET	FORT	TH ON	REVE	FSE	SIDE H	EREC	₹.

,		.	95-		-,		_				7	DRILLIN	IG MUC	REPO	ORT NO.	/ ふ 			
25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	e Par N	U Magcobai	r/IMCO	g F	resser/	ids Halliburton	GC Compa	any		A		DATE_	12/3	2/_ 19	36	DEPTH	,	470 m	
P. BOX 4						S 77242				7	ك	SPUD D	ATE 6/	/3/3.		SENT ACTIV	1001		
PERATOR		BEN	(0 1	Pricks	stev.	,n			(CONTR	ACTO	LUNKI	OKI	Dance	ماله		RIC	G NO.	<u>ح</u>
REPORT FOR		VINC	s- '	SANI	.,; ۶ ر	· (*) > ()		-	,	REPORT F	FOR S	(7) (1)			*	SEC	TION, TO	WNSHIP F	RANGE
ELL NAME AND	NO.	7	ONIA	No	,		FIEL	D OR BLO	CK NO.	108		COUNTY, PAREA	ARISH OF	OFFSHO	DRE			E : /3	
DRILL	ING AS	SEMBI	Y		CAS	ING		MUD V								ION DATA		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
BIT SIZE	TYPE		T SIZE		SURI	FACE	HOL	E,	PIT	rs	F	PUMP SIZE					AR VEL (ft/ m in)	
	77.05			9.1/3		10243.5	H 3'	+0 6		60 f		5 1/2 x 6				OP		_ DC	
IILL PIPE SIZE	TYPE	"	ENGTH	'		IEDIATE	- 11	AL CIRCUL	AIING V	66/	11	OUMP MAK	•		SSUMED	1	ATION JRE (psi)		
TILL PIPE	TYPE	LE	NGTH		in. o	IEDIATE	IN S	TORAGE	WE	EIGHT	t	obl/stk			stk/r				
ZE .					in.		n.					057/	()65			UP (min (strk	.)		
DRILL COLLAR S	IZE	LE	NGTH	PROD		N OR LINEF	- 18	TYPE	. 1.			,				TOTAL (nin)		
		<u></u>			in.	MUD PI			1	(//~	" t	obl/min	PROP	ERTY 9	gal/r	nin (s CATIONS	trk)		
Sample From						□ EL. Ĉ PI			WEIGH	HT.		I I	VISCOSI		or con n	FILTR	ATE		
me Sample Ta	aken								1										
	rature (°	F)			\dashv	·····						RECO	MMEN	DED TO	OUR TR	EATMENT			
Depth (ft) (T	VD		1		ft)						6321	ماندن	· /·	114341	VG 7	1.190 110		(0%)	
eight 🖪 (ppg	3)	□ (lb/c	u ft)	🗆 (sp	gr)	43			Co	1186	51	ولادرين	Hat	,-	· CHE	6000	1 6	UNS	
innel Viscosity	y (sec/qt	API @		۰F		لہ ن			Luc	165	600	-1 1-1							
Plastic Viscosity	cb @		۰F			13			<u> </u>		FA	11	ti; A			6.6	(1)	۷	
eld Point (lb/1	00 ft²)					f.g.	_		<u> </u>				71	Som		· · · · · · · · · · · · · · · · · · ·			
∋l Strength (lb			0 min		'	4 /12			<u> </u>				<u>G,</u>			JR 14 72 0	, <i></i>		
Filtrate API (cm				۰F		75			<u> </u>					REMA					
P HTHP Filtra → Ake Thickness		<u>_</u>	-	<u> </u>		> 17 >		,		· · · · · · · · · · · · · · · · · · ·			41			Dr. 1.1			
Solids Content	<u> </u>			☐ reto	rt	<u>) /32</u>	-		111	34 (** //		1. 31 1. 1. 1.		ا ما ما الموسور الما المواكد الما	7 1724 27 8		060.00	7
quid Content						- 195	-		11 773			Bun				., 7			
sand Content (<u> </u>					71.71.11		- -	 				2.6	,					
Methylene Blue	Capacit	y [] lb/bbl	equiv			-									, ,,				
1 🖺 Str		☐ Mete		٥F		95													
Alkalinity Mud (P _m)					•													
'y Filtrate	e (P _f /M _f)					65 THS		1											
nloride (mg/L)						$p_0 \leqslant \phi$													
Total Hardness	as Calci	um (mg/	L)			64													
			·						<u> </u>			*							
				······································															
							-		((2)	े दिव	. W . C .	. 417 -	174.	111111	1212.	· "Y"/A	- 4.70	3 / 45.	
PRODUCT NVENTORY C	- i/v :				/:		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					(3/4)	/			SOL	.IDS EC	UIPMENT	т
ARTING	7	ſ	9	26		21	3	25	<u>/</u> 23	/		38	4 .>	(,		SHAKER #1			
ZENTORY ? (,)	162	53	"!	<i>≵</i>	61	101	- 3	2.3	>	26	1,2								me
ED LAST						-					<u> </u>	+		ļ		SHAKER #2.	E FO	14,20	me
hr) ¬					-				-		2_	ļ. -	۵٠.			MUD CLEAN	ER		me
NVENTORY 550	162	,;	· i	i ka	/ i	<i>;</i> 1	2	24	2 %	3.8	14	3.8	N.e .	1	<u> </u>	CENTRIFU	GE		hou
nst Last	<u> </u>			-		-	2278	+-		_	7,- 1				~-	DESANDE	R		/ hou
ED.																DESILTER			hou
MI REPRESENTA	TIVE		t	<u> </u>	РН	ONE		WARE	HOUSE F	HONE	DAIL	Y COST		<u> </u>	- 1	CUMULATIVE	COST		
m_{mod}	:	641	1415	. N. 10 .	:	87 72	7/03					4 3	70-75			4 10	924	67	

Monoralia Car mithorn.

	-	`			-			. L		:	!		5	3								L	New York	
			35/5/36	3 2 <		ă -	21/3/12		27	13/24		25/3/22		: d	24/3/22	در	<u>~</u>	15/	*0	72	26/3/22	!	1014	1 HOH 1
	LINO	BAL	RECD. U	USED	BAL F	RECD. 1	OBSO	BALR	95	USED BAL		CD USED	D BAL	RECO	_	BAL.	RECD		BAL	RECD	USED	BAL	RECO	USED
-	504 6	415	:		415			415		4/5			<u>'</u>								4			
	100 b 146	ـــــ نو خ					~	134	- !	134	ا بر						;			!	:			
	25.43	ಜ		ر. ت	22			22		- ~	7.7							•		•	•	•		
XF-20 RESINEX							. -			: i :	<u>.</u> .		:		·		. ,			· ····································	••	• •		
			· · · · · · · · · · · · · · · · · · ·																				,	
	25/4	25	-	5	-	- 		64		٠	6						·		•		•	•		
Seba Ash	you y	25	-	- 1	25	<u> </u>		57		4	,			<u> </u>	•				• L	1	†		• -	
BICARBOMATE.	tok,	23	·-·		23		ο ι .	23	-· -·	'n		: : :		ļ -		<u> </u>	!			• · · · · · · · · · · · · · · · · · · ·		 	:	
Lime		38			38			32	•••					-	: :	<u> </u>	1				- • · · · · ·		•	
CALCUUM CIVERIA 25 kg.		40			};	i				; ÷	ا - 	:		-	•• •• ••	<u> </u>	:	1		:	· • · · ·			
KWIK THIK 3	25K 11	162			79)					4/		: !		<u> </u>	; *		:		:					
Perysal	25k 8	~	1	<u>-</u>			8			2	!	!	: 			-			-+ :	,	- i	-:	٠	
Paryens2		7	- .				-	י א		٤	!					•	,			- !	.		• .	•
Cmc. (FIN) . 2	25k 6									ق َ	!		<u> </u>		• • ·			1		:	-:-	•	•	
Petrissium Criscia sols		38			33		<u>~</u>	35		73) 170		! •	<u> </u>	!	;				•		ž.			
P. L - C.OR. 2					2	7		_			! !_ -		-	: :	+					· . '	<u>.</u>	. -	-	
PIPE LAX	757	- -	,	-					<u>_</u> _	-	 		-	!	· ,		:	1	:			:	- • ~-	
KWIK DRIL	26 9			· • ;			-	-		•			-	-	· ·			!		1	÷	· • · ·	-	•
Sedium Suightize Soly	2 40			.*	ا ۔			4	-	_				<u> </u>	!	-	;			;	;	- -		
SALT	36 200	اره		2	200	160		40	57.	5				<u> </u>	i i			1		!	- ;		<u>.</u>	•
SALT	7 7905	40		J"	ۇر	ત્ર		77		2					<u> </u>		:	-	!	 : :	} -			• •
INMBITGE 3C3 205L	15.	_		+	_	\dashv			-	2	J	i : :	 	<u> </u>	i 			!	·	- -	;		- .	• •
		\dashv	+	+	-+		-											-		}	 	;	• · · · · · · · · · · · · · · · · · · ·	
	-		+	-	-					-											 	- -	•	•
-	+	+	+	\dashv	+				-														 i	-
_	_	_	_	_	_	_	_	_		-	-	-	-	-	**	-	1			-		-		-

OPERATOR

		Dei	lli.	on E	: 1.	iido	0	_		TA		DAILLI	NG MU	D REFU	INI NO.	/ ;
		Magcoba	r/IMCO	y r	14	<i>iids</i>		J.		$\langle A \rangle$		DATE	20	<u>/ </u>	16	DEPTH 1970K
	100	COLUMN TO SERVE	VEAD LEVE										•	1 .	PRES	SENT ACTIVITY
TERATOR	42842					AS 7724	2 US	Α		CONTE	ACTO	SPUD C	DATE_	12/38		RIG NO. 2
REPORT FOR		PEN	(11	PB 1:	: (. (deepn				001111		RCTAN	रमना	,		
		V	11-16 1s.	SA	, -	35000	170012			REPORT	FOR	5. mi				SECTION, TOWNSHIP, RANGE
LL NAME AN	ID NO.		Inn	N	, ,		FIE	LD OR BL	OCK NO.	এঃ		COUNTY, P	ARISH O	R OFFSHO	RE 1∶~	STATE/PROVINCE
DRIL	LING A					SING	1			E (BBL)						ION DATA
BIT SIZE	TYPE	JE	T SIZE			RFACE	но			ITS		PUMP SIZE	 [IN. ANNULAR VEL (tt/min)
				95/	& in.	@ 2415	ft.	<i>~</i> , .		300 b	, Ļ J ,	5//2	× Z ,	6×3		DP DC
SIZE PIPE	TYPE		ENGTH	'	NTER	MEDIATE	TOT	TAL CIRCU				PUMP MAK		L AS	SUMED	CIRCULATION PRESSURE (psi)
ILL PIPE	TYPE		ENGTH	- -		@ MEDIATE	ft.	STORAGE		EIGHT		CO C.	2 %		stk/n	% BOTTOMS
E						<i>(</i>)	H	ichla ichla		Statu		1047	1.063		anon	UP (min) (strk)
DRILL COLLAR	SIZE .	L	ENGTH	PROD		ON OR LINE		D TYPE	7	1 60 9 11						TOTAL CIRC
					in.	(n)	n. r	ان کیا	die	24 . ~ 12.	٠. ا	bbl/min			gal/n	TIME (min) nin (strk)
						MUD P	ROPE	RTIES		·		MUE			PECIFIC	CATIONS
Sample From						□ F.L. 🗗 P	T 🗆 i	F.L. 🗆 PIT	WEIG	HT			VISCOS	ITY		FILTRATE
ne Sample	Taken					20.00									***************************************	
e Tempe	erature (°	rF)										RECO	DMMEN	IDED TO	UR TRI	EATMENT
Depth (ft) (TVD		1		ft)					Ream	. 6 . 4.	mila	74.	r (0)	<u> </u>	5196 Tr 1000 MI
gight 🖸 (pp	og)	□ (lb/c	cu ft)	☐ (sp	gr)	9.3		,	1	Grain	. C.	1~1()1	·	SPHC:	130.50	Sich Courses 75
nnel Viscosi	ity (sec/qi) API @		°F		36				17.00	-:.	<u> </u>		Dur.	46	Prising a North
Plastic Viscosi			•F			12	_		<u> </u>			()				
d Point (lb/			···		_	.			<u> </u>	MIZE	<u>., </u>	iseo lik	1 0	, 3 ₅	1	GRE BULL GUART
Gel Strength (I			0 min			1/5				ع درو		743 S.J. W	71.0	.10	e, :	LHAN STORE
Filtrate API (cn		<u> </u>				7.2,			<u> </u>					REMAR	RKS	
1 HTHP Filt				° F	-			· · ·	 			···				***************************************
Cake Thicknes			<u></u>			2/3/			'	ור דו טו						ANA SIBRINAIL CO
Solids Content	<u> </u>	 -		Li retor	1	۲>			1.	ر نه <u>د</u>	Ŀ	C. L. L. E.				
suid Content Sand Content	```	··	ater			~ / 90	-			24.						7. Park . ASP
**athylene Blue	·	<u> </u>	equiv			" LACY	-		1 .	Circ			t., 1.,	<u> </u>	1,	and Store Nove
I I S		.y ⊡ cm³/ci		۰F			+		P. :	() (4		· v ·	r7.,			<i>*</i> , ·
Alkalinity Mud	···	C ME	; (<i>Q</i>)			<u> </u>								- P		Sty Con Arm
	(P _f /M _f)		· · · · · · · · · · · · · · · · · · ·				_			in Carlossia in				<u>~!.</u>		Des Con Ora
noride (mg/L						1950	" -		+	<u>;</u>	1	<u>د ر</u>	· · ·	λ <u>, ·/ .</u>	<u> </u>	Charles Comment
Total Hardness		ium (mg/	L)		_	4. ,	+-		+-	·						
									T			·				
						·			1				 			
					7				1							
																terrent de la companya de la company
PRODUCT INVENTORY		\ \1/ \		J (3 ² %		C. 10°	8,0		2 / N	9 ⁵ /, (c)	. / 4	~ 5 ³ /5 ³ .			4.	SOLIDS EQUIPMENT
RTING ENTORY 4 1 3	1	1	1	1						(-,.,	1			1 1		
	162	+; ?	14.	6,1	2:	2	2 %	2.4	12	33	2 e	. 44.3	i	5.		SHAKER #1 (380 / (2:3) - me
RECEIVED	-	-	ļ													SHAKER #2 1000 / 1000 me
ED LAST		٤	12.	-		1		ريا								MUD CLEANER me
CLOSING INVENTORY 4/1	166	17.1	124	61	31	i	2 %	2.2	12	3.3	2	ر ہن	1	2		CENTRIFUGE ho
ST LAST			1			27.75		16e S		1	·					_
-	+	(.8 /	135 /2			10.13		100.2		+	 	-	-	 		DESANDER ho
(h C) M-I mépresent	'ATIVE	<u> </u>	<u> </u>		T =:	JONE		14422	4000	DUCNE	11	17.000=			II-	DESILTER ho
						HONE	_	WARE	HOUSE	MONE	UAII	LY COST	les 1 3		'	CUMULATIVE COST
man :	10 0	9 <u>₹ 31 + </u>	40 P 10	· u.	i	50 7X	1101	l				1,30	121 + 111 4 			\$ 11,661 63.

				_					!			DRILLIN	IG MU) REPO	RT NO.	16
	George M	Drii		g F	IUI	Ids	Co			A		DATE	21 /		<u> </u>	DEPTH 1410
1 TO 16	42842			فالمعادل بالم	25.271	27/20	Ç.	3		U	ًا ل∶	SPUD D	ATE 6	11/18	PRES	SENT ACTIVITY
ATOR		EACH						•		ONTRA	ACTOR	TIBER		Ben		RIG NO.
REPORT FOR		ymer.							A	EPORT F	~~	_	MILE	277711		SECTION, TOWNSHIP, RANGE
ELL NAME A				Λ,		7	FIEL	D OR BLO	CK NO.	. 2	C	OUNTY, P.	ARISH OF			STATE/PROVINCE
	LINO AC			700		NC		12. F. F		υ <u>Ζ</u>	- ^	REA	01101	94 <i>/</i> 2		ION DATA
BIT SIZE	LLING AS	. ,	T SIZE		CASI	ACF	HOL	MUD V	PIT		P	UMP SIZE				N. ANNULAR VEL (ft/min)
				75/	, in. a	2435	m.									DP DC
RILL PIPE SIZE	TYPE	LE	NGTH	51/2	NIEHME	EDIALE	IOIA	AL CIRCUL	ATING VO	DLUME	Р	UMP MAK	E, MODE		SSUMED FF	CIRCULATION PRESSURE (psi)
RILL PIPE	TYPE	15	NGTH		in. @	H757		TORAGE	WE	IGHT	- h	bl/stk			stk/m	% BOTTOMS
ZE	ITPE		NGIH	'	in. a			TORAGE	"	.idrii	"	Dirsik			attivi	UP (min) (strk)
DRILL COLLAR	SIZE	LE	NGTH	PROD		OR LINER	MUC	TYPE								TOTAL CIRC TIME (min)
					in. @		ft.				ь	bl/min			gal/n	nın (strk)
						MUD PF			WEIGH	īT		MUE	PROF VISCOSI		SPECIFIC	CATIONS FILTRATE
Sample From] F.L. 🕒 PII		L 🗆 PIT	1							
me Sample					- {	FINE		- UIS Pecc		· · · · · · · · · · · · · · · · · · · 		RECO	MMEN	IDED TO	OUR TRE	EATMENT
-	perature (° (TVD		7		ft)		-				Day	v 6/2 /2	David	(,,	11-11	Surince men Tom
/eight 🗷 (p	· · · · · · · · · · · · · · · · · · ·	☐ (lb/c		☐ (sp		43	3	3:31	15	700	(3	2100-1	700		Park	110 A 21 661 111
unnel Visco				•F				7 0	Pin	100	Cin	7000	/4"	1200)	130	661 or 93/5- OR
Plastic Viscos	sity cp @		۰F						100	2 .	Rusen	2 0/2	77.00	u 5 /	To Cox	orietion French
ield Point (II	b/100 ft²)										Bu	Crace 1	7~0.		ティハル	CHILL CHITTER FOR
el Strength	(lb/100 ft²)	10 sec/10	0 min			1		1	cus	un-c	Ø1	رے ب	ي جار ميم	<i>ب</i>	a Pu	ine:
Filtrate API (d	cm ³ /30 min	1)												REMA		
PI HTHP FI	· · · · · ·			<u>,°F</u>			-									12" (15 W. AT 19
-Sake Thickne				FT					f ch'							PRINCE AT 1465A
Solids Conte				⊔ reto	n		+	,	0							Trace Company
sand Conten							_		 	from to						
Methylene Bl		·	viup				+-		 							Russin T. 130c
	Strip	☐ Mete		۰F		11.5	+		+							y - Fine were
Alkalinity Mu	d (P _m)								1	189		3 -1-57		11:3		to our one
Attalinity Filt	rate (P _f /M _f)					1		1	<i>y</i>	10 B	1.11	1 611	ديد د وجم ليده	i /	10	START PAIN PURE
ide (mg	/L)					מים ביתו	()		01	13.	0 12					
Total Hardne	ss as Calc	ium (mg/l	L)						<u> </u>							
									<u> </u>							
									ļ							•
									-							·
	. v/s	× "/	χ ^ω /			~~ / ₃ 8	- 	<u> </u>	}	Y/			./	° . / .	5 31/	
PRODUCT INVENTORY	Bir	الله الإيمالية المارية المارية الله المارية المارية المارية المارية المارية المارية المارية المارية المارية ال	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/હૈંડ્		23/2	Rich		6		15					SOLIDS EQUIPMENT
TARTING	5 10%	49	134	61	3!	1	23	22	12	3.2	200	رين	,	2.		SHAKER #1 Cdo Proc me
RECEIVED	1.0.	 		-6-	<u> </u>			1							-	SHAKER #2 Pau P. K. me
SED LAST		-				,		_			-	 		 		·
4 hr -	- -	-		ļ <i></i> -		!		-	i		160	2	ļ -	-	+	MUD CLEANER me
INVENTORY 4	15 /67	4.95	154	6!	31	MILE	2.5	रे ट	11	3.3	40	30	1	12		CENTRIFUGE ho
OST LAST		-	_			22 74			3/6	- (- i -	140	\ <u>-</u>	-		DESANDER ho
SED (*DC)											1.77	1 27 7 6 2	01-1	1/20	(227)	DESILTER ho
-PRESE	NTATIVE		************	•	PH	ONE	-	WARE	HOUSE	PHONE	DAIL	Y COST		11:	. 11	CUMULATIVE COST
	cer.					4 711			·			7		17 8		\$ 12 470 KS
	NOTICE	: THIS	REPO	RT IS	SUBJ	ECT TO	THE	TERMS	S AND	CONE	OITIC	MS SET	r For	TH ON	REVER	RSE SIDE HEREOF.

	nril	lina	~ El	la a ii	de	C		:	T						
A SALES CONTRACTOR	Drill Magcobard	MCQ.	A Dres	UII ser/Ha	U3 alliburton	Compa	anv		A)	DATE	72/4	<u>_</u> 19_	60	DEPTH / ///
Car Style Starte	model i mente						. ,			1			, ,	PRESE	NT ACTIVITY
PA BOX 428	42 ■ HO	USTO	N, TE	<u>KAS</u>	77242	USA	4				SPUD D	ATE 6/	7/21	-1	
ATOR	Bunc		De						CONTRA	_	والمرازيون	/)	Rice		RIG NO.
EPORT FOR			<u> </u>		ــــــــــــــــــــــــــــــــــــــ			F	EPORT FO	OR .	<u> </u>				SECTION, TOWNSHIP, RANG
ELL NAME AND NO.	<u> Histori</u> T				ممرون راتا	FIEL	D OR BLC					(1) 10 (1) (ARISH OR (OFFSHOF		STATE/PROVINCE
		120	No			#	Pri		7.8	AF	REA C	Melo.			VICIORA
	ASSEMBLY			CASIN		1	MUD V						CIF	CULATIC	,
BIT SIZE TYP	E JET	SIZE	1 . ,	SURFA		HOL	.E	PIT	S	PC	JMP SIZE			IN.	
RILL PIPE TYP	E LEN	GTH		In. @	プルタップ DIATE	TOTA	AL CIRCUL	ATING V	OLUME	PL	JMP MAKI	E, MODEL	ASS	SUMED	DPDC
SIZE			5/2	in. 🐠	14/275	ft							EFI	F %	PRESSURE (psi)
RILL PIPE TYP	E LEN	GTH		ERME			TORAGE	WE	IGHT	bb	l/stk			stk/min	BOTTOMS UP (min)
				in. 🐠		n.				_					(strk)
DRILL COLLAR SIZE	LEN	GTH	PRODU		OR LINER		TYPE								TOTAL CIRC TIME (min)
			<u></u>	in. 40	MUD PF	ft.	OTIES	T		bt	MI ID	PPOPE	BTV C	gal/min PECIFICA	······
Sample From			<u></u>	+-	F.L. PI		L 🗆 PIT	WEIGH	iT			VISCOSITY		<u> </u>	FILTRATE
Sample From Time Sample Taken				+"	r.s. U PI	1 4	PII								
Iculine Temperatur	e (°E\			+-		+		1			RECO	MMEND	ED TO	UR TREA	TMENT
(it) (TVD	- (1)	7		t)		+		 	-						
Veight □ (ppg)	☐ (lb/cu		(sp g			+-		 							
unnel Viscosity (se			- (- -	-		\dashv		 							
Mastic Viscosity cp		۰F	·	-		_		 							
Teld Point (lb/100 ft				+		+									
el Strength (lb/100	·	min		╅	7	+	7	 							
Filtrate API (cm ³ /30				+		_		†					REMAR	RKS	
PI HTHP Filtrate (······································	°F			-		 				د و سراتو ادام			non Therewood
Cake Thickness (32				_	1	+		 -,			2.0	<u> </u>	, , , ,	<i>U</i> /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Solids Content (% b			☐ retort	_				+		R , 3-1		2000	1.		reme Propone
iquid Content (% b				+		+	1	1,,	141						Chara a
Sand Content (% by			-	_		+			1,00 29.0				V1 10 .		
Methylene Blue Car		jurv mud		\top						. , سبب				111 8	· + 9 3/2
≱H ☐ Strip	☐ Meter		۰F			1		B.E.	resident						ing Bus pro
Alkalinity Mud (Pm)				\top		1			la pple		Opin-	_	A Car		
Alkalinity Filtrate (P	/M _f)				7		1	1	1						
ie (mg/L)											Enico	N. C.A.S	R1	£1 + 175.4	7.7
fotal Hardness as C	alcium (mg/L)													 	
,															
															,
							le								
PRODUCT NVENTORY	/ § / -			, C _L ,	Pilat				1						SOLIDS EQUIPMENT
TARTING NVENTORY 4		134		21	23	2 2.	j (38	40	20	,	2		CI.	1AKER #1/
RECEIVED	7- 7-4	1/1	-:	<u> </u>	" - "	<u>* (*</u>				~~~	<u> </u>				
ISED LAST							 				-			SF	HAKER #2
14 hr					<u> </u>		ļ 		25		1	1		M	UD CLEANER
ROSING	.) 4.	134	6-1), 1	2.5	22	11	54	1'-	203	MIL	1			CENTRIFUGE
COST LAST	- -			-				(37 -		4501	X2.5			DESANDER
JSED From LADC)									150		Civi	/_	6.5)	DESILTER
RESENTATIVE				PHO	NE NE		WARE	HOUSE	r		COST		17 - 10		IMULATIVE COST

\$ 571.00

4 13,05/13

057-787113

WELL SUMMARY

WELL HISTORY SHEET

MATERIALS INVENTORY

!)			PAGE 11:- 10:- 11:- 11:- 11:- 11:- 11:- 11:-
WELL RISTORY	BEACH PETROLEUM	* CAMPBELL PT. CAMPBELL	YMER	+
Mancohan	10NA #1		March, 1988.	214
· · · · · · · · · · · · · · · · · · ·	GEARHART DRILLING	OTWAY BASIN	arch, 1988	
C) DALLING FLUID SERVITES C)	M. OLEJNICZAK	VICTORIA "	DA(3.70 FF 11 PRO	16 812 4 81.5 Cont. Cont.
SAIT WIES TAG WAS VIS OF DEPTH SIT OF STATE OF S	ANGLI RLOW TRAM AND ROATE OFFICE OFFI	ANI HTHS P4 M4 Pm	SALT ON CONCOUNT OF THE SECURITY OF YEST	
6.3 32 8.4 28 Drilled rathole and mouseho	6.3 32 8.4/28 219 2 2 2/3 9.5 N.C. Drilled rathole and mousehole with water. Soud in with water addit	N.C3 .4 - er adding KCl and lime.	4000 100 1 -	200 (4) (5) (50)
7.3 247 9.0152 Drilled Harl. Allowed visco	37 25 40 9.0 05ity to increase to casing poin	- 15 2 - 1 trio - ran 9 5/8"	2000 50 4 - - Casing.	
8.3 247	ng up.		-	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9.3 633 8.8 43 215 Drilled out with mud - Water mixture.	mixture. From 292 metres into sands	7.5 - .15 .4 - 12 sands changed to mud system.	20	
10.3 9/6 9.0 43 Dril ing. trip for bit.	1 !	10 - 13 1.6 - 1	900 40 4 -	40 50 5
11.3 1125 9.2 46	191 17 16 6 45 9.5 16.7	- 139. 6. -	1000 40 5 - 17	5 3 1 2 1 5 5 5 5 5 5 5 5 5
-, .	15 15 4 7	17.01 - 1.151 .71 - 1	900 40 6 - 15	120 11 1 11 11 11 11 11 1 1 1 680 57
1 1	Bit change. 16 15 32		900 40 6 ' - 14	138 12 1 1 1 1 1 2 1 1 1 1 1 1 892 49
	out breaks. Wiber trip. P.O.H. K. 18 12 8/15 7.2	17.2 - 3 9 - 1	900 40 6 - -	174 13 136 101 21 31 1 1 1 2336 2
1305!,	Lirculate out through choke raising wt to 3.5 ppg.	7.0 - .05 1.2 -	1100 180 16 1 - 1 - 1	14 1 4 4 1 1 1 1 1 238.7.
16.3 14142 9.3144		 6.4 - .15 1.3 -	1500 30 5 - 10	15 4 12 2 19 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17.3 1490 9.34 46	Lontinged drilling 46 191 114 13 6.22 9.0 6.8	- 11.11.	1050 60 5 - -	30 2
18.3 1490 9.3 46	Niper trip and 10ds.	9.5 7.5 - .15 1.5 -	1050 60 5 - -	17
19.3 1490 9.3 46	202 115 10 4 /22 9.5 7.5	7.5 - .15 1.5 -	1050 60 5 - 1 - 1	15 11 2 1 1 1 1 1 1 1 1 1 169 E.
20.3 1490 9.3 36 9.3 36	19. 1	- .3 1.6 -	1050 40 5 - -	12 3 1 1 1 1 1 1 1 1 1 1 1 506.6.
21.3 1140: Mainting 3.2 casing. 21.3 1140 Campiet 51. Completion bride - 1 / Ran and computed 51. Casing Wised completion bride	mpletion brine - / 11.5		105000	교 1
22.3 1480 9.3 Nippled up. Ran in with tub	19.3 11.5 11.5 1 1 1 1 1 1 1 1 1	ing to 9.3 ppg brine.		
	\vdash			

TOTAL FOR S HECD OSED 218 266 60 29 . 181 . 17 7 246 ^ /3 / 8 g. 7 7 <u>د</u> لو 23 4 3 ص 77 11/3/88 | 12 HECD USED BAL RECD 3 7 2% 33.8 د بو 5. 2 **%** <u>.</u> RECD. USED BAL 228 3 1 204 1 4 \$ \$ TONA N. 1 378 £ 87 25 39 9/3/88 RECO. USED -39 WELL 13 4 21, 264 222 7 j Z 27 CONTRACTOR GRAMMAT DRILLING RECD. 9 130 892 25 3 25 35 S 4 USED 4 RECD. BAL 398 139 L 1 240 10 54 3 5 9 25 RECD USED 20 + BEACH PETRULLIN 100lb. 139 25k, 28 15 BAL Sok 218 BIGARDONATE WEBS 25.
LIME LILIENDE 25/5 40 25kg 240 9 34 40 6 25 7 $\overline{\mathbf{c}}$ 7 500 LIND 25.5 25k 25/3 25/4 POTASSIUM CHIECLOR SORS 5 KWIE BRIL SUBA DSII Cmc (RHA) LIPA LAS DI -CIDE CAUSTIC SODA AML JIMY OPERATOR Perzsal POLYFAL MAGCOBAR MAGCOGEL SPLASENE PRODUCT RESINEX DATE XP -20

15 415 415 238 146 120 15 BAL RECD USED BAL 2 2 72 12 /3/22 RECD. USED 17 RECD. USED BAL 367 1 53 53 . Ž 16 /3 /2 & 397 WELL 347 787 اق Les CONTRACTOR GRARITART DEILING USED RECO 3,0 34 RECD. USED BAL. 'n 3 J. 2 t 6 2 35 25 168 9 14/3/88 BAL 525 7 8 705 USED 83 PECO SS SC Patrecum 50kg 208 BAL 173 CALCILLE CHERINE 2545 40 • 3 40 kg 23 6 34 40 K 25 ioc (b. 25 Kg LIND 25 L 56 254 Schum Sulphite Soky 205 L PATRISHUM CHLERON SOLY 205 25/4 BLARBINAR Lime -Revyfor INTHBITSE 343 Kulk DRIL DI. CIPR KWIE THIK Cont (Retty) Pire cor Ston Oth CAUSTIC SODA Peryanc OPERATOR MAGCOGEL MAGCOBAR DATE SPERSENE RESINEX SALT XP 20 SALZ

Banca

		`			-				<u>:</u> :	:	!		5	3									New York	Z I
			35/5/36	32		ā -	21/3/12	:	22	13/22		25/3/22		: d	24/3/22	ديد		18/	. 10	77	26/3/22		1014	1 HOH 1
	LINO	BAL	RECD. U	USED	BAL B	RECD. L	USED	BALR	95	USED BAL		CD USED	D BAL	RECO	_	BAL.	RECD		BAL	RECD	USED	BAL	RECO	USED
-	504	415	:		¥:2			415		4/5				!					<u> </u>					
	100 b 146	ـــــ د بو	-		7.6			134	!	134	ا بر						;				·····			•
	25k	20		ر د	22		c4;	22		7,								,			•	•		
XF-20 RESINEX						-	, -			i -	<u>.</u> .		:		·	:	. ,			·	•• ·••	• - · •		
																			•				,	
	224	25	-	3	7	-	*1	44		٠	6										•	•		
Seba Ash	Kok.	25	+	a	2.5			57		ત	,	•		<u> </u>	! !	<u> </u>			 L		†		• -	
BICARBOMATE.	tok,	23		٠	23		ď	23		'n		: : •		ļ -		<u> </u>	!			:		÷ · · · · · · · · · · · · · · · · · · ·	:	
Lime		38			38			32		 				-	· • · ~	<u> </u>	:		;		•		•	
CALCUUM CIVERIA 25 kg.		to.			.					ر. خ	ا - 	:			· ••• •• ••	-			· • · · · · · · · · · · · · · · · · · ·		· • ·			•
KWIK THIK 3	25K 11	162			79)		7)			4		:		-] 	1			:	1				
Perysal	25k 8	23	1	30			8			2	!	!	; 			-	!				:	- !	٠	
Paryens2		7	- .				2	אני		٤	!					•	,			•	.	- •	• .	•
Cmc. (FIN) . 2	25k 6	<u> </u>					٠			3	!		-	!	• • ·			 1		:	-;	•	•	
Petrissium Criscia sols		32			23.		35	a				!	<u> </u>	!	i						±.			
P. L - C.OR. 2		~	- :	_	2		~~				! !_ -		-	<u> </u>	.						<u>.</u>	+	-	
PIPE LAX	757		,				_		<u>_</u> _	; -	 		-	<u> </u>	- ,		:		:			:	- • ~-	
KWIK DRIL	26 9		÷	· • · · · · · · · · · · · · · · · · · ·			6			•			-	-	 			!	<u> </u>	-	÷		-	•
Sedium Suightize Soly	2 40			7				4	-	_		!		<u> </u> 	!			:	!	:	 	- - 		
SALT	36 200	او	_	7	200	160		v	57.	Š				<u> </u>	i i			!		!	- ;		<u>.</u>	
SALT	7 705	40	-	3	ئ	વ	77	2		2					<u> </u>		 		<u> </u>	:	} -			• •
INMBITGE 3C3 205L	15.	-		-					-		J	! :	 	<u> </u>	i 			-		- -	,		- .	• -
		+	+	+	-+	+																;	• · · · · · · · · · · · · · · · · · · ·	
	-	-	+	-	-	-				-											<u> </u>	r- :	•	•
-	1	+	+	+	-	-		-	-														 i	
_	-	_	_	_	_	_	_	_	_			-			+	+	-				-			

APPENDIX 4

VELOCITY SURVEY

WELL VELOCITY SURVEY

IONA NO. 1

PEP-108

VICTORIA

for

BEACH PETROLEUM N.L.

bу

VELOCITY DATA PTY. LTD.

Brisbane, Australia

April 5, 1988.

CONTENTS

				Page
SUMMARY	•••	• • •	• • •	1
GENERAL I	NFORMATION	• • •	• • •	1
EQUIPMENT	• • •	• • •	• • •	2
RECORDING	•••	• • •	• • •	3
PROCESSIN	G			
Elevat	ion Data	• • •	•••	3
Record	ed Data	• • •	• • •	4
	tion for Instru and Shot Offset		•••	4
Correc	tion to Datum	• • •	• • •.	4
Calibr	ation of Sonic	Log		
Met	hod	• • •	• • •	5
Res	ults	•••	• • •	5
Trace	Playouts	•••	•••	6 .,
Figures				
Figure	1	Well loca	ation map	
Figure	2	Shot loca	ation sketch	
Figure	3	Time-dep	th and veloc	ity curves
Figure	4	Trace pla	ayouts	
Tables				
Table	1	Time-dep	th values	
Enclosure	s			
	1.	Calculat	ion Sheets	
	2.	Trace Dis First Ar	splay and rival Plots	

IONA #1

BEACH PETROLEUM N.L.
SHOT POINT LOCATION SKETCH

SUMMARY

Velocity Data Pty. Ltd. conducted a velocity survey for Beach Petroleum N. L. in the Iona No.1 well, PEP-108 Vicoria. The date of the survey was March 18,1988.

The results of the survey, which are considered to be reliable, have been used to calibrate the sonic log.

Explosives were used as an energy source with shots being fired in the mud pit.

GENERAL INFORMATION

Name of Well

: Iona No. 1

Location (Figure 1)

: PEP-108 Victoria

Coordinates

: Latitude 038 34' 30.46"

Longitude 143 01 57.33"

Date of Survey

March 18, 1988.

Wireline Logging

Gearhart

Weather

Fine

Operational Base

Brisbane

Operator

G. Young

Client Representative

: A. Buffin

EQUIPMENT

Downhole Tool

Veldata Camlock 100 (90 mm)

Sensors:

6 HSI 4.5 Hz 215 ohm, high temperature (300 degrees F) detectors connected in series parallel. Frequency response 8-300 Hz within 3 dB.

Preamplifier:

48 dB fixed gain. Frequency response 5-200 Hz within 3 dB.

Reference Geophone

Mark Products L1 4.5 Hz

Recording Instrument

VDLS 11/10 software controlled digital recording system utilising SIE OPA-10 floating point amplifiers for digital recording and SIE OPA-4 amplifiers for analog presentation. The system includes a DEC LSI-11 CPU, twin cassette tape unit and printer.

RECORDING

Energy Source : Explosive; AN-60

Shot Location : Mud pit

Charge Size : 0.5 to 2 (125 gm) sticks

Average Shot Depth : 1.5 metres

Average Shot Offset : 24.0 metres

Recording Geometry : Figure 2

Shots were recorded on digital cassette tape and later transcribed to nine track tape (SEG-Y format) in Velocity Data's Brisbane centre. Printouts of the shots used are included with this report. (Enclosure 2)

The sample rate was 1 ms with 0.5 ms sampling over a 200 ms window encompassing the first arrivals. The scale of the graphic display varies with signal strength and is noted on each playout.

The times were picked from the printouts using the numerical value of the signal strength. (Enclosure 2)

PROCESSING

Elevation Data

Elevation of KB : 131.4 metres above sea level

Elevation of Ground : 126.5 metres above sea level

Elevation of Seismic Datum : Sea Level

Depth Surveyed : 1488.0 metres below KB

Total Depth : 1490.0 metres below KB

Depth of Casing : 243.5 metres below KB

Sonic Log Interval : 246.0 to 1483.3 metres below KB

PROCESSING

Recorded Data

Number of Shots Used : 28

Number of Levels Recorded : 22

Data Quality : Good

Noise Level : Low

Rejected Shots : 2

Correction for Instrument Delay and Shot Offset

The 'corrected' times shown on the calculation sheet have been obtained via:

- (i) Subtraction of the instrument delay (4 ms) from the recorded arrival times
- (ii) geometric correction for non-verticality of ray paths resulting from shot offset.
- (iii) shot static correction to correct for the depth of shot below ground level at the well head using a correction velocity of 750 m/sec
 - (iv) readdition of the instrument delay (4 ms).

The shot static correction velocity was determined from the surface geophone data.

Correction to Datum

The datum correction was determined directly by locking the tool at the datum and recording times from four different offsets. The datum correction used (84.0 msec) is the average of the corrected times for these shots.

PROCESSING

Calibration of Sonic Log - Method

Sonic times were adjusted to checkshot times using a linear correction of the sonic transit times.

These differences arise as the sonic tool measures the local velocity characteristics of the formation with a high frequency signal, whereas the downhole geophone records the bulk velocity character using a signal of significantly lower frequency.

Calibration of Sonic Log - Results (Enclosure 1)

The discrepancies between shot and sonic interval velocities were generally small. The largest adjustment was 55 us/metre on the interval 1235 to 1275 metres below KB.

In aggregate, the shot and sonic interval times differed by 0.2 ms over the logged portion of the well.

PROCESSING

Trace Playouts (Figure 4)

Figure 4A is a plot of all traces used. No filter or gain recovery has been applied.

Figure 4B is a plot to scale in depth and time of selected traces. No filter or gain recovery has been applied.

Figure 4C is a plot to scale in depth and time of selected traces with a $5~{\rm Hz}$ - $40~{\rm Hz}$ filter and a gain recovery function of t^2 applied.

Figure 4D is a plot of selected surface traces. No filter or gain recovery has been applied.

Wayne Mogg **Geophysicist.**

This is an enclosure indicator page.

The enclosure PE906650 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906650 has the following characteristics:

ITEM_BARCODE = PE906650
CONTAINER_BARCODE = PE902192

NAME = Shot Calculations, 1 of 2

BASIN = OTWAY PERMIT = PEP108

 $\mathtt{TYPE} = \mathtt{WELL}$

SUBTYPE = DIAGRAM

REMARKS =

DATE_CREATED = 18/03/88

DATE_RECEIVED = 15/12/88

 $W_NO = W970$

WELL_NAME = IONA-1

CONTRACTOR = VELOCITY DATA PTY LTD

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906651 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906651 has the following characteristics:

ITEM_BARCODE = PE906651
CONTAINER_BARCODE = PE902192

NAME = Shot Calculations, 2 of 2

BASIN = OTWAY PERMIT = PEP108

TYPE = WELL

SUBTYPE = DIAGRAM

REMARKS =

DATE_CREATED = 18/03/88 DATE_RECEIVED = 15/12/88

 $W_NO = W970$

WELL_NAME = IONA-1

CONTRACTOR = VELOCITY DATA PTY LTD

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page. The enclosure PE906652 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906652 has the following characteristics: ITEM_BARCODE = PE906652

CONTAINER_BARCODE = PE902192

NAME = Sonic Drift Data

BASIN = OTWAY

PERMIT = PEP108

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Sonic Drift Data, Appendix 4, Iona-1

REMARKS =

 $DATE_CREATED = 18/03/88$

DATE_RECEIVED = 15/12/88

 $W_NO = W970$

 $WELL_NAME = IONA-1$

CONTRACTOR = VELOCITY DATA PTY LTD

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906653 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906653 has the following characteristics:

ITEM_BARCODE = PE906653
CONTAINER_BARCODE = PE902192

NAME = Sonic Calibrations Data

BASIN = OTWAY PERMIT = PEP108

TYPE = WELL

SUBTYPE = DIAGRAM

REMARKS =

DATE_CREATED = 18/03/88 DATE_RECEIVED = 15/12/88

W_NO = W970 WELL_NAME = IONA-1

CONTRACTOR = VELOCITY DATA PTY LTD

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906654 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906654 has the following characteristics:

ITEM_BARCODE = PE906654
CONTAINER_BARCODE = PE902192

NAME = Time-Depth Curve

BASIN = OTWAY
PERMIT = PEP108
TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Time-Depth Curve, Appendix 4, Iona-1

REMARKS =

DATE_CREATED = 18/03/88 DATE_RECEIVED = 15/12/88

 $W_NO = W970$

 $WELL_NAME = IONA-1$

CONTRACTOR = VELOCITY DATA PTY LTD

CLIENT_OP_CO = BEACH PETROLEUM

SONSUM - WELL SONIC LOG SUMMARY PROGRAM;

File : IONAICS

Well name = IONA 1

PETROLEUM DIVISION

Los tupe = SONIC(CSC)

1 5 DEC 1988

THIS LOG HAS BEEN CHECKSHOT CORRECTED.

KB elevation 131.4 metres SRD elevation 150.0 metres Replacement velocity 1750.0 metres/s

Two-way offset time used ..= 0.3100 seconds: Time from SRD to top of sonic

2-WAY TIME FROM SRD seconds	DEPTH FROM SRD metres	DEPTH: FROM KB metres	INTERVAL VELOCITY metres/s	AVERAGE VELOCITY FROM SRD metres/s	REFLECTIVITY
0.312	264.0	245.4	1709.8	1749.7	-0.020115
0.314	265.6	247.0	1642.4	1749.1	
0.316	267.2	248.6	1603.0	1748.1	-0.012130
0.318	268.9	250.3	1626.7	1747.4	0.007342
0.320	270.5	251.9	1617.4	1746.6	-0.002865
0.322	272.2	253.6	1666.8	1746.1	0.015030 -0.013202
0.324	273.8	255.2	1623.4	1/45.3	
0.326	275.5	256.9	1682.0	1744.9	0.017728
0.328	277.1	258.5	1649.4		-0.009770
0.328	278.7	260.1	1638.7	1744.3	-0.003268
0.332	280.4	261.8		1743.7	-0.008159
0.334	282.1	263.5	1612.2	1742.9	0.038144
0.334	284.0		1740.0	1742.9	0.032064
0.338		265.4	1855.3	1743.6	0.009247
	285.8	267.2	1889.9	1744.4	-0.021371
0.340	287.7	269.1	1810.8	1744.8	-0.001679
0.342 0.344	289.5	270.9	1804.8	1745.2	0.023771
	291.4	272+8	1892.7	1746.0	-0.008243
0.346	293.2	274.6	1861.7	1746.7	0.035468
0.348	295.2	276.6	1998.6	1/48.1	0.019458
0.350	297.3	278.7	2078.0	1750.0	-0.017390
0.352	299.3	280.7	2006.9	1751.5	-0.003945
0.354	301.3	282.7	1991.2	1752.8	0.046626
0.356	303.5	284.9	2185.9	1755.3	0.016605
0.358	305.7	287.1	2259.7	1758.1	0.063674
0.360	308.3	289.7	2567.1	1762.6	-0.078499
0.362	310.5	291.9	2193.4	1765.0	0.055360
0.364	312.9	294.3	2450.5	1768.7	0.042859
0.366	315.6	297.0	2669.9	1773.7	-0.035274
0.368	318.1	299.5	2488.0	1777.5	-0.079478
0.370	320.2	301.6	2121.6	1779.4	-0.012118
0.372	322.3	303.7	2070.8	1781.0	-0.007461
0.374	324.3	305.7	2040.1	1782.3	0.010201
0.376	326.4	307.8	2082.2	1783.9	-0.084988
0.378	328.2	309.6	1756.0	1783.8	0.089681
0.380	330.3	311.7	2102.0	1785.5	0.034333
0.382	332.5	313.9	2251.5	1787.9	-0.061229
0.384	334.5	315.9	1991.7	1789.0	-0.002626
0.386	336.5	317.9	1981.2	1790.0	-0.004853
0.388	338.5	319.9	1962.1	1790.9	0.019497
0.390	340.5	321.9	2040.1	1792.1	-0.009165
		-			

0.392	ARTO E	7 m . m	4.6.22			
	342.5	323.9			-0.00100#	
0.394	344.5	325.9	1997.0	1794.2	0.006653	
0.396	345.5	327.9	2023.8	1795.4	0.014936	
0.398	348.6	330.0	2083.1	1796.8	0.077143	•
0.400	351.0	332.4	2431.3	1800.0	-0.026342	•
0.402	353.3	334.7	2306.5	1802.5		
0.404	355.4	336.8	2101.0			
0.406	357.6			1804.0	0.003584	
		339.0	2116.1			
0.408	359.7	341.1	2102.7			
0.410	361.8	343.2	2157.6	1808.7	-0.012475	
0.412	363.9	345.3	2104.5	1810.2		
0.414	366.0	347.4			0.01/163	
0.416	368.1	349.5		1813.0		
0.418	370.3	351.7	2165.0			
0.420	372.4			1814.7		
		353.8	2099.1	1816.0		
0.422	374.5	355.9	2089.7	1817.3		
0.424	376.6	358.0	2073.3	1818.5	0.000472	
0.426	378.6	360.0	2075.3	1819.8	0.007301	
0.428	380.8	362.2	2105.8	1821.1	7.0.026643	
0.430	383.0	364.4	2221.1	1823.0	-0.010326	
0.432	385.1	366.5				
0.434	387.3		2175.7	1824.6	-0.011039	
		368.7	2128.2	1826.0	-0.018285	
0.436	389.3	370.7	2051.8	1827.0	0.000540	
0.438	391.4	372.8	2054.0	1828.1	0.066197	
0.440	393.7	375.1	2345.2	1830.4	-0.041256	
0.442	395.9	377.3	2159.4	1831.9	-0.102027	
0.444	397.6	379.0	1759.5	1831.6	0.073634	
0.446	399.7	381.1	2039.2			
0.448				1832.5	0.028117	
	401.8	383.2	2157.2	1833.9	0.026200	
0.450	404.1	385.5	2273.3	1835.9	-0.025130	
0.452	406.3	387.7	2161.9	1837.3	-0.007486	
0.454	408.4	389.8	2129.7	1838.6	-0.022602	
0.456	910.4	391.8	2035.6	1839.5	-0.038829	
0.458	412.3	393.7	1883.4	1839.7	0.071568	
0.460	414.5	395.9	2173.8			
0.462	416.6			1841.1	-0.006984	
0.464		398.0	2143.6	1842.5	-0.002304	
	418.8	400.2	2133.8	1843.7	-0.003014	
0.466		402.3	2121.0	1844.9	-0.006824	
0.468	423.0	404.4	2092.2	1845.0	0.025148	
0.470	425.2	406.6	2200.1	1847.5	0.027677	
0.472	427.5		2325.4	1849.5	-0.029401	
0.474		411.1	2192.6	1850.9	-0.030559	
0.478			2062.5	1851.8	0.040597	
			2237.1	1853.4	0.040334	
0.480			2425.1	1855.8	-0.011539	
0.482		420.2	2369.8	1857.9	-0.029594	
0.484			2233.6	1859.5	-0.001506	
0.486	443.3	424.7	2226.9	1861.0	-0.003032	
0.488		426.9	2213.4	1862.5	-0.001380	
0.490	447.7	429+1	2206.4	1863.9	-0.000425	
0.492	449.9		2203.6			
0.494	452.1			1865.2	0.005295	
		433.5	2227.1	1866.7	0.002720	
0.496	454.4	435.8	2239.3	1868.2	0.008027	
0.498	456.6	438.0	2275.5	1869.8	-0.034147	
0.500	458.8	440.2	2125.2	1870+9=	0.013904	
0.502	460.9	442.3	2185.2	1872.1	-0.010755	
0.504	463.1		2138.7	1873.2		
0.506					0.003591	
	465.2	446.6	2154.1	1874.3	0.028008	
0.508	467.5		22/8.2	1875.9	0.018655	
0.510	469.4	451.3	2364.8	1877.8	-0.039271	

•

1 - 1

0.512	472.1	453.5	2186.1	1879.0	-0.013379
0.514	474.2	455.6	2127.5	1880.0	0.009084
0.516	476.4	457.8	2166.5	1881.1	0.029136
0.518	478.7	460.1	2296.6	1882.7	-0.009650
0.520	480.9	462.3	2252.7	1884.1	0.002068
		464.6	2262.0	1885.6	0.006743
0.522	483+2				0.008238
0.524	485.5	466.9	2293.6	1887.1	
0.526	487.8	469.2	2331.7	1888.8	-0.002615
0.528	490.1	4/1.5	2319.6	1890.4	-0.034547
0.530	492.3	473.7	2164.7	1891.5	0.022217
0.532	494.5	475.9	2263.0	1892.9	0.003352
0.534	496.8	478.2	2278.3	1894.3	-0.027228
0.536	499.0	480 + 4	2157.5	1895.3	0.040929
0.538	501.3	482.7	2341.6	1896.9	0.003631
0.540	503.7	485.1	2358.7	1898.7	0.001234
0.512	506.0	487.4	2364.5	1900.4	0.017210
0.544	508.5	489.9	2447.3	1902.4	0.068022
0.546	511.3	492.7	2804.6	1905.7	-0.060012
0.548	513.8	495.2	2487.0	1907.8	-0.043291
0.550	516.1	497.5	2280.6	1909.2	0.019789
0.552	518.4	499.8	2372.7	1910.8	0.003652
0.554	520.8	502.2	2390.1	1912.6	-0.015666
0.556	523.1	504.5	2316.4	1914.0	-0.005893
	525.4	504.8	2289.2	1915.4	0.016/36
0.558	527.8	509.2	2367.2	1917.0	0.019281
0.560	530.3	511.7	2460.2	1918.9	-0.0201/4
0.562		514.0	2362.9	1920.5	0.067544
0.564	532.6	514.7	2705.8	1923.3	-0.050233
0.566	535.3			1925.1	0.004706
0.568	537.8	519.2	2447.0	1927.0	-0.012905
0.570	540.2	521+6	2470.1	1928.7	0.001872
0.572	542.6	524.0	2407.2		0.011845
0.574	545.1	526.5	2416.2	1930+4	-0.019456
0.576	547.5	528.9	2474.1	1932.3	-0.0017938
0.578	549.9	531.3	2379.7	1933.8	
0.580	552.3	533.7	2371.0	1935 + 4	-0.046236
0.582	554.5	535.9	2161.2	1936+1	-0.015429
0.584	556.5	537.9	2095.6	1936.7	-0.017409
0.586	558.6	540.0	2023.8	1937.0	0.051054
0.588	560.8	542.2	2241.6	1938.0	-0.044208
0.590	562.9	544.3	2051.8	1938.4	0.068609
0.592	565.2	546.6	2354.1	1939.8	0.011816
0.594	567.6	549.0	2410.4	1941.4	-0.008638
0.596	570. 0 4	551.4	2369.1	1942.8	0.024390
0.598	572.5	553.9	2487.6	1944.6	0.011829
0.600	575.0	556.4	2547.1	1946.6	-0.003585
0.602	577.6	559+0	2528.9	1948.6	-0.006295
0.604	580.1	561.5	2497.3	1950.4	-0.006320
0.303	582.5	563.9	2465.9	1952.1	0.009710
0.608	585.0	566.4	2514.3	1953.9	-0.002829
0.610	587.5	568.9	2500.1	1955.7	-0.006736
0.612	590.0	571.4	2466.6	1957.4	-0.006006
0.514	592.4	573.8	2437.2	1959.0	-0.001193
0.616	594.9	576.3	2431.4	1960.5	-0.015249
		578.6	2358.3	1961.8	-0.011889
0.618	597.2	580.9	2302.9	1962.9	-0.008202
0.620	599.5			1763.9	0.005141
0.622	501.8	583+2 808 8	2265.4	1964.9	0.039206
0.624	304.1	585.5	2288.8		-0.002262
0.328	505.6	588.0	2475+6	1966.5	
0.623	609.0	390.4	2464.5	1968.1	-0.021285
1.50	511.1	592.3	2331.7	1767,4	0.031276

					-1 Magazza	
0.632	613.9	595.3	2514.2	1971.1	-0.000085	
0.634	616.4	597.8	2513.8	1972.8	-0.013005	
0.636	618.9	600.3	2449.3	1974.3	-0.009913	
0.638	621.3	602.7	2401.2	1975.6	-0.015609	
0.640	623.6	605.0	2327.4	1976.7	0.010151	
0.642	626.0	607.4	2375+1	1978.0	0.025191	
0.644	628.5	609.9	2497.9	1979.6	0.043393	
0.646	631.2	612.6	2724.5	1981.9	-0.003385	
0.648	633.9	615.3	2706.1	1984.1	0.004104	
0.650 0.652	636×6	618.0	2728.4	1986.4	-0.008987	
0.654	639.3	620.7	2679.8	1988.6	0.021724	
0.656	642.1	623.5	2798+8	1991.0	0.048058	
0.658	645.2	526+6	3081.4	1994.4	0.033211	
0.660	648.5 651.7	629.9	3293.1	1998.3	-0.005015	
0.662	654.Y	633.1	3260.2	2002.1	-0.016765	
0.664	658.1	636.3 639.5	3152.7	2005.6	0.005694	
0.666	661.0	642.4	3188.8 2929.5	2009.2 2011.9	-0.042381 0.003384	
0.668	664.0	645.4	2949.4	2011.7	-0.022600	
0.670	666.8	648.2	2819.1	2017.1	-0.008958	
0.672	669+6	651.0	2769.0	2017.1	-0.008738	
0.674	672.2	653.6	2600.3	2021.1	0.020622	
0.676	674.9	656.3	2709.8	2023.1	0.003517	
0.678	677+6	459.0	2728.9	2025.2	-0.004084	
0.680	680.3	661.7	2706.7	2027.2	-0.046791	
0.682	682.8	664.2	2464.7	2028.5	0.015/97	
0.684	685.3	666.7	2543.9	2030.0	0.006017	
0.686	687 . 9	669.3	2574.7	2031.6	0.017224	
0.688	690.5	671.9	2664.9	2033.5	-0.014236	
0.690	693.1	674.5	2590.1	2035.1	0.000020	
0.692	695.7	677.1	2590.2	2036.7	-0.026161	
0.694	698.2	679.6	2458.1	2037.9	0.007107	
0.696	700.7	682.1	2493.3	2039.2	0.005258	
0.698	703.2	684.6	2519.7	2040.6	-0.005586	
0.700	705.7	687.1	2491.7	2041.9	0.085472	
0.702	708.7	690.1	2963.4	2044.5	-0.047927	
0.704	/11.3	692.7	2692.3	2046.3	-0.008492	
0.706	714.0	695.4	2647.0	2048.0	-0.010394	
0.708	716.6	698.0	2592.5	2049+6	-0.032412	
0.710 0.712	719.0	700+4	2429.8	2050.6	0.052504	
	721.7	703.1	2699.0	2052.5	-0.023125	
0.714 0.716	724.3 726.8	705.7	2577.0	2053.9	-0.011759	
0.718	729.2	708.2 710.6	2517.1	2055.2	-0.019321	
0.720	732.1	713.5	2421.7 2914.5	2056.2	0.092354	
0.722	734.7	716.1	2519.7	2058.6 2059.9	-0.072658	
0.724	737.3	718.7	2597.2	2007.7	0.015143 -0.030799	
0.726	737.7	721.1	2442.0	2062.4	-0.005160	
0.728	742.1	723.5	2416.9	2063.4	0.015/43	
0.730	744.6	726.0	2494.2	2064.6	-0.001133	
0.732	747.1	728.5	2488.6	2065.7	-0.017068	
0.734	749.5	730.9	2405.0	2066.7	0.026948	
0.736	752+0	733.4	2538+3	2058.0	0.029472	
0.738	754.7	736.1	2692.4	2069.6	-0.020262	
0.740	757.3	738.7	2585.5	2071.0	-0.059721	
0.742	759.6	741.0	2294.1	2071.6	-0.011079	
0.744	761.9	743.3	2243.8	2072.1	0.043/10	
0.746	764.3	745.7	2448.9	2073.1	0.005430	
0.748	766.8	748.2	2490.5	2074.2	-0.007798	
0.750	769.3	750.7	2452.0	2075.2	0.002518	
				-		

0.752	771.7	753.1	2464.4	2076.3	-0.001564	
0.754	774.2	755.6	2456.2	2077.3	0.001887	
0.756	776.6	759.0				
			2465.5	2078.3	-0.014669	
0.758	779.0	760.4	2394.2	2079.1	0.001553	
0.760	781.4	762.8	2401.6	2080.0	0.021186	
0.762	783.9	765.3	2505.6	2081.1	-0.016658	
0.764	786.4	767.8	2423.4	2082.0	-0.004155	
0.765	789.8	770.2				
			2403.4	2082.8	0.016044	
0.768	791.2	772.6	2481.8	2083.9	-0.003578	
0.770	793.7	775.1	2464.1	2084.9	0.009532	
0.772	796.2	777.6	2511.5	2086.0	-0.010050	
0.774	798.7	780.1	2461.5	2086.9	0.031689	
0.776	801.3	782.7	2622.6	2088.3	0.005108	
0.778	804.0	785.4	2649.6	2089.8	-0.027700	
0.780	806.5	787.9	2506.7	2090.8	-0.031747	
0.782	808.8	790.2	2352.5	2091.5	0.007150	
0.784	811.2	792.6	2336.3	2092.3		
					0.011490	
0.786	813.6	795.0	2441.8	2093.1	-0.003866	
0.738	816.1	797.5	2423.0			
				2094.0	0.067946	
0.790	813.8	800.2	2776.3	2095.7	-0.042015	
0.792						
	821.4	802.8	2552.4	2096.9	-0.004628	
0.794	823.9	805.3	2528+9	2098.0	0.003319	
0.796	826.5	807.9	2545.7	2099.1	-0.014928	
0.798	828.9	810.3	2470.8	2100.0	0.00/083	
0.300	831.4	812.8	2506.1	2101.0	0.011253	
0.802	834.0	815.4	2565.7	2102.2	-0.015898	
0.804	336.5	817.9	2485.4	2103.1	0.002374	
0.804	837.0	820.4	2497.2	2104.1	0.010531	
808.0	341.5	822.9	2550.9	2105.2	0.017237	
0.910	844.2	825.6	2640.4	2106.5	0.017298	
0.812	946.9	828.3				
			2/33.3	2108.1	-0.020372	
0.314	849.5	830.9	2624.2	2109.4	-0.020525	
0.813	852.1	833.5	2518.6	2110.4		
					0.036717	
Ü.318	854.8	836+2	2710.6	2111.8	-0.047645	
0.820	357.2	838.6	2464.1	2112.7	0.013/09	
0.822	859.8	841.2	2532.6	2113.7	0.007770	
0.824	862.3	843.7	2572.3	211148	-0.004112	
0.825	864.9	846.3	2551.2	2115.9	-0.003854	
0.828	867.4	848.8	2531.6	2116.9	0.024166	
0.830	870.1	051 5				
0.832	U, V 1 1	851.5	2657.0	2118.2	-0.020815	
				2118.2	-0.020815	
	872.6	854.0	2548.6	2118.2 2119.2	-0.020815 0.014964	
0.834				2118.2	-0.020815	
0.834	872.6 875.3	854.0 856.7	2548.6 2626.1	2118.2 2119.2 2120.4	-0.020815 0.014944 0.000219	
0.834 0.836	872.6 875.3 877.9	854.0 856.7 859.3	2548.6 2626.1 2627.2	2118.2 2119.2 2120.4 2121.6	-0.020815 0.014964 0.000219 -0.007028	
0.834	872.6 875.3	854.0 856.7	2548.6 2626.1	2118.2 2119.2 2120.4	-0.020815 0.014944 0.000219	
0.834 0.834 0.838	872.6 875.3 877.9 880.5	854.0 856.7 859.3 861.9	2548.6 2626.1 2627.2 2590.5	2118.2 2119.2 2120.4 2121.6 2122.8	-0.020815 0.014964 0.000219 -0.007028 -0.008621	
0.834 0.836 0.938 0.840	872.6 875.3 877.9 880.5 883.0	854.0 856.7 859.3 861.9 864.4	2548.6 2626.1 2627.2 2590.5 2546.3	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265	
0.834 0.834 0.838	872.6 875.3 877.9 880.5	854.0 856.7 859.3 861.9	2548.6 2626.1 2627.2 2590.5	2118.2 2119.2 2120.4 2121.6 2122.8	-0.020815 0.014964 0.000219 -0.007028 -0.008621	
0.834 0.836 0.938 0.840 0.342	972.6 875.3 877.9 880.5 983.0 885.6	854.0 856.7 859.3 861.9 864.4 867.0	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388	
0.834 0.836 0.938 0.840 0.342 0.844	872.6 875.3 877.9 880.5 883.0 885.6 888.2	854.0 856.7 859.3 861.9 864.4 867.0 869.6	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7	2118.2 2119.2 2120.4 2121.6 2122.8 2123.3 2124.9 2126.0	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625	
0.834 0.836 0.938 0.840 0.342	972.6 875.3 877.9 880.5 983.0 885.6	854.0 856.7 859.3 861.9 864.4 867.0	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388	
0.834 0.836 0.838 0.840 0.842 0.844	872.6 875.3 877.9 880.5 883.0 885.6 888.2	854.0 856.7 859.3 861.9 864.4 867.0 869.6 872.2	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254	
0.834 0.836 0.838 0.840 0.842 0.844 0.946	872.6 875.3 877.9 880.5 883.0 885.6 889.2 890.8 893.8	854.0 856.7 859.3 861.9 864.4 867.0 869.6 872.2 872.2	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750	
0.834 0.836 0.938 0.340 0.342 0.844 0.946 0.848	872.6 875.3 877.9 880.5 883.0 885.6 888.2 890.8 893.8	854.0 856.7 859.3 861.9 864.4 867.0 869.6 872.2	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141	
0.834 0.836 0.938 0.340 0.342 0.844 0.946 0.848	872.6 875.3 877.9 880.5 883.0 885.6 888.2 890.8 893.8	854.0 856.7 859.3 861.9 864.4 867.0 869.6 872.2 875.2	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141	
0.834 0.836 0.838 0.840 0.842 0.844 0.846 0.850 0.852	972.6 975.3 977.9 980.5 983.0 985.6 988.2 890.8 993.8 996.4 999.3	854.0 856.7 859.3 861.9 864.4 867.0 869.6 872.2 875.2 877.8 880.7	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643	
0.834 0.836 0.838 0.840 0.842 0.844 0.848 0.850 0.852 0.854	972.6 875.3 977.9 880.5 983.0 885.6 988.2 890.8 993.8 896.4 999.3	854.0 856.7 859.3 861.9 864.4 867.0 849.6 872.2 877.8 880.7 883.5	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926	
0.834 0.836 0.838 0.840 0.842 0.844 0.848 0.850 0.852 0.854	972.6 875.3 977.9 880.5 983.0 885.6 988.2 890.8 993.8 896.4 999.3	854.0 856.7 859.3 861.9 864.4 867.0 849.6 872.2 877.8 880.7 883.5	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926	
0.834 0.836 0.838 0.840 0.842 0.844 0.946 0.848 0.850 0.852 0.854	972.6 875.3 877.9 880.5 983.0 885.6 989.2 890.8 993.8 896.4 999.3 902.1	854.0 856.7 859.3 861.9 864.4 867.0 872.2 872.2 875.2 875.2 875.8	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2738.2	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2124.9 2127.2 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006425 0.054254 -0.040750 0.026141 -0.008643 -0.087925 0.062028	
0.834 0.836 0.838 0.840 0.342 0.844 0.846 0.850 0.852 0.854 0.856 0.858	872.6 875.3 877.9 880.5 883.0 885.6 888.2 890.8 893.8 896.4 899.3 902.1 904.4	854.0 856.7 859.3 861.9 864.4 867.0 872.2 877.8 873.5 883.5 883.5	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2338.2 2647.5	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.006587	
0.834 0.836 0.838 0.840 0.842 0.844 0.946 0.848 0.850 0.852 0.854	972.6 875.3 877.9 880.5 983.0 885.6 989.2 890.8 993.8 896.4 999.3 902.1	854.0 856.7 859.3 861.9 864.4 867.0 872.2 872.2 875.2 875.2 875.8	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2738.2	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2124.9 2127.2 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006425 0.054254 -0.040750 0.026141 -0.008643 -0.087925 0.062028	
0.834 0.836 0.838 0.840 0.842 0.844 0.848 0.850 0.852 0.854 0.858 0.858	972.6 975.3 977.9 980.5 983.0 985.6 985.6 993.8 993.8 994.4 997.1 907.1 909.7	854.0 856.7 859.3 861.9 864.4 867.0 869.6 872.2 877.8 890.7 883.5 885.8 885.8	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2738.2 2647.5 2612.8	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3 2136.4	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.006587 -0.000456	
0.834 0.838 0.838 0.840 0.842 0.844 0.848 0.850 0.852 0.854 0.858 0.858 0.858	972.6 975.3 977.9 880.5 983.0 885.6 988.2 890.8 993.8 994.4 902.1 904.4 907.1 907.1	854.0 856.7 859.3 861.9 864.4 867.0 849.6 872.2 877.8 8873.7 883.5 885.8 8891.1 893.7	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2338.2 2647.5 2612.8 2610.5	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3 2136.4 2137.5	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.006587 -0.000456 -0.026897	
0.834 0.836 0.838 0.840 0.842 0.844 0.848 0.850 0.852 0.854 0.858 0.858	972.6 975.3 977.9 980.5 983.0 985.6 985.6 993.8 993.8 994.4 997.1 907.1 909.7	854.0 856.7 859.3 861.9 864.4 867.0 869.6 872.2 877.8 890.7 883.5 885.8 885.8	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2738.2 2647.5 2612.8	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3 2136.4	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.006587 -0.000456 -0.026897	
0.834 0.836 0.838 0.840 0.842 0.844 0.848 0.850 0.852 0.854 0.858 0.858 0.862 0.862	972.6 875.9 880.5 883.0 885.6 889.2 890.8 890.8 890.8 993.4 997.1 907.1 907.1 907.1 907.3 914.8	854.0 856.7 859.3 861.9 864.4 867.0 872.2 877.8 8875.8 883.8 883.8 891.1 893.2	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2338.2 2647.5 2612.8 2610.5 2473.7	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3 2136.4 2137.5 2138.2	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.062028 -0.004566 -0.026897 0.008883	
0.834 0.836 0.838 0.840 0.842 0.844 0.846 0.850 0.854 0.856 0.856 0.864 0.864	872.6 875.9 880.5 883.0 885.6 885.2 890.8 893.8 896.3 902.1 904.4 907.1 907.1 907.3	854.0 856.3 859.3 861.9 864.4 867.6 872.2 873.2 883.5 883.5 885.5 893.7 893.7 893.7	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2738.2 2647.5 2612.8 2610.5 2473.7 2518.1	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2124.9 2127.2 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3 2136.4 2137.5 2138.2 2139.1	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006425 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.062028 -0.006587 -0.00456 -0.026897 0.008883 -0.013034	
0.834 0.836 0.838 0.840 0.842 0.844 0.848 0.850 0.852 0.854 0.858 0.858 0.862 0.862	972.6 875.9 880.5 883.0 885.6 889.2 890.8 890.8 890.8 993.4 997.1 907.1 907.1 907.1 907.3 914.8	854.0 856.7 859.3 861.9 864.4 867.0 872.2 877.8 8875.8 883.8 883.8 891.1 893.2	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2338.2 2647.5 2612.8 2610.5 2473.7	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2126.0 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3 2136.4 2137.5 2138.2	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006625 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.062028 -0.004566 -0.026897 0.008883	
0.834 0.836 0.838 0.840 0.842 0.844 0.846 0.850 0.854 0.856 0.856 0.864 0.864	872.6 875.9 880.5 883.0 885.6 885.2 890.8 893.8 896.3 902.1 904.4 907.1 907.1 907.3	854.0 856.3 859.3 861.9 864.4 867.6 872.2 873.2 883.5 883.5 885.5 893.7 893.7 893.7	2548.6 2626.1 2627.2 2590.5 2546.3 2604.3 2586.7 2621.2 2921.9 2693.1 2837.7 2789.1 2738.2 2647.5 2612.8 2610.5 2473.7 2518.1	2118.2 2119.2 2120.4 2121.6 2122.8 2123.8 2124.9 2124.9 2127.2 2127.2 2129.1 2130.4 2132.0 2133.6 2134.1 2135.3 2136.4 2137.5 2138.2 2139.1	-0.020815 0.014964 0.000219 -0.007028 -0.008621 0.011265 -0.003388 0.006425 0.054254 -0.040750 0.026141 -0.008643 -0.087926 0.062028 -0.062028 -0.006587 -0.00456 -0.026897 0.008883 -0.013034	

•

0.872	924.6	905.0	2968.4	2141.2	-0.003858
0.874	927.1	908.5	2450.4	2141.9	0.004548
0.876	929.5	910.9	2472.8	2142.7	-0.025523
0.878	931.9	913.3	2349.7	2143.2	-0.028249
0.880	934.1	915.5	2220.6	2143.3	0.032628
0.882	936.5	917.9	2370.4	2143.9	0.026108
0.884	939.0	920.4	2497.5	2144.7	0.001306
68840	941.5	922.9	2504.0	2145.5	-0.006363
0.688	944.0	925.4	2472.4	2196.2	-0.015152
0.890	946.4	927.8	2398.6	2146.8	0.014000
0.892	Y48.8	930.2	2466.7	2147.5	-0.011463
0.894	951.2	932.6	2410.8	2148.1	-0.006905
0.896	953.6	935.0	2377.7	2148.6	-0.010211
0.898	955.9	937.3	2329.6	2149.0	0.007914
0.900	958.3	939.7	2366.8	2149.5	0.045765
0.902	960.4	942.3	2593.8	2150.5	-0.029959
0.904	963.3	944.7	2442.9	2151.1	-0.020307
0.906	965.7	947.1	2345.7	2151.5	5.0.002828
0.908	968.0	999.4	2359.0	2152.0	0.033195
0.910	970.6	952.0	2521.0	2152.8	0.015650
0.912	973.2	954.6	2601.1	2153.8	0.009924
0.514	975.8	957.2	2653.3	2154.9	-0.003558
0.916	978.5	959.9	2634.5	2155.9	-0.032851
0.918	980.9	962.3	2466.9	2156.6	0.022622
0.920	Y83.5	964.9	2581.1	2157.5	0.000871
0.922	986.1	96715	2585.6	2158.5	-0.000037
0.924	988.7	970:1	2585.4	2159.4	-0.012381
0.926	991.2	972.6	2522.2	2160.2	0.066830
0.928	994.1	975.5	2883.4	2161.7	-0.045062
0.930	996.7	978.1	2634.8	2162.7	0.003383
0.932	999.4	980.8	2652.6	2163.8	0.069565
0.934	1002.4	483.8	3049.3	2165.7	-0.070373
0.936	1005.1	986.5	2648.3	2166.7	-0.021152
0.938	1007.6	989 . 0	2538.6	2167.5	0.031678
0.940	1010.3	991.7	2704.7	2168.7	0.041932
0.942	1013.2	494.6	2941.5	2170.3	-0.046435
0.944	1015.9	997.3	2680.4	2171.4	-0.011413
0.946	1018.5	999.9	2619.9	2172.3	0.064481
0.948	1021.5	1002.9	2981.1	21/4.0	-0.049420
0.950	1024.2	1005.6	2700.3	2175.1	-0.006748
0.952	1026.9	1008.3	2664.1	2176.2	0.034307
0.954	1029.7	1011.1	2853+4	2177.6	-0.021090
0.956	1032.5	1013.9	2735.5	2178.8	0.046189
0.958	1035.5	1016.9	3000.5	2180.5	0.019201
0.960	1038.6	1020.0	3118.0	2182.4	-0.06/206
0.962	1041.3	1022.7	2725.3	2183.6	-0.004467
0.964	1044.0	1025.4	2701.0	2184.6	0.034101
0.966	1046.9	1028.3	2891.7	2186.1	-0.006562
0.968 0.970	1049.8	1031.2	2854.0	2187.5	-0.038245
0.972	1052.4	1033.8	2643.8	2188.4	0.026149
0.972	1055.2	1036.6	2785.7	2189+6	0.030251
0.976	1058.2 1061.1	1039.6	2959.5	2191.2	0.001071
0.978	1064.1	1042.5 1045.5	2965.9	2192.8	-0.008688
0.776	1067.0		2926.5	2194.3	0.003835
0.780	1067.0	1048.4	2949.0	2195.9	-0.005798
0.982		1051.3	2913.9	2197.3	-0.021188
0.984	1072.7	1054.1	2792.9	2198.5	-0.046939
0.788	1075.3	1056.7	2542.5	2199.2	0.045004
	1078.0	1059.4	2782.1	2200.4	-0.038625
0.990	1080.6	1062.0	2575.2	2201.2	0.017518

0.992	1083.3	1064.7	2667.0	2202.1	0.022315	
0.994	1086.1	1067.5	2288.8	2203.3	0.094075	
A 004	11/00 4	1070 0	7740 0	220010	0.0940/5 -0.083611	
0 + 7 7 0	100714	1070+0	3300+0	2293.0	-0.083811	
0.498	1092.3	10/3.7	2848.2	2206.9	-0.006548	
1.000	1095.1	1076.5	2811.2	2208.1	0.023015	
1.002	1098.0	1079.4	2943.6	2209.4	-0.003183	
1 003	11010	40000	131313 0 13	0044 6	0.000100	
1+004	1101.0	1002+4	2729+7	2211+0	-0.011522	
1. + 906	1103.8	1085.2	2858.3	2212.3	0.001305	
1.008	1106.7	1088.1	2965.8	2213.6	0.011133	
1.010	1109.4	1091.0	2930.3	2215.6	0.010954	
1 010	4 4 4 4 7 7	4.000	2700.0	13/14/	0.010730	
1.012	1112.6	1074.0	2775+2	2210.6	-0.003383	
1.014	1115.6	1097.0	2962.1	2218.0	0.002195	
1.016	1118.5	1099.9	2975.1	2219.5	-0.005485	
1 010	1101 5	1109 9	9949 7	2226 0 .	-0.001774	
1.010		11/21/	iii 7 ~ f iii 4 7		-0.001770	
1.020	1124.4	1105.8	2732.2	2222+3	-0.003353	
1.022	1127.3	1108.7	2912.6	2223.7	-0.001/41	
1.024	1130.2	1111.5	2902.4	2225.0	-0.003335	
1.024	1177.1	1114.5	2977.3	2224.3	-0.003007	
4 0.00	4 4 7 1 4	4447 4		2000	-0100000	
1.028	1135+0	111/+4	2850+1	2227.5	-0.002584	
1.030	1138.8	1120.2	2845.5	2228.7	0.001241	
1.032	1141.7	1123.1	2852.6	2229.9	-0.003466	
1.034	1144.5	1105.0	0070.0	2271.1	-0.010991	
1 1 2 2 2 2	11440	112017			- O + O 1 O 7 L. 1	
1.036	114/+3	1128.7	2//1+/	2232+1	-0.01308/	
1.038	1150.0	1131.4	2694.7	2233.0	0.012368	
1.040	1152.7	1134.1	2762.2	2234.0	0.001706	
1.047	1155.5	1134.9	2771.6	9938.1	0.002040	
1 0 1 2	1150 /	1170 7	111147 6	007/ 0	0.007.515	
1 + 0 4 4	1179+2	113737	2010+7	2430+4	0.044199	
1.046	1161.4	1142.8	3070.8	2237.8	-0.064121	
1.043	1164.1	1145.5	2700.7	2238.7	-0.001394	
1.050	1166.8	1148.2	2692.1	2239.5	0.022315 0.094075 -0.083611 -0.006548 0.023015 -0.003183 -0.011522 0.001305 0.011133 0.010956 -0.005363 0.002195 -0.005485 -0.001776 -0.003363 -0.001741 -0.003355 -0.003007 -0.002564 0.001241 -0.003466 -0.010921 -0.014087 0.012368 0.001706 0.007040 0.044188 -0.064121 -0.004396 0.008849 0.052461 -0.006205 -0.021204 0.030464	
1 050	1140 5	1150 0	2740 2	2240 5	0.052441	
1+00%	110710	1130 • 7	2740.2	2270+J	0+00,2761	
1.054	11/2+6	1154.0	3043.6	2242+0	-0.006205	
1.056	1175.6	1157.0	3006.1	2243.4	-0.021204	
1.058	1178.5	1159.9	2881.2	2244.6	0.030404 -0.021538	
1.040	1191.5	1142.9	3042.0	2244.7	-0.021539	
1.000	1101+0	4472	000210	25 / 10 + 25 /5 / 10 + 25	A 6 6 4 6 6 6	
	1.134.4	1190.8	2732.7	2247.5	-0.041802	
1.064	1137.1	1168.5	2697.6	2248.3	-0.00/101	
1.000	1189.8	1171.2	2659.2	2249.1	-0.011469	
1.068	1192.4	1173.8	2598.9	2249.8	-0.001220	
					_	·
1.070	1195.0	1176.4	2592.6	2250.4	0.042526	
1.072	1197.8	11/9.2	2822.9	2251.5	-0.058574	
1.074	1200.3	1181.7	2510.5	2251.9	-0.013036	
1.076	1202.8	1184.2	2445.8	2252.3	0.034883	
					-0.010451	
1.078	1205.4	1186.8	2622.7	2253.0		
1.080	1208.0	1189.4	2568.4	2253.6	0.004692	
1.082	1210.6	1192.0	2592.6	2254.2	-0.007611	
1.084	1213.1	1194.5	2553.4	2254.8	0.004991	
1.086	1215.7	1197.1	2579.1	2255.3	0.001429	
1.088	1218.3	1199.7	2586.5	2256.0	0.012095	
1.090	1220.9	1202.3	2649.8	2256.7	0.020428	
1.092	1223.7	1205.1	2760.3	2257.6	-0.023675	
1.094	1225.3	1207.7	2632.6	2258+3	-0.042070	
1.096	1228.7	1210.1	2420.1	2258.6	0.003101	
1,098	1231.2	1212.6	2435.1	2258.9	-0.007789	
1.100	1233.6	1215.0	2397.5	2259.2	0.014359	
1.102	1236.0	1217,4	2467.3	2259.5	0.023738	
1.104	1238.6	1220.0	2587.3	2260 • 1	0.032203	
1.105	1241.4	1222.8	2759.5	2261.0	-0.040975	
1.108	1243.9	1225.3	2542.3	2261.5	0.014786	
1.110	1246.5	1227.9	2618.6	2262.2	0.012342	
4 + 4 + 7	is all 17 to a suit	∓ فیشمنشد ا	#AT0 + 0	شد + شد لا سد سد	SET OF A MINUSTRAL.	

K FR W

a en cen					
1.232	1422.0	1403.4	3118.6	2323.1	0.008627
1.234	1425.2	1406.6	3172.9	2324.4	0.011175
1.235	1428.5	1409.9	3244.6	2325.9	-0.04/600
1.238	1431.4	1412.8	2949.8	2326.9	-0.011480
1.240	1434.3	1415.7	2882.8	2327.8	0.035174
1.242	1437.4	1418.8	3093.0	2329.1	-0.023125
1.244	1440.3	1421.7	2953.2	2330.1	0.000280
1.246	1443.3	1424.7	2954.9	2331.1	-0.0002544
1.248	1446.2	1427.6	2939.9	2332.1	
1.250	1449.2	1430.6	2995.8	2333.1	0.009424
1.252	1452.3	1433.7	3045.5	2334.2	0.008221
1.254	1455.3	1436.7	3048.5		0.000496
1.256	1458.4	1439.8	3079.5	2335.4	0.005061
1.258	1461.5	1442.9		2336.6	0.002592
1.260	1464.6	1446.0	3126.6	2337.8	-0.002524
1.262	1467.9		3110.9	2339.1	5,0.029612
1.264	1471.3	1449.3	3300.7	2340.6	0.007346
1.266	· · · · · · · · · · · · · · · · · · ·	1452.7	3349.6	2342.2	-0.004021
1.268	1474.6	1456.0	3322.8	2343.7	-0.006449
1.200	1477.9	1459.3	3280.2	2345.2	-0.028534
	1481.0	1462.4	3098.2	2346.4	0.050090
1.272	1484.4	1465.8	3424.9	2348.1	-0.009442
1.274	1487.8	1469.2	3360.8	2349.7	-0.029115
1.276	1491.0	1472.4	3170.7	2351.0	-0.010644
1.278	1494.1	1475.5	3103.5	2352.1	-0.008739
1.280	1497.1	1478.5	3050.1	2353.2	-0.007307
1.282	1500.1	1481.5	3005.9	2354.2	0.026973
1.284	1503.3	1484.7	3172.5	2355.5	-0.001459
					- · · · · · · ·

2262.9 0.003890 1249.2 1230.6 2684.0 1.112 1.114 1251.9 1233.3 2705.0 2263.7 -0.021807 2264.3 -0.002546 1254.5 1235.9 2589.6 1.116 1257.1 2264.9 0.001218 1238.5 2576.4 1.118 2582.7 -0.007237 1259.7 1241.1 2265.4 1.120 1.122 1262.2 1243.6 2545.6 2265.9 0.003203 2266.5 0.002/14 1264.8 2561.9 1.124 1246.2 0.004491 2575.9 2267.0 1.126 1267.4 1248.8 0.033516 1270.0 2599.1 2267.6 1.128 1251.4 -0.040320 1272.7 1254.1 2779.4 2268.5 1.130 1275.3 1256.7 2563.9 2269.0 -0.002268 1.132 0.006701 1277.9 1259.3 2552.3 2269.5 1.134 1280.5 -0.009501 1261.9 2586.8 2270.1 1.136 2538.1 2270+6 0.008488 1283.0 1264.4 1.138 -0.000706 2581.5 2271.1 1.140 1285.6 1267.0 0.017108 1288.1 1269.5 2577.9 2271.6 1.142 2667.7 2272.3 0.002115 1.144 1290.8 1272.2 2.0.043984 1.146 1293.5 1274.9 2679.0 2273.1 1296.4 1277.8 2925.5 2274.2 -0.017196 1.148 0.038779 1299.2 2275.1 2826.6 1280.6 1.150 -0.006477 2276.5 3054.6 1.152 1302.3 1283.7 2277.8 0.011962 1.154 1305.3 1286.7 3015.3 -0.022906 1.156 1308.4 1289.8 3088.3 2279.2 1292.8 2950.0 2280.3 0.035592 1.158 1311.4 1295.9 3167.8 2281.9 -0.003613 1.160 1314.5 -0.060335 1317.7 1299.1 3144.9 2283.4 1.162 2284.2 1320.5 0.000574 1301.9 2787.0 1.164 -0.034488 1.166 1323.2 1304.6 2790.2 2285.1 1325.8 1307.2 2604.2 2285.6 0.016923 1.168 0.020327 1.170 1328.5 1309.9 2691.2 2286.3 1.172 2287.2 -0.041060 1331.3 1312.7 2802.9 2581.8 2287.7 -0.045349 1.174 1333.9 1315.3 2288.6 -0.034842 1.176 1336.8 1318.2 2827.0 2636.7 2289.2 0.010137 1.178 1339.4 1320.8 2289.5 -0.007367 2690.7 1.180 1342.1 1323.5 0.089798 1.182 1344.7 1326.1 2651.3 2290.5 3174.5 2092.0 0.013767 1347.9 1329.3 1.184 2293.6 -0.009135 3263.1 1351.2 1332.6 1.186 2295.2 -0.041791 1335.8 3204.0 1.188 1354.4 0.000839 1.190 1357.3 1338.7 2947.0 2296.3 1341.7 2951.9 2297.4 -0.000573 1.192 1360.3 2948.5 2298.5 -0.004071 1.194 1363.2 1344.6 2299.5 2924.6 -0.002974 1,196 1366.1 1347.5 2907.3 2300.5 0.018509 1,198 1369.1 1350.5 2301.7 0.026617 1.200 1372.1 1353.5 3016.9 -0.012173 1.202 1375.2 1356.6 3181.9 2303.2 1378.4 2304.5 -0.015879 1.204 1359.8 3105.4 3008.3 - 1381.4 1362.8 2305.7 -0.024022 1.206 0.043927 1384.2 1365.6 2867.2 2306.6 1.208 3130.6 2308.0 -0.013701 1387.4 1368.8 1.210 2309.2 -0.003801 1.212 1390.4 1371.8 3046.0 1393.4 1374.8 3022.9 2310.4 0.008846 1.214 1396.5 1377.9 3076.9 2311.6 0.117282 1.216 3894.5 2314.2 -0.176261 1.218 1400.4 1381.8 2727.3 2319.9 0.038514 1.220 1403.1 1384.5 1387.5 2945.8 2315.9 0.048665 1.222 1406.1 1390.7 1.224 1409.3 3247.2 2317.5 -0.011052 1393.9 3176.2 0.036059 1.226 1412.5 2318.9 1415.9 1397.3 3413.9 2320.6 -0.062167 1.228

0.017024

4. 65. 4

1.230

1418.9

1400.3

3014.2

2321.8

APPENDIX 5

PALYNOLOGY - AGE DATING

PALYNOLOGY OF BEACH IONA-1, OTWAY BASIN, VICTORIA

BY

ROGER MORGAN

FOR BEACH PETROLEUM

MAY, 1988.

PALYNOLOGY OF BEACH IONA-1,

OTWAY BASIN, VICTORIA

BY

ROGER MORGAN

CONT	ENTS	PAGE
I	SUMMARY	3
II	INTRODUCTION	5
III	PALYNOSTRATIGRAPHY	7
IV	CONCLUSIONS	17
v	REFERENCES	19
	FIGURE 1. CRETACEOUS REGIONAL FRAMEWORK, OTWAY FIGURE 2. MATURITY PROFILE, BEACH IONA-1,	BASIN
	APPENDIX I PALYNOMORPH DISTRIBUTION DATA - SPORES AND POLLEN	

- DINOFLAGELLATES

I SUMMARY

- 331.0m (swc) : upper N. asperus Zone : latest Eocene to earliest Oligocene : nearshore marine : immature : usually Nirranda SubGroup
- middle and lower $\underline{\text{N. asperus}}$ Zones not seen : hiatus or condensation likely
- 402.5m (swc) : P. asperopolus Zone : latest Early Eocene : marginal marine : immature : usually Dilwyn Formation
- 543.0m (swc) : upper $\underline{\text{M. diversus}}$ Zone : Early Eocene : nearshore marine : immature : usually Dilwyn Formation
- middle and lower M. diversus Zones : not seen : hiatus or condensation
- 586.0m (swc) : upper <u>L. balmei</u> Zone : Paleocene : marginally marine : immature : usually Pember
- 602.0m (swc)-621.0m (swc) : lower <u>L. balmei</u> Zone : Paleocene : nearshore marine : immature : usually Pember/Pebble Point
- 652.0m (swc)-664.5m (swc): upper <u>T. longus</u> Zone (<u>M. druggii</u> Dinoflagellate Zone): Maastrichtian: marginal marine: immature: usually Timboon Sandstone
- 704.0m (swc) : lower <u>T. longus</u> Zone : mid Maastrichtian : brackish : immature : usually Paaratte Formation
- 772.0m (swc) : <u>T. lillei</u> Zone : early Maastrichtian late Campanian : brackish : immature : usually Paaratte Formation

- 858.0m (swc)-1054.0m (swc) : N. senectus Zone (1018-1054 N. aceras Dinoflagellate Zone) : Campanian : nearshore marine : immature : usually Paaratte Formation/upper Belfast
- 1075.5m (swc)-1254.0m (swc): T. pachyexinus Zone (1075.5m

 N. aceras Dinoflagellate Zone, 1240-54m I. cretaceum

 Dinoflagellate Zone, O. porifera Zone not seen, possibly
 lost by hiatus): Santonian: offshore marine: immature
 : usually Belfast Mudstone
- 1276.5m (swc) : upper <u>C. triplex</u> Zone (<u>C. striatoconus</u>

 Dinoflagellate Zone) : Coniacian : nearshore marine :
 immature : usually Belfast/Flaxmans
- 1287.0m (swc)-1347.5m (swc) : lower <u>C. triplex</u> Zone (<u>P. infusorioides</u> Dinoflagellate Zone) : Turonian : very nearshore to offshore, mixed : immature : usually Flaxmans Formation
- A. distocarinatus Zone : not seen : missing Cenomanian may be apparent if caving of drilling mud and its penetration into swcs is major, but more likely due to hiatus
- 1383.0m (swc)-1481.0m (swc) : P. pannosus Zone : late Albian : non-marine to slightly brackish : marginally mature for oil : usually Eumeralla Formation

II INTRODUCTION

Andrew Buffin of Beach Petroleum submitted 25 swc samples from Iona-1 for palynological analysis for the completion report on March 29th. Results were faxed on 12th May 1988. This report details the final interpretation of results of these samples.

Palynomorph occurrence data are shown as Appendix I and form the basis for the assignment of the samples to thirteen spore-pollen units of late Albian to earliest Oligocene age. The Tertiary spore-pollen zonation is that of Stover and Evans (1973) and Stover and Partridge (1973) as modified by Partridge (1976) and shown on figure 1. The zones of Harris (1965) are not preferred as they only span part of the interval and are less widely used. The Cretaceous spore-pollen zonation is essentially that of Playford and Dettmann(1969), but has been significantly modified and improved by various authors since, and most recently discussed in Helby et. al. (1987), as shown on figure 1.

No formal dinoflagellate zonation has been published for the Tertiary of the Bass or Gippsland Basins although Harris (1985) has recently published some zones for part of the Eocene of the Otway and St. Vincent Basins. Partridge (1976) published a table showing zone names in the Gippsland Basin but charts defining these zones were never published, although they are informally available. Very few Tertiary dinoflagellates were seen, and they are discussed within the Partridge (1976) framework, as it is more precise and more widely used. Cretaceous dinoflagellates were not seen.

Maturity data was generated in the form of Spore Colour Index, and is plotted on figure 2 Maturity profile of Beach Iona-1. The oil and gas windows on figure 2 follow the

AGE	SPORE POLLEN	z	MICRO- PLANKTON		LITHOSTRATIGRAPHY	TIGRAPHY
	ZONES		ZONES		OFFSI KORE	ONSHORE
MAASTRICHTIAN	T.longus	201	L-druggii	}	TIMBOON SANDSTONE	**************************************
	T.Moi.	<u> </u>	L'horolonenze			
CAMPANIAN	N.senectus Zotho	DUZ DAI		4008s	TATTE FORMATION	SHERBROOK GROUP
SANTONIAN			N.aceras I.cretaceum	300K ((thin sandstones)
CONIACIAN		L	O.porlfera	18831	BELFAST MUDSTONE	
TURONIAN	G.triplex	 	C. striatoconus	18		
CENOMAHIAN	A.distocarinatus	<u> </u>	P.fnfusorioides		FLAXMANS FORMATION	manner of the second
	P.pannosus	1		}	WARIE CONTROL	
ALBIAN	Up.C.paradoxa					Contraction of the second
	Upper C.hughesl				EUMERALLA FORMATION	MATION EGOSIY Tacked
APTIAN	Low .C.hughesi		TO Marie America			coaly factor
BARRELHAN				ط ر 003		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
HAUTERIVIAN	F. wonthagglensis			S YAWT	- Sandy	PRETTY HALL S
VALAHGIHIAN)	/raction /	
BERRIASIAN	G. australlensis	·		*	~~ ~~	factor of the state of the stat
		4				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

FIGURE 1. CRETACEOUS REGIONAL FRAMEWORK, OTWAY BASIN

-	21	= -		immat	ure		imar	mature	post	mature	OIL
GE	ZONE	TH(thous.m	·			yello	\	browi	n \	black	COLOUR
	''' 	Sno	0.5				(11011)	mid \	dark \		
	<u> </u>	3	0.5	1,0	1.5	2.0	2,5	3.0	3.5 4.0	4.5 5.	O TAI
											•
		-									
L E	350				•				•		
	asper	-				•					
E E	up										
	div	4				•					· :
Pal	balm	_				•					
	long	-				•	-				•
Maas	lill	-				•					
		1 -				•					
Cami		-									
Jun 1	3611		,								
							:				
Sant		-					•				
Con	pach	-									
		-					•				
Tur	trip										
Alb	pann	-									
	<u> </u>						•				
		-									
		_									
			-								
		-									•
		4									
		1									
		4									

FIGURE 2 MATURITY PROFILE, IONA-1

general concensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (Staplin Spore Colour Index of 2.7) to dark brown (3.6). These correspond to vitrinite reflectance values of 0.6% to 1.3%. Geochemists, however, have not reached universal agreement on these values, and argue variations on kerogen type, basin type and even basin history. The maturity interpretation is spore colours as basic data. However, the range in thus open to reinterpretation using the basic interpretation philosophies is not great, and probably would not move the oil window by more than 200 metres.

III PALYNOSTRATIGRAPHY

A. 331.0m (swc) : upper N. asperus Zone

Assignment to the upper Nothofagidites asperus Zone is indicated by oldest Foveotriletes crater without older indicators. Youngest Polycolpites esobalteus and Proteacidites asperopolus suggest a point near the base of the subzone. Oldest Tricolpites simatus and T. thomasii are consistent with the assignment.

Nothofagidites spp. are dominant. Minor reworking (M. tenuis, G. rudata) was seen.

Nearshore marine environments are suggested by the rare microplankton. Micrhystridium spp. are frequent, with a few low diversity dinoflagellates. These features are normally seen in the Niranda Sub Group.

Colourless fossils indicate immaturity for hydrocarbon generation.

B. middle and lower N. asperus Zones : not seen

The absence of these zones suggests an important unconformity in the gap 331-402.5m.

C. 402.5m (swc): P. asperopolus Zone

Asssignment to the <u>Proteacidites asperopolus</u> Zone is indicated at the top by youngest frequent <u>Haloragacidites harrisii</u>, youngest <u>Malvacipollis</u> <u>diversus</u>, and the scarcity of <u>Nothofagidites</u> spp. At the base, assignment is indicated by oldest <u>Myrtaceidites tenuis</u> and <u>Proteacidites asperopolus</u>. <u>Proteacidites spp.</u> are common, and Dilwynites granulatus

and H. harrisii frequent.

Marginal marine environments are indicated by the scarce very low diversity dinoflagellates.

These features are normally seen in the Dilwyn Formation.

Immaturity for hydrocarbon generation is indicated by the colourless palynomorphs.

D. 543.0m (swc) : upper M. diversus Zone

Assignment to the upper Malvacipollis diversus Zone is indicated at the top by the absence of younger indicators, and at the base by oldest Proteacidites pachypolus. H. harrisii and Proteacidites spp. are frequent, and M. diversus is consistent.

Nearshore marine environments are indicated by the moderate content (30%) of moderate diversity (10 species) dinoflagellates. Spores and pollen are clearly dominant and diverse. Of the dinoflagellates, the Kenleyia spp. are consistent with the spore-pollen zonal assignment.

These features are normally seen in the Dilwyn Formation.

Light yellow spore colours indicate immaturity for hydrocarbon generation.

E. middle and lower M. diversus Zones : not seen

The apparent absence of these Early Eocene Zones

suggests a hiatus in the gap 543-586m, although condensation is also possible.

F. 586.0m (swc) : upper L. balmei Zone

Assignment to the upper Lygistepollenites balmei Zone is indicated at the top by youngest L. balmei and Gambierina rudata, and at the base by oldest Proteacidites grandis and P. incurvatus. Proteacidites spp. are common, with frequent Gleicheniidites circinidites.

Marginally marine environments are indicated by the scarce (2%) microplankton, dominated by <u>Paralecaniella indentata</u> with low diversity dinoflagellates (4 species). Spores and pollen are common and diverse, and leaf fragments comprise 50% of the residue.

These features are normally seen in the Pember Member of the Dilwyn Formation.

Yellow spore colours indicate immaturity for hydrocarbon generation.

G. 602.0m (swc)-621.0m (swc) : lower L. balmei Zone

Assignment is indicated by the absence of younger or older indicators from an assemblage containing L. balmei. Proteacidites is common, with G. circinidites and P. mawsonii frequent. Gambierina edwardsii and G. rudata were seen at 621m.

Nearshore marine environments are indicated by the relatively rare dinoflagellates (5%) and their moderate diversity (about 10 species). Deflandrea speciosa is the most common, and confirms the Paleocene age. Spores

and pollen are common and diverse and indicate the substantial land derived contribution to the microflora.

These features are normally seen in the Pebble Point Formation and its correlatives.

Yellow spore colours indicate immaturity for hydrocarbon generation.

H. 652.0m (swc)-664.5m (swc): upper T. longus Zone

Assignment to the upper part of the <u>Tricolpites longus</u>
Zone is clearly indicated by the youngest occurrences of <u>Tricolpites confessus</u>, <u>T. longus</u>, <u>T. waipawensis</u>,
<u>Tricolporites lillei</u> and <u>Triporopollenites sectilis</u>, and confirmed by the dinoflagellates. At the base, oldest <u>Stereisporites punctatus</u> indicates the assignment, and is confirmed by the dinoflagellates. <u>Proteacidites</u> spp. dominate these assemblages, with frequent <u>G. rudata</u> and Nothofagidites.

Assignment to the Manumiella druggii Dinoflagellate Zone is indicated by the presence of M. conorata in all samples, and confirmed by oldest Canninginopsis bretonica at the interval base.

Marginal marine environments are indicated by the low dinoflagellate contents (2-5%) and their very low diversity (3-5 species). Micrhystridium are frequent at 652.5m. The dominant terrestrial contribution is seen in the dominant and diverse spores and pollen.

These spore colours indicate immaturity for hydrocarbon generation.

I. 704.0m (swc) : lower T. longus Zone

Assignment is indicated at the top on the absence of younger indicators, and at the base on oldest Tetracolporites verrucosus. Proteacidites spp. are common, with Nothofagidites endurus and Phyllocladidites mawsonii frequent.

Brackish environments are indicated by the total dominance of high diversity spores and pollen, and trace quantities of a single species of dinoflagellate (Isabelidinium pellucidum).

These features are normally seen in the topmost Paaratte Formation and its correlatives.

Yellow spore colours indicate immaturity for hydrocarbons.

J. 772.0m (swc) : T. lillei Zone

Assignment to the <u>Tricolporites lillei</u> Zone is indicated at the top by the absence of younger indicators and at the base by oldest <u>T. lillei</u>. <u>Proteacidites</u> spp. are common, and <u>N. endurus</u> and <u>P. mawsonii</u> are frequent. Minor Permian reworking was seen.

Brackish environments are indicated by the extremely rare dinoflagellates amongst the common and diverse spores and pollen.

These features are normally seen in the upper Paaratte Formation.

Yellow spore colours indicate immaturity for hydrocarbons.

K. 858.0m (swc)-1054.0m (swc) : N. senectus Zone

Assignment to the Nothofagidites senectus Zone is indicated at the top by the absence of younger indicators, and at the base by oldest N. senectus. This may be picked slightly too low, as other caving (Eocene) is seen at 1054m and so base ranges may be unreliable. Proteacidites spp. are the most common, with Nothofagidites and P. mawsonii frequent.

Age diagnostic dinoflagellates include Nelsoniella aceras at 1018m and below, without younger indicators. Heterosphaeridium laterobrachius was also seen at 1018m. These indicate assignment of the interval 1018-1054n to the N. aceras Dinoflagellate Zone (correlative with the lower N. senectus and underlying topmost T. pachyexinus Spore-pollen Zone).

Despite their age significance, dinoflagellates are scarce and of low diversity, while spores and pollen are common and diverse. Nearshore marine environments are therefore indicated.

These features are normally seen in the lower Paaratte Formation and upper Belfast Mudstone.

Yellow spore-colours indicate immaturity for hydrocarbons.

L. 1075.5m (swc)-1254. 0m (swc): T. pachyexinus Zone

Assignment to the <u>Tricolporites pachyexinus</u> Zone (=<u>T. apoxyexinus</u> Zone) at the top on the absence of younger indicators and at the base on oldest <u>Ornamentifera sentosa</u>. <u>Proteacidites</u>, <u>M. antarcticus</u> and <u>Cyathidites</u> are intermittently common. The assignment is confirmed

by the associated dinoflagellates.

Age diagnostic dinoflagellates are present in all samples. At 1075.5m, oldest N. aceras indicates assignment to N. aceras Dinoflagellate Zone. At 1240 and 1254m, the presence of Isabelidinium cretaceum without younger elements, indicates assignment to the I. cretaceum Zone. The absence of samples contining Odontochitina porifera without I. cretaceum, suggests a minor hiatus removing Othe O. porifera Dinoflagellate Zone, somewhere in the interval 1254 - 1276.5m.

Offshore marine environments are indicated at 1240 - 1254m by the relatively high dinoflagellate contents (30 - 40%) and their moderate to high diversity (12 - 18 species). At 1075.5m, nearshore environments are suggested on the low content (5%) and diversity (8 species) of dinoflagellates.

These features are normally seen in the Belfast Mudstone.

Mid yellow spore colours indicate immaturity for hydrocarbons.

M. 1276.5m (swc): upper C. triplex Zone.

Assignment to the <u>Clavifera triplex</u> Zone (= <u>P. mawsonii</u> Zone) is indicated at the top and base on the absence of younger and older indicators. Dinoflagellates confirm the assignment. <u>Amosopollis cruciformis</u> is common, with frequent <u>M. antarcticus</u>. Minor Permian reworking was seen.

The age diagnostic dinoflagellate <u>Conosphaeridium</u> striatoconus indicates assignment to the <u>C. striatoconus</u> Dinoflagellate Zone.

Nearshore marine environments are indicated by the low content (5%) and moderate diversity (10 species) of dinoflagellates

These features are usually seen in the Flaxmans Formation.

Mid yellow spore colours indicate immaturity for hydrocarbons.

N. 1287.0m (swc) - 1347.5m (swc) : lower <u>C. triplex</u> Zone.

Assignment is indicated at the top on youngest Appendicisporites distocarinatus, and at the base on oldest Phyllocladidites mawsonii. This base may be picked too low, as younger (and lighter coloured) elements are seen caved at 1347.5m but spore colours of critical specimens appear consistent with being in place. Amosopollis cruciformis, M. antarcticus and F. similis are intermittently common. Reworking from the Permian, Triassic and Jurassic are all seen at 1347.5m, suggesting a location above a sizable unconformity. At 1287.0m, however, Permian and Triassic reworking are again seen, with the Permian reworking very common, comprising 5% of the assemblage. This suggests the possibility of turbidites, although massive reworking in a more normal situation is not precluded.

Alternating environments are suggested. At 1347.5m, very nearshore environments are suggested, with trace quantities of dinoflagellates showing low diversity (6 species). At 1297 m. offshore environments are suggested, with dominant dinoflagellates (60%) of high diversity (20 species). At 1287 m. very nearshore environments are again suggested, with 5%

dinoflagellates of low diversity (8 species). These alternating environments could suggest turbidites, with the offshore environments real, and the nearshore ones artificially produced by turbidite flow of shallow derived sediment. The passage of a particularly deep interdistributary bay could alternatively account for the sequence.

The age of this sequence suggest a normal Flaxmans Formation. The unusual reworking and environmental data are not normal.

Mid yellow spore colours indicate immaturity for hydrocarbons.

O. A. distocarinatus Zone : not seen.

The apparent absence of this zone suggests a hiatus in the gap 1347.5 - 1383m. Condensation is also possible, as is the presence of the Zone (masked by caving), as suggested above. Mud penetration was a problem in processing, due to the shattering of these small diameter sidewall cores.

P. 1383.0 (swc) - 1481.0m (swc) : P. pannosus Zone.

Assignment to the <u>Phimopollenites pannosus</u> Zone is indicated at the top by youngest <u>Coptospora paradoxa</u> and at the base by oldest <u>P. pannosus</u>. <u>Cyathidites</u>, <u>F. similis</u> and <u>A. australis</u> are intermittently common. Minor Permian, Triassic and Jurassic reworking were intermittently seen.

Mostly non-marine environments are indicated by the absence of saline microplankton (except isolated caved late Cretaceous forms) presence of freshwater types and

the dominance and diversity of spores and pollen. At 1423m, a single spiny acritarch appears, and suggests slightly brackish environments.

These features are normally seen at the top of the Eumeralla Formation.

Light brown spore colours indicate marginal maturity for oil, but immaturity for gas/condensate.

IV CONCLUSIONS

- A. The palynology is generally compatible with the lithostratigraphy and suggests unconformities in the gaps.
 - 331 402.5 (probably at the Nirranda Group/Dilwyn boundary, removing much of the Middle and Late Eocene).
 - 543 586 (intra Dilwyn Formation frequently condensed or absent in the Gippsland and Otway Basins).
 - 1256 1276.5 (at the Belfast/Flaxmans boundary, confirmed by logs).
 - 1347.5 1383 (at the Flaxmans/Eumeralla boundary).
- B. The top Late Cretaceous is picked palynologically slightly higher than the original log pick. Two sidewall core samples suggest this location, and reworking is unlikely cause of palynological error. This duplicates a similar observation in Henke 1 and suggests a terminal Cretaceous unit of Pebble Point like lithology. Close swc sampling across this boundary in future will provide a test, although the change is sufficiently obvious that it should be detectable in cuttings.
- C. The lower <u>C. triplex</u> sequence (Flaxmans Formation) is unusual, featuring wildly alternating environments (offshore to very nearshore), heavy Permian reworking (5%) at 1287m, and multiple clean sands. These features occur in turbidite sand sequences, but are not necessarily restricted to them.
- D. An unpublished dinoflagellate (<u>Canninginopsis bretonica</u>) is recorded here (659.5m, 664.5m) for the first time in the Otway Basin. Until now, it was known only from

Western Australia (Perth and Carnarvon Basins) and from the offshore Gippsland Basin (Pisces -1). By correlation via nannofossil and planktonic foraminiferal zones seen in Western Australia, the Maastrichtian age of the \underline{T} . longus Zone is confirmed.

E. Some mud contamination of swcs is noted. This is more frequent with small diameter swcs used in this well, where shattering and consequent mud penetration occur. Larger diameter swcs are more expensive, but provide generally better samples.

V. REFERENCES

- Harris, W.K. (1965) Basal Tertiary microfloras from the Princetown area, Victoria, Australia Palaeontographica B, 115, 75-106
- Harris, W.K. (1985) Middle to Late Eocene Depositional
 Cycles and Dinoflagellate Zones in Southern Australia
 Spec. Publ., S. Aust. Dept. Mines and Energy 5: 133144
- Helby, R.J., Morgan, R.P., and Partridge, A.D., (1987) A palynological Zonation of the Australian Mesozoic Australas. Assoc. Palaeont.Mem.4
- Partridge, A.D. (1976) The Geological Expression of Eustacy in the Early Tertiary of the Gippsland Basin Aust. Pet. Explor. Assoc. J., 16: 73 79
- Stover L.E. and Evans, P.R. (1973) Upper Cretaceous Eocene Spore Pollen Zonation, offshore Gippsland Basin, Australia Spec. Publ. Geol. Soc. Aust., 4:55 72
- Stover, L.E. and Partridge, A.D. (1973) Tertiary and Late Cretaceous Spores and Pollen from the Gippsland Basin, South-eastern Australia Proc. R. Soc. Vict., 86: 237-286.

IONA #1 PALYNOLOGICAL DATA

RANGE CHART OF GRAPHIC ABUNDANCES BY LOWEST APPEARANCE (by group)

Key to Symbols

= Very Rare

= Rare

= Few

= Common

= Abundant

? = Questionably Present

= Not Fresent

	BALMEISPORITES HOLODICTYUS	CALLIALASPORITES DAMPIERI	CERATOSPORITES EQUALIS	CICHTRICOSISPORITES AUSTRALIENSIS	CICATRICOSISPORITES CUNEIFORMIS	CICATRICOSISPORITES HUGHESI	CINGUTRILETES CLAUUS	COPTOSPORA PARADOXA	COROLLINA TOROSUS	CRYBELOSPORITES STRIATUS	CYATHIDITES AUSTRALIS	CYATHIDITES MINOR	CYCLOSPORITES HUGHESI	DICTYOTOSPORITES COMPLEX	DICTYOTOSPORITES SPECIOSUS	FALCISPORITES GRANDIS	FALCISPORITES SIMILIS	FURAMINISPORIS ASYMMETRICUS	FORAHINISPORIS DAILYI	a.	OSPORITES	KLUKISPORITES SCABERIS	LEPTOLEPIDITES VERRUCATUS	LYCOPODIACIDITES ASPERATUS	MICROCACHRYDITES ANTARCTICUS	NEORAISTRICKIA TRUNCATA	OSHUNDACIDITES WELLMANII	PERINOPOLLENITES ELATOIDES	PEROTRILETES MAJUS	PEROTRILETES MORGANII/JUBATUS	PEROTRILETES WHITFORDENSIS	PHIMOPOLLENITES PANNOSUS	POLYPODIAEDISPORITES TORTUOSUS
	-	Ø	M	7	ល	/ \0	^	33	۵,	10		12	13	†	15	16	17	18	9	20	2	S S	23	त ()	25	7 9 9	27	28	ον Ον	30	 	8	33
0331.0 swc 0402.5 swc 0543.0 swc 0586.0 swc 0602.0 swc 0621.0 swc 0659.5 swc 0659.5 swc 0704.0 swc 0772.0 swc 0772.0 swc 1018.0 swc 1018.0 swc 1075.5 swc 1240.0 swc 1276.5 swc 1287.0 swc 1287.0 swc 1297.0 swc 1383.0 swc 1407.0 swc 1423.0 swc																																	

	TITRILETES AUSTROCLAVA	TITRILETES	ETITRILETES	<u>u</u>	IEKIESPUKIIES RILOBOSPORITES	S TRIORETI	VELOSPORITES TRIQUETRUS	CONTIGNISPORITES COOKSONIAE	CYCADOPITES FOLLICULARIS	DICTYOTOSPORITES COARSE	GLEICHINIDITES CIRCINIDITES	LEPTOLEPIDITES MAJOR	VITREISPORITES PALLIDUS	PODOSPORITES MICROSACCATUS	RETITRILETES EMINULUS	TRIPOROLETES RETICULATUS	TRIPOROLETES SIMPLEX	ANOSOPOLLIS CRUCIFORMIS	APPENDICISPORITES DISTOCARINATUS	CLAUIFERA TRIPLEX	CONCAUISSIMISPORITES PENOLAENSIS	COPTOSPORA SP.A	CYATHEACIDITES TECTIFERA	DENSOISPORITES VELATUS	DICTYOPHYLLIDITES HARRISII	FORAMINISPORIS WONTHAGGIENSIS	LYGISTEPOLLENITES FLORINII	NOTHOFAGIDITES ENDURUS	PHYLLOCLADIDITES MAUSONII	STERIESPORITES REGIUM	TAUROCUSPIDITES SP.	TRICOLPORITES APOXYEXINUS	
	n m	3	9 1	\ 0 \ N	0 C	40	41	42	N)	ক ক	t S	4	₩	00 寸	ው ተ	20	1	52	S S	iù 4	52	56	57	28	50	60	6	62	63	** **	65	ο ο ο	
0331.0 swc 0402.5 swc 0543.0 swc 0586.0 swc 0602.0 swc 0621.0 swc 0652.5 swc 0659.5 swc 0664.5 swc 0704.0 swc 0772.0 swc 0858.0 swc 1018.0 swc 1018.0 swc 1075.5 swc 1240.0 swc 1254.0 swc 1276.5 swc 1276.5 swc 1283.0 swc 1347.5 swc 1383.0 swc 1407.0 swc														• • • • • • • • • • • • • • • • • • • •						· · · · · · · · · · · · · · · · · ·													

	CAMEROZONOSPORITES OHAIENSIS	PROTERCIDITES SPP.	TRIPOROLETES RADIATUS	CICATRICOSISPORITES LUDBROOKIAE	DILHYNITES GRANULATUS	PHYLLOCLADIDITES VERRUCOSUS	AUSTRALOPOLLIS OBSCURUS	ORNAHENTIFERA MINIMA	ORNAMENTIFERA SENTOSA	TRICOLPITES GILLII	NEORAISTRICKIA SP.	DACRYCARPIDITES AUSTRALIENSIS	GAMBIERINA RUDATA	LYGISTEPOLLENITES BALHEI	NOTHOFAGIDITES BRACHYSPINULUS	NOTHOFAGIDITES EMARCIDUS	NOTHOFAGIDITES SENECTUS	PERIPOROPOLLENITES POLYORATUS	TRICOLPITES CONFESSUS	SA	TRICOLPORITES SP.	AEQUITRIRADITES SPINULOSUS	GAMBIERINA EDUARDSII	LILIACIDITES KAIIANGATAENSIS	PROTERCIDITES PALISADUS SI	TRICOLPITES LONGUS	TRICOLPORITES LILLIEI	TRICOLPORITES LILLIEI of	TRIPOROPOLLENITES SECTILIS	TRICOLPITES WAIPAWAENSIS	CAMEROZONOSPORITES BULLATUS	CAMEROZONOSPORITES CRASSUS	DILHVNITES TUBERCULATUS
	67	68	69	20	71	72	73	4	75	76	77	78	4	80	8	82	83	₹ 8	82	98	87	88	6.8	06	<u>0</u> ,	92	6 10	ر ب ب	95	96	76	φ Θ	0,
0331.0 swc 0402.5 swc 0543.0 swc 0586.0 swc 0602.0 swc 0621.0 swc 0652.5 swc 0659.5 swc 0704.0 swc 0772.0 swc 0772.0 swc 1018.0 swc 1075.5 swc 1240.0 swc 1254.0 swc 1254.0 swc 1267.0 swc 1267.0 swc 1297.0 swc 1347.5 swc 1347.5 swc 1407.0 swc 1423.0 swc																											• • • • • • • • • • • • • • • • • • • •						

	GEPHYROPOLLENITES WAHOOENSIS	HERKOSPORITES ELLIOTTII	NOTHOFAGIDITES FLEMINGII	PROTERCIDITES PALISADUS SS	TETRACOLPORITES VERRUCOSUS	SIERIESPORITES PUNCTATUS	JUXIACOLPUS PIERENSIS	PROTERCIDITES ADENANTHOIDES	PROTERCIDITES ANNULATUS	PROTERCIDITES GRANDIS	TRICOLPITES PHILLIPSII	HALORAGACIDITES HARRISII	LATROBUSPORITES CRASSUS	NOTHOFAGIDITES GONIATUS	TRIPOROPOLLENITES AMBIGUUS	MALVACIPOLLIS SUBTILIS	PROTEACIDITES INCURVATUS	CUPANIEIDITES ORTHOTEICHUS	CYATHIDITES SPLENDENS	HELCIPORITES ASTRUS	ш	HALVAGIPOLLIS DIVERSUS	PROTERCIDITES PACHYPOLUS	SPINDZONOCOLPITES PROMINATUS	BEAUPREADITES VERRUCOSUS	INTEGRICORPUS ANTIPODUS	INTRATRIPOROPOLLENITES NOTABILIS	HYRTACEIDITES PARVUS/MESONESUS	MYRTACEIDITES TENUIS	PROTEACIDITES ASPEROPOLUS	PROTERCIDITES CLARUS	PROTEACIDITES OBESOLABRUS	PPOTEACIDITES ORNATUS
	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	31	32
0331.0 swc	e =:	==:	====	==:	==:	==:	===	===	===	==:	====	===	====	===	===	===	====		z		===	==	==:	===	===	===	==:	==:	===	====	===	===	=
0402.5 swc 0586.0 swc 0602.0 swc 0621.0 swc 0652.5 swc 0652.5 swc 0652.5 swc 0704.0 swc 0772.0 swc 0772.0 swc 1018.0 swc 1054.0 swc 1254.0 swc 1276.5 swc 1287.0 swc 1297.0 swc 1347.5 swc 1383.0 swc 1403.0 swc 1423.0 swc														•			•																•

	VERRUCOSISPORITES KOPUKUENSIS	ANACOLOSIDITES LUTEOIDES	CHENOPODOPOLLIS	FOVEOTRILETES CRATER	MALVACIPOLLIS GRANDIS	NOTHOFAGIBITES DEMINUTUS	NOTHOFAGIDITES FALCATUS	POLYCOLPITES ESOBLATEUS	PROTERCIDITES CRASSUS	PROTERCIDITES KOPIENSIS	PROTERCIDITES LEIGHTONII	SANTALUMIDITES CAINOZOICUS	SAPOTACEOIDAEPOLLENITES ROTUNDUS	TRICOLPITES SIMATUS	TRICOLPITES THOMASII	TRIPOROPOLLENITES CHNOSUS	VERRUCATOSPORITES SP.	HETEROSPHAERIDIUM HETERACANTHUM	ISABELIDINIUM SP.	MICRHYSTRIDIUM	CRIBROPERIDINIUM EDWARDSII	HETEROSPHAERIDIUM CONJUNCTUM	TRITHYRODINIUM SP.	BACCHIDIUM POLYPES	CHLAMYDOPHORELLA NYEI	CIRCULODINIUM DEFLANDREI	CLEISTOSPHAERIDIUM SP.	CYCLONEPHELIUM COMPACTUM	DEFLANDREA SP.	ISABELIDINIUM COOKSONIAE	MILLIOUDIDINIUM TENUITABULATUM	ODONTOCHITINA OPERCULATA	OLIGOSPHAERIDIUM COMPLEX
	133	134	135	136	137	138	139	140	1 4 1	142	143	ক ক	145	146	147	148	641	150	151	152	153	154	155	156	52	158	رة و	160	19	62	63	4	65
=======================================	==	==:	==:	==:	==:	==:	==:	==:	==:	==:	==:	===	===	==:	===	===	===	===	==:	===	===	===	===	==:	===	===	===	===	===	===	===	===	==
0331.0 swc 0402.5 swc 0543.0 swc 0586.0 swc 0602.0 swc 0621.0 swc 0652.5 swc 0659.5 swc 0664.5 swc 0704.0 swc 0772.0 swc 0772.0 swc 1018.0 swc 1018.0 swc 1075.5 swc 1240.0 swc 1254.0 swc 1254.0 swc 1254.0 swc 1287.0 swc 1297.0 swc		1	1																											· · · · · · · · · · · · · · · · · · ·			
1407.0 swc 1423.0 swc 1481.0 swc	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•							•	•	•			•	•	•	•	•	•

	I	PALAEOHYSTRICHOSPHORA INFUSORIOIDES	SPINIFERITES FURCATUM/RAMOSUS	HYSTRICHODINIUM PULCHRUM	PTEROSPERMELLA AUSTRALIENSIS	CONDSPHAERIDIUM STRIATOCONUS	EXOCHOSPHAERIDIUM PHRAGMITES	ANPHIDIADEMA DENTICULATA	CHATANGIELA MICROCANTHA	ISABELIDINIUM CRETACEUM	ISABELIDINIUM PELLUCUDUM	ODONTOCHITINA CRIBROPODA	SUBTILISPHAERA FOLIACEA	TANYOSPHAERIDIUM DIACANTHUM	CALLADISPHAERIDIUM ASYMMETRICUM	DINOGYMNIUM NELSONENSE	ISABELIDINIUM LATUM	ODONTOCHITINA PORIFERA	NELSONIELLA ACREAS	SPINIDINIUM SP.	ONTOCHITINA INDI	RERIDIUM	MENIKOON AUSTRALIS	CANNINGOPSIS BRETONICA	MANUMIELLA CORONATA	MANUMIELLA DRUGGII	ALTERNIA ACUTULA	ISABELIDINIUM SCELANDICA	SPINIOINIUM HAPUKUI	REDLIGERA SENONENSIS	CORDOSPHAERIDIUM INODES	CORDOSPHAERIDIUM MULTISPINUM	DEFLANDREA DARTHOORIA
	66	67	68	6.0	20	71	72	173	174	75	76	77	78	179	180	181	182	183	184	185	186	187	188	189	0,	10	192	90 50	رن ب	95	96	26	0,
=============	===	===	===	==:	==:	==:	===	==:	==:	==:	==:	==:	====	===	===	==:	===	==:	===	===	==	:==	:==	===	===	==:	==:	==:	===	==:	===	==:	==
0331.0 swc 0402.5 swc 0543.0 swc 0586.0 swc 0602.0 swc 0621.0 swc 0659.5 swc 0664.5 swc 0704.0 swc 0772.0 swc 0772.0 swc 1018.0 swc 1054.0 swc 1254.0 swc 1254.0 swc 1276.5 swc 1287.0 swc 1383.0 swc 1407.0 swc	•		···									?												• • • • • • • • • • • • • • • • • • • •	•	•	•	•	•	•	•	• • • • • • • • • • • • • • • • • • • •	

	REA SPECIOSA	OPERCULODINIUM CENTROCARPUM	ACHOMOSPHAERA SEPTATA	DEFLANDREA DILWYNENSIS	APECTODINIUM HOMOMORPHUM	APECTODINIUM HYPERCANTHUM	DAPSILIDINIUM PASTIELSII	DYPHES COLLIGERUM	IMPLETOSPHAERIDIUM SP.	KENLEYIA LEPTOCERATA	KENLEYIA LOPHOPHORA	KENLEYIA SP.	PHTHANDPERIDINIUM EOCENICUM	RHOMBODINIUM GLABRUM	TRITONITES MARSHALLII	NUMMUS HONOCULATUS	SCHIZOSPORIS RETICULATA	BOTRYOCOCCUS	SCHIZOSPORIS PSILATA	PARALECANIELLA INDENTATA	NUMMUS SP.	
	1 0 V	200	201	202	203	204	205	206	202	208	209	210	211	212	213	214	215	216	217	218	219	
0331.0 swc 0402.5 swc 0543.0 swc 0586.0 swc 0602.0 swc 0621.0 swc 0652.5 swc 0659.5 swc 0664.5 swc 0772.0 swc 0772.0 swc 1018.0 swc 1018.0 swc 1054.0 swc 1254.0 swc 1254.0 swc 1276.5 swc 1287.0 swc 1297.0 swc 1383.0 swc 1407.0 swc 1423.0 swc		······································			?											· · · · · · · · · · · · · · · · · · ·				· · (MICE) · · · · · · · · · · · · · · · · ·		0331.0 swc 0402.5 swc 0543.0 swc 0586.0 swc 0602.0 swc 0652.5 swc 0659.5 swc 0659.5 swc 0704.0 swc 0772.0 swc 1018.0 swc 1018.0 swc 1075.5 swc 1240.0 swc 1254.0 swc 1276.5 swc 1287.0 swc 1297.0 swc 1383.0 swc 1407.0 swc 1407.0 swc

SPECIES LOCATION INDEX

Index numbers are the columns in which species appear.

INDEX NUMBER

55

SPECIES

201	ACHOMOSPHAERA SEPTATA
88	AEQUITRIRADITES SPINULOSUS
192	ALTERNIA ACUTULA
52	AMOSOPOLLIS CRUCIFORMIS
173	AMPHIDIADEMA DENTICULATA
134	ANACOLOSIDITES LUTEOIDES
203	APECTODINIUM HOMOMORPHUM
204	APECTODINIUM HYPERCANTHUM
53	APPENDICISPORITES DISTOCARINATUS
195	AREDLIGERA SENONENSIS
	AUSTRALOPOLLIS OBSCURUS
156	BACCHIDIUM POLYPES
1	BALMEISPORITES HOLODICTYUS
124	BEAUPREADITES VERRUCOSUS
216	BOTRYOCOCCUS
180	CALLACISFHAERIDIUM ASYMMETRICUM
2	CALLIALASPORITES DAMPIERI
97	CAMEROZONOSPORITES BULLATUS
98	CAMEROZONOSPORITES CRASSUS
67	CAMEROZONOSPORITES OHAIENSIS
189	CANNINGOPSIS BRETONICA
3	CERATOSPORITES EQUALIS
174	CHATANGIELA MICROCANTHA
135	CHENOPODOPOLLIS
157	CHLAMYDOPHORELLA NYEI
4	CICATRICOSISPORITES AUSTRALIENSIS
5	CICATRICOSISPORITES CUNEIFORMIS
-6	CICATRICOSISPORITES HUGHESI
70	CICATRICOSISPORITES LUDBROOKIAE
	CINGUTRILETES CLAVUS
158	CIRCULODINIUM DEFLANDREI
54 150	CLAVIFERA TRIPLEX
159	CLEISTOSPHAERIDIUM SP.

CONCAVISSIMISPORITES PENOLAENSIS

```
BUNDDOTAL FIE MULLIL AHHHEDNDE
      CONTIGNISFORITES COCKSONIAE
  8
      COPTOSPORA PARADOXA
 56
      COPTOSPORA SP.A
      CORDOSPHAERIDIUM INODES
      CORDOSPHAERIDIUM MULTISPINUM
  9
      COROLLINA TOROSUS
153
      CRIBROPERIDINIUM EDWARDSII
      CRYBELOSPORITES STRIATUS
 10
117
      CUPANIEIDITES ORTHOTEICHUS
 57
      CYATHEACIDITES TECTIFERA
 11
      CYATHIDITES AUSTRALIS
      CYATHIDITES MINOR
 12
118
      CYATHIDITES SPLENDENS
 43
      CYCADOPITES FOLLICULARIS
160
      CYCLONEPHELIUM COMPACTUM
 13
      CYCLOSPORITES HUGHESI
 78
      DACRYCARPIDITES AUSTRALIENSIS
205
      DAPSILIDINIUM PASTIELSII
198
      DEFLANDREA DARTMOORIA
202
      DEFLANDREA DILWYNENSIS
161
      DEFLANDREA SP.
199
      DEFLANDREA SPECIOSA
  3
      DENSOISPORITES VELATUS
 59
      DICTYOPHYLLIDITES HARRISII
 44
      DICTYOTOSPORITES COARSE
 14
      DICTYOTOSPORITES COMPLEX
 15
      DICTYOTOSPORITES SPECIOSUS
 71
      DILWYNITES GRANULATUS
 99
      DILWYNITES TUBERCULATUS
181
      DINOGYMNIUM NELSONENSE
206
      DYPHES COLLIGERUM
172
      EXOCHOSPHAERIDIUM PHRAGMITES
      FALCISPORITES GRANDIS
 16
 17
      FALCISPORITES SIMILIS
 18
      FORAMINISPORIS ASYMMETRICUS
 19
      FORAMINISPORIS DAILYI
      FORAMINISPORIS WONTHAGGIENSIS
 60
136
      FOVEOTRILETES CRATER
 20
      FOVEOTRILETES PARVIRETUS
 89
      GAMBIERINA EDWARDSII
 79
      GAMBIERINA RUDATA
  g
      GEPHYROPOLLENITES WAHOOENSIS
      GLEICHINIDITES CIRCINIDITES
111
      HALORAGACIDITES HARRISII
119
      HELCIPORITES ASTRUS
101
      HERKOSPORITES ELLIOTTII
154
      HETEROSPHAERIDIUM CONJUNCTUM
150
      HETEROSPHAERIDIUM HETERACANTHUM
187
      HETEROSPHAERIDIUM LATEROBRACHIUS
169
      HYSTRICHODINIUM FULCHRUM
207
      IMPLETOSPHAERIDIUM SP.
125
      INTEGRICORPUS ANTIPODUS
126
      INTRATRIPOROPOLLENITES NOTABILIS
162
       ISABELIDINIUM COOKSONIAE
175
      ISABELIDINIUM CRETACEUM
182
      ISABELIDINIUM LATUM
176
      ISABELIDINIUM PELLUCUDUM
193
      ISABELIDINIUM SCELANDICA
151
      ISABELIDINIUM SP.
      ISCHYOSPORITES PUNCTATUS
      JUXTACOLPUS PIERENSIS
208
      KENLEYIA LEPTOCERATA
209
      KENLEYIA LOPHOPHORA
210
      KENLEYIA SP.
      KLUKISPORITES SCAPERIS
```

```
LATRUBUSAURITES DRASSUS
      LATROBOSFCRITES CHATENSIS
120
 40
      LEFTGLEPIDITES MAJOR
      LEPTOLEPIDITES VERRUCATUS
      LILIACIDITES KAITANGATAENSIS
24
      LYCOPODIACIDITES ASPERATUS
80
      LYGISTEPOLLENITES BALMEI
61
      LYGISTEPOLLENITES FLORINII
121
      MALVACIPOLLIS DIVERSUS
137
      MALVACIPOLLIS GRANDIS
115
      MALVACIPOLLIS SUBTILIS
190
      MANUMIELLA CORONATA
191
      MANUMIELLA DRUGGII
152
      MICRHYSTRIDIUM
25
      MICROCACHRYDITES ANTARCTICUS
163
      MILLIOUDIDINIUM TENUITABULATUM
127
      MYRTACEIDITES PARVUS/MESONESUS
128
      MYRTACEIDITES TENUIS
184
      NELSONIELLA ACREAS
77
      NEORAISTRICKIA SP.
26
      NEDRAISTRICKIA TRUNCATA
81
      NOTHOFAGIDITES BRACHYSPINULUS
      NOTHOFAGIDITES DEMINUTUS
 82
      NOTHOFAGIDITES EMARCIDUS
62
      NOTHOFAGIDITES ENDURUS
139
      NOTHOFAGIDITES FALCATUS
102
      NOTHOFAGIDITES FLEMINGII
113
      NOTHOFAGIDITES GONIATUS
83
      NOTHOFAGIDITES SENECTUS
214
      NUMMUS MONOCULATUS
219
      NUMMUS SF.
177
      ODONTOCHITINA CRIBROPODA
186
      ODONTOCHITINA INDISTINCTA
164
      ODONTOCHITINA OPERCULATA
183
      ODONTOCHITINA PORIFERA
145
      OLIGOSPHAERIDIUM COMPLEX
166
      OLIGOSPHAERIDIUM PULCHERRIMUM
      OPERCULODINIUM CENTROCARPUM
200
 74
      ORNAMENTIFERA MINIMA
 75
      ORNAMENTIFERA SENTOSA
27
      OSMUNDACIDITES WELLMANII
      PALAEDHYSTRICHOSPHORA INFUSORIOIDES
218
      PARALECANIELLA INDENTATA
 28
      PERINOPOLLENITES ELATOIDES
 84
      PERIFOROPOLLENITES POLYORATUS
 29
      PEROTRILETES MAJUS
 30
      PEROTRILETES MORGANII/JUBATUS
      FEROTRILETES WHITFORDENSIS
 31
 32
      FHIMOFOLLENITES PANNOSUS
211
      FHTHANOPERIDINIUM EDCENICUM
 63
      PHYLLOCLADIDITES MAWSONII
 72
      PHYLLOCLADIDITES VERRUCOSUS
 48
      PODOSPORITES MICROSACCATUS
140
      POLYCOLPITES ESOBLATEUS
 33
      POLYPODIAEDISFORITES TORTUOSUS
107
      PROTEACIDITES ADENANTHOIDES
108
      PROTEACIDITES ANNULATUS
129
      PROTEACIDITES ASPEROPOLUS
130
      PROTEACIDITES CLARUS
      PROTEACIDITES CRASSUS
      PROTEACIDITES GRANDIS
115
      PROTEACIDITES INCURVATUS
142
      FROTEACIDITES KOPIENSIS
      ASOTEACIDITES LEIGHTONII
143
      FECTEADIDITES CBESCLABRUS
```

HADTE-0101735 HACHYFOLUS 71 FROTEACIDITES FALISADUS SI 105 PROTEACIDITES PALISADUS ss 68 PROTEACIDITES SFP. PTEROSPERMELLA AUSTRALIENSIS RETITRILETES AUSTROCLAVATIDITES 35 RETITRILETES CIRCOLUMENUS 49 RETITRILETES EMINULUS 36 RETITRILETES FACETUS 37 RETITRILETES NODOSUS 212 RHOMBODINIUM GLABRUM 144 SANTALUMIDITES CAINOZOICUS 145 SAPOTACEOIDAEPOLLENITES ROTUNDUS 217 SCHIZOSPORIS PSILATA 215 SCHIZOSPORIS RETICULATA 194 SFINIDINIUM HAPUKUI SFINIDINIUM SP. 185 168 SPINIFERITES FURCATUM/RAMOSUS 123 SPINOZONOCOLPITES PROMINATUS STERIESPORITES ANTIQUASPORITES 38 105 STERIESPORITES PUNCTATUS 64 STERIESPORITES REGIUM 1.78 SUBTILISPHAERA FOLIACEA TANYOSPHAERIDIUM DIACANTHUM 65 TAUROCUSPIDITES SP. 104 TETRACOLFORITES VERRUCOSUS 85 TRICOLPITES CONFESSUS TRICOLPITES GILLII 75 TRICOLPITES LONGUS 92 TRICOLPITES PHILLIPSII 110 86 TRICOLPITES SABULOSUS 146 TRICOLPITES SIMATUS 147 TRICOLPITES THOMASII 96 TRICOLPITES WAIPAWAENSIS TRICOLPORITES APOXYEXINUS 66 93 TRICOLPORITES LILLIEI 94 TRICOLPORITES LILLIEI of 87 TRICOLPORITES SP. 39 TRILOBOSPORITES TRIBOTRYS 40 TRILOBOSFORITES TRIORETICULOSUS TRIPOROLETES RADIATUS 69 TRIPOROLETES RETICULATUS TRIPOROLETES SIMPLEX 114 TRIPOROPOLLENITES AMBIGUUS 148 TRIPOROFOLLENITES CHNOSUS 95 TRIPOROPOLLENITES SECTILIS 155 TRITHYRODINIUM SP. 213 TRITONITES MARSHALLII 41 VELOSPORITES TRIQUETRUS 149 VERRUCATOSPORITES SP. 133 VERRUCOSISPORITES KOPUKUENSIS 47 VITREISPORITES PALLIDUS

XENIKOON AUSTRALIS

188

APPENDIX 6

VITRINITE REFLECTANCE - TOC

COMPANY : BEACH PETROLEUM N.L.

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1211.5 Meters

Comments : S.F.T. PRESSURE TEST NO.10 AT 1211.5 METERS

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	20:30:40	0.1028	710.30	+126.8
52	19/03/88	20:30:42	0.1033	710.83	+126.8
53	19/03/88	20:30:50	0.1056	710.83	+126.8
54	19/03/88	20:31:00	0.1083	711.68	+126.9
55	19/03/88	20:31:10	0.1111	712.51	+126.8
56	19/03/88	20:31:20	0.1139	713.17	+126.8
57	19/03/88	20:31:30	0.1167	713.78	+127.1
58	19/03/88	20:31:40	0.1194	714.37	+127.6
59	19/03/88	20:31:50	0.1222	714.69	+127.3
60	19/03/88	20:32:00	0.1250	715.32	+128.4
61	19/03/88	20:33:00	0.1417	716.30	+126.5
62	19/03/88	20:34:00	0.1583	717.20	+126.3
63	17/03/88	20:35:00	0.1750	717.79	+120.2
64	19/03/88	20:36:00	0.1917	718.15	+126.0
65	19/03/88	20:37:00	0.2083	718.41	+125.9
66	19/03/88	20:38:00	0.2250	718.60	+125.8
67	19/03/88	20:39:00	0.2417	718.75	+125.6
68	19/03/88	20:40:00	0.2583	718.89	+125.5
69	19/03/88	20:41:00	0.2750	718.99	+125.4
70	19/03/88	20:42:00	0.2917	719.08	+125.3
71	19/03/88	20:43:00	0.3083	719.18	+125.2
72	19/03/88	20:44:00	0.3250	719.27	+125.1
73	19/03/88	20:45:00	0.3417	719.36	+125.0
74	19/03/88	20:46:00	0.3583	719.45	+124.9
75	19/03/88	20:47:00	0.3750	719.54	+124.8
76	19/03/88	20:48:00	0.3917	719.64	+124.8
77	19/03/88	20:49:00	0.4083	719.74	+124.7
78	19/03/88	20:50:00	0.4250	719.84	+124.6
79	19/03/88	20:51:00	0.4417	719.97	+124.6
80	19/03/88	20:51:30	0.4500	1,599.48	+124.6
81	19/03/88	20:52:00	0.4583	1,970.39	+124.6
82	19/03/88	20:52:30	0.4367	1,944.51	+124.6
83	19/03/88	20:53:00	0.4750	1,944.52	+124.4
84	19/03/88	20:53:30	0.4833	1,944.36	+124.5

A1/1 K.K. Depth Description Including Ŕ, max No. (m) Range N Exinite Fluorescence Belfast Mudstone Sparse phytoplankton and liptodetrinite, greenish yellow x8277 1240 0.43 0.30-0.54 SWC 22 and yellow to orange, rare ?Botryococcus related telalginite, bright yellow. (Glauconitic claystone. Dom abundant, I>E>V. Inertinite common, exinite and vitrinite sparse. Diffuse organic matter common. Glauconite dominant. Iron oxide rare. Pyrite abundant, mostly framboidal.) Waarre Formation x8278 1287 0.44 0.32-0.56 26 Rare phytoplankton, greenish yellow and yellow to orange, rare sporinite, yellow. (Carbonate>calcareous claystone>>glauconitic claystone. Dom common, I>V>E. SWC 18 Inertinite common, vitrinite sparse, exinite rare. Glauconite rare. Iron oxide common. Carbonate has isolated saccharoidal texture. Pyrite sparse to common.) Eumeralla Formation x8279 1383 0.42 0.40-0.46 Rare to spare phytoplankton and liptodetrinite, greenish yellow and yellow to orange, rare sporinite, yellow, rare resinite, green. (Claystone>calcareous sandstone>coal. Coal rare, V. Vitrite. Dom spare to common, I>E>V. Inertinite and exinite sparse, vitrinite rare. Inertinite consists of very fine inertodetrinite. SWC 8 Iron oxide rare. Pyrite major.) x8280 1423 0.41 0.33-0.48 Rare phytoplankton and liptodetrinite, greenish yellow and yellow to orange, rare cutinite, yellow.
(Siltstone) coal. Coal sparse, V. Vitrite. Dom common, V>I>E. Vitrinite sparse to common, inertinite sparse, exinite rare to sparse. Rare canneloid shale grains in siltstone, probably reworked. Rare thuchölites. Weak brown fluorescence from desmocollinite. Rare yellow oil SWC 4 Dom common, droplets. Iron oxide rare. Pyrite sparse.) Rare phytoplankton and liptodetrinite, greenish yellow and yellow to orange. (Calcareous claystone>siltstone. x8281 1481 0.47 0.37-0.53 SWC 1 Dom common, I>E>V. Inertinite common, exinite rare to 0.95 0.84-1.04 sparse, vitrinite rare. Dom mainly consists of very fine inertodetrinite. Rare thucholites. Iron oxide

rare to sparse. Pyrite rare.)

VITRINITE REFLECTANCE NORKSHEET

WELL NAME JONG #

1 = Inertinite

FGV = First Generation Vitrinite :

SAMPLE NO.X 8277

70z

100 **1**00 Organic metter Comp.(%) ITT Inite | Inertinite ခွဲ့ ခွဲ့ခွဲ Alginite <u>∽</u> 9 6.5 Exinite . 8 8 .5 2.00 1.92 .. 8 z. 1.95 1.96 1.97 1.98 1.99 Pop ခွင့် ခွင့် X. Ro x 1.60 <u>.</u> x 1.55 .. % 1.57 -& 1.65 29. 2. 1.66 1.69 1.7 1.75 1.7 1.76 1.77 1.78 1.79 1,80 1.82 1,83 <u>.</u> 1.85 1.86 1,87 1.88 1.81 1.89 Pope 95 55 55 Resd Ro X 1.21 1.22 1.23 1.24 1.26 1.30 1.27 1.28 1.29 1.32 1.35 2. 3.7 3. 1.39 1.37 ×. 1.40 1.42 1.43 1,44 1.45 1.46 1.48 3.5 **-.** 1.47 1.49 α. <u>.</u> 1,51 <u>مۇ</u> <u>خۇ</u> ခွင့် မိန့် 8 العا .87 88 ä 8 5 26. 8 8 8 .98 66. 8. P. 8 1.06 2.0 8 9 .05 1.07 1,08 8 1.10 1, 11 1.13 1.12 1.14 1.17 <u>ح</u>م 200 न्तर Re Bd (1) d Pop Ro \$ 18 46 29. 29. .47 .48 49 .6 3 3 .68 69. 07. 20. 97. .79 ۲۲. .75 .78 14. 7. 4 ι. 8 <u>.</u> 35 55 % 60. જ Ξ. 1. .25 .27 .28 .28 .30 = . 12 .15 .20 .22 .23 .23 .24 91. .17 81. 2223 7 .37 8 39 ÷ 5. .32 940 .42 7

Kairaville Konsultants Pty Ltd.

WELL NAME TONG # 1

SAMPLE NO X 8278

DEPTH. 127

TYPE SUSC.

1 = Inertinite FGV = First Generation Vitrinite ..

88 25 -Organic metter Comp.(%) Vitrinite Inertinite 96. 80.6 \$. \$. \$. 10> Exinite 6.4 8 8.1. 1.22 1.93 **z**: 1.95 1.97 1.98 8. 2.00 Roge Type Read 80 **≤** 1.55 3.1 - 5 8 8 2.60 1.62 2 1.65 99. 1.67 1.68 1.70 1.72 1.73 1.74 1.75 1.76 1.7 1.78 1.79 1.7 8 3. 1.81 183 1.85 1.86 1,87 <u>~</u> 1.89 <u>وم</u> ခွင့် ခွင့် XX 6.0 8.0 Ro ≰ 1.21 1.22 1.24 1.25 1.26 1.27 1.29 1.30 1.31 1.32 1.33 1.35 ¥. 1.36 1.39 1.40 1.38 1.41 1.45 1.45 1,44 1.46 1.47 1.48 1.49 3. 1,51 Rose Pope 5.0 .0 .0 8 8 3 2 .85 86. .88 .89 8 2 8 8 4 8,8 . 98 1.00 1.01 1.02 .97 8 1.05 1.10 1.07 8 1,11 8 1. 12 1.13 1.17 Rope Pop Rnge Type 2. S Ø 8 <u> इंटिल संस्थात संस्थात संस्थात</u> .47 49 3 2 3 3 6 29. .68 .69 ٥٢. .76 8 8 2 2 2 2 2 .77 .78 Pop Pop 41 8 = .12 Ξ. .15 7. 9 -28 20 30 30 . 18 ٥. . 20 . 22 . 23 . 24 . 25 . 25 2 2 9. × .35 36 2 2 39 ₹. .42 7 .44 \$

VITRINITE REFLECTANCE NORKSHEET

WELL MAYE JOHO # 1

SAMPLE NO. X 8279

DEPTH, I 3 m

i = inertinite FGV = First Generation Vitrinite

٩	Π	Γ	Т	Τ	Τ	Τ	T	Т	Т	Т	Т	Т	Τ-	Т	Τ-	Т	_	1	<u> </u>	_	_	_	_	_	_	_	_	1				,				
Po de	_	-	_	L	L	L	L	L	L	L	L	L	L		L												0.6%					:		 رم		
ခ်ိန္	_																										metter Comp.("")	Alginite		0		Inertinite		<u>ن</u>		
9.0													Γ														_					-		_		\dashv
8	8	1.91	1.22	1.93	a.	1.95	8	1.97	1.98	8.	2.8								-								Organic	Exinite		d. ⊘)	Vitrinite	,	- 0 V		
Pop																											٩	W				2				
ခွင့် မှ													T		-		-	-	-							_						-			1	
Reso.																								-												
Ro ≴	-, %	1.55	 %	1.57	 &	- 55	1.60	1.61	29	3.1	1.02	1.65	8.	1.67	1.68	1.69	1.70	1.71	1.72	1.7	1.74	1.75	1.76	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.85	. 86	1,87	1.88	1.89
Роре																				-	-															\exists
e Sos Sos																_													_						1	\dashv
200 200 200 200 200 200 200 200 200 200																					-														-	\dashv
Ro ≲	1.18	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.7	1.35	1.36	1.37	1.38	1.39	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.47	.48	.49	3.5	. 51	2	1.33
Ppe													-		-													_				1	•	-	\exists	귀
Rope									·				-		-							•							,				_		\dashv	\dashv
Reso.																-						·						-	-							\dashv
Ro ≴	8	.	2	.85	- 86	.87	.88	. 89	.90	16.	.92	.93	3.	-95	96.	.97	.98	66*	1.00	1.01	1.02	1.03	1.9	1.05	.06	1.07	88	1.09	1.10	1, 11	1.12	1.13	1.14	1.15	. 16	=
Pop															_						_														7	
Pop Rage	7	•																																		ᅦ
Read Read	_																-														·					1
8	46	.47	.48	-49	85	.51	Ġ.	8.	7.	. 55	'n	.57	જ.	8.	8.	19*	29.	.63	2.	.65	·99•	.67	.68	69.	٠,70	.71	7	ъ.	.74	.75	92.	.77	.78	.79	8	.8
Type Type																		-	-					-							-	-				
Rop																															\forall				RSV	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																												_	_		_	O1	7		F	\dashv
§ ∞	01.	=	.12	<u>:</u>	=	.15	. 16	.17	. 18	- 19	.20	.21	.22	.23	.24	. 25	.26	.27	.28	. 29	.30	.31	.32	.33	አ.	.35	.36	.37	.38	.39		14.	.42		.44	.45

VITRINITE REFLECTANCE NORKSHEET

WELL MANE JONG # /

SAMPLE NO.X 8780

DEPTH. 14 3 MJ

THE SUC

FGV = First Generation Vitrinite ... | = Inertinite

1.	1 9		Τ	Τ	Τ	Τ	Т	T	Т	Т	Т	Т	Т	T-	γ-	T-	Т	τ-	7-	γ	Υ-	_	_	τ-	т			·	·								
1		+	\vdash	-	-	-	-	\downarrow	\downarrow	\vdash	-		-	-	-		L	L		_	L	L	L	L				17,00	•				110		٠,	`	
1		-	igert	ig	igspace	L		igspace	$oldsymbol{\perp}$	L	L							L		L			·		L			3	Algla	•	C)	Per 1		0.5)	
No. Page P		-		_	L	L	L	L				L																					 				-
No. Page P		_	6	1.82	1.3	J	85	-8	1.97	1.98	8.	8		L		L)rasn i	x In t		Ó		17 1		Ö		
No. Right Pop													ļ.																					$\lceil \cdot \rceil$		П	
No. 905												T								T	T			\vdash	_			<u> </u>	-	-	_	-		H			
No. X. S.								T	T	T		<u> </u>				H	T	-	-	\vdash	H	 		\vdash	-		_	_	_		-	-	-	H		Н	
No.	- ×	1.55	Я:	1.57	- x	- 59	09.1	1.61	3.	1.63	2.	1.65	33.	1.67	1.68	1.69	1.70	1.7	2.	5.	7.	.75	.76	.77	.78	. 79	. 80	18.	æ	3	ब्र	.85	98	.87	88	89	
No. Page P	- Age								T				-	-	T	_		-		_	_	F		F	_	-	1	•	1	F	-	-	-	_		1,	
No. of the late Pape Pap	98 88 89 89 89 89 89 89 89 89 89 89 89 8												-		T		-	-		-	-	-		-						_				_			
No. of Read Right Roy Ro	R.C.																	-	-				_	-						-	-					-	\dashv
No. Page P		1.18	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33	¥.	1.35	1.36	1.37	38	.39	9	-41	.42	.43	. 44	.45	.46	. 47	.48	.49	8	2	R	2
No. Prop. Ype																						_			-			_	_	-	_	-	-		-		
No. Page P	955 905												_	_								\vdash			Н		-			•					\dashv	-	\dashv
No. Read Rope Roy Ro							_		_																		-	-	_				_		\dashv		\dashv
No. ×	28.	а.	S.	-85	• 86	.87	.88	- 89	8	16.	.22	.93	3.	- 95	96.	.97	.98	- 66	80.	.01	æ	ອ.	8	.05	8	0,	8	8	10	=	12	13	14	15	16	-	
7 Read Roge Type	Pop																			-	1	1	1.	-	-	-			1.	1.	-	٠.	1.	1.	킈	=	
A Read Rige Pop Inches of Type Ro of Type Ro of Type 2 A Read Rige 1 A B A B A B A B A B A B A B A B A B A	Pop			>	-													_									1	-	_				-		1		\dashv
A Read Rige Pop Inches of Type Ro of Type Ro of Type 2 A Read Rige 1 A B A B A B A B A B A B A B A B A B A	NO. Read	CG															1			-							-	1				·	_		\dashv	-	\dashv
φω σω	w		-47	84	-49	2	5	B	8.	7	.55	R	.57	8	8	8	5	8	3	2	65	.99	19	68	69	2	_	12	2	74	75	9,	7.1	18	ام	g	
25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1							-			1	-			-	+	\dashv	+	-	-			-	•	-				-			-	_		3	-
2 m + m + m + m + m + m + m + m + m +			1	1	1	1	-	1		1		-	1	1	-	+	1	-	+	\dashv					<							٧٤					
		\dashv	1	\dashv	1	\dashv	\dashv	-		\dashv	+	\dashv	\dashv	\dashv	1	+	1	+		+	-	-	-	-		\dashv	\dashv	-	-		H	7,5			\dashv		\exists
		9	=	2	5	=	5	92	17	18	6	20	21	22	2	72	22	92	27	82	2	õ	_	22		 	-	-	- 1	-	-1	0	-	-		-	_

TYPE S. L.C.C. 8 1.91 1.22 2.3 <u>.</u> 1.95 1.98 1.97 2.00 Pope 95 DEPTH 1481 W R. S. Ro 🗴 . X 1.55 ж. 1.53 35. 1.60 1.61 7.62 1.63 1.65 .68 1.67 1.68 1.70 1.71 1.72 1.73 1.69 Pope VITRINITE REFLECTANCE NORKSHEE Ro x 1.21 1.22 1.24 1.25 1.26 1.28 1.27 1.32 .3 1.35 <u>-</u> 73. 1.3 8. - S SAMPLE NO X 6281 Rige Pop RINITE Se se .96 INE .87 1 = Inertinite 8 8 3 g | g .86 .88 8 2 8 8 8 8 2 86. 66 2.8 8.9 <u>=</u> ₹ Ye Rope ρ_{GY} NELL MAKE TONA - I FGV = First Generation Vitrinite .. Se se 8 .47 49 2 ä ĸ 2 3 × 2 8 8 8 2 3 3 6 .61 3 3 Pop Sop Sop 80. 80. ٥. .. . 12 .15 = 11. .18 .30 .32

Pop Type

200

2

8.1

Keiraville Konsultants Pty Ltd.

5

45

Organic matter Comp. (%)
Exinite | Alginite

1.75 1.76 1.7 1.78 1.79 . 80 1.8 - B 1.83

1.40

હ

2.

.68 69. 2 ۲. u. 5. 2

3 3 35 35 38 .39 9 ₹ .42 .

1.05 8 1.07 8 .8 1.10 1, 11 1.12 1.13

1.42 1.41

1.43

1.45 1.44

1-4 1.48 1.49 3.5 1, 51 7 2.2

3. 1. 275

.78 .79 8

Itr Inite | Inertinite

1.85 1.86

1,87 1.88 1.89

> 1.16 1.17

<u>.</u> 2

-0 V

0

. 0

APPENDIX 7

DST #1

TICKET NO. 32990600 05-APR-88 MODMBA

FORMATION TESTING SERVICE REPORT

LEASE NAME SEE REMARKS WELL NO. TEST NO. F IELD AREA 4241.0 - 4282.0 TESTED INTERVAL HNDI COUNTY VICTORIA BEACH PETROLEUM N/L STATE AUSTRALIA

S

HOUR OF CLOCK: 24

DEPTH: 4198.0

GAUGE NO: 8508

329906-8508

BLANKED OFF: NO

ID	DESCRIPTION		SSURE	TIM		TYPE
		REPORTED	CALCULATED	REPORTED	CALCULATED	
A	INITIAL HYDROSTATIC					
В	INITIAL FIRST FLOW	450	447.9	15.0	14.6	F
С	FINAL FIRST FLOW	1705	1724.4	13.0	17.Ų	,
С	INITIAL FIRST CLOSED-IN	1705	1724.4	31.0	31.2	С
D	FINAL FIRST CLOSED-IN	197	205.4	31.0	31.2	L
Ε	INITIAL SECOND, FLOW		234.1	70.0	70.1	F
F	FINAL SECOND FLOW		1531.2	70.0	10.1	
F	INITIAL SECOND CLOSED-IN		1531.2	55.0	55.2	С
G	FINAL SECOND CLOSED-IN		5.1	35.0	33.2	L
Н	HYDROSTATIC AFTER REV.	2147	2176.8			

BeFF

...

32.9906-8509

HOUR OF CLOCK: 24 GAUGE NO: 8509 DEPTH: 4218.0 BLANKED OFF: NO TIME PRESSURE DESCRIPTION **TYPE** ID REPORTED CALCULATED 2029 2037.5 Α INITIAL HYDROSTATIC В INITIAL FIRST FLOW 1598 1644.5 15.0 14.5 F FINAL FIRST FLOW 1742 1756.7 1756.7 INITIAL FIRST CLOSED - IN 1742 31.0 31.2 С D FINAL FIRST CLOSED-IN 1767 1757.7 Ε INITIAL SECOND FLOW 1559 1595.6 F 70.0 70.1 FINAL SECOND FLOW 1689 1703.0 1703.0 INITIAL SECOND CLOSED-IN 1689 55.0 55.2 С FINAL SECOND CLOSED - IN 1742 1757.4 G 2160 2119.3 HYDROSTATIC AFTER REV.

329906-1744

BLANKED OFF: YES

HOUR OF CLOCK:_

24

PRESSURE ID DESCRIPTION **TYPE** REPORTED CALCULATED REPORTED INITIAL HYDROSTATIC 2035 2048.4 INITIAL FIRST FLOW В 15.0 F FINAL FIRST FLOW INITIAL FIRST CLOSED - IN C 31.0 С D FINAL FIRST CLOSED-IN Ε INITIAL SECOND FLOW 70.0 F FINAL SECOND FLOW F INITIAL SECOND CLOSED-IN 55.0 17.8 C G FINAL SECOND CLOSED-IN 1755.6 HYDROSTATIC AFTER REV. 2170 2138.8

DEPTH: 4279.0

GAUGE NO: 1744

EQUIPMENT & HOLE DATA	TICKET NUMBER: 32990600	
FORMATION TESTED: WAARRE NET PAY [ft]: 10.0	DATE: 3-14-88 TEST NO: 1	
GROSS TESTED FOOTAGE: 41.0 ALL DEPTHS MEASURED FROM: R KELLY BUSHING	TYPE DST: OPEN HOLE	
CASING PERFS. (ft):	HALLIBURTON CAMP:MOOMBA	
TOTAL DEPTH (ft): 4282.0 PACKER DEPTH(S) (ft): 4233, 4241 FINAL SURFACE CHOKE (in): 0.50000	TESTER: P. LARKINS	
BOTTOM HOLE CHOKE (in): 0.750 MUD WEIGHT (lb/gal): 9.30	WITNESS: V. STANTOSTEFANO	
MUD VISCOSITY (sec): 45 STIMATED HOLE TEMP. (°F):	DRILLING CONTRACTOR: GEARHART RIG #2	
FLUID PROPERTIES FOR RECOVERED MUD & WATER SOURCE RESISTIVITY CHLORIDES	SAMPLER DATA Psig AT SURFACE: cu.ft. OF GAS: cc OF OIL: cc OF WATER: cc OF MUD: TOTAL LIQUID cc:	
HYDROCARBON PROPERTIES OIL GRAVITY (°API): @ °F GAS/OIL RATIO (cu.ft. per bbl): CAS GRAVITY:	CUSHION DATA TYPE AMOUNT WEIGHT KCL (BBL) 10.0 8.40	
RECOVERED:	MEASURED FROM TESTER VALVE	
REMARKS: LEGAL LOCATION: LAT. 28 DEGREES, 24', 30 46" LONG. 143 DEGREES, 01', 57 3		

GAUGE # 1744 APPEARS TO HAVE BEEN PLUGGED OFF WITH DEBRIS....NO VALID READINGS AVAILABLE OTHER THAN HYDROSTATICS.

ZE MERSUR	ING DEVICE:		CHOKE	MANIFOLD	TICKET NO: 3299060
CHOKE SIZE	SURFACE PRESSURE PSI	GAS RATE MCF	ATE RATE	REMARKS	
		· · · · · · · · · · · · · · · · · · ·		MADE UP TOOLS AND RAN IN HOLE	
				SET PACKERS 25,000#	
				TOOL OPENED	
				STRONG BLOW IN BUCKET	
1/4	200				
1/4	1100				
1/4	1200				
1/4	1300				
1/4	1300				
1/4				MUD TO SURFACE	
1/4	1250	· · · · · · · · · · · · · · · · · · ·			VI. N
1/4				GAS TO SURFACEWATER CUT	
1/4	1300			CLOSED DCIP FOR INITIAL SHUT IN	
3/8	200			OPENED DCIP	
3/8	500				
3/8	1250				
3/8	1040				
3/8	1480				
3/8	1490				
3/8	1490				
1/2	1350			CHANGE CHOKE, LIT FL	ARE
1/2	1310			ORANGE YELLOW FLAME	
1/2	1300				
1/2	1300	,			
1/2	1300			CLOSED DCIP FOR FINAL SHUT IN .	
				PULLED PACKER FREE, STARTED	
				TO REVERSE DUTKILI	_ED WELL
				TOOLS OUT OF HOLE	
-					
	CHOKE SIZE 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/	CHOKE SIZE SURFACE PRESSURE PSI Image: Control of the property of	CHOKE SIZE SURFACE PRESSURE PSI GAS RATE MCF 1/4 <	CHOKE SIZE SURFACE PRESSURE PSI GAS RATE MCF LIDUID RATE BPD 1/4 <td> RATE PRESSURE RATE RATE BPD REMARKS RATE BPD REMARKS RATE BPD REMARKS RATE RATE RATE BPD RATE RATE RATE RATE BPD RATE RATE RATE RATE BPD RATE /td>	RATE PRESSURE RATE RATE BPD REMARKS RATE BPD REMARKS RATE BPD REMARKS RATE RATE RATE BPD RATE RATE RATE RATE BPD RATE RATE RATE RATE BPD RATE RATE

ECKET NO: 32990600

CLOCK NO: 30368 HOUR: 24

GAUGE NO: 8508

DEPTH: 4198.0

				T		T)	<u> </u>	T T			T
REF		MINUTES	PRESSURE	ΔP	t×At t+At	log t + At	REF	MINUTES	PRESSURE	AP	tx At t + At	log t + At
			ETDET	ELOU								
			FIRST	FLUM								
В	1	0.0	447.9									
	2	1.0	1573.5	1125.6								
	3	2.0	1578.2	104.7								
	4	0.E	E. 7071	29 . 1								
	5	4.0	1711.7	4.4								
	6	5.0	1714.3	2.6								
	7	6.0	1715.5	2.2								
	8	7.0	1719.0	2.5								
	9	8.0	1719.7	0.8			11					
	10	9.0	1721.4	1.7								
	11	10.0	1722.6	1.2								
	12 13	11.0 12.0	1723.5 1724.0	0.9 0.5								
	14	13.0	1724.7	0.5								
	15	14.0	1724.8	0.1			11					
С	16	14.6	1724.4	-0.4			11					
		_	TOCT CI	OCED TH								
		۲	IKSI LL	OSED-IN								
С	1	0.0	1724.4									
D	2	31.2	205.4	-1519.0	9.9	0.167						
			SECOND	FIOL								
			JECUND	ILLUM								
Ε	1	0.0	234 . 1									
	2	5.0	1627.4	1393.3								
	3	10.0	1560.5	33.2								
	4	15.0	1658.1	-2.6								
	5	20.0	1657.3	-0.8								
	5 7	25.0 30.0	1656 .1 1654 .5	-1.2 -1.5								
	8	35.0	1654.0	-0.5								
	9	40.0	1653.4	-0.5								
	10	45.0	1653.4	0.0								
	11	45 . 4	1653.4	0.0								
	12	50.0	1578.1	-75.3								
	13	55.0	1562.2	-15 .8								
	14	БО.О	1545.5	-15.8								
	15	65.0 70.1	1535.2	-10.3								
Г	16	70.1	1531.2	-4.0								
		90	ברואה רו	_OSED-IN								
				TOOLD TIN								
F G	1	0.0	1531.2			0.404						
G	2	55.2	5.1	-1526.0	33.4	0.404						
							i I					

LEGEND:
CHOKE CHANGE
MARKS:

TICKET ND: 32990600

CLOCK NO: 30363 HOUR: 24

GAUGE NO: 8509

DEPTH: 4218.0

RE	F	MINUTES	PRESSURE	ΔP	<u> </u>	log t + At		
			FIRST	ELOU				
			LTKOI	FLUM				
В	1	0.0	1644.5			j		
	2	1.0	1645.0	0.5				
	3	2.0	1545.0	0.0				
	4	3.0	1667.9	22.8				
	5 6	4.0 5.0		39 . 4 28 . 5				
	7	5.0	1748.0	12.1				
	8	7.0	1750.9	2.9				
	9	8.0	1753.3	2.3				
	10	9.0	1754.4	1.2				
1	11	10.0		P. 0				
1	12	11.0 12.0		0.8 0.5				
I	14	13.0		0.0				
Ì	15	14.0		0.0		I		
C	16	14.5	1756 . 7	0.0				
	FIRST CLOSED-IN							
C	1	0.0	1756 . 7			1		
CD	2	31.2	1757.7	1.0	9.9	0.167		
			SECOND	FLOW				
Ε	1	0.0	1595.6					
	2	5.0	1708.1	112.5		1		
	3	10.0	1735 .1	27.0		1		
	4	15.0	1736.7	1.6 -1.0				
	5 6	20.0 25.0	1735.6 1735.2	-0.4		I		
	7	30.0	1735.2	0.0		1		
7	8	35.0	1735.2	0.0				
	9	40.0	1733.3	-2.0				
	10	45.0	1733.0	E. 0-				
	11	45.4	1733.0 1717.5	0.0 -15.5		İ		
	12 13	50.0 55.0	1709.0	-15.5 -8.5				
	14	BO.0	1705.0	-4.0				
	15	65.0	1702.2	-2.7				
F	16	70.1	1703.0	8.0				
		SE	COND C	_OSED-I	N			
F	1	0.0	1703.0			1		
	2	1.0	1748.0	45.0	1.0	1.943		
	3	2.0	1751.2	48.2	2.0			
	4	3.0	1752.9	49.9	2.9			
L	5	4.0	1753.9	50.9	3.8	1.346		

REF	MINUTES	PRESSURE	ΔP	<u>tx At</u> t + At	lag t + At
Si	ECOND CLOSED	-IN - CONTI	NUED		
5	5.0	1755.4	52.3	4.7	1.254
7	Б.О	1756.0	53.0	5.5	1.177
8	7.0	1756.0	53.0	6.5	1.115
9	8.0	1756.0	53.0	7.3	1.065
10	9.0	1756.7	53.7	8.1	1.018
11	10.0	1756.8	53.8	8.9	0.976
12	12.0	1757 .8	54.8	10.5	0.905
13	14.0	1757.8	54.8	12.0	0.848
14	15.0	1757.8	54.8	13.5	0.798
15	18.0	1757.3	54.3	14.9	0.756
16	20.0	1757.3	54.3	16.2	0.719
17	22.0	1757.3	54.3	17.5	0.686
18	24.0	1757.3	54.3	18.7	0.656
19	25.0	1757.3	54.3	19.9	0.629
20	28.0	1757.3	54.3	21.1	0.504
21	30.0	1757.3	54.3	22.2	0.582
22	35.0	1757.3	54.3	24.8	0.534
23	40.0	E. 7271	54.3	27.2	0.494
24	45 . 0	1757.3	54.3	29 . 4	0.450
25	50.0	1757.3	54.3	31.4	0.430
G 26	55 .2	1757.4	54.4	33.4	0.404

LEGEND:

REMARKS:

TICKET NO. 32990600

				1 101/0	T NO. 3299060
	-	O.D.	I.D.	LENGTH	DEPTH
	DRILL PIPE	4.500	3.826	3552.0	
	FLEX WEIGHT	4.500	2.764	182.3	
2	DRILL COLLARS	6.500	2.812	370.1	
	IMPACT REVERSING SUB	6.250	000.E	1.0	4105.0
3	DRILL COLLARS	6.500	2.812	8.08	
F	CROSSOVER	5.250	. 2.400	1.0	
	AP RUNNING CASE	5.000	2.250	4.1	4198.0
	CROSSOVER	5.000	2.375	1.0	
0	DUAL CIP VALVE	5.000	0.870	4.9	
2	SAMPLE CHAMBER	5.000	2.250	4.1	
0	DRAIN VALVE	5.250	2.500	1.0	
۰	HYDROSPRING TESTER	5.000	0.750	5.3	4215.0
	AP RUNNING CASE	5.000	2.250	4.1	4218.0
	JAR	5.000	1.000	5.0	
v	VR SAFETY JOINT	5.000	1.000	2.8	
	OPEN HOLE PACKER	6.750	1.530	5.8	4233.0
	DISTRIBUTOR VALVE	5.000	1.750	2.0	
	OPEN HOLE PACKER	б.750	1.530	5.8	4241.0
)	ANCHOR PIPE SAFETY JOINT	5.000	2.370	4.0	
	FLUSH JOINT ANCHOR	5.000	2.370	31.0	
o	BLANKED-OFF RUNNING CASE	5.000		4.1	4 279.0
	TOTAL OFFITI		•		
	TOTAL DEPTH				4282.0
	1				

EQUIPMENT DATA

APPENDIX 8

SFT DATA

BEACH PETROLEUM N.L.

IONA # 1

19th march 1988

Company Name

: BEACH PETROLEUM N.L.

Well Name

: IONA #1

Operator's Name : R RUSSELL/G GRAHAM

Witness's Name : A BUFFIN/G COSMA

Pressure Gauge Type : H.P.

Pressure Gauge Serial# : 487

Panel Serial# : 00

Temperature Tool Serial#: 070

Number of Data Logged :

Depth Units (Feet/Meters): Meters

Pressure Units (PSI/KPa): PSIA

Temp. Units (Deg.F/Deg.C): Deg.F

I N D E X

BEACH PETROLEUM N.L.

IONA #1

TES	T DEPTH (M)	TIME (MIN/SEC)	HYDROSTATIC PRESSURE (A) PSI	FORMATION PRESSURE (A) PSI	COMMENTS
	250 m	-	392.6	-	Hyd. Grad
	500 m	-	800.1	-	Hyd. Grad
	750 m		1200.6	-	Hyd. Grad
	1000 m		1600.3	-	Hyd. Grad
	1250 m	-	2005.3	-	Hyd. Grad
1	1406.5m	34:00	2253.47	-	Tight form
2	1390.0m	23:10	2223.62	-	Tight form
3	1370.5m	81:50	2247.62	1831.72	Valid
4	1342.5m	95:30	2211.00	1767.77	Valid
5	1337.5m	43:50	2207.77	1760.78	Valiđ
6	1324.0m	159:10	2208.05	1745.52	Sample taken
7	1321.5m	49:00	2065.80	1744.98	Valid
8	1316.0m	59:00	2104.62	1745.36	Valid
9	1306.0m	75:30	2091.33	1742.64	Valid
10	1211.5m	29:00	1941.84	719.97	Valid
11	1188.Om	45:00	1908.01	-	Invalid
12	1336.0m	82:00	2142.50	-	Valıd

STATIC GRADIENT - PLOT DATA

PAGE: 1

COMPANY : BEACH PETROLEUM N.L.

WELL : IONA #1

Eq. Type : H.P.
Gauge # : 487
Depth : Measured

Comments : S.F.T. PRESSURE TEST (GRADIENT)

Seq.#	Date	Time	Temp (Deg.F)	Depth (Meter)	Pressure (PSIA)	Gradient (PSIA/Meter)
1	19/03/88	07:29:00	+71.30	250.0	392.61	
2	19/03/88	07:45:30	+80.40	500.0	800.13	1.630
3	19/03/88	08:00:30	+88.20	750.0	1,200.64	1.602
4	19/03/88	08:10:30	+92.60	1,000.0	1,600.35	1.599
5	19/03/88	08:56:30	+113.20	1,250.0	2,005.30	1.620

Eq. Type : H.P. WELL : IONA #1 Gauge # : 487

Depth : Measured

Comments : S.F.T.PRESSURE TEST (GRADIENT WHILE R.I.H.)

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)	Depth (Meter)
1	19/03/88	07:17:00	0.0000	378.55	+65.9	250.0
2	19/03/88	07:17:30	0.0083	379.36	+65.9	250.0
3	19/03/88	07:18:00	0.0167	380.13	+66.1	250.0
4	19/03/88	07:18:30	0.0250	380.63	+66.2	250.0
5	19/03/88	07:19:00	0.0333	381.00	+66.3	250.0
6	19/03/88	07:19:30	0.0417	381.29	+66.5	250.0
7	19/03/88	07:20:00	0.0500	381.54	+66.7	250.0
8	19/03/88	07:20:30	0.0583	381.75	+66.9	250.0
9	19/03/88	07:21:00	0.0667	381.96	+67.1	250.0
10	19/03/88	07:21:30	0.0750	383.65	+67.3	250.0
11	19/03/88	07:22:00	0.0833	385.57	+667.5	250.0
12	19/03/88	07:22:30	0.0917	386.04	+67.8	250.0
13	19/03/88	07:23:00	0.1000	384.30	+68.1	250.0
14	19/03/88	07:23:30	0.1083	386.63	÷68.3	250.0
15	19/03/88	07:24:00	0.1167	387.05	+68.3	250.0
16	19/03/38	07:24:30	0.1250	387.50	+68.8	250.0
17	19/03/88	07:25:00	0.1333	387.98	+69.1	250.0
18	19/03/88	07:25:30	0.1417	388.50	+69.4	250.0
19 20	19/03/88 19/03/88	07:26:00	0.1500	389.05	+69.7	250.0
21	19/03/88	07:26:30 07:27:00	0.1583	389.61	+70.0	250.0
22	19/03/88	07:27:00	0.1667 0.1750	390.19	+70.2	250.0
23	19/03/88	07:28:00	0.1730	390.79 391.39	+70.5	250.0
24	19/03/88	07:28:30	0.1917	392.00	+70.8 +71.1	250.0 250.0
25	19/03/88	07:29:00	0.2000	392.61	+71.1	250.0
26	19/03/88	07:36:00	0.2000	798.33	+74.9	500.0
27	19/03/83	07:37:00	0.3333	798.22	+75.2	500.0
28	19/03/88	07:37:30	0.3417	798.00	+75.5	500.0
29	19/03/88	07:38:00	0.3500	797.86	+75.8	500.0
30	19/03/88	07:38:30	0.3583	797.73	+76.1	500.0
31	19/03/88	07:39:00	0.3667	797.64	+76.4	500.0
32	19/03/88	07:39:30	0.3750	797.63	+76.7	500.0
33	19/03/88	07:40:00	0.3833	797.68	+77.0	500.0
34	19/03/88	07:40:30	0.3917	797.79	+77.4	500.0
35	19/03/88	07:41:00	0.4000	797.90	+77.7	500.0
36	19/03/88	07:41:30	0.4083	798.06	+78.0	500.0
37	19/03/88	07:42:00	0.4167	798.24	+78.3	500.0
38	19/03/88	07:42:30	0.4250	798.47	+78.6	500.0
39 46	19/03/88	07:43:00	0.4333	798.67	+78.9	500.0
40	19/03/88	07:43:30	0.4417	798.91	+79.2	500.0
41 42	19/03/88	07:44:00	0.4500	799.15	+79.5	500.0
43	19/03/88 19/03/88	07:44:30 07:45:00	0.4583	799.44	+79.8	500.0
44	19/03/88	07:45:00 07:45:30	0.4667	799.44	+79.3	500.0
45	19/03/88	07:52:00	0.4750 0.5833	800.13	+80.4	500.0
45 46	17/03/00	07:52:00 07:52:30	0.5833 0.5917	1,198.95 1,197.87	+83.2 +02.5	750.0
47	19/03/88	07:52:00	0.3717	1,177.87	+83.5 +83.8	750.0
48	19/03/88	07:53:30	0.6083	1,177.37	+03.0 +84.1	750.0 750.0
49	19/03/88	07:54:00	0.6167	1,198.11	+84.4	750.0
50	19/03/88	07:54:30	0.6250	1,198,10	+84.7	750.0
=				4 4 4 7 4 9 4 4 4	· 97 • /	, 50.0

Eq. Type : H.P. Gauge # : 487 WELL : IONA #1

Depth : Measured

Comments : S.F.T.PRESSURE TEST (GRADIENT WHILE R.I.H.)

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)	Depth (Meter)
51	19/03/88	07:55:00	0.4333	1,198.13	+85.0	750.0
52	19/03/88	07:55:30	0.6417	1,198.10	+85.3	750.0
53	19/03/88	07:56:00	0.6500	1,198.31	+85.6	750.0
54	19/03/88	07:56:30	0.6583	1,198.41	+85.9	750.0
55	19/03/88	07:57:00	0.6667	1,198.46	+86.2	750.0
56	19/03/88	07:57:30	0.6750	1,198.67	+86.5	750.0
57	19/03/88	07:58:00	0.6833	1,198.95	+86.8	750.0
58	19/03/88	07:58:30	0.6917	1,199.33	+87.1	750.0
59	19/03/88	07:59:00	0.7000	1,199.68	+87.3	750.0
60	19/03/88	07:59:30	0.7083	1,199.99	+87.6	750.0
61	19/03/88	08:00:00	0.7167	1,200.35	+87.9	750.0
62	19/03/88	08:00:30	0.7250	1,200.64	+88.2	750.0
63	19/03/88	08:05:00	0.8000	1,602.93	+89.3	1000.0
64	19/03/88	08:05:30	0.8083	1,601.64	+89.6	1000.0
65	19/03/88	08:05:00	0.8167	1,600.56	+89.9	1000.0
66	19/03/88	08:06:30	0.8250	1,599.87	+90.2	1000.0
67	19/03/88	08:07:00	0.8333	1,598.67	+90.5	1000.0
68	19/03/88	08:07:30	0.8417	1,599.51	+90.8	1000.0
69	19/03/88	08:08:00	0.8500	1,300.07	+91.1	1000.0
70	19/03/88	08:08:30	0.8583	1,300.18	+91.4	1000.0
71	19/03/88	08:09:00	0.8667	1,600.20	+91.7	1000.0
72	19/03/88	08:09:30	0.8750	1,600.27	+92.0	1000.0
73	19/03/88	08:10:00	0.8833	1,300.27	+92.3	1000.0
74	19/03/88	08:10:30	0.8917	1,600.35	+92.6	1000.0
75	19/03/88	08:52:00	1.5833	2,005.79	+112.9	1250.0
76	19/03/88	08:53:00	1.3000	2,005.57	+113.0	1250.0
77	19/03/88	08:53:30	1.6083	2,005.58	+113.0	1250.0
78	19/03/88	08:54:00	1.6167	2,005.55	+113.0	1250.0
79	19/03/88	08:54:30	1.6250	2,005.45	+113.1	1250.0
80	19/03/88	08:55:00	1.6333	2,005.42	+113.1	1250.0
81	19/03/88	08:55:30	1.6417	2,005.39	+113.1	1250.0
82	19/03/88	08:56:00	1.6500	2,005.34	+113.1	1250.0
83	19/03/88	08:56:30	1.6583	2,005.30	+113.2	1250.0

Eq. Type : H.P. WELL : IONA #1

Gauge # : 487
Depth :1406_5Meters

Seq.#	Date .	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	09:02:30	0.0000	2,274.91	+113.5
2	19/03/88	09:03:00	0.0083	2,271.31	+113.5
3	19/03/88	09:03:30	0.0167	2,267.23	+113.6
4	19/03/88	09:04:00	0.0250	2,263.39	+113.6
5	19/03/88	09:04:30	0.0333	2,259.99	+113.7
6	19/03/88	09:05:00	0.0417	2,256.68	+113.8
7	19/03/88	09:05:30	0.0500	2,254.00	+113.8
8	19/03/88	09:06:00	0.0583	2,252.74	+113.9
9	19/03/88	09:07:00	0.0750	2,252.59	+114.1
10	19/03/88	09:08:00	0.0917	2,252.29	+114.3
11	19/03/88	09:09:00	0.1083	2,251.87	+114.5
12	19/03/88	09:10:00	0.1250	2,251.69	+114.7
13	19/03/88	09:11:00	0.1417	2,251.74	+114.9
14	19/03/88	09:12:00	0.1583	2,251.75	+115.1
15	19/03/88	09:13:00	0.1750	2,251.78	+115.3
16	19/03/88	09:14:00	0.1917	2,252.91	+115.3
17	19/03/88	09:14:42	0.2033	2,253.44	+115.3
18	19/03/88	09:14:44	0.2039	2,253.34	+115.3
19	19/03/88	09:14:46	0.2044	2,253.30	+115.3
20	19/03/88	09:14:48	0.2050	2,253.29	+115.3
21	19/03/88	09:14:50	0.2056	2,253.27	+115.3
22	19/03/88	09:14:52	0.2061	2,253.25	+115.3
23	19/03/88	09:14:54	0.2067	2,253.25	+115.3
24	19/03/88	09:14:56	0.2072	2,253.25	+115.3
25	19/03/88	09:14:58	0.2078	2,253.23	+115.3
26	19/03/88	09:15:00	0.2083	2,252.51	+115.3
27	19/03/88	09:15:02	0.2089	2,253.21	+115.3
28	19/03/88	09:15:04	0.2094	2,253.21	+115.3
29	19/03/88	09:15:06	0.2100	2,253.22	+115.3
30	19/03/88	09:15:08	0.2106	2,253.24	+115.3
31	19/03/88	09:15:10	0.2111	2,253.27	+115.3
32	19/03/88	09:15:12	0.2117	2,253.29	+115.3
33	19/03/88	09:15:14	0.2122	2,253.35	+115.3
34 35	19/03/88	09:15:16	0.2128	2,253.41	+115.3
3 <i>5</i>	19/03/88	09:15:18	0.2133	2,253.42	+115.3
30 37	19/03/88 19/03/88	09:15:20	0.2139	2,253.52	+115.3
37 38	19/03/88	09:15:22	0.2144	2,253.60	+115.3
39	19/03/88	09:15:30 09:15:40	0.2167 0.2194	2,253.56	+115.3
40	19/03/88	09:15:50	0.2174	2,253.51	+115.3
41	19/03/88	09:16:00	0.2250	2,253.48	+115.3
42	19/03/88	09:16:10	0.2278	2,253.47	+115.3
43	19/03/88	07:16:10	0.2278	2,254.79	+115.3
44	19/03/88	09:16:20		2,265.46	+115.3
45	19/03/88	09:16:24	0.2311 0.2317	2,265.46	+115.3
46	19/03/88	09:16:24		2,259.04	+115.3
47	19/03/88	09:16:28	0.2322 0.2328	2,259.78	+115.3
48	19/03/88	09:16:28	0.2328	2,260.77	+115.3
49	19/03/88	09:16:30	0.2333	2,261.60	+115.3
50	19/03/88	09:16:34	0.2339	2,262.11 2,262.43	+115.3
	177 007 00	07110104	0.2344	2,202.43	+115.3

PAGE: 2

COMPANY : BEACH PETROLEUM N.L.

Eq. Type : H.P. WELL : IONA #1 Gauge # : 487

Depth : 1406.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	09:16:36	0.2350	2,262.80	+115.3
52	19/03/88	09:16:38	0.2356	2,263.01	+115.3
53	19/03/88	09:16:40	0.2361	2,239.06	+115.3
54	19/03/88	09:16:42	0.2367	2,135.96	+115.3
55	19/03/88	09:16:44	0.2372	1,924.41	+115.3
56	19/03/88	09:16:46	0.2378	1,182.51	+115.3
57	19/03/88	09:16:48	0.2383	409.17	+115.3
58	19/03/88	09:16:50	0.2389	171.99	+115.3
59	19/03/88	09:16:52	0.2394	103.87	+115.3
60	19/03/88	09:16:54	0.2400	73.51	+115.3
61	19/03/88	09:16:56	0.2406	56.57	+115.3
62	19/03/88	09:16:58	0.2411	45.97	+115.3
63	19/03/88	09:17:00	0.2417	38.67	+115.3
64	19/03/88	09:17:02	0.2422	33.37	+115.3
65	19/03/88	09:17:04	0.2428	29.43	+115.3
66	19/03/88	09:17:06	0.2433	26.39	+115.3
67 10	19/03/88	09:17:08	0.2439	24.00	+115.3
68 78	19/03/88	09:17:10	0.2444	22.05	+115.3
69 70	19/03/88	09:17:12	0.2450	20.44	+115.3
70	19/03/88	09:17:14	0.2456	19.12	+115.3
71	19/03/88	09:17:16	0.2461	18.22	+115.3
72 73	19/03/88	09:17:18	0.2467	17.77	+115.3
73 74	19/03/88	09:17:20	0.2472	17.37	+115.3
7 9 75	19/03/88 19/03/88	09:17:22	0.2478	17.25	. +115.3
76 76	19/03/88	09:17:24 09:17:26	0.2483	17.20	+115.3
77	19/03/88	09:17:28	0.2489	17.03	+115.3
78	19/03/88	09:17:28	0.2494 0.2500	16.85	+115.3
79	19/03/88	09:17:32	0.2506	16.67	+115.3
80	19/03/88	09:17:34	0.2511	16.50 16.32	+115.3
81	19/03/88	09:17:36	0.2517	16.17	+115.3 +115.3
82	19/03/88	09:17:38	0.2522	16.13	+115.3
83	19/03/88	09:17:40	0.2528	16.17	+115.3
84	19/03/88	09:17:42	0.2533	16.18	+115.3
85	19/03/88	09:17:44	0.2539	16.21	+115.3
86	19/03/88	09:17:46	0.2544	16.23	+115.3
87	19/03/88	09:17:48	0.2550	16.24	+115.3
88	19/03/88	09:17:50	0.2556	16.25	+115.3
89	19/03/88	09:17:52	0.2561	16.27	+115.3
90	19/03/88	09:17:54	0.2567	16.28	+115.3
91	19/03/88	09:17:56	0.2572	16.28	+115.3
92	19/03/88	09:17:58	0.2578	16.29	+115.3
93	19/03/88	09:18:00	0.2583	16.29	+115.3
94	19/03/88	09:18:02	0.2589	16.31	+115.3
95 27	19/03/88	09:18:04	0.2594	16.32	+115.3
96	19/03/88	09:18:06	0.2600	16.33	+115.3
97 00	19/03/88	09:18:08	0.2606	16.33	+115.3
98 00	19/03/88	09:18:10	0.2611	16.34	+115.3
99 100	19/03/88	09:18:12	0.2617	16.36	+115.3
100	19/03/88	09:18:14	0.2622	16.35	+115.3

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1406.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	09:18:16	0.2628	16.37	+115.3
102	19/03/88	09:18:18	0.2633	16.37	+115.3
103	19/03/88	09:18:20	0.2639	16.38	+115.3
104	19/03/88	09:18:22	0.2644	16.38	+115.3
105	19/03/88	09:18:24	0.2650	16.39	+115.3
106	19/03/88	09:18:26	0.2656	16.39	+115.3
107	19/03/88	09:18:28	0.2661	16.40	+115.3
108	19/03/88	09:18:30	0.2667	16.41	+115.3
109	19/03/88	09:18:32	0.2672	16.40	+115.3
110	19/03/88	09:18:34	0.2678	16.42	+115.3
111	19/03/88	09:18:36	0.2683	16.42	+115.3
112	19/03/88	09:18:40	0.2694	16.43	+115.3
113	19/03/88	09:18:50	0.2722	16.45	+115.3
114	19/03/88	09:19:00	0.2750	16.47	+115.3
115	19/03/88	09:19:10	0.2778	16.50	+115.3
116	19/03/88	09:19:20	0.2806	16.52	+115.3
117	19/03/88	09:19:30	0.2833	16.54	+115.3
118	19/03/88	09:19:40	0.2861	16.56	+115.3
119	19/03/88	09:19:50	0.2889	16.60	+115.3
120	19/03/88	09:20:00	0.2917	16.62	+115.3
121	19/03/88	09:20:10	0.2944	16.64	+115.3
122	19/03/88	09:20:20	0.2972	16.66	+115.3
123	19/03/88	09:20:30	0.3000	16.68	+115.3
124	19/03/88	09:20:40	0.3028	16.70	+115.3
125	19/03/88	09:20:50	0.3056	16.72	+115.3
126	19/03/88	09:21:00	0.3083	16.74	+115.3
127	19/03/88	09:21:10	0.3111	16.76	+115.3
128	19/03/88	09:21:20	0.3139	16.79	+115.3
129 130	19/03/88 19/03/88	09:21:30	0.3167	16.80	+115.3
130	19/03/88	09:21:40 09:21:50	0.3194	16.82	+115.3
132	19/03/88	09:21:30	0.3222 0.3250	16.84	+115.3
133	19/03/88	09:22:00	0.3230	17.24 17.28	+116.7 +116.7
134	19/03/88	09:22:10	0.3278	17.31	
135	19/03/88	09:22:30	0.3333	17.33	+116.8 +116.8
136	19/03/88	09:22:40	0.3361	17.35	+116.8
137	19/03/88	09:22:50	0.3389	17.38	+116.8
138	19/03/88	09:23:00	0.3417	17.40	+116.8
139	19/03/88	09:23:10	0.3444	17.45	+116.8
140	19/03/88	09:23:20	0.3472	17.46	+116.9
141	19/03/88	09:23:30	0.3500	17.48	+116.9
142	19/03/88	09:23:40	0.3528	17.50	+116.9
143	19/03/88	09:23:50	0.3556	17.52	+116.9
144	19/03/88	09:24:00	0.3583	17.54	+116.9
145	19/03/88	09:24:10	0.3611	17.57	+117.0
146	19/03/88	09:24:20	0.3639	17.59	+117.0
147	19/03/88	09:24:30	0.3667	17.60	+117.0
148	19/03/88	09:24:40	0.3694	17.63	+117.0
149	19/03/88	09:24:50	0.3722	17.65	+117.0
150	19/03/88	09:25:00	0.3750	17.69	+117.1

Eq. Type : H.P. WELL : IONA #1

Gauge # : 487
Depth : 1406.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
151	19/03/88	09:25:10	0.3778	17.71	+117.1
152	19/03/88	09:25:20	0.3806	17.73	+117.1
153	19/03/88	09:25:30	0.3833	17.75	+117.1
154	19/03/88	09:25:40	0.3861	17.77	+117.1
155	19/03/88	09:25:50	0.3889	17.78	+117.1
156	19/03/88	09:26:00	0.3917	17.81	+117.2
157	19/03/88	09:26:10	0.3944	17.82	+117.2
158	19/03/88	09:26:20	0.3972	17.84	+117.2
159	19/03/88	09:26:30	0.4000	17.86	+117.2
160	19/03/88	09:26:40	0.4028	17.89	+117.2
161	19/03/88	09:26:50	0.4056	17.94	+117.2
162	19/03/88	09:27:00	0.4083	17.96	+117.2
163	19/03/88	09:27:10	0.4111	17.97	+117.3
164	19/03/88	09:27:20	0.4139	17.99	+117.3
165	19/03/88	09:27:30	0.4167	18.00	+117.3
166	19/03/88	09:27:40	0.4194	18.02	+117.3
167	19/03/88	09:27:50	0.4222	18.04	+117.3
168	19/03/88	09:28:00	0.4250	18.06	+117.3
169	19/03/88	09:28:10	0.4278	18.07	+117.3
170	19/03/88	09:28:20	0.4306	18.09	+117.3
171	19/03/88	09:28:30	0.4333	18.10	
172	19/03/88	09:28:40	0.4361		+117.4
173	19/03/88	09:28:50	0.4389	18.12	+117.4
174	19/03/88	09:29:00	0.4417	18.14	+117.4
175	19/03/88	09:29:10	0.4444	18.16	+117.4
176	19/03/88	09:29:10	0.4472	18.19	+117.4
177	19/03/88	09:29:30	0.4500	18.21	+117.4
178	19/03/88	09:29:40	0.4528	18.22	+117.5
179	19/03/88	09:29:50	0.4556	18.23 18.25	+117.5
180	19/03/88	09:30:00	0.4583		+117.5
181	19/03/88	09:30:10	0.4611	18.30 18.32	+117.5 +117.5
182	19/03/88	09:30:20	0.4639		+117.5
183	19/03/88	09:30:26	0.4656	18.34 18.34	
184	19/03/88	09:30:28	0.4661	20.52	+117.5
185	19/03/88	09:30:20			+123.1
186	19/03/88	09:30:30	0.4667 0.4672	20.68 21.30	+122.4
187	19/03/88	09:30:34	0.4672		+123.0
188	19/03/88	09:30:34		21.66	+122.5
189	19/03/88	09:30:38	0.4683	23.00 25.02	+122.6
190	19/03/88	09:30:38	0.4689		+122.9
191	19/03/88	09:30:40	0.4694	27.15	+122.6
192	19/03/88	09:30:44	0.4700 0.4706	29.71	+122.8
193	19/03/88	09:30:46	0.4708	31.91 32.19	+120.8
194	19/03/88	09:31:08			+117.5
195			0.4772	32.19	+117.5
193	19/03/88 19/03/88	09:31:10	0.4778	32.39	+117.6
197	19/03/88	09:31:12	0.4783	32.39	+117.6
198	19/03/88	09:31:14	0.4789	32.40	+117.6
199	19/03/88	09:31:16	0.4794	32.41	+117.6
200	19/03/88	09:31:18	0.4800	32.42	+117.6
200	17/03/88	09:31:20	0.4806	33.78	+117.6

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487
Depth : 1406.5 Meters

5eq.#	vate 	T ime	dt 	Pressure (PSIA)	Temp (Deg.F)
201	19/03/88	09:31:22	0.4811	36.93	+117.6
202	19/03/88	09:31:24	0.4817	43.77	+117.6
203	19/03/88	09:31:26	0.4822	53.87	+117.6
204	19/03/88	09:31:28	0.4828	69.94	+117.6
205	19/03/88	09:31:30	0.4833	99.17	+117.6
206	19/03/88	09:31:32	0.4839	164.18	+117.6
207	19/03/88	09:31:34	0.4844	381.87	+117.6
208	19/03/88	09:31:36	0.4850	1,183.59	+117.6
209	19/03/88	09:31:38	0.4856	2,044.81	+117.6
210	19/03/88	09:31:40	0.4861	2,223.11	+117.6
211	19/03/88	09:31:42	0.4867	2,276.13	+117.6
212	19/03/88	09:31:44	0.4872	2,266.16	+117.6
213	19/03/88	09:31:46	0.4878	2,261.93	+117.6
214	19/03/88	09:31:48	0.4883	2,258.65	+117.6
215	19/03/88	09:31:50	0.4889	2,256.82	+117.6
216	19/03/88	09:32:30	0.5000	2,251.63	+117.6
217	19/03/88	09:33:00	0.5083	2,250.13	+117.6
218	19/03/88	09:33:30	0.5167	2,232.37	+117.6
219	19/03/88	09:34:00	0.5250	2,250.32	+117.6
220 221	19/03/88	09:35:00	0.5417	2,250.28	+117.8
222	19/03/88 19/03/88	09:35:30	0.5500	2,250.26	+117.9
223	19/03/88	09:36:00 09:36:30	0.5583	2,250.26	+117.9
تعد	1// 03/ 00	07:30:30	0.5667	2,250.28	+117.9

PRESSURE US TIME - (LÍNEAR) PLOT DATA

PAGE: 1

COMPANY : BEACH PETROLEUM N.L.

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1390 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	09:54:20	0.0000	2,222.51	+119.1
2	19/03/88	09:54:30	0.0028	2,222.45	+119.1
3	19/03/88	09:54:40	0.0056	2,222.39	+119.1
4	19/03/88	09:54:50	0.0083	2,222.40	+119.1
5	19/03/88	09:55:00	0.0111	2,222.68	+119.2
6	19/03/88	09:55:30	0.0194	2,223.34	+119.2
7	19/03/88	09:55:40	0.0222	2,224.72	+119.1
8	19/03/88	09:55:50	0.0250	2,224.37	+119.1
9	19/03/88	09:56:00	0.0278	2,223.93	+119.1
10	19/03/88	09:56:10	0.0306	2,223.65	+119.1
11	19/03/88	09:56:20	0.0333	2,223.55	+119.1
12	19/03/88	09:56:30	0.0361	2,223.55	+119.1
13	19/03/88	09:56:40	0.0389	2,223.51	+119.1
14	19/03/88	09:56:50	0.0417	2,223.54	+119.1
15	19/03/88	09:57:00	0.0444	2,223.75	+119.1
16	19/03/88	09:57:10	0.0472	2,223.67	+119.1
17	19/03/88	09:57:20	0.0500	2,223.76	+119.1
18	19/03/88	09:57:30	0.0528	2,223.78	+119.1
19	19/03/88	09:57:40	0.0556	2,223.79	+119.1
20	19/03/88	09:57:50	0.0583	2,223.79	+119.1
21	19/03/88	09:58:00	0.0611	2,223.69	
22	19/03/88	09:58:10	0.0639	2,223.62	+119.1
23	19/03/88	09:58:20	0.0667	2,224.78	+119.1
24	19/03/88	09:58:30	0.0694	2,227.63	+119.1
25 25	19/03/88	09:58:36	0.0374	2,228.95	+119.1
26	19/03/88	09:58:38	0.0717		+119.1
27	19/03/88	09:58:40	0.0717	2,229.67 2,229.81	+119.1
28	19/03/88	09:58:42	0.0722	2,227.81	+119.1
29	19/03/88	09:58:44	0.0728	2,222.76	+119.1
30	19/03/38	09:58:46	0.0739	2,134.38	+119.1
31	19/03/88	09:58:48	0.0744	1,943.19	+119.1
32	19/03/88	09:58:50	0.0750	1,110.80	+119.1
33	19/03/88	09:58:52	0.0756	978.90	+119.1
34	19/03/88	09:58:54	0.0761	956.39	+119.1 +119.1
35	19/03/88	09:58:56	0.0767	872.47	+119.1
36	19/03/88	09:58:58	0.0772	554.23	+119.1
37	19/03/88	09:59:00	0.0778	222.45	+119.1
38	19/03/88	09:59:02	0.0783	128.28	+119.1
39	19/03/88	09:59:04	0.0789	89.11	+119.1
40	19/03/88	09:59:06	0.0794	68.22	+119.1
41	19/03/88	09:59:08	0.0800	55.38	+119.1
42	19/03/88	09:59:10	0.0806	46.44	+119.1
43	19/03/88	09:59:12	0.0811	40.09	+119.1
44	19/03/88	09:59:14	0.0817	37.16	+119.1
45	19/03/88	09:59:16	0.0822	37.21	+119.1
46	19/03/88	09:59:18	0.0828	37.25	+119.1
47	19/03/88	09:59:20	0.0833	37.31	+119.1
48	19/03/88	09:59:22	0.0839	37.35	+119.1
49	19/03/88	09:59:24	0.0344	37.39	+119.1
50	19/03/88	09:59:26	0.0850	37.44	+119.1
		- · · - · · - · · - ·		w: : : :	

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Gauge # : 487
Depth : 1390 Meters

Seq.#	Date 	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	09:59:28	0.0856	37.49	+119.1
52	19/03/88	09:59:30	0.0861	37.54	+119.1
53	19/03/88	09:59:32	0.0867	37.57	+119.1
54	19/03/88	09:59:34	0.0872	37.62	+119.1
55	19/03/88	09:59:36	0.0878	37.65	+119.1
56	19/03/88	09:59:38	0.0883	37.67	+119.1
57	19/03/88	09:59:40	0.0889	37.71	+119.1
58	19/03/88	09:59:42	0.0894	37.74	+119.1
59	19/03/88	09:59:44	0.0900	37.77	+119.1
60	19/03/88	09:59:46	0.0906	37.81	+119.1
61	19/03/88	09:59:48	0.0911	37.83	+119.1
62	19/03/88	09:59:50	0.0917	37.86	+119.1
63	19/03/88	09:59:52	0.0922	37.88	+119.1
64	19/03/88	09:59:54	0.0928	37.91	+119.1
65	19/03/88	09:59:56	0.0933	37.94	+119.1
66 (3	19/03/88	09:59:58	0.0939	37.96	+119.1
67 70	19/03/88	10:00:00	0.0944	37.98	+119.1
68 69	19/03/88 19/03/88	10:00:02	0.0950	38.00	+119.1
70	19/03/88	10:00:04 10:00:06	0.0956	38.03	+119.1
71	19/03/88	10:00:08	0.0961 0.0967	38.03	+119.1
72	19/03/88	10:00:00	0.0987	38.06 38.08	+119.1
73	19/03/88	10:00:10	0.0978	38.10	+119.1 +119.1
74	19/03/88	10:00:14	0.0783	38.12	+119.1
75	19/03/88	10:00:16	0.0989	38.13	+119.1
76	19/03/88	10:00:18	0.0994	38.15	+119.1
77	19/03/88	10:00:20	0.1000	38.17	+119.1
78	19/03/88	10:00:22	0.1006	38.18	+119.1
79	19/03/88	10:00:24	0.1011	38.20	+119.1
80	19/03/88	10:00:26	0.1017	38.22	+119.1
81	19/03/88	10:00:28	0.1022	38.22	+119.1
32	19/03/88	10:00:30	0.1028	38.25	+119.1
83	19/03/88	10:00:32	0.1033	38.26	+119.1
84	19/03/88	10:00:34	0.1039	38.27	+119.1
85	19/03/88	10:00:36	0.1044	38.29	+119.1
86 27	19/03/88	10:00:38	0.1050	38.29	+119.1
87	19/03/88	10:00:40	0.1056	38.32	+119.1
88	19/03/88	10:00:42	0.1061	38.32	+119.1
89 90	19/03/88	10:00:50	0.1083	38.35	+119.1
90 91	19/03/88 19/03/88	10:01:00 10:01:10	0.1111	38.35	+119.1
92	19/03/88	10:01:10	0.1139	38.58	+119.6
93	19/03/88	10:01:20	0.1167 0.1194	38.62 38.67	+119.6
94	19/03/88	10:01:40	0.1222	38.70	+119.6 +119.6
95	19/03/88	10:01:50	0.1250	38.74	+119.7
96	19/03/88	10:02:00	0.1278	38.78	+119.7
97	19/03/88	10:02:10	0.1306	38.82	+119.7
98	19/03/88	10:02:20	0.1333	38.86	+119.7
99	19/03/88	10:02:30	0.1361	38.89	+119.7
100	19/03/88	10:02:40	0.1389	38.93	+119.7
				= - · · <u>-</u>	

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1390 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	10:02:50	0.1417	38.95	+119.7
102	19/03/88	10:03:00	0.1444	38.93	+119.7
103	19/03/88	10:03:10	0.1472	39.01	+119.7
104	19/03/88	10:03:20	0.1500	39.04	+119.8
105	19/03/88	10:03:30	0.1528	39.07	+119.8
106	19/03/88	10:03:40	0.1556	39.10	+119.8
107	19/03/88	10:03:50	0.1583	39.13	+119.8
108	19/03/88	10:04:00	0.1611	39.15	+119.8
109	19/03/88	10:04:10	0.1639	39.18	+119.8
110	19/03/88	10:04:20	0.1667	39.21	+119.8
. 111	19/03/88	10:04:30	0.1694	39.23	+119.8
112	19/03/88	10:05:00	0.17 <i>7</i> 8	39.31	+119.9
113	19/03/88	10:05:30	0.1861	39.38	+119.9
114	19/03/88	10:06:00	0.1944	39.45	+119.9
115	19/03/88	10:06:30	0.2028	39.51	+119.9
116	19/03/88	10:07:00	0.2111	39.57	+120.0
117	19/03/88	10:07:30	0.2194	39.63	+120.0
118	19/03/88	10:08:00	0.2278	39.69	+120.0
119	19/03/88	10:08:30	0.2361	39.75	+120.1
120 121	19/03/88 19/03/88	10:09:00	0.2444	39.80	+120.1
121	19/03/88	10:09:30	0.2528	39.85	+120.1
123	19/03/88	10:10:00 10:10:30	0.2611 0.2694	39.90	+120.1
124	19/03/88	10:11:00	0.2778	39.95	+120.2
125	19/03/88	10:11:30	0.2861	40.00 40.05	+120.2
126	19/03/88	10:12:00	0.2001	40.09	+120.2 +120.2
127	19/03/88	10:12:30	0.3028	40.14	+120.2
128	19/03/88	10:13:00	0.3111	40.18	+120.3
129	19/03/88	10:14:00	0.3278	40.26	+120.3
130	19/03/88	10:14:10	0.3306	40.28	+120.3
131	19/03/88	10:14:20	0.3333	69.71	+120.3
132	19/03/88	10:14:30	0.3361	1,453.57	+120.3
133	19/03/88	10:14:40	0.3389	2,250.10	+120.3
134	19/03/88	10:14:50	0.3417	2,247.99	+120.3
135	19/03/88	10:15:00	0.3444	2,242.24	+120.3
136	19/03/88	10:15:10	0.3472	2,219.77	+120.3
137	19/03/88	10:15:20	0.3500	2,219.94	+120.3
138	19/03/88	10:15:30	0.3528	2,219.93	+120.3
139	19/03/88	10:15:40	0.3556	2,222.14	+120.0
140	19/03/88	10:15:50	0.3583	2,222.12	+120.3
141	19/03/88	10:16:00	0.3611	2,221.68	+120.4
142	19/03/88	10:16:10	0.3639	2,219.73	+120.4
143	19/03/88	10:16:20	0.3667	2,219.70	+120.4
144	19/03/88	10:16:30	0.3694	2,219.68	+120.4
145	19/03/88	10:16:40	0.3722	2,219.67	+120.4
146	19/03/88	10:16:50	0.3750	2,219.65	+120.4
147	19/03/88	10:17:00	0.3778	2,219.65	+120.4
148 149	19/03/88	10:17:10	0.3806	2,219.63	+120.4
147	19/03/88	10:17:30	0.3861	2,219.61	+120.4

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1370.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	10:31:50	0.0000	2,257.38	+121.2
2	19/03/88	10:32:00	0.0028	2,257.54	+121.2
3	19/03/88	10:32:10	0.0056	2,257.62	+121.2
4	19/03/88	10:32:20	0.0083	2,233.20	+121.2
5	19/03/88	10:32:30	0.0111	1,815.52	+121.2
6	19/03/88	10:32:40	0.0139	1.605.87	+121.2
7	19/03/88	10:32:50	0.0167	1,586.26	+121.2
8	19/03/88	10:33:00	0.0194	1,625.05	+121.2
9	19/03/88	10:33:10	0.0222	1,805.90	+121.2
10	19/03/88	10:33:20	0.0250	1,806.40	+121.2
11	19/03/88	10:33:30	0.0278	1,806.48	+121.2
12	19/03/88	10:33:40	0.0306	1,806.50	+121.2
13	19/03/88	10:33:50	0.0333	1,806.52	+121.2
14	19/03/88	10:34:00	0.0361	1,806.52	+121.2
15	19/03/88	10:34:10	0.0389	1,806.53	+121.2
16	19/03/88	10:34:20	0.0417	1,806.53	+121.2
17	19/03/88	10:34:30	0.0444	1,806.53	+121.2
18	19/03/88	10:34:40	0.0472	1,803.60	+121.4
19	19/03/88	10:34:50	0.0500	1,806.60	+121.4
20	19/03/88	10:35:00	0.0528	1,806.61	+121.4
21	19/03/88	10:35:10	0.0556	1,806.62	+121.4
22	19/03/88	10:35:20	0.0583	1,806.62	+121.4
23	19/03/88	10:35:30	0.0611	1,806.63	+121.5
24	19/03/88	10:35:40	0.0639	1,806.63	+121.5
25	19/03/88	10:35:50	0.0667	1,806.64	+121.5
26	19/03/88	10:36:00	0.0694	1,806.64	+121.5
27	19/03/88	10:36:10	0.0722	1,806.64	+121.5
28	19/03/88	10:36:20	0.0750	1,806.65	+121.5
29 20	19/03/88	10:36:30	0.0778	1,806.68	+121.6
30	19/03/88	10:36:40	0.0806	1,806.72	+121.6
31	19/03/88	10:36:50	0.0833	1,806.79	+121.6
32 33	19/03/88 19/03/88	10:37:00	0.0861	1,806.78	+121.6
34	19/03/88	10:37:30	0.0944	1,806.80	+121.6
35	19/03/88	10:38:00 10:38:30	0.1028 0.1111	1,806.83	+121.6
36	19/03/88	10:38:30	0.1194	1,807.09	+121.7 +121.7
37	19/03/88	10:37:30	0.1174	1,806.98 1,807.47	+121.7
38	19/03/88	10:40:00	0.1361	1,808.51	+121.8
39	19/03/88	10:40:30	0.1444	1,809.71	+121.8
40	19/03/88	10:41:00	0.1528	1,811.33	+121.8
41	19/03/88	10:41:30	0.1611	1,813.03	+121.9
42	19/03/88	10:42:00	0.1694	1,814.68	+121.9
43	19/03/88	10:42:30	0.1778	1,816.17	+121.9
44	19/03/88	10:43:00	0.1861	1,817.40	+122.0
45	19/03/88	10:43:30	0.1944	1,818.32	+122.0
46	19/03/88	10:44:00	0.2028	1,819.38	+122.0
47	19/03/88	10:44:30	0.2025	1,820.33	+122.1
48	19/03/88	10:45:00	0.2194	1,820.96	+122.1
49	19/03/88	10:45:30	0.2278	1,821.58	+122.1
50	19/03/88	10:46:00	0.2361	1,822.42	+122.1

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487

Depth : 1370.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	10:47:00	0.2528	1,822.83	+122.2
52	19/03/88	10:48:00	0.2694	1,823.24	+122.2
53	19/03/88	10:49:00	0.2861	1,823.61	+122.3
54	19/03/88	10:50:00	0.3028	1,824.36	+122.3
55	19/03/88	10:51:00	0.3194	1,824.96	+122.4
56	19/03/88	10:52:00	0.3361	1,825.37	+122.4
57	19/03/88	10:53:00	0.3528	1,826.15	+122.5
58	19/03/88	10:54:00	0.3694	1,826.73	+122.5
59	19/03/88	10:55:00	0.3861	1,827.27	+122.5
60	19/03/88	10:56:00	0.4028	1,828.18	+122.6
61	19/03/88	10:57:00	0.4194	1,828.82	+122.6
62	19/03/88	10:58:00	0.4361	1,829.46	+122.7
63	19/03/88	10:59:00	0.4528	1,830.33	+122.7
64 65	19/03/88 19/03/88	11:00:00	0.4694	1,830.88	+122.7
66	19/03/88	11:01:00 11:02:00	0.4861 0.5028	1,831.11 1,831.34	+122.8
67	19/03/88	11:03:00	0.5194	1,831.65	+122.8 +122.8
68	19/03/88	11:04:00	0.5361	1,831.83	+122.8
69	19/03/88	11:05:00	0.5528	1,830.81	+122.9
70	19/03/88	11:06:00	0.5694	1,830.64	+122.9
71	19/03/88	11:07:00	0.5861	1,830.55	+122.9
72	19/03/88	11:08:00	0.4028	1,830.57	+123.0
73	19/03/88	11:09:00	0.6194	1,830.63	+123.0
74	19/03/83	11:10:00	0.3361	1,830.71	+123.0
75	19/03/88	11:11:00	0.6528	1,830.78	+123.1
76	19/03/88	11:12:00	0.6694	1,830.77	+123.1
77	19/03/88	11:13:00	0.6861	1,830.81	+123.1
78 70	19/03/88	11:14:00	0.7028	1,830.81	+123.2
79 00	19/03/88	11:15:00	0.7194	1,830.73	+123.2
80 81	19/03/88 19/03/88	11:16:00 11:17:00	0.7361 0.7528	1,830.61	+123.2
82	19/03/88	11:17:00	0.7326	1,830.65 1,830.72	+123.3 +123.3
83	19/03/88	11:19:00	0.7861	1,830.75	+123.3
84	19/03/88	11:20:00	0.8028	1,830.84	+123.3
85	19/03/88	11:21:00	0.8194	1,830.80	+123.4
86	19/03/88	11:22:00	0.8361	1,830.65	+123.4
87	19/03/88	11:23:00	0.8528	1,830.55	+123.4
88	19/03/88	11:24:00	0.8694	1,830.47	+123.5
89	19/03/88	11:25:00	0.8361	1,830.48	+123.5
90	19/03/88	11:26:00	0.9028	1,830.43	+123.5
91	19/03/88	11:27:00	0.9194	1,830.40	+123.5
92	19/03/88	11:28:00	0.9361	1,830.40	+123.6
93 04	19/03/88	11:29:00	0.9528	1,830.39	+123.6
94 95	19/03/88 19/03/88	11:30:00 11:31:00	0.9694	1,830.41	+123.6
96	19/03/88	11:31:00	0.9861 1.0028	1,830.49	+123.7
97	19/03/88	11:32:00	1.0028	1,830.57 1,830.57	+123.7 +123.7
98	19/03/88	11:34:00	1.0174	1,830.57	+123.7
99	19/03/88	11:35:00	1.0528	1,830.64	+123.8
100	19/03/88	11:36:00	1.0694	1,830.82	+123.8

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487
Depth : 1370.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	11:37:00	1.0831	1,830.97	+123.8
102	19/03/88	11:38:00	1.1028	1,831.01	+123.8
103	19/03/88	11:39:00	1.1194	1,831.03	+123.8
104	19/03/88	11:40:00	1.1361	1,831.03	+123.9
105	19/03/88	11:41:00	1.1528	1,831.03	+123.9
106	19/03/88	11:42:00	1.1694	1,831.04	+123.9
107	19/03/88	11:43:00	1.1861	1,831.07	+124.0
108	19/03/88	11:44:00	1.2028	1,831.10	+124.0
109	19/03/88	11:45:00	1.2194	1,831.16	+124.0
110	19/03/88	11:46:00	1.2361	1,831.26	+124.0
111	19/03/88	11:47:00	1.2528	1,831.48	+124.1
112	19/03/88	11:48:00	1.2694	1,831.64	+124.1
113	19/03/88	11:49:00	1.2861	1,831.71	+124.1
114	19/03/88	11:50:00	1.3028	1,831.72	+124.1
115	19/03/88	11:50:10	1.3056	1,831.73	+124.1
116	19/03/88	11:50:30	1.3111	1,831.73	+124.1
117	19/03/88	11:50:40	1.3139	1,831.72	+124.1
118	19/03/88	11:50:50	1.3167	1,966.81	+124.1
119	19/03/88	11:51:00	1.3194	2,239.27	+124.1
120	19/03/88	11:51:10	1.3222	2,218.81	+124.1
121	19/03/88	11:51:20	1.3250	2,189.95	+124.1
122	19/03/88	11:51:30	1.3278	2,187.01	+124.1
123	19/03/88	11:51:40	1.3306	2,184.04	+124.1
124	19/03/88	11:51:50	1.3333	2,183.85	+124.1
125	19/03/88	11:52:00	1.3361	2,183.74	+124.1
126	19/03/88	11:52:10	1.3389	2,183.94	+124.1
127	19/03/88	11:52:20	1.3417	2,183.91	+124.1
128	19/03/88	11:52:30	1.3444	2,183.89	+124.1
129	19/03/88	11:52:40	1.3472	2,183.89	+124.1
130	19/03/88	11:52:50	1.3500	2,183.92	+124.2
131	19/03/88	11:53:00	1.3528	2,183.95	+124.2
132	19/03/88	11:53:10	1.3556	2,183.93	+124.2
133	19/03/88	11:53:20	1.3583	2,183.88	+124.2
134	19/03/88	11:53:30	1.3611	2,183.87	+124.2
135	19/03/88	11:53:40	1.3639	2,183.91	+124.2

Eq. Type : H.P. WELL : IONA #1

Gauge # : 487 Depth : 1342.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	12:00:30	0.0000	2,137.07	+124.4
2	19/03/88	12:01:00	0.0083	2,138.57	+124.4
3	19/03/88	12:01:30	0.0167	2,141.87	+124.4
4	19/03/88	12:02:00	0.0250	2,141.57	+124.4
5	19/03/88	12:02:30	0.0333	2,141.15	+124.4
6	19/03/88	12:03:00	0.0417	2,141.47	+124.4
7	19/03/88	12:03:30	0.0500	2,141.52	+124.5
8	19/03/88	12:04:00	0.0583	2,141.41	+124.5
9	19/03/88	12:04:50	0.0722	2,141.38	+124.5
10	19/03/88	12:05:00	0.0750	2,141.36	+124.5
11	19/03/88	12:05:10	0.0778	2,141.51	+124.5
12	19/03/88	12:05:20	0.0806	2,142.93	+124.5
13	19/03/88	12:05:30	0.0833	2,158.37	+124.5
14	19/03/88	12:05:40	0.0861	2,193.40	+124.5
15	19/03/88	12:05:46	0.0878	2,210.63	+124.5
16	19/03/88	12:05:48	0.0883	2,210.71	+124.5
17	19/03/88	12:05:50	0.0889	2,210.71	+124.5
18	19/03/88	12:05:52	0.0894	2,210.56	+124.5
19	19/03/88	12:05:54	0.0900	2,210.75	+124.5
20	19/03/88	12:05:56	0.0906	2,211.00	+124.5
21 22	19/03/88 19/03/88	12:05:58	0.0911	2,207.46	+124.5
23	19/03/88	12:06:00	0.0917	2,119.11	+124.5
24	19/03/88	12:06:02 12:06:04	0.0922	2,023.16	+124.5
2 5	19/03/88	12:06:04	0.0928 0.0933	1,837.81 1,539.41	+124.5
26	19/03/88	12:06:08	0.0733	1,554.12	+124.5 +124.5
27	19/03/88	12:06:10	0.0944	1,544.07	+124.5
28	19/03/88	12:06:12	0.0950	1,566.27	+124.5
29	19/03/88	12:06:14	0.0956	1,564.62	+124.5
30	19/03/88	12:06:16	0.0961	1,558.97	+124.5
31	19/03/88	12:06:18	0.0967	1,549.31	+124.5
32	19/03/88	12:06:20	0.0972	1,543.28	+124.5
33	19/03/88	12:06:22	0.0978	1,551.93	+124.5
34	19/03/88	12:06:24	0.0983	1,550.24	+124.5
35	19/03/88	12:06:26	0.0989	1,549.14	+124.5
36	19/03/88	12:06:28	0.0994	1,558.99	+124.5
37	19/03/88	12:06:30	0.1000	1,552.92	+124.5
38	19/03/88	12:06:32	0.1006	1,547.84	+124.5
39	19/03/88	12:06:34	0.1011	1,544.49	+124.5
40	19/03/88	12:06:36	0.1017	1,551.44	+124.5
41	19/03/88	12:06:38	0.1022	1,562.43	+124.5
42	19/03/88	12:06:40	0.1028	1,556.51	+124.5
43	19/03/88	12:06:42	0.1033	1,551.68	+124.5
44	19/03/88	12:06:44	0.1039	1,555.96	+124.5
45	19/03/88	12:06:46	0.1044	1,557.42	+124.5
46 47	19/03/88	12:06:48	0.1050	1,548.89	+124.5
47 49	19/03/88	12:06:50	0.1056	1,709.17	+124.5
48 49	19/03/88	12:06:52	0.1061	1,766.04	+124.5
50	19/03/88 19/03/88	12:06:54	0.1067	1,766.65	+124.5
50	17703700	12:06:56	0.1072	1,766.94	+124.5

Eq. Type : H.P. Gauge # : 487

WELL : IONA #1

Depth : 1342.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	12:06:58	0.1078	1,767.12	+124.5
52	19/03/88	12:07:00	0.1083	1,767.22	+124.5
53	19/03/88	12:07:02	0.1089	1,767.29	+124.5
54	19/03/88	12:07:04	0.1094	1,767.32	+124.5
55	19/03/88	12:07:06	0.1100	1,767.34	+124.5
56	19/03/88	12:07:08	0.1106	1,767.37	+124.5
57	19/03/88	12:07:10	0.1111	1,767.40	+124.5
58	19/03/88	12:07:12	0.1117	1,767.39	+124.5
59	19/03/88	12:07:14	0.1122	1,767.41	+124.5
60	19/03/88	12:07:16	0.1128	1,767.42	+124.5
61	19/03/88	12:07:18	0.1133	1,767.42	+124.5
62	19/03/88	12:07:20	0.1139	1,767.43	+124.5
63	19/03/88	12:07:22	0.1144	1,767.43	+124.5
64	19/03/88	12:07:24	0.1150	1,767.44	+124.5
45	19/03/88	12:07:26	0.1156	1,767.45	+124.5
66	19/03/88	12:07:28	0.1161	1,767.46	+124.5
67	19/03/88	12:07:30	0.1167	1,767.48	+124.5
68	19/03/88	12:07:32	0.1172	1,767.48	+124.5
69 70	19/03/88	12:07:34	0.1178	1,767.50	+124.5
70	19/03/88	12:07:36	0.1183	1,767.50	+124.5
71	19/03/88	12:07:38	0.1189	1,767.69	+124.5
72 73	19/03/88	12:07:40	0.1194	1,768.14	+124.5
73 74	19/03/88	12:07:42	0.1200	1,769.30	+124.5
74 75	19/03/88 19/03/88	12:07:50 12:08:10	0.1222	1,768.56	+124.5
76 76	19/03/88	12:08:10	0.1278	1,768.84	+124.6
77	19/03/88	12:08:20	0.1306 0.1333	1,768.41	+124.6
78	19/03/88	12:08:30	0.1333	1,768.38 1,768.34	+124.6
79	19/03/88	12:08:50	0.1389	1,768.43	+124.6 +124.6
80	19/03/88	12:09:00	0.1417	1,768.28	+124.7
81	19/03/88	12:09:10	0.1444	1,768.32	+124.7
82	19/03/88	12:09:30	0.1500	1,768.49	+124.7
83	19/03/88	12:10:00	0.1583	1,768.69	+124.7
84	19/03/88	12:10:30	0.1667	1,768.47	+124.7
85	19/03/88	12:11:00	0.1750	1,769.41	+124.7
86	19/03/88	12:11:30	0.1833	1,768.88	+124.7
87	19/03/88	12:12:00	0.1917	1,769.06	+124.7
88	19/03/88	12:12:30	0.2000	1,769.52	+124.8
89	19/03/88	12:13:00	0.2083	1,769.96	+124.8
90	19/03/88	12:13:30	0.2167	1,769.61	+124.8
91	19/03/88	12:14:00	0.2250	1,769.24	+124.8
92	19/03/88	12:14:30	0.2333	1,768.94	+124.8
93	19/03/88	12:15:00	0.2417	1,769.82	+124.8
94	19/03/88	12:15:30	0.2500	1,769.92	+124.8
95 27	19/03/88	12:16:00	0.2583	1,770.41	+124.9
96	19/03/88	12:17:00	0.2750	1,770.96	+124.9
97	19/03/88	12:18:00	0.2917	1,772.90	+124.9
98 00	19/03/88	12:19:00	0.3083	1,775.13	+124.9
99	19/03/88	12:20:00	0.3250	1,776.80	+125.0
100	19/03/88	12:21:00	0.3417	1,778.54	+125.0

PAGE: 3

COMPANY : BEACH PETROLEUM N.L. Eq. Type : H.P.

WELL : IONA #1 Gauge # : 487

Gauge # : 487 Depth : 1342.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	12:22:00	0.3583	1,779.34	+125.0
102	19/03/88	12:23:00	0.3750	1,779.92	+125.1
103	19/03/88	12:24:00	0.3917	1,780.92	+125.1
104	19/03/88	12:25:00	0.4083	1,781.31	+125.1
105	19/03/88	12:26:00	0.4250	1,781.26	+125.1
106	19/03/88	12:27:00	0.4417	1,781.44	+125.1
107	19/03/88	12:28:00	0.4583	1,781.39	+125.2
108	19/03/88	12:29:00	0.4750	1,781.15	+125.2
109	19/03/88	12:30:00	0.4917	1,780.70	+125.2
110	19/03/88	12:31:00	0.5083	1,771.41	+125.2
111	19/03/88	12:32:00	0.5250	1,769.18	+125.3
112	19/03/88	12:33:00	0.5417	1,769.71	+125.3
113	19/03/88	12:34:00	0.5583	1,770.16	+125.3
114	19/03/88	12:35:00	0.5750	1,770.71	+125.3
115	19/03/88	12:36:00	0.5917	1,771.50	+125.3
116	19/03/88	12:37:00	0.6083	1,772.73	+125.4 +125.4
117 118	19/03/88 19/03/88	12:38:00 12:39:00	0.6250 0.6417	1,773.24 1,770.48	+125.4
119	19/03/88	12:37:00	0.6583	1,770.43	+125.4
120	19/03/88	12:41:00	0.6750	1,770.43	+125.4
121	19/03/88	12:42:00	0.6917	1,772.85	+125.5
122	19/03/88	12:43:00	0.7083	1,767.84	+125.5
123	19/03/88	12:44:00	0.7250	1,767.90	+125.5
124	19/03/88	12:45:00	0.7417	1,767.97	+125.5
125	19/03/88	12:46:00	0.7583	1,767.84	+125.5
126	19/03/88	12:47:00	0.7750	1,767.91	+125.6
127	19/03/88	12:48:00	0.7917	1,767.96	+125.6
128	19/03/88	12:49:00	0.8083	1,738.02	+125.6
129	19/03/88	12:50:00	0.8250	1,767.99	+125.6
130	19/03/88	12:51:00	0.8417	1,767.97	+125.6
131	19/03/88	12:52:00	0.8583	1,768.05	+125.7
132	19/03/88	12:53:00	0.8750	1,768.06	+125.7
133	19/03/88	12:54:00	0.8917	1,768.09	+125.7
134	19/03/88	12:55:00	0.9083	1,768.18	+125.7
135	19/03/88	12:56:00	0.9250	1,768.22	+125.7
136	19/03/88	12:57:00	0.9417	1,768.27	+125.8
137	19/03/88	12:58:00	0.9583	1,768.32	+125.8
138	19/03/88	12:59:00	0.9750	1,768.48	+125.8
139	19/03/88	13:00:00	0.9917	1,768.45	+125.8
140	19/03/88	13:01:00 13:02:00	1.0083	1,768.54 1,768.55	+125.8 +125.8
141 142	19/03/88	13:02:00	1.0250 1.0417	1,768.55	+125.9
142	19/03/88 19/03/88	13:04:00	1.0583	1,768.67	+125.9
143	19/03/88	13:04:00	1.0363	1,769.13	+125.9
145	19/03/88	13:06:00	1.0733	1,768.93	+125.9
146	19/03/88	13:07:00	1.1083	1,768.67	+125.9
147	19/03/88	13:08:00	1.1250	1,768.74	+126.0
148	19/03/88	13:09:00	1.1417	1,768.83	+126.0
149	19/03/88	13:10:00	1.1583	1,768.92	+126.0
150	19/03/88	13:11:00	1.1750	1,768.94	+126.0

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1342.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
151	19/03/88	13:12:00	1.1917	1,769.06	+126.0
152	19/03/88	13:13:00	1.2083	1,769.70	+126.1
153	19/03/88	13:14:00	1.2250	1,770.04	+126.1
154	19/03/88	13:15:00	1.2417	1,770.52	+126.1
155	19/03/88	13:16:00	1.2583	1,771.14	+126.1
156	19/03/88	13:17:00	1.2750	1,772.03	+126.1
157	19/03/88	13:18:00	1.2917	1,773.10	+126.2
158	19/03/88	13:19:00	1.3083	1,774.06	+126.2
159	19/03/88	13:20:00	1.3250	1,774.94	+126.2
160	19/03/88	13:21:00	1.3417	1,775.55	+126.2
161	19/03/88	13:22:00	1.3583	1,767.74	+126.2
162	19/03/88	13:23:00	1.3750	1,767.73	+126.2
163	19/03/88	13:24:00	1.3917	1,767.73	+126.3
164	19/03/88	13:25:00	1.4083	1,767.73	+126.3
165	19/03/88	13:26:00	1.4250	1,767.74	+126.3
166	19/03/88	13:27:00	1.4417	1,767.75	+126.3
167	19/03/88	13:28:00	1.4583	1,767.75	+126.3
168	19/03/88	13:29:00	1.4750	1,767.76	+126.4
169 170	19/03/88 19/03/88	13:30:00	1.4917	1,767.77	+126.4
170	19/03/88	13:31:00 13:32:00	1.5083	1,767.77	+126.4
172	19/03/88	13:32:00	1.5250 1.5278	1,767.77 1,831.33	+126.4 +126.4
173	19/03/88	13:32:10	1.5306	2,247.05	+126.4
174	19/03/88	13:32:30	1.5333	2,269.21	+126.4
175	19/03/88	13:32:40	1.5361	2,232.58	+126.4
176	19/03/88	13:32:50	1.5389	2,219.38	+126.4
177	19/03/88	13:33:00	1.5417	2,201.61	+126.4
178	19/03/88	13:33:10	1.5444	2,177.24	+126.4
179	19/03/88	13:33:20	1.5472	2,172.82	+126.4
180	19/03/88	13:33:30	1.5500	2,165.50	+126.4
181	19/03/88	13:33:40	1.5528	2,133.25	+126.4
182	19/03/88	13:34:00	1.5583	2,138.85	+126.4
183	19/03/88	13:34:10	1.5611	2,139.36	+126.5
184	19/03/88	13:34:20	1.5639	2,139.43	+126.5
185	19/03/88	13:34:30	1.5667	2,139.55	+126.5
186	19/03/88	13:34:40	1.5694	2,139.44	+126.5
187	19/03/88	13:34:50	1.5722	2,139.37	+126.5
188	19/03/88	13:35:00	1.5750	2,139.37	+126.5
189	19/03/88	13:35:30	1.5833	2,139.30	+126.5
190	19/03/88	13:36:00	1.5917	2,139.31	+126.5

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth :1337.5Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	13:38:30	0.0000	2,135.35	+126.5
2	19/03/88	13:39:00	0.0083	2,133.20	+126.5
3	19/03/88	13:39:30	0.0167	2,131.52	+126.6
4	19/03/88	13:40:00	0.0250	2,133.16	+126.6
5	19/03/88	13:40:30	0.0333	2,133.56	+126.6
6	19/03/88	13:41:00	0.0417	2,133.15	+126.6
7	19/03/88	13:41:30	0.0500	2,133.14	+126.6
8	19/03/88	13:41:40	0.0528	2,133.18	+126.6
9	19/03/88	13:41:50	0.0556	2,133.24	+126.6
10	19/03/88	13:42:00	0.0583	2,136.46	+126.6
11	19/03/88	13:42:10	0.0611	2,148.67	+126.6
12	19/03/88	13:42:20	0.0639	2,196.62	+126.6
13	19/03/88	13:42:24	0.0350	2,206.16	+126.6
14	19/03/88	13:42:26	0.0656	2,206.16	+126.6
15	19/03/88	13:42:28	0.0661	2,206.24	+126.6
16	19/03/88	13:42:30	0.0667	2,207.24	+126.6
17	19/03/88	13:42:32	0.0672	2,207.24	+126.6
18	19/03/88	13:42:34	0.0678	2,206.45	+126.6
19	19/03/88	13:42:36	0.0683	2,206.32	+126.6
20	19/03/88	13:42:38	0.0689	2,206.38	+126.6
21 22	19/03/88	13:42:40	0.0694	2,206.51	+126.6
23	19/03/88 19/03/88	13:42:42 13:42:44	0.0700	2,206.58	+126.6
24	19/03/88	13:42:44	0.0706 0.0711	2,206.58	+126.6
25	19/03/88	13:42:48	0.0717	2,206.80 2,206.80	+126.6
26	19/03/88	13:42:50	0.0722	2,207.32	+126.6 +126.6
27	19/03/88	13:42:52	0.0722	2,207.32	+126.6
28 28	19/03/88	13:42:54	0.0733	2,207.62	+126.6
29	19/03/88	13:42:56	0.0739	2,207.67	+126.6
30	19/03/88	13:42:58	0.0744	2,207.77	+126.6
31	19/03/88	13:43:00	0.0750	2,207.77	+126.6
32	19/03/88	13:43:02	0.0756	2,026.07	+126.6
33	19/03/88	13:43:04	0.0761	1,926.50	+126.6
34	19/03/88	13:43:06	0.0767	1,810.31	+126.6
35	19/03/88	13:43:08	0.0772	1,727.37	+126.6
36	19/03/88	13:43:10	0.0778	1,741.84	+126.6
37	19/03/88	13:43:12	0.0783	1,741.84	+126.6
38	19/03/88	13:43:14	0.0789	1,751.03	+126.6
39	19/03/88	13:43:16	0.0794	1,751.19	+126.6
40	19/03/88	13:43:18	0.0800	1,750.59	+126.6
41	19/03/88	13:43:20	0.0806	1,750.59	+126.6
42	19/03/88	13:43:22	0.0811	1,750.21	+126.6
43	19/03/88	13:43:24	0.0817	1,750.38	+126.6
44 45	19/03/88	13:43:26	0.0822	1,750.43	+126.6
	19/03/88	13:43:28	0.0828	1,750.33	+126.6
46 47	19/03/88 19/03/88	13:43:30	0.0833	1,749.23	+126.6
48	19/03/88	13:43:32 13:43:34	0.0839 0.0844	1,749.23	+126.6
49	19/03/88	13:43:36	0.0850	1,750.85 1,750.91	+126.6
50	19/03/88	13:43:38	0.0856	1,750.77	+126.6 +126.6
30	1000000	101100	0.0000	19700177	1120.0

WELL : IONA #1

Eq. Type : H.P.
Gauge # : 487
Depth : 1337.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	13:43:40	0.0861	1,750.69	+126.6
52	19/03/88	13:43:42	0.0867	1,750.69	+126.6
53	19/03/88	13:43:44	0.0872	1,750.60	+126.6
54	19/03/88	13:43:46	0.0878	1,750.57	+126.6
55	19/03/88	13:43:48	0.0883	1,751.98	+126.6
56	19/03/88	13:43:50	0.0889	1,751.98	+126.6
57	19/03/88	13:43:52	0.0894	1,760.58	+126.6
58	19/03/88	13:43:54	0.0900	1,760.61	+126.6
59	19/03/88	13:43:56	0.0906	1,760.65	+126.6
60	19/03/88	13:43:58	0.0911	1,760.66	+126.6
61	19/03/88	13:44:00	0.0917	1,760.68	+126.6
62	19/03/88	13:44:02	0.0922	1,760.70	+126.6
63	19/03/88	13:44:04	0.0928	1,760.69	+126.6
64	19/03/88	13:44:06	0.0933	1,760.71	+126.6
65	19/03/88	13:44:08	0.0939	1,760.72	+126.6
66	19/03/88	13:44:10	0.0944	1,760.73	+126.6
67	19/03/88	13:44:12	0.0950	1,760.73	+126.6
68	19/03/88	13:44:14	0.0956	1,760.74	+126.6
69	19/03/88	13:44:16	0.0961	1,760.74	+126.6
70	19/03/88	13:44:18	0.0967	1,760.74	+126.6
71	19/03/88	13:44:20	0.0972	1,760.75	+126.6
72	19/03/88	13:44:22	0.0978	1,760.76	+126.6
73	19/03/88	13:44:24	0.0983	1,760.76	+126.6
74	19/03/88	13:44:26	0.0989	1,760.76	+126.6
75 77	19/03/88	13:44:28	0.0994	1,760.78	+126.6
76	19/03/88	13:44:30	0.1000	1,760.78	+126.6
77 70	19/03/88	13:44:32	0.1006	1,760.78	+126.6
78 70	19/03/88	13:44:40	0.1028	1,760.78	+126.6
79 00	19/03/88	13:44:50	0.1056	1,760.79	+126.6
80 31	19/03/88	13:45:00	0.1083	1,760.81	+126.6
82	19/03/88 19/03/88	13:45:10	0.1111	1,760.81	+126.6
83	19/03/88	13:45:20 13:45:30	0.1139	1,760.84	+126.7
84	19/03/88	13:45:40	0.1167 0.1194	1,760.86	+126.7
85	19/03/88	13:45:50	0.1174	1,760.86 1,760.87	+126.7
86	19/03/88	13:46:00	0.1250	1,760.87	+126.7 +126.7
87	19/03/88	13:46:10	0.1238	1,760.89	+126.7
88	19/03/88	13:46:20	0.1306	1,760.89	+126.7
89	19/03/88	13:46:30	0.1333	1,760.90	+126.7
90	19/03/88	13:47:00	0.1417	1,760.90	+126.7
91	19/03/88	13:47:30	0.1500	1,760.89	+126.7
92	19/03/88	13:48:00	0.1583	1,760.89	+126.7
93	19/03/88	13:48:30	0.1667	1,760.88	+126.7
94	19/03/88	13:49:00	0.1750	1,760.87	+126.7
95	19/03/88	13:49:30	0.1833	1,760.87	+126.7
96	19/03/88	13:50:00	0.1917	1,760.86	+126.7
97	19/03/88	13:50:30	0.2000	1,760.85	+126.7
98	19/03/88	13:51:00	0.2083	1,760.84	+126.6
99	19/03/88	13:51:30	0.2167	1,760.84	+126.6
100	19/03/88	13:52:00	0.2250	1,760.84	+126.6

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1337.5 Meters

Seq.#	Date	Time	dt 	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	13:52:30	0.2333	1,760.83	+126.6
102	19/03/88	13:53:00	0.2417	1,760.83	+126.6
103	19/03/88	13:53:30	0.2500	1,760.82	+126.6
104	19/03/88	13:54:00	0.2583	1,760.83	+126.6
105	19/03/88	13:54:30	0.2667	1,760.82	+126.6
106	19/03/88	13:55:00	0.2750	1,760.82	+126.6
107	19/03/88	13:56:00	0.2917	1,760.82	+126.6
108	19/03/88	13:57:00	0.3083	1,760.81	+126.6
109	19/03/88	13:58:00	0.3250	1,760.81	+126.6
110	19/03/88	13:59:00	0.3417	1,760.80	+126.6
111	19/03/88	14:00:00	0.3583	1,760.79	+126.6
112	19/03/88	14:01:00	0.3750	1,760.79	+126.5
113	19/03/88	14:02:00	0.3917	1,760.78	+126.5
114 115	19/03/88 19/03/88	14:03:00	0.4083	1,760.78	+126.5
116	19/03/88	14:04:00	0.4250	1,760.77	+126.5
117	19/03/88	14:05:00	0.4417	1,760.77	+126.5
118	19/03/88	14:06:00	0.4583	1,760.76	+126.5
119	19/03/88	14:07:00 14:08:00	0.4750	1,760.76	+126.5
120	19/03/88	14:09:00	0.4917	1,760.76	+120.5
121	19/03/88	14:10:00	0.5083 0.5250	1,760.76	+126.5
122	19/03/88	14:11:00	0.5417	1,760.76	+126.5
123	19/03/88	14:12:00	0.5583	1,760.76	+126.4
124	19/03/88	14:13:00	0.5750	1,760.76	+126.4
125	19/03/88	14:14:00	0.5917	1,760.77 1,760.78	+126.4
126	19/03/88	14:15:00	0.6083	1,760.78	+126.4
127	19/03/88	14:16:00	0.6250	1,760.79	+126.4
128	19/03/88	14:17:00	0.6417	1,760.78	+126.4 +126.4
129	19/03/88	14:18:00	0.6583	1,760.79	+126.4
130	19/03/88	14:18:10	0.6611	1,760.78	+126.4
131	19/03/88	14:18:20	0.6639	1,760.78	+126.4
132	19/03/88	14:18:30	0.6667	2,031.77	+126.4
133	19/03/88	14:18:40	0.6694	2,225.77	+126.4
134	19/03/88	14:18:50	0.6722	2,209.62	+126.4
135	19/03/88	14:19:00	0.6750	2,188.82	+126.4
136	19/03/88	14:19:10	0.6778	2,180.93	+126.4
137 138	19/03/88	14:19:20	0.6806	2,145.61	+126.4
139	19/03/88 19/03/88	14:19:30	0.6833	2,126.18	+126.4
140	19/03/88	14:19:40	0.6861	2,114.21	+126.4
141	19/03/88	14:19:50 14:20:00	0.6889	2,109.17	+126.4
142	19/03/88	14:20:10	0.6917 0.6944	2,104.51	+126.4
143	19/03/88	14:20:20	0.6972	2,115.80	+126.4
144	19/03/88	14:20:30	0.7000	2,130.28	+126.4
145	19/03/88	14:20:40	0.7028	2,130.28 2,130.61	+126.4
146	19/03/88	14:20:50	0.7056	2,130.59	+126.4 +124.4
147	19/03/88	14:21:00	0.7083	2,130.37	+126.4
148	19/03/88	14:21:10	0.7111	2,130.63	+126.4 +126.4
149	19/03/88	14:21:20	0.7139	2,130.63	+126.4
150	19/03/88	14:21:30	0.7167	2,130.62	+126.4
			 -	_,	.140.7

WELL : IONA #1 Eq. Type : H.P.
Gauge # : 487
Depth : 1337.5 Meters

Seq.#	Date	Time	dt 	Pressure (PSIA)	Temp (Deg.F)
151	19/03/88	14:21:40	0.7194	2,130.61	+126.4
152	19/03/88	14:21:50	0.7222	2,130.60	+126.4
153	19/03/88	14:22:00	0.7250	2,130.59	+126.4
154	19/03/88	14:22:10	0.7278	2,130.57	+126.4
155	19/03/88	14:22:20	0.7306	2,130.55	+126.4

WELL : IONA #1

Eq. Type : H.F.

Gauge # : 487
Depth : 1324 Meters

----.

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	14:28:00	0.0000	2,110.19	+126.4
2	19/03/88	14:28:30	0.0083	2,110.20	+126.4
3	19/03/88	14:29:00	0.0167	2,110.08	+126.4
4	19/03/88	14:29:30	0.0250	2,109.76	+126.4
5	19/03/88	14:30:00	0.0333	2,109.56	+126.4
6	19/03/88	14:30:50	0.0472	2,109.18	+126.4
7	19/03/88	14:31:00	0.0500	2,109.12	+126.4
8	19/03/88	14:31:10	0.0528	2,109.19	+126.4
9	19/03/88	14:31:20	0.0556	2,111.15	+126.4
10	19/03/88	14:31:30	0.0583	2,141.74	+126.4
11	19/03/88	14:31:38	0.0606	2,200.51	+126.4
12	19/03/88	14:31:40	0.0611	2,200.51	+126.4
13	19/03/88	14:31:42	0.0617	2,208.05	+126.4
14	19/03/88	14:31:44	0.0622	2,208.05	+126.4
15	19/03/88	14:31:46	0.0628	2,206.99	+126.4
16	19/03/88	14:31:48	0.0633	2,133.21	+126.4
17	19/03/88	14:31:50	0.0639	2,031.81	+126.4
18	19/03/88	14:31:52	0.0644	1,961.97	+126.4
19	19/03/88	14:31:54	0.0650	1,741.19	+126.4
20	19/03/38	14:31:56	0.0656	1,433.99	+126.4
21	19/03/88	14:31:58	0.0661	1,388.19	+126.4
22	19/03/88	14:32:00	0.0667	1,388.19	+126.4
23	19/03/88	14:32:02	0.0672	1,413.09	+126.4
24	19/03/88	14:32:04	0.0678	1,419.57	+126.4
25	19/03/88	14:32:06	0.0683	1,464.04	+126.4
26	19/03/88	14:32:08	0.0689	1,476.48	+126.4
27	19/03/88	14:32:10	0.0694	1,457.26	+126.4
28	19/03/88	14:32:12	0.0700	1,451.35	+126.4
29	19/03/88	14:32:14	0.0706	1,437.43	+126.4
30	19/03/88	14:32:16	0.0711	1,437.43	+126.4
31	19/03/88	14:32:18	0.0717	1,437.23	+126.4
32	19/03/88	14:32:20	0.0722	1,437.23	+126.4
33	19/03/88	14:32:22	0.0728	1,424.47	+126.4
34	19/03/88	14:32:24	0.0733	1,422.53	+126.4
35	19/03/88	14:32:26	0.0739	1,415.45	+126.4
36	19/03/88	14:32:28	0.0744	1,399.96	+126.4
37 20	19/03/88	14:32:30	0.0750	1,392.06	+126.4
38	19/03/88	14:32:32	0.0756	1,392.09	+126.4
39 40	19/03/88	14:32:34	0.0761	1,391.78	+126.4
40	19/03/88	14:32:36	0.0767	1,385.54	+126.4
41 42	19/03/88 19/03/88	14:32:38 14:32:40	0.0772	1,442.65 1,442.65	+126.4 +126.4
42 43	19/03/88		0.0778 0.0783	1,442.03	
43 44	19/03/88	14:32:42 14:32:44	0.0789	1,681.09	+126.4 +126.4
44 45	19/03/88	14:32:46	0.0784	1,702.61	+126.4
46	19/03/88	14:32:48	0.0774	1,702.61	+126.4
47	19/03/88	14:32:50	0.0806	1,725.18	+126.4
48	19/03/88	14:32:52	0.0811	1,731.29	+126.4
49	19/03/88	14:32:54	0.0817	1,735.33	+126.4
50	19/03/88	14:32:56	0.0822	1,738.10	+126.4
50	400 000 00		# T V W As As	-,	T

Eq. Type : H.P. Gauge # : 487 WELL : IONA #1

Depth : 1324 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	14:32:58	0.0828	1,738.10	+126.4
52	19/03/88	14:33:00	0.0833	1,741.14	+126.4
53	19/03/88	14:33:02	0.0839	1,741.79	+126.4
54	19/03/88	14:33:04	0.0844	1,742.26	+126.4
55	19/03/88	14:33:06	0.0850	1,742.67	+126.4
56	19/03/88	14:33:08	0.0856	1,743.01	+126.4
57	19/03/88	14:33:10	0.0861	1,743.31	+126.4
58	19/03/88	14:33:12	0.0867	1,743.55	+126.4
59	19/03/88	14:33:14	0.0872	1,743.74	+126.4
60	19/03/88	14:33:16	0.0878	1,743.91	+126.4
61	19/03/88	14:33:18	0.0883	1,743.91	+126.4
62	19/03/88	14:33:20	0.0889	1,744.15	+126.4
63	19/03/88	14:33:22	0.0894	1,744.25	+126.4
64	19/03/88	14:33:24	0.0900	1,744.33	+126.4
65	19/03/88	14:33:26	0.0906	1,744.39	+126.4
66	19/03/88	14:33:28	0.0911	1,744.47	+126.4
67	19/03/88	14:33:30	0.0917	1,744.49	+126.4
68	19/03/88	14:33:32	0.0922	1,744.55	+126.4
59	19/03/88	14:33:34	0.0928	1,744.58	+126.4
70	19/03/88	14:33:36	0.0933	1,744.62	+126.4 +126.4
71	19/03/88	14:33:38	0.0939	1,744.64	+126.4
72	19/03/88	14:33:40	0.0944	1,744.64 1,744.64	+126.4
73	19/03/88	14:33:50	0.0972	,	+126.4
74	19/03/88	14:34:00	0.1000	1,744.77 1,744.85	+126.4
75 ⁻	19/03/88	14:34:10	0.1028	1,744.91	+126.4
76	19/03/88	14:34:20	0.1056 0.1083	1,744.94	+126.4
77	19/03/88	14:34:30 14:34:40	0.1111	1,744.98	+126.4
78 70	19/03/88	14:34:50	0.1111	1,745.02	+126.5
79	19/03/88	14:35:00	0.1167	1,745.06	+126.6
80 81	19/03/88 19/03/88	14:35:10	0.1107	1,745.06	+126.5
82	19/03/88	14:35:30	0.1250	1,745.10	+126.5
83	19/03/88	14:36:00	0.1333	1,745.12	+126.5
84	19/03/88	14:36:30	0.1417	1,745.14	+126.4
85	19/03/88	14:37:00	0.1500	1,745.18	+126.5
86	19/03/88	14:37:30	0.1583	1,745.19	+126.5
87	19/03/88	14:38:00	0.1667	1,745.16	+126.5
88	19/03/88	14:38:30	0.1750	1,745.19	+126.4
89	19/03/88	14:39:00	0.1833	1,745.22	+126.5
90	19/03/88	14:39:30	0.1917	1,745.23	+126.5
91	19/03/88	14:40:00	0.2000	1,745.23	+126.5
92	19/03/88	14:40:30	0.2083	1,745.26	+126.5
93	19/03/88	14:41:00	0.2167	1,745.26	+126.5
94	19/03/88	14:41:30	0.2250	1,745.28	+126.5
95	19/03/88	14:42:00	0.2333	1,745.27	+126.5
96	19/03/88	14:42:30	0.2417	1,745.28	+126.5
97	19/03/88	14:43:00	0.2500	1,745.29	+126.5
98	19/03/88	14:43:30	0.2583	1,745.29	+126.5
99	19/03/88	14:44:00	0.2667	1,745.32	+126.5
100	19/03/88	14:44:30	0.2750	1,745.31	+126.5

Eq. Type : H.P. WELL : IONA #1 Gauge # : 487

Depth : 1324 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	14:45:00	0.2833	1,745.30	+126.5
102	19/03/88	14:46:00	0.3000	1,745.27	+126.5
103	19/03/88	14:47:00	0.3167	1,745.30	+126.6
104	19/03/88	14:48:00	0.3333	1,745.25	+126.5
105	19/03/88	14:49:00	0.3500	1,745.23	+126.5
106	19/03/88	14:50:00	0.3667	1,745.23	+126.5
107	19/03/88	14:51:00	0.3833	1,745.19	+126.5
108	19/03/88	14:52:00	0.4000	1,745.26	+126.5
109	19/03/88	14:53:00	0.4167	1,745.15	+126.5
110	19/03/88	14:54:00	0.4333	1,745.18	+126.5
111	19/03/88	14:55:00	0.4500	1,745.19	+126.5
112	19/03/88 19/03/88	14:56:00	0.4667	1,745.20	+126.5
113 114	19/03/88	14:57:00 14:58:00	0.4833 0.5000	1,745.19 1,745.18	+126.5 +126.5
115	19/03/88	14:59:00	0.5167	1,745.18	+126.5
116	19/03/88	15:00:00	0.5333	1,745.16	+126.5
117	19/03/88	15:01:00	0.5500	1,745.13	+126.6
118	19/03/88	15:02:00	0.5667	1,745.15	+126.5
119	19/03/88	15:03:00	0.5833	1,745.13	+126.5
120	19/03/88	15:04:00	0.6000	1,745.15	+126.5
121	19/03/88	15:05:00	0.6167	1,745.15	+126.6
122	19/03/88	15:06:00	0.6333	1,745.16	+126.5
123	19/03/88	15:07:00	0.6500	1,745.16	+126.6
124	19/03/88	15:08:00	0.6667	1,745.13	+126.6
125	19/03/88	15:09:00	0.6833	1,745.16	+126.6
126	19/03/88	15:10:00	0.7000	1,745.13	+126.6
127	19/03/88	15:11:00	0.7167	1,745.12	+126.6
128 129	19/03/88 19/03/88	15:12:00 15:13:00	0.7333 0.7500	1,745.13 1,745.11	+126.6 +126.6
130	19/03/88	15:14:00	0.7300	1,745.10	+126.6
131	19/03/88	15:15:00	0.7833	1,745.12	+126.6
132	19/03/88	15:16:00	0.8000	1,745.12	+126.6
133	19/03/88	15:17:00	0.8167	1,745.13	+126.6
134	19/03/88	15:18:00	0.8333	1,745.12	+126.6
135	19/03/88	15:19:00	0.8500	1,745.09	+126.6
136	19/03/88	15:20:00	0.8667	1.745.11	+126.6
137	19/03/88	15:21:00	0.8833	1,745.11	+126.7
138	19/03/88	15:22:00	0.9000	1,745.12	+126.7
139	19/03/88	15:23:00	0.9167	1,745.52	+126.7
140 141	19/03/88	15:23:10	0.9194 0.9222	1,745.52 1,745.52	+126.7
142	19/03/88 19/03/88	15:23:20 15:23:30	0.9250	1,682.14	+126.7 +126.7
143	19/03/88	15:23:40	0.7230	1,128.24	+126.7
144	19/03/88	15:23:50	0.9306	244.71	+126.7
145	19/03/88	15:24:00	0.9333	340.07	+126.7
146	19/03/88	15:24:10	0.9361	377.37	+126.7
147	19/03/88	15:24:20	0.9389	404.92	+126.7
148	19/03/88	15:24:30	0.9417	433.90	+126.7
149	19/03/88	15:25:00	0.9500	458.90	+126.7
150	19/03/88	15:25:30	0.9583	467.79	+126.7

WELL : 10NA #1

Eq. Type : H.P.

Gauge # : 487

Depth : 1324 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
151	19/03/88	15:26:00	0.9667	470.40	+126.7
152	19/03/88	15:26:30	0.9750	495.01	+126.7
153	19/03/88	15:27:00	0.9833	512.46	+126.7
154	19/03/88	15:27:30	0.9917	520.55	+126.7
155	19/03/88	15:28:00	1.0000	525.36	+126.7
156	19/03/88	15:28:30	1.0083	527.28	+126.7
157	19/03/88	15:29:00	1.0167	528.59	+126.7
158	19/03/88	15:29:30	1.0250	529.47	+126.7
159	19/03/88	15:30:00	1.0333	529.60	+126.7
160	19/03/88	15:31:00	1.0500	532.22	+126.7
161	19/03/88	15:32:00	1.0667	536.52	+126.7
162	19/03/88	15:33:00	1.0833	539.47	+126.7
163	19/03/38	15:34:00	1.1000	541.85	+126.7
164	19/03/88	15:35:00	1.1167	543.47	+126.7
165	19/03/88	15:36:00	1.1333	545.83	+126.7
166	19/03/88	15:37:00	1.1500	549.46	+126.8
167	19/03/88	15:38:00	1.1667	555.73	+126.8
168	19/03/88	15:38:30	1.1750	586.25	+126.3
169	19/03/88	15:39:00	1.1833	606.64	+126.8
170	19/03/88	15:39:30	1.1917	625.93	+126.8
171	19/03/88	15:40:00	1.2000	645.31	+126.8
172	19/03/88	15:40:30	1.2083	664.40	+126.8
173	19/03/88	15:41:00	1.2167	682.63	+126.9
174	19/03/88	15:41:30	1.2250	700.32	+126.8
175	19/03/88	15:42:00	1.2333	717.50	+126.8
176	19/03/88	15:42:30	1.2417	734.22	+126.8
177	19/03/88	15:43:00	1.2500	750.76	+126.3
178	19/03/88	15:43:30	1.2583	767.03	+126.8
179	19/03/88	15:44:00	1.2667	777.66	+126.8
180	19/03/88	15:44:30	1.2750	798.32	+126.8
181	19/03/88	15:45:00	1.2833	813.31	+126.8
182	19/03/88	15:45:30	1.2917	828.04	+126.9
183	19/03/88	15:46:00	1.3000	837.70	+126.9
184	19/03/88	15:46:30	1.3083	851.79	+126.9
185	19/03/88	15:47:00	1.3167	865.60	+126.9
186	19/03/88	15:47:30	1.3250	883.93	+126.9
187	19/03/88	15:48:00	1.3333	897.14	+126.9
188	19/03/88	15:48:30	1.3417	905.84	+126.9
189	19/03/88	15:49:00	1.3500	918.66	+126.9
190 191	19/03/88 19/03/88	15:49:30	1.3583	931.10	+126.9
192	19/03/88	15:50:00	1.3667	947.29	+126.9
193	19/03/88	15:50:30 15:51:00	1.3750 1.3833	955.20 966.88	+126.9
194	19/03/88	15:51:30	1.3917	978.36	+126.9 +126.9
195	19/03/88	15:52:00	1.4000	978.30 989.58	+126.9
196	19/03/88	15:52:30	1.4083	1,004.19	+126.9
197	19/03/88	15:53:00	1.4167	1,004.19	+126.9
198	19/03/88	15:53:00	1.4107	1,011.32	+126.9
199	19/03/88	15:54:00	1.4230	1,021.92	+126.9
200	19/03/88	15:54:30	1.4333	1,032.42	+126.9
200	177 007 00	10.07.00	4 + 774 /	1,072.00	1120.7

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1324 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
201	19/03/88	15:55:00	1.4500	1,052.56	+126.9
202	19/03/88	15:55:30	1.4583	1,062.36	+126.9
203	19/03/88	15:56:00	1.4667	1,071.96	+127.0
204	19/03/88	15:56:30	1.4750	1,081.40	+127.0
205	19/03/88	15:57:00	1.4833	1,090.67	+127.0
206	19/03/88	15:57:30	1.4917	1,099.76	+127.0
207	19/03/88	15:58:00	1.5000	1,108.68	+127.0
208	19/03/88	15:58:30	1.5083	1,117.54	+127.0
209	19/03/88	15:59:00	1.5167	1,126.27	+127.0
210	19/03/88	15:59:30	1.5250	1,134.85	+127.0
211	19/03/88	16:00:00	1.5333	1,143.24	+127.0
212	19/03/88	16:00:30	1.5417	1,151.45	+127.0
213	19/03/88	16:01:00	1.5500	1,159.49	+127.0
214	19/03/88	16:01:30	1.5583	1,167.40	+127.0
215	19/03/88	16:02:00	1.5667	1,175.29	+127.0
216	19/03/88	16:02:30	1.5750	1,183.11	+127.2
217	19/03/88	16:03:00	1.5833	1,190.66	+127.1
218	19/03/88	16:03:30	1.5917	1,198.15	+127.2
219	19/03/88	16:04:00	1.6000	1,205.43	+127.1
220	19/03/88	16:04:30	1.6083	1,212.59	+127.1
221	19/03/88	16:05:00	1.6167	1,219.60	+127.1
222	19/03/88	16:05:30	1.6250	1,226.49	+127.1
223	19/03/88	16:06:00	1.6333	1,233.29	+127.1
224	19/03/88	16:06:30	1.6417	1,239.98	+127.1
225	19/03/88	16:07:00	1.6500	1,246.49	+127.1
226	19/03/88	16:07:30	1.6583	1,252.92	+127.1
227	19/03/88	16:08:00	1.6667	1,259.31	+127.1
228	19/03/88	16:08:30	1.6750	1,265.56	+127.1
229	19/03/88	16:09:00	1.6833	1,271.72	+127.1
230	19/03/88	16:09:30	1.6917	1,277.77	+127.1
231	19/03/88	16:10:00	1.7000	1,283.65	+127.1
232	19/03/88	16:10:30	1.7083	1,289.38	+127.1
233	19/03/88	16:11:00	1.7167	1,295.07	+127.1
234	19/03/88	16:11:30	1.7250	1,300.61	+127.1
235	19/03/88	16:12:00	1.7333	1,306.07	+127.1
236	19/03/88	16:12:30	1.7417	1,311.41	+127.1
237	19/03/88	16:13:00	1.7500	1,316.70	+127.1
238	19/03/88	16:13:30	1.7583	1,321.89	+127.1
239	19/03/88	16:14:00	1.7667	1,326.99	+127.2
240	19/03/88	16:14:30	1.7750	1,332.02	+127.2
241	19/03/88	16:15:00	1.7833	1,336.98	+127.2
242	19/03/88	16:15:30	1.7917	1,341.82	+127.2
243	19/03/88	16:16:00	1.8000	1,346.61	+127.2
244	19/03/88	16:16:30	1.8083	1,351.30	+127.2
245	19/03/88	16:17:00	1.8167	1,355.90	+127.2
246	19/03/88	16:17:30	1.8250	1,360.40	+127.2
247	19/03/88	16:18:00	1.8333	1,364.82	+127.2
248	19/03/88	16:18:30	1.8417	1,369.15	+127.2
249	19/03/88	16:19:00	1.8500	1,373.40	+127.2
250	19/03/88	16:19:30	1.8583	1,377.57	+127.2

COMPANY : BEACH PETROLEUM N.L. WELL : IONA #1

Eq. Type : H.F. Gauge # : 487

Depth : 1324 Meters

252 19/03/88 16:20:30 1.8750 1,385.67 +1 253 19/03/88 16:21:00 1.8833 1,389.61 +1 254 19/03/88 16:21:30 1.8917 1,393.47 +1 255 19/03/88 16:22:00 1.9000 1,397.26 +1 256 19/03/88 16:22:30 1.9083 1,400.99 +1 257 19/03/88 16:23:30 1.9167 1.404.68 +1 258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:30 1.9250 1,408.34 +1 259 19/03/88 16:24:30 1.9417 1,415.43 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:30 1.9750 1,428.87 +1 264 19/03/88 16:27:00 <t< th=""><th>emp g.F)</th></t<>	emp g.F)
252 19/03/88 16:20:30 1.8750 1,385.67 +i 253 19/03/88 16:21:00 1.8833 1,389.61 +1 254 19/03/88 16:21:30 1.8917 1,393.47 +1 255 19/03/88 16:22:00 1.9000 1,397.26 +1 256 19/03/88 16:22:30 1.9083 1,400.99 +1 257 19/03/88 16:23:30 1.9167 1.404.68 +1 258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:30 1.9750 1,408.34 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:30 1.9750 1,428.87 +1 264 19/03/88 16:27:00 1.9833 1,432.09 +1 265 19/03/88 16:27:30 <t< td=""><td></td></t<>	
253 19/03/88 16:21:00 1.8833 1,389.61 +1 254 19/03/88 16:21:30 1.8917 1,393.47 +1 255 19/03/88 16:22:00 1.9000 1,397.26 +1 256 19/03/88 16:22:30 1.9083 1,400.99 +1 257 19/03/88 16:23:30 1.9167 1.404.68 +1 258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:00 1.9333 1,411.91 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:27:00 1.9833 1,432.09 +1 265 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:30 <t< td=""><td>27.2</td></t<>	27.2
254 19/03/88 16:21:30 1.8917 1,393.47 +1 255 19/03/88 16:22:00 1.9000 1,397.26 +1 256 19/03/88 16:22:30 1.9083 1,400.99 +1 257 19/03/88 16:23:30 1.9167 1.404.68 +1 258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:30 1.9333 1,411.91 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:30 1.9917 1,435.26 +1 266 19/03/88 16:28:30 2.0000 1,438.40 +1 269 19/03/88 16:28:30 <t< td=""><td>27.2</td></t<>	27.2
255 19/03/88 16:22:00 1.9000 1,397.26 +1 256 19/03/88 16:22:30 1.9083 1,400.99 +1 257 19/03/88 16:23:00 1.9167 1.404.68 +1 258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:30 1.9333 1,411.91 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1.422.24 +1 263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 265 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:00 2.0000 1,438.40 +1 268 19/03/88 16:29:00 <t< td=""><td>27.2</td></t<>	27.2
256 19/03/88 16:22:30 1.9083 1,400.99 +1 257 19/03/88 16:23:00 1.9167 1.404.68 +1 258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:00 1.9333 1,411.91 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:30 1.9583 1,422.24 +1 263 19/03/88 16:26:30 1.9750 1,428.87 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:30 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 <t< td=""><td>27.2</td></t<>	27.2
257 19/03/88 16:23:30 1.9167 1.404.68 +1 258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:00 1.9333 1,411.91 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1.422.24 +1 263 19/03/88 16:26:30 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:30 2.0000 1,438.40 +1 268 19/03/88 16:29:00 2.0167 1,444.48 +1 269 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 <t< td=""><td>27.2</td></t<>	27.2
258 19/03/88 16:23:30 1.9250 1,408.34 +1 259 19/03/88 16:24:00 1.9333 1,411.91 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:30 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:30 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 <t< td=""><td>27.2</td></t<>	27.2
259 19/03/88 16:24:00 1.9333 1,411.91 +1 260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:30 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
260 19/03/88 16:24:30 1.9417 1,415.43 +1 261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1.422.24 +1 263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:30 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
261 19/03/88 16:25:00 1.9500 1,418.88 +1 262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:30 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
262 19/03/88 16:25:30 1.9583 1,422.24 +1 263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:00 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
263 19/03/88 16:26:00 1.9667 1,425.57 +1 264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:00 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
264 19/03/88 16:26:30 1.9750 1,428.87 +1 265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:00 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
265 19/03/88 16:27:00 1.9833 1,432.09 +1 266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:00 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/83 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
266 19/03/88 16:27:30 1.9917 1,435.26 +1 267 19/03/88 16:28:00 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/83 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
267 19/03/88 16:28:00 2.0000 1,438.40 +1 268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
268 19/03/88 16:28:30 2.0083 1,441.50 +1 269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
269 19/03/88 16:29:00 2.0167 1,444.48 +1 270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
270 19/03/88 16:29:30 2.0250 1,447.40 +1 271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
271 19/03/88 16:30:00 2.0333 1,450.24 +1	27.3
	27.3
272 10/02/20 17:20:20 2 2/47 1 4/52/20 14	27.3
,	27.3
	27.3
•	27.3
•	27.3
	27.3
·	27.3
	27.4
	27.4
280 19/03/88 16:34:30 2.1083 1,473.50 +1	27.4
	27.4
	27.4
283 19/03/88 16:37:00 2.1500 1,485.24 +1	27.4
284 19/03/88 16:38:00 2.1667 1,489.68 +1	27.4
285 19/03/88 16:39:00 2.1833 1,493.89 +1	27.4
286 19/03/88 16:40:00 2.2000 1,498.01 +1	27.4
287 19/03/88 16:41:00 2.2167 1,501.98 +1	27.4
288 19/03/88 16:42:00 2.2333 1.505.70 +1	27.4
289 19/03/88 16:43:00 2.2500 1,509.29 +1	27.5
	27.5
	27.5
	27.5
·	27.5
· ·	27.5
·	27.5
•	27.5
	27.5
	27.6
· ·	27.6
300 19/03/88 16:54:00 2.4333 1,541.89 +1	27.6

COMPANY : BEACH PETROLEUM N.L. WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1324 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
301	19/03/88	16:55:00	2.4500	1,544.27	+127.6
302	19/03/88	16:56:00	2.4667	1,546.73	+127.6
303	19/03/88	18:57:00	2.4833	1,549.15	+127.6
304	19/03/88	16:58:00	2.5000	1,551.46	+127.6
305	19/03/88	16:59:00	2.5167	1,553.76	+127.6
306	19/03/88	17:00:00	2.5333	1,555.96	+127.6
307	19/03/88	17:01:00	2.5500	1,558.07	+127.6
308	19/03/88	17:02:00	2.5667	1,560.12	+127.7
309	19/03/88	17:03:30	2.5917	1,563.17	+127.7
310	19/03/88	17:03:40	2.5944	1,563.51	+127.7
311	19/03/88	17:03:50	2.5972	1,563.80	+127.7
312	19/03/88	17:04:00	2.6000	1,567.87	+127.7
313	19/03/88	17:04:10	2.6028	1,722.40	+127.7
314	19/03/88	17:04:20	2.6056	1,795.62	+127.7
315	19/03/88	17:04:30	2.6083	1,805.03	+127.7
316	19/03/88	17:04:40	2.6111	1,819.59	+127.7
317	19/03/88	17:04:50	2.6139	1,802.43	+127.7
318	19/03/88	17:05:00	2.6167	1,748.20	+127.7
319	19/03/88	17:05:10	2.6194	1,746.80	+127.7
320	19/03/88	17:05:20	2.6222	1,744.41	+127.7
321	19/03/88	17:05:30	2.6250	1,745.11	+127.7
322	19/03/88	17:05:40	2.6278	1,746.80	+127.7
323	19/03/88	17:05:50	2.6306	2,047.71	+127.7
324	19/03/88	17:06:00	2.6333	2,108.23	+127.7
325	19/03/88	17:06:10	2.6361	2,108.42	+127.7
326	19/03/88	17:06:20	2.6389	2,108.41	+127.7
327	19/03/88	17:06:30	2.6417	2,108.41	+127.7
328	19/03/88	17:06:40	2.6444	2,108.32	+127.7
329	19/03/88	17:06:50	2.6472	2,108.29	+127.7
330	19/03/88	17:07:00	2.6500	2,108.27	+127.7
331	19/03/88	17:07:10	2.6528	2,108.26	+127.7

Eq. Type : H.P.
Gauge # : 487
Depth : 1321_Steters WELL : IONA #1

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	17:09:30	0.0000	2,106.84	+127.7
2	19/03/98	17:10:00	0.0083	2,106.12	+127.7
2 3	19/03/88	17:10:30	0.0167	2,105.60	+127.7
4	19/03/88	17:11:00	0.0250	2,105.72	+127.7
5	19/03/88	17:11:30	0.0333	2,105.81	+127.7
6	19/03/88	17:11:50	0.0389	2,107.79	+127.7
7	19/03/88	17:12:00	0.0417	2,108.94	+127.7
8	19/03/88	17:12:10	0.0444	2,110.25	+127.7
9	19/03/88	17:12:20	0.0472	2,112.76	+127.7
10	19/03/88	17:12:30	0.0500	2,129.08	+127.7
11	19/03/88	17:12:40	0.0528	2,185.74	+127.7
12 13	19/03/88 19/03/88	17:12:48 17:12:50	0.0550	2,199.59	+127.7
14	19/03/88	17:12:50	0.0556 0.0561	2,199.59 2,199.66	+127.7 +127.7
15	19/03/88	17:12:52	0.0567	2,199.55	+127.7
16	19/03/88	17:12:54	0.0572	2,177.33	+127.7
17	19/03/88	17:12:58	0.0578	2,144.33	+127.7
18	19/03/88	17:13:00	0.0583	2,065.80	+127.7
19	19/03/88	17:13:02	0.0589	2,065.80	+127.7
20	19/03/88	17:13:04	0.0594	1,943.29	+127.7
21	19/03/88	17:13:06	0.0600	1,943.29	+127.7
22	19/03/88	17:13:08	0.0606	1,740.72	+127.7
23	19/03/88	17:13:10	0.0611	1,739.99	+127.7
24	19/03/88	17:13:12	0.0617	1,739.30	+127.7
25 26	19/03/88 19/03/88	17:13:14 17:13:16	0.0622 0.0628	1,739.14	+127.7
27	19/03/88	17:13:18	0.0633	1,738.54 1,738.64	+127.7 +127.7
28	19/03/88	17:13:10	0.0639	1,738.46	+127.7
29	19/03/88	17:13:22	0.0644	1,738.31	+127.7
30	19/03/88	17:13:24	0.0350	1,738.31	+127.7
31	19/03/88	17:13:26	0.0656	1,738.31	+127.7
32	19/03/88	17:13:28	0.0661	1,738.10	+127.7
33	19/03/88	17:13:30	0.0667	1,738.26	+127.7
34	19/03/88	17:13:32	0.0672	1,738.30	+127.7
35	19/03/88	17:13:34	0.0678	1,738.30	+127.7
36	19/03/88	17:13:36	0.0683	1,738.85	+127.7
37	19/03/88	17:13:38	0.0689	1,738.87	+127.7
38 39	19/03/88 19/03/88	17:13:40	0.0694	1,739.62	+127.7
40	19/03/88	17:13:42 17:13:44	0.0700 0.0706	1,744.63 1,744.74	+127.7 +127.7
41	19/03/88	17:13:46	0.0708	1,744.74	+127.7
42	19/03/88	17:13:48	0.0717	1,744.75	+127.7
43	19/03/88	17:13:50	0.0722	1,744.78	+127.7
44	19/03/88	17:13:52	0.0728	1,744.79	+127.7
45	19/03/88	17:13:54	0.0733	1,744.81	+127.7
46	19/03/88	17:13:56	0.0739	1,744.82	+127.7
47	19/03/88	17:13:58	0.0744	1,744.83	+127.7
48	19/03/88	17:14:00	0.0750	1,744.83	+127.7
49	19/03/88	17:14:02	0.0756	1,744.86	+127.7
50	19/03/88	17:14:04	0.0761	1,744.86	+127.7

WELL : ICNA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1321.5 Meters

Seq.#	Date	Time	dt	Pressure	Temp
				(PSIA)	(Deg.F)
51	19/03/88	17:14:10	0.0778	1,744.88	+127.7
52	19/03/88	17:14:20	0.0806	1,744.89	+127.7
53	19/03/88	17:14:30	0.0833	1,744.91	+127.7
54	19/03/88	17:14:40	0.0861	1,744.94	+127.8
55	19/03/88	17:14:50	0.0889	1,744.95	+127.8
56	19/03/88	17:15:00	0.0917	1,744.97	+127.8
57	19/03/88	17:15:10	0.0944	1,744.97	+127.8
58	19/03/88	17:15:20	0.0972	1,744.98	+127.8
59	19/03/88	17:15:30	0.1000	1,744.98	+127.8
60	19/03/88	17:15:40	0.1028	1,744.98	+127.8
61	19/03/88	17:15:50	0.1056	1,744.99	+127.8
62	19/03/88	17:16:00	0.1083	1,744.99	+127.8
63	19/03/88	17:16:10	0.1111	1,745.00	+127.8
64	19/03/88	17:16:20	0.1139	1,745.00	+127.8
65	19/03/88	17:16:30	0.1167	1,745.00	+127.8
66	19/03/88	17:16:40	0.1194	1,745.00	+127.8
67	19/03/88	17:16:50	0.1222	1,745.01	+127.8
68	19/03/88	17:17:00	0.1250	1,745.01	+127.8
69	19/03/88	17:17:10	0.1278	1,745.01	+127.8
70	19/03/88	17:17:20	0.1306	1,745.01	+127.8
71	19/03/88	17:17:30	0.1333	1,745.02	+127.8
72	19/03/88	17:17:40	0.1361	1,745.02	+127.8
73	19/03/88	17:17:50	0.1389	1,745.02	+127.8
74	19/03/88	17:18:00	0.1417	1,745.02	+127.8
75	19/03/88	17:18:10	0.1444	1,745.03	+127.8
76	19/03/88	17:18:20	0.1472	1,745.03	+127.8
77	19/03/88	17:18:30	0.1500	1,745.03	+127.8
78	19/03/88	17:19:00	0.1583	1,745.03	+127.8
79	19/03/88	17:19:30	0.1667	1,745.04	+127.8
80	19/03/88	17:20:00	0.1750	1,745.05	+127.8
81	19/03/88	17:20:30	0.1833	1,745.05	+127.8
82	19/03/88	17:21:00	0.1917	1,745.05	+127.8
83	19/03/88	17:21:30	0.2000	1,745.05	+127.8
84	19/03/88	17:22:00	0.2083	1,745.05	+127.8
85	19/03/88	17:22:30	0.2167	1,745.06	+127.8
86	19/03/88	17:23:00	0.2250	1,745.05	+127.8
87	19/03/88	17:23:30	0.2333	1,745.06	+127.8
88	19/03/88	17:24:00	0.2417	1,745.06	+127.8
89	19/03/88	17:24:30	0.2500	1,745.06	+127.8
90	19/03/88	17:25:00	0.2583	1,745.06	+127.8
91	19/03/88	17:25:30	0.2667	1,745.06	+127.9
92	19/03/88	17:26:00	0.2750	1,745.06	+127.8
93	19/03/88	17:26:30	0.2833	1,745.06	+127.9
94	19/03/88	17:27:00	0.2917	1,745.06	+127.9
95	19/03/88	17:27:30	0.3000	1,745.06	+127.9
96	19/03/88	17:28:00	0.3083	1,745.06	+127.9
97	19/03/88	17:28:30	0.3167	1,745.06	+127.9
98	19/03/88	17:29:00	0.3250	1,745.06	+127.9
99	19/03/88	17:29:30	0.3333	1,745.06	+127.9
100	19/03/88	17:30:00	0.3417	1,745.06	+127.9

PAGE: 3

COMPANY : BEACH PETROLEUM N.L. WELL : IONA #1 Eq. Type : H.P.

Gauge # : 487 Depth : 1321.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	17:31:00	0.3583	1,745.05	+127.9
102	19/03/88	17:32:00	0.3750	1,745.05	+127.9
103	19/03/88	17:33:00	0.3917	1,745.05	+127.9
104	19/03/88	17:34:00	0.4083	1,745.04	+127.9
105	19/03/88	17:35:00	0.4250	1,745.04	+127.9
106	19/03/88	17:36:00	0.4417	1,745.04	+127.9
107	19/03/88	17:37:00	0.4583	1,745.04	+127.9
108	19/03/88	17:38:00	0.4750	1,745.03	+127.9
109	19/03/88	17:39:00	0.4917	1,745.03	+127.9
110	19/03/88	17:40:00	0.5083	1,745.02	+127.9
111	19/03/88	17:41:00	0.5250	1,745.03	+127.9
112	19/03/88	17:42:00	0.5417	1,745.02	+127.9
113	19/03/88	17:43:00	0.5583	1,745.02	+127.9
114	19/03/88	17:44:00	0.5750	1,745.01	+127.9
115	19/03/88	17:45:00	0.5917	1,745.01	+127.9
116	19/03/88	17:46:00	0.6083	1,745.01	+127.9
117	19/03/88	17:47:00	0.6250	1,745.01	+127.9
118	19/03/88	17:48:00	0.6417	1,745.00	+128.0
119	19/03/88	17:49:00	0.6583	1,745.00	+128.0
120	19/03/88	17:50:00	0.6750	1,745.00	+128.0
121	19/03/88	17:51:00	0.6917	1,744.99	+128.0
122	19/03/88	17:52:00	0.7083	1,744.99	+128.0
123	19/03/88	17:53:00	0.7250	1,744.99	+128.0
124	19/03/88	17:54:00	0.7417	1,744.99	+128.0
125	19/03/88	17:55:00	0.7583	1,744.98	+128.0
126	19/03/88	17:55:30	0.7667	2,250.48	+128.0
127	19/03/88	17:56:00	0.7750	2,227.93	+128.0
128	19/03/88	17:56:30	0.7833	2,108.90	+128.0
129	19/03/88	17:57:00	0.7917	2,108.69	+128.0
130	19/03/88	17:57:30	0.8000	2,108.55	+128.0
131	19/03/88	17:58:00	0.8083	2,108.44	+128.0
132	19/03/88	17:58:30	0.8167	2,108.33	+128.0

COMPANY : BEACH PETROLEUM N.L. WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1316 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	18:01:00	0.0000	2,105.16	+128.0
2	19/03/88	18:01:30	0.0083	2,103.10	+128.0
3	19/03/88	18:02:00	0.0167	2,099.89	+128.0
4	19/03/88	18:02:30	0.0250	2,102.44	
5	19/03/88	18:03:00	0.0333	2,103.29	+128.0
6	19/03/88	18:03:30	0.0333	2,102.32	+128.0 +128.1
7	19/03/88	18:04:00	0.0500	2,102.82	+128.1
8	19/03/88	18:04:30	0.0583	2,102.93	+128.1
9	19/03/88	18:05:00	0.0667	2,104.61	+128.1
10	19/03/88	18:05:30	0.0750	2,105.98	+128.1
11	19/03/88	18:06:00	0.0833	2,103.90	+128.1
12	19/03/88	18:06:30	0.0917	2,104.62	+128.1
13	19/03/88	18:07:00	0.1000	2,104.97	+128.1
14	19/03/88	18:07:30	0.1083	2,104.54	+128.1
15	19/03/88	18:08:00	0.1167	2,104.59	+128.1
16	19/03/88	18:08:30	0.1250	2,104.72	+128.1
17	19/03/88	18:09:20	0.1389	2,104.65	+128.1
18	19/03/88	18:09:30	0.1417	2,104.62	+128.1
19	19/03/88	18:09:40	0.1444	2,104.79	+128.1
20	19/03/88	18:09:50	0.1472	2,109.59	+128.1
21	19/03/88	18:10:00	0.1500	2,155.02	+128.1
22	19/03/88	18:10:08	0.1522	2,182.29	+128.1
23	19/03/88	18:10:10	0.1528	2,183.22	+128.1
24	19/03/88	18:10:12	0.1533	2,183.33	+128.1
25	19/03/88	18:10:14	0.1539	2,168.87	+128.1
26	19/03/88	18:10:16	0.1544	2,064.15	+128.1
27	19/03/88	18:10:18	0.1550	1,983.51	+128.1
28	19/03/88	18:10:20	0.1556	1,936.82	+128.1
29	19/03/88	18:10:22	0.1561	1,813.44	+128.1
30	19/03/88	18:10:24	0.1567	1,675.21	+128.1
31	19/03/88	18:10:26	0.1572	1,611.73	+128.1
32	19/03/88	18:10:28	0.1578	1,657.58	+128.1
33	19/03/88	18:10:30	0.1583	1,628.26	+128.1
34	19/03/88	18:10:32	0.1589	1,604.62	+128.1
35	19/03/88	18:10:34	0.1594	1,595.36	+128.1
36	19/03/88	18:10:36	0.1600	1,579.45	+128.1
37	19/03/88	18:10:38	0.1606	1,575.48	+128.1
38	19/03/88	18:10:40	0.1611	1,573.33	+128.1
39	19/03/88	18:10:42	0.1617	1,575.71	+128.1
40	19/03/88	18:10:44	0.1622	1,579.80	+128.1
41	19/03/88	18:10:46	0.1628	1,581.00	+128.1
42	19/03/88	18:10:48	0.1633	1,583.54	+128.1
43	19/03/88	18:10:50	0.1639	1,592.90	+128.1
44	19/03/88	18:10:52	0.1644	1,588.60	+128.1
45	19/03/88	18:10:54	0.1650	1,587.73	+128.1
46	19/03/88	18:10:56	0.1656	1,587.03	+128.1
47	19/03/88	18:10:58	0.1661	1,612.37	+128.1
48	19/03/88	18:11:00	0.1667	1,655.64	+128.1
49	19/03/88	18:11:02	0.1672	1,680.76	+128.1
50	19/03/88	18:11:04	0.1678	1,696.05	+128.1

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1316 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	18:11:06	0.1683	1,706.01	+128.1
52	19/03/88	18:11:08	0.1689	1,713.03	+128.1
53	19/03/88	18:11:10	0.1694	1,718.10	+128.1
54	19/03/88	18:11:12	0.1700	1,721.78	+128.1
55	19/03/88	18:11:14	0.1706	1,724.75	+128.1
56	19/03/88	18:11:16	0.1711	1,727.54	+128.1
57	19/03/88	18:11:18	0.1717	1,730.78	+128.1
58	19/03/88	18:11:20	0.1722	1,733.27	+128.1
59	19/03/88	18:11:22	0.1728	1,735.05	+128.1
60	19/03/88	18:11:24	0.1733	1,736.34	+128.1
61	19/03/88	18:11:26	0.1739	1,737.44	+128.1
62	19/03/88	18:11:28	0.1744	1,738.28	+128.1
63	19/03/88	18:11:34	0.1761	1,738.62	+128.1
64	19/03/88	18:11:36	0.1767	1,739.89	+128.1
65	19/03/88	18:11:38	0.1772	1,740.29	+128.0
66	19/03/88	18:11:40	0.1778	1,740.76	+128.1
67	19/03/88	18:11:42	0.1783	1,741.09	+128.0
68	19/03/88	18:11:44	0.1789	1,741.34	+128.1
39	19/03/88	18:11:46	0.1794	1,741.45	+123.0
70	19/03/88	18:11:48	0.1800	1,741.55	+128.1
71	19/03/88	18:11:50	0.1806	1,741.58	+128.0
72	19/03/88	18:11:52	0.1811	1,741.72	+128.1
73	19/03/88	18:11:54	0.1817	1,741.80	+128.0
74	19/03/88	18:11:56	0.1822	1,741.89	+128.0
75	19/03/88	18:11:58	0.1828	1,742.02	+128.1
76	19/03/88	18:12:00	0.1833	1,741.94	+128.0
77 70	19/03/88	18:12:02	0.1839	1,741.96	+128.1
78 70	19/03/88	18:12:04	0.1844	1,741.89	+128.0
79	19/03/88	18:12:06	0.1850	1,741.93	+128.1
80 01	19/03/88	18:12:08	0.1856	1,741.91	+128.0
81	19/03/88	18:12:10	0.1861	1,741.96	+128.1
82 00	19/03/88	18:12:12	0.1867	1,741.96	+128.0
83 04	19/03/88	18:12:14	0.1872	1,742.00	+128.1
84 85	19/03/88 19/03/88	18:12:20	0.1889	1,742.04	+128.0
86	19/03/88	18:12:30	0.1917	1,742.18	+128.1
87	19/03/88	18:12:40	0.1944	1,742.41	+128.1
88	19/03/88	18:12:50	0.1972	1,742.64	+128.1
89	19/03/88	18:13:00 18:13:10	0.2000	1,742.86	+128.1
90	19/03/88	18:13:10	0.2028	1,743.09	+128.1
91	19/03/88	18:13:20	0.2056	1,743.27	+128.1
92	19/03/88	18:13:40	0.2083 0.2111	1,743.42	+128.1
93	19/03/88	18:13:50	0.2111	1,743.54	+128.1
94	19/03/88	18:14:00	0.2167	1,743.65 1,743.72	+128.1
95	19/03/88	18:14:10	0.2194	1,743.72	+128.1
96	19/03/88	18:14:20	0.2222	1,743.77	+128.1
97	19/03/88	18:14:30	0.2250	1,743.84	+128.1
98	19/03/88	18:15:00	0.2333	1,744.04	+128.1
99	19/03/88	18:15:30	0.2417	1,744.09	+128.1
100	19/03/88	18:16:00	0.2500	1,744.13	+128.1
		10.10.00	012000	1,(77.10	+128.1

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1316 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	18:16:30	0.2583	1,744.19	+128.1
102	19/03/88	13:17:00	0.2667	1,744.23	+128.1
103	19/03/88	18:18:00	0.2833	1,744.30	+128.1
104	19/03/88	18:19:00	0.3000	1,744.35	+128.1
105	19/03/88	18:20:00	0.3167	1,744.39	+128.1
106	19/03/88	18:21:00	0.3333	1,744.42	+128.1
107	19/03/88	18:22:00	0.3500	1,744.45	+128.1
108	19/03/88	18:23:00	0.3667	1,744.47	+128.1
109	19/03/88	18:24:00	0.3833	1,744.48	+128.1
110	19/03/88	18:25:00	0.4000	1,744.50	+128.1
111	19/03/88	18:26:00	0.4167	1,744.52	+128.1
112	19/03/88	18:27:00	0.4333	1,744.53	+128.1
113	19/03/88	18:28:00	0.4500	1,744.54	+128.1
114	19/03/88	18:29:00	0.4667	1,744.55	+128.1
115	19/03/88	18:30:00	0.4833	1,744.57	+128.1
116	19/03/88	18:31:00	0.5000	1,744.58	+128.1
117	19/03/88	18:32:00	0.5167	1,744.60	+128.1
118	19/03/88	18:33:00	0.5333	1,744.61	+128.1
119	19/03/88	18:34:00	0.5500	1,744.63	+128.1
120	19/03/88	18:35:00	0.5667	1,744.64	+128.1
121	19/03/88	18:36:00	0.5833	1,744.66	+128.1
122	19/03/88	18:37:00	0.6000	1,744.68	+128.1
123	19/03/88	18:38:00	0.6167	1,744.70	+128.1
124	19/03/88	18:39:00	0.6333	1,744.72	+128.1
125	19/03/88	18:40:00	0.6500	1,744.75	+128.1
126	19/03/88	18:41:00	0.6667	1,744.77	+128.1
127	19/03/88	18:42:00	0.6833	1,744.80	+128.1
128	19/03/88	18:43:00	0.7000	1,744.83	+128.1
129	19/03/88	18:44:00	0.7167	1,744.85	+128.1
130	19/03/88	18:45:00	0.7333	1,744.88	+128.1
131	19/03/88	18:46:00	0.7500	1,744.93	+128.1
132	19/03/88	18:47:00	0.7667	1,744.96	+128.1
133 134	19/03/88	18:48:00	0.7833	1,744.99	+128.1
135	19/03/88 19/03/88	18:49:00 18:50:00	0.8000	1,745.03	+128.1
136	19/03/88	18:51:00	0.8167	1,745.07 1,745.11	+128.1
137	19/03/88	18:51:00	0.9333 0.8500	1,745.15	+128.1
138	19/03/88	18:53:00	0.8667	1,745.19	+128.1 +128.1
139	19/03/88	18:54:00	0.8833	1,745.24	+128.1
140	19/03/88	18:55:00	0.9000	1,745.28	+128.1
141	19/03/88	18:56:00	0.9167	1,745.32	+128.1
142	19/03/88	18:57:00	0.9333	1,745.36	+128.1
143	19/03/88	18:57:30	0.9417	2,109.15	+128.1
144	19/03/88	18:58:00	0.9500	2,223.03	+128.1
145	19/03/88	18:58:30	0.9583	2,106.73	+128.1
146	19/03/88	18:59:00	0.9667	2,104.00	+128.1
147	19/03/88	18:59:30	0.9750	2,104.10	+128.1
148	19/03/88	19:00:00	0.9833	2,104.18	+128.1

WELL : IONA #1 Eq. Type : H.P.
Gauge # : 487
Depth : 1306 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	19:03:30	0.0000	2 000 70	1120.2
2	19/03/88	19:04:00	0.0083	2,089.68	+128.2
3	19/03/88	19:04:00	0.0063	2,088.63	+128.1
4	19/03/88	19:05:00	0.0187	2,089.15	+128.2
5	19/03/88	19:05:00	0.0230	2,089.13 2,089.00	+128.1
6	19/03/88	19:06:00	0.0333	2,089.08	+128.1
7	19/03/88	19:06:30	0.0500	2,091.60	+128.1 +128.1
8	19/03/88	19:07:00	0.0583	2,091.91	+128.1
9	19/03/88	19:07:30	0.0667	2,091.05	+128.1
10	19/03/88	19:08:00	0.0750	2,091.33	+128.1
11	19/03/88	19:08:30	0.0833	2,091.32	+128.1
12	19/03/88	19:09:10	0.0944	2,091.29	+128.1
13	19/03/88	19:09:20	0.0972	2,091.31	+128.1
14	19/03/88	19:09:30	0.1000	2,091.33	+128.1
15	19/03/88	19:09:40	0.1028	2,091.33	+128.1
16	19/03/88	19:09:50	0.1056	2,091.64	+128.1
17	19/03/88	19:10:00	0.1083	2,095.80	+128.1
18	19/03/88	19:10:10	0.1111	2,134.07	+128.1
19	19/03/88	19:10:20	0.1139	2,196.26	+128.1
20	19/03/88	19:10:30	0.1167	2,206.41	+128.1
21	19/03/88	19:10:40	0.1194	2,205.59	+128.1
22	19/03/88	19:10:42	0.1200	2,205.23	+128.1
23	19/03/88	19:10:44	0.1206	2,205.18	+128.1
24	19/03/88	19:10:46	0.1211	2,205.13	+128.1
25	19/03/88	19:10:48	0.1217	2,198.81	+128.1
26	19/03/88	19:10:50	0.1222	2,124.82	+128.1
27	19/03/88	19:10:52	0.1228	2,021.96	+128.1
28	19/03/88	19:10:54	0.1233	1,949.01	+128.1
29 20	19/03/88	19:10:56	0.1239	1,882.53	+128.1
30 31	19/03/88 19/03/88	19:10:58	0.1244	1,732.23	+128.1
32	19/03/88	19:11:00 19:11:02	0.1250 0.1256	1,688.16	+128.1
33	19/03/88	19:11:02	0.1236	1,661.39 1,643.01	+128.1
34	19/03/88	19:11:04	0.1267	1,635.30	+128.1 +128.1
35	19/03/88	19:11:08	0.1272	1,624.45	+128.1
36	19/03/88	19:11:10	0.1278	1,623.25	+128.1
37	19/03/88	19:11:12	0.1283	1,624.61	+128.1
38	19/03/88	19:11:14	0.1289	1,627.14	+128.1
39	19/03/88	19:11:16	0.1294	1,628.50	+128.1
40	19/03/88	19:11:18	0.1300	1,630.77	+128.1
41	19/03/88	19:11:20	0.1306	1,632.14	+128.1
42	19/03/88	19:11:22	0.1311	1,631.91	+128.1
43	19/03/88	19:11:24	0.1317	1,632.73	+128.1
44	19/03/88	19:11:26	0.1322	1,634.13	+128.1
45	19/03/88	19:11:28	0.1328	1,634.86	+128.1
46	19/03/88	19:11:30	0.1333	1,636.98	+128.1
47	19/03/88	19:11:32	0.1339	1,643.85	+128.1
48	19/03/88	19:11:34	0.1344	1,688.79	+128.1
49	19/03/88	19:11:36	0.1350	1,714.62	+128.1
50	19/03/88	19:11:38	0.1356	1,724.61	+128.1

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1306 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	19:11:40	0.1361	1,729.14	+128.1
52	19/03/88	19:11:42	0.1367	1,731.61	+128.1
53	19/03/88	19:11:44	0.1372	1,733.14	+128.1
54	19/03/88	19:11:46	0.1378	1,734.28	+128.1
55	19/03/88	19:11:48	0.1383	1,735.13	+128.1
56	19/03/88	19:11:50	0.1389	1,735.85	+128.1
57	19/03/88	19:11:52	0.1394	1,736.51	+128.1
58	19/03/88	19:11:54	0.1400	1,737.02	+128.1
59	19/03/88	19:11:56	0.1406	1,737.47	+128.1
60	19/03/88	19:11:58	0.1411	1,737.79	+128.1
61	19/03/88	19:12:00	0.1417	1,737.95	+128.1
62	19/03/88	19:12:02	0.1422	1,738.14	+128.1
63	19/03/88	19:12:04	0.1428	1,738.34	+128.1
64	19/03/88	19:12:06	0.1433	1,738.49	+128.1
65	19/03/88	19:12:08	0.1439	1,738.61	+128.1
66	19/03/88	19:12:10	0.1444	1,738.73	+128.1
67 (8	19/03/88	19:12:12	0.1450	1,738.86	+128.1
68 69	19/03/88	19:12:14	0.1456	1,739.02	+128.1
70	19/03/88 19/03/88	19:12:16	0.1461	1,739.20	+128.1
71	19/03/88	19:12:18 19:12:20	0.1467 0.1472	1,739.34 1,739.48	+128.1
72	19/03/88	19:12:22	0.1472	1,739.45	+128.1 +128.1
73	19/03/88	19:12:24	0.1483	1,739.80	+128.1
74	19/03/88	19:12:26	0.1489	1,739.96	+128.1
75	19/03/88	19:12:28	0.1494	1,740.10	+128.1
76	19/03/88	19:12:30	0.1500	1,740.20	+128.1
77	19/03/88	19:12:32	0.1506	1,740.30	+128.1
78	19/03/88	19:12:34	0.1511	1,740.42	+128.1
79	19/03/88	19:12:36	0.1517	1,740.51	+128.1
30	19/03/88	19:12:38	0.1522	1,740.61	+128.1
81	19/03/88	19:12:40	0.1528	1,740.69	+128.1
82	19/03/88	19:12:42	0.1533	1,740.77	+128.1
83	19/03/88	19:12:44	0.1539	1,740.86	+128.1
84	19/03/88	19:12:46	0.1544	1,740.93	+128.1
85	19/03/88	19:12:48	0.1550	1,741.02	+128.1
86	19/03/88	19:12:50	0.1556	1,741.09	+128.1
87	19/03/88	19:12:52	0.1561	1,741.17	+128.1
88	19/03/88	19:12:54	0.1567	1,741.25	+128.1
89	19/03/88	19:12:56	0.1572	1,741.31	+128.1
90	19/03/88	19:12:58	0.1578	1,741.37	+128.1
91	19/03/88	19:13:00	0.1583	1,741.46	+128.1
92 93	19/03/88	19:13:10	0.1611	1,741.51	+128.1
94	19/03/88 19/03/88	19:13:20 19:13:30	0.1639	1,741.71	+128.1
95	19/03/88	19:13:30	0.1667 0.1694	1,741.95 1,742.13	+128.1 +128.1
96	19/03/88	19:13:40	0.1874	1,742.13	+128.1
97	19/03/88	19:14:00	0.1722	1,742.40	+128.1
98	19/03/88	19:14:10	0.1778	1,742.49	+128.1
99	19/03/88	19:14:20	0.1806	1,742.57	+128.1
100	19/03/88	19:14:30	0.1833	1,742.63	+128.1
			3.2.2.4	_,	

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1306 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	19:14:40	0.1861	1,742.68	+128.1
102	19/03/88	19:14:50	0.1889	1,742.72	+128.1
103	19/03/88	19:15:00	0.1917	1,742.75	+128.1
104	19/03/88	19:15:10	0.1944	1,742.77	+128.1
105	19/03/88	19:15:20	0.1972	1,742.79	+128.1
106	19/03/88	19:15:30	0.2000	1,742.81	+128.1
107	19/03/88	19:15:40	0.2028	1,742.82	+128.1
108	19/03/88	19:15:50	0.2056	1,742.83	+128.1
109	19/03/88	19:16:00	0.2083	1,742.84	+128.1
110	19/03/88	19:16:10	0.2111	1,742.85	+128.1
111	19/03/88	19:16:30	0.2167	1,742.86	+128.1
112	19/03/88	19:17:00	0.2250	1,742.87	+128.1
113	19/03/88	19:17:30	0.2333	1,742.88	+128.1
114	19/03/88	19:18:00	0.2417	1,742.88	+128.1
115	19/03/88	19:19:00	0.2583	1,742.89	+128.1
116	19/03/88	19:20:00	0.2750	1,742.89	+128.1
117	19/03/88	19:21:00	0.2917	1,742.88	+128.1
118	19/03/88	19:22:00	0.3083	1,742.87	+128.1
119	19/03/88	19:23:00	0.3250	1,742.86	+128.1
120	19/03/88	19:24:00	0.3417	1,742.86	+128.1
121	19/03/88	19:25:00	0.3583	1,742.85	+128.1
122	19/03/88	19:26:00	0.3750	1,742.85	+128.1
123	19/03/88	19:27:00	0.3917	1,742.84	+128.1
124	19/03/88	19:28:00	0.4083	1,742.84	+128.1
125	19/03/88	19:29:00	0.4250	1,742.83	+128.1
126	19/03/88	19:30:00	0.4417	1,742.82	+128.1
127	19/03/88	19:31:00	0.4583	1,742.80	+128.1
128	19/03/88	19:32:00	0.4750	1,742.80	+128.1
129	19/03/88	19:33:00	0.4917	1,742.79	+128.1
130	19/03/88	19:34:00	0.5083	1,742.78	+128.1
131	19/03/88	19:35:00	0.5250	1,742.78	+128.1
132	19/03/88	19:36:00	0.5417	1,742.78	+128.1
133	19/03/88	19:37:00	0.5583	1,742.77	+128.1
134	19/03/88	19:38:00	0.5750	1,742.63	+127.6
135	19/03/88	19:39:00	0.5917	1,742.65	+127.7
136	19/03/88	19:40:00	0.6083	1,742.62	+127.6
137	19/03/88	19:41:00	0.6250	1,742.61	+127.6
138	19/03/88	19:42:00	0.6417	1,742.61	+127.6
139	19/03/88	19:43:00	0.6583	1,742.60	+127.6
140	19/03/88	19:44:00	0.6750	1,742.60	+127.6
141	19/03/88	19:45:00	0.6917	1,742.61	+127.6
142	19/03/88	19:46:00	0.7083	1,742.61	+127.6
143	19/03/88	19:47:00	0.7250	1,742.61	+127.6
144	19/03/88	19:48:00	0.7417	1,742.61	+127.6
145	19/03/88	19:49:00	0.7583	1,742.61	+127.6 +127.6
146	19/03/88	19:50:00	0.7750	1,742.60	
147	19/03/88	19:51:00	0.7917	1,742.60	+127.6
148	19/03/88	19:52:00	0.8083	1,742.61 1,742.61	+127.6
149 150	19/03/88	19:53:00 19:54:00	0.8250 0.8417	1,742.60	+127.6 +127.6
1 70	19/03/88	17:54:00	1140.0	1,772.00	1127.0

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1306 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
151	19/03/88	19:55:00	0.8583	1,742.60	+127.6
152	19/03/88	19:56:00	0.8750	1,742.61	+127.6
153	19/03/88	19:57:00	0.8917	1,742.61	+127.6
154	19/03/88	19:58:00	0.9083	1,742.61	+127.6
155	19/03/88	19:59:00	0.9250	1,742.61	+127.6
156	19/03/88	20:00:00	0.9417	1,742.61	+127.6
157	19/03/88	20:01:00	0.9583	1,742.62	+127.6
158	19/03/88	20:02:00	0.9750	1,742.62	+127.6
159	19/03/88	20:03:00	0.9917	1,742.62	+127.6
160	19/03/88	20:04:00	1.0083	1,742.63	+127.6
161	19/03/88	20:05:00	1.0250	1,742.62	+127.6
162	19/03/88	20:06:00	1.0417	1,742.63	+127.6
163	19/03/88	20:07:00	1.0583	1,742.63	+127.6
164	19/03/88	20:08:00	1.0750	1,742.63	+127.6
165	19/03/88	20:09:00	1.0917	1,742.64	+127.6
166	19/03/88	20:10:00	1.1083	1,742.63	+127.6
167	19/03/88	20:11:00	1.1250	1,742.64	+127.6
168	19/03/88	20:12:00	1.1417	1,742.64	+127.6
169	19/03/88	20:13:00	1.1583	1,742.64	+127.6
170	19/03/88	20:14:00	1.1750	1,742.64	+127.6
171	19/03/88	20:15:00	1.1917	1,742.64	+127.6
172	19/03/88	20:16:00	1.2083	1,742.65	+127.6
173	19/03/88	20:16:30	1.2167	2,219.51	+127.6
174	19/03/88	20:17:00	1.2250	2,228.59	+127.6
175	19/03/88	20:17:30	1.2333	2,088.25	+127.6
176	19/03/88	20:18:00	1.2417	2,089.89	+127.6
177	19/03/88	20:18:30	1.2500	2,089.89	+127.6
178	19/03/88	20:19:00	1.2583	2,089.88	+127.6

COMPANY : BEACH PETROLEUM N.L. WELL : IONA #1 Eq. Type : H.P. WELL Gauge # : 487

Depth :1211.5Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	20:24:30	0.0000	1,942.29	+127.5
2	19/03/88	20:25:00	0.0083	1,940.94	+127.5
2 3	19/03/88	20:25:30	0.0167	1,941.93	+129.3
4	19/03/88	20:26:00	0.0250	1,941.54	+127.4
5	19/03/88	20:26:30	0.0333	1,941.42	+127.4
6	19/03/88	20:27:00	0.0417	1,941.63	+127.7
7	19/03/88	20:27:30	0.0500	1,941.59	+127.3
8	19/03/88	20:28:00	0.0583	1,941.77	+127.6
9	19/03/88	20:28:30	0.0667	1,941.84	+127.6
10	19/03/88	20:29:00	0.0750	2,015.46	+127.6
11	19/03/88	20:29:18	0.0800	2,051.47	+127.6
12	19/03/88	20:29:20	0.0806	2,050.75	+127.6
13	19/03/88	20:29:22	0.0811	2,050.75	+127.6
14	19/03/88	20:29:24	0.0817	2,050.62	+127.6
15	19/03/88	20:29:26	0.0822	2,050.52	+127.6
16 17	19/03/88	20:29:28	0.0828	2,050.43	+127.6
18	19/03/88	20:29:30	0.0833	2,049.88	+127.6
19	19/03/88 19/03/88	20:29:32 20:29:34	0.0839	1,965.55	+127.6
20	19/03/88	20:29:34	0.0844	1,886.31	+127.6
21	19/03/88	20:27:38	0.0850 0.085४	1,813.99	+127.6
22	19/03/88	20:29:40	0.0861	1,755.81 1,537.96	+127.6
23	19/03/88	20:27:42	0.0867	1,537.96	+127.6
24	19/03/88	20:29:44	0.0872	1,417.33	+127.6 +127.6
25	19/03/88	20:29:46	0.0878	1,417.33	+127.6
26	19/03/88	20:29:48	0.0883	1,214.95	+127.6
27	19/03/88	20:29:50	0.0889	1,137.76	+127.6
28	19/03/88	20:29:52	0.0894	1,069.68	+127.6
29	19/03/88	20:29:54	0.0900	1,010.23	+127.6
30	19/03/88	20:29:56	0.0906	957.58	+127.6
31	19/03/88	20:29:58	0.0911	910.76	+127.6
32	19/03/88	20:30:00	0.0917	830.62	+127.6
33	19/03/88	20:30:02	0.0922	830.62	+127.6
34	19/03/88	20:30:04	0.0928	796.14	+127.6
35	19/03/88	20:30:06	0.0933	764.72	+127.6
36	19/03/88	20:30:08	0.0939	735.90	+127.6
37	19/03/88	20:30:10	0.0944	735.90	+127.6
38	19/03/88	20:30:12	0.0950	691.26	+127.6
39	19/03/88	20:30:14	0.0956	695.99	+127.6
40	19/03/88	20:30:16	0.0961	700.11	+127.6
41	19/03/88	20:30:20	0.0972	700.11	+127.6
42 43	19/03/88 19/03/88	20:30:22	0.0978	706.56	+126.9
44	19/03/88	20:30:24 20:30:26	0.0983	706.56	+126.9
45	19/03/88	20:30:28 20:30:28	0.0989 0.0994	707.29	+126.8
46	19/03/88	20:30:20	0.0994	707.91 709.42	+126.8
47	19/03/88	20:30:32	0.1006	708.43 708.89	+126.8
48	19/03/88	20:30:34	0.1011	709.30	+126.8 +126.8
49	19/03/88	20:30:36	0.1017	707.30	+126.8
50	19/03/88	20:30:38	0.1022	710.00	+126.8
					120.0

WELL : IONA #1

Eq. Type : H.P. Gauge # : 487

Depth : 1211.5 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	20:30:40	0.1028	710.30	+126.8
52	19/03/88	20:30:42	0.1033	710.83	+126.8
53	19/03/88	20:30:50	0.1056	710.83	+126.8
54	19/03/88	20:31:00	0.1083	711.68	+126.9
55	19/03/88	20:31:10	0.1111	712.51	+126.8
56	19/03/88	20:31:20	0.1139	713.17	+126.8
57	19/03/88	20:31:30	0.1167	713.78	+127.1
58	19/03/88	20:31:40	0.1194	714.37	+127.6
59	19/03/88	20:31:50	0.1222	714.69	+127.3
60	19/03/88	20:32:00	0.1250	715.32	+128.4
61	19/03/88	20:33:00	0.1417	716.30	+126.5
62	19/03/88	20:34:00	0.1583	717.20	+126.3
63	17/03/88	20:35:00	0.1750	717.79	+120.2
64	19/03/88	20:36:00	0.1917	718.15	+126.0
65	19/03/88	20:37:00	0.2083	718.41	+125.9
66	19/03/88	20:38:00	0.2250	718.60	+125.8
67	19/03/88	20:39:00	0.2417	718.75	+125.6
68	19/03/88	20:40:00	0.2583	718.89	+125.5
69	19/03/88	20:41:00	0.2750	718.99	+125.4
70	19/03/88	20:42:00	0.2917	719.08	+125.3
71	19/03/88	20:43:00	0.3083	719.18	+125.2
72	19/03/88	20:44:00	0.3250	719.27	+125.1
73	19/03/88	20:45:00	0.3417	719.36	+125.0
74	19/03/88	20:46:00	0.3583	719.45	+124.9
75	19/03/88	20:47:00	0.3750	719.54	+124.8
76	19/03/88	20:48:00	0.3917	719.64	+124.8
77	19/03/88	20:49:00	0.4083	719.74	+124.7
78 70	19/03/88	20:50:00	0.4250	719.84	+124.6
79	19/03/88	20:51:00	0.4417	719.97	+124.6
80	19/03/88	20:51:30	0.4500	1,599.48	+124.6
81	19/03/88	20:52:00	0.4583	1,970.39	+124.6
82	19/03/88	20:52:30	0.4367	1,944.51	+124.6
83	19/03/88	20:53:00	0.4750	1,944.52	+124.4
84	19/03/88	20:53:30	0.4833	1,944.36	+124.5

Eq. Type : H.P.
Gauge # : 487
Depth : 1188 Meters WELL : IONA #1

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	20:58:00	0.0000	1,909.28	+124.2
2	19/03/88	20:58:30	0.0083	1,908.14	+124.2
3	19/03/88	20:59:00	0.0167	1,908.38	+124.1
4	19/03/88	20:59:30	0.0250	1,908.23	+124.1
5	19/03/88	21:00:00	0.0333	1,908.19	+124.1
6	19/03/88	21:00:30	0.0417	1,908.16	+124.0
7	19/03/88	21:01:00	0.0500	1,908.14	+124.0
8	19/03/88	21:02:00	0.0667	1,908.01	+124.0
9	19/03/88	21:02:30	0.0750	1,969.23	+124.0
10	19/03/88	21:03:00	0.0833	2,034.65	+124.0
11	19/03/88	21:03:22	0.0894	2,036.35	+124.0
12	19/03/88	21:03:24	0.0900	2,035.63	+124.0
13	19/03/88	21:03:26	0.0906	2,035.48	+124.0
14	19/03/88	21:03:28	0.0911	2,032.04	+124.0
15	19/03/88	21:03:30	0.0917	1,948.91	+124.0
16	19/03/88	21:03:32	0.0922	1,839.23	+124.0
17	19/03/88	21:03:34	0.0928	1,762.97	+124.0
18 19	19/03/88	21:03:36	0.0933	1,691.29	+124.0
20	19/03/88 19/03/88	21:03:38	0.0939	1,534.86	+124.0
21	19/03/88	21:03:40 21:03:42	0.0944	1,400.79	+124.0
22	19/03/88	21:03:42	0.0950 0.0956	1,290.15	+124.0
23	19/03/88	21:03:46	0.0938	1,197.21 1,118.30	+124.0
24	19/03/88	21:03:48	0.0967	1,050.10	+124.0 +124.0
25	19/03/88	21:03:50	0.0972	990.81	+124.0
26	19/03/88	21:03:52	0.0978	938.76	+124.0
27	19/03/88	21:03:54	0.0983	892.32	+124.0
28	19/03/88	21:03:56	0.0989	850.86	+124.0
29	19/03/88	21:03:58	0.0994	813.34	+124.0
30	19/03/88	21:04:00	0.1000	779.62	+124.0
31	19/03/88	21:04:02	0.1006	748.68	+124.0
32	19/03/88	21:04:04	0.1011	720.23	+124.0
33	19/03/88	21:04:06	0.1017	694.39	+124.0
34	19/03/88	21:04:08	0.1022	670.50	+124.0
35	19/03/88	21:04:10	0.1028	658.81	+124.0
36	19/03/88	21:04:12	0.1033	664.56	+124.0
37	19/03/88	21:04:14	0.1039	668.43	+124.0
38 39	19/03/88	21:04:16	0.1044	671.09	+124.0
40	19/03/88 19/03/88	21:04:18	0.1050	673.06	+124.0
41	19/03/88	21:04:20	0.1056	674.57	+124.0
42	19/03/88	21:04:22 21:04:24	0.1061	675.81	+124.0
43	19/03/88		0.1067	676.88	+124.0
44	19/03/88	21:04:26 21:04:30	0.1072 0.1083	677.82	+124.0
45	19/03/88	21:04:50	0.1083	678 .65	+124.0
46	19/03/88	21:04:30	0.1167	684.00	+123.7
47	19/03/88	21:05:10	0.1194	686.37 688.49	+123.7 +123.7
48	19/03/88	21:05:20	0.1222	691.69	+123.7
49	19/03/88	21:05:30	0.1250	692.94	+126.5
50	19/03/88	21:05:40	0.1278	693.89	+123.7

WELL : 10NA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1188 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	21:06:00	0.1333	697.09	+123.7
52	19/03/88	21:06:30	0.1417	701.63	+123.6
53	19/03/88	21:07:00	0.1500	705.85	+123.6
54	19/03/88	21:08:00	0.1667	713.97	+123.5
55	19/03/88	21:09:00	0.1833	721.68	+123.4
56	19/03/88	21:10:00	0.2000	729.11	+123.4
57	19/03/88	21:11:00	0.2167	736.41	+123.3
58	19/03/88	21:12:00	0.2333	743.61	+123.2
59	19/03/88	21:13:00	0.2500	750.72	+123.2
60	19/03/88	21:14:00	0.2667	757.81	+123.1
61	19/03/88	21:15:00	0.2833	765.39	+124.9
62	19/03/88	21:16:00	0.3000	771.99	+123.0
63	19/03/88	21:17:00	0.3167	779.15	+122.9
64	19/03/88	21:18:00	0.3333	786.47	+122.9
65	19/03/88	21:19:00	0.3500	793.86	+122.9
65	19/03/88	21:20:00	0.3667	801.23	+122.8
67	19/03/88	21:21:00	0.3833	808.71	+122.8
68	19/03/88	21:22:00	0.4000	816.21	+122.7
69	19/03/88	21:23:00	0.4167	823.80	+122.7
70	19/03/88	21:24:00	0.4333	831.39	+122.7
71	19/03/88	21:25:00	0.4500	839.05	+122.6
72	19/03/88	21:26:00	0.4667	846.78	+122.6
73	19/03/88	21:27:00	0.4833	854.61	+122.6
74	19/03/88	21:28:00	0.5000	863.71	+127.1
75	19/03/88	21:29:00	0.5167	873.72	+134.5
76	19/03/88	21:30:00	0.5333	878.92	+124.1
77	19/03/88	21:31:00	0.5500	888.59	+129.6
78 78	19/03/88	21:32:00	0.5667	895.22	+123.7
79	19/03/88	21:33:00	0.5833	904.09	+125.7
80 81	19/03/88	21:34:00	0.6000	914.18	+131.8
	19/03/88 19/03/88	21:35:00	0.6167	922.43	+130.9
82 83	19/03/88	21:36:00	0.6333	928.70	+122.3
84		21:37:00	0.6500	940.14	+132.6
85	19/03/88 19/03/88	21:38:00	0.6667	949.08	+133.2
86	19/03/88	21:39:00 21:39:30	0.6833	957.89	+133.2
87	19/03/88		0.6917	1,466.83	+133.2
88	19/03/88	21:40:00 21:40:30	0.7000	2,035.06	+133.2
89	19/03/88	21:40:30	0.7083	1,903.00	+133.2
90	19/03/88	21:41:30	0.7167	1,908.57	+131.4
90 91	19/03/88	21:41:30	0.7250	1,908.00	+129.8
92	19/03/88	21:42:30	0.7333 0.7417	1,909.16	+133.9
93	19/03/88	21:42:30	0.7417	1,908.77	+132.5
, 5	177 037 00	21.73:00	0.7300	1,908.95	+133.1

WELL : IONA #1

Eq. Type : H.P.
Gauge # : 487
Depth : 1336 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
1	19/03/88	21:48:30	0.0000	2,156.49	+122.2
2	19/03/88	21:49:00	0.0083	2,152.74	+122.2
3	19/03/88	21:49:30	0.0167	2,149.52	+122.3
4	19/03/88	21:50:00	0.0250	2,146.62	+122.3
5	19/03/88	21:50:30	0.0333	2,145.25	+122.3
6	19/03/88	21:51:00	0.0417	2,145.01	+122.4
7	19/03/88	21:51:30	0.0500	2,144.84	+122.4
8	19/03/88	21:52:00	0.0583	2,144.98	+122.5
9	19/03/88	21:52:30	0.0667	2,145.26	+122.5
10	19/03/88	21:53:00	0.0750	2,145.65	+123.4
11	19/03/88	21:53:30	0.0833	2,146.93	+128.1
12	19/03/88	21:54:00	0.0917	2,145.31	+122.9
13	19/03/88	21:54:30	0.1000	2,144.98	+122.9
14	19/03/88	21:55:00	0.1083	2,144.77	+123.0
15	19/03/88	21:55:30	0.1167	2,146.71	+130.6
16	19/03/88	21:56:00	0.1250	2,146.79	+131.6
17	19/03/88	21:56:30	0.1333	2,144.40	+123.2
18	19/03/88	21:57:00	0.1417	2,144.37	+123.4
19	19/03/88	21:57:30	0.1500	2,149.16	+141.2
20	19/03/88	21:58:00	0.1583	2,145.16	+127.1
21	19/03/88	21:58:30	0.1667	2,144.23	+123.6
22	19/03/88	21:59:30	0.1833	2,145.87	+130.0
23	19/03/88	22:00:00	0.1917	2,145.84	+130.0
24	19/03/88	22:00:30	0.2000	2,145.59	+130.0
25	19/03/88	22:01:00	0.2083	2,145.65	+130.0
26	19/03/88	22:01:30	0.2167	2,144.12	+124.2
27	19/03/88	22:02:00	0.2250	2,144.02	+124.3
28 29	19/03/88	22:02:30	0.2333	2,143.80	+124.4
30	19/03/88	22:03:00	0.2417	2,143.72	+124.5
30 31	19/03/88 19/03/88	22:05:00	0.2750	2,142.72	+126.5
32	19/03/88	22:05:30 22:06:00	0.2833	2,142.69	+126.5
33	19/03/88	22:06:00	0.2917 0.3000	2,142.50	+126.5
34	19/03/88	22:06:56	0.3000	2,144.03 2,235.88	+126.5
35	19/03/88	22:06:58	0.3072	2,233.00	+126.5 +126.5
36	19/03/88	22:07:00	0.3083	2,233.81	+126.5
37	19/03/88	22:07:02	0.3089	2,233.41	+126.5
38	19/03/88	22:07:04	0.3094	2,233.19	+126.5
39	19/03/88	22:07:06	0.3100	2,233.18	+126.5
40	19/03/88	22:07:08	0.3106	2,212.46	+126.5
41	19/03/88	22:07:10	0.3111	2,124.22	+126.5
42	19/03/88	22:07:12	0.3117	2,060.93	+126.5
43	19/03/88	22:07:14	0.3122	1,975.72	+126.5
44	19/03/88	22:07:16	0.3128	1,918.12	+126.5
45	19/03/88	22:07:18	0.3133	1,780.12	+126.5
46	19/03/88	22:07:20	0.3139	1,681.12	+126.5
47	19/03/88	22:07:22	0.3144	1,712.14	+126.5
48	19/03/88	22:07:24	0.3150	1,731.26	+126.5
49	19/03/88	22:07:26	0.3156	1,724.99	+126.5
50	19/03/88	22:07:28	0.3161	1,714.75	+126.5
				,	

WELL : IONA #1

Eq. Type : H.P.
Gauge # : 487
Depth : 1336 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
51	19/03/88	22:07:30	0.3167	1,711.91	+126.5
52	19/03/88	22:07:32	0.3172	1,715.61	+126.5
53	19/03/88	22:07:34	0.3178	1,707.84	+126.5
54	19/03/88	22:07:36	0.3183	1,701.75	+126.5
55	19/03/88	22:07:38	0.3189	1,699.81	+126.5
56	19/03/88	22:07:40	0.3194	1,700.63	+126.5
57	19/03/88	22:07:42	0.3200	1,698.13	+126.5
58	19/03/88	22:07:44	0.3206	1,695.13	+126.5
59	19/03/88	22:07:46	0.3211	1,692.15	+126.5
60	19/03/88	22:07:48	0.3217	1,699.37	+126.5
61	19/03/88	22:07:50	0.3222	1,728.40	+126.5
62	19/03/88	22:07:52	0.3228	1,757.20	+126.5
63	19/03/88	22:07:54	0.3233	1,757.43	+126.5
64	19/03/88	22:07:56	0.3239	1,757.56	+126.5
65	19/03/88	22:07:58	0.3244	1,757.67	+126.5
66	19/03/88	22:08:00	0.3250	1,757.74	+126.5
67 70	19/03/88	22:08:02	0.3256	1,757.98	+126.5
68 69	19/03/88 19/03/88	22:08:04	0.3261	1,727.76	+126.5
70	19/03/88	22:08:06 22:08:08	0.3267 0.3272	1,755.81	+126.5
71	19/03/88	22:08:08	0.3272	1,757.67 1,757.74	+126.5
72	19/03/88	22:08:10	0.3278	1,757.79	+126.5
73	19/03/88	22:08:14	0.3289	1,757.80	+126.5 +126.5
74	19/03/88	22:08:16	0.3294	1,757.83	+126.5
75	19/03/88	22:08:18	0.3300	1,757.84	+126.5
76	19/03/88	22:08:20	0.3306	1,757.85	+126.5
77	19/03/88	22:08:22	0.3311	1,757.86	+126.5
78	19/03/88	22:08:24	0.3317	1,757.88	+126.5
79	19/03/88	22:08:26	0.3322	1,757.89	+126.5
80	19/03/88	22:08:28	0.3328	1,757.88	+126.5
81	19/03/88	22:08:30	0.3333	1,757.90	+126.5
82	19/03/88	22:08:40	0.3361	1,757.89	+126.5
83	19/03/88	22:08:50	0.3389	1,757.91	+126.5
84	19/03/88	22:09:00	0.3417	1,757.94	+126.5
85	19/03/88	22:09:10	0.3444	1,757.96	+126.5
86 07	19/03/88	22:09:20	0.3472	1,757.98	+126.5
87	19/03/88	22:09:30	0.3500	1,757.99	+126.5
88 89	19/03/88 19/03/88	22:09:40	0.3528	1,758.00	+126.5
90	19/03/88	22:10:00 22:10:30	0.3583	1,758.03	+126.5
91	19/03/88	22:10:30	0.3667 0.3750	1,758.07 1,758.10	+126.5
92	19/03/88	22:11:30	0.3833	1,758.14	+126.5 +126.5
93	19/03/88	22:12:00	0.3833	1,758.17	+126.5
94	19/03/88	22:12:30	0.4000	1,758.20	+126.5
9 5	19/03/88	22:13:00	0.4083	1,758.24	+126.5
96	19/03/88	22:13:30	0.4167	1,758.24	+126.5
97	19/03/88	22:14:00	0.4250	1,758.28	+126.5
98	19/03/88	22:14:30	0.4333	1,758.31	+126.5
99	19/03/88	22:15:00	0.4417	1,758.34	+126.5
100	19/03/88	22:15:30	0.4500	1,758.39	+124.5

COMPANY : BEACH PETROLEUM N.L. WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487

Depth : 1336 Meters

Seq.#	Date	Time	dt	Pressure (PSIA)	Temp (Deg.F)
101	19/03/88	22:16:00	0.4583	1,758.40	+126.5
102	19/03/88	22:17:00	0.4750	1,758.63	+126.5
103	19/03/88	22:18:00	0.4917	1,758.57	+126.5
104	19/03/88	22:19:00	0.5083	1,758.82	+126.5
105	19/03/88	22:20:00	0.5250	1,758.73	+126.5
106	19/03/88	22:21:00	0.5417	1,758.83	+126.5
107	19/03/88	22:22:00	0.5583	1,758.89	+126.5
108	19/03/88	22:23:00	0.5750	1,758.99	+126.5
109	19/03/88	22:24:00	0.5917	1,759.18	+126.5
110	19/03/88	22:25:00	0.6083	1,759.38	+126.5
111	19/03/88	22:26:00	0.6250	1,759.49	+126.5
112	19/03/88	22:27:00	0.6417	1,759.65	+126.5
113	19/03/88	22:28:00	0.6583	1,759.68	+126.5
114	19/03/88	22:29:00	0.6750	1,759.75	+126.5
115	19/03/88	22:30:00	0.6917	1,759.91	+126.5
116	19/03/88	22:31:00	0.7083	1,759.91	+126.5
117	19/03/88	22:32:00	0.7250	1,759.98	+126.5
118	19/03/88	22:33:00	0.7417	1,760.02	+126.5
119 120	19/03/88 19/03/83	22:34:00	0.7583	1,760.38	+127.5
121	19/03/88	22:35:00 22:36:00	0.7750	1,760.50	+127.6
122	19/03/88	22:37:00	0.7917 0.8083	1,758.94	+127.6
123	19/03/88	22:37:00	0.8250	1,758.95 1,758.97	+127.6
124	19/03/88	22:39:00	0.8417	1,758.98	+127.7 +127.7
125	19/03/88	22:40:00	0.8583	1,758.99	+127.8
126	19/03/88	22:41:00	0.8750	1,759.00	+127.8
127	19/03/88	22:42:00	0.8917	1,759.02	+127.8
128	19/03/88	22:43:00	0.9083	1,759.03	+127.9
129	19/03/88	22:44:00 .	0.9250	1,759.04	+127.9
130	19/03/88	22:45:00	0.9417	1,759.05	+128.0
131	19/03/88	22:46:00	0.9583	1,759.06	+128.0
132	19/03/88	22:47:00	0.9750	1,759.07	+128.0
133	19/03/88	22:48:00	0.9917	1,759.08	+128.1
134	19/03/88	22:49:00	1.0083	1,759.09	+128.1
135	19/03/88	22:50:00	1.0250	1,759.10	+128.1
136	19/03/88	22:51:00	1.0417	1,759.11	+128.1
137	19/03/88	22:52:00	1.0583	1,759.12	+128.2
138	19/03/88	22:53:00	1.0750	1,759.11	+128.2
139 140	19/03/88	22:54:00	1.0917	1,759.12	+128.2
141	19/03/88 19/03/88	22:55:00 22:56:00	1.1083	1,759.13	+128.3
142	19/03/88	22:58:00	1.1250 1.1417	1,759.14 1,759.15	+128.3
143	19/03/88	22:58:00	1.1583	1,759.16	+128.3 +128.4
144	19/03/88	22:59:00	1.1750	1,759.17	+128.4
145	19/03/88	23:00:00	1.1917	1,759.19	+128.4
146	19/03/88	23:01:00	1.2083	1,759.19	+128.4
147	19/03/88	23:02:00	1.2250	1,759.20	+128.5
148	19/03/88	23:03:00	1.2417	1,759.22	+128.5
149	19/03/88	23:03:30	1.2500	1,759.22	+128.5
150	19/03/88	23:04:00	1.2583	1,759.22	+128.5

PRESSURE US TIME - (LINEAR) PLOT DATA

PAGE: 4

COMPANY : BEACH PETROLEUM N.L.

WELL : IONA #1

Eq. Type : H.P.

Gauge # : 487 Depth : 1336 Meters

Seq.#	Date 	Time 	dt	Pressure (PSIA)	Temp (Deg.F)
151 152 153 154 155 156 157 158 159 160 161 162 163	19/03/88 19/03/88 19/03/88 19/03/88 19/03/88 19/03/88 19/03/88 19/03/88 19/03/88 19/03/88 19/03/88	23:04:30 23:05:00 23:05:30 23:06:00 23:06:30 23:07:00 23:07:30 23:08:00 23:08:30 23:09:30 23:09:30	1.2667 1.2750 1.2833 1.2917 1.3000 1.3083 1.3167 1.3250 1.3333 1.3417 1.3500 1.3583	1,759.23 1,759.23 1,759.23 1,759.24 1,759.25 1,759.25 1,759.26 2,086.15 2,287.79 2,199.74 2,141.86 2,141.66	+128.5 +128.5 +128.5 +128.5 +128.5 +128.5 +128.5 +128.5 +128.5 +128.5 +128.5 +128.5
	177 007 00	23:10:30	1.3667	2,145.64	+128.5

APPENDIX 9

IONA #1 SFT SURVEY

(BRIDGE OIL REPORT)

K. Skipper/ TO: 502/81/GK/km Ref:

A.A. Young R.D. Frith cc:

R. Roberts

FROM: G. Kozma 29 March 1988

IONA #1 SFT SURVEY

Based on petrophysical evaluation of wireline logs, several hydrocarbon and water bearing sands have identified in exploration well Iona #1. A single SFT pressure survey was carried out on 19 March 1988. The objectives being:

- 1. To obtain reliable and accurate pressure data in the hydrocarbon and water bearing sands οf the Waarre Sandstone.
- 2. To establish the depth of a possible hydrocarbon - water contact.
- 3. To identify the reservoir fluid type in the interval immediately below the main zone near 1325 mKB.

A total of eleven depth stations were identified for this formation fluid pressure survey. Two points were targeted in each of the Nullawarre Greensand and Eumeralla formation for additional evaluation and control (Figure 1). The remaining seven points were allocated to the Waarre unit.

Pressure data from the Nullawarre Greensand was considered potentially useful in identifying the pressure associated with the inferred water bearing sands penetrated by this well. Pressure Data in the Eumeralla zone required to evaluate potential reservoir quality and fluid type-shows were noted during drilling.

RESULTS/ANALYSIS

The integrity of the pressure data obtained during this survey was high. However pressure recorded at depth station-8 was anomolously high with no signs of stabilizing after 45 minutes. It is speculated that the seal was inferior. Pressure build-up responses observed in the Eumeralla and Nullawarre units suggest that the sands are "tight".

Analysis of pressure data obtained in the Waarre unit provides a very good definition of a gas-water contact at 1326.5mKB. (Figure 1). The corresponding gas and water gradients are 0.044 psi/ft and 0.426 psi/ft respectively. The derived gas gradient does not include the anomolous pressure reading at depth station-8. The interpreted gas gradient compares favourably with that obtained using the composition of gas recovered from the drill-stem test and SFT sample chamber (0.048 psi/ft).

A single pressure point at 1370.5m KB suggests that the water bearing sand immediately above the top of Eumeralla is marginally over-pressured.

A bottom-hole fluid sample was taken at 1324m KB using the SFT sample chamber. Approximately 966 litres (34 cubic feet) of gas and 486 cc of mud filtrate (?) was recovered. The presence of gas immediately beneath the thin shale break further supports the interpreted gas-water contact.

The compositional analysis of the recovered SFT gas sample is shown in Table 1.

George Kozma.

TABLE NO. 1

COMPOSITIONAL ANALYSIS OF GAS SAMPLE - IONA \$1 (SFT SAMPLE)

COMPONENT		Mole %
N2		3.54
CO2		6.02
C1		84.21
C2		3.30
C3		1.38
iC4		0.31
nC4		0.38
iC5		0.15
nC5		0.12
C6		0.19
C7+		0.40
TOTAL		100.00
Molecular weight: Gas Gravity (Air = 1.000):	19.943 0.688	
Molecular weight C7+: SG C7+:	107.9 0.699	

PRESSURE (psia)

AUTHOR: GK/AA

APPENDIX 10

GAS AND FUEL - IONA #1

GAS ANALYSIS (DST #1)

bv:

Gas & Fuel Corporation - Scientifc Services
March 1988

Sample Book No. 88029

Gary Scott

Analysis of the (Ar + 0_2 + N_2) component shows approximately 0.2 % 0_2 + Ar i.e. it is likely the samples are contaminated with approximately 1 % air.

Samples were heated to 50°C prior to analysis.

Ivan Strudwick

IONA NO. 1 # 1 TOP OF BOMB

COMPONENT	MOLE PERCENT
CH4	84.012
C2H6	3.116
СЗН8	1.249
I-C4H10	.273
N-C4H10	.344
NEO-C5H12	.0048
I-C5H12	.121
N-C5H12	.100
C6	.205
C7+	.302
C02	5.739
(AR+02+N2)	4.445 *
не	.0899
GROSS HEATING VALUE (DRY)	37.08 MJ/M3
WOBBE INDEX (DRY)	44.86 MJ/M3
SPECIFC GRAVITY	0.6833
COMPRESSIBILITY FACTOR	0.9975

^{*} Suspect this result - see repeat analysis.

IONA NO. 1 # 1 TOP OF BOMB REPEAT ANALYSIS

COMPONENT	MOLE PERCENT
CH4	84.283
C2H6	3.118
С3Н8	1.250
I-C4H10	.272
N-C4H10	.343
NEO-C5H12	.0048
I-C5H12	.118
N-C5H12	.0977
C6	.188
C7 +	.236
C02	5.750
(AR+02+N2)	4.249
HE	.0897
GROSS HEATING VALUE (DRY)	37.00 MJ/M3
WOBBE INDEX (DRY)	44.87 MJ/M3
SPECIFC GRAVITY	0.6801
COMPRESSIBILITY FACTOR	0.9975

IONA NO. 1 # 1 TOP OF BOMB REPEAT ANALYSIS

COMPONENT	MOLE PERCENT
CH4	84.283
C2H6	3.118
C3H8	1.250
I-C4H10	.272
N-C4H10	.343
NEO-C5H12	.0048
I-C5H12	.118
N-C5H12	.0977
C6	.188
C7+	.236
C02	5.750
(AR+02+N2)	4.249
HE	.0897
GROSS HEATING VALUE (DRY)	37.00 MJ/M3
WOBBE INDEX (DRY)	44.87 MJ/M3
SPECIFC GRAVITY	0.6801
COMPRESSIBILITY FACTOR	0.9975

IONA NO. 1 # 2 TOP OF BOMB

COMPONENT	MOLE PERCENT		
	*		
CH4	84.183		
C2H6	3.127		
C3H8	1.261		
I-C4H10	.280		
N-C4H10	.362		
NEO-C5H12	.0050		
I-C5H12	.127		
N-C5H12	.106		
C6	.196		
C7+	.295		
C02	5.738		
(AR+02+N2)	4.233		
HE .	.0860		
GROSS HEATING VALUE (DRY)	37.18 MJ/M3		
WOBBE INQEX (DRY)	45.00 MJ/M3		
SPECIFC GRAVITY	0.6828		
COMPRESSIBILITY FACTOR	0.9975		

IONA NO. 1 # 2 BOTTOM OF BOMB

COMPONENT	MOLE PERCENT
CH4	84.239
C2H6	3.135
C3H8	1.266
I-C4H10	.279
N-C4H10	.355
NEO-C5H12	.0050
I-C5H12	.126
N-C5H12	.104
C6	.183
C7+	.233
C02	5.749
(AR+02+N2)	4.236
HE	.0906
GROSS HEATING VALUE (DRY).	37.04 MJ/M3
WOBBE INDEX (DRY)	44.90 MJ/M3
SPECIFC GRAVITY	0.6806
COMPRESSIBILITY FACTOR	0.9975

Report No: 88/252/C Sample Book No: 88/711

Date: 10 June, 1988

IONA GAS - ANALYSIS OF GAS COMPOSITION

From an analysis made of Iona gas, calculations gave the following results. These are compared with Paaratte line gas information.

	(0)		Gas After Condensate Removal (2)	Gas After Condensate Removal & CO, Removal (3)	Paaratte Gas (4)
	ссн ₄	85.035	85.519	39.937	96.286
	C2H6	3.162	3.138	3.3	1.28
	C ₃ H ₈	1.273	1.223	1.286	0.036
	iC ₄ H ₁₀	0.283	0.259	0.272	0.043
	nC_4H_{10}	0.364	0.324	0.341	0.004
	iC ₅ H ₁₂	0.133	0.105	0.110	0.013
	nc ₅ H ₁₂	0.107	0.081	0.085	0.001
	C ₆ H ₁₄	0.198	0.107	0.113	0.065
	C ₇ H ₁₆ +	0.298	0.087	0.091	0.075
	co ₂	5.798	5.779	0.912	0.38
	$0_2 + N_2 + He$	3.349	3.378	3.553	1.817
	Heating Value MJ/m ³	37.46	36.88	38.78	37.57
)	Specific Gravity	0.679	0.669	0.625	0.577
	Wobbe Index MJ/m3	45.46	45.09	49.06	49.47
	Compressibility	0.9975	0.9976	0.9977	0.9980
	Dew Point at 6.895 MPa	20°C	- 5°C	- 2°C	- 11°C

Notes:

- (i) Approximately 0.97% (mole) of gas in condensed when well head gas is expanded and cocled to 6.895 MPa, 5°C, yielding gas (2)
- (ii) Gas (3) is obtained by ficticious route of obtaining gas (2) then removing 85% of the carbon diexide.

(iii) Paaratte gas (4) is a random spot analysis.

A.J. STEVENSON

APPENDIX 11

FLOPETROL - IONA #1

GAS ANALYSIS (SFT)

Iona Gas - Analysis of Gas Composition
 from SFT Tool.

by:

Flopetrol - Tony Bria March 1988

PRELIMINARY DATA FROM GAS SAMPLE IN SELECTIVE FORMATION TESTING TOOL

Opening Pressure : 1,330 psig at 24.8c

Gas Volume : 966 litres at 25c

Contaminants : 486 cc mud filterate/water

Resistivity of water : 1.429 ohm-metres at 25c

MOLECULAR COMPOSITION OF GAS SAMPLE IN SELECTIVE FORMATION TESTING TOOL

COMPONENT	MOLE PERCENT
Nitrogen	3.54
Carbon dioxide	6.02
Methane	84.21
Ethane	3.30
Propane	1.38
I - Butane	0.31
N - Butane	0.38
I - Pentane	0.15
N - Pentane	0.12
Hexanes	0.19
Heptanes plus	0.40
TOTAL	100.00
Molecular weight	19.943
Density (air=1)	0.688
Molecular weight of Heptanes plus	107.9
Density of Heptanes plus	0.699
Z (Brill and Beggs correlation)	0.847

APPENDIX 12

CORE PHOTOGRAPHS

PE906655

This is an enclosure indicator page.

The enclosure PE906655 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906655 has the following characteristics: ITEM_BARCODE = PE906655 CONTAINER_BARCODE = PE902192 NAME = Core Photographs, 1 of 2 BASIN = OTWAY PERMIT = PEP108 TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Core Photographs, 1 of 2, Appendix 12, Iona-1 REMARKS = DATE_CREATED = DATE_RECEIVED = 15/12/88 $W_NO = W970$ WELL_NAME = IONA-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

PE906656

This is an enclosure indicator page.

The enclosure PE906656 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906656 has the following characteristics:

ITEM_BARCODE = PE906656
CONTAINER_BARCODE = PE902192

NAME = Core Photographs, 2 of 2

BASIN = OTWAY
PERMIT = PEP108
TYPE = WELL

SUBTYPE = CORE_PHOTOS

DESCRIPTION = Core Photographs, 2 of 2, Appendix 12,

Iona-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 15/12/88

 $W_NO = W970$

WELL_NAME = IONA-1

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 13

ROUTINE CORE ANALYSIS

CPW276

technology and enterprise

Amdel Limited

(Incorporated in S.A.) 31 Flemington Street, Frewville, S.A. 5063

Telephone: (08) 372 2700

P.O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

25 March 1988

F 3/0/0 F 5179/88

Beach Petroleum NL

PO Box 360 CAMBERWELL

VIC

3124

Attention: Mr J. Foster

REPORT F 5179/88

YOUR REFERENCE:

Verbal request

TITLE:

Routine core analysis

MATERIAL:

Core plugs

IDENTIFICATION:

IONA-1

DATE RECEIVED:

18 March 1988

WORK REQUIRED:

Porosity, air permeability, grain density

Investigation and Report by: Russell R. Martin

Manager, Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. Spencer

General Manager

Applied Sciences Group

cap '

1. INTRODUCTION

On 18 March 1988 a conventional core (1305.5 m-1314.5 m) from Beach Petroleum's Iona-1 well was received at Amdel Limited's Adelaide Laboratory. A verbal request from Beach Petroleum's representative was received concerning the nature of analysis to be performed. The analysis included:

Porosity - ambient conditions only Air Permeability - ambient conditions only Grain Density - calculated

2. SAMPLE PREPARATION

The core was laid out according to depth and the core examined. After attempting to drill one-and-one-half-inch diameter plugs in the conventional manner, i.e. tap water as the bit lubricant, it was found that representative samples could not be taken.

Sections of core were packed in dry ice for a period of twelve hours. At which time individual samples were removed and one-and-one-half-inch diameter samples taken using liquid nitrogen as the bit lubricant. Samples were trimmed and faced square while still frozen and mounted in lead sleeves. Weights of the encapsulating lead and screens were recorded.

The samples were then placed in a hassler type cell and pressured to 500 psig to squeeze the lead sleeve to conform to the shape of the sample.

Samples were then placed in a soxhlet extraction apparatus with a 3:1 chloroform/methanol mix to leach any residual hydrocarbons and salts.

Upon completion the extraction samples were placed in a conventional dry oven at 110°C.

3. HELIUM INJECTION POROSITY

Porosity is determined using the Boyles Law helium injection technique to determine sample grain volume. Sample pore volume, in the case of lead sleeve, is determined by loading the samples into a hassler type cell and confining the sample with an external pressure of 400 psig. Helium is again injected and pore volume recorded.

Porosity is then calculated and expressed as a percentage value.

4. PERMEABILITY TO AIR

Permeability to air is also determined whilst the sample is confined in the hassler type cell at 400 psig. A known air pressure is passed through the sample and the differential pressure at the outlet face of the sample is monitored utilising a calibrated orifice and straight tube manometer.

In the majority of cases the samples exceeded the maximum accurate operating limits of the permeameter and are expressed as greater than 8000 millidarcys.

Sample offcuts were retained and a brief lithological description concludes this report.

Amdel Limited would like to thank Beach Petroleum for the opportunity to have been of service with this study. Should you have any questions, or if Amdel Limited can be of further service please do not hesitate to contact us.

LITHOLOGICAL DESCRIPTION

Company: Well: Field:	Beach Petroleum IONA-1 IONA
1	No offcut
2	Sst: Lt gry, med-v.crs. gr, cln, p. cmt, sbang-ang, p. srt, v. fri, v. rr cl mtrx, no vis fluor, no cut, pale wh ring.
3	No offcut
4	Sst: Lt gry, med-occ. v.crs. gr, cln, p. cmt, sbang- ang w. crs, p. srt, v. fri, sps cl mtrx, fluor and cut a/a.
5	Sst: lt gry, dom. med-rr crs gr, cln, p. cmt, sbrnd-sbang, p. srt, v. fri, v. sps cl mtrx, fluor and cut a/a.
6	As above.
7	Sst: Lt gry, rr f-occ. crs gr, cln, p. cmt, sbang, p. srt, v. fri rr qtz ovgth, carb spk, fluor and cut a/a.
8	Sst: Lt gry, rr f-occ crs gr, cln, p. cmt, sbang, p. srt, fri, rr qtz ovgth, carb spk, tr pyr carb mat, fluor and cut a/a.
9	Sst: Lt gry, dom med-v. crs grn, cln, p. cmt, sbang, p. srt, v. fri, sps cl mtrx, fluor and cut a/a.
10	Sst: As above. dom crs gr.
11	Sst: As above. dom crs-v. crs gr.
12	Sst: As above. no vis fluor, v. slow milky wh cut.
13	Sst: Lt gry, dom crs-v.crs gr, cln, p. cmt, sbang, v. fri, p. srt, v. sps mtrx, no vis fluor, v. slow milky wh cut.
14	Sst: Lt gry, f-med intbd, crs gr, cln, p. cmt, sbrnd-sbang, mod srt, fri, sps mtrx, carb spk, fluor and cut a/a.
15	Sst: As above.
16	Sst: Lt gry, dom med-occ crs gr, cln, p. cmt, sbrnd, mod srt, v. fri, sps mtrx, fluor and cut a/a.

17	Sst: wh-lt gry, fn med gr, mod cmt, sbrnd, mod srt, fri, sps mtrx, abd carb lam, dull yell fluor along carb lam, instant bright wh cut.
18	Sst: Lt gry, med-dom crs gr, p. cmt, sbang, p. srt, v. fri, v. sps mtrx, carb lam, dull yell fluor along carb lam, instant bright wh cut.
19	Sst: Lt gry, med-dom crs v. crs gr, p. cmt, sbang, p. srt, v. fri, v. sps mtrx, carb spk, rr dull yell p.p. fluor, slow milky cut.
20	Sst: As above.
21	Sst: As above.
22	Sst: As above.
23	Sst: As above.
24	Slst dk gry, v. f gr. sst intbd, pyr lam, no vis fluor, instant milky wh cut.

de

Table 1

AMDEL CORE ANALYSIS

IONA No. 1

Ambient

Sample Sample		Permeability (md)	Porosity (%)
1	1305.81	7216	23.0
2	1306.23	>8000	24.4
3	1306.43	>8000	24.3
4	1306.57	>8000	23.4
5	1306.71	>8000	25.7
6	1307.23	>8000	27.1
フ	1307,54	>8000	27.2
8	1307.84	>8000	26.4
9	1308.20	>8000	23.3
10	1308.45	>8000	28.7
1.1	1308.80	>8000	25.9
12	1309.10	>8000	27.5
13	1309.40	>8000	26.6
14	1309.70	7407	26.6
15	1310.00	>8000	26.8
16	1310.3	>8000	25.0
1.7	1310.60	5149	28.6
18	1310.90	>8000	23.5
1.9	1311.20	>8000	24.6
20	1311.50	>8000	24.7
21	1311.80	>8000	25.5
22	1312.02	6264	21.0
23	1312.40	>8000	23.0
24	1312.70	6.13	10.7

Table 2

AMDEL CORE ANALYSIS

IONA No. 1

Ambient

,	w. • • • •	Bulk	Apparent	Absolute
Bample 	Bulk Volume	Dry Density	Grain Density	Grain Density
1	49.81	2,10	2.72	
2	57.99	2.09	2.76	
3	35.12	2.03	2.68	
4	52.64	2.05	2.67	
5	56.30	1.98	2.66	
6	48.75	1.95	2.68	
. 7	56.73	1.95	2.68	
8	55.72	1.97	2.67	
9	58.32	2.05	2.67	
10	57.15	1.90	2.67	
11	57.48	1.98	2.67	
12	57.73	1.95	2.68	
13	57,63	1.96	2.67	
1.4	63.64	1.96	2.67	
15	61.81	1.95	2.67	·A
16	58.07	1.77	2.65	
17	52.07	1.77	2.48	
18	62.86	2.05	2.67	
19	65.13	2.01	2.67	
20	53.58	2.01	2.67	
21	59.94	1.99	2.67	
22	59,51	2.11	2.67	
23	52.65	2.05	2.67	
24	58.11	2.44	2,73	

APPENDIX 14

CORE ANALYSIS

POROSITY AT OVERBURDEN PRESSURE SIEVE ANALYSIS

Amdel Limited (Incorporated in S.A.) 31 Flemington Street, Frewville, S.A. 5063

Telephone: (08) 372 2700

P.O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

14 April 1988

Beach Petroleum NL PO Box 360 VIC

CAMBERWELL

3124

Attention:

Mr J. Foster

REPORT F 5179/88 - Part 2

YOUR REFERENCE:

Facsimile Number 151/3, 31 March

1988

TITLE:

Core analysis

SAMPLE IDENTIFICATION:

Iona-1

MATERIAL:

Core plugs

WORK REQUIRED:

Porosity at overburden, sieve

analysis

Investigation and Report by:

Russell R. Martin

Manager, Petroleum Services Section: Dr Brian G. Steveson

But Henero for Dr William G. Spencer

General Manager Applied Sciences Group

cap

1. INTRODUCTION

On 31 March 1988 correspondence in the form of a facsimile (your ref. 151/3) was received by Amdel Limited requesting the following additional analyses be performed on selected samples from Iona-1.

- Porosity at overburden
- Sieve analysis

This report now completes the requested analysis.

2. POROSITY - OVERBURDEN CONDITIONS

Eight samples were selected to undergo porosity measurements at a net confining pressure of 2000 psi (13800 kPa). In addition two samples, numbers 1 and 10 were to be measured at confining pressures of 500 psi (2450 kPa) and 1000 psi (6900 kPa).

Samples were loaded into a high pressure hassler cell and pressured to the required overburden. Helium was then introduced and the samples new pore volume determined under hydrostatic loading.

Results of porosity at the net confining pressure were calculated and preliminary results sent to Beach Petroleum by facsimile on 7 April 1988.

3. SIEVE ANALYSIS

Two samples were selected to undergo grain size determinations by dry sieve analysis. Samples were crushed to grain size using a mortar and pestle and quartered by passing the crushed sample through a riffle. Opposite quarters were mixed together and sieve analysis performed on this section of sample.

Results of the sieve analysis confirm that approximately 60 percent of the samples are coarse to very coarse grain sand. In both samples the clay fraction, of under 20 microns, was one percent or less of the bulk sample.

I would like to thank Beach Petroleum for the opportunity to have been of service with this study. If you require any additional information concerning core analysis or special core analysis services that Amdel Limited can provide, please do not hesitate to contact us.

File: F5179/88 Page 1 of 5

HELIUM INJECTION POROSITY - OVERBURDEN

Company:

Beach Petroleum

Formation:

Well:

Iona-1

Location:

Field:

Iona

Sample	Depth	Porosity,	percent	overburden pressure	e – psig
ID (m)	0	500	1000	2000	
i	1305.81	23.0	22.6	21.9	21.0
3	1306.43	24.3			22.1
5	1306.71	25.7			24.2
7	1307.54	27.2			25.8
10	1308.45	28.7	28.5	27.8	27.1
13	1309.40	26.6			25.1
17	1310.60	28.6			26.2
22	1312.02	21.0			19.5

SIEVE ANALYSIS

Company: Beach Petroleum

Well : Iona No. 1 Field : Iona

Formation: Location :

Method :- Dry Sieve

Sample ID	Depth (metres)	Screen Size (microns)	Weight Retained	Cummulative Weight Percent
1.	1306.23	1600	15.90	9.7
		1200	26 . 99	26.3
		1000	22.00	39.8
		710	31.20	58.9
		600	15.40	68.4
		500	10.50	, 74.8
		355	10.74	81.4
		250	8.28	85.5
		190	3.90	88.9
		105	4.78	91.8
	•	75	3.30	93.8
		5 3	3.03	95.7
		38	3.84	73.O
		20	2.17	99.4
		< 20	1.06	100.0

SIEVE ANALYSIS

Company: Beach Petroleum

Wall : Iona No. 1

Field : Iona

Method :- Dry Sieve

Formation: Location:

Sample ID	Depth (metres)	Screen Size (microns)	Weight Retained	Cummulative Weight Percent
2	1310.00	1600	5.10	4.4
		1200	7.50	10.8
		1000	10.30	19.7
		710	27.50	43.3
		600	16.10	57.1
		500	12.31	67.7
		355	14.51	90.2
		250	10.47	87.2
		180	4.60	93,2
		105	2.93	95.7
		75	1.46	96.9
		53	0.87	97.7
		38	0.70	98.3
		20	0.83	99.0
		< 20	1.17	100.0

File: F5179/88 Page 4 of 5

Company:

Beach Petroleum

Formation:

Well: Field:

Iona-1 Iona Location:

Sample 1 1306.23 m

File: F5179/88 Page 5 of 5

Company:

Beach Petroleum

Well: Iona-1 Field: Iona

Formation: Location:

Sample 2

1310.00 m

APPENDIX 15

FORMATION RESISTIVITY FACTOR
RESISTIVITY INDEX

له أماد أنسيق أن له و أن أن

27 May 1988

technology and enterprise

Amdel Limited

(Incorporated in S.A.) 31 Flemington Street, Frewville, S.A. 5063

Telephone: (08) 372 2700

P.O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

Beach Petroleum NL

PO Box 360

CAMBERWELL VIC 3124

Attention: Mr J. Foster

REPORT F 7197/88

YOUR REFERENCE:

Fax No. 72/4, 19 April 1988

TITLE:

Special core analysis

SAMPLE IDENTIFICATION:

IONA-1

MATERIAL:

Core plugs

WORK REQUIRED:

resistivity Formation

factor

and

resistivity index

Investigation and Report by: Russell R. Martin

Manager, Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. Spencer

General Manager

Applied Sciences Group

Brain Stevera.

cap

1. INTRODUCTION

Correspondence was received by Amdel Limited on 19 April 1988 (your ref.: facsimile no. 72/4 19 April 1988) requesting the following analyses be performed:

- Formation resistivity factor
- Formation resistivity index

on selected samples from Iona-1 well.

The three samples selected had previously undergone routine core analysis conducted by Amdel Limited and porosity at a net overburden pressure of 13,800 kPa (2000 psi).

2. PROCEDURES AND RESULTS

The samples were frozen prior to removing the encapsulating lead sleeve and screens, then wrapped in teflon tape and encapsulated in a rubber sleeve before loading into the electrical properties cells. The required overburden pressure of 13,800 kPa (2000 psi) was then applied using a mineral oil to the outside of the sample.

Samples were then evacuated and the simulated formation brine consisting of 80% NaCl, 10% CaCl₂ and 10% KCl was introduced to the sample. Brine was slowly flushed through the sample until a stable resistivity reading was obtained indicating ionic equilibrium had been achieved.

Samples were allowed to stand for approximately 24 hours to ensure equilibrium had been attained.

Humidified air was then introduced to the sample to displace some of the brine and establish the first saturation point from which to commence resistivity index measurements.

Resultant plots of formation resistivity factor versus porosity fraction yield a value for `m', the cementation exponent of 1.74.

Archie reported that the cementation exponent probably ranged from 1.8 to 2.0 for clean consolidated sandstones and as low as 1.3 for clean unconsolidated sands.

Pirson⁽¹⁾ adapted Archie's work to produce a family of curves for formation factor versus porosity percent for various reservoir characteristics or cementation classes.

From Pirson's work slightly cemented sands fall in the range of 1.55 to approximately 1.75 for m', the cementation exponent.

The samples from Iona-1 range from very slightly cemented to moderately cemented across the cored interval and the measured value of `m' for this formation falls within the slightly cemented class as described by Pirson.

Resultant plots of formation resistivity index yield values for `n', the saturation exponent of between 1.99 and 2.17. The composite plot yields a value for `n' of 2.08.

Cation exchange capacity measurements are generally performed on shaly sand formations to refine electric log data and provide values of F*, m* and a*. Cation exchange capacity values can also be used for better correlation with Rw data. Bearing in mind that the brine used to determine `m', `n' and `a' for Iona is not the actual brine concentration present in the reservoir but of one close by, values may need to be adjusted slightly. However, as Iona is a relatively homogeneous clean sand the adjustment in `m' and `n' because of a different brine concentration will in all probability be minimal.

As Iona is a very clean sand and based on the petrographic work carried out, very low values for cation exchange capacity would be expected for this reservoir sand which would not influence the calculation of F^* , m^* and a^* to any significant extent. Therefore, cation exchange capacity determinations in this case are probably unnecessary.

3. REFERENCES

(1) PIRSON, S.J. "Oil Reservoir Engineering". McGraw Hill Book Company.

Page 1 of 7 File: F7197/88

FORMATION RESISTIVITY FACTOR AS A FUNCTION OF OVERBURDEN

Company: Beach Petroleum Well: Iona-1

Formation:

Field:

Iona

Location:

Overburden pressure:

Saturant:

Rw of saturant:

2000 psi 25000 ppm 0.26 ohm.m @ 25°

Sample ID	Depth m	Permeability to Air millidarcys	Porosity %	Formation Resistivity Factor
1	1305.81	7216	21.0	14.7
10	1308.45	>8000	27.1	10.1
22	1312.02	6264	19.5	16.5

Page 2 of 7 File: F7197/88

Company:

Beach Petroleum

Iona-1

Well: Field:

Iona

Formation: Location:

Saturant: 25,000 ppm Overburden Pressure: 2000 psi

FORMATION RESISTIVITY FACTOR

POROSITY: Fraction

Page 3 of 7 File: F7197/88

FORMATION RESISTIVITY INDEX AS A FUNCTION OF OVERBURDEN

Company: Well:

Beach Petroleum

Formation:

Iona-1

Location:

Field: Iona

Overburden pressure: 2000 psi Saturant: 25000 ppm Rw of saturant: 0.26 ohm.m @ 25°

Sample ID	Depth m	Permeability to Air, millidarcys	Porosity	Formation Resistivity Factor	Brine Saturation % Pore Space	Formation Resistivity Index
1	1305.81	7216	21.0	14.7	100.0 75.1 63.8 56.7 45.6	1.00 1.89 2.47 3.16 4.84
10	1308.45	>8000	27.1	10.1	100.0 75.3 65.9 58.8 48.7	1.00 2.01 2.37 3.02 4.40
22	1312.02	6264	19.5	16.5	100.0 75.2 64.0 54.3 42.1	1.00 1.90 2.35 3.19 5.21

Page 5 of 7 File: F7197/88

Company: Beach Petroleum

Well: Iona-1 Field: Iona

Formation: Location:

Sample No. 10

Saturant: 25,000 ppm Overburden Pressure: 2000 psi

FORMATION RESISTIVITY INDEX

BRINE SATURATION; Fraction of Pore Space

Page 6 of 7 File: F7197/88

Company: Beach Petroleum

Well: Iona-1 Field: Iona

Sample No. 22

Saturant: 25,000 ppm

Overburden Pressure: 2000 psi

Formation: Location:

FORMATION RESISTIVITY INDEX

BRINE SATURATION; Fraction of Pore Space

Page 7 of 7 File: F7197/88

Company: Well:

Beach Petroleum

Field:

Iona-1

Iona

Composite

Saturant: 25,000 ppm Overburden Pressure: 2000 psi Formation: Location:

FORMATION RESISTIVITY INDEX

BRINE SATURATION; Fraction of Pore Space

APPENDIX 16

RESIDUAL GAS ANALYSIS

BEACH PETROLEUM

IONA #1

SPECIAL CORE ANALYSIS

hese analyses, opinions or interpretations are based on observations and materials supplied by the client to whom; and for whose exclusive and confidential use; this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, (all errors and omissions excepted); but Core Laboratories, and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil gas or other mineral well or sand in connection with which such report is used or relied upon.

July 13, 1989

Beach Petroleum GPO Box 7096 Sydney NSW 2001

Attention: Mr. A. Buffin

Subject: Special Core Analysis

Well : Iona #1 File : 318-88004

Dear Sir,

Core Laboratories was requested by Mr. A. Buffin of Beach Petroleum to perform residual gas determination on samples from the subject well.

Preliminary data was sent via telex on the 19th July 1988. This report finalizes all data.

Core Laboratories thanks you for the opportunity to have been of service with this study. If you have any questions, please feel free to call.

Yours sincerely CORE LABORATORIES

Peter Lane

Petrophysical Laboratory Supervisor

PRL:jc

TABLE OF CONTENTS

	Page No.
Summary and Recommendations	1
Summary of Data	2
Discussion of Laboratory Procedures and Results	3
Residual Gas Saturation	4

<u>SUMMARY</u>

Residual gas saturations determined tend to have a relationship with initial gas saturation. The highest residual gas saturation recorded corresponded to the highest initial gas saturation.

RECOMMENDATIONS

<u>Capillary Pressure</u>: Drainage capillary pressure tests will help in determining the water saturation profile in the reservoir.

 ${\color{blue} {Water-Gas}\ {Relative}\ {Permeability}}$: Relative permeability data is necessary to properly model the reservoir performance.

SUMMARY OF DATA

IONA #1

		<u>Max</u>	<u>Min</u>	<u>Ave.</u>
Porosity, percent	ø	24.6	21.0	22.7
Permeability to air, millidarcies	Ka	10,000	7,000	8,930
Residual Gas Saturation, percent pore volume	Sgr	38.6	28.9	32.4
Gas Recovered, percent pore space	Sgm	61.9	55.2	59.6

DISCUSSION OF LABORATORY PROCEDURES AND RESULTS

SAMPLE PREPARATION

Three one-and-one-half inch diameter samples were received at our laboratory in Perth for testing. Two were enclosed in lead sleeves and the third wrapped in teflon tape. The teflon tape was removed from the sample prior to cleaning in hot toluene and methanol with the other two samples. The samples were then dried at 115°C to constant weight. Permeability to air and porosity were determined.

REDISUAL GAS SATURATION: COUNTER CURRENT IMBIBITION METHOD (Page 4)

After the initial room conditions permeability and porosity were determined, the samples were evacuated under toluene and then reduced to the desired "irreducible water saturation" by controlled drying. Each of the samples was then suspended under toluene and weight gain monitored as a function of time. Each test was terminated when there was negligible change in weight versus time. The residual gas saturations were calculated from these data and are tabulated on page 4.

The residual gas saturation obtained for the samples show a trend. The sample with the most initial gas in place has the greatest residual gas saturation.

Page : 4 File : 88004

RESIDUAL GAS SATURATION BY COUNTER CURRENT IMBIBITION

Company : Beach Petroleum Well : Iona #1

ecovered	percent percent gas ore space in place	67.6	58.8	67.4
Gas Re	percent pore space	61.7	55.2	61.9
Residual Gas Saturation,	percent pore space	29.6	38.6	28.9
Initial Liquid Saturation,	percent pore space	8.7	6.2	9.5
	Porosity, percent	21.0	24.6	22.4
Permeability	to Air, millidarcys	0086	7000	10000
- C	ueptn, <u>meters</u>	1308.45	1310.30	1312.40
Cramc	J.D.	10	16	23

APPENDIX 17

PETROGRAPHY AND XRD STUDIES

Amdel Limited (Incorporated in S.A.)

31 Flemington Street, Frewville, S.A. 5063

Telephone: (08) 372 2700

P.O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

12 May 1988

Beach Petroleum NL

PO Box 360

CAMBERWELL

VIC

3124

Attention: Mr A. Buffin

REPORT F 7184/88

YOUR REFERENCE:

Letter of 11 April 1988

MATERIAL:

SWC

LOCALITY:

IONA-1

WORK REQUIRED:

Petrography and X-ray diffraction

Investigation and Report by: Dr Brian G. Steveson and Dr Roger N. Brown

Manager, Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. Spencer

General Manager

Applied Sciences Group

In Severe.

cap

1. INTRODUCTION

Thirty SWC samples were received, some for petrography and 14 for XRD analysis. Only 8 of the latter contained sufficient sample for the analysis.

2. PETROGRAPHY

SWC 2; 1453 m, Eumeralla Formation

Rock Name:

Lithic sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	90
Lithic fragments Quartz Feldspar Authigenic kaolinite(?) Carbonate Mica	60 15 10 10? 3 1

This rock is characterised by the abundance of fine-grained lithic fragments and of detrital plagioclase. Although the material appeared to be well sorted the detritus is generally angular in shape and appears to have been derived very largely from an adjacent source area which contained abundant fine-grained igneous rocks. The lithic material is characterised by its heterogeneity on a scale of 0.1 to 0.2 mm but it is possible that there is some genuine matrix material in the rock and this may well be represented now by widely distributed fine-grained weakly birefringent material which is tentatively interpreted as being kaolinite. This material is sufficiently well crystallised to either have formed by precipitation from pore waters or by neoformation from original matrix clays in the diagenetic environment. Carbonate has a patchy distribution in the rock and appears to be invariably a replacement mineral (commonly after feldspar).

Quartz, mica and many lithic fragments are well sorted about an average size of approximately 0.2 mm. There are smaller grains, particularly feldspar, but it is thought likely that these have been derived from partially altered and disaggregated lithic clasts. The sand grade feldspar largely consists of plagioclase but there is a minor proportion of turbid, altered feldspar which is thought to be potassic in composition. Some of the plagioclase shows chemical zonation which is good evidence of a volcanic origin. Mica is a minor detrital phase and consists mainly of distorted but only slightly altered flakes of biotite.

The lithic grains are commonly fine-grained and most are more or less brown and turbid in plane polarised light. It is thought that probably at least 25% of the grains could be interpreted as being fine-grained volcanic rocks probably of intermediate or acid composition and commonly containing microphenocrysts of plagioclase. Other grains are readily identifiable fine-grained metamorphic rocks and it is thought likely that a considerable proportion of the indeterminate dark fine-grained grains are also shaley or slatey rocks of some kind.

The authigenic kaolinite referred to above occurs as small monomineralic aggregates apparently between the sand grade grains. In some places the kaolinite occurs within lithic grains and it is not clear whether this is a replacement texture or whether kaolinite has filled cavities in already partly disaggregated lithic fragments. In the case of the carbonate mineral this appears to be almost definitely a replacement phase and it has a patchy distribution within certain of the lithic fragments. Aggregates of carbonate are invariably extremely irregular in shape and commonly not more than approximately 0.2 mm in size.

There is very little porosity which can be specifically ascribed to this rock and this impervious nature results from the abundance of soft lithic fragments which have been squeezed into pore throats during lithification and compaction of the rock.

FIGURES

- Figure 1 Time structure at near top Flaxmans (~ top Waare) by AR Hoare (8/87) with an optimistic contour option illustrating "blue sky" potential for ~700 acre area inside the interpreted LCC.
- Figure 2 Extrapolated BHT Graph: Temperature vs (t + T/t)
- Figure 3 Pickett Plot: Log Rt vs Log p

 Constraints on input:

 Ush <.3

 Sw >.7

 p >.07

Interpreted water line slope = m = 1.74 with its intercept at 100% = Rw = .24 ohm = m^2 52.4°C (midpt BHT).

- Figure 4 Soft Formation Ushale Model (USHGR-TERT'Y) vs Linear (older rocks) Ushale Model for Iona no. 1, 1255 to 1381m.
- Figure 5 Restored State Core PHI Functions.
- Figure 6 Log plot of USH, PHI, (1-Sw)*PHI and (Sxo-Sw)*PHI

SWC 5; 1407 m; Eumeralla Formation

Rock Name:

Lithic sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	% _
Lithic fragments Quartz Feldspar Carbonate Mica	70 15 <5 7-10 1

This rock is somewhat coarser grained than the two described above and this can be seen particularly in the apparent grain size of the lithic fragments with many showing subangular outlines and an average size of about 0.3 mm. Quartz grains commonly range up to about 0.25 mm in size but there appears to be a considerable tail of finer quartz grains. Some of these can be discounted as probably being derived from fragmented lithic clasts. The quartz grains tend to be subangular to angular in outline as do the grains of feldspar. The latter consists predominantly of plagioclase with a smaller amount of altered potassic feldspar. The plagioclase is characterised by perfect freshness and, in this rock, some complexity of twin laws.

Fully two thirds of the volume of the rock consists of lithic grains and many of these are fine-grained igneous rocks characterised by a dark aphanitic matrix within which are microphenocrysts of tabular plagioclase. Other lithic fragments consist of fine-grained clays, quartz and (occasionally) micas and feldspar: Such rocks are more difficult to identify in the absence of specifically volcanic features but many can be interpreted as being fine-grained sedimentary and metasedimentary lithologies. There are instances of distinctly schistose rocks and one or two aggregates in which biotite and chlorite are abundant may be remnants of basic igneous rocks. The lithic fragments have been deformed and crushed during compaction of the rock and now form a contiguous mosaic within which the quartz and feldspar grains are separated from each other.

The sample contains relatively abundant carbonate and this forms rather ragged crystals up to approximately 0.15 mm in size. These are widely distributed throughout the area of the thin section and the carbonate is interpreted as being a late phase which has preferentially replaced some material. It is likely, however, that much of the original porosity of the sand was occluded by compaction effects on the soft lithic fragments before the carbonate crystallised.

SWC 7; 1391.5 m; Eumeralla Formation

Rock Name:

Granular lithic sandstone

Thin Section:

The granules in this rock invariably consist of fine-grained sedimentary and metasedimentary lithologies and they are present as tabular grains commonly 2-4 mm in length and about 1 mm in thickness. Such granules comprise approximately 50-60% of the volume of the rock. The remainder is composed of a lithic sandstone similar in many respects to the three lithic sandstones described above from the Eumeralla Formation. From a mineralogical point of view the rock is dominated by the fine-grained metasedimentary clasts and these consist of abundant clay, mica and quartz in sizes ranging from submicroscopic to barely siltgrade.

The lithic sandstone has an average grain size of about 0.2 mm and contains approximately 30% of quartz with small amounts of the detrital feldspar and fairly abundant sand grade lithic grains. Many of the latter are of volcanic origin and show trachytic or similar textures with microphenocrysts of plagioclase. There are one or two small aggregates of chlorite and epidote which testify to the presence of original basic igneous fragments which have probably now have been disaggregated during compaction and diagenesis of the rock. Despite this, however, many of the lithic fragments in this part of the rock do contain subangular outlines and a fairly compact shape. An interesting feature of this sandstone is the presence of what appears to be opaline silica or a similar amorphous cement. This has a distinctly patchy distribution and does not comprise more than 1 or 2% of the volume of the rock. Where this cement occurs the grains are usually outlined by a thin rim of a very early cement which may well be chlorite. In the balance of the rock the space between the grains is occupied by crushed and deformed remnants of lithic fragments.

As indicated above the rock contains abundant large detrital grains of a sedimentary or low grade metamorphic rock best described probably as a shale. The alignment of these fragments defines the bedding in the rock and sand grade fragments have been pushed into the upper and lower surfaces of these large clasts.

SWC 10; 1347.5 m; Waarre Formation

Rock Name:

Very fine-grained lithic sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	% —
Quartz	75
Lithic fragments/matrix	25
Carbonate	5
Mica	1

The average grain size of quartz in this rock is approximately 0.12 mm but there is a considerable population of grains of the order of 0.05 mm in size. Even so, the sorting of the rock appears to be at least moderate but the grains tend to be rather angular in shape as is typical of grains of about this size. Feldspar has not be specifically identified but it is possible that there is a little altered feldspar amongst the smaller grains; certainly, there is not the same population and diversity of feldspars as in the samples from the Eumeralla Formation. The quartz grains in this rock generally have point contacts and there is only sparse evidence of any compaction and pressure solution effects on the quartz grains.

Minor detrital phases are a few stable heavy mineral grains (principally tourmaline and opaques) and small deformed flakes of mica of which both muscovite and biotite were specifically identified.

As is commonly the case with sandstones such as these, problems arise in the interpretation and identification of the fine-grained intergranular material. In this rock such material is almost colourless in plane polarised light but is dark between crossed Nicols. The material certainly varies somewhat from place to place and on a scale similar to the size of the quartz grains. However, problems arise in fields of view in which there appears to be essentially a gradation from small detrital quartz grains to somewhat coarser patches of matrix. The author's view is that the material represents fine-grained material deposited essentially at the same time as the very fine sand and silt grade quartz. It appears to consist of extremely fine-grained quartz and numerous wisps of mica and other phyllosilicate minerals. There may be a small amount of fine-grained sedimentary lithic material in addition but there is little specific evidence for this in the thin section. Only where there are more birefringent clays in what may grade metamorphic fragments can material be be low specifically identified as being of lithic origin.

The sample contains a small amount of authigenic carbonate which in some places forms very fine-grained aggregates up to 0.2 mm in size. The carbonate is interpreted as being a late diagenetic, replacement feature.

Rock Name:

Very fine-grained lithic sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	용 -
Quartz	75-80
Lithic fragments	15
Lithic/matrix	15
Carbonate	7
Mica	1

This sample is fundamentally similar to that described above particularly in the shape and grain size distribution of the quartz grains. One or two altered feldspar grains were specifically identified in this sample but they probably comprise significantly less than 1% of the volume of the rock as a whole.

The most interesting feature of the rock is the fine-grained matrix in that there is more evidence in this rock that at least some of this material is definitely very fine sand grade lithic clasts. These tend to be composed of minerals of a low birefringence and a very small grain size and many are slightly elongate. There are the degree of variations which are particularly evident in colour and in the abundance or paucity of turbidity and birefringent minerals (probably illite/sericite). Even so, probably more than half of this fine-grained intergranular material has to be described as indeterminate origin and could be derived from an original muddy matrix which was deposited the same time as or soon after quartz. It is likely that much of this material is probably fine-grained quartz and low birefringence minerals such as kaolinite.

Minor detrital phases are fairly well defined flakes of mica and small amounts of stable heavy minerals.

Diagenetic activity is shown by some evidence of pressure solution effects on the quartz grains and the rock is altogether more tightly compacted than the sample described above. There is a small proportion of long and curved contacts but point contacts or contacts with smears of fine-grained material between the grains definitely predominate. Carbonate is present in all fields of view and ranges from fairly well defined elongate aggregates of fine-grained material to innumerable very small granules scattered throughout the rock. The carbonate is clearly of authigenic origin but it may well have been derived from a local source; for example, sparse limestone clasts. One or two of the aggregates of carbonate show unusual shapes and these may be remnants of somewhat altered ?shell fragments.

Rock Name:

Granular lithic sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	용
Quartz Lithic/matrix	80 20
Feldspar, carbonate and mica	Trace

Much of the rock consists of a very fine-grained sandstone with an indefinite population of grains of the order of 0.2 to 0.3 mm in size. The rock also contains, however, a few grains more than 1 mm in size and these, together, comprise about 10% of the volume of the rock.

The finer grained part of the rock is similar to the other Waarre Formation rocks described above in that it consists of moderately well sorted rather angular quartz grains surrounded by a contiguous mosaic of fine-grained material which, in this case, is thought to be at least 50% of lithic origin. The quartz shows moderate sorting and there is some evidence of a distinct skew or tail to the grain size distribution towards grains which range in size from about 0.2 to 0.25 mm whereas the average grain size of the bulk of the rock is of the order of 0.1 mm. Feldspar is present and both plagioclase and untwinned turbid material were identified. The plagioclase is relatively fresh and shows sharp twin plane traces. Neither mineral is present in more than trace amounts. The rock also contains small amounts of detrital mica and widely dispersed small crystals of authigenic carbonate.

The intergranular material comprises about a fifth of the volume of the rock and consists of extremely fine-grained quartz, clay and mica. The material is clear in plane polarised light and shows dark colours under crossed Nicols except in a few instances where there are fairly well defined metamorphic and metasedimentary lithologies which contain sericite, mica and illite. The bulk of the material is rather indeterminate and could well represent recrystallised original matrix material. In places, however, there are distinct and definite lithic fragments composed of this dark material and these are usually defined by some evidence of the shape of the original lithic grain.

The rock contains a very distinct population of granules apparently randomly embedded in the very fine-grained sand material which comprises the bulk of the rock. One of these granules consists of extremely shattered and altered untwinned feldspar but the other grains are subangular to subround grains of quartz.

The thin section contains somewhat more porosity than many of the samples described above but the porosity which can be attributed to the rock in situ is fine-grained and patchy and probably shows little interconnection in three dimensions.

SWC 20; 1276.5 m; Waarre Formation

Rock Name:

Argillaceous sideritic sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	% _
Quartz Feldspar	30 2
Carbonate	20
Green clay	10
lithic/clay	40

This sample is quite different from the other rocks from this formation described above; it is characterised by abundant fine-grained material some of which is definitely of lithic origin but some is green phyllosilicates which appear to be diagenetic. The whole of the fine-grained part of the rock has been invaded and partly replaced by a carbonate mineral which is tentatively identified as siderite.

The quartz and feldspar are present as well sorted grains which have an average size of approximately 0.15 to 0.2 mm. Except where they have been corroded during diagenesis, these grains tend to be subangular to angular in shape but fairly compact. There is a variety of feldspars including not only plagicalese and untwinned potassium feldspar but also some complex intergrowths of quartz and feldspars in micrographic-like textures. These grains are widely separated from each other by the finer grained components of the rock.

In the bulk of the rock there is an admixture of apparently monomineralic aggregates of green clay, abundant brown-stained clay material and diagenetic siderite. The green aggregates are generally fine-grained and show varying pleochroism. It is thought that some of these are monomineralic aggregates of chlorite and even, in some cases, individual flakes as much as 0.15 mm in length. More common, however, are fine-grained aggregates which appear to have a moderate birefringence and can be tentatively assigned to glauconite. Aggregates of this mineral range in size up to about 0.4 mm and this mineral is interpreted as being in some way of authigenic origin and it probably indicates that the environment of deposition had marine affinities.

Other fine-grained intergranular material ranges from brown-stained clays which could be derived from original lithic fragments or could represent an original clay matrix. There are patches which are definitely lithic fragments but these probably do not comprise more than about 15% of the volume of the rock overall. These lithics are, however, distinctly volcanic lithologies and many show well defined textures which are felsitic or trachytic in type. Almost all the volcanic rocks which can be identified have microphenocrysts of elongate plagioclase.

Much of the intergranular material has been invaded and replaced by carbonate. There are some fields of view in which the carbonate has completely replaced all the intergranular material and these areas consist wholely of sand grade grains and the carbonate cement. Elsewhere the carbonate occurs as isolated rhombs or subidiomorphic crystals which have replaced fine-grained intergranular material. The carbonate is tentatively identified as siderite on the basis of the apparently ferruginous nature of some parts of the rock; this applies particularly to some brown-stained clays which are widely distributed throughout the sample.

SWC 23; 1185 m; Nullawarre Formation

Rock Name:

Sideritic sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	%
Quartz Siderite Green clays Lithic fragments and matrix Mica	50 30 15 5 1
Feldspar	Trace

In some respects this sample is similar to that described above particularly in the presence of authigenic carbonate mineral which appears to have replaced, in this sample, the bulk of the matrix. The rocks are also similar in that both contain aggregates of glauconite but in this sample there is more evidence that these are of detrital origin.

Approximately half of the volume of the rock consists of moderately well sorted sand grade grains most of which are single crystals of quartz. These commonly range in size from approximately 0.15 mm to as much as 0.4 mm and many of the grains (where they have not been corroded by carbonate) are subangular in outline. Feldspar is only rare and is represented by non-twinned somewhat altered grains which tend to be rather smaller than the average quartz grains. There is a small amount of rather altered and deformed mica (mainly biotite) which appears to have undergone considerable disruption and corrosion by the carbonate.

The sample contains a substantial proportion of material which is green in plane polarised light. Under crossed Nicols it shows a speckled appearance and it appears to consist of moderately birefringent fine-grained glauconite. This mineral forms patches which range in size from less than 0.1 mm to approximately 0.3 mm. Some of the larger grains show rounding and in some instances there is evidence of possible shrinking of the glauconite grains which is shown either by the presence of shrinkage cracks or in some instances by the presence of what appears to be secondary porosity formed by shrinkage of the glauconite grains away from the surrounding minerals. In this case therefore the evidence is that the glauconite is of detrital origin and not necessarily related to the chemistry of the environment of deposition.

In some places in the thin section there is indeterminate brown clay material which presumably represents remnants of an original matrix - and possibly sparse fine-grained lithic fragments - but for the most part the intergranular material is wholely carbonate. This mineral is generally fine-grained but shows only a few instances of specifically rhombic outlines. Crystals tend to be of the order of 0.1 mm in size and form a random mosaic. In most fields of view this occupies essentially all of the intergranular space and there is only patchy evidence of corrosion of the quartz by this carbonate.

The rock contains a few instances of remnants of volcanic lithic fragments.

SWC 24; 1139 m; Nullawarre Formation

Rock Name:

Glauconitic carbonate-bearing sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	<u>%</u>
Quartz	30
Feldspar	Trace
Lithic fragments	15
Mica	Trace
Carbonate	35
Green minerals (glauconite)	20

The rock consists of reasonably well sorted sand grade quartz grains which rest in an abundant matrix of carbonate, glauconite and remnants of lithic fragments.

The quartz grains are mainly subround to round in outline and have an average size of approximately 0.25 mm. Most of the grains range in size from 0.15 to approximately 0.8 mm. The grains tends to be completely separated from each other and there is little evidence of pressure solution effects on this mineral. Only one or two feldspar grains were specifically identified in the thin section and these were non-twinned potassic feldspar showing a considerable amount of turbid alteration.

Other minor detrital phases are rare shreds of mica and a range of lithic fragments. Most of the latter are similar in size to the quartz grains and tend to be somewhat larger than the mean. Some are what appear to be remnant fossil fragments which are dark in plane polarised light but have a distinctive thinly banded and Other circular, rounded grains have a texture. concretionary appearance and these could well be calcareous or possibly phosphatic fragments. For the most part, however, the identifiable lithic material tends to be dark between crossed Nicols and in plane polarised light and consists of ferruginous, argillaceous sedimentary material. In some instances grain outlines can be seen but for the most part this material forms irregular aggregates (commonly as much as 1 mm in size) within which some quartz grains are embedded. It seems most likely therefore that, with the sand grade quartz grains, there was deposited a population of somewhat larger dark shale and mudstone fragments.

The green patches in the rock show a very fine-grained texture and moderate birefringence in plane polarised light and therefore seem to be glauconite. Some form distinct grains often 0.2 to 0.4 mm in size and it is thought that many of the somewhat more ragged glauconite aggregates were probably derived from deformed original grains.

As the list of minerals given above shows, carbonate is the single most abundant phase in the rock; it forms in intergranular situations but ranges from well defined crystals generally up to 0.4 mm in size to much finer grained, indeterminate carbonate material widely scattered in the interstices between the grains. It seems likely that carbonate crystallised in the diagenetic environment but it may well have been derived from a localised source. One or two of the larger carbonate crystals show curved extinction patterns which may be inherited from original fossil fragments. This type of carbonate tends most often to occur in patches of the rock in which carbonate is the predominant intergranular phase.

SWC 26; 1094 m; Skull Creek Formation

Rock Name:

Argillaceous carbonate-bearing sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	0/0
Quartz grains	55
Feldspar	Trace
Mica	Trace
Matrix	40
Opaques	3
Glauconite	1

This sample is considerably different from many of those described above in that it appears to contain a genuine muddy matrix phase. This is characterised by its homogeneity over much of the area of the thin section. From the mineralogical point of view the matrix appears to consist of carbonate, clays and a moderate amount of ferruginous staining (goethite/limonite).

The detrital grains are generally subround to angular in shape and there is evidence of a bimodal grain size distribution. Probably about 20-25% of the volume of the rock consists of grains which are 0.2 to 0.35 mm in size whereas the bulk of the quartz is well sorted about an average of approximately 0.15 mm. The smaller grains tend to be distinctly more angular than the larger. All the grains are essentially surrounded by matrix material and if compaction has occurred it has not affected the shape or spatial distribution of the quartz grains. Feldspar is present in only a few instances in the thin section and appears to be a rare constituent to the rock only. There is a small amount of detrital mica and the rock contains possibly more than the average amount of detrital heavy minerals. Opaques in the listing above refers mainly to irregular aggregates in the matrix rather than detrital opaque grains.

The matrix forms a contiguous network throughout the whole rock and for the most part is a turbid brown colour in plane polarised light but shows some high birefringence under crossed Nicols. Examination of the matrix under high magnification indicates that it probably consists largely of a fine-grained carbonate (?siderite) and decidedly smaller amounts of clay and secondary iron oxide/hydroxide minerals. In some places in the thin section the matrix grades into large tabular aggregates of similar fine-grained material and these are interpreted as being soft shaley or mudstone clasts which were incorporated into the rock during transport and deposition.

As far as can be determined these clasts have a similar mineralogy and texture to the bulk of the matrix material. One of these clasts in the thin section is several millimetres in length but there are many which are more indeterminate and not more than about 0.5 mm in size. In some other places, also, the matrix shows almost gradational changes towards virtually opaque aggregates. These are invariably ill-defined and irregular in shape and probably represent concentrations of goethitic material. Green material in the matrix is present as small irregular aggregates commonly not more than 0.2 mm in size; there is little evidence that these are of detrital origin and therefore it is likely that this is glauconite which has developed in the environment of deposition (presumably therefore, marine).

SWC 28; 1054 m; Skull Creek Formation

Rock Name:

Sandstone

Thin Section:

The thin section consists of loose grains of quartz and finer grained material which is interpreted as being crushed remnants of quartz grains. There are traces of heavy minerals and one or two patches of indeterminate clay material. These latter suggest that the original sandstone may well have been of an argillaceous type similar to that described immediately above but without the abundant iron staining.

The quartz grains range in size from virtually submicroscopic to about 0.4 mm but it appears likely that many of the fragments less than 0.07 mm in size are broken splinters of original grains and it may well be that the original sandstone was at least moderately well sorted about an average size of approximately 0.2 to 0.3 mm. Some of the larger grains are subround in shape but most are angular to subangular and, as might be expected, many of the smaller chips are distinctly angular and irregular in shape. There is no evidence of the grains fitting closely together or having other than tangential point contacts.

There are small amounts of stable heavy minerals (particularly tourmaline) but no evidence of feldspar or detrital mica.

Intergranular material is very patchily developed and it is difficult to say how much of it is an integral part of the in situ sandstone. There is one place in the thin section where a matrix similar to that in the rock described above is preserved but this is an area-only about 1 mm in overall size. There are smaller patches of opaque intergranular material and others of a clay which is neither stained by ferruginous material nor contains any fine-grained carbonate. This being the case it seems likely that the rock has been so extensively damaged during collection of the sidewall core that a valid description of the in situ sandstone can hardly be attempted.

SWC 30; 942 m; Paaratte Formation

Rock Name:

Compact argillaceous sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	%
Quartz	80
Matrix	10
Lithic fragments	5
Mica	2
Carbonate	2
Feldspar	1
Opaques	1

As the list of minerals above indicates this sample contains far more detrital quartz than the rocks described above and a correspondingly reduced amount of intergranular material. The sample appears to be essentially impervious as a result of the formation of matrix material as a contiguous network between the grains.

The detrital grains show a clearly bimodal grain size distribution with a minor mode at a size of approximately 0.2 mm and most of the grains around a mode of approximately 0.07 mm. Within each mode the grains are well sorted. Larger grains tend to be subangular to subround in shape whereas smaller grains are distinctly angular in outline. There are one or two beds which contain relatively increased proportion of the larger grains and more abundant lithologies in which the larger grains are present to not more than about 5-10%. As well as quartz, the rock contains small amounts of fresh potassium feldspar and of rather wispy muscovite. Both of these minerals seem to be confined to the smaller part of the grain size distribution.

The intergranular material is generally colourless polarised light and rather varied but essentially dark between crossed Nicols. There is some lithic material which can be specifically identified and this tends to be characterised by the presence of more birefringent phyllosilicate minerals and some carbonate. It is likely that these are silt grade fragments of argillaceous lithologies, probably mudstones or shales. Some appear to have rather coarse illitic material and consequently they may have been recrystallised in the diagenetic environment. Much of the is rather indeterminate fine-grained intergranular material material and the low relief and birefringence indicate that there is probably a considerable amount of kaolinite. Carbonate occurs as very small grains widely distributed throughout this part of the matrix. Other lithic fragments are cherts which, although not abundant, tend to be well formed and retain their detrital outline.

In brief, therefore, the intergranular material in this rock is thought to be largely genuine muddy matrix material which has probably been coarsened during recrystallisation in the diagenetic environment. Lithic material is present to a limited extent but this too is essentially argillaceous material.

SWC 32; 820 m; Paaratte Formation

Rock Name:

Fine-grained compact sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	% —
Quartz	85
Matrix	10-15
Feldspar	2
Carbonate	1
Mica	1
Opaques	1
Glauconite	Trace

The sample is a very fine-grained sandstone which has a compact and homogeneous texture. The detrital grains are separated from each other by a contiguous matrix of clay minerals.

The average grain size of quartz and feldspar is approximately 0.1 mm and the grains are well sorted although distinctly angular. There is no evidence of pressure solution effects on the quartz grains since the grains are separated from each other by the network of matrix. Feldspar is present as potassium feldspar (commonly microcline) and this mineral is perfectly fresh. There are small amounts of detrital mica including a few relatively large slightly altered grains of biotite. Also included in this category is a little detrital chlorite.

The intergranular material is pale brown in plane polarised light and generally more or less dark between crossed Nicols. Much of it appears to be illitic and kaolinitic clays possibly with an admixture of very fine-grained quartz. In such indeterminate material it is difficult to determine the proportion which may have been derived from original silt grade lithic clasts. There seems certainly to be at least a small proportion of this material but it is thought unlikely to exceed 5% of the total volume of the rock. Lithic grains are not well defined and do not show detrital outlines but are thought to have been present in place where the matrix contains a concentration of illitic clays probably derived from original shaley or possibly low grade metasedimentary fragments.

Carbonate is a patchily developed diagenetic mineral which forms small aggregates surrounding quartz grains in one or two fields of view in the thin section. Also present in intergranular situations are small aggregates of glauconite which are thought to be of diagenetic origin and therefore probably indicate a marine evironment of deposition. The abundance of the soft intergranular constituents (whether lithics or matrix) means that the sample is essentially impervious.

SWC 34; 704 m; Paaratte Formation

Rock Name:

Coarse sand with intercollated silt/shale fragment

Thin Section:

The thin section consists of part of two lithologies one of which is a loose sand which contains numerous grains of the order of 0.5 mm in size whereas the other is what appears to be part of a large soft fragment of brown silt/shale. These two lithologies are present in the sidewall core to an approximately equal extent but it is not possible to give an estimate of the relative proportions of these in the lithology at this depth.

The sand is generally loose quartz grains surrounded by void space and it is thought likely that this is material which has been damaged during collection of the sidewall core and the apparently large porosity is not an integral part of the rock in situ. It seems likely that the quartz grains were probably cemented by finegrained argillaceous material similar in many respects to the shaley fragment described below. In one place in the thin section there is a large elongate opaque aggregate and this, too, essentially could be regarded as part of the intergranular matrix. The quartz grains themselves commonly range in size from very finegrained sand to grains as much as 1 mm in diameter. Larger grains tend to be subangular or subround in shape (with rare instances of rounded grains) and it is thought likely that, in situ, the material probably had an average grain size of at least 0.4 mm and was moderately to well sorted. In one place in the thin section it appears that grains of this sandstone have been compressed into the large silt/shale fragment.

The fragment—itself is dark and brown in plane polarised light but it can be seen to consist of abundant iron—stained clays and micas within which is a fairly dense scattering of silt grade quartz and mica fragments. The shale shows an excellent bedding foliation defined by the orientation of the micas and by numerous wisps of opaque and semi—opaque material. This then is a typical silty shale and it appears to have formed a large soft fragment incorporated in the coarse sand which comprises the remainder of the thin section. The silty shale fragment is several millimetres in size but it may only be a part of what was originally a much larger fragment in situ. The shale shows deformation textures where large quartz grains have been embedded into it and this is taken as evidence for the plastic nature of the shale as the rock was compacted.

SWC 35; 664.5 m; Paaratte Formation

Rock Name:

Sandstone

Thin Section:

The sample has been considerably damaged during collection of the sidewall core and it is difficult to give an indication of the nature of the rock in situ. The sample now consists of quartz grains and broken fragments which range in size from about 0.5 mm down to almost submicroscopic chips. Where there is any matrix material this tends to consist of very fine-grained quartz or material which cannot be resolved microscopically. It seems likely that the original sandstone contained a significant proportion of grains 0.2 to 0.4 mm in size and that these were well rounded. As well as quartz there is a small proportion of fresh non-twinned feldspar. It also is probable that there was a population of smaller quartz grains probably in the very fine sand range; these are difficult to distinguish from the comminuted material but some smaller rounded grains are evidence of the presence of this genuine detrital fine material.

The rock contains small amounts of detrital mica and heavy minerals and also somewhat larger quantities of opaques. The latter comprise possibly as much as about 5-7% of the area of the thin section and are present as large elongate features in which the opaques appear to have penetrated between the detrital grains. These opaques may well therefore be a diagenetic feature and they appear to be ferruginous rather than carbonaceous.

SWC 36; 659.5 m; Pebble Point Formation

Rock Name:

Argillaceous carbonate-bearing sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	<u>%</u>
Quartz	65
Carbonate	15
Matrix clays	10
Lithics	3-5
Feldspar	1
Mica	1
Opaques	2
Glauconite	Trace

This sample is fairly typical of many argillaceous sandstones in that it contains abundant detrital quartz with other minor detrital phases and these rest in a matrix which is partly genuine argillaceous material deposited with the quartz but also contains some altered and deformed lithic fragments. The thin section now contains a significant amount of porosity but it is thought that much of this is a result of damage caused to the sample during collection and it is thought that the abundance of fine-grained clay material is such that the sandstone is unlikely to have had much porosity in situ.

Grains of quartz and feldspar range in size up to about 2 mm but the average grain size is probably not more than about 0.2 mm. There is -some evidence of a bimodal grain size distribution but this is by no means well defined and it may simply be that the sample is somewhat ill-sorted with a grain size distribution skewed towards the larger sizes. The bigger grains tend to show moderate to excellent rounding whereas grains less than 0.2 mm in size tend to be angular or subangular in shape. There is a small population of silt grade grains but these are essentially part of the matrix Feldspar grains are fairly widely the framework. distributed throughout the rock and include both large and small grains. Most are of microcline but there is a considerable which cannot be proportion of non-twinned altered grains specifically identified. Minor detrital constituents are rather altered flakes of muscovite and rare instances of detrital opaques.

Lithic grains are generally not easy to identify; there are a few distinctive grains but many shadowy remnants within the matrix of the rock which have been interpreted as being lithics although this is by no means an unambiguous identification. The most distinctive lithic grains are cherts and a few ferruginous or possibly phosphatic fragments which have a well rounded shape. Elsewhere lithics are simply represented by shadowy altered grains within the bulk of the matrix material. Many of these grains are probably altered and deformed metasedimentary or sedimentary fragments deposited with the quartz.

When the matrix is examined under intense illumination and high magnification it can be seen that there is a dense speckling of carbonate throughout virtually the whole of the intergranular material. Individual carbonate crystals are commonly near submicroscopic in size but it seems likely that the carbonate is a replacement phase deposited during diagenesis of the rock. It is likely that the bulk of the matrix originally consisted of clay minerals but these can scarcely be specifically identified in the thin section. Suffice it to say that the matrix is a contiguous network between the grains and generally separates one from another. It includes fine-grained quartz ranging down to silt grade material and may well contain not only detrital clay but also clay derived from broken up and deformed lithic fragments.

Rock Name:

Argillaceous sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	왕
Quartz	75
Lithic fragments	10
Matrix clays	7-10
Carbonate	5
Feldspar	2
Mica	Trace

For the most part the sample consists of well defined sand grade grains which rest in a contiguous network of brown matrix material. In some places, however, there are larger aggregates of the brown material and some of these can be seen to contain dark lithic fragments. The mineralogical proportions given above imply approximately equal amounts of matrix clays and lithic fragments; this is a tentative judgement since a considerable amount of the darker material cannot be unambiguously referred to either one or the other.

For the most part the detrital quartz and feldspar are present as grains 0.15 to about 1.2 mm in size with an average of approximately 0.3 mm. Many of the grains show considerable rounding but smaller grains tend to be distinctly angular in shape. Feldspar is generally present as non-twinned slightly altered material but the feldspar grains show no significant physical or chemical alteration.

There are minor amounts of detrital mica but, apart from the quartz and feldspar, the remaining constituents of the rock tend to be intergranular in type. In general, this intergranular material is more or less turbid to dark brown in plane polarised light and dark between crossed Nicols. There are fairly well defined clear carbonate crystals as much as 0.1 mm in size and these are clearly of authigenic origin and have probably crystallised by a replacement of some of the brown clay material. The latter comprises the bulk of the intergranular material and for the most part is confined to a network between the framework grains of quartz and feldspar. The material is very dark between crossed Nicols and many patches are essentially featureless. Since the material appears to be homogeneous it seems most likely that it is a genuine clay matrix much obscured by subsequent ferruginous staining. In some areas of the thin section, however, this brown material forms large aggregates with only sparse amounts of the sand grade quartz and feldspar. In these areas the brown material shows some variations in colour and it is possible that these are related to the fact that this brown material is derived from argillaceous and ferruginous lithic fragments. In some places there are what appear to be concretionary aggregates of such dark material. The preferred interpretation, given the large size of some of these dark aggregates, is that they represent soft argillaceous fragments caught up with the sand grade quartz and feldspar and subsequently somewhat deformed during compaction of

the rock. Lithic material is therefore of two types: these large argillaceous fragments and smaller dark fragments which now occur randomly distributed with the sand grade quartz material.

In view of the relatively wide grain size range of the rock and the presence of these large argillaceous clasts, it seems likely that the sample has a complex depositional history.

SWC 39; 623 m; Pebble Point Formation

Rock Name:

Argillaceous sandstone

Thin Section:

This sample is very similar to that described immediately above and a detailed description will not therefore be given. The rock consists of round to subround grains more than 0.2 mm in size and the population of more angular and smaller grains. There are small amounts of detrital feldspar and mica but most of the grains are single crystals of common quartz. The matrix separates all the grains from each other and for the most part is a dark brown colour and is completely dark between crossed Nicols. The material is interpreted as being probably argillaceous in character but partly replaced by secondary ferruginous minerals. Within this matrix there are authigenic crystals of carbonate which comprise not more than about 2-3% of the volume of the rock. The carbonate crystals are as much as 0.1 mm in size and tend to be rather clear and well formed although xenomorphic in shape. As in the sample from 634.5 m, there is a tendency in places for the matrix to be relatively abundant and the quartz grains no longer forming a framework. This feature is not as well defined in this sample but there are places where it seems likely that the matrix did not form by percolation between the framework of quartz grains but, rather, coalesced into soft aggregates (or was deposited as soft argillaceous grains) and has subsequently been compressed by the adjacent quartz grains.

The thin section contains sparse porosity but it is thought unlikely that much of this would be present in the rock in situ. Some of the more characteristic features of the porosity are the presence of irregular channelways within the matrix; these may be in some way shrinkage features and therefore be an integral part of the rock. It is very unlikely that the porosity would be highly interconnected in three dimensions.

SWC 44; 543 m; Dilwyn Formation

Rock Name:

Silty shale

Thin Section:

The sample is a typical argillaceous shale with silt grade fragments of quartz, feldspar and mica. These detrital grains vary in proportion from place to place in the thin section from about 10% to as much as 50%.

The detrital grains of quartz and feldspar are moderately well sorted about an average grain size which is estimated to be approximately 0.05 mm although there may well be a tail towards finer sizes also. Feldspar is present only to a very small extent (less than 2%) and occurs as non-twinned potassium feldspar grains which show a moderate turbidity. Silt grade detrital phyllosilicate minerals are significantly more abundant and include muscovite, biotite and chlorite (in decreasing order of abundance). Flakes of these minerals are frequently up to 0.2 mm in length and vary from slightly curved or straight flakes to markedly deformed examples (particularly in the siltier parts of the rock). The overall proportion of the silt grade material is approximately 25% but bedding in the rock is defined in part by the variations in the proportion of this material alluded to above. Beds are not well defined but many appear to be of the order of 0.5 to 1 mm in thickness. One of the most silty beds appears to contain what may be detrital grains of glauconitic material and possibly a rather higher than normal proportion of stable detrital heavy minerals.

The matrix within which these grains lie is pale brown in plane polarised light and shows a considerable proportion of moderately birefringent minerals under crossed Nicols. It is clear when the matrix is examined in this way that there is probably a gradation from silt grade mica flakes to clay grade wisps of mica, sericite and illitic clays. Some beds probably contain of the order of 20% of very fine-grained phyllosilicate material in the matrix. In other areas the matrix consists of darker material which is finer grained and less well defined. It is likely that these parts of the rock probably contain abundant illitic material with an unknown proportion of very fine-grained less birefringent phases such as quartz and kaolinite. Streaks of opaque material (?plant debris) are fairly abundant but vary considerably from place to place.

When the thin section is examined under low magnification it can be seen that the bedding defined by slight variations in the matrix and by variations in the proportion of silty material, is by no means laminar and there are marked curved features which could be related to boring activity or possibly to some type of deformation caused while the sediments were soft.

SWC 45; 485.5 m; Dilwyn Formation

Rock Name:

Very fine-grained argillaceous sandstone

Thin Section:

An optical estimate of the constituents gives the following:

Constituent	용 -
Quartz	80
Matrix	15
Lithic fragments	2
Green clays	2
Feldspar	1
Opaques	1
Heavy minerals	1

The sample is a well sorted sandstone with an average grain size of approximately 0.1 mm and possibly some evidence of a second minor mode in the grain size distribution at a size of about 0.25 mm. The detrital grains are separated from each other in the plane of the thin section by a contiguous network of dark matrix clays and void spaces.

The quartz grains are compact in shape but show considerable variety in roundness characteristics from a few examples which are round to others which are angular and subangular in shape - the latter are by far the more abundant. These features of the quartz grains appear to be an integral feature of the detrital material and not due to any post depositional pressure solution effects. About 3-5% of the detrital grains are of the order of 0.2 to 0.3 mm in size and they represent a very minor mode of medium grained sand. These grains tend to be a little better rounded than the very fine sand grade grains.

There is a considerable range of minor detrital phases including non-twinned somewhat altered feldspar, metasedimentary and sedimentary lithic grains, somewhat turbid and altered fine-grained green grains some at least of which are glauconitic and finally a somewhat unusually high proportion of heavy minerals. The last-named includes stable types such as zircon, rutile and tournaline. The minor detrital phases are invariably within the very fine-grained sand grade.

These grains rest in a matrix which is dark brown to almost opaque in some places in the thin section and which under crossed Nicols is mainly dark. It is assumed that the material is mainly clays which have been stained by secondary goethitic or limonitic material but the paler parts of the matrix commonly contain very fine-grained weakly birefringent material which is thought to contain probably a considerable amount of kaolinite but also possibly an extremely fine-grained quartz. In one or two places, in addition, there are patches of relatively coarse pale green phyllosilicate which fill the intergranular space and these are interpreted (tentatively) as authigenic chlorite. It seems likely that the matrix is quite complex but the abundance of brown stain gives it a homogeneous appearance and it has therefore been interpreted as genuine matrix rather than broken up debris of

original lithic grains. Associated with the matrix is a considerable amount of pore space and it is thought likely that much of this is probably integral to the rock in situ. Some of this is clearly of secondary origin where it occurs in, for example, altered feldspar grains and in narrow channelways between the matrix and the edge of detrital grains but some of the pores are probably caused by collection of the sidewall core.

SWC 48; 301 m; Mepunga Formation

Rock Name:

Argillaceous very fine-grained sandstone

Thin Section:

Despite the fact that this sample is from a different formation, it is very similar petrographically to the rock described above. Such features as the presence of a minor grain size mode in the medium sand grade and the nature of the matrix are common to both rocks. The detrital grains in this sample are mainly angular quartz fragments approximately 0.1 mm in average diameter. There are small amounts of altered feldspar and rare detrital muscovite grains. The rock does contain some heavy minerals (of a stable type) but these are not as abundant as in the sample described above.

Common to both samples is the presence of a dark brown matrix which effectively separates the grains from each other. In this rock the translucent to almost opaque material is densely peppered in places with very small crystals of carbonate. This is interpreted as probably being a diagenetic phase which has replaced a small proportion of the matrix. Also, the matrix in places tends to form patches as much as 0.5 mm in size and such features are interpreted as being, in effect, clasts of fine-grained clays caught up in the original sandstone and deposited with the quartz grains. It is likely that the pervasive staining with goethitic/limonitic material obscurs diversity of the matrix in both this sample and the one described immediately above. From a petrographic point of view the matrix material appears to be homogeneous because it is so dark and it is possible that the large aggregates of matrix are similar material which had sufficient rigidity to contribute part of the framework when the sample was originally deposited.

There are patches of the rock in which there is considerable porosity and the grains are almost entirely separated from each other by abundant void space; it is thought that much of this material is not integral to the rock in situ. Porosity in the sample was probably confined to a small amount of secondary porosity which occurs as narrow channelways and ?shrinkage fractures in the matrix.

3. X-RAY DIFFRACTION ANALYSES

3.1 Introduction

Of the 14 cores submitted, eight were insufficient quantity for MC2 analyses to be carried out (Cores 2, 13, 19, 21, 27, 37, 42 and 43) and these are covered here.

3.2 Procedure

Portion of each sample was powdered finely and used to prepare an X-ray diffractometer trace which was interpreted by standard procedures.

Further, weighed, lightly pre-ground subsamples were taken and dispersed in water with the aid of defloculants and an electric blender, and allowed to sediment to produce -2 µm e.s.d. size fractions by the pipette method. The resulting dispersions were examined by plummet balance to determine their solids contents, and were then used to produce oriented clay preparations on ceramic plates. Two plates were prepared per sample, both being saturated with Mg++ ions, and one in addition being treated with glycerol. When air-dry, these were examined in the X-ray diffractometer. Additional diagnostic examinations carried out consisted of examination of a glycol-treated plate, and the glycerol-free plate hot (130°C) and after heating for one hour at 550°C.

3.3 Results

The results are given in Table 1, whic lists the following:

- (a) The mineralogy of the total sample, as derived from examination of the bulk material, with supporting evidence as available. The minerals fround are listed in approximate order of decreasing abundance, using approximate percentage estimates. Bracketed minerals were not detected in the bulk examination but are inferred from the clay fraction.
- (b) The proportion of the sample found to separate into the -2 µm size fraction, as determined by the plummet balance. The figure obtained applies only to the pre-treatment and dispersions conditions used.
- (c) The mineralogy of the $-2 \ \mu m$ fraction, given as in Section (a).

NB: Note that the percentage estimates are very approximate figures.

3.4 Remarks

Possible Interstratified Chlorites

The main clay components in Cores 37, 42 and 43 caused much difficulty in interpretation and in spite of the application of all known diagnostic tests the identifications are uncertain. The clay in Core 42 is less complicated and may represent a chlorite partly-interstratified with smectite; however, because of overlaps of peak positions; it is not possible to determine whether kaolinite is present - but for various reasons its presence seems very likely, and possibly in considerable amount.

The main clays in Cores 37 and 43 exhibit similarities to each other (and some differences) and have nominally been interpreted as triple interstratifications of chlorite, illite and smectite, but such interpretations are subject to great uncertainty particularly because it appears that an appreciable amount of interfering kaolinite is probably again present (q.v.).

Inhibited Smectite (Core 2)

The main clay in this sample is a true smectite (swells to 18 Å with glycerol treatment) but collapses only slightly from 15 Å when heated (14.1 Å at 130°C, 13.9 Å after 550°C), indicating the presence of interlayer material preventing the collapse (usually to 10 Å). This material is usually taken to be areas or "islands" of gibbsitic or brucitic composition.

Siderite

The abundant siderite in Core 19 is represented by a double peak indicating phases of two differing composition (some cation substitution).

TABLE 1: BULK AND CLAY FRACTION MINERALOGY OF 8 SIDEWALL CORES (IONA-1) Figures in very appropriate percentages (see text)

Core No.	2		1	3	19		21	
Bulk Mineralogy	F(L) Q Sm* M' C	40 30 10 7 7 5	Q K M F' Py	74 15 4 4 3	Q Sid ML K F M Cal?	41 20 18 9 6 5	Sm Q K M Py F' Sid?	40 30 18 9
	27		3	7	42		43	
	Q Sm ⁺ K M Sid F'	40 25 15 8 7 5	Q CMSm M F' Py	60 ? 15 10 10 5	Q CSm? M (G)	50 46 3 1	Q SMSm? M F' Py	58 25 8
-2 µm fraction %:	10		1	.0	2.4	1	35	
Mineralogy	Sm* C K M' Q F(L)	37 27 24 5 4	K M Q F'	85 11 3 1	ML K M Q	30 22 5 3	Sm K M Q	5 3
	36			.6	10	0	16	
	Sm ⁺ K M - Q	60 32 5	CMSπ M Q	1? 83 14 3	CSm? G M Q	85 10 3 2	CMSm? M Q	80 1
Mineral Key C Chlorite CMSm Possible to	riple in	terstra rlayere	tificat d illi	cion.		M'	Mica/illit (biotite t Mixed laye	ype

Miner	al Key	•	// 77
C	Chlorite	Μ'	Mica/illite
CMSm	Possible triple interstratification.		(biotite type)
	Chlorite with interlayered illite and	ML	Mixed layer
	smectite. Kaolinite may be present.		illite-
	See text.		smectite (~20
CSm	Possible chlorite with minor inter-		-25% expand-
	stratified smectite. Chlorite apparently	_	ible layers)
	of hexagonal modification. Interpretation	РУ	Pyrite
	uncertain. Kaolinite may be present. See	Q ~ · ¬	Quartz
	text.	sid	Siderite (see
Cal	Calcite	~	text)
F	Feldspar (plag., ~albite)	Sm	Smectite
t F(L)	Feldspar (calcite plag., labradorite or	Sm ⁺	Smectite-
	sim.)		illite inter- stratification
F'	K feldspar		with ~70-80%
G	Goethite		expandible
K	Kaolinite		
M	Mica/illite (muscovite type)		layers
Sm*	Inhibited smectite (see text)		

Amdel Limited
(Incorporated in S.A.)
31 Flemington Street,
Frewville, S.A. 5063

Telephone: (08) 372 2700

P.O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

7 June 1988

Beach Petroleum NL GPO Box 7096 SYDNEY NSW 2001

Attention: Mr A. Buffin

REPORT F 7184/88 - Addendum

YOUR REFERENCE:

Letter of 19 May 1988

SAMPLE IDENTIFICATION:

SWCs 10, 17, 34

LOCALITY:

IONA-1

WORK REQUIRED:

X-ray diffraction analysis

REPORT:

As discussed with the client, X-ray diffraction analysis was carried out on SWCs from this well. There was insufficient of SWC 35. Methods employed were the same as in Amdel Limited report

F 7184/88.

Investigation and Report by: Dr Brian G. Steveson

Manager, Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. Spencer

General Manager

Applied Sciences Group

cap

		10	1'	7	34	
Bulk Mineralogy:	Q K M (ML) Sid? F' Py	40 25 14 10 5 3	Q K (ML) M F' Sid C Gy Py	38 23 10 8 6 5 4 3	Q F' K M C Sid Py	57 13 12 8 4 3 3
-2 µm fract. %:		36	3	7	16	5
Mineralogy:	K ML M Q	51 24 17 8	K ML M C? Q	45 39 8 4 4	K M C Q	48 31 16 5

Mineral Key

C F'	Chlorite K feldspar	ML	Mixed layer illite-smectite (randomly-interstratified)
Gу	Gypsum	Py	Pyrite
ĸ	Kaolinite	Q	Quartz
M	Mica/illite	Sid	Siderite

incorporated in 3 A 31 Flemington Street, Frewville, S.A. 5063

technology and enterprise

Telephone: (08) 372 2700

P O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

21 July 1988

Beach Petroleum NL Box 7096 GPO SYDNEY NSW 2001

Attention: Mr A. Buffin

REPORT F 7266 - Part 1

YOUR REFERENCE:

Letter of 17 June 1988

SAMPLE IDENTIFICATION:

Cores 1, 2 and 3

MATERIAL:

SWC

LOCALITY:

IONA-1

WORK REQUIRED:

X-ray diffraction analysis

Investigation and Report by: Dr Roger Brown

Manager, Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. Spencer

General Manager

Applied Sciences Group

cap

1. INTRODUCTION

Further work was requested (letter of 17 June 1988) on SWC from Iona-1.

PROCEDURE

A portion of each sample was powdered finely and used to prepare an X-ray diffractometer trace which was interpreted by standard procedures.

Further, weighed, lightly pre-ground subsamples were taken and dispersed in water with the aid of deflocculants and an electric blender, and allowed to sediment to produce -2 μm e.s.d. size fractions by the pipette method. The resulting dispersions were examined by plummet balance to determine their solids contents, and were then used to produce oriented clay preparations on ceramic plates. Two plates were prepared per sample (if possible), both being saturated with Mg ions, and one in addition being treated with glycerol. When air-dry, these were examined in the X-ray diffractometer. Additional diagnostic examinations carried out consisted of examination of a glycoltreated plate and the glycerol-free plate after heating for one hour at 550 °C.

3. RESULTS

The results are given in Table 1, which lists the following:

- (a) The mineralogy of the total sample, as derived from examination of the bulk material, with supporting evidence as available. The minerals found are listed in approximate order of decreasing abundance, using approximate percentage estimates. Bracketed minerals were not detected in the bulk examination but are inferred from the clay fraction.
- (b) The proportion of the sample found to separate into the -2 μm size fraction, as determined by the plummet balance. The figure obtained applies only to the pre-treatment and dispersion conditions used.
- (c) The mineralogy of the $-2 \mu m$ fraction, given as in Section (a).
- NB: Note that the percentage estimates are approximate figures.

TABLE 1: MINERALOGY OF 3 IONA-1 SAMPLES

(Figures in approximate percentages*)

	1:13	06.3 m	2:131	2.4 m	3:1314	1.7 m
Bulk Mineralogy:	Q Py (K) (Sm) (M)	94 3 1 1	Q K (Sm) (M)	96 2 1	K Q M ML? Py F'	47 40 10 1 1
-2 μm fraction %:	1		2			5
Mineralogy:	 K Sm M Q	54 30 10 6	K Sm M Q	71 17 7 6	K ML? M Q	63 19 16 3

*NB: See text for remarks on quoted percentage figures.

Mineral Key

F' K feldspar
K Kaolinite
M Mica/illite
ML Mixed-layer illite-smectite (not well characterised because of low level)
Q Quartz
Sm Smectite

APPENDIX 18

GEOCHEMICAL ANALYSIS OF RESIDUAL OILS

Amdel Limited (Incorporated in S.A.) 31 Flemington Street, Frewville, S.A. 5063

Telephone: (08) 372 2700

P.O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

20 May 1988

Beach Petroleum NL GPO Box 7096 SYDNEY NSW 2001

Attention: Mr Andrew Buffin

REPORT F 7173/88

YOUR REFERENCE:

Letter of 30 March 1988

TITLE:

Geochemical evaluation of residual oils,

Iona-1

SAMPLE IDENTIFICATION:

1324 and 1453 metres depth

MATERIAL:

Sidewall cores

LOCALITY:

IONA-1

DATE RECEIVED:

31 March 1988

WORK REQUIRED:

Extraction liquid chromatography and gas

chromatography

Investigation and Report by: Brian L. Watson

Manager, Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. Spencer

General Manager

Applied Sciences Group

Dri JSteveson

cap

1. INTRODUCTION

Two sidewall cores were received for extraction of residual oil and determination of maturity and genetic affinity.

2. ANALYTICAL PROCEDURES

2.1 Extraction

Sidewall cores were extracted with distilled dichloromethane in a soxhlet apparatus for 24 hours. The extracted organic matter (EOM) was yielded by careful rotary evaporation of the solvent.

2.2 Liquid Chromatography

Asphaltenes were not precipitated from the sediment extracts and topped oils prior to liquid chromatography. The extract/topped oil was separated into hydrocarbons (saturates and aromatics) and polar compounds (resins) by liquid chromatography on activated alumina (sample: adsorbent ratio = 1:100). Hydrocarbons were eluted with petroleum ether/dichloromethane (50:50) and resins with methanol/dichloromethane (65:35). The saturated and aromatic hydrocarbons were then separated by liquid chromatography on activated silica gel (sample: adsorbent ratio = 1:100) eluting in turn with petroleum ether and petroleum ether/dichloromethane (91:9).

2.3 Gas Chromatography

Whole oils and saturated hydrocarbons (alkanes) were examined by gas chromatography using the following instrumental parameters:

Gas chromatograph:

Perkin Elmer Sigma 2 operated in the split

injection mode

Column:

25 m x 0.3 mm fused silica, SGE QC3/BP1

Detector temperature:

300°C

Column temperature:

40°C for 1 minute, then 8° per min. to 300°C and held isothermal at 300°C until all peaks

eluted

Quantification:

Relative concentrations of individual hydrocarbons were obtained by measurement of peak areas with a Perkin Elmer LCI 100 integrator. The areas of peaks corresponding to aromatic hydrocarbons were multiplied by

appropriate reponse factors.

3. RESULTS

The composition of the extractable organic matter (EOM) is presented in Table 1 along with alkane ratios calculated from the saturates chromatograms. The saturates chromatograms are presented in Figures 1-2. Figure 3 is a cross plot of pristane:n-heptadecane against phytane:noctadecane genetic affinity and relative maturity of the extracted hydrocarbons.

4. INTERPRETATION

4.1 Source Affinity

The high pristane:phytane ratios of these oils (Table 1) indicates that their source was deposited in oxic conditions. Such conditions typically occur in terrestrial environments of deposition. Pristane:n-heptadecane and phytane:n-octadecane ratios (Table 1, Figure 3) are consistent with generation from a terrestrial higher plant source.

The low concentrations of naphthenes in these extracts suggests that they consist of residual oils and contain neglibible amounts of extracted indigenous organic matter. Their n-alkane distributions are similar although the oil from 1324 metres depth (SWC 13) contains slightly more $C_{1\,9}$ - $C_{2\,5}$ hydrocarbons than the oil from 1453 metres depth (SWC 2). Both n-alkane distributions are consistent with generation from terrestrial kerogen.

4.2 Maturity

Pristane:n-heptadecane and phytane:n-octadecane ratios indicate that these oils are marginally mature. The notable odd-even predominance of the n-alkanes is consistent with this maturity.

The maturity at which these oils were expulsed from their source rocks may be calculated from their methylphenanthrene index. This index may be derived from GC-MS of the aromatic fractions of these oils. This maturity may then be correlated with the present day maturity of the intersected sediments to more precisely identify the source of these hydrocarbons.

5. CONCLUSIONS

- 1. The hydrocarbons extracted from the Iona-1 sidewall cores represent residual oils which have been generated from similar terrestrial sources
- 2. These residual oils are marginally mature. A more precise measure of maturity could be calculated from the methylphenanthrene index of these oils.
- 3. On the basis of the data from these analyses it seems that these oils were most likely sourced from sediments within the Eumeralla Formation.

TABLE 1: $C_{1\,2+}$ BULK COMPOSITION OF RESIDUAL OILS, IONA-1

Mol 1	Well Denth (m)		C. S. Con	mosition	_			Alkane Ratios	atios	
1		MOEI bpm	Arom 8	EOM Arom Sats R	Res &	TMTD/Pr	Np/Pr	Pr/Ph	IMID/Pr Np/Pr Pr/Ph Pr/n- $C_{1,7}$ Ph/n- $C_{1,8}$	Ph/n-C ₁₈
SWC 13 1324		1059	7.76	54.34	37.90	0.37	0.29	4.32	99.0	0.12
SWC 2 1453	1453	661	661 3.74	55.22	55.22 41.04 0.28	0.28	0.25	5.20	0.54	0.10
	= saturate	ហ			TIMIL	= 2,6,	2,6,10-trimethyltridecane	chyltride	ecane	
Arom =	aromatic hydrocarbons	hydroc	arbons		dN	= norp	norpristane			
Res ==		polar	compounds	ī	. ম	= pris	pristane			
Asnh =		nes	1		Ph	= phytane	ane			
					n-C	= n-he	n-heptadecane	a		
					n^{-C_1} 8	= n-oc	n-octadecane			

GC of Saturates Fraction IONA-1 FIGURE 1 SWC 13 1324 m 23 **GTMT** **GTMT**

GC of Saturates Fraction.
IONA-1
SWC 2
1453 m

FIGURE 2

970 973 38[†]8 †[™]M

IONA-1

APPENDIX 19

LOG ANALYSIS

TO: KEITH SKIPPER

Ref: 502/65/BAG/jam

cc:

ARH cc: RDF, [R] AAY (WITHOUT REFERENCES)

FROM:

B. A. GOLDSTEIN

18 AUGUST 1988

RE: PETROPHYSICAL ANALYSIS OF THE WAARE SST, IONA #1 PEP108

This is the unexplicated version of the letter dated 18.8.88 and sent to Beach on the above subjects.

TLOG86 filename IONA1 includes data at 0.2m increments over the zone 1255 to 1381m to Iona #1.

Constants, column contents and pneumonic definitions are provided in table 1.

Log quality in zones crucial to this evaluation (1299-1345m) is good. Occasional shoulder bed effects are the most significant pitfall to hamper interpretations.

INTERPRETATION SUMMARY - INPUT ASSUMPTIONS

 $BHT^* = 56^{\circ}C \ 0 \ 1487m \ RKB \ (1482.1m \ bg1) - see Figure 2.$

 Rw^{-} = .2 @ 63°C based on DST recoveries in Port Campbell no. 4 (.235 @ 63°C) and Braeside no. 1 (0.18 @ 63°C). This formation water resisistivity is < SPRW in gas saturated and/or shaley Waare Fm sandstones in Iona no. 1 and is lent credibility with the Pickett plot presented as Figure 3.

Shale Parameters: (see table 3)

 $Rsh = 7 \text{ ohm } - m^2 \text{ (based on Rt)}$ Dtsh = 97.5 usec/ft

NPHI Sh = 0.41

RHOOSh = 2.42 g/cc

= 100 API units (eccentric GROSh correction)

(see table 4)

Sandstone Parameters: Dt sand matrix = 55.5 usec/ft RHO sand matrix = 2.65 g/cc

GR sand (clean) = 10 apī units

(eccentric correction)

Formation Factor (F) and Saturation Exponent:

a = 1 (assumed)

m = 1.74 @ 2000 psi effective overburden pressure

n = 2.08 @ 2000 psi effective overburden pressure

The values assigned to a, m and n are based in restored state studies of core no. 1 at a "lab" pressure of 2000 psi (see reference 2a).

A lithostatic pressure gradient between 0.9 and 1.0 psi/ft is reasonable. The maximum SFT pressure (possibly slightly less but not greater than static reservoir pressure) measured in the Waare gas pay corresponds to a .4058 psi/ft pore pressure gradient (see Figure 4): Assuming the low range of plausible lithostatic gradients, the effective overburden pressure gradient (0.9 less 0.4058 psi/ft)suggests that the grain supported pressure is on the order of 2126 psi, i.e., slightly greater than the restored state of core measured a, m and n. Increased overburden stress would push "m" and "n" to subtly higher levels. Thus, use of the measured values provided in reference 2a is potentially, subtly optimistic. The valuee employed for n is relatively pessimistic to the norm (n = 2)in any case.

POROSITY (see table 5):

Core porosities are provided in references 2c, 2e and 3f. The correlation of core depth to log depth is:

- (Core depth 2.6m) = Log depth
- a colour photo of core 1 is provided as reference 7.

been normalised of core phi have measures overburden correlation by the reduction of <2.25> Table 5 displays the units \pm 0.5 p.u. (see Figure 5). hydrocarbon and correlation οf shale neutron-density crossplot porosity to "restored" core porosity Whilst Ushale and hydrocarbon corrected to be acceptable. NDPHI has a standard deviation of $\pm 2.2\%$ porosity with respect to restored state core phi, the extrapolation to restored overburden conditions is probably no more accurate than \pm 1 The correlation between apparent density (RHOGA) from corrected density log data and core no. 1 (see table 4) also lends confidence to derived porosities in the subject log Sonic porosity is not deemed to be reliable; too high a compaction correction (Cp>1.8) needs be applied to reduce sonic phi to credible levels in sandstone.

Of note, there is significant variance between ambient core phi measures in sample no. 10 (core depth $1308.45m = \log depth 1305.85m$) from Amdel (28.7% - reference 2e) vs Core Lab (20.9% - see reference 2f). Near matching results were achieved by both labs for samples 16 and 23 (to ± 0.5 porosity units).

Sw:

Four water saturation equations were examined and found to yield Sxo and Sw values from relatively high to low as follows:

Archie > Total Shale > Indonesia > Dispersed Shale Sω Sω Sω Sω

Archie Total Shale Indonesia Dispersed Shale
Sxo > Sxo > Sxo

Table 6 provides a comparison of Sw from these four models where $\oint \ge .15$ and Ushale $\le .30$ in the zone 1255 to 1381m.

The "wet" sand in the interval 1335.5 to 1345.2m did in fact have gas shows and is partially gas saturated. A zone no thicker than 0.4m (1335.5 to 1335.9m) with S ω ~.49 is discounted from pay tallies as it is (a) isolated and (b) nearly 50% water wet.

Archie provides the most pessimistic (highest $S\omega$) analysis for OGIP estimates and has been applied. Higher GIP volumes would result from using "shaley" sandstone model results (sic. Total Shale, Indonesia or Dispersed Shale Models).

Archie provides the most optimistic (highest Sxo) analysis for recovery of gas in pay. The average difference between gas saturation $(1-S\omega)$ and residual gas saturation (1-Sxo) corresponds to a recovery factor of ~.77% whilst trapped gas measures in core 1 (see reference 2f) suggest a lower (\leq 67%) recovery factor.

One could mix a shaley model for Sxo with Archie Sw to mimic a lower recovery factor. However, shaley models seem inappropriate for the rather "clean" reservoir pay sandstones in the Θ are of Iona no. 1. Archie values for $S \times o$ are recommended, though probably "optimistic".

Archie Sw also provides a credible transition zone from <.5 Sw above 1324.6m to $\sim.5$ Sw in the zone 1324.8m.

The following tabulations are provided on Table 7:

Net pay (Archie Sw <.501, USH <.301 and $\not\!\! p$ >.149) in the intervals 1255 to 1381 at .2m increments. Tabulations are given for:

- depth (m RKB)
- vshale (soft fm model, GRCOR CLEAN = 10/GCOR SHALE = 100
- NDPHI SC/HC (shale & hydrocarbon corrected neutrondensity phi).
- Di (small slam diameter of invasion)
- Rt (small slam Rt using bore hole corrected values for LLS, LLD and MSFL)
- Rxo (based on MW and hole size corrected MSFL)
- Archie Sw
- Total Shale Sw
- Indonesia Sm
- Dispersed Shale Sw
- Archie Sxo
- Total shale Sxo
- Indonesia Sxo
- Dispersed Shale Sxo
- (1-Archie Sω) = Gas saturation.

The water saturation equations employed are as follow where:

Rsh = 7 F = a/phi **m Rw = .2 @ 63°C Ro = F * Rw n = 2.08 I = Rt/Ro m = 1.74 x = ((Ro * Ush(1-vsh))/(2*Rsh)) a = 1

Archie $S\omega = (1/I) * *1/n$

Dispersed Shale $S\omega = ((((((PHI*I)+(USH*(RSH-Rt))))/(2*Rsh))**2)/(phi-Ush))**0.5)-(((Ush*(Rsh+R\omega))/(2*Rsh))$

Total Shale Sw=((Ro/Rt+((Ro*USH)/(2×Rsh))**2)**.5)-((Ro*Ush)/(2*Rsh))

Indonesia: $S\omega = (((Ro * (1-Ush))/(Rt + (x**2)))**.5)-x$

SENSITIUITY OF PAY TALLIES TO CUTOFFS

Net pay totals are relatively insensitive to rather severe cutoffs (see table 8). The variation in net pay between a lax suite of cutoffs (phi \geq 12% Archie Sw \leq .6 and Vsh \leq .3) and a severe set of pay constraints (phi \geq 20%, Archie Sw \leq 0.45 and Vsh \leq .3) is 22m (lax) vs 18.2m (severe) net pay respectively.

The Waare Fm in Iona is a consistently good reservoir above the interpreted LKG@ 1324.7m.

Table 9 provides values for Ushale, phi and Archie $S\omega$ in interpreted pay.

TABLES

- Table 1 Mneumonics: List of channel names and constrants in Terralog Filename: IONA 1
- Table 2 Pay Summary, Iona 1
- Table 3 Shale Characteristics
- Table 4 Sandstone Characteristics
- Table 5 Correlation of log phi to ambient core phi extrapolated (-2.25 p.ù. \pm .5 p.a.) to overburden conditions
- Table 6 Comparison of four Sw models (Archie, Total Shale Indonesia and Dispersed Shale) in net sand $(vsh \leq .3 \text{ and phi } \geq .15)$
- Table 7 Comparison of four models for Sxo and Sw (Archie, Total Shale, Indonesia and Dispersed Shale) along with listings of Ushale, corrected NDPHI, Di, Rt, Rxo and gas saturation (1-Archie Sw). Output is limited to Archie Sw \leq .51, O \geq .15 and Ushale \leq .30
- Table 8 Sensitivity of Pay Tallies to Various Cutoffs.
- Table 9 Net Pay Tally (Ush, Phi & Archie Sω)
- Table 10 Compressibility data Calculation of Bg.

FIGURES

- Figure 1 Time structure at near top Flaxmans (~ top Waare) by AR Hoare (8/87) with an optimistic contour option illustrating "blue sky" potential for ~700 acre area inside the interpreted LCC.
- Figure 2 Extrapolated BHT Graph: Temperature vs (t + T/t)
- Figure 3 Pickett Plot: Log Rt vs Log p

 Constraints on input:

 Ush <.3

 Sw >.7

 p >.07

Interpreted water line slope = m = 1.74 with its intercept at 100% \emptyset = Rw = .24 ohm $\frac{1}{2}$ m² 52.4°C (midpt BHT).

- Figure 4 Soft Formation Ushale Model (USHGR-TERT'Y) vs Linear (older rocks) Ushale Model for Iona no. 1, 1255 to 1381m.
- Figure 5 Restored State Core PHI Functions.
- Figure 6 Log plot of USH, PHI, (1-Sw)*PHI and (Sxo-Sw)*PHI

REFERENCES

- Kozma, G (29.3.88) Iona 1 SFT Survey, Bridge Memo 502/81/GK/kn
- Sample Studies (and related correspondence).
 - 2a) AMDEL (27.5.88) Special Core Analysis, Iona no. 1 Core Plugs, Fm Resistivity factor and Resistivity Index (at Restored State) (sent to Beach) Rpt no F7197/88
 - 2b) Beach (14.4.88) Special Core Analysis, Iona no. 1 Recommendation for SCAL studies. (Facsimile from Beach to Bridge).
 - 2c) AMDEL (14.4.88) Core Porosity at Overburden Conditions and Sieve Analysis (sent to Beach) <u>Rpt no F5179/88</u>.
 - 2d) AMDEL (21.7.88) XRD of Core Samples (sent to Beach) Rpt no F7266.
 - 2e) AMDEL (?) Ambient Phi, K, SG and Grain Density Measures, Core 1, Iona 1 (sent to Bridge by Beach on 23/33/88 no AMDEL reference.
 - 2f)Core Lab (19/7/88) Preliminary Residual Gas Saturation Results for Core No. 1 (Including Re-analyse of Ambient Phi and K).
- 3) Roberts, R. (19.3.88) Preliminary Log Analysis, Iona No.1, Bridge file note 502/488/24/RR/kd.
- 4) Roberts, R. (19.3.88) Preliminary OGIP Estimate, Iona. Bridge file note 502/488/65/RR/kd.

- 5a) Frith, R. (16.3.88) Preliminary Gas Analysis (transcript of phone call with Garry Scott, Beach).
- 5b) Gas and Fuel Labs. (10.6.88) Compressibility and Analysis of Iona gas. Rpt No. 88/252/c Sample Book No. 88/711.
- 6) Log Prints from wellsite 1:200 scale as follow:
 6a) DLL/MSFL/GR (Note: 2.6m shift of core depths <u>up</u>
 required to match log depths).
 - 6b) SLD/CNS/GR
 - 6c) BCS/GR
- 7) Core no. 1 Colour photo.

FIGURES

Figure 1 Time structure at near top Flaxmans (~ top Waare) by AR Hoare (8/87) with an optimistic contour option illustrating "blue sky" potential for ~700 acre area inside the interpreted LCC.

Figure 2 Extrapolated BHT Graph: Temperature vs (t + T/ t)

Figure 3 Pickett Plot: Log Rt vs Log O
Constraints on input:

Vsh <.3

Sw >.7

0 >.07

Interpreted water line slope = m = 1.74 with its intercept at 100% O = Rw = .24 ohm - m^2 52.4°C (midpt BHT).

Figure 4 Soft Formation Vshale Model (VSHGR-TERT'Y) vs Linear (older rocks) Vshale Model for Iona no. 1, 1255 to 1381m.

Figure 5 Restored State Core PHI Functions.

Figure 6 Log plot of VSH, PHI, (1-Sw)*PHI and (Sxo-Sw)*PHI

TABLES

- Table 1 Mneumonics: List of channel names and constrants in Terralog Filename: IONA 1
- Table 2 Pay Summary, Iona 1
- Table 3 Shale Characteristics
- Table 4 Sandstone Characteristics
- Table 5 Correlation of log phi to ambient core phi extrapolated (-2.25 p.u. ± .5 p.a.) to overburden conditions
- Table 6 Comparison of four Sw models (Archie, Total Shale Indonesia and Dispersed Shale) in net sand ($vsh \le .3$ and $phi \ge .15$)
- Table 7 Comparison of four models for Sxo and Sw (Archie, Total Shale, Indonesia and Dispersed Shale) along with listings of Vshale, corrected NDPHI, Di, Rt, Rxo and gas saturation (1-Archie Sw). Output is limited to Archie Sw < .51, 0 > .15 and Vshale < .30
- Table 8 Sensitivity of Pay Tallies to Various Cutoffs.
- Table 9 Net Pay Tally (Vsh, Phi & Archie Sw)
- Table 10 Compressibility data Calculation of Bg.

This is an enclosure indicator page.
The enclosure PE906657 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906657 has the following characteristics:

ITEM_BARCODE = PE906657
CONTAINER_BARCODE = PE902192

NAME = Table 1, Appendix 19

BASIN = OTWAY PERMIT = PEP108

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Mneumonics for Terralog, Table 1,

Appendix 19

REMARKS =

 $DATE_CREATED = 18/08/88$

DATE_RECEIVED =

 $W_NO = W970$

 $WELL_NAME = IONA-1$

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906658 is enclosed within the container PE902192 at this location in this document.

```
The enclosure PE906658 has the following characteristics:
    ITEM_BARCODE = PE906658
CONTAINER_BARCODE = PE902192
            NAME = Table 2, Appendix 19
            BASIN = OTWAY
           PERMIT = PEP108
            TYPE = WELL
          SUBTYPE = DIAGRAM
      DESCRIPTION = Net Pay Summary, Iona-1, Table 2,
                    Appendix 19
          REMARKS =
     DATE_CREATED = 18/08/88
    DATE_RECEIVED =
             W_NO = W970
        WELL_NAME = IONA-1
       CONTRACTOR =
     CLIENT_OP_CO = BEACH PETROLEUM
```

This is an enclosure indicator page.
The enclosure PE906659 is enclosed within the container PE902192 at this location in this document.

(Inserted by DNRE - Vic Govt Mines Dept)

The enclosure PE906659 has the following characteristics: ITEM_BARCODE = PE906659 CONTAINER_BARCODE = PE902192 NAME = Table 3, Appendix 19 BASIN = OTWAY PERMIT = PEP108 TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Shale Characteristics, Iona-1, Table 3, Appendix 19 REMARKS = $DATE_CREATED = 18/08/88$ DATE_RECEIVED = $W_NO = W970$ WELL_NAME = IONA-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.

The enclosure PE906660 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906660 has the following characteristics: ITEM_BARCODE = PE906660 CONTAINER_BARCODE = PE902192 NAME = Table 4, Appendix 19 BASIN = OTWAYPERMIT = PEP108TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Sandstone Characteristics, Iona-1, Table 4, Appendix 19 REMARKS = DATE_CREATED = 18/08/88 DATE_RECEIVED = $W_NO = W970$ WELL_NAME = IONA-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906661 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906661 has the following characteristics:

ITEM_BARCODE = PE906661
CONTAINER_BARCODE = PE902192

NAME = Table 5, Appendix 19

BASIN = OTWAY
PERMIT = PEP108
TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Correlation of Log to Restored State

Core Phi, Table 5, Appendix 19

REMARKS =

DATE_CREATED = 18/08/88

DATE_RECEIVED =

W_NO = W970 WELL_NAME = IONA-1

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906662 is enclosed within the container PE902192 at this location in this document.

```
The enclosure PE906662 has the following characteristics:
    ITEM_BARCODE = PE906662
CONTAINER_BARCODE = PE902192
            NAME = Table 6, Appendix 19
            BASIN = OTWAY
           PERMIT = PEP108
            TYPE = WELL
          SUBTYPE = DIAGRAM
      DESCRIPTION = Sw in Net Sand, Iona-1, Table 6,
                    Appendix 19
          REMARKS =
     DATE\_CREATED = 18/08/88
    DATE_RECEIVED =
            W_NO = W970
        WELL_NAME = IONA-1
       CONTRACTOR =
     CLIENT_OP_CO = BEACH PETROLEUM
```

This is an enclosure indicator page.
The enclosure PE906663 is enclosed within the container PE902192 at this location in this document.

```
The enclosure PE906663 has the following characteristics:
    ITEM_BARCODE = PE906663
CONTAINER_BARCODE = PE902192
            NAME = Table 7, Appendix 19
           BASIN = OTWAY
           PERMIT = PEP108
            TYPE = WELL
          SUBTYPE = DIAGRAM
      DESCRIPTION = Net Pay Sand, Iona-1, Table 7, Appendix
                    19
          REMARKS =
     DATE\_CREATED = 18/08/88
    DATE_RECEIVED =
            W_NO = W970
        WELL_NAME = IONA-1
       CONTRACTOR =
     CLIENT_OP_CO = BEACH PETROLEUM
(Inserted by DNRE - Vic Govt Mines Dept)
```

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.

The enclosure PE906664 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906664 has the following characteristics: ITEM_BARCODE = PE906664 CONTAINER_BARCODE = PE902192 NAME = Table 8, Appendix 19 BASIN = OTWAY PERMIT = PEP108 TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Sensitivities of Pay Tallies, Table 8, Appendix 19 REMARKS = DATE_CREATED = 18/08/88 DATE_RECEIVED = $W_NO = W970$ WELL_NAME = IONA-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.

The enclosure PE906665 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906665 has the following characteristics: ITEM_BARCODE = PE906665 CONTAINER_BARCODE = PE902192 NAME = Table 9, Appendix 19 BASIN = OTWAYPERMIT = PEP108 TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Net Pay, Iona-1, Table 9, Appendix 19 REMARKS = $DATE_CREATED = 18/08/88$ DATE_RECEIVED = $W_NO = W970$ WELL_NAME = IONA-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906666 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906666 has the following characteristics: ITEM_BARCODE = PE906666 CONTAINER_BARCODE = PE902192 NAME = Table 10, Appendix 19 BASIN = OTWAY PERMIT = PEP108 TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Compressibility Evaluation, Table 10, Appendix 19 REMARKS = DATE_CREATED = 18/08/88 DATE_RECEIVED = $W_NO = W970$ WELL_NAME = IONA-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906667 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906667 has the following characteristics:

ITEM_BARCODE = PE906667
CONTAINER_BARCODE = PE902192

NAME = Figure 1, Structure Map

BASIN = OTWAY PERMIT = PEP108

TYPE = SEISMIC

SUBTYPE = HRZN_CNTR_MAP

DESCRIPTION = Figure 1, App 19, TWT to Near Top

Flaxmans Formation

REMARKS =

DATE_CREATED = 31/08/87

DATE_RECEIVED =

W_NO = W970 WELL_NAME = IONA-1

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906668 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906668 has the following characteristics:

ITEM_BARCODE = PE906668
CONTAINER_BARCODE = PE902192

NAME = Figure 2, Static BHT

BASIN = OTWAY

PERMIT = PEP108

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Figure 2, App 19, Iona-1, Static BHT

REMARKS =

DATE_CREATED = 28/07/88

DATE_RECEIVED =

 $W_NO = W970$

WELL_NAME = IONA-1

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.

The enclosure PE906669 is enclosed within the container PE902192 at this location in this document.

```
The enclosure PE906669 has the following characteristics:
    ITEM_BARCODE = PE906669
CONTAINER_BARCODE = PE902192
            NAME = Figure 3, Picket Plot
           BASIN = OTWAY
           PERMIT = PEP108
            TYPE = WELL
          SUBTYPE = DIAGRAM
     DESCRIPTION = Figure 3, App 19, Iona-1, Picket Plot
         REMARKS =
    DATE_CREATED =
    DATE_RECEIVED =
            W_NO = W970
        WELL_NAME = IONA-1
       CONTRACTOR =
     CLIENT_OP_CO = BEACH PETROLEUM
```

This is an enclosure indicator page.

The enclosure PE906670 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906670 has the following characteristics:

ITEM_BARCODE = PE906670
CONTAINER_BARCODE = PE902192

NAME = Figure 4, VSHALE Plot

BASIN = OTWAY

PERMIT = PEP108

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Figure 4, App 19, Iona-1, VSHALE Plot

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W970$

WELL_NAME = IONA-1

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906671 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906671 has the following characteristics:

ITEM_BARCODE = PE906671
CONTAINER_BARCODE = PE902192

NAME = Figure 5, Restored State Core Data

BASIN = OTWAY PERMIT = PEP108

TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Figure 5, App 19, Iona-1, Restored

State Core Data

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W970$

WELL_NAME = IONA-1

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM

This is an enclosure indicator page.

The enclosure PE906672 is enclosed within the container PE902192 at this location in this document.

The enclosure PE906672 has the following characteristics:

ITEM_BARCODE = PE906672
CONTAINER_BARCODE = PE902192

NAME = CPI Analysis Log

BASIN = OTWAY

PERMIT = PEP108

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = CPI Analysis Log, Appendix 19, Iona-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W970$

WELL_NAME = IONA-1

CONTRACTOR =

CLIENT_OP_CO = BEACH PETROLEUM