

WCR (VOL.2) GREENSLOPES-1 W924

PEP 101 GREENSLOPES 1 Well Completion Report

Volume 2 APPENDICES

L.P.MITCHELL January 1986

17 JUL 1986 PETROLEUM DIVISION

APPENDIX 1

LITHOLOGICAL DESCRIPTIONS

GREENSLOPES NO. 1 SAMPLE DESRCIPTIONS

AT:

140 - 150m:

CEMENT (70%)

MUDSTONE (30%). (Arenaceous/silty) light grey, blocky calcareous.

TRACE: Coal, fossils, fossil fragments, calcite fragments, occasional quartz liths + grains, yellow-brown, limonitic, subangular.

140 - 160m:

MUDSTONE (100%)

Olive - light grey, blocky, very calcareous, fossiliferous, bioclastic, slightly micaceous, occasional calcite fragments.

TRACE: rare free quartz grains.

160 - 170m:

MUDSTONE (100%)

Olive - light grey, blocky, very calcareous, very fossiliferous-fossil fragments (bioclastic), sub-fissile, slightly micaceous, occasional calcite fragments.

TRACE: free quartz grains.

170 - 180m:

MUDSTONE (100%)

As above, with occasional carbonaceous fragments

+ specks.

180 - 190m:

MUDSTONE (100%) As above.

190 - 200m:

MUDSTONE (100%)

As above with increase in fossils, fossil

fragments + calcite fragments.

TRACE: quartz grains, coal specks.

200 - 210m:

MUDSTONE (100%) As above.

210 - 220m:

MUDSTONE (100%) As above.

220 - 230m:

MUDSTONE (100%) As above.

230 - 240m:

MUDSTONE (100%) As above

Very Bioclastic.

240 - 250m:

MUDSTONE (100%)

As above. Very calcareous, very bioclastic, slightly limonitic, arenaceous - silty in part.

250 - 260m:

MUDSTONE (100%)

Light - medium grey, blocky - subfissile, amorphous, slightly silty, slightly carbonaceous, very calcitic, bioclastic, calcite fragments.

TRACE: free quartz grains - slightly limonitic.

260 - 270m:

MUDSTONE (100%)

Light grey, blocky — slightly amorphous, very calcareous, bioclastic, carbonaceous specks, rare free quartz grains.

270 - 280m:

MUDSTONE (100%)

Light-medium grey, blocky-subfissile, soft-friable, very calcareous, fossiliferous - bioclastic, slightly carbonaceous, slightly micaceous, rare - trace free quartz grains.

280 - 290m:

MUDSTONE (100%)

Olive —light grey, medium grey, blocky, soft — subfissile, very calcarous, slightly micaceous, slight carbonaceous specks, occasional free quartz, abundant shell fragments, coral and spicules, micro—gastropods, slightly sandy, slighty limonitic.

290 - 300m:

MUDSTONE (100%)

As above. With abundant calcite lithics + fragments.

300 - 310m:

MUDSTONE (100%)

As above with trace glauconite, slightly micromicaceous, decreasing complete fossils and increasing fossil fragments + calcareous fragments.

Slight mineral fluorescence.

310 - 320m:

MUDSTONE (100%)

As above with trace glauconite and decreasing fossils + fragments.

320 - 330m:

MUDSTONE (100%) As above.

330 - 340m:

LIMESTONE (70%)

Yellow-orange-brown, limonitic, granular - sucrosic, microcrystalline, carbonaceous specs, pyritic specks, argillaceous matrix.

<u>MUDSTONE</u> (30%) : Light grey, calcaveous as above.

<u>TRACE</u>: glauconite, pink — orange liths, carbonaceous specks, pyrite specks.

Good mineral fluorescence.

340 - 350m:

MUDSTONE (70%)

Light grey — olive grey, blocky, soft, slightly argillaceous, very calcareous, fossiliferous — bioclastic.

<u>LIMESTONE (30%)</u>: Light grey — white, granular, microcrystalline, trace carbonaceous specks, slightly pyritic, slightly limonitic.

TRACE: Glauconite, carbonaceous fragments, pink grains + carbonaceous specks.

350 - 360m:

SANDSTONE (90%)

Orange-brown, fine-coarse grained, subrounded, unsorted, hard, some grains pitted, dirty limonitic matrix, slight calcareous-calcitic cement, fossiliferous, abundant calcite fragments, abundant ferruginous nodules (ironstone) fossil replacement + nodules.

<u>SILTSTONE (20%)</u>: Light grey, fine grained, slightly argillaceous, slightly micaceous, carbonaceous specks, calcareous trace lithic grains, grades to mudstone in part.

Visual porosity: TIGHT.

SHOWS: None - slight mineral fluorescence.

360 - 370m:

SANDSTONE (70%)

Yellow - orange - brown, some clear - white grains, dirty, medium - coarse, subangular-subrounded, poorly to unsorted, hard, cemented, slightly calcareous, abundant fossils (sponge + spicules) pyritic, limonitic.

<u>SILTSTONE</u> (20%): Light — dark grey, very fine to fine grained, argillaceous, grades to mudstone, occasionally hard, usually friable, carbonaceous, slightly calcareous, slightly glauconitic.

FERRUGINOUS (NODULES - (Ironstone?) (10%):

Abundant black, amorphous nodules, shiney, brittle, also dull, black-dark brown fragments + fossil replacement, some with pyritic lustre. Occasional resinous-glossy lustre-pyritization in part.

TRACE: red lithic grains + fragments.

Visual porosity : POOR.

SHOWS: None - slight mineral fluorescence.

370 - 380m:

SILTSTONE (90%)

Medium — dark grey, occasional dark brown, grades to mudstone in parts, very fine grained, very hard to hard, occasionally soft — friable, occasionally argillaceous, pyritic, carbonaceous, quartzose, very fossiliferous — bioclastic.

SANDSTONE (10%): Yellow - clear, medium - very fine grained, subrounded-subangular, poorly sorted, some grains pitted, occasionally pyritic.

TRACE: Coloured lithic grains - pink - red, Dolomite.

Visual porosity: POOR.

SHOWS: None.

380 - 390m:

SILTSTONE (70%) As above grades to mudstone.

SANDSTONE (30%) As above.

TRACE: Coloured lithic grains.

Visual porosity: POOR.

SHOWS: None.

390 - 400m:

SANDSTONE (80%)

Clear, white, milky with pink, yellow orange, green, fine to medium with occasional coarse grains, subangular — subrounded, occasional grains with pyritic inclusions, moderate — poor sorting, hard, slight calcitic cement. Some grains pitted + secondary growths, occasionally limonitic, abundant coloured lithic grains — brown, pink, red, green. (granitic wash).

SILTSTONE 20% Medium - dark grey, occasionally dark brown-black, very fine grained, argillaceous, occasionally grades to mudstone, pyritic, slightly carbonaceous, very hard - friable. occasionally fossiliferous.

TRACE: occasional ferruginous fragments & nodules.

Visual porosity: FAIR - GOOD.

400 - 410m:

SANDSTONE (90%)

As above.

SILTSTONE (10%) As above

TRACE: mudstone, lithic fragments as above, ferruginous nodules.

Visible porosity: FAIR - GOOD.

SHOWS: None.

410 - 420m:

SANDSTONE (100%)

Clear, white, pink, grey — brown, occasionally milky, very fine to fine grained, subrounded, moderately sorted, moderately hard — friable, occasional large clear — pink quartz grains with pyritic inclusions, occasionally pitted. Abundant coloured lithic fragments, slight calcareous cement

TRACE: ferruginous-pyritic nodules, occasional fossils, grey-green fine-grained lithic fragments.

Visual porosity: FAIR - GOOD.

SHOWS: None.

420 - 430m:

SILTSTONE (80%)

Light medium — medium grey, occasionally dark grey, medium brown — green/grey, very fine — fine grained, occasionally sucrosic, soft — firm, occasionally blocky, very calcareous, very fossiliferous, pyritized, slightly carbonaceous.

SANDSTONE (20%) Clear, pink, brown, white, occasional milky grains, very fine — very coarse, subrounded, moderate — poorly sorted, moderately hard — friable, pyritic inclusions in large grains, grain shatter in some large grains. Abundant coloured lithic fragments.

COAL : very slight trace - blocky, dark brown,
soft - friable, resinous lustre.

430 - 440m:

Nil return.

440 - 450m:

SANDSTONE (70%) As above.

<u>SILTSTONE (30%)</u> As above. Grades to mudstone in part.

TRACE: coal - black, soft - friable, resinous lustre, subvitrinous.

TRACE dark red lithic fragments - garnets, fossils fragments, occasional pyrite + limonite.

Visual porosity: FAIR.

SHOWS: None.

450 - 460m:

MUDSTONE (80%)

Light - medium grey, occasionally dark grey, dark brown, grey - green, amorphous, blocky, soft-plastic, occasionally hard - brittle, slightly carbonaceous, pyritic, glauconitic, slightly calcareous, slight fossil fragments, trace calcite fragments.

SANDSTONE (20%) Clear-yellow/orange, occasionally milky, very fine — fine grained, occasionally coarse, angular-subrounded, large quartz grains with frosted + pitted surfaces with pyritic + carbonaceous inclusions, secondary cementation — regrowths, limonitic, pyritic, fossiliferous. TRACE: Glauconite, chert, pyritic nodules, volcanic detritus, coloured lithic fragments.

Visual Porosity: POOR.

SHOWS: None.

460 - 470m:

MUDSTONE (90%)

As above with increased calcargillites, very blocky, grades to very fine grained argillaceous siltstone in part.

SANDSTONE (10%). As above. Fossiliferous

TRACE : Ironiferous fragments, coloured volcanic liths, pyritic nodules, chert pebbles.

Visual porosity: POOR.

470 - 480m:

SILTSTONE (70%)

Light — medium grey, dark grey, olive green—grey, very fine — fine grained, sucrosic, soft — friable grades to mudstone in part, slightly carbonaceous, slightly glauconitic, slightly argillaceous, pyritic, occasional free quartz grains, slightly fossiliferous.

SANDSTONE (20%) Clear, yellow, orange — brown, occasionally milky, very fine — medium fine grained, rarely coarse grained, subangular — subrounded, moderately — well sorted, hard — brittle, Calcitic cement, pyritic, carbonaceous.

<u>MUDSTONE (10%)</u> Light grey — medium grey — green, very calcareous, argillaceous, carbonaceous, slightly glauconitic, soft — plastic, blocky — amorphous, micaceous.

TRACE: Coloured lithic fragments — volcanic detritus, chert pebbles, carbonaceous fragments, fossil fragments.

Visual Porosity: NIL

SHOWS: None.

480 - 490m:

SILTSTONE (70%) As above

SANDSTONE (20%) As above

MUDSTONE (10%) As above

TRACE: as above.

490 - 500m:

MUDSTONE (100%)

Light - medium grey, occasionally green, black, carbonaceous, blocky, soft - firm, plastic - dispersive, occasionally brittle, occasional free quartz grains, slightly calcareous, occasionally micromicaceous, chloritic - light green grains, carbonaceous fragments, occasional calcite fragments, slightly pyritic, limonitic slightly sandy. Grades to very fine grained - soft siltstone in part.

TRACE: Fossil fragments, free quartz grains — white, clear, yellow, fine grained, glauconite.

500 - 510m:

MUDSTONE (100%) As above.

510 - 520m:

MUDSTONE (100%) As above.

520 - 530m:

SILTSTONE (80%)

Light grey - light green, dark grey occasionally black, fine grained, grades to mudstone, occasional free quartz grains in matrix, soft - friable, occasionally hard - brittle, quartzose, sucrosic, carbonaceous, very slightly calcareous, chloritic, pyritic.

<u>MUDSTONE (20%)</u> Light grey, white, light green - grey, light brown, blocky, soft - firm, plastic, dispersive, calcareous.

TRACE: coal-carbonaceous fragments, black - dark brown, pyritic, hard - brittle, micaceous/carbonaceous shale.

530 - 540m:

SILTSTONE (80%) As above

MUDSTONE (20%) As above

TRACE As above.

540 - 550m:

SILTSTONE (70%) As above

MUDSTONE (30%)

As above. Very carbonaceous with small soft black lignitic, specks, mudstone with carbonaceous partings, slightly fossiliferous, slightly pyritic.

TRACE: As above.

550 - 560m:

MUDSTONE (60%)

Light grey — green to light grey, occasionally dark grey to black, blocky, soft — friable, some hard — dispersive, black carbonaceous specks and fragments, occasional — rare free quartz grains, micaceous, chloritic, silicic, slightly calcareous, trace pyritic.

SILTSTONE (20%) Light - dark grey-black, greenish, grey, occasionally light brown, very fine to fine grained, grades to mudstone, blocky, soft to friable, occasional carbonaceous partings, chloritic, pyritic, slightly calcareous.

550 - 560m cont.

SANDSTONE (20%) Light grey to white, occasional pink grains, fine to medium, moderately sorted, subrounded, some grains with secondary silicification and slight calcitic cement, limonitic, fossiliferous.

TRACE: Dark green, grey, black, brown lithic fragments, feldspar, fossil fragments - predominantly spicules + fragments, coallignite, pyritic.

Visual porosity: POOR

SHOWS: None.

560 - 570m:

SANDSTONE (60%)

Light grey, white, light brown, clear - milky, fine - medium, occasionally coarse grained, angular - subangular and subrounded, moderately sorted, occasional pitted and frosted large grains with carbonaceous inclusions, slightly argillaceous matrix, very slightly calcareous, pyritic.

SILTSTONE (20%) As above.

MUDSTONE (20%) As above.

TRACE: Fossil fragments, frequent dark volcanic lithic fragments.

Visual Porosity: POOR.

SHOWS: None.

570 - 580m:

SILTSTONE (90%)

Light grey - green grey, dark grey - black, very fine - fine, sucrosic in parts, soft - friable, occasionally brittle, siliceous, slightly micaceous, carbonaceous, blocky to subfissile, some carbonaceous partings, limonitic in part, slightly calcareous, very chloritic, occasional pyritic specks. Rare free quartz grains in matrix.

MUDSTONE (10%) As above.

COAL (Trace): Lignitic, black - dark brown,
earthy, limonitic, friable - soft.

TRACE: Dark volcanic liths, quartz grains, fossil fragments.

Visible porosity: POOR.

580 - 590m:

SILTSTONE (90%) As above.

<u>MUDSTONE (10%)</u> As above with trace microlaminations.

<u>SANDSTONE (Trace</u>): clear, white, yellow grains, fine grained, subrounded — subangular, free quartz grains, calcareous.

TRACE: Fossil fragment, pyrite, volcanic debris.

590 - 600m:

SILTSTONE (100%)

Light grey/green — light grey, occasionally light brown to black, very fine — fine grained, soft — friable, occasionally subfissile, occasionally brittle and silicified, slightly calcareous, very chloritic, slightly carbonaceous, carbon specks in matrix, occasional carbonaceous and pyritic partings, argillaceous grading to mudstone.

COAL (Trace): - lignitic fragments, soft-friable, dark brown, earthy, occasionally hard-subvitrinous, grades to carbonaceous shale.

TRACE: Dark lithic fragments, shell fragments, quartz grains, pink grains.

600 - 610m:

SILTSTONE (100%) As above.

TRACE: Pyritic fragments, pink grains, mudstone, coal fragments, mica, rare red lithic grains, rare large white quartz grains.

610 - 620m:

SILTSTONE (100%) As above.

620 - 630m:

<u>SILTSTONE (90%)</u> As above grades to mudstone in part.

MUDSTONE (10%) Light grey — white, slightly calcareous, soft, blocky — amorphous, slightly carbonaceous, slightly pyritic, slightly sandy.

<u>COAL (Trace)</u> - black, hard friable, shaley / argillaceous sub-bituminous to lignitic.

TRACE: occasional large red lithic grains - garnet?, occasional pyrite and ironiferous, nodules.

630 - 640m:

MUDSTONE (100%)

Light grey — grey green, blocky, brittle — friable, grades to soft, dispersive, argillaceous, also grades to siltstone, very carbonaceous, slightly pyritic. Very chloritic.

<u>COAL</u> (Trace) black, brown, fragmented, hard, friable, sub-bituminous - lignitic, some large fragments.

TRACE: fossils, large quartz grains and rock fragments.

640 - 650m:

<u>SILTSTONE - MUDSTONE (100%)</u> As above.

TRACE: Large lithics — volcanic / coloured rock fragments, dark green, black, liths, + chlorite grains, chert fragments, garnet, pyrite, pink quartz grains.

650 - 660m:

SILTSTONE- MUDSTONE (100%) As above. Silty

matrix.

TRACE: Rock liths, pyrite, coal — very small fragments and specks, quartz grains — large lithic grains.

660 - 670m:

SILTSTONE - MUDSTONE (100%) As above.

TRACE: As above.

670 - 680m:

MUDSTONE (80%) As above.

<u>SILTSTONE (20%)</u> As above. Trace calcareous matrix.

TRACE: Fossils — occasional large yellow — brown liths, quartzose grains and fragments, Coaly — carbonaceous material, — rare pyrite.

680 - 690m:

SILTSTONE (70%) As above.

MUDSTONE (10%) As above.

SANDSTONE (20%) Clear - white - milky, light grey - green/grey, yellow - brown, very fine - fine, subrounded, well sorted, slightly calcareous - argillaceous, grades to siltstone, carbonaceous material coated on some grains, slightly micaceous, chloritic matrix

TRACE: Coloured rock fragments, fossil fragments.

Visual porosity: NIL.

690 - 700m:

SANDSTONE (80%)

Light grey — white, some yellow, brown, grains, very fine — medium fine, occasionally coarse, well sorted, subangular — subrounded, hard — brittle, slightly argillaceous, very calcareous — calcitic cement, some nodular pyrite + quartz grain aggregates, rare carbonaceous specks, grades to siltstone in part.

SILTSTONE (10%) Light grey — green, dark grey — black — brown, very fine — fine grained, sucrosic — argillaceous, grades to mudstone, blocky, carbonaceous, micaceous — very chloritic, pyritic, occasionally fossiliferous.

MUDSTONE (10%) Light grey - grey/green occasionally white, amorphous to blocky, dispersive, very chloritic, very carbonaceous, slightly calcareous.

TRACE: Fossil fragments, very large chert and free quartz grains, (-orange - yellow subangular, milky, frosted, conchoidal fracture), pyrite, rare rock fragments.

Visual Porosity: POOR

SHOWS: None.

700 - 710m:

SILTSTONE (60%) As above.

MUDSTONE (40%) As above, becoming very calcareous, very carbonaceous.

TRACE: As above.

710 - 720m:

MUDSTONE (80%)

Light grey — green/grey, soft—dispersive, blocky — amorphous, siliceous, micromicaceous, slightly calcareous, carbonaceous, slightly fossiliferous, very chloritic, carbonaceous specks.

<u>SILTSTONE</u> (20%) Light grey — green/grey, occasionally black, very fine grained, quartzose, carbonaceous specks, slightly pyritic, occasional microlaminations, slightly argillaceous — grades to mudstone, carbonaceous partings in mudstone and siltstone often with pyrite.

COAL (Trace) — Carbonaceous material, black, blocky, subfissile dull lustre, brittle fracture, often earthy and lignitic — pyritic.

TRACE: Occasional fine grained pink quartz, fossil fragments.

720 - 730m:

MUDSTONE (80%) As above.

<u>SILTSTONE (20%)</u> As above grades to sandstone in parts.

TRACE: carbonaceous fragments, coloured lithics, fossil fragments.

730m - 740m:

MUDSTONE (80%) As above.

SILTSTONE (20%) As above. Slightly calcareous.

TRACE: Carbonaceous fragments, calcite fragments, coloured lithics, fossil fragments, occasional free quartz grains.

740 - 750m:

MUDSTONE (90%) As above. Slight microlaminations with carbonaceous partings, very dispersive.

SILTSTONE (10%) As above.

<u>SANDSTONE (Trace</u>): light grey — green, very fine grained, , calcitic cement.

TRACE: coal fragments, coloured lithics, fossils.

750 - 760m:

MUDSTONE (90%) As above

SILTSTONE (10%) As above

TRACE: sandstone as above, coal fragments, increased pyrite, coloured lithics.

760 - 770m:

SILTSTONE (70%) Light grey - green/grey, occasionally dark grey, very fine - fine grained, blocky, brittle to soft, occasionally friable, sucrosic, quartzose, micaceous, very chloritic, very carbonaceous with specks and partings in parts, calcareous, argillaceous in part grades to mudstone.

<u>MUDSTONE (20%)</u> Light grey — green occasionally buff, carbonaceous, calcareous, very chloritic, blocky, soft.

SANDSTONE (10%) light grey, white, yellow, some coloured grains, subrounded — subangular, loose, unconsolidated grains, muddy clay matrix, carbonaceous.

TRACE: Large red lithic fragments - chert, pyrite, fossils, carbonaceous fragments.

770 - 780m:

SILTSTONE (60%) As above grades to Mudstone.

MUDSTONE (40%) As above.

TRACE: Coloured lithic fragments and grains. fossils, carbonaceous fragments, pyrite and limonite.

780 - 790m:

SILTSTONE (90%) Light grey, very fine — fine grained, blocky, soft — friable, silicic, slightly calcareous, slightly chloritic, very carbonaceous — specks and fragments throughout, slightly micaceous, trace pyrite specks in matrix grades to calcareous mudstone.

MUDSTONE (10%) Light grey — white, blocky — amorphous, dispersive, very calcareous, slightly chloritic, very carbonaceous, slightly pyritic,

SANDSTONE (Trace) Light grey — white, very fine grained, well sorted, calcareous cement, argillaceous matrix, some unconsolidated grains, angular, + pitted, some larger pink grains with carbonaceous inclusions, very pitted and subrounded, occasionally with pyritic coatings on grain surfaces, i.e. from pyritization of cemented aggregates.

TRACE: small coal fragments, subvitrinous - sub-bituminous, carbonaceous material.

790 - 800m:

SILTSTONE (80%) As above.

MUDSTONE (20%) As above.

SANDSTONE (Trace): As above.

TRACE: Carbonaceous material, pyrite, lithic fragments.

Visible porosity: <u>NIL</u>.

SHOWS: Very, very slight slow faint yellow fluorescence on cut and crushing from carbonaceous partings — bituminous material in sample.

800 - 810m:

SILTSTONE (90%)

Light grey — olive grey, very fine — fine grained, silicic, slightly calcareous, slightly chloritic, blocky, subfissile, occasionally friable — brittle, sucrosic, very carbonaceous with specks and carbonaceous partings grades to mudstone in parts.

800 - 810m cont.

MUDSTONE (10%) Light - medium grey - grey/green, blocky, resinous to soft - dispersive, very carbonaceous, slightly chloritic, slightly, calcareous, silicic, trace pyritic.

<u>SANDSTONE</u> (Trace) — unconsolidated grains in argillaceous matrix with carbonaceous material and pyrite, very fine — fine grained, pink, white, grey.

TRACE: carbonaceous material and sub-bituminous - subvitrinous coal fragments - very small, fossil fragments.

810 - 820m:

SILTSTONE (90%) As above.

MUDSTONE (10%) As above.

SANDSTONE (Trace):

As above.

TRACE: accessories as above.

820 - 830m:

SILTSTONE (80%) As above.

MUDSTONE (20%) As above.

TRACE: Sandstone as above, accessories as above.

830 - 840m:

SANDSTONE (70%)

Light - light grey, green, white, clear, occasionally milky, occasionally pink, brown, very fine - fine, moderately - well sorted, grades to siltstone, very slight calcareous matrix, cemented, hard - brittle to friable, occasionally unconsolidated, slightly pyritic, carbonaceous fragments, some large pink free quartz grains, with carbonaceous inclusions, very pitted and fractured.

SILTSTONE (20%) As above.

MUDSTONE (10%) As above.

TRACE: Carbonaceous material, black, brown, earthy to hard, brittle, sub-bituminous, subfissile - friable, occasional - lithic grains.

Visual porosity: POOR

SHOWS: None. Very Slight Mineral Fluorescence.

840 - 850m:

SANDSTONE (90%)

Light grey, white, clear, frosted, rare pink, very fine — fine grained, sub—angular, occasionally subrounded, moderately — well sorted, trace carbonaceous specks, pyritic, slightly chloritic, argillaceous matrix, slight calcareous cement, grades to muddy siltstone.

<u>SILTSTONE (10%)</u> Light grey - green, very fine grained as above.

MUDSTONE (Trace): As Above

TRACE: calcitic fragments, pyrite, very small pink, red coloured grains, good trace very small fragments hard black subvitionous coal pyrite and dark volcanic lithic grains.

Visual Porosity: POOR

SHOWS: None. Very faint mineral fluorescence.

850 - 860m:

SILTSTONE (60%) As above grades to sandstone.

SANDSTONE (30%) Light grey - light grey - green, white, clear, milky, occasionally pale brown-green, very fine - coarse, occasionally very coarse, angular to subrounded, poorly sorted, some large grains fractured and shattered, some with secondary cement, frosting, pitting, carbonaceous inclusions and partings on fracture surfaces, occasional lithic fragments, chloritic in silty matrix, friable - brittle, red and green grains, silty - argillaceous matrix, slightly calcareous, frequent large free quartz grains.

MUDSTONE (10%) As above.

COAL (Trace): small fragments, black, hard - friable, shiny lustre, sub-bituminous in part, earthy-lignitic in part, shaley pyritic, occasionally straited.

Visual Porosity: POOR

 $\underline{\text{SHOWS}}$: None: Very small mineral fluorescence 1 - 2 grains.

860 - 870m:

SILTSTONE (80%) As above

<u>SANDSTONE (20%)</u> As above plus occasional aggregates of quartz grains in pyritic matrix, some very large quartz grains.

MUDSTONE (Trace): As Above.

TRACE: Fossils, limonite, chert, dark lithic rock fragments, abundant - pyritic and carbonaceous fragments, green grains.

Visible porosity: POOR - NIL.

SHOWS: None.

870 - 880m:

SILTSTONE (90%) As above

MUDSTONE As above.

TRACE: Accessories as above.

880 - 895m:

SILTSTONE (100%) As above

TRACE MUDSTONE As above.

TRACE SANDSTONE As above.

TRACE: Accessories as above.

890 - 895m:

SILTSTONE (90%) As above.

MUDSTONE (10%) As above.

TRACE SANDSTONE As above.

TRACE: Accessories as above.

900 - 903m:

CEMENT (90%)

SILTSTONE (10%) Light grey - blocky, soft silicic.

TRACE: Sandstone as above.

903 - 906m:

<u>CEMENT (90%)</u>

SILTSTONE (10%) As above.

TRACE: Sandstone, limonite.

906 - 909m:

CEMENT (70%)

SILTSTONE (10%) As above

SANDSTONE (20%) Clear white, very fine — fine grained, angular — subangular, well sorted, occasional limonitic grains, occasional green glauconitic grains, possible cavings.

909 - 912m:

CEMENT (20%)

SILTSTONE (50%): Light grey — olive grey, occasionally dark grey — fine brittle, occasionally soft, carbonaceous, occasionally argillaceous, chloritic in parts, pyritic, occasionally fossiliferous.

SANDSTONE (30%): Light grey — white, clear — milky, occasional yellow grains, very fine — fine, well sorted, angular — subangular.

TRACE: Lithic grains - green and yellow, pyrite, fossils.

912 - 915m:

SILTSTONE (40%)

Light - olive grey, occasionally dark grey, very fine - fine grained, silicic, slightly calcareous, chloritic, blocky, Subfissile, firm - friable, very pyritic grades to very carbonaceous siltstone - mudstone grading to carbonaceous argillite.

MUDSTONE (30%) Light grey — dark grey, argillaceous, amorphous to blocky, chloritic, slightly calcareous grades to carbonaceous argillite.

SANDSTONE (20%) Light grey — white, clear, milky — opaque, occasionally yellow, very fine — fine grained, argillaceous, subangular, pitted and frosted with carbonaceous and pyritic inclusions.

COAL (10%) Black, firm — friable, brittle fracture, blocky, pyritic, occasional resinous lustre, argillaceous grades to carbonaceous mudstone in part.

TRACE: Coloured lithic grains, pyrite.

Visible Porosity: POOR

915 - 918m:

SILTSTONE (60%) As above.

SANDSTONE (30%) As above.

MUDSTONE (10%) As above.

TRACE: Cement, coal, pyrite, coloured lithics, calcite.

Visible Porosity: POOR

SHOWS: None.

918 - 921m:

SILTSTONE (70%) Light medium grey, olive grey/dark grey, very fine — fine grained, blocky, subfissile in parts, soft — friable, occasionally firm grades to mudstone in parts, silicic, slightly calcareous, chloritic, very carbonaceous in part, grades to carbonaceous, argillite. Some interlaminated and interbedded with coals and carbonaceous claystone.

MUDSTONE (30%) Light - medium grey - grey/green, blocky and resinous, soft-dispersive, very carbonaceous in part, grades to argillaceous and carbonaceous claystone.

TRACE: Sandstone, coal as above, lithic grains, limonite, cement.

Visible porosity: POOR.

SHOWS: None.

921 - 924m:

CEMENT (40%)

SILTSTONE (30%) As above

MUDSTONE (20%) As above

COAL (10%) As above.

TRACE: As above.

924 - 927m:

CEMENT (60%)

SILTSTONE (20%) as above.

MUDSTONE (10%) as above.

COAL (10%) as above.

TRACE: As above

927 - 930m:

CEMENT (10%)

<u>MUDSTONE (60%)</u> Light - medium grey, blocky - dispersive, very carbonaceous in part, with sub-bituminous partings and specks, resinous, grades to argillaceous and carbonaceous claystone.

<u>SILTSTONE (30%)</u> Light — medium grey, occasionally olive grey, very fine — fine grained, silicic, slightly calcareous, slightly pyritic, slightly chloritic, very carbonaceous in places, with carbonaceous specks and partings.

<u>TRACE</u>: Coal - hard, black, blocky, resinous - friable, quartz and coloured lithics, pyrite.

Visible porosity: NIL.

SHOWS: None.

930 - 933m:

SILTSTONE (40%)

Light — medium grey, olive grey, green, very fine — fine grained, firm — brittle, occasionally soft, very carbonaceous and chloritic, argillaceous in parts.

MUDSTONE (40%) Light - medium grey, blocky-amorphous, carbonaceous, chloritic, slightly calcareous, slightly pyritic.

<u>COAL</u> (20%) - Black, blocky, sub-resinous, hard - firm, grades to carbonaceous mudstone - claystone, pyritic.

TRACE: Sandstone — clear, white, light grey, milky, very fine — fine, subangular — subrounded, moderately sorted, pyritic and carbonaceous coatings on fractures, pitting and frosting.

Visible Porosity: <u>FAIR</u> (in sandstone).

SHOWS: None: slight mineral fluorescence.

933 - 936m:

SILTSTONE (40%) As above.

MUDSTONE (30%) As above.

SANDSTONE (10%) As above, angular — subrounded moderately — poorly sorted, very slightly calcareous, no matrix, mainly unconsolidated grains.

COAL (20%) As above.

TRACE: Cement.

933 - 936m cont.

Visible porosity: POOR - FAIR.

SHOWS: None.

936 - 939m:

SILTSTONE (40%) As above.

SANDSTONE (30%) As above.

MUDSTONE (20%) As above grades to siltstone to coal in parts.

COAL (10%) As above.

cement, pyrite, limonite and coloured TRACE:

lithic fragments.

Visible Porosity: FAIR - GOOD

SHOWS: None.

939 - 942m:

SILTSTONE (60%) As above.

MUDSTONE (30%) As above.

COAL (10%) As above - woody-fibrous, lignitic.

SANDSTONE (Trace): As above.

TRACE: Red and green lithic fragments, mica, feldspar - mainly green grains, pyrite, common green lithics, occasional red lithics.

Visible porosity: POOR.

SHOWS: None.

942 - 945m:

SILTSTONE (60%) As above

MUDSTONE (20%) As above

COAL (10%) As above - woody-fibrous, lignitic.

SANDSTONE (10%) As above.

TRACE: green lithics, slight calcite, slight trace mica, pyrite and red lithic fragments.

Visible porosity: POOR.

945 - 948m:

SILTSTONE (50%) As above

MUDSTONE (20%) As above

COAL (10%) As above

SANDSTONE (20%) As above - lithic, quartzose.

TRACE: green and red lithics, occasional orange grains.

Visible porosity: POOR.

SHOWS: None.

948 - 957m:

<u>SILTSTONE (40%)</u>: As above.

MUDSTONE (30%): As Above.

SANDSTONE (20%): As above.

COAL (10%) Black, blocky, occasionally fibrous, commonly hard, resinous — brittle, friable, firm, sub-bituminous grades to carbonaceous shale,

TRACE: mica, pyrite, feldspar, quartz grains commonly pitted and fractured with carbonaceous inclusions and coatings on fractured surfaces.

Visible porosity: POOR.

SHOWS: None.

951 - 954m:

SANDSTONE (40%)

Clear, grey — white, milky, very fine — fine, subangular — subrounded, moderately sorted, silty matrix slightly calcareous, pyritic, pitted, frosted,

SILTSTONE (30%) As above.

MUDSTONE (20%) As above.

COAL (10%) As above.

TRACE: green lithic fragments and cement.

Visible Porosity: FAIR.

954 - 957m:

SANDSTONE (40%)

Light grey — white, translucent — clear, milky, very fine — fine, subangular — subrounded, moderately sorted, slightly calcareous, silty/argillaceous matrix, slightly pyritic, slight carbonaceous coatings on fractures, limonitic.

SILTSTONE (30%) Light — medium grey, green, olive grey, very fine — fine, blocky, firm, subfissile, sucrosic, silicic, slightly calcareous chloritic, carbonaceous, grades to argillaceous/carbonaceous, mudstone and shale.

MUDSTONE (20%) Light-brown, occasionally green, blocky, soft - dispersive, very pyritic chloritic, micromicaceous, silicic, carbonaceous in part, grades to carbonaceous shale.

COAL (10%) Black, hard, occasionally argillaceous, blocky, subfissile — fissile, occasionally fibrous, very pyritic.

TRACE: lithic fragments, limonite, pyrite, green lithics.

Visible porosity: FAIR.

SHOWS: None.

957 - 960m:

SILTSTONE (60%)

Light — medium grey, grey/green, very fine — fine grained, blocky, soft — firm, occasionally subfissile, silicic, slightly calcareous, chloritic, very carboncaceous, grades to argillaceous/carbonaceous mudstone in parts.

<u>MUDSTONE (20%)</u> Light grey, amorphous—dispersive, chloritic slightly micaceous, very slightly calcareous, pyritic, grades to carbonaceous claystone/shale.

COAL (20%) Black, hard, subfissile, resinous, argillaceous, pyritic.

SANDSTONE (Trace): red and green grains, very fine - fine, subangular - subrounded, moderately - well sorted, brittle - unconsolidated, slightly cemented, slightly silty-calcareous matrix, limonitic, - lithic sandstone.

Visible porosity: POOR.

960 - 967m:

SILTSTONE (60%) As above.

MUDSTONE (20%) As above.

COAL (20%) As above

SANDSTONE (Trace): As above.

Visible porosity: POOR.

SHOWS: None.

963 - 966m:

SILTSTONE (70%) As above.

MUDSTONE (20%) As above.

COAL (10%) As above.

SANDSTONE (Trace): As above.

Visible porosity: POOR.

SHOWS: None.

966 - 969m:

MUDSTONE (70%)

Light green, grey, black, amorphous-dispersive, pyritic, chloritic, carbonaceous, slightly to argillaceous calcareous, silicic, grades claystone.

SILTSTONE (20%) Light - medium grey, occasionally dark grey, blocky, silicic, slightly calcareous, chloritic, carbonaceous grades to carbonaceous mudstone.

Black, blocky, hard, resinous, (10%)argillaceous, pyritic.

SANDSTONE (Trace): quartzose, limonitic, lithic.

Visible porosity: POOR.

SHOWS: None.

969 - 972m:

MUDSTONE (70%) As above

SILTSTONE (20%) As above

COAL (10%) As above.

SANDSTONE (Trace): Lithic, quartzose, limonitic

carbonaceous unconsolidated.

Visible porosity: POOR.

972 - 978m:

MUDSTONE (60%) As above.

SILTSTONE (30%) As above.

COAL (10%) As above.

SANDSTONE (Trace): As above.

Visible Porosity: POOR.

SHOWS: None.

978 - 981m:

SILTSTONE (40%) As above with increased chlorite.

MUDSTONE (30%) As above with increased chlorite.

SANDSTONE (20%) white - pale grey, translucent, clear, occasionally yellow, very fine - fine grained, subangular - subrounded, moderately sorted, lithic, quartzose, brittle, slightly limonitic.

TRACE: lithic grains, feldspar, rock fragments.

Visible porosity: POOR.

SHOWS: None.

981 - 984m:

SANDSTONE (40%)

Light grey — white, translucent — clear, milky, occasionally yellow, very fine — fine, subangular — subrounded, moderate — well sorted, slight calcareous cement, unconsolidated, silty matrix, limonitic, grains with shatter — fracture, surfaces with carbonaceous coatings, lithic and quartzose.

SILTSTONE (30%) :

Light grey — grey/green, occasionally black, very fine grained, sucrosic, blocky, firm — friable, occasionally hard, occasionally subfissile, silicic, argillaceous, carbonaceous and chloritic, grades to carbonaceous mudstone, trace pyritic.

<u>MUDSTONE (20%)</u> Light grey - green/grey, soft-blocky, dispersive, silicic, slightly calcareous, carbonaceous, grades to carbonaceous claystone in parts.

<u>COAL (10%)</u> Hard, black, blocky, resinous, occasionally friable, argillaceous, pyritic.

981 - 984m cont.

TRACE: dark rock fragments - dark grey - dark

green, limonitic.

Visible Porosity: GOOD.

SHOWS: None.

984 - 987m:

SILTSTONE (60%) As above.

SANDSTONE (30%) As above.

MUDSTONE (10%) As above.

TRACE COAL As above.

Visible porosity: POOR.

SHOWS: None.

987 - 990m:

SILTSTONE (60%) As above.

SANDSTONE (20%) As above unconsolidated.

MUDSTONE (20%) As above.

TRACE : coal, calcareous cement, limonite.

Visible porosity: POOR.

SHOWS: None.

Change to 6m samples

990 - 996m:

MUDSTONE (40%) As above becoming chloritic.

MUDSTONE (30%) As above.

SANDSTONE (30%) As above unconsolidated.

TRACE: coal, dark rock fragments, occasional red liths, limonite, feldspar, occasional large

angular, fractured quartz grains.

996 - 1002m:

MUDSTONE (80%) As above.

SILTSTONE (10%) As above.

COAL (10%) As above.

TRACE SANDSTONE As above.

TRACES: as above.

0370g

1002 - 1008m:

MUDSTONE (70%) As above.

SILTSTONE (20%) As above.

SANDSTONE (10%) As above.

TRACE: coal as above.

1008 - 1014m:

MUDSTONE (80%) As above.

SILTSTONE (20%) As above.

SANDSTONE (Trace): As above.

TRACE: coal, rock fragments as above.

1014 - 1020m:

MUDSTONE (90%)

Light - medium grey, grades to dark grey - black, soft - firm, occasionally dispersive, blocky, calcareous, very carbonaceous, occasionally argillaceous, grades to black carbonaceous shale in part.

<u>COAL (10%)</u> Black, blocky, resinous, hard, brittle to subfissile, grades to argillaceous shale.

<u>SANDSTONE (Trace)</u>: clear-translucent, pale grey, very fine grained, unconsolidated, limonitic, lithic, quartzose.

TRACE: accessories as above.

1020 - 1026m:

MUDSTONE (100%)

Light-medium grey, occasionally green, blocky amorphous, soft-dispersive, carbonaceous, slightly chloritic, slightly limnonitic, silicic, argillaceous grades to carbonaceous argillite,

TRACE: sandstone — very fine grained as above, coal very small fragments, rock fragments.

1026 - 1032m:

MUDSTONE (80%) As above.

SILTSTONE (20%) As above.

TRACE: coal, sandstone, rock fragments.

1032 - 1038m:

MUDSTONE (90%) As above.

1032 - 1038m cont.

SILTSTONE (10%) Light — dark grey, very fine grained, argillaceous, silicic, slightly calcareous, slightly chloritic, carbonaceous grades to carbonaceous argillaceous — mudstone occasionally.

TRACE: sandstone as above, limonite, very calcareous mudstone.

1038 - 1044m:

SILTSTONE (70%)

Light - medium grey, olive grey, occasionally dark grey - black, blocky, fine grained - sucrosic, firm - hard, occasionally friable + splitting, argillaceous, calcareous, chloritic grades to argillaceous carbonaceous mudstone - claystone.

MUDSTONE (30%) Light-medium grey, soft-dispersive, slightly chloritic, blocky, occasionally plastic, slightly calcareous, carbonaceous specks and partings, grades to argillaceous coal/shale in places.

<u>COAL (Trace)</u>: dark, hard, brittle, dull argillaceous.

TRACE: pyrite, coloured lithic fragments, sandstone — clear, translucent, white, very fine, — fine, angular — subrounded, unconsolidated grains in silty matrix.

1044 - 1050m:

SILTSTONE (80%) As above .

MUDSTONE (20%) As above.

<u>COAL (Trace)</u>: black, blocky, fissile - subfissile, argillaceous, grades to carbonaceous shale, dull - resinous, pyritic, micromicaeous.

TRACE: mica, lithic grains, sandstone, fine — medium grained, clear, translucent, white and orange grains, some angular — subangular, generally subangular — subrounded, some grains with carbonaceous coatings on fractures, limonitic, lithic quartzose, generally unconsolidated.

1050 - 1056m:

SILTSTONE (80%) As above.

MUDSTONE (20%) As above.

COAL (Trace): As above.

TRACE: Sandstone, pyrite, mica, coloured lithic grains as above.

0370g

1056 - 1062m:

MUDSTONE (70%) As above.

SILTSTONE (30%) As above.

COAL (Trace): As above.

TRACE: chert, sandstone - very fine - fine with occasional coarse grains, very angular, clear - transulcent, white lithic quartzose - silty matrix, calcareous cement.

MUDSTONE (70%) As above.

SILTSTONE (30%) As above.

TRACE: coal as above, sandstone as above, lithics, mica, limonite.

1068 - 1074m:

1062 - 1068m:

SILTSTONE (80%)

Light — medium grey, olive grey, green, very fine — fine grained, blocky, soft — firm, occasionally brittle, flakey in parts, occasionally dispersive, silicic, slightly calcareous, very carbonaceous, with carbonaceous specks and partings, slightly micromicaceous, chloritic, pyritic, very carbonaceous, occasionally argillaceous, grades to carbonaceous shale.

SANDSTONE (10%) Light grey, white, clear - translucent-milky, subangular - subrounded, some angular fragments, fine - medium, occasionally coarse, moderately well sorted, moderately hard - brittle, white kaolinitic matrix, slightly calcareous, carbonaceous fragments, lithic, quartzose.

Visible Porosity: POOR

SHOWS: None.

1074 - 1080m:

SILTSTONE (100%) As above. very calcareous.

TRACE: coal as above, sandstone as above with occasional pink grains, lithic and quartzose generally unconsolidated, lithic fragments.

Visible Porosity: POOR.

1080 - 1086m:

SILTSTONE (100%) As above.

<u>TRACE</u>: coal, mudstone, quartz grains, lithic fragments as above.

Visible porosity: POOR.

SHOWS: None.

1086 - 1092m:

<u>SILTSTONE (100%)</u> As above very carbonaceous, slightly calcareous.

TRACE: mudstone, sandstone, lithic fragments.

Visible porosity: POOR.

SHOWS: None.

1092 - 1098m:

<u>SILTSTONE (80%)</u> As above, very calcareous, very carbonaceous.

MUDSTONE (20%) Light — medium grey, blocky, amorphous, soft — friable, dispersive, silicic, micromicaceous, very carbonaceous, very calcareous cement — lime mud cement.

<u>SANDSTONE</u> (Trace): white, light grey, translucent — occasional yellow grains.

<u>TRACE</u>: coal — grades to argillaceous shale and mudstone, pyrite, chert.

Visible porosity: POOR.

SHOWS: None.

1098 - 1104m:

SILTSTONE (80%)

Light - medium grey, dark grey, olive grey and occasionally green, fine - very fine, blocky, argillaceous, very calcareous, very carbonaceous, silicic, soft - firm, occasionally subfissile along carbonaceous partings, pyritic, slightly chloritic, grades to carbonaceous mudstone, very bituminous - carbonaceous.

MUDSTONE (20%) Light — medium grey, blocky, — amorphous, very dispersive, micromicaceous, silicic, very micritic, very carbonaceous, occasionally chloritic, occasionally pyritic grades to argillaceous coal — carbonaceous siltstone.

1098 - 1104 m cont.

<u>SANDSTONE</u> (Trace): — angular, coarse grains, unconsolidated, limonitic — pyritic, carbonaceous coatings and inclusions.

TRACE: pyrite, dark rock fragments, coal - hard, black, blocky, resinous-dull, argillaceous, pyritic, occasionally subfissile, grades to agillaceous claystone.

Visible porosity: POOR.

SHOWS: 1-2 fragments very very minor, yellow fluorescence on cut/crush-sub-bituminous coating on grains and 1 or 2 fragments.

1104 - 1110m:

SILTSTONE (90%)

As above, very calcitic-micritic cemented.

<u>MUDSTONE (10%)</u> As above, interlaminated with carbonaceous bands.

TRACE: coal as above, quartz grains and dark rock fragments, pyrite as above.

Visible porosity: POOR.

SHOWS: None.

1110 - 1116m:

<u>SILTSTONE (80%)</u> As above. very micritic, chloritic.

MUDSTONE (20%) As above.

TRACE: coal, quartz grains, and dark rock fragments as above.

Visible porosity: POOR.

SHOWS: None.

1116 - 1122m:

<u>SILTSTONE (70%)</u> As above, very calcareous.

MUDSTONE (30%) As above, very calcareous.

SANDSTONE (10%) Clear, white, light grey, fine - very fine, subangular - subrounded, moderately sorted, calcareous, cemented, calc-argillaceous-matrix.

TRACE: coal, quartz grains, and dark rock fragments, calcite fragments and flakes.

Visible porosity: POOR - NONE.

SHOWS: None.

0370g

1122 - 1128m:

SILTSTONE (70%) As above.

SANDSTONE (20%) Clear, white, translucent, milky, occasional yellow grains, very fine — fine, rare coarse grains, subangular — subrounded, occasionally angular, moderately — well sorted, limonitic, carbonaceous, calcitic cement, slight argillaceous matrix, trace carbonaceous material and grains. Tight lithic and quartzose, sandstone.

MUDSTONE (10%) As above, increased chlorite.

TRACE: coal - hard, black, blocky, subfissile, firm - brittle, argillaceous, pyritic grades to carbonaceous claystone. Common calcite fragments and flakes.

Visible Porosity: NIL - TIGHT.

<u>SHOWS</u>: None - Minor fluorescence in calcite flakes - mineral fluorescence.

1128 - 1134m:

SILTSTONE (60%)

Light — medium grey, occasionally dark grey + olive grey, very fine — fine grained, Soft — firm, occasionally brittle, sucrosic, — resinous, blocky — subfissile along carbonaceous planes, pyritic, silicic, very carbonaceous, slightly chloritic, micromicaceous, very micritic — calcareous cement and matrix grades to calcareous mudstone.

MUDSTONE (20%) Light - medium grey, blocky - amorphous, occasionally dispersive, very calcareous matrix, slightly chloritic, very carbonaceous, occasionally pyritic, grades to carbonaceous argillite.

SANDSTONE (20%) Light grey — white, clear — translucent — milky, very fine — fine, occasionally medium grained, subangular — subrounded, moderate — well sorted, firm — brittle, occasional coarse grains — angular + fractured, calcitic cement, slight kaolinitic matrix, carbonaceous flecks.

TRACE: coal — hard, black, blocky, dull — resinous, argillaceous, grades to carbonaceous mudstone, pyritic, sub—bituminous in parts. Trace calcite flakes + fragments, occasional dolomite, dark rock fragments, rare mica.

Visible Porosity: <u>TIGHT</u>.

1134 - 1140m:

SILTSTONE (60%) As above.

SANDSTONE (30%) As above.

MUDSTONE (10%) As above.

<u>TRACE</u>: coal — As above, calcite flakes as above, accessories as above.

Visible porosity: NONE.

<u>SHOWS</u>: None - slight mineral fluorescence in calcite.

1140 - 1146m:

<u>SILTSTONE (60%)</u> As Above. Decreasing calcite + increasing carbonaceous.

 $\underline{\text{SANDSTONE}}$ (20%) as above, decreased calcite cement.

MUDSTONE (20%) As above.

TRACES: accessories as above.

Visible porosity: NIL.

SHOWS: None.

1146 - 1152m:

SILTSTONE (70%) As above.

SANDSTONE (30%) As above, silty matrix.

MUDSTONE (Trace): as above.

TRACES: accessories as above.

Visible Porosity: <u>TIGHT</u>.

SHOWS: None.

1152 - 1158m:

SILTSTONE (90%)

Light - medium grey, olive grey, occasionally dark grey - black, grading to argillaceous siltstone - mudstone, very fine - fine grained, sucrosic - resinous, blocky, firm - hard, occasionally brittle, occasionally subfissile, slightly chloritic, slightly calcitic - micritic, increased silicic cement, very pyritic, slightly argillaceous in parts very carbonaceous, (carbonaceous specks, flecks, fragments + partings), grades to carbonaceous mudstone.

1152 - 1158m cont.

SANDSTONE (10%) Light grey — white, translucent — milky, occasionally orange, very fine — fine, occasional coarse grains, occasional large free quartz fragments, subangular — subrounded, occasionally angular, fair — moderately sorted, fractured, pitted, occasionally some large grains with carbonaceous inclusions/coatings, silicic cement in part, calcitic cement in part, silty—argillaceous matrix, hard — brittle, very limonitic/pyritic, lithic.

TRACE: pyrite - flakes + fragments, coal - argillaceous, resinous, black, blocky - flakey, pyritic grades to + interlaminated with carbonaceous + silty mudstone.

Visible Porosity: POOR.

SHOWS: Very very minor slight pale yellow fluorescence on crush + cut of bituminous - carbonaceous material in siltstone + mudstone. Slight mineral fluorescence - calcite fragments.

1158 - 1161m:

SILTSTONE (90%)

As above, very calcareous.

SANDSTONE (10%) As above, very carbonaceous within matrix.

TRACES: mudstone, coal as above.

Visible porosity: NIL.

<u>SHOWS</u>: None, slight mineral fluorescence from calcite.

1161 - 1164m:

SILTSTONE (60%)

As above, less calcareous.

MUDSTONE (20%) As above.

COAL (20%) Hard, black, brown, blocky — flakey, Subfissile, brittle — soft, occasionally argillaceous, grades to carbonaceous claystone, pyritic, resinous, occasionally sub-bituminous.

TRACES: Sandstone — occasional coloured grains, fine — medium grained, hard, lithic, quartzose silty matrix, calcitic cement, limonitic, pyritic.

Visible porosity: NIL.

1164 - 1170m:

SILTSTONE (70%)

As above, very calcareous.

MUDSTONE (20%) As above.

SANDSTONE (10%) Light grey, white, translucent — milky, very fine — fine, subangular — subrounded, moderately sorted, hard — brittle, white clay-kaolinitic matrix, calcitic cement, also clear fractured fragments in silty matrix, lithic, pyritic, carbonaceous.

TRACES: coal — As above, occasionally earthy—lignitic, pyrite, orange + green lithic fragments, feldspar, calcite, micromica.

Visible Porosity: POOR.

SHOWS: NIL - Mineral fluorescence in calcite.

1170 - 1176m:

SILTSTONE (70%)

Light — dark grey, occasionally black-grading to carbonaceous mudstone, medium fine — fine grained, resinous — sucrosic, blocky, firm — hard, occasionally soft, subfissile in parts, occasionally argillaceous, silicic, chloritic, very carbonaceous, very calcareous, occasional free quartz grains, pyritic.

SANDSTONE (30%) Light grey - white, translucent - milky, very fine - fine, occasionally coarse, moderately well sorted, subangular - subrounded, calcitic cement, with carbonaceous fragments, silty - kaolinitic matrix, occasional coloured lithics + pyritic.

<u>MUDSTONE (Traces)</u>: Light grey - black, argillaceous-carbonaceous claystone, chloritic, silicic, blocky - dispersive, soft, slightly pyritic.

TRACES: calcite fragments + flakes, coal - subvitrineous - sub-bituminous - lignitic, black, hard, occasionally earthy as above.

Visible Porosity: POOR.

<u>SHOWS</u>: None - very, very minor mineral fluorescence.

1176 - 1182m:

SILTSTONE (40%)

As above, very calcareous, chloritic.

<u>MUDSTONE (30%)</u> As above, grades to hard, black, carbonaceous argillite.

COAL (20%) Large fragments, black — dark grey, blocky — subfissile, hard — firm, argillaceous in parts, resinous, subvitrinous — sub-bituminous, slightly pyritic, grades to carbonaceous shale. SANDSTONE (Trace): white — clear, translucent, very fine — fine, quartzose, moderately sorted, hard-brittle, lithic (pink + brown), calcitic cement, silty matrix — slightly carbonaceous occasionally unconsolidated.

TRACE: pyrite, lithic fragments.

Visible Porosity: <u>TIGHT</u>.

SHOWS: 1 or 2 grains mineral fluorescence.

1182 - 1188m:

SILTSTONE (60%)

Light - medium grey, green, chloritic, very fine - fine grained, resinous, blocky, soft - firm subfissile in part, occasionally hard, silicic, very calcareous, chloritic, carbonaceous, pyritic, grades to argillaceous carbonaceous mudstone.

SANDSTONE (30%) Light grey/green, white, occasionally yellow, translucent — milky, occasionally clear, fine — medium, occasionally coarse, subangular — subrounded, occasionally angular, moderately — poorly sorted, calcitic cement, white clay—kaolinitic matrix in part, carbonaceous fragments/pyritic fragments + lithic grains also in matrix — (lithic, quartzose sandstone), hard — brittle, some loose — unconsolidated grains, carbonaceous coatings — sub—bituminous on grains.

<u>MUDSTONE (10%)</u> Light — medium grey, blocky, very carbonaceous, resinous, dispersive, very calcareous.

TRACE: dark green, red, pink + brown lithic fragments, feldspar, mica, calcite flakes.

Visible Porosity: POOR - FAIR.

SHOWS: None: Very very faint, pale yellow fluorescence on cut + crush with sub-bituminous fragments in siltstone, pale yellow mineral fluorescence in calcite flakes.

1188 - 1194m:

SILTSTONE (40%) As above.

SANDSTONE (30%) As above.

COAL (20%) Hard, black, argillaceous, shaley, resinous, subfissile in part, hard - firm, silicic in part, grades to black carbonaceous shale.

MUDSTONE (10%) As above.

TRACES: calcite.

Visible porosity: <u>NIL</u>.

SHOWS: None - very faint mineral fluorescence.

1194 - 1200m:

<u>SILTSTONE (60%)</u> As above, very calcareous, chloritic, carbonaceous.

SANDSTONE (30%) As above, very calcareous, carbonaceous, cemented.

MUDSTONE (10%) As above. Very calcareous chloritic, carbonaceous.

TRACE: coaly — shale, rose quartz — loose grains, large lithic fragments — red + brown, feldspar, dark rock fragments.

Visible Porosity: POOR - FAIR.

SHOWS: None.

1200 - 1203m:

No sample taken.

1203 - 1206m:

SILTSTONE (70%)

Light - medium grey, occasionally dark grey - light brown, very fine - fine, resinous, occasionally sucrosic, blocky, soft - firm, occasionally hard, silicic with occasional free quartz grains, decreased calcitic cement, slightly chloritic, very carbonaceous, slightly pyritic, subfissile in parts, grades to argillaceous, carbonaceous mudstone.

<u>MUDSTONE (30%)</u> Light - medium grey, dispersive, occasionally blocky, resinous, very carbonaceous, grades to carbonaceous claystone - shale.

1203 - 1206m cont.

SANDSTONE (Trace): fine — medium, occasional coarse grains, clear — white, occasionally yellow, translucent — milky, subangular — subrounded, carbonaceous inclusions, pyritic, kaolinitic matrix, hard.

TRACES: coal, calcite.

Visible Porosity: NIL.

SHOWS: None.

1206 - 1209m:

SILTSTONE (80%)

As above, very calcareous.

SANDSTONE (10%) As above.

MUDSTONE (10%) As above.

TRACE: coal, carbonaceous mudstone, pyrite,
chlorite.

Visible porosity: NIL.

SHOWS: None.

1209 - 1212m:

SILTSTONE (80%)

As above, very calcareous, very carbonaceous.

<u>SANDSTONE (10%)</u> As above, occasional very large clear, angular fragments.

MUDSTONE (10%) As above.

TRACES: accessories as above.

1212 - 1215m:

SANDSTONE (60%)

Clear — translucent, occasionally orange — yellow, white — light grey, milky, fine — medium, occasionally coarse grained, occasional rose quartz grains, angular — subangular, occasionally subrounded, poorly sorted, some frosted, + pitted, occasional grain shatter, white kaolin matrix, calcitic cement, lithic — sublithic, carbonaceous + pyritic.

<u>SILTSTONE (40%)</u> As above.

TRACES: mudstone - very carbonaceous +
calcareous, calcite, lithic grains.

Visible Porosity: FAIR - GOOD

1215 - 1218m:

No sample taken.

1215 - 1221m:

SILTSTONE (70%)

Medium — dark grey, black, blocky, carbonaceous, less calcareous, resinous — sucrosic, very slightly pyritic.

MUDSTONE (30%) As above.

SANDSTONE (Trace): As above.

TRACES COAL accessories as above.

Visible porosity: POOR.

SHOWS: None.

1221 - 1224m:

SILTSTONE (100%)

Dark brown — medium grey, very fine — fine grained, blocky, resinous, carbonaceous, very slightly calcareous — silicic, chloritic.

<u>MUDSTONE (Trace)</u>: Light-medium grey, blocky, dispersive, soft - plastic, chloritic, carbonaceous, slightly calcareous, grades to claystone.

TRACES: sandstone - loose unconsolidated grains, coal - carbonaceous mudstone.

Visible porosity: <u>NIL</u>.

SHOWS: None.

1224 - 1227m:

SILTSTONE (90%)

Light - dark grey, dark - light brown, as above.

MUDSTONE (10%) Light - medium grey, brown, slightly calcareous, very carbonaceous grades to carbonaceous claystone.

TRACES: coal as above, calcite, lithic grains, pyrite.

Visible porosity: <u>NIL</u>.

1227 - 1230m:

SILTSTONE (70%)

As above light-medium grey, grey/green, very

calcareous, very carbonaceous.

MUDSTONE (30%) As above.

TRACE: sandstone, carbonaceous claystone -

mudstone, pyrite, mica, coloured lithics.

Visible porosity: <u>NIL</u>.

SHOWS: None.

1230 - 1233m:

SILTSTONE (80%) As above.

MUDSTONE (20%) As above.

TRACE: accessories as above, white clay matrix,

chert, coloured lithics.

Visible porosity: NIL.

SHOWS: None.

1233 - 1236m:

SILTSTONE (100%) As above, increasing chlorite,

less calcareous.

TRACE: mudstone - carbonaceous claystone as above, sandstone, coal - shiney - resinous, hard

- brittle, subfissile, black, small fragments,

occasionally earthy.

Visible porosity: <u>NIL</u>.

SHOWS: None.

1236 - 1242m:

SILTSTONE (70%) As above.

MUDSTONE (10%) As above.

SANDSTONE (10%) As above.

COAL (10%) As above.

TRACES: Accessories as above.

Visible porosity: NIL.

1242 - 1245m:

SILTSTONE (70%) As above.

MUDSTONE (20%) As above.

SANDSTONE (10%) As above.

TRACE COAL As above, accessories as above.

Visible porosity: NIL.

SHOWS: None.

1245 - 1248m:

SANDSTONE (70%)

Light grey - white, translucent - milky, very fine - fine, occasionally medium grained, subangular - subrounded, moderately sorted, calcitic cement, kaolinitic - silty matrix, lithic - sublithic, carbonaceous specks, pyritic, occasional grains have sub- bituminous coatings on fragments.

SILTSTONE (30%) Light - medium grey, very fine fine, resinous, blocky, chloritic, carbonaceous, calcitic, occasional calcite fragments within matrix, carbonaceous flecks + partings, pyritic,

mudstone - dispersive - calcareous, calcite fragments.

Visible Porosity: NIL

SHOWS: None.

1248 - 1251m:

SANDSTONE (60%) Light grey — white as above, very calcitic cemented, silty matrix, chloritic + carbonaceous, very calcareous, calcite flakes abundant in matrix.

SILTSTONE (30%) As above. slightly calcareous contains occasional free quartz grains in matrix + occasional calcite flakes.

MUDSTONE (10%) Light grey—white, dark grey blocky – amorphous, occasionally black, dispersive, soft, carbonaceous, interlaminated with black coaly bands, argillaceous grades to carbonaceous claystone.

coal - carbonaceous mudstone, pyrite, lithic fragments, calcite flakes.

Visible Porosity: NIL.

1251 - 1254m:

SANDSTONE (60%)

As above, very very calcitic cemented - no matrix

SILTSTONE (30%) As above.

MUDSTONE (10%) grades to carbonaceous mudstone-coal as above.

TRACE: pyritic nodules.

Visible Porosity: NIL' - TIGHT.

SHOWS: None.

1254 - 1257m:

SANDSTONE (70%)

As above, very calcitic cemented, dirty sand.

<u>SILTSTONE (20%)</u> As above, very carbonaceous, slightly calcareous.

MUDSTONE (10%) As above, very carbonaceous, very calcareous, dispersive.

TRACE: coal, - occasionally subvitrinous, pyrite nodules.

Visible Porosity: NONE

SHOWS: Very very faint pale yellow, patchy, spotty fluorescence through sample. Very very faint slow pale yellow ring on cut + crush. Fluorescence assocated with sub-bituminous carbonaceous material in sandstone.

1257 - 1260m:

SILTSTONE (60%)

Light — medium grey, dark grey, occasionally green, dark brown, blocky, subfissile, soft — firm, occasionally hard, occasionally plastic, very fine — fine grained, occasional free quartz grains, very carbonaceous, pyritic, occasionally chloritic, grades to carbonaceous argillite in parts, silicic in parts, slightly calcareous.

SANDSTONE (30%) White — light grey, occasional free orange grains, clear — translucent, milky, very fine — fine, occasionally medium, subangular — subrounded, moderately sorted, slightly calcitic cement, clay — silty matrix, subfissile, carbonaceous fragments.

1257 - 1260m cont.

MUDSTONE (10%) Light — medium grey, occasionally green, occasionally white, silicic — slightly calcareous, slightly chloritic, very carbonaceous, slightly pyritic, blocky — amorphous dispersive, soft — plastic.

<u>COAL</u> (Trace): — hard, black, blocky, splitting fragmented, subfissile, occasionally subvitrinous, commonly sub-bituminous, argillaceous, grades to carbonaceous mudstone.

TRACE: pyrite.

Visible Porosity: NONE - TIGHT.

<u>SHOWS</u>: Very very faint — trace pale yellow patchy, spotty fluorescence, very very faint trace pale yellow cut, patchy spotty fluorescence.

1260 - 1263m:

SILTSTONE (60%) As above.

SANDSTONE (30%) As above, occasionally coarse angular coloured grains, calcitic cement. TIGHT.

<u>MUDSTONE (10%)</u> As above grades to carbonaceous black claystone — shale.

COAL (Trace): - hard, black, blocky, subvitrinous platey, subfissile, argillaceous, resinous, shiney, occasionally dull.

TRACE: spherical pyritic nodules, occasional round quartz grains, orange — yellow, feldspar, coloured rock fragments, red, orange brown, green, fossil — one or two very small fossil shells.

Visible Porosity: TIGHT.

SHOWS: slight mineral fluorescence associated with calcite fragments. One or two grains very pale yellow faint patchy, spotty, fluorescence on sand grains, no cut. .

1263 - 1266m:

SILTSTONE (70%) As above.

SANDSTONE (20%) As above, occasionally very large shattered grains, white — translucent, occasionally orange, decreased calcitic cement.

MUDSTONE (10%) As above, grading to muddy coal.

TRACES: coloured lithic fragments, coal, pyrite nodules, mica, calcitic flakes.

1263 - 1266m cont.

Visible Porosity: NIL.

<u>SHOWS</u>: none - very, very, slight mineral fluorescence.

1266 - 1269m:

SILTSTONE (60%)

As above, chloritic in parts, very carbonaceous.

SANDSTONE (40%) As above, very very calcitic cement.

TRACE: mudstone as above, grades to argillaceous coal, calcitic fragments and pyrite as above.

Visible porosity: <u>NIL</u>.

SHOWS: NIL - Trace very faint mineral fluorescence.

1269 - 1272m:

SILTSTONE (70%)

Light — medium grey, occasionally dark grey — black fine grained, resinous — sucrosic, blocky, subfissile, soft, slightly chloritic, very carbonaceous grades to carbonaceous siltstone in parts, silicic in parts.

SANDSTONE (20%) Light grey — white, clear — translucent, milky, very fine — fine, occasionally medium — coarse, subangular — subrounded, occasionally angular, poor — moderately sorted, very calcitic cement, slight white clay matrix, carbonaceous fragments, lithic fragments, carbonaceous coatings in fractures and inclusions.

MUDSTONE (10%) Light - medium grey, occasionally white, very dispersive, occasionally soft - plastic, silicic to very calcareous, occasionally chloritic, very carbonaceous, slightly pyritic grades to carbonaceous argillite.

TRACES: coal — small flecks, platey-splitting, hard — firm, subvitrinous — subbituminous, dull — resinous, argillaceous grades to carbonaceous, mudstone, coloured lithic fragments.

Visible porosity: <u>NIL</u>.

1272 - 1275m:

SILTSTONE (40%) As above.

<u>MUDSTONE (40%)</u> As above, very dispersive, slightly calcareous.

SANDSTONE (20%) As above, loose—unconsolidated, lithic (red and green grains), carbonaceous flecks, calcitic cement.

<u>TRACE</u>: coal fragments - small black specks-small fragments, argillaceous carbonaceous mudstone, pyrite.

Visible porosity: <u>NIL</u>.

SHOWS: None.

1275 - 1278m:

SILTSTONE (60%)

As above, increasingly chloritic - light grey to green.

SANDSTONE (30%) As above.

MUDSTONE (10%) As above, occasionally pyritic.

TRACE: coal as above, lithic grains, pyrite, fossil shell fragments.

Visible porosity: NIL.

SHOWS: None.

1278 1281m:

SILTSTONE (60%) As above.

<u>SANDSTONE (30%)</u> As above, very calcitic cement and matrix.

MUDSTONE (10%) As above.

TRACE: Accessories as above.

Visible porosity: <u>NIL</u>.

SHOWS: None.

1281 - 1284m:

SANDSTONE (60%)

Light grey — white, orange, brown, yellow, milky — translucent clear, fine — medium grains occasionally coarse, occasionally very fine, angular — subrounded, poorly sorted, calcitic cement, carbonaceous, lithic red and green grains, pyritic, limonitic, carbonaceous.

1281 - 1284m cont.

SILTSTONE (40%) Light — medium grey, green, occasionally dark grey, very fine—fine grained, resinous — dull, blocky, subfissile, silicic, chloritic, carbonaceous, occasionally pyritic, argillaceous grades to carbonaceous mudstone.

<u>MUDSTONE</u> (Trace): light - medium grey, white, green, carbonaceous, argillaceous, silicic, dispersive, blocky, soft - plastic, grades to argillaceous coal.

TRACE: coal — sub-bituminous — subvitrinous, black, hard, blocky, resinous — dull fragments, lithic fragments and grains, (clear red — green), dark rock fragments, limonite and pyrite, fossil fragments.

Visible Porosity: POOR - FAIR.

SHOWS: NONE.

1284 - 1287m:

SILTSTONE (60%) As above.

<u>SANDSTONE (30%)</u> As above, occasional free quartz grains, clear, yellow, orange, brown.

MUDSTONE (10%) As above, grades to argillaceous, carbonaceous claystone.

TRACE: coal as above, accessories as above.

Visible porosity: POOR.

SHOWS: None.

1287 - 1290m:

SILTSTONE (70%) As above.

SANDSTONE (20%) As above.

MUDSTONE (10%) As above.

TRACE: pyrite, lithic fragments, increased coal as above - large, platey, fragments. .

Visible porosity: POOR.

1290 - 1293m:

SANDSTONE (40%)

As above, increased calcitic cement.

SILTSTONE (40%) As above, increasingly chloritic.

MUDSTONE (10%) As above, very dispersive.

COAL (10%) As above.

TRACES As above.

Visible Porosity: POOR - NIL.

SHOWS: NONE

1293 - 1296m:

SANDSTONE (40%)

As above very calcitic cement.

SILTSTONE (40%) As above.

MUDSTONE (10%) As above.

COAL (10%): as above.

TRACE: calcite, pyrite, coloured lithic fragments, fossil fragments.

Visible Porosity: NONE - TIGHT.

SHOWS: NONE.

1296 - 1299m:

SILTSTONE (60%)

As above, increased chlorite.

SANDSTONE (40%) As above, increased lithic coloured rock fragments, increased calcitic cement.

TRACE: coal, mudstone, accessories as above.

Visible Porosity: NIL

SHOWS: NONE.

1299 - 1302m:

SILTSTONE (70%)

Light - medium grey, green, black, grey, occasionally brown, resinous - dull, very fine - fine, blocky, silicic, chloritic, carbonaceous, occasionally argillaceous and limonitic, grades to carbonaceous mudstone and argillite.

Trace slickensides on some fragments.

1299 - 1302m cont.

SANDSTONE (30%) Clear, white, occasionally yellow — orange brown, translucent to milky, very fine — fine, also fine — medium, and some coarse grains, angular — subangular, occasionally subrounded, poorly sorted, grain shatter and frosting, carbonaceous and limonitic/pyritic, calcitic cement, silty matrix, lithic, moderately hard — brittle break.

<u>MUDSTONE (Trace)</u> - Light grey-black, blocky amorphous, dispersive - soft, carbonaceous, interlaminated, argillaceous, slightly chloritic, silicic, slightly calcareous.

TRACES: microfossils, calcite fragments, lithic grains and pyrite, dark green rock fragments and red grains, coal.

Visible Porosity: POOR

SHOWS: NONE.

1302 - 1305m:

SILTSTONE (80%)

As above, microlaminated with coals and mudstone.

SANDSTONE (20%) As above, increased lithic fragments within calcareous and clay matrix.

TRACE: mudstone as above, coal, coloured rock fragments — dark green, red, orange, mica, calcite fragments, pyritic nodules.

Visible porosity: POOR.

SHOWS: None.

1305 - 1308m:

SILTSTONE (80%) As above.

SANDSTONE (20%) As above.

TRACE: mudstone as above, coal fragments.

Visible Porosity: NONE.

SHOWS: NONE - Trace mineral fluorescence.

1308 - 1311m:

SILTSTONE (60%) As above.

<u>SANDSTONE (30%)</u> As above. Very fine - fine grained.

MUDSTONE (10%) As above. Grades to carbonaceous argillite.

TRACE: as above.

0370g

1308 - 1311m cont.

Visible Porosity: NONE.

SHOWS: NONE - Trace mineral fluorescence.

1311 - 1314m:

SANDSTONE (60%)

As above.

SILTSTONE (40%) As above.

TRACE: mudstone, coal, lithic fragments.

Visible Porosity: NONE.

<u>SHOWS</u>: NONE - Trace mineral fluorescence - speckled grains.

1314 - 1317m:

SILTSTONE (70%) As above.

SANDSTONE (20%) As above. Very calcareous.

MUDSTONE (10%) As above, very dispersive.

TRACE: fossils, calcite flakes, coaly fragments.

Visible Porosity: NONE.

SHOWS: NONE - Trace mineral fluorescence.

1317 - 1320m:

SANDSTONE (60%)

White, milky, occasionally clear — translucent, orange, yellow, subangular — subrounded, occasionally angular, very fine — fine, occasionally fine — medium, moderately sorted, occasional large free quartz grains —angular, decreased calcitic cement, silty clay matrix with carbonaceous and lithic grains — green, red, grey, slightly pyritic hard — brittle.

SILTSTONE (40%) Light - medium grey, grey/green, dark grey-black, blocky, silicic - argillaceous, very carbonaceous, chloritic, fine grained, resinous - sucrosic, grades to carbonaceous - argillaceous mudstone, slightly micromicaceous.

<u>MUDSTONE (Trace)</u> light grey, dispersive, blocky – amorphous.

TRACES: carbonaceous fragments, pyrite, coal, rock fragments red and green grains, mica.

Visible Porosity: NONE.

<u>SHOWS</u>: NONE - Trace faint yellow speckly mw fluorescence - calcite.

1320 - 1323m:

MUDSTONE (60%)

Light — dark grey, dark brown, amorphous, very dispersive, chloritic, slightly silicic, very carbonaceous grades to carbonaceous argillite.

SILTSTONE (30%) As above.

<u>SANDSTONE (10%)</u> As above. — decreased calcitic cement, occasionally loose unconsolidated.

TRACE: coaly fragments, abundant green grains throughout matrix.

Visible Porosity: POOR.

<u>SHOWS</u>: NONE - slightly faint speckled yellow mineral fluorescence - calcite.

1323 - 1326m:

Contaminated sample contains cellar contents sandstone, mudstone, laterite and debris.

1326 - 1329m:

As above.

1329 - 1332m:

SILTSTONE (90%) As above.

MUDSTONE (10%) As above.

TRACE: sandstone - calcitic cement as above, coaly fragments as above - still contaminated.

SHOWS: NONE — Spotty, patchy, yellow mineral fluorescence throughout samples no cut .

1332 - 1335m:

<u>SILTSTONE (60%)</u> As above, becoming more argillaceous and carbonaceous, brown — black, grading to argillaceous carbonaceous mudstone.

<u>SANDSTONE (30%)</u> As above, with very large free yellow quartz.

<u>MUDSTONE (10%)</u> As above, becoming more carbonaceous.

TRACE: coal - flakey, large fragments, blocky, fractured, hard, - firm, black, subfissile, argillaceous in parts.

Visible Porosity: NIL.

<u>SHOWS</u>: NONE — Trace faint — bright yellow mineral fluorescence throughout sample, spotty, speckled, no cut.

1335 - 1338m:

SANDSTONE (70%)

Light grey-black, white, milky, clear — translucent, occasionally yellow, very fine — medium, occasionally coarse, angular — subrounded, moderately sorted, very calcitic cemented, silty — argillaceous matrix, lithic fragments, carbonaceous and chloritic, slightly pyritic, grain shatter, occasionally frosted, pitted and occluded with carbonaeous + pyritic inclusions.

<u>SILTSTONE (30%)</u> Light — medium grey, grading to grey/brown to black, very fine — fine grained, blocky, resinous, soft — firm, occasionally hard chloritic, pyritic, very carbonaceous, microlaminated with argillaceous siltstone and carbonaceous mudstone.

<u>MUDSTONE (Trace)</u> Light grey, soft - dispersive, carbonaceous, silicic argillaceous, slightly chloritic, slightly micromicaceous.

TRACES: coal — carbonaceous claystone, hard — soft, black — brown, subvitrinous — sub-bituminous, subfissile, blocky, argillaceous grades to mudstone, calcite flakes, fossils, coloured (red) lithic fragments and green grains.

Visible Porosity: NONE.

<u>SHOWS</u>: NONE - Trace faint - bright, yellow speckled mineral fluorescence throughout sample-calcite. No cut.

1338 - 1341m:

SILTSTONE (60%) As above.

SANDSTONE (40%) As above.

<u>MUDSTONE (Trace)</u> As above, coloured lithic fragments, coal — carbonaceous claystone/mudstone as above.

Visible Porosity: NONE.

<u>SHOWS</u>: NONE - Trace faint yellow mineral fluorescence in one - two grains-calcite no cut.

1341 - 1344m:

SILTSTONE (60%) As above.

COAL (30%) black — dark grey, dark brown, Hard — firm, blocky — platey, subfissile, subvitrinous, subbituminous, occasionally earthy, occasionally silty—arenaceous, grades to carbonaceous shale, microlaminated with mudstone, occasionally argillaceous, resinous — dull lustre, occasionally splitting, occasionally pyritic.

1341 - 1344m cont.

SANDSTONE (10%) As above.

MUDSTONE (Trace) As above.

TRACE: pyritic nodules, decreased coloured lithics, calcite flakes.

Visible Porosity: NONE.

<u>SHOWS</u>: NONE - Trace faint yellow mineral fluorescence - one - two grains-calcite. No cut.

1344 - 1347m:

SANDSTONE (70%)

White - light grey, occasionally yellow, clear - translucent, milky, very fine - fine, occasional medium grains, subangular - subrounded, moderate - well sorted, white kaolin matrix, decreasing calcitic cement, intergranular carbonaceous and pyritic matrix.

<u>SILTSTONE (30%)</u> As above.

TRACE: coal fragments as above, mudstone, rare calcite, grey rock fragments.

Visible Porosity: POOR.

<u>SHOWS</u>: NONE - slight mineral fluorescence.

1347 - 1350m:

SILTSTONE (60%)

Light - medium grey, occasionally light brown + dark grey, very fine - fine, resinous - sucrosic, grades to argillaceous, arenaceous, carbonaceous mudstone, microlaminated, with argillaceous mudstone, - carbonaceous mudstone + coal, blocky, soft - firm, occasionally brittle, very carbonaceous, pyritic - carbonaceous specks, very slightly chloritic.

SANDSTONE (30%) Clear-white, translucent, milky, occasional yellow grains, very fine — fine, occasionally medium, subangular — subrounded, well sorted, white kaolin matrix, slightly calcitic cement, slightly lithic.

<u>MUDSTONE (10%)</u> Light — white, occasionally light brown, soft—plastic, dispersive, very carbonceous, arenaceous, argillaceous in parts.

TRACE: coaly fragments - argillaceous carbonaceous mudstone, feldspar, large coloured rock fragments.

Visible Porosity: NIL.

SHOWS: NONE - faint yellow mineral speckled fluorescence.

1350 - 1353m:

SILTSTONE (60%)

As above. Very blocky, occasionally brittle.

SANDSTONE (40%) As above increased calcitic cement, very hard.

TRACE: mudstone — dispersive as above, coaly fragments as above, pyrite, rock fragments.

Visible Porosity: TIGHT.

<u>SHOWS</u>: NONE - increased faint yellow mineral fluorescence - no cut.

1353 - 1356m:

SILTSTONE (60%) As above. Very blocky.

<u>SANDSTONE (40%)</u> As above. Decreased calcitic cement, increased kaolinitic matrix.

TRACE: coal, mudstone, accessories as above.

Visible Porosity: NIL.

<u>SHOWS</u>: NONE - 1 - 2 grains faint yellow mineral fluorescence-calcite.

1356 - 1359m:

SILTSTONE (70%) As above increasingly chloritic.

SANDSTONE (30%) As above.

TRACE: mudstone, coal, lithic fragments as above.

Visible Porosity: NIL.

<u>SHOWS</u>: NONE — increased faint yellow specks mineral fluorescence in calcite.

1359 - 1362m:

SILTSTONE (70%) As above.

SANDSTONE (30%) White, milky, clear, light grey, occasionally yellow, very fine — fine, subangular — subrounded, moderately sorted, kaolinitic — silicic, matrix, slightly calcitic cement, slightly less lithic, carbonaceous.

TRACE: mudstone, white kaolin, decreasing coaly fragments.

Visible Porosity: NIL.

<u>SHOWS</u>: NONE — 1 to 2 grains, yellow specks mineral fluorescence — calcite

1362 - 1356m:

SILTSTONE (60%) As above.

SANDSTONE (40%) As above.

TRACE: mudstone, coaly fragments, lithic fragments.

Visible Porosity: NIL.

<u>SHOWS</u>: NONE — decreasing faint specks yellow mineral fluorescence.

1365 - 1368m:

SILTSTONE (70%) As above.

SANDSTONE (20%) As above.

MUDSTONE (10%) As above.

TRACES: accessories as above.

Visible porosity: NIL.

SHOWS: NONE - one to two mineral fluorescence.

1368 - 1371m:

SILTSTONE (80%)

Light - medium grey, olive grey, occasionally brown, grading to dark grey - black, very fine - fine, resinous, blocky, subfissile, soft - plastic, occasionally firm - brittle, microlaminated with carbonaceous mudstone, very carbonaceous, slightly chloritic.

SANDSTONE (20%) White — clear, translucent, occasionally yellow, very fine — fine, occasionally medium grains, moderately well sorted, pyritic, carbonaceous, kaolinitic, silicic cement, slightly calcareous, grain fracture, carbonaceous specks, limonitic, carbonaceous coating on some grains

MUDSTONE (Trace) — light grey dispersive, grades to carbonaceous mudstone, black — brown, blocky, sub-bituminous — earthy, grading to coal.

TRACES: Lithic fragments, rare calcite fragments.

Visible Porosity: <u>NIL</u>.

SHOWS: NONE.

1371 - 1374m:

SILTSTONE (80%)

As above increased brown argillaceous-siltstone fragments.

SANDSTONE (10%) As above, calcitic cemented.

MUDSTONE (10%) As above.

TRACE: Carbonaceous — coaly fragments and lithic grains, calcite flakes.

Visible Porosity: NIL.

SHOWS: NONE - 1 to 2 grains mineral fluorescence.

1374 - 1377m:

SILTSTONE (100%) As above.

TRACE: Sandstone, mudstone, coal, calcite, accessories as above.

Visible Porosity: NIL.

 $\underline{\mathsf{SHOWS}}$: NONE - 1 to 2 grains mineral fluorescence.

1377 - 1380m:

SILTSTONE (90%) As above.

<u>SANDSTONE (10%)</u> As above slight calcitic cement, kaolinitic matrix .

TRACE: mudstone, coal, less calcareous, calcitic flakes.

Visible Porosity: NIL.

 $\underline{\mathsf{SHOWS}}$: None - 1 to 2 grains light yellow mineral fluorescence.

1380 - 1383m:

SILTSTONE (90%) As above.

SANDSTONE (10%) As above.

TRACE: mudstone, coal, calcite, pyrite as above.

Visible Porosity: <u>NIL</u>.

SHOWS: rare mineral fluorescence .

1383 - 1386m:

SILTSTONE (70%) As above.

SANDSTONE (30%) As above increased calcite cement, white kaolin matrix, very calcareous.

TRACE: pyrite, mudstone — grades to very carbonaceous claystone, coal — subvitrinous — earthy, splitting — fibrous occasionally blocky.

1383 - 1386m cont.

Visible porosity: NIL.

SHOWS: None.

1386 - 1389m:

SILTSTONE (70%)

Light - medium grey, olive green, occasionally brown, grading to dark grey - black, very fine fine, resinous, blocky, subfissile, soft plastic, occasionally firm grades to carbonaceous mudstone, slightly chloritic, microlaminated with carbonaceous mudstone'.

SANDSTONE (20%) White, clear, translucent, occasionally yellow, milky, very fine - fine, moderately occasionally medium, sorted, kaolinitic, carbonaceous, silicic cement, slightly calcareous, intergranular carbonaceous and chloritic-kaolinitic matrix.

MUDSTONE (10%) Light grey - medium grey, soft, plastic, dispersive, slightly chloritic, very carbonaceous grades to carbonaceous claystone.

TRACE: coal, calcite fragments, coloured lithics.

Visible Porosity: NIL.

SHOWS: NONE.

1389 - 1392m:

SILTSTONE (60%) As above.

SANDSTONE (40%) As above very calcitic cement.

TRACE: coal, mudstone, calcitic flakes.

Visible Porosity: NIL.

SHOWS: NONE.

1392 - 1395m:

SILTSTONE (60%) As above.

SANDSTONE (40%) As above, decrease in calcitic cement.

TRACE: mudstone, carbonaceous fragments, pyrite,

coloured lithics.

Visible Porosity: NIL.

SHOWS: NONE.

1395 - 1398m:

SANDSTONE (60%)

As above, increased calcitic cement.

SILTSTONE (40%) As above, slightly chloritic.

TRACE: mudstone, carbonaceous fragments, pyrite,

calcite flakes, no mineral fluorescence.

Visible Porosity: NIL.

SHOWS: NONE.

1398 - 1401m:

SANDSTONE (60%)

As above. Occasionally very coarse free grains, clear white, shatter fracture, lithic, calcitic

cement.

SILTSTONE (40%) As above.

TRACE: mudstone, coal, coloured lithic

fragments, slightly less calcite.

Visible Porosity: NIL.

SHOWS: NONE.

1401 - 1404m:

SANDSTONE (60%) As above.

SILTSTONE (40%) As above.

TRACE: mudstone, coal, calcite as above .

Visible Porosity: NIL.

SHOWS: NONE

1404 - 1407m:

SILTSTONE (60%) As above.

SANDSTONE (40%) As above.

TRACE: as above .

Visible Porosity: <u>NIL</u>.

SHOWS: NONE.

1407 - 1410m:

SILTSTONE (70%)

Light - medium grey, olive grey, occasionally dark grey - black - brown, very fine - fine, resinous - dull, blocky, soft - firm, occasionally subfissile, very carbonaceous, microlaminated with carbonaceous mudstone and shale, arenaceous occasionally calcareous and

chloritic.

1407 - 1410m cont.

SANDSTONE (30%) Light grey, white, clear - translucent, milky, occasional yellow grains, very fine - fine, occasionally medium, moderately sorted, very calcitic cemented, with intergranular carbonaceous pyrite and chlorite grains, slight kaolinitic matrix - dirty brown argillaceous matrix.

TRACE: mudstone, coal, coloured lithic grains, pyrite, mica.

Visible Porosity: NIL.

SHOWS: NONE.

1410 - 1413m:

SILTSTONE (60%) As above.

SANDSTONE (40%) As above, less calcareous.

TRACE: mudstone, coal, pyrite, lithic fragments.

Visible Porosity: NIL.

SHOWS: NONE

1413 - 1416m:

SILTSTONE (60%) As above.

SANDSTONE (40%) As above. Very calcitic cemented.

TRACE: mudstone, coal, pyrite, lithic fragments.

Visible Porosity: NIL.

SHOWS: NONE.

1416 - 1419m:

SANDSTONE (70%) (very dirty sand) Light grey, blue-grey, white, orange, yellow, trace rose quartz fragments and grains, clear, translucent, milky, very fine - coarse, angular subrounded, very poorly sorted, occasionally some aggregates, dirty brown, pyritic intergranulated with pyrite and rock fragments, matrix, with white kaolin generally dark intergranular calciticcement, fragments, lithic - sublithic, pyrite carbonaceous specks, some large fractured grains - free quartz, clear - white, with carbonaceous pyritic inclusions and coatings, limonitic.

SILTSTONE (30%) Light grey - green/grey, black, brown, and dark grey, very fine - fine, resinous, soft - plastic, carbonaceous, pyritic and chloritic, grades to carbonaceous mudstone.

1416 - 1419m cont. '

TRACE: mudstone, coal as above, chlorite, coloured rock fragments.

Visible Porosity: NIL.

SHOWS: NONE - rare mineral fluorescence - calcite.

Heat field

1419 - 1422m:

SANDSTONE (90%)

White — light grey, light yellow, occasional rose quartz, very fine — very coarse, angular — subrounded, very poorly sorted, grain fracture and shatter, very calcitic cemented, slight kaolinic matrix — silty, coarse grains — loose, pitted, frosted, fractured, pyritic and carbonaceous inclusions, slightly chloritic, slightly pyritic—limonitic, sublithic sandstone.

<u>SILTSTONE (10%)</u> Light — dark grey, soft — firm, silicic, chloritic, carbonaceous, argillaceous in parts, grades to carbonaceous mudstone.

TRACE: mudstone, coal, — small, black, blocky, hard, subvitrinous fragments, rock lithics, calcite grains.

Visible Porosity: NIL - FAIR.

SHOWS: NONE - Trace - rare mineral fluorescence - calcite.

1422 — 1425m:

SANDSTONE (100%) (clean sand)
As above, less calcitic cement, occasional rose quartz grains.

TRACE: siltstone — dark grey, carbonaceous — carbonaceous mudstone, coal — small black, brittle, subvitrinous fragments, dark green lithic fragments.

Visible Porosity: POOR - FAIR.

SHOWS: NONE.

1425 - 1428m:

SANDSTONE (100%)

As above, increased calcitic cement, increased coloured lithics including rose quartz.

TRACE: siltstone as above, coal, dark rock fragments, calcite flakes, pyrite.

Visible Porosity: POOR.

1428 - 1431m:

SANDSTONE (100%)

As above increased silty matrix.

TRACE: Accessories as above

Visible Porosity: POOR.

1431 - 1434m:

SHOWS: none. SANDSTONE (100%)

red, green, pink, clear White, yellow, translucent, occasionally milky, fine-medium, occasionally coarse - very coarse, subrounded subangular, occasionally angular, moderately well sorted, white kaolin matrix, slight calcitic occasional slight silicic cement, cement, carbonaceous + pyritic inclusions, sublithic, with red, green, yellow, dark grey rock fragments and grains, slightly chloritic, some loose to tight, hard, brittle, very clean sand, grain fracture and frosting.

TRACE: coal, mica

Visible Porosity: POOR - FAIR

SHOWS: None.

1434 - 1437m:

SANDSTONE (100%) As above.

TRACE As above.

Visible porosity: POOR.

SHOWS: None.

1437 - 1440m:

SANDSTONE (100%)

White, clear, pink, yellow, green/grey, fine medium, occasionally coarse, subangular subrounded, occasionally angular, occasionally loose/unconsolidated, hard, brittle, fractured, frosted + pitted on some grains, slight white kaolin matrix, very very slight calcitic cement, slight silicic cement, occasional carbonaceous coatings on grains, slightly lithic with dark green, dark red, pink and rose quartz grains, and carbonaceous flecks, slightly pyritic chloritic.

coal — hard, black, friable, earthy, TRACES: pyritic to subvitrinous, dull - resinous, interlaminated with sandstone, chlorite, siltstone light grey - green, chloritic.

Visible porosity: POOR - FAIR.

1440 - 1443m:

SANDSTONE (100%)

As above.

TRACE: rare coal, accessories as above.

Visible porosity: POOR - FAIR

SHOWS: None.

1443 - 1446m:

SANDSTONE (100%)

As above.

TRACE: siltstone, accessories as above.

Visible porosity: POOR - FAIR.

SHOWS: None.

1446 - 1449m:

SANDSTONE (100%)

As above, less calcitic cement, friable, loose -

unconsolidated

TRACE: as above, less siltstone.

Visible porosity: GOOD - FAIR

SHOWS: None.

1449 - 1452m:

As above, very slight calcitic cement, friable,

loose - unconsolidated.

as above, slight increase in coal

fragments - subvitrinous, hard, black, shiny.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1452 - 1455m:

SANDSTONE (100%)

As above, angular - subangular, good clean sand,

very slight calcitic cement, kaolin matrix

TRACE: as above

Visible porosity: FAIR.

SHOWS: None.

1455 - 1458m

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: FAIR.

1458 - 1461m:

SANDSTONE (100%)

As above.

TRACE: as above, siltstone.

Visible porosity: $\underline{POOR - FAIR}$

SHOWS: None.

1461 - 1464m:

SANDSTONE (100%)

As above.

TRACE: as above, decreased rock lithics.

Visible porosity: FAIR - POOR.

SHOWS: None.

1464 - 1467m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: POOR - FAIR.

SHOWS: None.

1467 - 1470m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: POOR - FAIR.

SHOWS: None.

1470 - 1473m:

SANDSTONE (100%)

As above, very very slight calcitic cement, very

clean sand.

TRACE: as above.

Visible porosity: $\underline{POOR - FAIR}$.

1473 - 1476m:

SANDSTONE (100%)

Sublithic sandstone interlaminated with thin siltstones, clear — translucent, white, occasionally yellow, occasionally pink, pale grey, green, milky, fine — medium, occasionally coarse, subangular — subrounded, occasionally angular, shattered, frosted, kaolin matrix, very very slight calcitic cement, slightly pyritic, slightly carbonaceous, slightly chloritic, slight increase in dark red clear grains and green grains.

TRACE: siltstone, coal fragments, vitrinous subvitrinous.

Visible porosity: POOR - FAIR.

SHOWS: None.

1476 - 1479m:

SANDSTONE (100%)

As above, occasional pale grey-green grains.

TRACE: very thin orange cherts, very thin chloritic and carbonaceous siltstones, coals, slight trace pyritized cement/matrix.

Visible Porosity: POOR - FAIR

SHOWS: None.

1479 - 1482m:

SANDSTONE (100%)

As above, slight increase in coloured lithic grains and fragments ie. dark green, chlorite, rose quartz, red grains — feldspar.

TRACE: slight increase in siltstone and coal fragments.

Visible porosity: FAIR - POOR.

SHOWS: None.

1482 - 1485m:

SANDSTONE (100%)

As above.

COAL (trace) — slight increase, hard, black, brittle, dull to resinous, very pyritic, fissile — subfissile, blocky, shiny, occasionally subvitrinous, micro-interlaminated and intergradational dark grey siltstone and coal — carbonaceous mudstone.

TRACE: pyrite nodules, green/grey chloritic siltstone - carbonaceous siltstone, mudstone, chert flakes.

1482 - 1485m cont.

Visible porosity: POOR - FAIR.

SHOWS: None.

1485 - 1488m:

SANDSTONE (100%) (silty - coaly sand)
Clear - white, light grey, translucent, milky,
occasionally yellow, pink, grey, green, fair medium, rare coarse grains, angular - subangular,
occasionally subrounded, shattered grains,
frosted, frequent sub-bituminous coating on
grains - increased calcitic cement.

TRACE: siltstone, coal, dark rock fragments, silty coaly sand.

Visible porosity: FAIR - POOR.

SHOWS: None - no fluorescence. No cut.

1488 - 1491m:

SANDSTONE (100%)

As above becoming coarser, decreased silt and coal.

TRACE: siltstone, coal.

Visible porosity: FAIR - POOR.

SHOWS: None.

1491 - 1494m:

SANDSTONE (100%)

As above becoming cleaner, decreased siltstone and coal, very coarse — coarse, angular — subangular grains, good clean sand, loose—unconsolidated, increased rose quartz and chloritic grains, rare kaolinitic matrix.

TRACE: Siltstone,

Visible porosity: FAIR.

SHOWS: None.

1494 - 1497m:

SANDSTONE (100%) (good clean sand)

As above, becoming finer, fine to medium grained,

subangular - subrounded.

TRACES: as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1497 - 1500m:

SANDSTONE (100%)

As above, fine - very fine, occasionally subangular - subrounded, moderately well sorted,

less coloured grains.

1497 - 1500m cont.

TRACE: small coal and silt fragments.

Visible porosity: GOOD.

SHOWS: None.

1500 - 1503m:

SANDSTONE (100%)

As above.

TRACE: siltstone, coloured grains, coal as above.

Visible porosity: GOOD.

SHOWS: None.

1503 - 1506m:

SANDSTONE (100%)

Clear — white, pink, coloured as above, very fine — medium, occasionally coarse — very coarse, shattered fragments, carbonaceous — sub-bituminous coatings on some grains, slight calcitic cement, trace—increased calcite grains slightly silicic, kaolinitic matrix,

unconsolidated.

TRACE: siltstone, coloured grains, rose quartz.

Visible porosity: GOOD.

SHOWS: None - speckled yellow mineral

fluorescence.

1506 - 1509m:

SANDSTONE (100%)

As above, clean unconsolidated sand.

TRACE: as above.

Visible porosity: GOOD.

SHOWS: None.

1509 - 1512m:

SANDSTONE (100%)

White, clear, pink, orange, yellow, light grey, green, translucent, occasionally milky, fine — medium, occasional coarse, angular — subangular occasionally subrounded, poor — moderately sorted, some grains shattered and frosted, rare carbonaceous coatings and inclusions, slight

increased calcitic cement.

TRACE: siltstone, coal, pyrite, chlorite.

Visible porosity: FAIR - GOOD.

SHOWS: None - 1 to 2 grains mineral fluorescence.

1512 - 1515m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: FAIR - GOOD.

None - very faint spotty yellow fluorescence throughout - mineral fluorescence no cut.

1515 - 1518m:

SANDSTONE (90%)

As above, fine - very coarse, angular subrounded, poorly sorted, increased calcitic cement, kaolinitic matrix, intergranular pyrite and carbonaceous fragments.

SILTSTONE (10%) :Light - dark grey, grey/green carbonaceous and chloritic in part, subfissile, microlaminated, grades to argillaceous and carbonaceous mudstone.

TRACE: coal fragments.

Visible porosity: POOR - FAIR.

None - occasional very faint spotty speckled yellow fluorescence throughout - mineral

fluorescence - no cut.

1518 - 1521m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: FAIR.

SHOWS: None.

1521 - 1524m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: FAIR.

1524 - 1527m:

SANDSTONE (100%)

As above, fine - medium grained, slightly

calcitic.

TRACE: accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None - mineral fluorescence.

1527 - 1530m:

SANDSTONE (90%)

White — clear, translucent, occasionlly pink, green, orange green, fine — coarse, occasionally very coarse, large fragmented grains, poorly sorted, angular — subrounded, frosted, pitted, slightly calcitic, dirty sand, silty matrix.

<u>SILTSTONE (10%)</u>: Light-medium grey, grades to argillaceous carbonaceous mudstone and coal.

<u>COAL (trace)</u> hard, black, vitrinous - sub-bituminous, firm, brittle, subfissile.

TRACE: pyrite.

Visible porosity: FAIR.

SHOWS: None - trace mineral fluorescence.

1530 - 1533m:

SANDSTONE (90%)

As above.

SILTSTONE (10%) : As above.

TRACE: coal, pyrite, rock fragments.

Visible porosity: <u>FAIR</u>.

SHOWS: None - trace mineral fluorescence.

1533 - 1536m:

SANDSTONE (90%)

As above, very calcitic cement.

SILTSTONE (10%) : As above.

Visible porosity: FAIR.

SHOWS: None - trace mineral fluorescence.

1536 - 1539m:

SANDSTONE (100%)

As above - becoming cleaner.

<u>SILTSTONE (trace)</u> very calcareous.

Visible porosity: FAIR.

SHOWS: None - trace mineral fluorescence.

1539 - 1542m:

SANDSTONE (90%)

As above.

SILTSTONE (10%)

As above.

TRACE: coal, mudstone, pyrite, coloured lithics,
dolomite, calcite fair - good visble porosity.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1542 - 1545m:

SANDSTONE (100%)

As above.

TRACE: Siltstone, accessories as above, coal,

chert.

Visible porosity: <u>FAIR - GOOD</u>.

SHOWS: None - trace speckled mineral

fluorescence.

1545 - 1548m:

SANDSTONE (100%)

As above.

TRACE: accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None - very faint trace speckled

fluorescence..

1548 - 1551m:

SANDSTONE (100%)

As above, very very faintly trace calcareous.

TRACE: accessories as above, chert flakes -

orange brown, mudstone - white - coal.

Visible porosity: <u>VERY GOOD - GOOD</u>.

1551 - 1554m:

SANDSTONE (100%)

As above, increased pink and yellow grains, slight increased calcitic cement and kaolinitic matrix, very good clean sand.

TRACE: very slight trace coal, trace feldspar and rock fragments.

Visible porosity: GOOD.

SHOWS: None - slight mineral fluorescence.

1554 -1557m:

SANDSTONE (80%)

White, light grey, grey/green, pink, yellow, orange, red, brown, clear-translucent, very fine — medium, occasionally coarse, angular — subrounded, moderately — poorly sorted, slight calcitic cement, kaolin-silty matrix, grain fracture and carbaceous inclusions, slightly pyritic, sublithic.

<u>SILTSTONE (20%)</u>: Light — dark grey, grades to black, occasionally grey/green, fine grained — sucrosic, resinous, soft — firm to brittle, blocky, carbonaceous grades to argillaceous carbonaceous mudstone.

TRACE: Mudstone, coal-hard black, resinous to sugary, brittle, subfissile, dark rock fragments.

Visible porosity: FAIR.

SHOWS: None - slight mineral fluorescence.

1557 - 1560m:

SANDSTONE (100%)

As above, decreased coloured grains, slightly calcitic cement.

TRACE: Siltstone, coal, mudstone, coloured lithics.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1560 - 1563m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: FAIR - GOOD.

1563 - 1566m:

SANDSTONE (100%)

As above.

TRACE: Slight increase in siltstone, mudstone

coal.

Visible porosity: GOOD - FAIR.

SHOWS: None - 1 or 2 grains mineral fluorescence.

1566 - 1569m:

SANDSTONE (80%)

As above — sublithic sandstone slightly calcitic, trace white kaolin matrix.

SILTSTONE (20%): Light — dark grey, brown, sucrosic, blocky, soft — plastic, occasionally subfissile, occasionally argillaceous, arenaceous, slightly chloritic, grades to argillaceous carbonaceous mudstone in parts.

<u>COAL (trace)</u> - hard, black, blocky, resinous-dull, occasionally subvitrinous, subfissile, firm - brittle, occasionally argillaceous, silty grades to carbonaceous claystone-mudstone, slightly pyritic.

<u>TRACE</u>: Dolomite, calcite, lithic fragments, pyrite.

Visible porosity: FAIR.

SHOWS:: None - trace mineral fluorescence.

1569 - 1572m:

SILTSTONE (80%)

Light-dark grey, brown, black, blocky, soft - firm subfissile, carbonaceous chloritic, argillaceous, arenaceous, sucrosic-resinous.

SANDSTONE (20%): White, clear, translucent, occasionally yellow, very fine — fine — medium, moderately well sorted, slight calcitic cement, kaolinitic—silty matrix, sublithic, trace carbonaceous and chloritic.

TRACE: Coal as above, mudstone-light grey-brown, dispersive, dolomite, calcite.

Visible porosity: FAIR.

1572 - 1575m:

SILTSTONE (80%)

As above, very blocky, carbonaceous and argillaceous grades to carbonaceous shale.

<u>SANDSTONE (20%)</u>: Clear, white-milky, very fine - fine, moderately sorted, hard-brittle, kaolinitic matrix, very calcitic cement.

TRACE: Coal-large hard, black, blocky fragments grades to carbonaceous mudstone, pyrite, coloured lithic fragments, chlorite, calcite, dolomite.

Visible porosity: VERY POOR.

SHOWS: Trace mineral fluorescence.

1575 - 1578m:

SANDSTONE (70%)

As above with yellow, pink, orange green, grains, very calcitic cement, with kaolinitic matrix.

SILTSTONE (10%): Light-dark green/grey, chloritic, carbonaceous, blocky — resinous, dull, soft — firm, occasionally hard, silicic, argillaceous, grades to carbonaceous mudstone and chloritic mudstone.

MUDSTONE (10%): Light grey-brown, occasionally green, soft-dispersive, slightly micromicaceous grades to carbonaceous claystone.

COAL (10%): Hard, black, pyritic, blocky, subfissile, soft — firm, brittle grades to carbonaceous shale.

TRACE: calcite flakes, dark rock fragments, pyrite.

Visible porosity: NIL.

SHOWS: None.

1578 - 1581m:

SANDSTONE (70%)

As above very very calcareous.

<u>SILTSTONE (20%)</u>: As above.

COAL (10%): As above.

TRACE: mudstone, calcite flakes as above.

Visible porosity: <u>NIL</u>.

1581 - 1584m:

SANDSTONE (90%)

As above, decreased calcitic cement.

SILTSTONE (10%) : As above.

TRACE: coal as above, mudstone, calcite flakes

trace as above.

Visible porosity: NIL.

SHOWS: None.

1584 - 1587m:

SANDSTONE (100%)

Clean-white sand, clear, translucent, white, occasionally milky, occasionally pink rose quartz, rare orange-yellow, occasional green, fine - medium, occasional coarse angular subangular, occasionally subrounded, well sorted, loose-unconsolidated, trace kaolinitic matrix, very slight calcitic cement, silicic, trace lithic grains.

coal fragments as above, siltstone fragments as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1587 - 1590m:

SANDSTONE (100%)

As above, slightly coarser, trace siltstone, mica

and coal fragments.

Visible porosity: GOOD.

SHOWS: None.

1590 - 1593m:

SANDSTONE (100%)

As above, increased pink, red and yellow grains.

TRACE: rare siltstone, coal and dark lithic

grains.

Visible porosity: GOOD.

SHOWS: None.

1593 - 1596m:

SANDSTONE (100%)

As above.

Visible porosity: GOOD.

1596 - 1599m:

SANDSTONE (100%)

As above.

Accessories as above, slight increased

coally fragments.

Visible porosity: GOOD.

SHOWS: None.

1599 - 1602m:

SANDSTONE (100%)

As above.

TRACE: Accessories as above.

Visible porosity: GOOD.

SHOWS: None.

1602 - 1605m:

SANDSTONE (100%)

As above, increase in coloured grains-rose quartz

and yellow stained grains.

TRACE: accessories as above.

Visible porosity: Good.

SHOWS: None.

1605 - 1608m:

SANDSTONE (100%)

As above.

accessories as above, slight increase TRACE: siltstone fragments, light-dark green, silicic,

chloritic.

Visible porosity: GOOD.

SHOWS: None..

1608 - 1611m:

SANDSTONE (80%)

As above, increased coarseness — occasional very

coarse grains and fragments.

SILTSTONE (20%) : Light - dark green,

arenaceous-carbonaceous chloritic, blocky, soft firm subfissile, silicic, resinous-dull, pyritic.

TRACE: dark green rock fragments, coal - grades and grades to carbonaceous siltstone

carbonaceous shale, mudstone.

Visible porosity: FAIR - GOOD.

SHOWS: None.

0370g

1611 - 1614m:

SANDSTONE (60%)

As above, fine — coarse, poorly sorted, angular grains lithic slightly calcitic.

<u>SILTSTONE (20%)</u>: Light — dark grey, olive grey, green, occasionally brown, very chloritic, silicic, slightly carbonaceous — very carbonaceous, occasionally argillaceous, pyritic, grades to and is microlaminated with carbonaceous mudstone.

COAL (10%): Hard, black, blocky, occasionally brown, earthy, pyritic grades to carbonaceous mudstone.

MUDSTONE (10%) : Argillaceous + carbonaceous, slightly chloritic.

TRACE: common coloured and dark lithic fragments, calcite fragments, pyrite.

Visible porosity: FAIR - POOR.

SHOWS: None.

1614 - 1617m:

CONTAMINATED SAMPLE

SANDSTONE (60%)

White, light grey, clear, translucent, pink, orange, yellow, green, fine — medium grains, occasionally coarse, angular — subangular occasionally subrounded, very calcareous + chloritic.

<u>SILTSTONE (30%)</u>: Light — dark grey, chloritic, carbonaceous, argillaceous, pyritic, arenaceous.

RUBBISH: (10%) - contamination.

Visible porosity: FAIR.

SHOWS: None.

1617 - 1620m:

SANDSTONE (100%)

Clear, white, occasionally red, pink and yellow, translucent, fine — medium, subangular — subrounded, moderately well sorted, loose — unconsolidated, trace calcitic cement.

TRACE: rare coal fragments — hard black vitrinous — rare chloritic — carbonaceous siltstone fragments, lithic grains.

Visible porosity: GOOD.

1620 - 1623m:

SANDSTONE (100%)

As above, less coloured grains, occasional medium

- coarse grains.

TRACE: accessories as above.

Visible porosity: FAIR.

SHOWS: None.

1623 - 1626m:

SANDSTONE (100%)

As above, fine - medium, occasional coarse, increased coloured grains, common rose quartz

loose - unconsolidated.

Visible porosity: VERY GOOD.

SHOWS: None.

1626 - 1629m:

SANDSTONE (100%)

As above.

TRACE: as above, slight - trace calcareous,

loose - unconsolidated.

Visible porosity: VERY GOOD.

SHOWS: None.

1629 - 1632m:

SANDSTONE (100%)

As above, increased coaly fragments, increased

carbonaceous - sub-bituminous coatings on grains.

TRACE: as above, increased coal - hard, black, blocky, vitrinous — subvitrinous, occasionally

sub-bituminous, subfissile.

Visible porosity: GOOD.

SHOWS: None.

1632 - 1635m:

SANDSTONE (100%)

As above, very very clean fine grained well

sorted sand, increase in rose quartz.

Visible porosity: GOOD.

SHOWS: None.

1635 - 1638m:

SANDSTONE (100%)

As above.

increased siltstone TRACE:

fragments,

accessories as above.

Visible porosity: GOOD.

0370g

SHOWS: None.

1638 - 1641m:

SANDSTONE (100%)

As above, decrease in coloured grains.

TRACE: coal as above, siltstone as above.

Visible porosity: GOOD.

SHOWS: None.

1641 - 1644m:

SANDSTONE (100%)

translucent, white, occasionally red, pink, yellow, medium brown, + green fine-grained, occasionally subangular -subrounded, occasionally angular, very well sorted, no cement, very faint trace kaolinitic matrix (very clean sand).

rare siltstone + coal fragments, very TRACE: slight trace rock fragments.

Visible porosity: **EXCELLENT**.

SHOWS: None.

1644 - 1647m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: **EXCELLENT**.

SHOWS: None. Trace mineral fluorescence.

1647 - 1650m:

SANDSTONE (100%)

As above, trace calcitic cement, trace kaolinitic

matrix.

TRACE: as above, calcite fragments.

Visible porosity: GOOD - EXCELLENT.

SHOWS: None - trace mineral fluorescence.

1650 - 1653m:

SANDSTONE (100%)

increased coal + As above, slight

fragments.

Visible porosity: GOOD - EXCELLENT.

1653 - 1656m:

SANDSTONE (100%)

As above, increased from fine — medium grained, slightly coarser, angular — subangular, some grain shatter, very calcareous.

<u>TRACE</u>: slight increased coal + siltstone fragments.

Visible porosity: GOOD.

SHOWS: None.

1656 - 1659m:

SANDSTONE (100%)

As above, very calcitic cemented, medium grained, occasionally coarse, frequent grain frosting and shatter, slightly pyritic.

TRACE: increased coloured grains, slight increased siltstone fragments.

Visible porosity: FAIR.

SHOWS: None.

1659 - 1662m:

SANDSTONE (100%)

Clear white, orange, red, yellow, pink, predominantly clear, (coloured frequency increased), medium grained, occasionally coarse, angular — subangular, moderately sorted, occasionally subrounded, pyritic, very very calcitic cemented, no trace of matrix, slightly lithic, grain shatter, fractured, pyritic — carbonaceous inclusions and coatings.

TRACE: slight increase in siltstone fragments.

Visible porosity: FAIR.

SHOWS: None - trace mineral fluorescence.

1662 - 1665m:

SANDSTONE (100%)

As above, common coloured grains, very calcitic - cemented.

TRACE: siltstone, carbonaceous, chloritic,
calcite fragments.

Visible porosity: FAIR.

1665 - 1668m:

SANDSTONE (100%)

Clear, translucent, white, trace coloured grains, fine — medium grained, moderatley sorted, subangular — subrounded, occasionally angular,

loose, very calcitic, slight

sub-bituminous/carbonaceous material coating some

grains.

TRACE: calcite flakes, decreased siltstone

fragments, pyrite, coal.

Visible porosity: GOOD.

SHOWS: None.

1668 - 1671m:

SANDSTONE (100%)

As above, occasionally coarse grained, slightly

calcitic

Visible porosity: GOOD.

SHOWS: None.

1671 - 1674m:

SANDSTONE (100%)

As above

TRACE: slight trace chloritic silstone.

Visible porosity: GOOD.

SHOWS: None.

1674 - 1677m:

SANDSTONE (100%)

As above, frequent coloured grains.

Visible porosity: GOOD.

SHOWS: None.

1677 - 1680m:

SANDSTONE (100%)

As above, decreased calcitic cement.

Visible porosity: GOOD.

SHOWS: None.

1680 - 1683m:

SANDSTONE (100%)

As above, clay - silty matrix, slight decrease in

calcitic cement.

TRACE: increase in coal and siltstone fragments and grains, increase in lithic fragments,

mudstone, rock lithics.

Visible porosity: FAIR - GOOD.

1683 - 1686m:

SANDSTONE (100%)

As above.

TRACE: decrease in coal and siltstone fragments,

mudstone.

Visible porosity: FAIR.

SHOWS: None.

1686 - 1689m:

SANDSTONE (100%)

As above.

TRACE: slight increase in siltstone fragments.

Visible porosity: FAIR.

SHOWS: None.

1689 - 1692m:

SANDSTONE (90%)

As above, very calcitic cement and silty matrix.

<u>SILTSTONE (10%)</u>: Light — dark grey fragments, coaly, chloritic grades to carbonaceous mudstone

in part.

Visible porosity: FAIR - POOR.

SHOWS: None - trace mineral fluorescence in 1-2

grains.

1692 - 1695m:

SANDSTONE (90%)

As above very calcitic.

SILTSTONE (10%) : As above very chloritic and

carbonaceous.

Visible porosity: <u>FAIR - GOOD</u>.

SHOWS: None.

1695 - 1698m:

SANDSTONE (90%)

As above, dirty sand, very carbonaceous coatings on grains, shattered fragments and calcitic

cemented, lithic .

SILTSTONE (10%) : As above grades to carbonaceous

mudstone.

TRACE: mudstone and coal.

Visible porosity: FAIR - POOR.

1698 - 1701m:

SANDSTONE (100%)

Clear, white, translucent, trace to frequent grained, grains, fine medium coloured sorted, moderately angular, occasionally grains, frosted subangular, subrounded common, carbonaceous inclusions and coatings loose, calcitic cement, slightly lithic.

TRACE: siltstone, slight coal.

Visible porosity: GOOD.

SHOWS: None.

1701 - 1704m:

SANDSTONE (100%)

As above, increasing pyritization of cement/matrix —coating on grains, increased coloured grains.

TRACES: slight decrease in siltstone, slight coal.

Visible porosity: GOOD.

SHOWS: None.

1704 1707m:

SANDSTONE (90%)

As above, increased calcitic cement, increased lithic fragments.

<u>SILTSTONE (10%)</u>: Light - dark grey, carbonaceous chloritic/arenaceous - argillaceous, slightly pyritic, grades to carbon mudstone, coal fragments.

TRACE: coal fragments.

Visible porosity: GOOD.

SHOWS: None.

1707 - 1710m:

SANDSTONE (100%)

As above, very pyritic ,very calcareous.

Visible porosity: FAIR - POOR.

SHOWS: None.

1710 - 1713m:

SANDSTONE (100%)

As above, fine grained, generally loose. Tight — Agglomerates very calcitic cemented + hard — intergranulated with pyrite and carbonaceous fragments.

Visible porosity: NONE.

1713 - 1716m:

SANDSTONE (100%)

As above, becoming finer grained.

Visible porosity: FAIR - GOOD.

SHOWS: None - trace mineral fluorescence.

1716 - 1719m:

SANDSTONE (100%)

As above, angular, increased pyritic nodules +

fragments, very calcareous.

Visible porosity: FAIR - GOOD.

SHOWS: None - trace

1719 - 1722m:

SANDSTONE (90%)

 coarse grained, above, medium calcareous, angular - subangular, fractured shattered grains, very pyritic, very calcitic,

very lithic.

SILTSTONE (10%):

As above, grades to carbonaceous mudstone, and

coal.

Visible porosity: FAIR - GOOD

SHOWS: None - trace mineral fluorescence.

1722 - 1725m:

SANDSTONE (70%)

As above, frequent coloured grains, very fine coarse, angular - subangular, poorly sorted, very calcitic cemented, lithic, pyritic, hard + tight.

SILTSTONE (30%)

Light - dark grey/green, arenaceous, argillaceous, chloritic, carbonaceous, grades to carbonaceous

mudstone, very pyritic.

TRACE: mudstone, coal, pyritic nodules.

Visible porosity: VERY POOR.

SHOWS: None.

1725 -1728m:

SANDSTONE (90%)

White, translucent, clear, occasionally - rarely coloured, fine - medium, occasionally coarse, subangular – subrounded, moderately sorted, fractured - shattered grains, slightly pyritic, slightly carbonaceous, very calcareous, slightly

lithic.

1725 - 1728m cont.

SILTSTONE (10%): Light — dark grey, green, very chloritic, very carbonaceous, arenaceous — argillaceous, pyritic, occasional chert fragments, grades to chloritic mudstone, occasionally grades to carbonaceous mudstone.

TRACE: coal.

Visible porosity: POOR - FAIR.

SHOWS: None.

1728 - 1731m:

SANDSTONE (100%)

As above, becoming finer grained, rare coloured grains, slightly calcitic cemented, trace kaolin

matrix.

Visible porosity: FAIR.

SHOWS: None.

1731 - 1734m:

SANDSTONE (100%)

As above, occasionally coarse grained.

TRACE: decrease in siltstone fragments.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1734 - 1737m:

SANDSTONE (100%)

As above, very calcitic cement, trace kaolin

matrix.

TRACE: siltstone, dolomite, calcitic flakes,

coal.

Visible porosity: TIGHT - POOR.

SHOWS: None.

1737 - 1740m:

SANDSTONE (100%)

As above, increased coarse grains.

TRACE: dolomite, calcite, coal and siltstone.

Visible porosity: FAIR.

SHOWS: None - mineral fluorescence.

1740 - 1743m:

SANDSTONE (90%)

White, translucent, clear, occasional coloured grains, very coarse - coarse occasionally medium grained, very angular- subangular, occasionally subrounded, very poorly sorted, very calcitic cemented, slightly silicic cemented, very hard - brittle, some grain shatter, some carbonaceous coating, lithic.

<u>SILTSTONE (10%)</u>: Light grey — green — black, blocky, subfissile, arenaceous, calcareous, chloritic, grades to mudstone and shale.

TRACE: mudstone, coal, slight dolomite, calcite.

Visible porosity: POOR - GOOD.

SHOWS: None - mineral fluorescence.

1743 - 1746m:

SANDSTONE (60%)

Clear — translucent, white occasionally pink grains, very fine — very coarse, angular — subrounded, very poorly sorted, very hard, very slight calcitic cement, some aggregates with kaolin matrix, occasionally silicic cemented, intergranular pyrite, siltstone fragments and carbonaceous specks.

SILTSTONE (30%)

Light grey — dark grey, green, brown, black, blocky, very fine — medium, soft, occasionally subfissile, arenaceous, argillaceous, very chloritic, very carbonaceous, grades to soft, dispersive carbonaceous mudstone, resinous — dull, ccasionally pyritic, free carbonaceous specks, free quartz.

MUDSTONE (10%)

Light grey - dark brown, soft - dispersive, occasionally chloritic, occasionally very calcareous - lime mud, carbonaceous grades to carbonaceous shale.

TRACE: coal - hard, black, blocky, grades to carbonaceous mudstone, lithic grains, dolomite, calcite flakes, pyrite, cherty flakes, occasionally very large quartz fragments.

Visible porosity: <u>VERY TIGHT - NIL</u>.

SHOWS: None - mineral fluorescence.

1746 - 1749m:

SANDSTONE (90%)

Clear, white, translucent, very occasionally pink, fine - medium, occasionally coarse grained, subangular - subrounded, moderately sorted, occasionally fractured and shattered, kaolin cement, trace frosted and pitted, slightly cement, silicic occasionally carbonaceous.

SILTSTONE (10%)

As above, occasionally hard - brittle, very silicic.

coal, green grains, mudstone – soft dispersive and calcareous, calcitic fragments.

Visible porosity: TIGHT.

SHOWS: None.

1749 - 1752m:

SANDSTONE (80%)

As above, occasional coarse grains, frequently kaolin matrix, very slightly calcareous, occasionally pyritised matrix - pyrite nodules/ aggregates with quartz and carbonaceous grains.

SILTSTONE (20%)

As above, commonly grades to shale, slightly calcareous.

TRACE: coal, pyrite nodules, quartz grains.

Visible porosity: FAIR - TIGHT.

SHOWS: None.

1752 - 1755m:

SANDSTONE (90%)

Clear - white, translucent, occasionally pink/yellow, fine -medium, occasionally coarse, subangular - subrounded, occasionally angular, moderately - poorly sorted, hard, kaolinitic to silty matrix, occasionally pyritic in matrix/ pyritic inclusions, fractured shattered grains, very slightly calcitic cement, slightly silicic cement, silty matrix, sub-lithic.

SILTSTONE (10%)

Light - dark grey, grey/green, black - brown, arenaceous, slightly argillaceous, chloritic, carbonaceous, grades to occasionally pyritic, shale, carbonaceous occasionally grades to mudstone.

1752 - 1755m cont.

TRACE: mudstone — light grey, soft and firm, coal, pyrite, occasionally calcite, sublithic rock fragments, muscovite.

Visible porosity: POOR - FAIR.

SHOWS: None

1755 - 1758m:

SANDSTONE (100%)

As above, increased coloured grains and carbonaceous coatings occasionally interlaminated with very thin coal beds.

TRACE: siltstone as above, coal, trace rock fragments.

Visible porosity: POOR - FAIR.

SHOWS: None.

1758 - 1761m:

SANDSTONE (90%)

As above.

SILTSTONE (10%)

As above.

TRACE: coal, mudstone, feldspar, accessories as above.

Visible porosity: <u>FAIR - POOR</u> in aggregates.

SHOWS: None.

1761 - 1764m:

SANDSTONE (80%)

Coloured grains as above, very fine - coarse, occasionally very coarse, angular - subrounded, very poorly sorted, kaolin matrix, silty, very calcareous. Tight.

SILTSTONE (10%)

As above grades to carbonaceous—arenaceous shale.

MUDSTONE (10%)

Light — dark grey, soft, occasionally dispersive, grades to carbonaceous claystone — coal.

TRACE: coal, lithic grains.

Visible porosity: <u>TIGHT</u>.

1764 - 1767m:

SANDSTONE (90%)

As above, fine — medium grained, occasional loose grains, subangular — subrounded, poor — moderately sorted, kaolin matrix.

SILTSTONE (10%)

As above, trace coal.

TRACE: coal, mudstone, lithic grains.

Visible porosity: POOR - FAIR.

SHOWS: None.

1767 - 1770m:

SANDSTONE (100%)

As above, becoming finer grained.

TRACE: siltstone, mudstone, coal, lithic grains.

Visible porosity: POOR - FAIR.

SHOWS: None.

1770 - 1773m:

SANDSTONE (100%)

As above.

TRACE: accessories as above.

Visible porosity: POOR - FAIR.

SHOWS: None.

1773 - 1776m:

SANDSTONE (80%)

As above, slightly calcareous.

SILTSTONE (20%)

As above.

TRACE: mudstone, coal, lithic grains.

Visible porosity: POOR - NIL.

SHOWS: None.

1776 - 1779m:

SANDSTONE (100%)

As above, fine - medium grained.

TRACE: coal, siltstone fragments.

Visible porosity: POOR - NIL.

1779 - 1782m:

SANDSTONE (90%)

White, clear, translucent, occasionally yellow, pink, fine - medium, occasionally coarse, angular to subrounded, moderate - poorly sorted, hard, common kaolin-silty matrix, very slight trace calcitic cement, pyritic, carbonaceous.

SILTSTONE (10%)

Light - dark grey, black, blocky, occasionally subfissile, grades to shale, chloritic, carbonaceous, arenaceous, occasionally argillaceous, resinous - sucrosic, firm - brittle, occasionally soft.

TRACE: mudstone, coal, lithic grains, pyrite.

Visible porosity: POOR - FAIR.

SHOWS: None.

1782 - 1785m:

SANDSTONE (90%)

As above.

SILTSTONE (10%)

As above, increasing soft fragments .

TRACE: mudstone, accessories as above.

Visible porosity: POOR - FAIR.

SHOWS: None.

1785 - 1788m:

SANDSTONE (60%)

White, translucent, clear, occasionally yellow, milky, trace coloured grains, very fine - very coarse, angular - subrounded, very poorly sorted, kaolin matrix, very slight calcitic cement, very slight silicic cement, sublithic, slightly pyritic slightly carbonaceous.

SILTSTONE (30%)

Light - dark grey, grey/green, black, brown, arenaceous - argillaceous resinous - dull, occasionally sucrosic, very carbonaceous, very chloritic in parts, blocky, grades to black subfissile shale in parts, slightly pyritic, slightly calcareous.

MUDSTONE (10%)

Light grey - white, occasionally green, soft, dispersive, occasionally firm, very calcareous, slightly pyritic, very carbonaceous, grades to argillaceous coal.

1785 - 1788m cont.

TRACE: coal — hard black, subvitvinous — subbituminous, pyrite, rock fragments.

Visible porosity: FAIR.

SHOWS: None - slight mineral fluorescence.

1788 - 1791m:

SANDSTONE (70%)

As above.

SILTSTONE (20%)

As above

MUDSTONE (10%)

As above

TRACE: coal as above, accessories as above.

Visible porosity: FAIR.

SHOWS: None.

1791 - 1794m:

SANDSTONE (100%)

White, clear, translucent, milky frosted, occasional - rare pink and yellow, fine - medium, subangular - subrounded, occasionally angular, moderately sorted, occasional fracture and shatter, trace kaolin matrix, slight calcitic cement, occasionally chloritic, occasionally carbonaceous specks and coatings, slightly pyritic.

<u>SILTSTONE (Trace)</u>: light grey - green/grey, black, occasionally dispersive, soft - firm, grades to carbonaceous shale.

TRACE: coal and mudstone, dark lithic grains, pyrite.

Visible porosity: FAIR.

SHOWS: None.

1794 - 1797m:

SANDSTONE (100%)

As above, fine — very fine, increased coloured grains.

TRACE: siltstone as above, mudstone, coal.

Visible porosity: FAIR.

1797 - 1800m:

SANDSTONE (90%)

As above, slight to very calcareous.

SILTSTONE (10%)

As above

TRACE: mudstone, coal, common white kaolin.

Visible porosity: FAIR.

SHOWS: None.

1800 - 1803m:

SANDSTONE (100%)

As above, fine - medium, occasionally coarse.

TRACE: siltstone, coal-vitrinous - subvitrinous.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1803 - 1806m:

SANDSTONE (100%)

As above, increased carbonaceous coatings interlaminated minor thin coals, slight calcitic

cement.

TRACE: siltstone as above, mica, pyrite, coal.

Visible porosity: <u>FAIR</u>.

SHOWS: None.

1806 - 1809m:

SANDSTONE (100%)

As above, increased coloured grains, red and yellow, increased chlorite grains, slight calcitic cement, trace pyritic, slightly lithic — dark rock fragments.

TRACE: coal, hard, black, large fragments, vitrinous, blocky with conchoidal fracture, siltstone, kaolin, pyrite.

Visible porosity: FAIR.

SHOWS: None.

1809 - 1812m

SANDSTONE (100%)

As above, very fine — fine, increased coloured grains, increased pink rose quartz, increased pyrite.

TRACE: pyrite, decreased coal, siltstone, kaolin.

Visible porosity: <u>FAIR</u>.

1812 - 1815m:

SANDSTONE (100%)

As above, medium grained, subrounded, very calcareous.

TRACE: slight trace coal and siltstone.

Visible porosity: FAIR.

SHOWS: None.

1815 - 1818m:

SANDSTONE (100%)

As above, medium — coarse grained, subangular — subrounded, very calcitic cemented, trace kaolin matrix.

TRACE: siltstone, coal, pyrite.

Visible porosity: FAIR - POOR.

SHOWS: None.

1818 - 1821m:

SANDSTONE (10%)

Multi-coloured grains, fine — medium, subangular — subrounded, occasionally angular, poorly sorted, hard, brittle, occasionally friable, kaolin matrix in agglomerates, very slight calcitic cement lithic occasionally pyritic, tracefrequent coloured grains — red + green.

SILTSTONE (30%): Light — dark grey, green, brown, arenaceous, occasionally argillaceous, very carbonaceous, occasionally calcareous, firm — soft, blocky, grades to carbonaceous mudstone in parts, trace pyritic, chloritic.

MUDSTONE (10%): Light — dark grey, buff, generally soft — dispersive, slightly micromicaceous, chloritic, carbonaceous.

TRACE: coal, increased coloured grains, occasional red grains.

Visible porosity: POOR.

SHOWS: None.

1821 -1824m:

SANDSTONE (70%)

As above, very fine — medium, subrounded, occasionally subangular, very very calcareous, lithic, carbonaceous, chloritic.

SILTSTONE (30%)

As above.

1821 - 1824m cont.

TRACE: coal, lithic grains, rare volcanic debris,

pyrite, calcite.

Visible porosity: POOR.

SHOWS: None.

1824 - 1827m:

SANDSTONE (90%)

As above, very fine — fine grained.

SILTSTONE (10%)

As above.

TRACE: coal as above, accessories as above.

Visible porosity: POOR.

SHOWS: None.

1827 - 1830m:

SANDSTONE (80%)

As above, very fine - fine, very slightly

calcareous.

SILTSTONE (20%)

As above.

TRACE: coal, chlorite grains, lithic fragments.

Visible porosity: POOR.

SHOWS: None.

1830 - 1833m:

SANDSTONE (70%)

Predominantly yellow, white, clear, translucent, pale yellow, light grey occasionally green, very fine - fine, occasionally medium, angular subangular, subrounded, moderately sorted, chloritic, rarely carbonaceous, trace pyritic, slightly calcareous, silty matrix, slightly lithic, brittle, friable aggregates.

SILTSTONE (30%)

Light - dark grey, green, arenaceous argillaceous, blocky, resinous, - dull, very carbonaceous, chloritic, slightly pyritic.

TRACE: coal, pyrite, coloured lithic grains.

Visible porosity: POOR - NIL.

1833 - 1836m:

SANDSTONE (80%)

Coloured grains as above, very fine — medium grained, occasionally coarse grained, angular — subrounded, poorly — moderately sorted, very clay matrix, slightly pyritic, slightly chloritic, slightly lithic, very calcareous.

SILTSTONE (90%)

As above, grades to carbonaceous mudstone, trace chloritic mudstone.

MUDSTONE (10%)

Light grey - green, very soft - plastic, occasionally dispersive, grades to carbonaceous, argillaceous, occasionally calcareous in parts, micromicaceous in parts.

TRACE: coal, volcanic debris, pyrite, calcite, pale orange — buff, silty limestone fragments. (Tuff?)

Visible porosity: POOR - FAIR.

SHOWS: None.

1836 - 1839m:

SANDSTONE (100%)

White, clear, translucent, pink, yellow, green very fine — fine occasionally medium — coarse, rare very coarse grained, angular — subangular, occasionally subrounded, moderately — poorly sorted, slightly lithic, slightly pyritic, slight intergranular carbonaceous specks, kaolin matrix, trace calcitic cement.

TRACE: siltstone, calcite fragments, mica, lithic grains, coal, pyrite.

Visible porosity: POOR - FAIR.

SHOWS: None.

1839 - 1842m:

SANDSTONE (100%)

As above, very very calcareous.

TRACE: accessories as above.

Visible porosity: FAIR - GOOD.

1842 - 1845m:

SANDSTONE (100%)

Very fine — fine grain, very clean sand as above.

TRACE: accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1845 - 1848m:

SANDSTONE (100%)

As above, fine - medium, occasionlly coarse, very fractured, angular - subangular, shattered grains, silicic cemented, slight carbonaceous coatings.

TRACE: coal, siltstone, lithic grains, calcite, rare silty limestone.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1848 - 1851m:

SANDSTONE (60%)

Clear, white, translucent, trace coloured grains, angular – subangular, very occasionally subrounded, very poorly sorted, very calcitic cement, calcareous matrix - silty matrix, slightly lithic, slightly chloritic, slightly pyritic, slightly carbonaceous, occasionally aggregates of chloritic carbonaceous matrix.

SILTSTONE (30%)

Light - dark grey, green/grey, very fine - fine, arenaceous to argillaceous, carbonaceous, chloritic, occasionally calcareous grades to carbonaceous and argillaceous mudstone. Also buff - light orange calcareous siltstone, fine grains with calcareous matrix, grading to silty limestones.

MUDSTONE (10%)

Light grey - dark grey, green, soft-dispersive, chloritic, carbonaceous.

TRACE: dolomite, pyrite.

Visible porosity: POOR.

SHOWS: None - trace mineral fluorescence.

1851 - 1854m:

SILTSTONE (60%)

As above, fine — medium grained, also buff (10%) as above, grades to silty siltstone limestone.

1851 - 1854m cont.

SANDSTONE (20%)

Very fine - coarse as above, tight.

MUDSTONE (10%) : As above.

TRACE: coal - carbonaceous mudstone as above,

pink rose quartz, pyrite, lithic grains.

Visible porosity: NIL.

SHOWS: None - trace mineral fluorescence.

1854 - 1857m:

SILTSTONE (60%)

As above, becoming carbonaceous - chloritic,

argillaceous mudstone - dispersive.

LIMESTONE - TUFF (10%)

As above, Buff - silty, calcareous.

SANDSTONE (20%)

As above.

TRACE: coal, lithic grains, pyrite.

Visible porosity: <u>NIL</u>.

SHOWS: None - trace mineral fluorescence.

1857 - 1860m:

SILTSTONE (40%)

As above.

MUDSTONE (30%)

As above.

COAL (10%)

As above.

SANDSTONE (10%)

As above

LIMESTONE - TUFF (10%)

Silty as above.

TRACE: pyrite, lithic fragments as above.

Visible porosity: NIL.

860 - 1863m:

SANDSTONE (80%)

Coloured grains as above, fine - medium, occasionally coarse, subangular - subrounded, moderately sorted, calcitic cemented, kaolin matrix, slightly chloritic, slightly carbonaceous, pyritic.

SILTSTONE (20%)

Light - dark grey, green, occasionally brown, often grades to soft dispersive - carbonaceous/ chloritic, mudstone.

TRACE: mudstone, pyrite, coal.

Visible porosity: GOOD.

SHOWS: None.

1863 - 1866m:

SANDSTONE (80%)

As above.

SILTSTONE (20%)

As above.

TRACE: accessories as above.

Visible porosity: GOOD - FAIR.

SHOWS: None.

1866 - 1869m:

SANDSTONE (100%)

As above, subangular-subrounded, fine - medium

grained, slightly calcareous.

TRACE: siltstone, coal.

Visible porosity: FAIR.

SHOWS: None.

1869 - 1872m:

SANDSTONE (100%)

As above — increased coloured grains.

TRACE: siltstone, coal, lithic grains.

Visible porosity: FAIR.

__1875m:

75 - 1878m:

378 — 1881m:

1881 - 1884m:

SANDSTONE (100%)

TRACE: coal, lithic grains, feldspar, siltstone, As above. calcite, dolomite, buff silty limestone.

Visible porosity: FAIR.

SHOWS: None.

As above, increased coloured grains, fine medium, coarse very coarse, angular to subangular, occasionally subrounded, some grain subangular, occasional pitting and shatter, fracture, occasional calcitic cement, frosting, trace silicic cement, calcitic cement, slight kaolin matrix, occasionally lithic.

TRACE: calcite flakes, feldspar, coal, pyrite, chlorite, siltstone.

Visible porosity: FAIR - POOR.

SHOWS: None.

SANDSTONE (100%)

TRACE: buff silty limestone, siltstone, coal, As above. lithics as above.

Visible porosity: <u>POOR - FAIR</u>.

SHOWS: None.

Clear, white, translucent, occasional coloured grains, rose quartz, yellow, fine medium, occasionally very coarse, subangular subrounded, occasionally angular, occasionally shattered and fractured, very slight calcitic cement, occasional silicic cement.

TRACE: siltstone, coal, lithic grains, pyrite, trace bedding on siltstone fragments.

Visible porosity: FAIR - GOOD.

1884 - 1887m:

SANDSTONE (80%)

As above with occasional very large quartz grains.

SILTSTONE (20%)

As above.

TRACE: green and red grains, buff silty

limestone, lithic fragments, pyrite.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1887 - 1890m:

SANDSTONE (80%)

As above, very slight calcitic cement - decreased.

SILTSTONE (10%)

As above.

MUDSTONE (10%)

Very calcareous-dispersive.

TRACE: accessories as above.

Visible porosity: FAIR.

SHOWS: None.

1890 - 1893m:

SANDSTONE (100%)

As above.

TRACE: siltstone, calcite, silty limestone.

Visible porosity: <u>FAIR</u>.

SHOWS: None.

1893 - 1896m:

SANDSTONE (100%)

As above, fine grained, increased coloured grains.

TRACE: siltstone, accessories as above, lithic fragments.

Visible porosity: <u>FAIR</u>.

SHOWS: None.

1896 - 1899m:

SANDSTONE (100%)

As above.

TRACE: accessories as above.

Visible porosity: FAIR.

SHOWS: None - mineral fluorescence throughout.

1899 - 1902m:

SANDSTONE (100%)

As above, very fine - fine grained.

TRACE: accessories as above.

Visible porosity: GOOD - FAIR.

SHOWS: None.

1902 - 1905m:

SANDSTONE (90%)

As above, fine - medium, occasionally coarse, very slightly calcareous, increased coloured grains.

SILTSTONE

As above, slight caltcitic matrix.

accessories as above, increased lithic TRACE: grains.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1905 -1908m:

SANDSTONE (60%)

Clear, translucent, white, orange, red, pink, green, grey, very fine — medium occasionally coarse, angular — subangular, subrounded, poorly sorted, fractured, shattered, occasionally pitted, carbonaceous specks and inclusions, pyritic coatings, very slightly calcitic, slight kaolin matrix, silty matrix.

SILTSTONE (40%)

Light - dark grey, grey/green black brown, blocky, occasionally shaley-subfissile, carbonaceous, arenaceous, very fine - fine, argillaceous grades to carbon mudstone micromic in parts very chloritic, occasionally calcareous.

TRACE: coal, pyrite, lithic fragments, rock fragments.

Visible porosity: POOR.

SHOWS: None.

1908 - 1911m:

SANDSTONE (80%)

As above, very calcitic cemented.

SILTSTONE (20%)

As above, grades to carbonaceous mudstone-shale.

1908 - 1911m cont.

mudstone, coal - small interlaminations TRACE: of coal with sands and siltstones, mica, calcite flakes.

Visible porosity: NIL.

SHOWS: None.

1911 - 1914m:

SANDSTONE (90%)

As above, subrounded, very slightly calcareous, kaolin-silty matrix.

SILTSTONE (10%)

As above.

TRACE: coal, mudstone, lithic grains.

Visible porosity: POOR - FAIR.

SHOWS: None.

1914 - 1917m:

SANDSTONE (90%)

As above, fine - medium, occasionally coarse

grained.

SILTSTONE (10%)

As above, slight trace bedding.

TRACE: accessories as above.

Visible porosity: POOR - FAIR.

SHOWS: None - trace mineral fluorescence.

1917 - 1920m:

SANDSTONE (100%)

As above, medium - coarse, occasionally fine, occasionally very coarse, slight calcitic cement.

TRACE: siltstone - very silicic, calcite, lithic

grains.

Visible porosity: POOR.

SHOWS: None - trace mineral fluorescence.

1920 - 1923m:

SANDSTONE (100%)

As above, fine - medium, occasionally very fine,

occasionally coarse grained.

TRACE: coal, siltstone, pink and orange grains,

lithic grains.

Visible porosity: POOR.

1923 - 1926m:

SANDSTONE (90%)

As above, occasionally coarse, kaolin matrix, occasionally silicic cement, trace lithic grains.

SILTSTONE (10%)

As above, trace sedimentary structure on fragments.

TRACE: coal, lithic rock fragments, chlorite, feldspar, pyrite.

Visible porosity: POOR - GOOD.

SHOWS: None.

1926 - 1929m:

SANDSTONE (100%)

White, clear, translucent, occasionally pink, orange, very fine — fine, subrounded, well sorted, friable — firm, frosted, occluded, trace calcitic cement, slightly carbonaceous, slightly pyritic, slightly chloritic, trace matrix — kaolin and silty.

SILTSTONE (Trace)

Light-dark grey - white, green arenaceous - argillaceous, chloritic, carbonaceous, slightly calcareous in parts, grades to carbonaceous mudstone in parts.

TRACE: coal, hard, black, vitrinous and subvitrinous, conchoidal fracture, occasionally interlaminated with siltstone.

Visible porosity: POOR - FAIR.

SHOWS: None.

1929 - 1932m:

SANDSTONE (100%)

As above, decreased siltstone.

TRACE: accessories as above, siltstone.

Visible porosity: FAIR - GOOD.

SHOWS: None.

1932 - 1935m:

SANDSTONE (100%)

As above, very slightly calcareous - nil.

TRACE: siltstone, accessories as above.

Visible porosity: FAIR - GOOD.

1935 - 1938m:

SANDSTONE (100%)

As above, slight-trace calcareous.

siltstone as above, lithic grains,

accessories as above.

Visible porosity: FAIR - POOR.

SHOWS: None.

1938 - 1941m: SANDSTONE (100%)

As above, very calcareous cemented, occasionally coarse grained.

1000年 1000年-新統領語 - 101490年 TRACE: siltstone increased trace coal.

Visible porosity: POOR.

SHOWS: None.

1941 - 1944m:

the state of the state of

SANDSTONE (90%)

As above, very calcareous, very fine - medium, occasionally coarse, interlaminated carbonaceous specks, pyrite, and chlorite grains, with quartz grains in kaolinitic and calcitic matrix.

SILTSTONE (10%)

As above.

TRACE: coal, accessories as above.

Visible porosity: POOR.

SHOWS: None.

1944 - 1947m:

SANDSTONE (100%)

As above.

increased coloured grains, decreased TRACE: calcite.

Visible porosity: FAIR.

<u>SHOWS</u>: 3 - 4 grams faint - bright yellow fluorescence (+ yellow mineral fluorescence) instant yellow cut, pale yellow - brown ring - no trace in sample.

1947 - 1950m:

SANDSTONE (100%)

Fine - medium, occasionally coarse, mainly clean

sandstone.

very slight siltstone and lithic TRACE: fragments, coal.

1947 - 1950m cont.

Visible porosity: POOR.

SHOWS: None.

1950 - 1953m:

SANDSTONE (100%)
Clear, white, translucent, trace pink and yellow

grains, occasionally green, fine -medium,

occasionally fine, subangular — subrounded, slight frosting and grain fracture, trace red and green grains, slightly lithic, slightly carbonaceous.

TRACE: pyrite, siltstone.

Visible porosity: FAIR.

SHOWS: None.

1953 - 1956m:

SANDSTONE (100%)

As above, slight increased coloured grains,

slightly calcareous.

Visible porosity: FAIR.

SHOWS: None - trace mineral fluorescence.

1956 - 1959m:

SANDSTONE (100%)

As above, medium, occasionally coarse, angular - subrounded, moderately - poorly sorted, increased

coloured grains.

TRACE: increased coal and lithic fragments.

Visible porosity: FAIR - GOOD.

SHOWS: None - trace mineral fluorescence.

1959 - 1962m:

SANDSTONE (100%)

As above, medium - coarse grained, angular - subangular, occasionally subrounded, moderately - poorly sorted, no cement, very slightly calcareous, increased carbonaceous coatings + inlusions.

TRACE: coal fragments — large, hard, black, blocky, subfissile, pyritic, siltstone — dark grey, arenaceous, occasional very very large, milky, white, quartz fragments, calcite.

Visible porosity: GOOD.

1962 - 1965m: SANDSTONE (80%)

As above, blue/green, clear, translucent, ocasionally pink and yellow, occasionally red and green grains, trace pyritic and carbonaceous, very chloritic, very calcitic cement.

SILTSTONE (20%) : Light - dark grey, grey/green,

arenaceous — argillaceous, chloritic,
carbonaceous, very fine — fine, blocky,
occasionally subfissile, grades to chloritic
mudstone.

TRACE: mudstone, coal, coloured rock fragments, calcite.

Visible porosity: NIL - POOR.

SHOWS: None - slight mineral fluorescence.

1965 - 1968m: SANDSTONE (50%)

Very fine - medium, clear, white, pink, red, blue/green, orange, yellow (predominantly coloured grains in very fine — fine range),
angular — subrounded, poorly sorted, very calcitic cement, trace kaolinitic - silty matrix, carbonaceous, chloritic, slightly pyritic, sublithic, slight silicic cement.

SILTSTONE (40%)

White - dark grey, grey/green, black, brown, blocky, arenaceous, argillaceous, soft - firm, occasionally subfissile, carbonaceous, chloritic, pyritic, micromicaceous.

MUDSTONE (10%)

Light grey - green/grey, arenaceous argillaceous, chloritic, carbonaceous, soft, dispersive, blocky.

TRACE: coal, pyrite, very small round pyrite pebbles.

Visible porosity: NIL - POOR.

SHOWS: None - slight mineral fluorescence.

1968 - 1971m:

SILTSTONE (80%)

As above, grades to dispersive mudstone.

SANDSTONE (20%)

As above.

TRACE: mudstone, pyrite, coal, coloured rock fragments.

1968 - 1971m cont.

Visible porosity: <u>NIL - POOR</u>.

SHOWS: None.

1971 - 1974m:

SILTSTONE (90%)

As above, grades to soft argillaceous mudstone,

very calcareous.

SANDSTONE (10%)

As above.

TRACE: mudstone, coal, pyrite.

Visible porosity: NIL.

SHOWS: None.

1974 - 1977m:

SANDSTONE (50%)

As above, very calcareous.

SILTSTONE (40%)

As above, very calcareous grades to mudstone.

MUDSTONE (10%)
Trace as above.

TRACE: accessories as above.

Visible porosity: NIL - POOR.

SHOWS: None.

1977 - 1980m:

SANDSTONE (50%)

As above, very calcareous.

SILTSTONE (40%)

As above, very calcareous grades to soft

carbonaceous/chloritic dispersive mudstone.

MUDSTONE (10%)

As above.

TRACE: accessories as above.

Visible porosity: <u>NIL - POOR</u>.

SHOWS: None.

1980 - 1983m:

SANDSTONE (80%)

As above, trace very calcareous.

SILTSTONE (20%)

As above.

TRACE: coal, mudstone.

1980 - 1983m cont.

Visible porosity: FAIR - POOR.

SHOWS: None.

1983 - 1986m:

SANDSTONE (100%)

As above, very fine - fine, subrounded, well

sorted, no calcitic cement.

TRACE: siltstone, lithic grains.

Visible porosity: <u>FAIR - GOOD</u>.

SHOWS: None.

1986 - 1989m:

SANDSTONE (100%)

White, clear, translucent, occasionally pink, yellow, green, very fine — fine, occasionally subangular — subrounded, well sorted, slightly pyritic, slight carbonaceous, slight — occasional

calcitic cemented, slightly lithic.

TRACE: coal.

Visible porosity: POOR - FAIR.

<u>SHOWS</u>: None - slight mineral fluorescence.

1989 - 1992m:

SANDSTONE (100%)

As above, very calcitic cemented.

TRACE: increased coal fragments.

Visible porosity: POOR.

SHOWS: None - slight mineral fluorescence.

1992 - 1995m:

SANDSTONE (100%)

As above, very calcitic cemented.

TRACE: increasing grain size fine — medium, frequent red and green grains, increased coal and

siltstone fragments.

Visible porosity: POOR.

<u>SHOWS</u>: None - slight mineral fluorescence.

1995 - 1998m:

SANDSTONE (100%)

As above, fine — medium grained, occasionally coarse, very calcareous with calcite fragments, angular — subangular, moderately sorted, slightly

pyritic, slightly carbonaceous.

TRACE: siltstone as above, mudstone, very slightly calcareous, micromicaceous, dispersive,

coal.

1995 - 1998m cont.

Visible porosity: POOR - FAIR.

SHOWS: None.

1998 - 2001m:

SANDSTONE (100%)

As above.

TRACE: slight decrease in siltstone fragments.

Visible porosity: POOR - FAIR.

SHOWS: slight mineral fluorescence.

Slight bright yellow speckled fluorescence in sample, instant yellow — white, cut, yellow ring. No trace of residual oil, hydrocarbon on or around grains, no visible indications.

2001 - 2004m:

SANDSTONE (100%)

As above. Occasional very large quartz grains.

TRACE: silstone fragments increasing size and

frequency.

Visible porosity: POOR - FAIR.

SHOWS: None.

2004 - 2007m:

SANDSTONE (100%)

As above, medium - coarse grained.

TRACE: siltstone - light grey/dark grey, green

micromicaceous in parts, coal.

Visible porosity: POOR.

SHOWS: None.

2007 - 2010m:

SANDSTONE (100%)

White, clear, translucent, rare coloured grains, very fine — fine, subangular — subrounded, well sorted, calcitic — slightly cemented, trace kaolin matrix, trace pyrite and carbonaceous

material on grains, trace chloritic.

TRACE: calcite, feldspar, very slight siltstone

and coaly fragments.

Visible porosity: POOR.

2010 - 2013m:

SANDSTONE (100%)

As above, very fine - medium, occasionally coarse grained, slight silicic cement - secondary silicified, trace pyritic and carbonaceous inclusions, some clear quartz grains with coloured grains within centre, i.e. secondary silicification, increased coloured grains, pink grains, trace calcareous, kaolin matric.

TRACE: siltstone.

Visible porosity: POOR.

SHOWS: None.

2013 - 2016m:

SANDSTONE (100%)

As above, very fine - medium, occasionally coarse grained, occasional very large grains, some with carbonaceous coatings, (coaly stringers).

<u>TRACE</u>: siltstone — very large fragments, dark grey resinous, subfissile in parts, hard — firm, carbonaceous micromicaceous grades to coal.

Visible porosity: POOR - FAIR.

SHOWS: None.

2016 - 2019m:

SANDSTONE (100%)

As above, very fine - fine, occasional medium grained, decreased coloured grains.

TRACE: decreased siltstone and coal fragments.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2019 - 2022m:

SANDSTONE (100%)

As above, very fine, occasional coarse, red grains common, very calcitic cemented, kaolin matrix.

TRACE: very slight siltstone fragments.

Visible porosity: <u>POOR - FAIR</u>.

SHOWS: None.

2022 - 2025m:

SANDSTONE (100%)

As above, very fine grained, occasionally medium, very very calcitic cemented, intergranular coloured grains, carbonaceous and pyritic grains, occasional pyritic nodules, frequent pink and red grains.

04234

2022 - 2025m cont.

TRACE: calcite, slight coal and siltstone.

Visible porosity: POOR.

SHOWS: None.

2025 - 2028m:

SANDSTONE (100%)

White, clear, translucent, pink, occasionally red, slight green, slight yellow, very fine grained, occasionally fine - medium grains, subrounded, well sorted, slight calcitic cemented.

slight — trace feldspar, slight — trace fragments, slight siltstone fragments, lithic calcite, chlorite.

Visible porosity: GOOD.

SHOWS: None.

2028 - 2031m:

SANDSTONE (100%)

As above, fine - medium, decrease in coloured grains, good traces kaolin matrix, slight-very calcareous.

TRACE: very slight coal + siltstone.

Visible porosity: GOOD.

SHOWS: None.

2031 - 2034m:

SANDSTONE (100%)

As above, very fine — fine grained, slightly

calcareous.

TRACE: chlorite fragments, decrease in coloured grains, very slight coal fragments very small.

Visible porosity: GOOD - FAIR.

SHOWS: None.

2034 - 2037m:

SANDSTONE (100%)

As above, increased coloured grains, trace - red, green, yellow, brown.

TRACE: lithic grains, siltstone microlaminated coal, mudstone and siltstone.

Visible porosity: FAIR.

2037 - 2040m:

SANDSTONE (100%)

Very, very fine - fine, occasional medium, occasional coarse grains, multicoloured, slight - very calcareous.

TRACE: pyritised coal, fragments, accessories as

above.

Visible porosity: FAIR.

SHOWS: None.

2040 - 2043m:

SANDSTONE (100%)

As above.

TRACE: accessories as above.

Visible porosity: <u>FAIR</u>.

SHOWS: None.

2043 - 2046m:

SANDSTONE (100%)

As above.

TRACE: as above.

Visible porosity: FAIR.

SHOWS: None.

2046 - 2049m:

SANDSTONE (100%)

As above, very fine - fine.

TRACE: as above.

Visible porosity: FAIR.

SHOWS: None.

2049 - 2052m:

SANDSTONE (100%)

As above, occasionally very large quartz grains.

TRACE: accessories as above.

Visible porosity: FAIR.

SHOWS: None.

2052 - 2055m:

SANDSTONE (100%)

White, clear, translucent, predominantly grey/blue, pink, yellow, red, green, very fine — fine, occasionally medium, subangular — subrounded, well sorted, slightly calcitic

cemented, trace carbonaceous.

2052 - 2055m cont.

TRACE: pyrite, siltstone, chlorite.

Visible porosity: FAIR.

SHOWS: None - very slight mineral fluorescence.

2055 - 2058m:

SANDSTONE (100%)

As above, abundant coloured grains very calcitic cement, occasionally very large quartz milky grains.

Visible porosity: FAIR.

SHOWS: None.

2058 - 2061m:

SANDSTONE (100%)

As above, occasionally very large clear — milky quartz grains, some with pyrite, or carbonaceous specks + inclusions, also slight trace of silicification - slight

cemented, loose sand.

Visible porosity: FAIR.

SHOWS: None.

2061 - 2064m:

SANDSTONE

As above.

Visible porosity: FAIR.

SHOWS: None.

2064 - 2067m:

SANDSTONE (100%)

As above, occasioanlly medium grained, slight calcitic cement, slight silicic cement, trace white kaolin matrix.

TRACE: mudstone, siltstone, coaly fragments.

Visible porosity: FAIR.

SHOWS: None.

2067 - 2070m:

SANDSTONE (100%)

As above, very calcareous in parts, kaolin matrix.

TRACE: accessories as above.

Visible porosity: FAIR - POOR.

2070 - 2073m:

SANDSTONE (100%)

As above, very calcareous.

TRACE: accessories as above.

Visible porosity: FAIR.

SHOWS: None.

2073 - 2076m:

SANDSTONE (100%)

As above, increased blue/grey coloured grains,

kaolin matrix, slightly calcareous.

TRACE: accessories as above, increased siltstone

and claystone.

Visible porosity: FAIR.

SHOWS: None.

2076 - 2079m:

SANDSTONE (100%)

As above, very calcitic cement, kaolinitic matrix,

TRACE: accessories as above, slight increase in small coaly fragments, microlaminated coal,

kaolinite, mudstone and siltstone fragments.

Visible porosity: FAIR.

SHOWS: None.

2079 - 2082m:

SANDSTONE (100%)

Green, blue/grey, white, clear, translucent, pink, orange, brown, green, red, very fine — fine, subangular — subrounded, well sorted, very calcitic cemented, very kaolinitic, slight — trace carbonaceous and pyritic, slightly

chloritic.

TRACE: slight siltstone, slight coaly fragments

- very small.

Visible porosity: FAIR.

 $\underline{\sf SHOWS}\colon$ Very faint yellow speckled fluorescence in sample. Instant yellow — white cut. Slight

ring - very minor.

2085 - 2088m:

SANDSTONE (100%)

As above, very fine — medium, very calcitic cement, occasional very large quartz pebbles, slightly micromicaceous.

TRACE: accessories as above, increased trace siltstone.

Visible porosity: FAIR.

SHOWS: None.

2088 - 2091m:

SANDSTONE (100%)

As above, with occasional very large quartz pebbles, microlaminated coal and sandstone in some aggregates.

TRACE: accessories as above.

Visible porosity: FAIR.

SHOWS: None.

2091 - 2094m:

SANDSTONE (100%)

As above, with occasional very large quartz pebbles, very calcitic cement, kaolinitic.

TRACE: chlorite, accessories as above.

Visible porosity: FAIR - POOR.

SHOWS: None.

2094 - 2097m:

SANDSTONE (100%)

As above, increased coarse grains, trace silicic cement, calcitic cement, very cemented, kaolinitic, very hard-brittle, angular - subangular, poorly sorted, very carbonaceous coated, very pyritic, occasional pyritized cement - replacement.

Visible porosity: VERY POOR.

SHOWS: None.

2097 - 2100m:

SANDSTONE (100%)

As above, very calcitic, very kaolinitic, very angular, some silicic cement, pyritic, chloritic.

TRACE: siltstone, coal.

Visible porosity: POOR - FAIR.

2100 - 2103m

SANDSTONE (100%)

White, black/grey, yellow, clear, translucent, orange, pink, red, fine — medium, occasionally very coarse grained, moderate — well sorted, angular — subangular, occasionally subrounded, carbonaceous, pyritic, chloritic, occasionally lithic, dark rock fragments, occasional pyritic nodules, trace kaolinitic, slightly — very calcitic cemented, slight silicic cemented, trace grain fracture—shatter, pitted and frosted grains.

Visible porosity: POOR - FAIR.

SHOWS: None.

2103 - 2106m:

SANDSTONE (100%)

As above, slightly dirtier sand, very fine — coarse, pyritic, cemented, very carbonaceous, increased coaly fragments, microlaminated in parts with brown clay, kaolinitic and carbonaceous matrix in parts.

TRACE: mica, large pyritic nodules — pyritized matrix/cement within aggregages containing carbonaceous + quartz grains, siltstone.

Visible porosity: POOR.

SHOWS: None.

2106 - 2109m:

SANDSTONE (100%)

As above, medium - coarse grained, angular - subangular, moderately - poorly sorted, some very large quartz pebbles, carbonaceous, pyritic, very slightly calcitic cemented some pyritization,

TRACE: coal and siltstones - very large fragments,

Visible porosity: FAIR - GOOD.

SHOWS: None.

2109 - 2112m:

SANDSTONE (100%)

As above, fine — medium grained, occasional — trace very large quartz pebbles, occasionally subrounded, occasionally angular, calcitic cement — silicic cement, silty-kaolinitic matrix.

TRACE: large nodules/aggregates with pyritized cement, quartz + carbonaceous grains. Trace large cherty, siltstone fragments.

Visible porosity: FAIR - POOR.

SHOWS: None - trace mineral fluorescence.

2112 - 2115m:

SANDSTONE (100%)

As above.

TRACE: accessories as above.

Visible porosity: FAIR - POOR.

SHOWS: None.

2115 - 2118m:

SANDSTONE (100%)

White, clear, translucent, red-orange, green yellow, very fine — fine occasionally abundant very large coarse quartz grains/pebbles, subangular — subrounded, poorly sorted, lithic — dark rock fragments and grains, trace calcitic cement, aggregates of pyrite, quartz + chlorite grains.

TRACE: siltstone, light-dark grey, occasionally black, micromicaceous, carbonaceous, microlaminated, very fine - fine, blocky, hard to brittle, occasionally soft - firm, occasional buff, silty limestone to very calcareous silt, coal - large, black, hard, blocky, resinous fragments, pyritic grades to carbonaceous siltstone/mudstone, trace kaolin with/interlaminated ironiferous bands, pyrite nodules.

Visible porosity: NONE - FAIR.

SHOWS: None - Trace mineral fluorescence.

2118 - 2121m:

SANDSTONE (100%)

As above, generally increasingly dirty sand, very calcitic cement, calcite flakes and calcareous matrix to trace kaolinitic- silty matrix, very fine - coarse grains, angular - subrounded, poorly sorted, some grain fracture.

TRACE: buff silty limestone - calcareous siltstone, siltstone - black, carbonaceous, chloritic, micromicaceous, coal, lithic grains, dolomite.

Visible porosity: <u>POOR - FAIR</u>.

SHOWS: None - Trace mineral fluorescence.

2121 - 2124m:

SANDSTONE (100%)

As above, very calcitic cement and matrix.

TRACE: accessories as above.

Visible porosity: POOR - FAIR.

SHOWS: None - trace mineral fluorescence.

2124 - 2127m:

Pulled out - no sample - no circulation.

2127 - 2130m:

Pulled out - no sample - no circulation.

2130 - 2133m:

SANDSTONE (100%)

As above, increased coloured grains.

increased siltstone + coal fragments, TRACE: increasing buff silty limestone/siltstone, dolomite, orange/buff calcite fragments. Contaminated with pipe.

Visible porosity: POOR.

SHOWS: None - pipe dope contamination.

2133 - 2136m:

SANDSTONE (100%)

Light grey, white, clear, translucent occasionally pink, green, yellow, orange, red and green, fine - medium, occasionally coarse, subangular - subrounded, moderately sorted, kaolinitic matrix, slight calcitic cemented, slightly carbonaceous around grain surfaces, pyritic, and carbonaceous inclusions in quartz grains, some very large quartz pebbles, increasing inclusions in grains, occasional frosting and pitting.

TRACE: dark rock fragments, small coal fragments, calcite fragments, pyrite nodules/aggregates with carbonaceous grains, quartz, rose quartz, some dark rock fragments in matrix.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2136 - 2139m:

SANDSTONE (100%)

As above, increased kaolin and clay matrix with some calcitic matrix, increased calcitic cement increased quartz pebbles.

TRACE: coal.

2136 - 2139m cont.

Visible porosity: POOR - NIL.

SHOWS: None.

2139 - 2142m:

SANDSTONE (100%)

As above, very fine — very coarse, with large quartz fragments/pebbles, angular — subangular, occasionally subrounded, very poorly sorted, brown clay — kaolin matrix, slight — very calcareous, occasionally pyritized matrix with aggregates of carbonaceous and quartz grains, silty matrix — blue/grey with mica, rock fragments and quartz grains.

TRACE: coloured grains, dark rock fragments, coaly fragments, siltstone — light — dark grey, very fine — fine, argillaceous siliceous, blocky, occasionally soft — firm — hard, occasionally — rare very large grains.

Visible porosity: POOR - FAIR.

 $\underline{\mathsf{SHOWS}}$: None — trace mineral fluorescence in 1 or 2 grains.

2142 - 2145m:

SANDSTONE (100%)

As above, clean sand, fine - medium, occasional very large quartz grains, very calcitic cement.

TRACE: Decreased siltstone, decreased coal, occasional pyrite nodules.

Visible porosity: POOR - FAIR.

<u>SHOWS</u>: None - trace mineral fluorescence - 1-2 grains.

2145 - 2148m:

SANDSTONE (100%)

Light grey — white, clear translucent, occasional coloured grains, very fine — medium, occasionally coarse, moderately sorted, trace carbonaceous material and grains, subangular — subrounded, occasionally angular, very slight calcitic cement, trace kaolin matrix, very slight trace silicic cement.

TRACE: Very slight — trace coal, very slight — trace dark rock fragments, pyrite.

Visible porosity: FAIR.

2148 - 2151m:

SANDSTONE (100%)

As above, fine - medium, occasionally coarse, occasional very large coarse grains, increased traces of secondary silicification on large grains with inclusions, trace carbonaceous material on grains.

TRACE: feldspar, calcite.

Visible porosity: FAIR.

SHOWS: None.

2151 - 2154m:

SANDSTONE (100%)

above, becoming finer, increased

kaolinitic matrix, very calcitic.

Visible porosity: FAIR.

SHOWS: None.

2154 - 2157m:

SANDSTONE (100%)

As above, very fine - fine grained, with very large quartz pebbles, trace kaolinitic cement,

slight trace silicic cement.

large coal fragments, increased red and TRACE:

green grains.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2157 - 2160m:

SANDSTONE (100%)

As above, fine - medium grained, trace coarse grains, increased coloured rock fragments, slightly calcareous, no cement, slight secondary silicification, trace carbonaceous matter on

grains and in matrix between grains.

TRACE: accessories as above.

Visible porosity: <u>FAIR</u>.

SHOWS: None.

2160 - 2163m:

SANDSTONE (100%)

As above, fine - medium, occasionally coarse.

fragments, increased coal increased siltstone - dark, light grey, green,

increased calcite fragments, coaly stringers.

2160 - 2163m cont.

Visible porosity: FAIR.

SHOWS: None.

2163 - 2166m:

SANDSTONE (100%)

As above, fine grained, decreased coloured grains, increased kaolin, increased carbonaceous fragments.

TRACE: as above, increased coal fragments, coaly stringers

Visible porosity: FAIR.

SHOWS: None.

2166 - 2169m:

SANDSTONE (100%)

Generally blue/grey, white, translucent, clear, milky, occasionally yellow-orange, trace pink and green, very fine — fine, occasionally medium — coarse, angular — subangular, occasionally subrounded, moderately sorted, trace calcareous, trace kaolinitic, microlaminated coal, kaolin + sandstone.

TRACE: siltstone, coal fragments, grading to dirty sand.

Visible porosity: FAIR.

SHOWS: None.

2169 - 2172m:

SANDSTONE (90%)

As above, fine — medium, occasionally coarse, subangular, occasionally subrounded, poor — moderately sorted, slight calcitic cement — very calcitic, good trace kaolin — clay matrix — white + brown, dispersive — soft, aggregates — some with brown to light orage coating on grains — possible trace zeolitic cement in some aggregates on grains — sublithic, increased coloured grains, occasional to rare secondary silicification.

<u>SILTSTONE (10%)</u>: Light — dark grey, black, grey/green, brown, micromicaceous, carbonaceous, argillaceous — arenaceous, blocky, pyritic, subfissile.

TRACE: microlaminated sandstone, coal and kaolin fragments, coal, dark rock fragments, chlorite, pyrite, calcite.

Visible porosity: FAIR.

2172 - 2175m:

SANDSTONE (90%)

As above, grading to clean sand.

SILTSTONE (10%)

As above.

TRACE: accessories as above.

Visible porosity: POOR - FAIR.

SHOWS: None.

2175 - 2178m:

SANDSTONE (90%)

As above, medium - coarse grained, occasionally

fine grained.

SILTSTONE (10%)

As above.

TRACE: accessories as above, increased kaolin, decreased coal, increased chlorite.

Visible porosity: POOR - FAIR.

SHOWS: None.

2178 - 2181m:

SANDSTONE (100%)

As above, fine - medium grained, occasionally coarse, trace calcitic cement, grading to cleaner sand.

TRACE: decreased siltstone, kaolin, coal and calcite - still approximately 5% - trace, accessories as above.

Visible porosity: POOR - FAIR.

SHOWS: None.

2181 - 2184m:

SANDSTONE (100%)

white, clear, translucent, occasionally orange, yellow, brown, green, pink, fine - coarse, angular - subrounded, poorly slight calcitic cement-trace silicic sorted, cement, very slight kaolin matrix, occasionally silty matrix, chloritic, carbonaceous, pyritic, sublithic grading to clean sand.

TRACE: coal - hard, black, blocky - vitrinous to subvitrinous, subfissile, micromicaceous, occasionally arenaceous, trace siltstone dark light grey, black, brown, green, arenaceous argillaceous, soft firm, occasionally subfissile, slight trace dolomite, slight calcite fragments, pyrite.

2181-2184m cont.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2184 - 2187m:

SANDSTONE (100%)

As above, fine — medium, trace zeolitic cement.

TRACE: accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2187 - 2190m:

SANDSTONE (100%)

As above, increased kaolin — to large dispersive aggregates, very calcareous in parts, subangular - subrounded.

TRACE: siltstone as above, accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2190 - 2193m:

SANDSTONE (100%)

above, with increased kaolinitic matrix aggregates, very calcareous in parts.

TRACE: decreased siltstone, accessories above, calcite flakes.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2193 - 2196m:

SANDSTONE (100%)

white, grey, clear, translucent, occasional coloured grains, very fine - medium, subrounded occasionally subangular, well sorted, calcareous, trace chloritic, trace carbonaceous microlaminated.

small coal fragments, slight kaolin, TRACE: siltstone, microlaminated.

Visible porosity: FAIR - GOOD.

SHOWS: very very faint pale yellow speckled fluorescence, very very slow pale yellow stream on cut, no crush, possible contamination, no evidence on grains in sample.

2169 - 2199m:

SANDSTONE (100%)

As above.

TRACE: increased siltstone and claystone, pyrite nodules, pyritized matrix with quartz and carbonaceous inclusions.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2199 - 2202m:

SANDSTONE (100%)

Clear, white, translucent, light — dark, rare — occasional pink, yellow, grains, very fine — fine, occasionally medium, subrounded — subangular, moderately — well sorted, no calcitic cement, very slightly trace carbonaceous, trace chloritic.

TRACE: coal, lithic grains, kaolin, siltstone.

Visible porosity: GOOD.

SHOWS: None.

2202 - 2205m:

SANDSTONE (100%)

As above, silty matrix.

<u>TRACE</u>: increased kaolin, dark grey siltstone, volcanic fragments.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2205 - 2208m:

SANDSTONE (100%)

As above, very very fine grained, very calcareous, increased very fine coloured grains, slight trace kaolin matrix, increased calcitic cement.

TRACE: silty limestone, accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2208 - 2211m:

SANDSTONE (100%)

As above.

TRACE: slight increased very very small coal fragments, accessories as above.

Visible porosity: FAIR - GOOD.

2211 - 2214m:

SANDSTONE (100%)

As above, very fine — fine, occasionally medium, very calcareous.

TRACE: very slight coal fragments, accessories as above.

Visible porosity: GOOD - FAIR.

SHOWS: None.

2214 - 2217m:

SANDSTONE (70%)

Coloured grains, as above, fine - medium, occasionally medium - coarse grained, subangular - subrounded, moderate - poorly sorted, kaolin - silty matrix, very calcareous, chloritic, lithic, carbonaceous, pyritic.

SILTSTONE (20%)

black. grey, green, brown, --dark Light parts, arenaceous in micromicaceous soft, firm argillaceous, carbonaceous, occasionally hard and silicic, trace conch fracture, trace blocky, occasionally subfissile, grades to mudstone, slightly pyritic.

MUDSTONE - clay (10%)

Light grey — buff, soft — dispersive — plastic, argillaceous carbonaceous in parts, white kaolin clay — very dispersive, slightly pyritic.

TRACE: coal fragments, slight trace rock fragments.

Visible porosity: POOR - FAIR.

SHOWS: None.

2217 - 2220m:

SANDSTONE (90%)

White, grey/blue, clear, translucent, occasionally yellow, orange, green, very fine — medium, occasionally coarse, poor — moderately sorted, slight — trace calcitic cemented, kaolin—silty matrix trace calcareous matrix, pyritic, carbonaceous, chloritic, some grain fracture, frosting, slight trace lithic grains.

SILTSTONE/MUDSTONE (10%)

Light - dark grey, black, grey/green, silicic - arenaceous, occasionally argillaceous, occasionally carbonaceous, trace chloritic, trace kaolin microlaminated siltstone and mudstone occasionally with calcareous material or calcite flakes, mudstone often grades to coal, slight micromicaceous in parts.

2217 - 2220m cont.

Visible porosity: POOR - FAIR.

SHOWS: None.

2220 - 2223m:

SANDSTONE (100%)

As above.

TRACE: microlaminated mudstone, siltstone + claystone as above, siltstone + mudstone - very chloritic in parts, trace kaolin, accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2223 - 2226m:

SANDSTONE (100%)

As above, occasional very large coarse quartz grains, trace banded grey in some blocky quartz grains — cherty, occasionally very large red/brown coloured rock fragments, chloritic slightly calcitic, very faint silicic dark grey — grey/green, micromicaceous, carbonaceous, arenaceous — argillaceous, large kaolin aggregates — white — dispersive.

TRACE: coal, lithic fragments, pyrite, calcite fragments, occasional microlaminated sandstone/mudstone.

Visible porosity: POOR - FAIR.

SHOWS: None.

2226 - 2229m:

SANDSTONE (90%)

As above, with very large milky quartz pebble fragments.

MUDSTONE/CLAY (10%)

White — light grey, grey/green, brown, dark grey, black, predominantly white and light grey dispersive — soft occasionally chloritic, often chloritic matrix.

TRACE: coal.

Visible porosity: <u>FAIR</u>.

2229 - 2232m:

SANDSTONE (100%)

White, clear, translucent, occasionally orange, red, yellow green, pink, very fine — fine, occasionally medium, very occasional coarse grains, moderately well sorted, subangular — subrounded, occasionally angular, trace calcareous, trace kaolin, trace carbonaceous coatings and inclusions, common coloured lithic grains.

TRACE: coal, siltstone, mudstone, soft, white - grey - brown, dispersive.

Visible porosity: GOOD.

SHOWS: None.

2232 - 2235m:

SANDSTONE (100%)

As above.

TRACE: decrease in siltstone and claystone.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2235 - 2238m:

SANDSTONE (100%)

As above, increased grain size, fine - medium, occasionally angular, subangular - subrounded, moderate - poorly sorted.

TRACE: decrease in siltstone fragments, as above, kaolin or claystone fragments, trace coal, lithic fragments.

Visible porosity: GOOD.

SHOWS: None.

2238 - 2241m:

SANDSTONE (100%)

As above, trace secondary silicification in places.

TRACE: accessories as above, slight increase kaolin.

Visible porosity: FAIR.

2241 - 2244m:

SANDSTONE (100%)

As above, increased calcareous to kaolin matrix.

TRACE: increased claystone/mudstone-grey/brown, green, microlaminated with siltstone, coal, kaolinitic blebs, very slight calcite. Very rare garnet fragments/grains, trace secondary silicic.

Visible porosity: POOR - FAIR.

SHOWS: None.

2244 - 2247m:

SANDSTONE (100%)

Very clean sands, coloured grains as above, very fine — fine grained, subangular — subrounded, well sorted, occasional silicic cemented, occasional zeolite cement, occasional calcitic cement, trace carbonaceous.

TRACE: pyrite, coal, chlorite, small rock fragments, siltstone microlaminated with sandstone, occasional very large quartz grains.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2247 - 2250m:

SANDSTONE (100%)

As above, very calcareous, occasional lithic fragments.

TRACE: coal/pyritized, microlaminated siltstone/
mudstone.

Visible porosity: FAIR - GOOD.

<u>SHOWS</u>. None - very slight trace mineral fluorescence.

2250 - 2253m:

SANDSTONE (100%)

White, clear, translucent, occasionally yellow, red-orange, green, fine - medium, subangular, moderately sorted, very slightly carbonaceous, no calcitic cement,

<u>TRACE</u>: very slight kaolin, very slight trace siltstone, very slight trace lithic grains.

Visible porosity: <u>FAIR - GOOD</u>.

2253 - 2256m:

SANDSTONE (90%)

As above, occasionally coarse grained, increased kaolin - silty matrix, very slight calcitic cement, trace pyritic.

COAL (10%)

Hard, black, shiny, vitrinous — subvitrinous, firm – brittle, friable, occasionally microlaminated with sandstone/siltstone in parts.

siltstone – light-dark grey, black, TRACE: green, arenaceous — argillaceous, chloritic, carbonaceous grades to mudstone, kaolinite fragments, pyrite nodules and aggregates with quartz and carbonaceous grains.

Visible porosity: FAIR.

SHOWS: None.

2256 - 2259m:

SANDSTONE (100%)

As above, fine grained, very slight calcareous matrix.

TRACE: very slight siltstone, mudstone and coal, very slight kaolin, lithic coloured grains.

Visible porosity: GOOD:

SHOWS: None.

2259 - 2262m:

SANDSTONE (100%)

As above, very fine — fine grained, very slight calcareous matrix - no cement, abundant kaolin matrix, abundant coloured grains, clean sand.

TRACE: Very slight siltstone and coal.

Visible porosity: GOOD.

SHOWS: None.

2262 - 2265m:

SANDSTONE (100%)

As above, abundant kaolin matrix.

very slight trace coal and pyritic carbonaceous mudstone, lithic grains.

Visible porosity: GOOD.

2265 - 2268m:

SANDSTONE (100%)

As above, very dirty sand with very very clay — argillaceous silty matrix, very slightly calcareous matrix, very carbonaceous, very pyritic, sandstone aggregates, brittle — soft — friable, very lithic, microlaminated sandstone, siltstone and coal.

TRACE: siltstone and coal fragments, frequent kaolin fragments, dispersive mudstone, very silty and carbonaceous matrix.

Visible porosity: FAIR.

2268 - 2271m:

SHOWS: None.
SANDSTONE (100%)

White, translucent, clear, occasionally coloured grains, fine grained, occasionally medium — coarse, well sorted, subangular — subrounded, very slight calcitic cement, abundant kaolin matrix, trace silty matrix, trace carbonaceous and dark rock fragments.

TRACE: opalised grains, pyrite, coal and siltstone.

Visible porosity: FAIR.

SHOWS: None.

2271 - 2274m:

No sample trip no circ.

2274 - 2277m:

No sample trip no circ.

2277 - 2280m:

SANDSTONE (100%)

As above, very chloritic, slight calcitic cement, argillaceous, very calcareous in matrix-kaolin matrix.

TRACE: mudstone - brown, yellow, pyrite, coal - grades to carbonaceous mudstone, siltstone fragments.

Visible porosity: FAIR - GOOD.

SHOWS: Coal stringer sample:— pale patchy yellow fluorescence with occasional bright yellow specks. Instant bright white/yellow streaming cut — remaining. Pale yellow ring. Very small trace of stain on some grains within argillaceous matrix.

2280 - 2283m:

SANDSTONE (100%)

As above — cleaner sand, abundant clay-kaolinsilty matrix, abundant coloured grains.

TRACE: decreased coal + siltstone.

Visible porosity: FAIR - GOOD.

SHOWS: Sample: very little trace on some grains, pale yellow spotty speckled fluorescence. Instant bright yellow — white streaming cut — short lived. Pale yellow ring sample.

2283 - 2286m:

SANDSTONE (100%)

As above, very muddy siltstone/sandstone sample, increased brown grey clay — kaolin — silty matrix.

TRACE: Increased siltstone — dark grey — light grey, micromicaceous, carbonaceous—subfissile — blocky.

Visible porosity: FAIR.

SHOWS: One fragment showing pale yellow fluorescence in sample. Slow streaming pale yellow cut, instant bright white/yellow streaming cut on crush, lingering bright yellow ring. No real traces on grains — fluorescence mainly in argillaceous matrix.

2286 - 2289m:

SANDSTONE (100%)

White, clear, translucent, milky, pink, orange, red, occasionally green, generally grey/blue, coloured sand, very fine - fine grained, well sorted, subangular - occasionally subrounded, very calcareous matrix and cement, trace kaolin matrix, carbonaceous - silty matrix, slightly pyritic, chloritic, occasional inclusions in grains, trace dark rock fragments.

TRACE: siltstone, light — dark grey, green, brown, silicic — arenaceous, argillaceous, blocky — sucrosic, soft — firm, occasionally subfissile, trace carbonaceous, chloritic and micromicaceous, coal — very very small fragments, hard black vitrinous, calcile.

Visible porosity: GOOD.

2289 - 2292m:

SANDSTONE (100%)

Generally blue/grey to white sandstone as above, fine — medium, occasionally coarse, clean, occasional coloured grains, mainly yellow, white kaolin to very calcareous matrix, trace cement.

TRACE: siltstone as above, coal as above, large blebs kaolin - dispersive.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2292 - 2295m:

SANDSTONE (100%)

As above.

TRACE: accessories as above, occasional pyritic nodules/aggregates with quartz and carbonaceous specks.

Visible porosity: FAIR - GOOD.

SHOWS. None.

2295 - 2298m:

SANDSTONE (100%)

Predominantly white to light grey, abundant pink, yellow, orange, red grains, fine — medium, occasionally coarse grained, loose—unconsolidated, slightly chloritic, very very slight calcareous matrix, trace kaolin matrix, some grains with black inclusions, trace secondary silicifications.

TRACE: siltstone — large fragments, black grey, very micacaceous in parts, very chloritic in parts, carbonaceous, very slight trace coal and rock fragments.

Visible porosity: GOOD.

SHOWS: None.

2298 - 2301m:

SANDSTONE (100%)

Light grey, white, clear translucent, abundant, pink, red, orange grains, very fine — fine grained, occasionally medium — coarse, moderately—well sorted, slight trace kaolinitic to brown argillaceous matrix.

TRACE: siltstone fragments, dark rock fragments,
pyrite.

Visible porosity: GOOD.

2301 - 2304m:

*SANDSTONE (100%)

As above, very fine grained - clean sand.

TRACE: accessories as above.

Visible porosity: GOOD.

SHOWS: None.

2304 - 2307m:

SANDSTONE (100%)

As above.

TRACE: abundant chlorite, siltstone, and mudstone — dark brown, dark grey — light grey, green, abundant coloured grains, accessories as above, slight increased chloritic siltsone.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2307 - 2310m:

SANDSTONE (60%)

Grey, white, clear, abundant pink, yellow, orange, red, green grains, fine — medium grained, subrounded, occasionally subangular, moderately sorted, argillaceous to very calcitic cement and matrix, carbonaceous, pyritic, lithic.

SILTSTONE (30%)

Light — dark grey, green, brown, micromicaceous, blocky, sucrosic, resinous, soft — firm, occasionally friable, occasionally arenaceous — argillaceous, chloritic in parts, carbonaceous grades to carbonaceous argillaceous mudstone in parts.

MUDSTONE (10%)

Light — dark grey, grey/brown, buff, soft — dispersive, carbonaceous, micromicaceous, occasionally silicic, occasionally chloritic.

<u>TRACE</u>: pyrite, abundant coloured grains, coal fragments — hard, black, blocky — vitrinous, calcite.

Visible porosity: POOR.

2310 - 2313m:

SANDSTONE (70%)

As above, occasionally coarse grained.

SILTSTONE (20%)

As above.

MUDSTONE (10%)

As above.

TRACE: coal, abundant rose quartz and coloured lithics, abundant orange, yellow, green grains, chlorite and carbonaceous fragments, trace fragments with zeolitic cement-bright orange.

Visible porosity: POOR.

SHOWS: None.

2313 - 2316m:

SANDSTONE (90%)

Light — grey/green, white, clear, translucent, abundant pink and yellow grains, yellow stained grains, occasionally green, fine — medium, moderately sorted, subangular — subrounded, chloritic in parts, trace calcitic cement, trace carbonaceous, (getting sandier), kaolin—clay matrix, occasionally interlocking silica fragments — secondary silicification.

SILTSTONE (10%)

Light - dark grey, black, occasionally white/ grey, blocky, sucrosic - resinous, soft to firm, occasionally friable, occasionally subfissile, micromicaceous in parts, argillaceous-arenaceous.

TRACE: mudstone—light grey, dispersive, soft, kaolinitic white — dispersive, coal, kaolinite fragments, pyrite, dark rock fragments.

Visible porosity: POOR.

SHOWS: None.

2316 - 2319m:

SANDSTONE (100%)

Light grey, sandstone, clear-translucent, white, occasional pink + yellow grains, fine - medium, occasionally coarse, moderately sorted, subangular - subrounded, occasionally angular, trace calcareous, trace kaolinitic matrix.

a

TRACE: chlorite, pyrite, siltstone as above, coal as above, slight trace dark rock fragments.

Visible porosity: FAIR - GOOD.

2319 -2322m:

SANDSTONE (100%)

As above, very calcareous, abundant coloured

grains.

TRACE: accessories as above.

Visible porosity: FAIR.

SHOWS: None.

2322 - 2325m:

SANDSTONE (100%)

abundant coloured As above, very calcareous,

grains.

TRACE: accessories as above, mudstone, kaolin.

Visible porosity: GOOD.

SHOWS: None.

2325 - 2331m:

SANDSTONE (100%)

As above, occasionally coarse grained, occasional

coloured fragments, very slightly calcareous.

very slight trace siltstone as above,

coal as above, abundant kaolin.

Visible porosity: GOOD.

SHOWS: None.

2331 - 2334m:

SANDSTONE (100%)

As above, fine - very fine, coloured grains, occasional very large quartz grains, very

calcareous, abundant kaolin.

TRACE: siltstone, coal.

Visible porosity: GOOD.

SHOWS: None.

2334 - 2337m:

SANDSTONE (100%)

grey translucent, occasionally pink, yellow and green grains, very fine - fine, occasionally medium, moderately sorted, subangular - subrounded, occasionally angular, occasional grain fracture and frosting, occasional carbonaceous inclusions and coatings, slightly pyritic, very kaolinitic calcareous cement/matrix, yellow-orange sandstone ironiferous-siliceous cemented fragments/aggregates with coloured grains and

sandstone,

white,

dark rock fragments.

2334 - 2337m cont.

TRACE: siltstone, coal, kaolinite, chlorite.

Visible porosity:

- (i) Grey sand GOOD FAIR.
- (ii) Orange sand POOR.

SHOWS: None.

2337 - 2340m:

SANDSTONE (100%)

As above, light grey sandstone and orange sandstone as above, very calcitic cemented.

TRACE: siltstone, kaolinite, abundant coloured grains, chlorite, dark rock fragments.

Visible porosity

- (i) Grey sand GOOD.
- (ii) Orange sand POOR.

2340 - 2343m:

SANDSTONE (100%)

As above, light grey, calcareous—kaolinitic matrix, very calcitic cemented sandstone — fine — medium, occasionally coarse, moderate — poorly sorted, ironiferous—limonitic quartzose silicic cemented sandstone as above.

TRACE: siltstone as above, kaolinite as above, coal, lithic grains.

Visible porosity:

- (i) Grey sand GOOD.
- (ii) Orange sand POOR.

2343 - 2346m:

SANDSTONE (100%)

As above, light grey sand with orange sandstone — medium grains, occasionally coarse.

TRACE: siltstone, slight — very calcareous kaolinite, increased mudstone and clay fragments, coal, dark lithic grains.

Visible porosity:

- (i) GOOD as above.
- (ii) POOR as above.

2346 - 2349m:

SANDSTONE (100%)

above, predominantly light grey sandstone, subrounded grains, fine - medium, good trace kaolinitic matrix, no calcitic cement, trace coloured grains.

TRACE: siltstone, coal.

Visible porosity: EXCELLENT - GOOD.

SHOWS: None.

2349 - 2352m:

SANDSTONE (100%)

sandstone, white, grey translucent, occasional rare, yellow, pink, red and green, fine - medium, occasionally coarse, subrounded, occasionally subangular, very slightly calcareous in matrix, abundant kaolin, slightly slightly carbonaceous, slightly sublithic, pyritic.

TRACE: siltstone fragments - light-dark grey, blocky, carbonaceous, micromicaceous, grades to argillaceous-mudstone, slight trace coal, slight trace chert, dark lithic grains.

Visible porosity: GOOD - EXCELLENT.

SHOWS: None.

2352 - 2355m:

SANDSTONE (100%)

As above.

TRACE: abundant coal - hard, black, vitrinous, fragmented, accessories as above.

Visible porosity: GOOD - EXCELLENT.

SHOWS: None.

2355 - 2358m:

SANDSTONE (100%)

As above, abundant red and pink grains, trace yellow, trace green clay matrix, abundant kaolin matrix + aggregates, carbonaceous/coally coatings on some large quartz grains.

TRACE: mudstone - claystone, siltstone as above, Thin interbedded microlaminated stringers, rare - trace chloritic siltstone with multicoloured quartz grains, trace dark rock fragments.

Visible porosity: GOOD.

2358 - 2361m:

SANDSTONE (100%)

As above, very clean white, loose sand,

occasional pink/red and green grains.

TRACE: black/white siliceous - carbonaceous siltstone, cherts, increased coal, siltstone,

kaolin.

Visible porosity: $\underline{GOOD - EXCELLENT}$.

SHOWS: None.

2361 - 2364m:

SANDSTONE (100%)

As above, no calcitic cement, trace kaolin,

abundant coloured grains.

Visible porosity: <u>EXCELLENT - GOOD</u>.

SHOWS: None.

2364 - 2367m:

SANDSTONE (100%)

Light grey sandstone, white, clear, translucent grains, abundant pink, red, orange, yellow, occasionally green, fine - medium, occasionally coarse, subrounded, occasionally subangular, moderate - well sorted, no calcitic cement, trace

kaolin — silty matrix.

TRACE: siltstone, very slight trace coal.

Visible porosity: EXCELLENT - GOOD.

SHOWS: None.

2367 - 2370m:

SANDSTONE (100%)

As above, medium - grained, occasionally coarse.

TRACE: accessories as above.

Visible porosity: GOOD - EXCELLENT.

SHOWS: None.

2370 - 2373m:

SANDSTONE (100%)

As above, medium grained, occasionally coarse.

TRACE: accessories as above.

Visible porosity: GOOD - EXCELLENT.

2373 - 2376m:

SANDSTONE (100%)

As above, fine - medium grained, abundant coloured grains, slight - very calcareous matrix and trace cement.

TRACE: rare siltstone, rare pyrite nodules/aggregates with carbonaceous and quartz grains.

Visible porosity: **EXCELLENT**.

SHOWS: None.

2376 - 2379m:

SANDSTONE (100%)

As above, very fine — fine grained, occasionally medium, occasional secondary re—crystallized quartz grains — secondary cement.

TRACE: accessories as above.

Visible porosity: GOOD.

SHOWS: None.

2379 - 2382m:

SANDSTONE (100%)

As above, very fine — fine, occasionally medium, occasional secondary re—crystallized quartz grains, abundant coloured grains.

Visible porosity: GOOD.

. _ _

SHOWS: None.

2382 - 2385m:

SANDSTONE (100%)

As above, slightly kaolinitic, trace calcareous.

TRACE: coal, garnets.

Visible porosity: $\underline{GOOD - EXCELLENT}$.

SHOWS: None.

2385 - 2388m:

SANDSTONE (100%)

As above, fine — very coarse, angular, occasional large quartz pebbles + fragments, poorly sorted, trace kaolin, trace aggregates of kaolin and quartz grains, very calcareous to silty matrix, trace yellow quartzose —ironiferous sandstone.

TRACE: siltstone - dark grey/green, micromicaceous, slight trace multi-coloured grains, slight trace garnet, dark rock fragments, calcite.

Visible porosity: FAIR - GOOD.

2388 - 2391m:

SANDSTONE (100%)

Light grey sandstone, white, clear, translucent, fine — medium grained, occasionally coarse, subangular — subrounded, moderately sorted, very slight calcitic cement, trace calcareous to kaolinitic matrix, slightly carbonaceous, occasional silty matrix.

TRACE: dark rock fragments, coloured grains, garnet - red-clear/translucent, siltstone - very very small fragments, coal - very very small fragments.

Visible porosity: <u>FAIR</u>.

SHOWS: None.

2391 - 2394m:

SANDSTONE (100%)

As above, medium - coarse grained, occasionally fine, angular + subangular, occasionally subrounded, poorly sorted, re-crystallized quartz overgrowths to secondary silicification, slight trace of carbonaceous material on some grains.

TRACE: coal, abundant coloured grains, dark rock fragments, slight trace red and pink garnets, kaolinite, siltstone.

Visible porosity: FAIR - GOOD.

SHOWS: very very faint spotty yellow fluorescence in sample. Very very faint yellow cut — very slow and short-lived, no trace in sample.

2394 - 2397m:

SANDSTONE (100%)

As above, slight secondary re-crystallization of quartz.

TRACE: accessories as above.

Visible porosity: GOOD - EXCELLENT.

SHOWS: None.

2397 - 2400m:

SANDSTONE (100%)

As above, very slight calcareous-kaolinitic matrix, carbonaceous.

TRACE: calcite flakes, pyritic silty coal, pyrite nodules/aggregates with quartz and carbonaceous specks.

Visible porosity: GOOD.

2400 - 2403m:

SANDSTONE (100%)

Light grey — pale yellow sandstone as above, very fine — fine, occasionally medium, subangular — subrounded, well sorted, silty — kaolinitic matrix, trace carbonaceous specks.

TRACE: ironiferous stringers, slight trace siltstone, dark lithics, coloured grains, pink translucent garnets.

Visible porosity: GOOD.

SHOWS: None.

2403 - 2406m:

SANDSTONE (100%)

Light grey sandstone as above - decreased yellow grains, slightly calcareous, silty matrix, trace pyritic.

TRACE: accessories as above.

Visible porosity: GOOD.

SHOWS: None.

2406 - 2409m:

SANDSTONE (100%)

Light grey sandstone as above, increased pink, red-orange grains, slight silty matrix, slightly pyritic.

TRACE: accessories as above.

Visible porosity: GOOD.

SHOWS: None.

2409 - 2412m:

SANDSTONE (100%)

Light grey sandstone, white, clear, yellow, occasional red and pink grains, fine — medium, subrounded — subangular, moderately sorted, very calcitic cement, slightly calcareous—kaolinitic + silty matrix, slight brown clay matrix — very calcareous.

TRACE: calcite flakes, pyrite, siltstone - very small fragments, coal - small fragments.

Visible porosity: GOOD.

2412 - 2415m:

SANDSTONE (100%)

Light grey as above.

TRACE: accessories as above.

Visible porosity: GOOD.

SHOWS: None.

2418 - 2421m:

SANDSTONE (100%)

Light grey white sandstone as above.

TRACE: accessories as above, slight trace

siltstone - grey, blocky.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2421 - 2424m:

SANDSTONE (100%)

Light grey - light yellow sandstone as above.

TRACE: accessories as above, slight trace brown clay with orange zeolitic cement and fragments,

slight trace siltstone - grey, blocky.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2424 - 2427m:

SANDSTONE (100%)

<u>Light grey - yellow sandstone as above, slight increase in grain size - medium, very calcareous,</u>

increased silty matrix.

TRACE: accessories as above.

Visible porosity: GOOD.

SHOWS: None.

2427 - 2430m:

SANDSTONE (100%)

Light grey sandstone as above, slight

kaolin-silty matrix.

TRACE: accessories as above.

Visible porosity: $\underline{GOOD - FAIR}$.

2430 - 2433m:

SANDSTONE (100%)

decreased sandstone, above, light grey coloured grains.

slight increased trace grey siltstone, accessories as above.

Visible porosity: $\underline{GOOD - FAIR}$.

SHOWS: None.

2433 - 2436m:

SANDSTONE (100%)

As above, light grey sandstone, abundant coloured grains, slight silty matrix, slight light greenclay matrix, slight orange zeolitic cement/matrix.

TRACE: accessories as above.

Visible porosity: GOOD.

SHOWS: None.

2436 - 2439m:

SANDSTONE (60%)

Light grey sandstone, white, clear, translucent very fine - fine, subrounded, well sorted, siltycalcareous matrix, trace orange/yellow sandstone with yellow limonitickaolinitic matrix/cement, slight calcitic cement, slightly carbonaceous.

Light - dark grey, green, brown, micromicaceous in parts, carbonaceous in parts, pyritic, grades to carbonaceous— argillaceous mudstone in parts, blocky, sucrosic - resinous, occasionally argillaceous, arenaceous subfissile, occasionally friable, chloritic in parts.

Light - dark grey, brown, buff, soft, dispersive, occasionally plastic, carbonaceous in part, micromicaceous in part, occasionally silicic, occasionally chloritic, slightly pyritic.

abundant coloured grains, trace - rare calcareous silty fragments TRACE: (abundant, soft-dispersive limestone/mudstone and garnet, siltstone aggregates washed out of sample), trace kaolin.

Visible porosity: POOR.

2439 - 2442m:

SANDSTONE (70%)

As above.

SILTSTONE (20%)

As above.

MUDSTONE (10%)

As above.

TRACE: accessories as above, garnets.

Visible porosity: FAIR - POOR.

SHOWS: None.

2442 - 2445m:

SANDSTONE (70%)

As above, very very calcareous matrix and cement,

abundant coloured grains.

SILTSTONE (20%)

As Above.

MUDSTONE (10%)

As above, soft - dispersive.

TRACE: accessories as above, buff silty limestone - calcareous siltstone as above.

Visible porosity: POOR.

SHOWS: None.

2445 - 2448m:

SANDSTONE (80%)

As above, very very calcareous- silty matrix +

cement.

SILTSTONE (20%)

As above.

TRACE: chlorite, accessories as above, green

clay matrix, mudstone as above.

Visible porosity: POOR.

SHOWS: None - fluorescence in calcitic/kaolin

grains/aggregates.

2448 - 2451m:

SILTSTONE (50%)

As above, very clay/mudstone matrix.

SANDSTONE (40%)

As above, trace calcitic cement and matrix,

slightly lithic.

MUDSTONE (10%)

As above, very dispersive, brown clay and green clay matrix very carbonaceous, micromicaceous.

Visible porosity: <u>VERY POOR</u>.

SHOWS: None - slight mineral fluorescence.

2451 - 2454m:

SANDSTONE (50%)

As above, very calcareous matrix/cement.

SILTSTONE (40%)

As above, silty matrix.

MUDSTONE (10%)

As above, very dispersive.

TRACE: coal, pyrite, calcite, chlorite, very slight garnet.

Visible porosity: POOR.

SHOWS: None.

2454 - 2457m:

SANDSTONE (90%)

Light grey sandstone, white, clear, translucent, occasionally pink, and yellow, fine — medium, occasionally very fine, subrounded — subangular, well sorted, very calcitic cemented, calcareous matrix, silty argillaceous matrix, trace green clay matrix, slightly carbonaceous.

SILTSTONE (10%)

Light — dark grey, green, brown, blocky, soft — firm, resinous — sucrosic, carbonaceous in parts, chloritic in parts, kaolinitic in parts, often grades to argillaceous, carbonaceous, chloritic mudstone.

TRACE: mudstone, soft, dispersive, kaolinite, calcite, lithic grains — yellow, red, black, green, coal, abundant coloured grains, garnet, one or two grains dark red and pink, chlorite, pyrite.

Visible porosity: POOR.

SHOWS: None.

2457 - 2460m:

SANDSTONE (100%)

Light grey, white, clear, translucent, coloured grains, very fine — fine, occasionally medium, subrounded — subangular, trace calcitic cement, occasionally pale yellow sandstone well cemented, trace silty argillaceous matrix.

TRACE: calcite, pyrite, kaolin, siltstone, coloured grains, lithics, coal.

Visible porosity: FAIR.

SHOWS: None.

2460 - 2463m:

SANDSTONE (100%)

As above, very calcareous matrix and cement.

TRACE: kaolin, calcite, siltstone, coal, green clay matrix, coloured grains.

Visible porosity: FAIR - POOR.

SHOWS: None.

2463 - 2466m:

SANDSTONE (100%)

As above, very calcareous matrix.

TRACE: siltstone as above, green siltstone, calcite, kaolin, coal, slight trace green clay matrix.

Visible porosity: FAIR - POOR.

SHOWS: None.

2466 - 2469m:

SANDSTONE (100%)

As above, fine — coarse, angular — subangular, poorly sorted, abundant coloured grains, abundantly kaolinitic-very calcareous matrix, trace cement.

TRACE: mudstone, coal.

Visible porosity: <u>POOR</u>.

SHOWS: None.

2469 - 2472m:

SANDSTONE (100%)

As above, medium - coarse grained, occasionally very coarse, angular - subangular, moderate - poorly sorted, trace - very calcareous, slight green clay matrix, slightly carbonaceous.

TRACE: kaolin, siltstone, pyrite, chlorite and garnet - pink.

2469 - 2472m cont.

Visible porosity: POOR - FAIR.

 $\underline{\text{SHOWS}}$: 1 or 2 grains pale yellow faint fluorescence - slow yellow cut, bright white/yellow streaming cut on crush.

2472 - 2475m:

SANDSTONE (100%)

Light grey, white, clear, translucent, occasionally yellow, pink and orange grains, fine — medium, occasionally coarse, angular, occasionally subangular — subrounded, moderate — poorly sorted, slight calcitic cement, calcareous matrix, trace green clay on some grains, trace kaolinitic, secondary silicification, rare red/pink garnets.

TRACE: coal, calcite, microlaminated, siltstonemicromicaceous carbonaceous, arenaceous.

Visible porosity: POOR - FAIR.

SHOWS: None.

2475 - 2478m:

SANDSTONE (100%)

As above, clean sand, light grey — yellow, medium, occasionally coarse, subangular — subrounded, occasionally angular, trace rose quartz, trace silty — kaolinitic matrix, very very slightly calcareous.

TRACE: very very slight green grains and dark rock fragments, accessories as above.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2478 - 2481m:

SANDSTONE (100%)

As above, tight clean white sant - two sorts :-

- i) subangular subrounded, kaolin matrix and slight calcitic cement in parts grades to
- ii) angular subangular, coarse grained with silic cement and quartz over growths in parts.

TRACE: accessories as above.

Visible porosity: i) FAIR.

ii) POOR.

SHOWS: None.

2481 - 2484m:

SANDSTONE (100%)

As above, very clean sand, angular - subangular, subangular - subrounded, coarse - medium grained, very slightly calcareous, trace calcareous matrix.

TRACE: kaolin, chlorite, calcite.

Visible porosity: FAIR - GOOD.

SHOWS: None.

2484 - 2487m:

SANDSTONE (100%)

As above, fine — coarse, angular — subrounded, some aggregates with very angular grains and kaolin matrix, occasionally silicic matrix, others—subrounded with slight kaolin matrix, friable to brittle, trace green clay matrix.

Visible porosity: <u>FAIR - GOOD</u>.

SHOWS: None.

2487 - 2490m:

SANDSTONE (100%)

Light grey, white, clear, translucent, fine-coarse, angular - subangular, very fractured and shattered grains, poorly sorted, calcareous, trace kaolin, very silicic, quartz overgrowths, silicified, interlocked grains in aggregates.

TRACE: green grains and green clay matrix, slight mudstone, dark rock fragments, pyrite.

Visible porosity: NONE.

SHOWS: None.

2490 - 2493m:

SANDSTONE (100%)

Light grey, orange-yellow sandstone, white, clear, translucent, orange, red, multi-coloured grains abundant, yellow stained grains, very fine — fine, occasionally medium, moderately — well sorted, subangular — subrounded, silicic cement, trace chloritic, poor — abundant kaolin and silty clay matrix, very calcareous. Yellow sandstone has yellow clay or yellow stained clay matrix, slightly carbonaceous.

TRACE: siltstone - dark grey-brown/grey, carbonaceous, micromicaceous, argillaceous-arenaceous, firm-hard, occasionally silicic, microlaminated with mudstone and carbonaceous laminations, chloritic in parts, trace pyrite fragments, coal, dark rock fragments.

2490 - 2493m cont.

Visible porosity: POOR.

SHOWS: None.

2493 - 2496m:

SANDSTONE (100%)

Light grey, orange-yellow sandstone, white, clear, translucent, orange, red, multi-coloured grains, abundant yellow stained grains, very fine — fine, occasionally medium, moderately — well sorted, subangular — subrounded, silicic cement, slightly calcareous, trace chloritic, trace kaolin matrix and green clay matrix, yellow sandstone has yellow clay or yellow stained clay matrix, trace pyritic, trace carbonaceous.

TRACE: siltstone, dark grey/brown - grey, carbonaceous, micromicaceous, argillaceous - arenaceous, firm - hard, occasionally silicic, microlaminated with mudstone, chloritic in parts, pyrite fragments, coal, dark rock fragments.

Visible porosity: POOR - NIL.

SHOWS: None.

2496 - 2499m:

SANDSTONE (100%)

As above, very silicic.

TRACE: as above.

Visible porosity: NIL.

SHOWS: None.

2499 - 2502m:

SANDSTONE (100%)

As above, abundant well cemented aggregates with interlocking quartz grains, silicic and calcitic cemented.

TRACE: slight siltstone and kaolin.

Visible porosity: POOR.

SHOWS: None.

2502 - 2505m:

SANDSTONE (100%)

Light grey — yellow sandstone, clear, white, yellow, translucent, occasionally red, pink and green grains, fine — coarse, angular — subangular, poorly sorted, well cemented, silicic — very calcitic cement, trace green and white clay matrix, abundant aggregates and flakes of quartz with interlocking quartz grains, well cemented, silicic and hard — brittle.

2502 - 2505m cont.

SILTSTONE (Trace)

Light-dark grey, greey-grey, blue/green, brown, sucrosic-resinous grading to marly mudstone, microlaminated buff and black to shaley, trace green clay and chlorite, subfissile-fissile and blocky, trace pyrite, slightly carbonaceous.

TRACE: mudstone — light green—grey to blue/grey, silicic to arenaceous, grades to buff and white clay, dark rock fragments.

Visible porosity: NONE.

SHOWS: None.

2505 - 2508m:

SANDSTONE (60%)

Light grey-white sandstone, clear, translucent, slight brown - yellow, fine - medium, occasionally coarse, (large cemented aggregates) angular - subangular, poorly sorted, silicic cemented, re-crystallized interlocking grains, trace calcitic cement, very slight trace kaolin and green clay matrix, occasionally brown clay, occasionally silty, occasional chlorite grains in aggregates.

SILTSTONE (30%)

Light — dark grey, green, grey, blue/grey, brown, blocky — subfissile, resinous — sucrosic, firm — hard, occasionally brittle, carbonaceous, pyritic, occasionally micromicaceous, chloritic, microlaminated with multi—coloured clays.

MUDSTONE (10%)

Light — dark grey — green, grey, silicic arenaceous, argillaceous grades to carbonaceous shale in parts.

TRACE: coloured rock fragments, pyrite, coal.

Visible porosity: POOR - NIL.

SHOWS: None.

2508 - 2511m:

SANDSTONE (60%)

As Above.

SILTSTONE (20%)

As above.

CLAYSTONE/MUDSTONE (10%)

As above, occasionally dispersive, plastic, green to black — brown, occasionally buff, very calcareous fragments.

2508 - 2511m cont.

Visible porosity: NIL.

SHOWS: None.

2511 - 2514m:

CLAYSTONE/MUDSTONE (60%)

Black - brown, dark grey - light grey, green, blue/grey, white - buff, blocky, soft-firm, amorphous, occasionally dispersive, silicic, argillaceous, occasionally grading to shale, subfissile - flakey, microlaminated, slightly

chloritic.

SANDSTONE (20%)

As above, silicified and kaolin matrix.

SILTSTONE (20%)

As above.

TRACE: calcite, coal, rock fragments, pyrite,

red and orange grains.

Visible porosity: NIL.

SHOWS: None.

2514 - 2517m:

CLAYSTONE/MUDSTONE (50%)

As above.

SANDSTONE (40%)

As above.

SILTSTONE (10%)

As above.

TRACE: accessories as above.

Visible porosity: NIL.

SHOWS: None.

2517 - 2520m:

SANDSTONE (50%)

As above.

CLAYSTONE/MUDSTONE (10%)

As above.

SILTSTONE (40%)

As above.

TRACE: accessories as above.

Visible porosity: NIL.

SHOWS: None.

2520 - 2523m:

SANDSTONE (60%)

Light grey, grey/green, white, clear, translucent, very fine - fine, angular - subangular, poorly sorted, very calcareous, silty matrix, calcitic + silicic cemented, chloritic, pyritic, carbonaceous.

SILTSTONE (30%)

Light - dark grey, grey/green, blue, silicic, resinous to sucrosic, blocky, occasionally subfissile, chloritic in parts, arenaceous - argillaceous, carbonaceous in parts, pyritic in parts.

CLAYSTONE/MUDSTONE (10%)

Light — dark grey, green/grey, soft — firm, blocky — amorphous occasionally dispersive, occasionally carbonaceous, occasionally chloritic, microlaminated grey and white clays.

TRACE: coal, dark rock fragments, accessories as above.

Visible porosity: NIL - TIGHT.

SHOWS: None.

2523 - 2526m:

SANDSTONE (50%)

As above.

MUDSTONE/CLAYSTONE (30%)

Light grey, dark grey, green/grey, buff — grey, very calcareous, carbonaceous in parts, chloritic in part, argillaceous grades to shale in part, occasionally dispersive.

SILTSTONE (20%)

As above.

TRACE: as above.

Visible porosity: <u>NIL - TIGHT</u>.

SHOWS: None.

2526 - 2529m:

SANDSTONE (50%)

As above, very calcareous + calcitic cemented.

MUDSTONE/CLAYSTONE (30%)
As above, very calcareous.

2526 - 2529m cont.

SILTSTONE (20%)

As above, very calcareous.

TRACE; coloured rock fragments, pyrite, zeolite-

orange fragments, green matrix.

Visible porosity: NIL.

SHOWS: None.

2529 - 2532m:

SILTSTONE (40%)

As above.

MUDSTONE/CLAYSTONE (30%)
As above, grades to shale.

SANDSTONE (30%)

As above, grades to siltstone, very chloritic, less silicic cement, more very small fine — very fine grains, occasionally coarse — with calcitic cement, slightly carbonaceous.

TRACE: shale, calcite flakes, mudstone - very dispersive, multi-coloured, occasionally balling.

Visible porosity: NIL.

SHOWS: None.

2532 - 2535m:

SANDSTONE (40%)

As above.

CLAYSTONE/MUDSTONE (40%)

As above.

SILTSTONE (10%)

As above, very shaley, very calcareous, very

black.

Visible porosity: <u>NIL</u>.

SHOWS: None.

2535 - 2538m:

SANDSTONE (40%)

As above - calcitic cement, very fine - fine

grained sandstone, very calcareous.

CLAYSTONE/MUDSTONE (40%)

As above.

SILTSTONE (10%)

As above, very shaley, very black.

Visible porosity: NIL.

SHOWS: None.

2538 - 2541m:

No sample, pulled out no circ.

2541 - 2544m:

SILTSTONE (50%)

Light — dark grey, green/grey, sucrosic, resinous, blocky, occasionally buff-orange, chloritic in parts, trace carbonaceous specks, micromicaceous.

SANDSTONE (30%)

Light grey, white, clear, translucent, occasionally yellow, very fine — fine, moderately sorted, subangular — subrounded, calcareous clay matrix, calcitic cemented, trace carbonaceous, pyritic, chloritic, micromicaceous.

MUDSTONE (10%)

Light — dark grey, brown, amorphous, blocky, often dispersive, silicic, argillaceous grades to black carbonaceous claystone to shale, occasionally chloritic.

CHERT (10%)

Light brown — yellow, thin, flat fragments, very siliceous, streaky chertlike material,

TRACE: volvanoclastic debris.

Visible porosity: NIL.

SHOWS: None.

2544 - 2547m:

SILTSTONE (60%)

Light - dark grey, green, grey, black, very fine - fine grained, sucrosic, resinous, carbonaceous, blocky, occasionally subfissile, calcareous.

SANDSTONE (30%)

Light grey—white, clear, translucent, occasionally yellow, very fine — fine, calcitic cemented, silty and clay matrix, subangular — subrounded, moderate — well sorted, trace pyrite, trace carbonaceous, trace chloritic.

CLAYSTONE/MUDSTONE (10%)

Light—dark grey, brown/grey, argillaceous/ arenaceous, carbonaceous, micromicaceous, very calcareous, chloritic in part, grades to claystone and shale.

TRACE: calcite fragments, yellow/brown chert, black carbonaceous shale grading to argillaceous coals.

Visible porosity: <u>NIL</u>.

SHOWS: None.

2547 - 2550m:

SILTSTONE (30%)

As above.

SANDSTONE (30%)

As above.

SHALE/CLAYSTONE (40%)

Black, carbonaceous, subfissile, occasionally blocky, trace pyritic, occasionally arenaceous -

argillaceous.

TRACE: calcite fragments and veining, chert.

Visible porosity: NIL.

SHOWS: None.

2550 - 2553m:

SHALE/CLAYSTONE (50%)

As above.

SILTSTONE (30%)

As above.

SANDSTONE (20%)

As above.

TRACE: accessories as above.

Visible porosity: NIL.

SHOWS: None.

2553 - 2556m:

SHALE/CLAYSTONE (60%)

As above, grades to coal in parts.

SILTSTONE (20%)

As above.

SANDSTONE (20%)

As above.

TRACE: accessories as above.

Visible porosity: NIL.

SHOWS: None.

2556 - 2559m:

SHALE/CLAYSTONE (80%)

As above.

SILTSTONE (10%)

As above.

SANDSTONE (10%)

As above.

TRACE: as above.

Visible porosity: NIL.

SHOWS: None.

2559 - 2562m:

SHALE/CLAYSTONE (90%)

Black, blocky — subfissile, argillaceous in parts, carbonaceous, micaceous, grades to carbonaceous claystone/mudstone.

SILTSTONE (10%)

Light - dark grey, grey/green, black, blocky, occasionally subfissile, carbonaceous, micromicaceous, chloritic, arenaceous - argillaceous, calcareous.

SANDSTONE (Tr)

White, light grey, clear, translucent, calcitic cemented, trace mudstone.

TRACE: calcite fragments, mudstone, pyrite, zeolite fragments, chlorite and serpentine.

Visible porosity: NIL.

SHOWS: None.

2562 - 2565m:

SHALE (80%)
As above.

SILTSTONE (10%)

As above.

SANDSTONE (10%)

As above.

TRACE: mudstone as above, calcite fragments, weathered basalt fragments:— porphyritic with light grey/green matrix, occasionally serpentinised, trace grey/green vesicular tuff—soft to hard, with glassy sherds, trace serpentine, trace dark green and light grey/green dolerite fragments, trace chert, trace red and orange grains.

Visible porosity: NIL.

SHOWS: None.

2565 - 2568m:

SHALE (50%)

As above, very carbonaceous, fissile - subfissile.

SILTSTONE (20%)

As above, very calcareous.

SANDSTONE (10%)

As above, calcitic cement, trace quartz vein, trace calcite veins.

BASALT (20%)

Grey/green, grey/black as above.

TRACE: tuff as above, pink, orange, red and green clear grains, kaolin, pyrite fragments, serpentine.

Visible porosity: <u>NIL</u>.

SHOWS: None.

2568 - 2571m:

BASALT (50%)

As above, some serpentinised.

SHALE (30%)

As above.

SILTSTONE (20%)

As above.

SANDSTONE (10%)

As above.

TRACE: grey/green tuff, kaolin, serpentinite, chert, coal, coloured grains, quartz veins, banded quartz veins-cherts, calcite veins.

Visible porosity: <u>NIL</u>.

SHOWS: None.

2571 - 2575m:

SHALE/CLAYSTONE (60%)

Black, blocky, subfissile, argillaceous in part, very carbonaceous, micromicaceous, grades to carbonaceous claystone/mudstone, grades to coal.

BASALT (30%)

Weathered, porphyritic, vesicular, light—dark grey/green phenocrysts in light grey/green matrix, occasionally serpentinised, occasional grey/black to white/black phenocrysts.

SILTSTONE (10%)

Light—dark grey, carbonaceous, grey/green, chloritic black, blocky, occasionally subfissile, micromicaceous, chloritic, arenaceous, argillaceous, calcareous.

TRACE: mudstone, calcite fragments, quartz veins, chert, pyrite, coloured grains, grey/green tuff with dark green glassy fragments, vesicular grey-white tuff with black glassy sherds:— soft — hard.

Visible porosity: NIL.

SHOWS: None.

2574 - 2577m:

BASALT (60%)

As above, grey/black to white/ black fragments/grains.

SHALE (30%) As above.

SILTSTONE (10%)
As above.

TRACE: pyrite, calcite fragments, grains +
veining, quartz fragments, coloured grains,
mudstone, tuff as above, serpentinite fragments,
brown grains - translucent.

Visible porosity: NIL.

SHOWS: None.

2577 - 2580m:

SHALE (40%) As above.

BASALT (30%)
As above.

SILTSTONE (10%)
As above.

MUDSTONE (10%)
As above.

TRACE: as above.

Visible porosity: NIL.

SHOWS: None.

2580 - 2583m:

SHALE (50%)

Black, carbonaceous, subfissile-fissile, flakey, micaceous, argillaceous, grades to claystone in part occasionally pyritic.

BASALT (30%)

Grey/green - green, grey-grey/black, porphyritic, vesicular, occasionally serpentinised, occasional red - brown with red - brown phenocrysts, trace glassy sherds, trace serpentinite.

SILTSTONE (10%)

Light - dark grey, arenaceous - silicic, blocky grades to mudstone, very calcareous.

MUDSTONE (10%)

Light dark grey, carbonaceous, occasionally dispersive, argillaceous, soft, very calcareous.

TRACE: calcite veining, quartz fragments and veins, light-dark green vesicular tuff with glassy sherds, kaolin, coloured grains.

Visible porosity: <u>NIL</u>.

SHOWS: None.

2583 - 2586m:

BASALT (60%)

As above, occasionally red — brown, black to grey with phenocrysts of orange — red, possibly zeolitic, possibly jasper?

SHALE (30%)

As above.

MUDSTONE (10%)

As above.

TRACE: siltstone as above, increased abundant serpentinite fragments, accessories as above.

Visible porosity: <u>NIL</u>.

SHOWS: None.

2586 - 2589m:

BASALT (80%)

As above, with abundant red - orange - brown basalt with orange - red phenocrysts and serpentinite fragments/crystals, abundant serpentine fragments, abundant green/grey basaltweathered, abundant grey-black.

SHALE (20%)

As above.

2586 - 2589m cont.

TRACE: abundant calcite fragments, abundant quartz fragments, trace sandstone, grey/green tuff — vesicular and soft with small black glassy sherds, chert.

Visible porosity: NIL.

SHOWS: None.

2589 - 2592m

BASALT (100%)

As above, black-grey, red-brown, mixed volcanic

debris.

TRACE: tuff, quartz fragments and grains, pyroxenes, calcite veins, accessories as above.

2592 - 2595m:

BASALT (100%)

Grey, green, black, black /rey, red-brown, brown/ orange/red with jasper ? grains and large jasper ? fragments, red-brown basalt with serpentine and

vitric sherds, olivine basalt.

TRACE: calcite, tuff, quartz fragments and grains, pyroxenes, volvanic mixed debris, calcite

veins, accessories as above.

2595 - 2598m:

BASALT (100%)

As above.

TRACE: Tuff as above, accessories as above.

2598 - 2601m:

BASALT (100%)

As above.

TRACE: as above.

2601 - 2604m:

BASALT (100%)

As above.

TRACE: as above.

2604 - 2607m:

BASALT (100%)

As above.

TRACE: as above, quartz veins, serpentine, calcite, olivine, jasper, pyroxene fragments, etc.

T.D. 2608m:

APPENDIX 2

SIDEWALL CORE DESCRIPTIONS

LUEWALL SAMPLE

EN I

WELL	WEL	GREENSLOPES NO. 1 RUN 1	FIELD	1					DATE_10/1/86
DEPTH	REC	MATERIAL	Zω	CALC ARG.	ARG.	CON	SHOW	ODOR	FLUORESCENCE
1367	20	Siltstone - light grey/blue aren	VP ,	S	S	দ	-	N	NIL
1373	35	Siltstone - Light grey/blue aren sl carb	P	l	М	ĒΗ	ı	N	NIL
1381	30	Mudstone - dark grey sl silty	T	ļ	Æ	뇬	ı	Z	NIL
1567	35	Siltstone – dark grey –∷aren	VP	ı	N	Ē	I	z	Very very faint 1-2 grains min fluor
1816	25	Mudstone - dark grey - microlam coaly	EH	-	М	S	-	Z	NIL
1853	25	Siltstone – dark grey – aren	VP	l	S	S	1	N	Very very faint $1-2$ grains min fluor
1905	1	Lost						·	
1963	25	Mudstone - dark grey/blue aren/arg microlam	₽	١	Λ	S	ı	N	NIL
1977	15	Mudstone - dark grey - v aren occ quartz gr	T	ı	V	S	1	N	NIL
2039.5									
2172	35	Sandstone - light grey/blue - silty	VF-F	S	S	S	ı	N	NIL
2214	20	Sandstone - white - microlam with coal	Ŧ	S	S	S-F	ı	N	NIL
2265	10	Shale - black fissile microlam aren grades	L	ı	Λ	ĮΞ·I	-	N	NIL
2283	35	Sandstone - light grey/blue-white	Ēι	ı	S	S-F	ı	N	lgrain br wh flu 1-2 grains tyv faint
2307	30	Siltstone - light dark grey-aren gds to clst	VF	l :	М	Ħ	ı	N	NIL
2365.5	25	Sandstone - white -light grey/blug pink grn	F-M	S	V	S	1	N	NIL
2436	20	() []	ieT	ı	Λ	S	ı	Z	NIL
2443	50	Shale - black carbonac grades to claystone	H	1	. ^	S	-	N	NIL
2490	18	Sandstone - white/light grey - carb lams	VF-F	န္	S	Ħ	-	N	NIL
2505	20	Mudstone - dark grey/light grey - microlam	H	S	Λ	S	ı	N	NIL
2513	1	Lost					ኦ		
2536	15	Mudstone grades to siltstone aren-dark grey	VP-T	ı	М	S	ı	N	NIC
2556	15	Shale - black/dark brown carb	Ħ	ı	Λ	S	1	N	NIL
2562	35	Basaltic tuff - blue/grev/green interlam	E	- 1	S	н		Z	ŅII
		with blue grey shaley mudstone							
		•				1			
	V BBBEV	CV B & TITTE BEDOOD ELEVID. C.COON CALC & ABC	Z	S INCIN	VITHUI IS		W-MODERATE! Y		V-VFRY.

ABBREV. P & P. T-TITE, P-POOR, F-FAIR, G-GOOD. CALC. & ARG.: N-NON, S-SLIGHTLY, M-MODERATELY, V-VERY, CON.: S-SOFT, F-FIRM, H-HARD, SHOW & ODOR: N-NQ, P-POOR, F-FAIR, G-GOOD.

APPENDIX 3

BOTTOM HOLE TEMPERATURE

EXTRAPOLATION DATA

GREENSLOPES 1 BOTTOM HOLE TEMPERATURE EXTRAPOLATION

DATA SHEET

WELL IDENTIFICATION

Company 1

Phoenix Oil & Gas N.L.

Well

Greenslopes 1

Field

New field

Otway Basin

Basin State

Victoria

Location

North of Warrnambool and northeast of Port Fairy

Elevation of Reference Datum

K.B. 82.9m

DEPTH INFORMATION

Total Depth

2608m

Formation at Total Depth

Basement

Lithology at Total Depth

Metabasalt - Basic Tuff

TEMPERATURE DISTURBANCE DATA

Time Bit Reached Total Depth (hour, date)

2200, 08/01/86 2330, 08/01/86

Time Circulation Stopped (hour, date) Circulating Time (T)

1.5 hours

TEMPERATURE RECOVERY DATA

2

3

Log Type

DLL/MSFL/GR/

MEL/BCS/GR

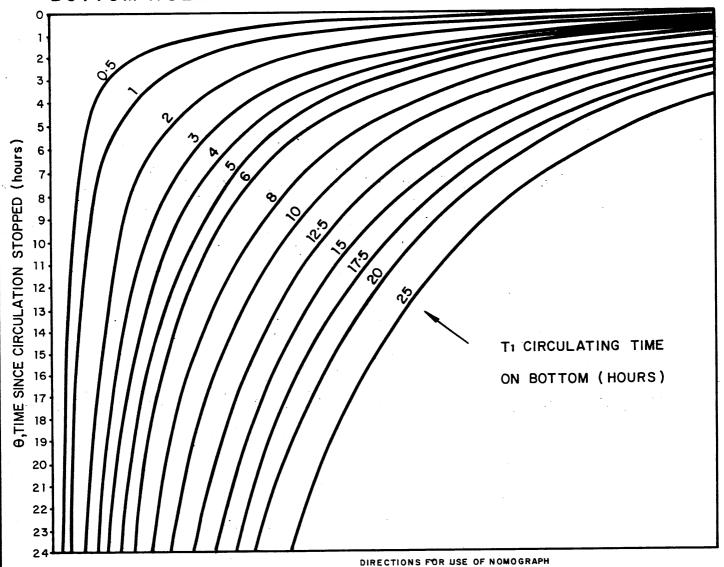
FED/GR

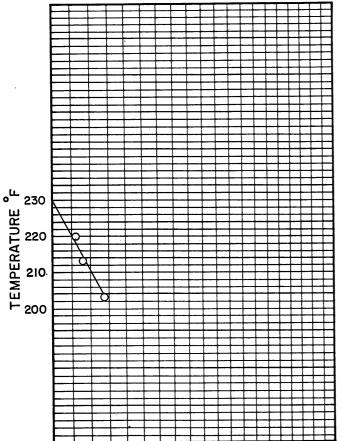
Time Sonde off Bottom (hour, date) Maximum Temperature Recorded

SP/CAL

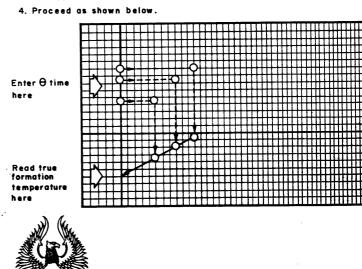
1505, 09/01/86

Time Since Circulation Stopped


0844, 09/01/86 95° C (203° F) 9hours 14mins


100.6° C (213° F) 15hours 35mins

1900, 09/01/86 121.1° C (220° F) 21hours 36mins


104-4

BOTTOM HOLE TEMPERATURE EXTRAPOLATION NOMOGRAPH

- 1. Determine T circulating time on bottom.
- 2. For each temperature measurement, determine $\boldsymbol{\theta}$ time since circulation.
- 3. Set appropriate temperature scale.

PHOENIX OIL & GAS N.L.

WELL GREENSLOPES 1 LOG SUITE 1 MEAN ANNUAL SURFACE TEMPERATURE 13° C (55.4° F) EXTRAPOLATED BHT 110° (230° F) AT DEPTH 2608m REMARKS Thermal Gradient 3.72° C/100m (6.69° F/100m or 2.04° F/100ft)

GEOLOGIST L.Mitchell

DATE 09/01/86

APPENDIX 4

LOG INTERPRETATION REPORT

GREENSLOPES No: 1

WELL LOG ANALYSIS

HUGH CROCKER CONSULTANTS

GREENSLOPES No:1

Well Log Analysis.

Well logs available:

DLL-MSFL-GR-CAL 890m - 2607m BHC-MEL 890m - 2603m Geodata wellsite log 50m - 2608m

Well logs recorded by Gearhart Australia Pty. Ltd.

Borehole conditions:

9 5/8" Casing set at 898m

8 1/2" Bit drilled to 2608.7m

Mud: Type

: KCl Polymer

Density

: 9.5 lbs/gal

Viscosity

: 46 secs

рН

.0 00

Fluid loss : 8.2 ccs

: 9.5

Rm

0.2 663

17111

: 0.35 at 65F

Rmf

: 0.30 at 69F

Rmc

: 0.37 at 69F

Bottom Hole Temperature: 213F

General:

The Upper Eurmeralla Formation is shale without significant sands. It extends from the top of the logged interval to the Intra-Eurmeralla Marker at 1380m. The first sand of significance is at 1418m. The Lower Eurmeralla is characterised by sands, silts and minor clays.

The top of the Pretty Hills Sandstone is at 2310m and extends as an almost continuous sand down to the Casterton Beds at 2504m. The Casterton Beds have an upper massive shale 2504m to 2562m and a lower tight sand unit 2562m to 2592m

Basement top is at 2592m.

Hence this interpretation principally concerns the Lower Eurmeralla Formation, Pretty Hills Sandstone and the Lower Casterton Beds.

Representative levels have been selected for all zones where Gamma-Ray, S.P., or Sonic have indicated that at least some porosity may be developed. Log readings are listed in Table 1 along with the computed log interpretation results.

These logs have been checked for proper calibration and repeatability. They appear to be self consistent and, although the author was not present during logging, they appear to be well recorded and accurate.

Greenslopes No:1 page 3.

Formation water (Rw):

The S.P. is the only independent guide to formation water resistivity (Rw). We have no information on produced waters or from adjacent wells. The S.P. is well recorded with well established shale baseline. It is positive throughout the logged interval as may be expected given the KC1 mud. Using the KC1/NaC1 bi-ionic cell of mud and formation water we find Rw as follows:

Depth	SP_	Κ	Rmf	Rw
1421	13	74.5	0.14	0.212
1490	0	74.9	0.138	0.138
1585	16	75.5	0.134	0.219
1735	10	76.5	0.128	0.173
1805	16	77.1	0.125	0.20
1865	18	77.5	0.123	0.21
1990	20	78.2	0.119	0.214
2255	8	80	0.11	0.14
2300	20	80.3	0.109	0.19
2425	20	81.2	0.105	0.185
2500	20	81.7	0.103	0.18

We have not allowed for the differential mobility of K/Na ions.

These Rw values are somewhat higher than needed to balance Porosity and Deep Resistivity in the clean sands. Consequently we have selected the Rw values listed in Table 1. The presence of Bivalent ions and Bicarbonate ions in the formation waters is probably responsible for the difference between Rw approaches.

Greenslopes No:1 page 4.

Clay fraction (Vcl):

The Gamma Ray log is used to find the bulk clay fraction Vcl proportionately from a background radiation level of 35 API units and a clay radiation level of; 120 from the casing shoe to 2290m and 145 from 2290m to total depth.

In the absence of other suitable clay indicators we shall have to take this Vcl as the true clay fraction even though we recognise that not all the formation radioactivity is found in the clays. At least it is likely to be an upper limit of the true clay fraction.

Porosity (Ø):

Only the Sonic log is available for direct porosity determination and therefore a travel time of 55.5mmsec/ft appropriate for sands has been selected along with a fluid travel time of 189 mmsecs/ft.
Clay correction has then been made to this Sonic derived porosity taking a clay travel time Tcl chosen from adjacent bulk shales and as listed in Table 1.

Above 1550m the Sonic is likely to be influenced by the uncompacted sediments caused by low overburden Pressure. Therefore the Porosity is further corrected by a compaction coefficient of 1.2 above 1550m.

Greenslopes No:1
page 5

Saturation Sw:

The modified Poupon equation for Shaly Sands is used to compute water saturation Sw.

The Clay Fraction and its resistivity Rcl have been used to compute the solids conductivity and thus the conductivity of the non-clay fraction.

Rcl has been chosen from adjacent bulk shales as listed in Table 1. It is recognised that the interstitial clays may well have lower resistivity and therefore Rcl is too high. This leads to the computed Sw in shaly sands greater than 100% Hence we can judge when Rcl is inappropriate and adjust it accordingly

A good balance around 100% Sw has been made for both clean and shaly water sands.

Greenslopes No:1 page 6.

Conclusions:

- 1. The Lower Eurmeralla Formation has moderate to excellent porosity (15% to 30%). Clay Fraction is low to moderate. Hence these sands have good to excellent reservoir characteristics.
- 2. The Pretty Hills Sandstone has moderate porosity (10% to 20%) but very low clay fraction; it too has good reservoir character.
- 3. The Casterton Beds have low porosity and are shaly. They are essentially tight with almost no reservoir character.
- 4. All sands are essentially water bearing although there is possibly some residual hydrocarbon between 2287m and 2303m.

Hugh Crocker February 1986. TABLE 1

HUGH CROCKER CONSULTANTS.

DATE: FEB 86 COMPANY, PHOENIX OIL & CAS WELLS CREENSLOPES

DEPTH 12D M	3 3 13 13 13 13 13 13 13 13 13 13 13 13	CR	/2/	-	4	&w	Rel	Te1	K		RE	REMARKS.
3.0 3.0 1.4.7 0 m 1.05 1.4.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3)		•					
	27 87	APZ	2,5	4/54	%	5 m	2 m	15/fz	%		1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/3	55	23	82	1.01	.13	8 '/	00/	109		-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		58	27	75	4.6	1/3	8 '	100	120		-	
		40	e	102	27,3	3 ./3	2.0	00/	97		+	
1 1 1 1		36	/	100	27.4	1 13	2.0	00/	107			
1 1 1		0#	29	401	28.5	- 1/3	2,0	00/	/0/			
I I		51	61	101	23.0	5/13	7,0	9 0/	96			• -
1		51	61	103	24.3	3 ./3	2.0	00/	jā		3	71/=03
1.25	9/	41	7	92	-25.	11: 7	2,0	90	26		1	
		37	7	90	25:	111	2.0	90	100		+	
7.7		70	9	158 258	8	01. 4	2.0	90	66		-	
2,2		39	b	28	15.	•	2,0	06	//3		-	-
1735.5 2.3	१	42	∞	28	14.	<u>:</u>	2,0	90	* :		1	
	9/	15	61	92	22,	<u>:</u>	3.0	90	26			
+		77	=	0 0/	30	•	4.0	88	00/			
	<u> </u>	576	25	00/	27.	·	4.0	88	86		.	
├ ─	1/8	25	77	76	ِبَ رِ دِدِ	?	4,0	200	100		_	
7.4		45	72/	97	28,	7/1	4.0	88	46			
1919.5 1.2		71	//	97	78,	3 .15	40	28	(00/			
いい		40	૭	90	724	-	0 3	& Q	139		-	
1.3	20	42	∞	90	23	-		% %	7.7		-	
87 5.861	20	79	34	46	70	٠ ا		88	93			
+	├	45	12/	98	86			88	96			
	┼				·							
_	-	-										
_	-	_					-					The second secon
+						-	-		-			
1	+		1	+							_	
1874.6 1720.5 1735.5 1883.7 1888.5 1919.5 1987.5 1985.5		1.3 1.25 1.25 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.3 16 4 1.25 1.25 3 16 4 1.7 1.3 16 5 1.5 1.6 5 1.	1.3 16 41 1.25 37 2.2 40 2.3 10 42 2.3 10 42 1.3 16 51 1.05 16 44 1.15 86 1.4 45 1.5 18 56 1.5 18 56	1.3 16 41 7 6 1.25 37 2 2 2.2 40 66 6 2.3 10 42 8 1.3 16 44 11 1.05 16 444 11 1.5 18 56 25 1.4 45 17 1.5 18 56 25 1.5 20 45 12 1.25 20 45 12 1.25 20 45 12	1.3 16 41 7 92 1.25 37 2 90 6 1.7 40 6 85 6 2.1 39 5 78 78 2.3 10 42 8 78 78 2.3 10 42 8 78 78 1.3 16 44 11 100 11 1.5 16 44 11 100 11 1.5 18 55 25 94 12 14 1.5 18 55 35 94 14 17 97 12 98 12 12 98 12 12 12 98 12<	1.3 16 41 7 92 25.4 17 1.25 37 2 90 25.2 1 1.7 40 6 85 20.4 1 2.2 39 5 78 15.5 1 2.2 39 5 78 15.5 1 2.3 10 42 8 78 14.7 1 1.3 16 44 11 100 30.5 1 1.5 16 44 11 100 30.5 1 1.5 18 55 25 94 22.7 1 1.4 1 97 22.7 1 1.5 40 6 9 24.3 1 1.5 20 45 12 98 20.5 1 1.25 20 45 12 98 20.5 1 1.25 20 45 12 98 20.5 1	1.3 16 41 7 92 25.4 11 2 1.25 37 2 90 25.2 11 2 1.7 40 6 85 20.4 10 2 2.1 40 6 85 20.4 10 2 2.2 39 5 78 15.5 10 2 2.3 10 42 8 78 14.7 10 2 1.3 16 44 11 100 30.5 1/5 3 1.5 5 25 25 100 30.5 1/5 3 1.5 45 17 94 22.7 1/5 4 1/5 1.4 17 97 28.1 1/7 1/5 1/5 1.5 40 6 90 20.5 1/5 1/5 1.2 20 45 20 20.5 1/5 1/5 1.2 20 47 20 20.5 1/5 1/5 1.	1.3 16 41 7 92 25.4 11 2.0 9 1.25 1.2 40 6 87 20.4 10 2.0 9 2.1 40 6 87 20.4 10 2.0 9 2.2 39 5 78 14.7 10 2.0 9 2.3 10 42 8 78 14.7 10 2.0 9 1.3 16 51 19 92 22.3 10 2.0 9 1.05 16 444 11 100 30.5 1/5 4.0 8 1.15 85 25 25 100 27.1 1/5 4.0 8 1.15 40 6 90 27.1 1/5 4.0 8 1.2 20 42 8 90 22.3 1/5 4.0 8 1.3 20 42 8 90 22.3 1/5 4.0 8 1.3 20 45 12 98 28.8 1/5 4.0 1.25 20 45 12 98 28.8 1/5 4.0	1.3 1/6 41 7 92 25.4 11 2.0 90 1.25 37 2 90 27.2 11 2.0 90 1.7 40 6 85 20.4 10 2.0 90 2.1 40 6 87 20.4 10 2.0 90 2.1 39 5 78 17.5 10 2.0 90 1.3 16 51 19 92 22.3 1.0 2.0 90 1.3 16 44 11 100 30.5 1.5 4.0 88 1.0 56 25 100 22.7 1.5 4.0 88 1.4 11 100 20.7 1.5 4.0 88 1.4 17 97 23.1 1.5 4.0 88 1.5 20 40 20.5 1.7 4.0 88 1.2 40 30 1.7 4.0 88 1.2 40 20 <td>1.3 1/6 41 7 92 25.4 11 2.0 90 1.25 37 2 90 25.4 10 2.0 90 1.7 40 6 85 20.4 10 2.0 90 2.1 39 5 78 15.5 10 2.0 90 2.3 10 42 8 78 14,7 10 2.0 90 1.3 16 51 19 92 22.3 1.0 2.0 90 1.3 16 51 17 40 30.5 1.5 40 88 1.0 56 25 100 20.5 1.5 40 88 1.4 45 12 94 22.7 1.7 40 88 1.4 45 12 90 23.6 1.7 40 88 1.4 10 90 20.5 1.7 40 88 1.5 20 40 20.5 1.7 40 88 <</td> <td>1.3 1/6 41 7 92 25.4 11 2.0 90 1.25 37 2 90 25.4 10 2.0 90 1.7 40 6 85 20.4 10 2.0 90 2.1 39 5 78 15.5 10 2.0 90 2.1 39 5 78 14.7 10 2.0 90 1.3 16 51 19 92 22.3 1.0 2.0 90 1.3 16 51 17 40 30.5 1.7 40 88 1.0 56 25 100 20.5 1.7 40 88 1.4 11 100 20.5 1.7 40 88 1.4 17 100 20.5 1.7 40 88 1.4 17 100 20.5 1.7 40 88 1.5 20 40 20.5 1.7 40 88 1.2 40</td>	1.3 1/6 41 7 92 25.4 11 2.0 90 1.25 37 2 90 25.4 10 2.0 90 1.7 40 6 85 20.4 10 2.0 90 2.1 39 5 78 15.5 10 2.0 90 2.3 10 42 8 78 14,7 10 2.0 90 1.3 16 51 19 92 22.3 1.0 2.0 90 1.3 16 51 17 40 30.5 1.5 40 88 1.0 56 25 100 20.5 1.5 40 88 1.4 45 12 94 22.7 1.7 40 88 1.4 45 12 90 23.6 1.7 40 88 1.4 10 90 20.5 1.7 40 88 1.5 20 40 20.5 1.7 40 88 <	1.3 1/6 41 7 92 25.4 11 2.0 90 1.25 37 2 90 25.4 10 2.0 90 1.7 40 6 85 20.4 10 2.0 90 2.1 39 5 78 15.5 10 2.0 90 2.1 39 5 78 14.7 10 2.0 90 1.3 16 51 19 92 22.3 1.0 2.0 90 1.3 16 51 17 40 30.5 1.7 40 88 1.0 56 25 100 20.5 1.7 40 88 1.4 11 100 20.5 1.7 40 88 1.4 17 100 20.5 1.7 40 88 1.4 17 100 20.5 1.7 40 88 1.5 20 40 20.5 1.7 40 88 1.2 40

LOGI CROCKER CONSULTANTS.

TABLE 1

REMARKS. DATE: FEB 86 CREENSLO PES 104 601 15 B 20 200 Rw (Re1/Te1 de တို WELLS 2 2m 2m /25/4 7 200 2 5,5 3,0 S.0 5.0 رې 0 0 S 3,0 و ن ω, 0 3,0 3. io 7 7 4 0 , 0 . 0 . 0 ? ? 1/0 خ ۵ 0/ż 0/, 12.9 8 3.4 49 25.1 75.6 13/ 0 J COMPANY PHOENIX OIL & CAS 20,5 90 86 S 12/CL 19 70 46 ტ დ 68 88 SP GR 1/21 /7 1111 35 11145 % <u>+</u> 0 0 0 2n nr 4PI 11 2 * ∞ M & ∞ 33 5, 3% 20 3 22 89,5 1.75 23/5.0 1.95 1337,0 1.95 25 2140.0 0.96 2178.0 0.95 23850 5.3 Ve DEPTH LLD 2209.011.5 2244.51 1.8 23 2043.0 1.2 2146.0 1.0 2/58.0 1.5 2/6/.0/1.6 24 200.8 1.25 2359,0 2-1 2294.3 1.7 77 2564.5 43 2572.0 442578.5 41 2498.3 2301.5 39 2419.0 2432.5 E

APPENDIX 5

WELL LOCATION
SURVEY

TRAVERSE DIAGRAM DAISY BELLE TRIG. TO GREENSLOPES WELL

CO-ORDINATES AMG ZONE 54 ELEVATIONS IN METRES

PAUL D. CROWE LICENSED SURVEYOR 64 THOMPSON ST. HAMILTON VIC 3300 PH 055 724795

APPENDIX 6

PALYNOSTRATIGRAPHIC AND SOURCE ROCK ASSESSMENT REPORT

PALYNOLOGY,
SOURCE ROCKS AND MATURITY
IN GREENSLOPES-1,
1367-2562m

Report No. R3/86/1 March, 1986

M.J. Dudgeon
D.P.C. Hos
ECL Australia Pty Ltd
16 Altona Street
West Perth WA 6005

CONTENTS

- I. SUMMARY
- II. INTRODUCTION
- III. PALYNOLOGY AND ENVIRONMENTS
- IV. SOURCE ROCK POTENTIAL
- V. MATURITY

TABLE NO. 1:

PALYNOLOGICAL ZONES, AGES, ENVIRONMENT OF DEPOSITION, OIL POTENTIAL AND MATURITY IN GREENSLOPES-1.

TABLE NO. 2:

PALYNOMORPH YIELDS, PRESERVATION AND KEROGEN CONSTITUENTS IN GREENSLOPES-1.

TABLE NO. 3:

KEROGEN YIELDS, SOURCE ROCK POTENTIAL AND MATURITY INDICATORS IN GREENSLOPES-1.

ENCLOSURE 1:

DISTRIBUTION CHART OF PALYNOMORPH SPECIES RECORDED IN GREENSLOPES-1.

APPENDIX 1:

EXPLANATION OF THE SOURCE ROCK AND MATURITY PARAMETERS RECORDED USING PALYNOLOGICAL TECHNIQUES.

I. SUMMARY

Palynological analysis of 21 sidewall cores from Greenslopes-1 (PEP-101) indicates the following subdivisions:-

1367-1381	P.parvispinosus	Early Aptian	Brackish to Non-marine
1567-1816	F.asymmetricus	Barremian - Early Aptian	Non-marine
1853	F.wonthagiensis	Valanginian - Barremian	Non-marine
1963-2536	<i>C.hughes</i> i	Berriasian - Valanginian	Non-marine to Brackish
2556	C.hughesi	Berriasian - Valanginian	Marginal Marine
2562	C.hughesi	Berriasian - Valanginian	Non-marine

Eight samples between 1816m to 2536m proved on kerogen analysis to have sufficient organic matter, particularly unoxidised liptinites, to be regarded as being possible good oil source rocks. The remaining samples had insufficient liptinites to have any significant potential.

From 1367m to 1381m was immature for the type of source rocks encountered in the well. The section from 1567m to 2443m had light orange spore colours regarded as mature for early oil generation. From 2490-2562m spore colours were orange indicating the zone of peak oil generation.

II. INTRODUCTION

Greenslopes No.1 was drilled in PEP-101, Otway Basin by Phoenix Oil and Gas N.L. A total of 21 sidewall cores from 1367m to 2562m were submitted for palynological analysis to determine ages and environments of deposition and to determine source rock potential and maturity.

III. PALYNOLOGY AND ENVIRONMENTS

The samples were prepared using standard methods and yields were generally good. The palynomorphs recorded are shown in Enclosure 1 and a summary of the zones, ages and environments is given in Table 1.

Four palynological zones are recognised in the sequence and they correlate with the unpublished biostratigraphic Units of CSR Oil and Gas Division (1985). The ages for the zones are derived from published and unpublished data.

1367m, 1373m and 1381m Pilosisporites parvispinosus Zone Early Aptian

The presence of *Pilosiporites parvispinosus* and *Foraminisporis* asymmetricus and the absence of any younger species indicates a correlation to the *P. parvispinosus* Zone (ECL unpublished) which is equivalent to Unit PK 3.2 of CSR (unpublished).

Micrhystridium sp. at 1367m suggests a brackish environment but the other two samples were deposited in a non-marine environment.

1567m, 1381m

Foraminisporis asymmetricus Zone Berremian - Early Aptian

The first appearances of both the nominate species and Pilosisporites notensis correlates the assemblages with the F.asymmetricus Zone (ECL unpublished) that is equivalent to Unit PK 3.1 (CSR unpublished). Both samples indicate a non-marine environment.

1853m

Foraminisporis wonthagiensis Zone

The presence of the nominate species and absence of any younger species indicates a correlation to the zone, equivalent to Unit PK 2 (CSR unpublished). No marine indicators were observed in the sample.

1963m-2562m

Cyclosporites hughesi Zone Berriasian - Valanginian

The spore-pollen assemblages in this sequence were generally not well preserved and low in diversity. They were characterised by Cicatricosisporites australiensis, Dictyotosporites speciosus, Cyclosporites hughesi, Neoraistrickia truncata and Retitriletes solidus.

A species conformable with F. wonthagiensis in the deepest sample (2562m) is disregarded as a possible mud contaminant, although no other evidence for this was apparent.

The absence of Foraminisporis wonthagiensis (except as mentioned above) correlates the assemblage to the C. hughesi Zone (ECL unpublished) equivalent to Unit PK 1.2 (CSR unpublished).

Samples at 1977m, 2214m, 2265m and 2307m had rare Micrhystridium sp. that suggests deposition in a brackish water environment. At 2556m relatively common Microfasta evansii suggests deposition in a marginal marine environment. The remaining samples in the sequence are regarded as non-marine.

IV. SOURCE ROCK POTENTIAL

The methods used to estimate source rock potential from palynological residues is discussed in Appendix 1. The results of the analyses are shown in Tables 1 and 2 and the inferred potentials are summaried in Table 1. The primary criteria used to assess source rock potential are total organic matter measured as Volume of Organic Matter (VOM in ml/10g), the abundance of the various liptinites, the oil index and the volume of unoxidised (fluorescent) liptinites. Seven of the samples had VOM values of less than 0.3ml and two others had very low yields of unoxidised liptinites and these are not considered any further. Eight samples are suggested as having possible good potentials to generate liquid hydrocarbons and the remainder are regarded as having possible moderate potentials.

Most of the samples here indicated as having good source rock potentials are just at the threshold of this category as the overall abundances of unoxidised liptinites as measured by volume of fluorescent liptinites and amorphous sapropel are not high. This reflects the generally oxidising environments in which the organic matter was deposited. The samples that are here identified as having possible good oil potentials must be correlated with the electric logs to determine whether any significant sections of potential source rocks are present in the well.

V. MATURITY

The techniques used to assess spore colours and UV fluorescence colours in the samples are discussed in Appendix 1. The observed colours are shown in Table 3 and the interpreted maturity levels for oil generation are shown in Table 1.

1367m-1381m

Very early oil

Fluorescence colours of light yellow and spore colours of yellow to light orange are at a level where some source rocks can begin to generate oil but in this well the section is immature.

1567m-2443m

Early oil

Light orange spore colours and yellow fluorescence colours correlate with a VRE of approximately 0.5% to 0.6% that is regarded as generally capable of generating oil.

2490m-2562m

Peak oil

Spore colours of orange and fluorescence colours of gold to orange indicate the zone of main oil gneration at a VRE of approximately 0.7%. The deepest sample would suggest a slightly higher maturity level but as the palynomorphs were severely oxidised the colours are not reliable.

TABLE NO.1.

Palynological zones, ages, environments of deposition, oil potential and maturity in Greenslopes-1.

DEPTH (m)	PALYNOLOGICAL ZONÉ	AGE	ENVIRONMENT OF DEPOSITION	POTENTIAL	NATURITY
1367.0	P. parvispinosus	Early Aptian	Brackish		Very early oil
1373.0	p. parvispinosus	Early Aptian	Non-marine	. 00-	Very early oil
1381.0	P. parvispinosus	Early Aptian	Non-marine		Early oil
1567.0	F. asymmetricus	Barremian-Early Aptian	Non-marine	T grand	Early oil
1816.0	F. asymmetricus	Barremian-Early Aptian	Non-marine	1.00	Early oil
1853.0	F. wonthagiensis	Valanginian-Barremian	Non-marine		Early oil
	C. hughesi	Berriasian-Valanginian	Non-marine	Poor	
1963.0	C. hughesi	Berriasian-Valanginian	Brackish	Good	Early oil
1977.0	C. hughesi	Berriasian-Valanginian	Non-marine	Poor	Early oil
2172.0	-	Berriasian-Valanginian	Brackish	Moderate	Early oil
2214.0	C. hughesi	Berriasian-Valenginian	Brackish	Gegg	Early oil
2265.0	C. hughesi	Berriasian-Valanginian	Non-marine	Poor	Early oil
2283.0	C. hughesi	Berriasian-Valanginian	Brackish	Good	Early oil
2307.0	C. hughesi	¥**	Non-marine	Poor	Early oil
2365,5	C. hughesi	Berriasian-Valanginian	Non-marine	Good	Early oil
2436.0	C. hughesi	Berriasian-Valanginian	Non-marine	Poor	Early oil
2443.0	C. hughesi	Berriasian-Valanginian	Non-marine	Poor.	Peak oil
2490 . 0	C. hughesi	Berriasian-Valanginian		Good	Peak oil
2505.0	C. hughesi	Berriasian-Valanginian	Non-marine	good	Peak oil
2536.0	C. hughesi	Berriasian-Valanginian	Non-marine	Moderate	
2556.0	C. hughesi	Berriasian-Valanginian	Marginal marine	Poor	Peak oil
2562.0	C. hughesi	Berriasian-Valanginian	Non-marine	PUUL	. 33

PE900747

This is an enclosure indicator page.

The enclosure PE900747 is enclosed within the container PE902356 at this location in this document.

```
The enclosure PE900747 has the following characteristics:
    ITEM_BARCODE = PE900747
CONTAINER_BARCODE = PE902356
            NAME = Spore/Pollen Distribution Chart
            BASIN = OTWAY
           PERMIT = PEP 101
             TYPE = WELL
          SUBTYPE = DIAGRAM
      DESCRIPTION = Spore/Pollen Distribution Chart
                    (enclosure from WCR vol.2) for
                    Grenslopes-1
          REMARKS =
     DATE_CREATED =
    DATE_RECEIVED = 17/07/86
             W_NO = W924
        WELL_NAME = Greenslopes-1
       CONTRACTOR =
     CLIENT_OP_CO = Phoenix Oil & Gas
```

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 7

PETROGRAPHIC ANALYSIS

RESOURCE DEVELOPMENT LABORATORIES

PERTH – Welshpool 52 Murray Road, Welshpool, Western Australia 6106 Telephone: (09) 458 7999 Telex: AA92560 P.O. Box 210, Bentley, Western Australia 6102. PERTH – Balcatta 4 MacAdam Place, Balcatta, Western Australia 6021 Telephone: (09) 344 2411 Telex: AA93837 P.O. Box 261, Tuart Hill, Western Australia 6060. KALGOORLIE Great Eastern Highway, Kalgoorlie, Western Australia 6430 Telephone: (090) 21 1416 (090) 21 7688

Telex: AA91784 P.O. Box 174, Kalgoorlie, Western Australia 6430. MEEKATHARRA Great Northern Highway, P.O. Box 120, Meekatharra Western Australia 6642 Telephone: (099) 81 1086

DATE:

ORIGINATOR:

Lynn Mitchell,

Phoenix Oil and Gas,

44 Ord St,

W Perth

17-3-86

1000 0 01 43009

Preparation of two thin sections and petrographic descriptions of two well cuttings, Greenslopes No 1 (2601-4m, 2607-8m)

R Townend.

Jonnes

Sample Greenslopes No 1 2601-4m

Well Cuttings

Thin Section.

Lava fragments
"Chlorite"
Clinopyroxene
Plagioclase
Opaques

Plagioclase major
Opaques minor
Sediment
Quartz major
Feldspar minor

Feldspar Mica Carbonate Opaques Clay

Tuff Carbonate Amygdale(opal) Dominant

Accessory

Accessory Trace Trace

The sample is a mixture of lithologies but is dominated by a basic lava. This is porphyritic with phenocrysts of titanaugite and an altered ?olivine. They are set in finer plagioclase - pyroxene ore groundmass. This combination varies in texture and mode. Also alteration may obscure rather fine groundmass. Carbonate is a secondary phase in some of these. Probably related to this are several fragmentary bedded fragments in which the

major major

accessory

accessory

trace

trace

crystals are similar . In one example there is a concentration of chlorite that has a welded appearence

Sediment is represented by a fine subarkose with angular quartz and alkali feldspar in a matrix that is about 10% and mostly narrow skins of clay etc. There are also several pieces of ?organically stained shale.

Overall the association of variably textured lavas, plus the occasional non lava as part of a single chip suggests a BASIC TUFF.

Sample Greenslopes No 1 2607-8m

Well Cuttings

Thin Section

LAVA

Phenocrysts

"Chlorite" Clinopyroxene

Groundmass

Clinopyroxene Plagioclase Chlorite Opaques

Amygdales

Carbonate Opal Chlorite

SEDIMENT

Accessory

Dominant

Quartz Feldspar Volc. frag. Clay

Shale

This is a very similar sample to the 2601 interval . Thus it is predominantly composed of porphyritic basic lava fragments. These are characterised by fresh phenocrysts of a titaniferous augite(purple tinge) and chloritised phenocrysts of ?olivine. these are set in a groundmass of clinopyroxene, plagioclase, ores and secondary products. Some are amygdular with opal, chlorite and carbonate

fragment without fresh crystals is one There containing some opaque masses in an almost aphanitic secondary groundmass containing quartz amygdales. A small(0.4mm) piece has a a high content of green chlorite and a linear texture suggestive of welding.

.One fragment of fine arkose is similar to that of the 2601m interval. There are brown coloured shales identical to the other sample material.

The composite chips contain the lava, shale, quartz, and also a crystal of chromite. The porous fine cement to them does contain small crystals of clinopyroxene Classified as a BASIC TUFF.

PE905783

This is an enclosure indicator page. The enclosure PE905783 is enclosed within the container PE902356 at this location in this document.

```
The enclosure PE905783 has the following characteristics:
    ITEM_BARCODE = PE905783
CONTAINER_BARCODE = PE902356
            NAME = Photographs of core Thinsection for
                   Greenslopes-1
           BASIN = OTWAY
           PERMIT = PEP/101
            TYPE = WELL
          SUBTYPE = CORE_PHOTOS
     DESCRIPTION = Core photographs (from appendix
                   7--Petrographic Analysis-- WCR vol. 2)
                    for Greenslopes-1
         REMARKS =
    DATE_CREATED =
   DATE_RECEIVED =
            W_NO = W924
       WELL_NAME = GREENSLOPES-1
       CONTRACTOR =
     CLIENT_OP_CO = PHOENIX OIL AND GAS NL.
```

(Inserted by DNRE - Vic Govt Mines Dept)

PHOTO 1 2601-4M COMBINATION OF FINE SEDIMENT AND ALTERED BASIC VOLCANIC FRAGMENTS. NIC UNC. FIELD WIDTH 1.8MM



PHOTO 2 2606-8M FRAGMENTS OF WELDED BASIC LAVA(GREEN), AND ALTERED "OLIVINE BASALT". NIC UNC. FIELD WIDTH 0.7MM.

TABLE NO.2.

Palynomorph yields, preservation and kerogen constituents in Greenslopes-1. See Appendix No.1 for an explanation of the terms used. Key: VOM = volume of organic matter, HYLOGEN = vitrinitic fraction, MELANOGEN = inertinitic fraction, AMORPHOUS SAPROPEL = fine fluorescent liptinitic sapropel; 1 = poor, 2 = moderate (fair), 3 = good (high), 4 = very good (very high).

DEPTH	SAMPLE	WEIGHT	vom	PRESER	PALYN	CUT-	HYL	MELAN	GRANULAR	AMORPHOUS
(m)	NO.	(g)	(ml)	VATION	YIELD	ICLE	-OGEN	-OGEN	SAPROPEL	SAPROPEL
				(0-4)	(0-4)	(0-4)	(0-4)	(0-4)	(0-4)	(0-4)
1367.0	24	6.2	0.2	3	2	3	3	2	2	2
1373.0	23	10.0	0.1	3	2	2	2	2	2	2
1381.0	22	10.0	0.3	3	3	2	3	2	3	2
1567.0	21	10.0	0.1	1	1	1	2	3	2	1
1816.0	20	5.7	0.3	2	3	3	2	3	3	2
1853.0	19	9.2	0.6	3	3	3	3	3	4	2
1963.0	17	5.8	0.1	2	2	2	1	2	2	2
1977.0	16	5.7	0.3	3	3	4	3	2	3	2
2172.0	14	10.7	0.05	1	1	1	1	1	1	1
2214.0	13	5.2	0.2	2	2	4	3	2	2	2
2265.0	12	5.5	0.4	2	3	4	3	3	3	2
2283.0	11	10	0.05	1	1	1	1	2	1	1
2307.0	1,0	5.7	0.5	3	3	3	3	3	3	2
2365.5	9	8.9	0.05	1	1	0	1	1 -	1	0
2436.0	8	6.6	0.8	2	3	3	3	3	4	2
2443.0	7	5.0	0.3	3	3	3	3	2	4	0
2490.0	6	4.8	0.1	2	2	2	3	2	2	2
2505.0	5	5.0	0.4	2	2	4	3	3	3	2
2536.0	3	5.5	0.4	2	3	3	3	3	4	3
2556.0	2	5.5	2.1	2	2	3	3	2	4	1
2562.0	1	9.9	0.6	1	1	0	2	2	3	0

TABLE NO.3.

Kerogen yields, source rock potential and maturity indicators in Greenslopes-1. See Appendix No.1 for an explanation of the terms used. Key: VOM ml/10g = volume of organic matter (empirically equivalent to %TOC), FLUORESCENT LIPTINITES = VOM X %fluorescent liptinites (microlitres/g); 1 = poor, 2 = moderate (fair), 3 = good (high), 4 = very good (very high).

DEPTH	VOM	%SAPRO	%LIPT	%FLUORESCENT	VOL. FLUOR.	OIL	GAS	SPORE COLOUR	UV LIPTINITE
(m)	ml/10g	PEL	INITE	LIPTINITES	LIPTINITES	INDEX	INDEX		FLUORESCENCE COLOUR
				•	microlitres	(0-4)	(0-4)		
					•				
1367.0	0.32	40	5	2	6	2	2	Yellow	Light yellow
1373.0	0.10	90	2	5	5	2	2	Yellow	Light yellow-Yellow
1381.0	0.30	80	- 10	10	30	2	3	Light orange	Light yellow-Yellow
1567.0	0.10	40	1	1	1	1	1	Light orange	Yellow
1816.0	0.53	60	10	5	26	3.	3	Light orange-Orange	Yellow
1853.0	0.65	80	5	5	33	3	3	Light orange-Orange	Yellow
1963.0	0.17	50	5	1	2	2	2	Light orange	Yellow
1977.0	0.53	70	10	5	26	3	3	Light orange-Orange	Yellow
2172.0	0.05	30	20	20	9	1	1	Light orange-Orange	Yellow
2214.0	0.38	75	5	2	8	3	3	Light orange-Orange	Yellow
2265.0	0.73	55	15	2	15	3	3	Light orange-Orange	Yellow-Gold
2283.0	0.05	15	10	5	3	1	1	Light orange	Yellow
2307.0	0.88	90	5	3	26	3	3	Light orange-Orange	Yellow-Gold
2365.5	0.06	10	1	0	0	0	1	Orange	Dull yellow
2436.0	1.21	80	5	2	24	3	3	Light orange	Yellow
2443.0	0.60	95	2	0	0	2	3	L. orange-L. brown	Dull yellow-Orange
2490.0	0.21	80	2	1	2	2	2	Orange-Light brown	Gold-Dull yellow
2505.0	0.80	75	15	2	16	3	3	Orange	Gold
2536.0	0.73	80	5	5	36	3	3	Orange-Light brown	Gold-Orange
2556.0	3.82	95	1	. 1	38	2	3	Orange-Light brown	Gold-Orange
2562.0	0.61	95	0	0	0	0	1	Orange-Light brown	Orange

Explanation of the source rock parameters recorded using palynological techniques.

INTRODUCTION

A rapid and reliable technique for estimating the abundances of the various kerogen components has been developed that can determine the source rock potential of the sediments.

Samples that are to be examined for palynology and source rock potential are processed using standard techniques that include acid digestion in cold HCl, cold HF and then boiling HCl. Any remaining mineral matter is removed by flotation of the organic material in a Zn2Br solution of SG 2.10. The heavy liquid is removed by washing and the volume of organic material (VOM, see below) recovered is measured in a 10ml conical centrifuge tube after spinning at 3000 rpm for 5 minutes. A measured proportion by volume of the organic residue (kerogen) is dried on a coverslip with PVA and is then mounted on to a microscope slide with a plastic resin (Elvacite or Eukit).

Counts of the various kerogen components are made on the kerogen slide using modified point-counting procedures and the results related back to the weight of rock processed. For example, a kerogen slide may represent the residue from 1/25g (0.04g) of the sediment. It has been measured that the field of view of the 20X objective on a Nikon microscope used by ECL is 1/4000 (1/4E3) of the total area of the kerogen slide. If, on average, there are 4 palynomorphs observed in each field of view when scanning the slide, then the number of palynomorphs estimated per gram of sediment is 4x25x4E3 = 4E5/g (400,000 per gram). This would be regarded as a good yield that could provide a significant contribution to the source rock potential of the sediment.

Each of the measured kerogen components usually show a wide size range that also must be taken into consideration during the counts. In an effort to reduce the subjective element of the estimates, the same microscope objective is used to count the same parameter where this is possible. It is not feasible to directly relate the measured number of particles of a particular kerogen component or their area to an estimated volume or mass for that component. However, an empirical relationship between the abundance estimates and source rock potential has been determined based on the examination of known source rock sequences. To facilitate the display of the abundance data and discussion of these results, a simplified four point scale has been developed based on comparisons with source rocks from a wide variety of locations. For example, palynomorph abundances vary from less than 1000(1E3)/g in poor source rocks to more than 1000000(1E6)/g in very good source rocks.

GLOSSARY

1. PALYNOMORPH YIELD

The estimated number of palynomorphs per gram of sediment expressed in terms of low (=1), moderate (=2), high (=3) and very high (=4) when compared with other source rocks $(1=\langle 1E3/g; 2=1E3-\langle 3E4/g; 3=3E4-1E6/g; 4=\rangle 1E6/g; 20X Objective).$

PRESERVATION

Estimate of the general preservation level of the palynomorphs, recorded in terms of poor (=1), moderate or fair (=2), good (=3) and very good (=4).

3. SPORE-POLLEN AND MICROPLANKTON DIVERSITY

The estimated number of different species in the sample expressed in terms of low (=1), moderate (=2), high (=3) and very high (=4) when compared with other source rocks (1=1-5; 2=6-15; 3=16-25; 4=>25).

4. PERCENT MICROPLANKTON

The estimated proportion of dinoflagellates, acritarchs and other algal cysts expressed as a percentage when compared with the total palynomorph assemblage.

5. CUTICLE ABUNDANCE

The estimated number of cuticle fragments (large and small) per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E2/g; 2=1E2-<3E3/g; 3=3E3-1E5/g; 4=>1E5/g; 10X Objective).

6. PERCENTAGE OF LIPTINITES

The proportion of the unfiltered kerogen (as observed on a kerogen slide) that comprises palynomorphs (spores, pollen and algal cysts) and cuticle fragments is

estimated and expressed as a percentage of the total organic matter. Only the larger, properly identifiable liptinites can be included in this category. Finely degraded liptinites (less than 1 micron) are regarded as part of the sapropel group of macerals except when distinguishable by UV fluorescence.

PERCENTAGE OF FLUORESCENT LIPTINITES

The proportion of the unfiltered kerogen (as observed on a kerogen slide) that comprises fluorescing palynomorphs (spores, pollen and algal cysts) and fluorescing cuticle fragments is estimated and expressed as a percentage of the total organic matter. This includes the finely degraded liptinites that are regarded as Amorphous Sapropel (see below). Those liptinites that are unoxidised and able to autofluoresce are regarded as the most oil-prone fraction of the organic matter.

HYLOGEN ABUNDANCE 8.

The estimated number of partially translucent woody or lignitic fragments per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E3/g; 2=1E3-<3E4/g; 3=3E4-1E6/g; 4=>1E6/g; 20X Objective). Broadly equivalent to vitrinite and previously referred to as fusain or fusinite.

MELANOGEN ABUNDANCE

The estimated number of opaque and angular woody fragments per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E3/g; 2=1E3-<3E4/g; 3=3E4-1E6/g; 4=>1E6/g; 20X Objective). Broadly equivalent to inertinite. As there is usually a gradation between melanogen and hylogen the two components can be difficult to distinguish,

10. GRANULAR SAPROPEL YIELD

The estimated number of clumps of granular sapropel per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E4/g; 2=1E4-<3E6/g; 3=3E6-1E7/g; 4=>1E7/g; 40X Objective). Granular sapropel is regarded as the very fine, fluffy, degraded and oxidised organic matter that shows no fluorescence and is usually a darker colour than the amorphous sapropel. The measurement of "clumps" of sapropel is highly subjective but provides a good order of magnitude estimate that is relatively consistent provided the sample processing is constant and the same objective is used.

11. AMORPHOUS SAPROPEL YIELD

The estimated number of clumps of amorphous sapropel per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E4/g; 2=1E4-<3E6/g; 3=3E6-1E7/g; 4=>1E7/g; 40X Objective). Amorphous sapropel is here regarded as weakly fluorescing, finely degraded liptinitic material. It appears to consist of fragments of palynomorphs eg. algae, and cuticles but may also include adsorbed hydrocarbons onto the organic debris, however, the particles are usually too small to be resolved by the microscope. The measurement of "clumps" of sapropel is highly subjective but provides a good order of magnitude estimate that is relatively consistent provided the sample processing is constant and the same objective is used.

12. PERCENTAGE OF SAPROPEL

The proportion of the unfiltered kerogen (as observed on a kerogen slide) that comprises sapropel, here regarded as very fine, (less than 1 micron) degraded organic matter is estimated and expressed as a percentage of the total organic matter. This includes both Granular and Amorphous Sapropel (see above).

13. SAPROPEL COLOUR

The overall colour of the dispersed organic matter and was the original parameter observed to estimate Thermal Alteration Index (TAI). Generally the most dominant colour is that of the granular sapropel which usually has a darker colour than the amorphous sapropel. Not usually recorded as it reflects both the environment of deposition and the maturation level.

14. SPORE COLOUR

The colour of the spore or pollen exines in transmitted white light. Variables that can affect the colour (apart from maturation) are the species type and exine thickness as well as any exposure to oxidising environments during and after deposition. The darkest colours of the least oxidised exines are taken as being the most significant. The change in colour from yellow to orange is regarded as indicating the onset of oil generation. Gas generation is suggested as becoming significant as the colours channe to brown. Oil deneration appears to cease as the spore colours approach dark brown and when they become black significant gas generation also probably ceases.

15. UV LIPTINITE FLUORESCENCE COLOUR

The dominant colour of the unoxidised liptinites (exines, cuticle and some amorphous sapropel) in reflected UV light observed with a Nikon EF-D UV330-380/400DM/420K filter combination and a 20x UV-Fluor objective. Liptinites that have been oxidised prior to deposition (mostly by recycling) show reduced intensities. The fluorescent colours observed are a complex mixture not comparable to normal colours as seen with white light. The hues range from light blue to white to light yellow with increasing maturity. The colours change to yellow at the beginning of the oil window (as here interpreted) and change to gold, dull yellow, orange and dull orange to dull red at the base of the oil window. The maturation level of sediments near the base of the oil window and deposited in an oxidising environment can be difficult to interpret.

16. VOLUME OF ORGANIC MATTER (VOM)

The measured volume of organic matter (VOM) left after removal of the mineral matter in the sample (see Introduction above) provides a rapid and reliable indication of the organic richness of the samples. From experience it has been found that the values of VOM when expressed as ml/10g approximate the %TOC determinations. Generally, <0.5 ml/10g is regarded as a poor (lean) source rock, 0.5-<2.5 ml/10g is moderate, 2.5-4.5 ml/10g is good (rich) and >4.5 ml/10g is very good (very rich). However, the abundance of unoxidised liptinites in the kerogen must also be considered in assessing the oil source rock potential of the sediments.

17. VOLUME OF FLUORESCENT LIPTINITES

The total amount of potential oil generating liptinites is calculated by multiplying the Volume of Organic Matter (VOM/10g) with the percentage of fluorescent liptinites observed in the sample (see above). The results are expressed as microlitres per gram. On an empiric basis, values greater than 200 are regarded as good source rocks.

18. OIL INDEX

An estimate of the overall abundance of liptinitic material in the kerogen expressed on a scale of 1-4 (being equivalent to poor, moderate, good and very good). This provides a broad indication of the potential of the sample to generate oil or condensate. The OIL INDEX is calculated by averaging the values for Palynomorph Abundance, Cuticle Abundance and Amorphous Sapropel Abundance (see above) and rounding the result to one digit.

19 GAS INDEX

An estimate of the overall abundance of that part of the organic matter in the kerogen that is regarded as being capable of generating gas if a high enough maturation level is reached. The estimate is expressed on a scale of 1-4 (being equivalent to poor, moderate, good and very good). The GAS INDEX is calculated by averaging the values for Palynomorph Abundance, Cuticle Abundance, Amorphous Sapropel Abundance, Granular Sapropel Abundance and Hylogen Abundance (see above) and rounding the result to one digit.

SELECTED REFERENCES

Brooks, J., 1981.

Organic maturation of sedimentary organic matter and petroleum exploration: A review, <u>in</u>
Brooks, J. (Ed.), <u>Organic maturation studies and fossil fuel exploration</u>. Academic Press, London.

- Bujak, J.P., Barss, M.S., & Williams, G.L., 1977.

 Offshore East Canada's organic type and color and hydrocarbon potential. Oil & Gas

 Journ., Part I, pp.198-202, Part II, pp. 96-100.
- Staplin, F.L., et al., 1982.

 How to Assess Maturation and Paleotemperatures. Soc. Econ. Paleont. Mineral. Short Course Number 7. P.O. Box 4756, Tulsa, OK74104.
- Van Gijzel, P., 1981.

 Applications of geomicrophotometry of kerogen, solid hydrocarbons and crude oils to petroleum exploration, <u>in</u> Brooks, J. (Ed.), <u>Organic maturation studies and fossil fuel exploration</u>. Academic Press, London.

APPENDIX 8

MUD AND BIT RECAP

CONTENTS

PAGE NO.

I	WELL	SUMMARY
---	------	---------

- II DISCUSSION BY INTERVAL
- III CONCLUSIONS AND RECOMMENDATIONS
- IV MATERIAL RECAP
- V. DRILLING FLUID RECAP
- VI BIT RECORD
- VII GRAPHS
- VIII DAILY MUD REPORTS

GREENSLOPES NO. 1

1. WELL SUMMARY:

WELL NAME

OPERATOR: PHOENIX OIL & GAS N.L

44 Ord Street

WEST PERTH WA 6005

GREENSLOPES NO. 1

LOCATION: PEP 101 OTWAY BASIN

CONTRACTOR: G.D.S.A.

RIG: RIG NO. 2

TOTAL DEPTH: 2608M

SPUD DATE: 17-12-85

DATE REACHED TOTAL DEPTH: 8-1-86

TOTAL DRILLING DAYS: 23

TOTAL DAYS ON WELL 24

DRILLING FLUID BY INTERVAL MUD COST BY INTERVAL

17 1/2 0 to 133 Ni1
12 1/4 133 to 901 \$12,600.95
8 1/2 901 to 2608 \$28,924.46

TOTAL MUD COST \$41,525.41

ENGINEER BRIAN DOBSON.

DISCUSSION BY INTERVAL:

17 1/2" Interval: 20" Conductor set - 132m

Greenslopes No. 1 was spudded at 11:00am on the 17 December, 1985. This section was drilled with fresh water and native clays built the necessary viscosity to keep the hole clean.

Three 16 jets were used and the pump was run at 735 gpm for cleaning. No wiper trip was performed and the 13 3/8 casing was set at 132 metres and cemented.

12 1/4" Interval: 132-890m

While waiting on cement and nippling up the B.O.P.'s all pits where dumped and cleaned and filled with water. After treating with Soda Ash (Soda Bicarb) 500 bbls of 6% KCL brine was mixed and used to drill out the cement and shoe. A leak off test was performed to the equivalent of 15.0 lbs/gal mud weight.

Drilling of the interval then commenced, CMC HV and polysal were added to lift Viscosity as there were no native clays to assist. The section after the casing consisted of marl with calcitic stringers. Large sections of lost circulation where encountered and approximately 200 bbls of lost circulation material (nut plug mica) were mixed in the mixing tank and circulated whilst drilling. This material was returned directly to the mixing tank bypassing the active system.

At 416m 250 bbls was lost to the hole, and another 250 bbl of Hi-Vis CMC-gel - x c polymer - mica - nut plug was mixed and circulated while drilling two singles and circulated for 2 hours, then drilled ahead with 100% returns. This Hi-Vis material was used for a pill and spotted on bottom to run 9 5/8" casing. A wiper trip was done and nine stands were reamed to bottom.

The mud was weighted up to 9.9 lbs/gal and the hole circulated clean. A wiper trip was run and 50 bbl of 11.5 lb mud was pumped to bottom before pulling out of the hole. The 9 5/8 casing was run with only a slight hangup at 560m. The casing was cemented at 890m.

8 1/2" Interval: 890-2608m

The tanks were dumped and cleaned while waiting on cement and nippling up B.O.P. and flow line. A new batch of 500 bbl KCL brine was mixed and treated with soda ash to drill out the float collar, cement and shoe.

8 1/2" Interval: Cont'd.

Polymers were mixed in the mixing tank and added to the system to keep the weight down to around 9.5 lbs/gal. The mud cleaner was used as a desilter.

The section from the 9 5/8 casing point to T.D. was mainly calcium cemented sand which caused high carbonate-bicarbonate muds. This did not allow the gels in the polymers to work properly. Prehydrated bentonite muds were used to raise viscosity. The alkalinity of the mud was around the 4.0-7.0 range and Ph fluctuated from 11 to 13.

Premixed polymers were continuously added to maintain filtrate around 5 - 7 cc. and prehydrated gels were added to maintain viscosity. The total depth reached was 2608m on 8 January 1986. No drill stem tests were run.

The only problem encountered was increased bit wearing causing under gauge hole and reaming had to be performed on two occasions. Bits were changed at 1327, 1614, 1726, 1997, 2131, 2278, 2541 metres.

A 7 7/8" bit was run on the last bit change in the interval from 2541m to T.D.

CONCLUSION:

The programme for Greenslopes No. 1 was proposed on the basis of a swelling shales problem. Hence the use of a KCL Polymer mud system. Other wells in the area had been drilled 20 years ago and no other data was available.

The drilling fluid used on Greenslopes No. 1 was a KCL - Polymer, and major problems were encountered with lost circulation and the fact that the polymers would not perform in the 8 1/2" section of the hole. Otherwise the hole was generally in good condition and in gauge. Maximum gauge was 10" in the section 1895m - to 2050m.

This well was drilled at a relatively high cost due to the use of KLC polymer mud and also due to the extra lost circulation material used during drilling.

RECOMMENDATIONS:

As swelling shales were not encountered in this well a Lignite - Lignosulphanoe gel mud would have been sufficient and a fraction of the cost. A simple gel mud with 3% KCL and weighted to 9.9 lbs/gal could be used to set the 9 5/8" casing and then dumped.

The 8 1/2" section should be drilled with a basic gel mud using caustic and thinners and the water loss and rheology controlled to the same properties for the KCL/polymer system.

The solids control on this well was inadequate due to the mud cleaner not being fully functional. On further wells shakers - desander - mud cleaner would be sufficient with screens on shakers at 80 - 100 mesh.

STDEWALL SAMPLE

IT S N

ENI

FIELD.

S. N.

GREENSLOPES NO.

DATE_ 10/1/86

wh flu 1-2 grains tyn faint Very very faint 1-2 grains min fluor Very very faint 1-2 grains min fluor FLUORESCENCE br PAGE lgrain NIL NIL NIL H NIL ODOR z \mathbf{z} Z Z z z z 7 Z z z z z z z z z z z Z Z SHOW ı ı ı i ı ŀ ı ı 1 i ı S-F S-F 00 NO တ S တ 申 [] လ S လ လ တ ſΞι ĮΤι တ ĒΉ Œ Œ S S 더 L. MITCHELI CALC. ARG. > \mathbf{z} > Σ > > S V. > S လ Σ > တ တ > Σ Σ တ > S ഗ ı S လ ı လ S ١ ١ S 1 ı VF-F VP-T F-M VF-F GRAIN SIZE VF VPE **€** (0) Н VP. ۲ VP GEOLOGIST_ Ē Н ഥ Н \vdash Д ⊱ EH Siltstone - light dark grey-aren gds to clst Mudstone grades to siltstone aren-dark grey Sandstone - white -light grey/blug, pink grn Claystone - dark grey to siltstone - dark grey - dark grey - v aren occ quartz gr Mudstone - dark grey/blue aren/arg microlam - microlam - black carbonac grades to claystone - black fissile microlam aren grades Sandstone - white/light grey - carb lams Basaltic tuff - blue/grey/green interlam carb Sandstone - white - microlam with coal Mudstone - dark grey - microlam coaly $_{\rm s_1}$ silty Sandstone - light grey/blue-white - Light grey/blue aren Mudstone - dark grey/light grey Siltstone - light grey/blue aren with blue grey shaley mudstone Shale - black/dark brown carb SON, Mudstone - dark grey sl silty Siltstone - dark grey -aren - aren Sandstone - light grey/blue MATERIAL dark grey CHGD 21 Siltstone Siltstone Mudstone Shale Shale REC'D. Lost Lost Lost WELL CORES SHOT 24 15 15 35 REC 20 25 18 30 07 07 35 30 35 25 35 15 35 20 9 ١ 20 25 25 2365.5 2039.5 2536 2556 2562 2513 2436 2443 2505 2490 DEPTH 2265 2283 2307 2172 2214 1373 1567 1816 1853 1905 1963 1977 1367 1381

ABBREV. P & P. T-TITE, P-POOR, F-FAIR, G-GOOD. CALC. & ARG.: N-NON, S-SLIGHTLY, M-MODERATELY, V-VERY, CON.: S-SOFT, F-FIRM, H-HARD, SHOW & ODOR: N-NQ, P-POOR, F-FAIR, G-GOOD. 4. MATERIALS RECAP

420

WELL SUMMARY

NIL.

OPERATOR: Phoenix 6	Dil + GAR WELL: SA	eenslopes.	# 1.
INTERVAL D - 133	HOLE SIZE_	17½" = 13³/8"	
PRODUCT	QUANTITY	COST	

NATIVE Clays

WELL SUMMARY

OPERATOR: Phoenix Oil & GAR WELL: Greenslapes #1

HOLE SIZE 12 4

INTERVAL 133 - 901 CASING SIZE 95/8"

PRODUCT	QUANTITY	COST
Barite	291	\$ 3346.50
CMC EHV	為38	\$ 4431.00 \$2014.00
Lime	3	/8 .00
Caustic Soda	5	र्। ४० . ००
SEL	37	\$721.50
Sed Bicarb	5	\$ 91.55
	250	\$ 4500.00
KCL	1	\$ 330.00
xc Polymer	,	\$ 131.00
Nut Plug		
Mica	16.	\$ 142.40
Soda Ash	1	ź 1€·20
Polysal	20	\$ 780.00
Causti Lig.	1	\$ 29.50
D.D. Compound.	1	\$ 300.00
•		
		\$12,600.95

WELL SUMMARY

OPERATOR:	Phoenix	Oil	e GAS
-----------	---------	-----	-------

WELL: Greenslopes #1.

HOLE SIZE 8 1 "

CASING SIZE Nic

INTERVAL 901 - 2608.

PRODUCT QUANTITY COST KCL 6300 350 920 Baute 80 4664 CMC EHV 88 7644 Polys al 196 648 Coustic Soda 18 109.86 Sod. Brical 6 78.60 13 Line 181.50 11 Soda ASH 1891.50 97 SEL 4620.00 xc Polyner 139.60 * Magco 303 * Sodium Sulfite 480-00 Stafo 32 1248.00

\$ 28, 924. 46 4.

Price Varies of \$619.60

×

This is due to no prices for SOI + Magas 303.

frices not put in Daily dilling reports. For SOI + Magas 303 but tallied up for total price.

STOCK 3 390 39 176 20 91 601 20 25-12-85 Ð 4 Ä 3 10 7 REC USE Ø 8 34-12-85 BAL REC USE BAL 46 390 176 30 191 17 33 39 ह Z 9′ O t 17 4 WELL NAME GROUPS lopes 4 W ۵ B S 9 89 530 22-12-85 23-12-85 42 96/ 30 161 32 60 32 79 8 4 9 0 4 4 \sim S 5 REC USE 280 ż ŧ USE BAL 216 92 80 90 530 44 07 389 8 9 2 32 7 361 3 ٥ ^ 4 9 7 9/ 9 9 = N REC USE BAL REC USE BAL REC OPERATOR PHOGICE AD SAS 400 800 6 21-12-85 216 620 55 47 40 S 9 20 6 2 4 3 9 0 3 29 30 b S 400 20 32 216 46 19-12-85 20-12-85 160 620 42 2 0 6 40 <u>~</u> 70 Q 35 b 4 M h 0 ? n 9 27 3 V 2~ REC USE BAL 316 820 C1 84 3 3 780 क 8 9 ક ક ફ 3 E. B. 29.50 13.10 3300 1.X 8.8 38.0 16.53 39.00 99.0 69.85 18:0 8.8 5/0 300 6.0 18.33 24128 3512. <u>-6</u> 240 START WEEK 780 3 94 216 **★** 200 10 42 DATE 18 4 7 S भेडे खि 25 kg 2316 25kg 50 kg 25 kg (Skg 25kg 40 69 40 Kg SOKa 30 lb 2051 Sosc UNIT 23-12-8c Boile amany BAROID AUSTRALIA PTY LTD Plug Mes (omoring) Sodium Bicach xc felymer Polysof Sodium Bulphite Coarse Banile 11. sp WEEKLY INVENTORY Soda Ash austi Lia 303 75 Pipe Lay REMARKS Abrace: MATERIAL -IMSE Magco Ocestic. SWC

Three

				.NO	CONTRACTOR	er				WELL	ı											⊒∏	
Phoenix	L We GAR	₹ \$				9. o. s.	#	•		•	New	greenslapes # 1)#(TOWNERS WIND BEAMORS (- TD	ı
)ATE:		~	1	86	M	98 - 1	7	8 - 1 -	86	2	98 - 1		. 1-9	98 -	7	111	98	00	8-1-	9	TOTAL	TOTAL FOR WEEK	¥
RODUCT	UNIT BAL.	RECD.	USED	BAL.	RECD.	USED BAL.	RECD.	USED.	BAL.	RECD. (USED	BAL. RE	RECD. US	USED BAL.	RECD.	. USED	BAL.	RECD.	USED	BAL. F	RECD. US	USED BA	BAL
AGCOBAR	294		s/	279		279		15	264		- 1	264		15 249	6		249		20	229	9	65 22	u
1AGCOGEL	301		٢	294		294			294		- 1	294		294			294			294		7	5
PERSENE C.C.	28			39		39			39			39		39			39			39		0	5
CWC	9	`,	0\$	9 (9			0			.0		9						0	-	9	0
ESINEXPOLISAL	91		29	86				/5	15		رج	36		是 湖		8%	130 K		9	0		94	0
AUSTIC SODA	69		′						89		7	99	1	2 64		ત	62			62		u,	9
KCL	910	•		610		019		00/	SIO		-	210	- 1	30 480			08 #7			48	1	4 %/	4
ipe lax	<i>†</i>			4		4			4			4		4			#			¢		٥	3
D. Compound	~	•		3		~			8			~		3			જ			` &		o	~
Mica	% %			56		\$			ζ,			95		36			\$			2%		Ö	28
Jut Plua	130			130		/30			130			9		8			/30			130		0	ત્ર
oda Aku	85			28		88			2,5		• .	\$\$		23			ما			\$2		8	25
-ime	œ	-		8		30			8		7	9		5 /		G	M			m		3	~
2d Bicork	57			27		43			ŁS			£S		57	~		57			E¢.		S S	(2)
C Palymer	=			1		=			=	-	7	a		4		<i>'</i>	9			9		lo M	#
Ha Flo	40			40		3			3			40		12 28		М	23		٧	18		7 7	8
2 Selliole	ş			/ک		/ک			75			,5		۲,			15			/\$		٥	کم
Dace 303	30			20		ઝ			30			30		30			30	_		30		2	30
معالية مع	∞			8		80			%0			%		80			80			20		0 80	0
																							1
																							1
																			,				1
																							ļ
																							1
																							1
															ļ								1
	-									-		-	-	-									

OM TWO

10	JR WE	_	ا		+	+	+		-	0	+	+				-		80				_						-	-	-	
COMMENS PLUE REPACES (C	TOTAL FOR WE	D. USED	21	9	+	$ar{ar{}}$	99	9	00	00	9	0	0	0	4	7	63 6			+	+	-	000		+					-	
AND SOUTH DATE MODES	-		200	\vdash	1-	+		9// 9	7 7	610 690	\dashv	5	26	5 (30	49 8	. 17		-	+	+	1-	-		+	-			-			
	86	D BAL.	294	\dagger	+	24	9	116	69	9	*	~	32	120	28	00	52	7	40	1	? ?	0 0	000	-	1			-	+	-	
	111	. USED	_	:	9	-	∞	_	7		_				7	1			-		1	-	-	-				-	-	-	-
		RECD.	-				75						_				-	-				_	_	-				-		-	-
	d So	BAL.	20%	1	22	39	2016	116	7.	910	4	~	56	/30	9	9	57	3	+	3 :	9	30	80						-	-	-
	31-12-	USED	_	_			94	9	0	8							_		*	-	-		-					-	-		$\frac{1}{2}$
	ñ	RECD.														_			_		-	_	-								_
	80	BAL.	,0,	7	Ē	39	\$74	126	11	670	t	W	29	130	8	a	V	3 1	2	0,7	9/	ဗ္က	80	-				-			_
#1.	1	USEC		2			9										-										-	-			
3	30-13	BECD																												-	
Snewsdopes	7	5 0		2	311	39	24	126	1	670	4	~	36	130	2	3	- 3	7	စ	40	4	30	80								
Jeer		1	OSE C				4			C					C	7			7		t	4									
WELL (-61-66	8 20	שנה.							200					4	8	\	8 !	/2	\$											
	0	3	BAL.	200	3	39	200	77.	7	\$	7	~	3 13	5 4	9 4	0	•	Q	3	0	ક્ષ	32	9								
	1	1	USEŲ.	ğ	8		8/	2	5	1						L	3		-			-									
	9	1 —	RECD.		-																71.7										
V		\top		309	341	39	44	146	2,00	372	3	~ t	2 4		2	0	5/	0	4	0	20	32	80								
V D		L-	USED		8	\vdash	1	\top	+	4 5						4															
CONTRACTOR	6		RECD.																												
CONT		82	BAL.	304	166	24	200	3 =	10,	2 0	0/2	4 0	2 6	9	Q :	*	4/	0	t	0	ક	33	\$ 00 \$								
	- 1	12-8	USED				6,	+-	12	-8					十	M (M	W					,								-
	4	26~	RECD.	360	200		9	2					1	3	8		-						8	3							
0	3		BAL. H	601			2,5	7 7	9 6	44	270	t t	y :	+		4	14-	m	4	0	2	23	4 6	S	1						
<i>ç</i>	3		UNIT				1				+	+	-	+							200		-		+						
•	MOGINT BUT STAR		>		-				Sal.				20		5	-	1	٩	Ļ	d FRO	1	253	2 ,	2		+		."			
TOR			сĮ	BAR	GEL	u	COUSTILL LIC	CWC	Polysal.	C SODA	1407	Ripe lax	D.D. Compound	3	nut Plug	Soda Ash	Je.	Sod Hicarlo	xc Polymer	Th.	Cod & Bolo: F.		wagee ses								
OPERATOR		DATE:	PRODUCT	MAGCOBAR	MAGCOGEL	200200	Sing		recome	CAUST	7	70,	0.0	Mica	<u>)</u>	So	Lime	B	Y V	7	7	\ \ \ \ \ \							-		-

•		VEEK	BAL.																										_		7	_
画	NON PORT	TOTAL FOR WEEK	SED																													
Mageobar	TOWERS WITH SERVICES (TOTA	RECD. USED				+			-																						
Σ			BAL. B		-								1																			
		86.	60	+				-	`								+															
		-)-5	-	+	-			\perp	+		-					-			-							-		-				
		_	BE	-			+	+		+	+						+								-			1	-	-		
L		301	PAI C		-	-	-	-	-	-					-	-	-	-				-			-	-	1	-			-	-
15/2/		i	=		_			_		-					-			-								-	-	+	-	-	-	-
•		74		2		-					-				-		-					-	\perp	-	-			+	-	-	-	-
	_' #	2	0 3		-										-		_								-	-	-	+	-	-		-
	200		1	G 250																	_	-	_	_			_	-	_	_		
	Greenslopes	,	٥ ا	RECD.																								_		_		
	27.			BAL.																												
	J	, ,	9	USED																												
	WELL	:	1 -	RECD.																												
				BAL.																												
	G	. 1	ğ	USED.																									1			
	7		1 -	RECD.	1									-	+							+		+	+			-		-		1
		- -		BAL. RE									_		-					-		-	+	1		+						-
		!	98-	USED BA				•							-					-		-		1	-	-	+	+	-			
	стов		-1-0/	RECD. US											-					-				-		-		+	Phoenix			-
	CONTRACTOR	-	-		·									-						+	+	+		+	+	+			of.			-
	0		86	D BAL.										+						-		1		+	+		-	1	_	,	-	-
			4-1-). USED				•						$\frac{1}{1}$				<u> </u>			-		+	_	4	\dashv	_	bogo	Chorage Character			
	(1		RECD.	•									1	-						-					\dashv		348 +	325	_	+	-
	;	~ ~		BAL.	229	294	£ 8	0	٥	62	7,40	9	1	<u>م</u>	12	130	8	~	(24	9	81	18	8	8		_	oged.	· 2	<u>'</u>		_
	•	3 31		L N					~				-	7	_					\downarrow	+	-	-				4	Som	Jan	-		_
	æ (Phoenic Ou & GAS			~			7 9	20, 00	ODA C	KCL		2	MOOM	. 4	P/40	الم			ques.	hymer	ُاو ِ	shifte.	505 0	Tiber			Bin	telt for mig was charged	-		
;	PERATOR		JATE:	жорист	MAGCOBAR	MAGCOGEL	FERSENE L'O) XENINGX	SAUSTIC SODA	1	0 2.1	100	9	Mic	V., V	0	- 2004	1	drond has	K C. K	got.	Social	Mage	Nue Fiber		-	*	4			

5. DRILLING FLUID RECAP

PE905782

This is an enclosure indicator page. The enclosure PE905782 is enclosed within the container PE902356 at this location in this document.

The enclosure PE905782 has the following characteristics:

ITEM_BARCODE = PE905782
CONTAINER_BARCODE = PE902356

NAME = Drilling Data Sheet for Greenslopes-1

BASIN = OTWAY
PERMIT = PEP/101
TYPE = WELL
SUBTYPE = DIAGRAM

DESCRIPTION = Drilling Data Table (from appendix

8--Complete Mud and Bit Recap--WCR vol.

2) for Greenslopes-1

REMARKS =

 $DATE_CREATED = 8/01/86$

DATE_RECEIVED =

 $W_NO = W924$

WELL_NAME = GREENSLOPES-1

CONTRACTOR = MAGCOBAR DRILLING FLUID SERVICES

CLIENT_OP_CO = PHOENIX OIL AND GAS NL.

(Inserted by DNRE - Vic Govt Mines Dept)

6. BIT AND HYDRAULICS RECORD

BIT & HYDRAULIC RECORD

Contra	ctor G.D.S		Rig No	o. 1	ocation	PEP	101					\	Well Gree Engineer S.	nsloje	의 #1
Operat	or Phoen	vix_	Oil e			ank			ic			'	Engineer 8.	Dabi	on
ump N	ame Size	Li	ner Size/St	roke O	DRILL C D. x I.D.	ollars	` Pipe D	rill	Tool Join Type	t v	Vt/Ft	Bbl	s/Stks		The state of the s
ρz	8 5546	5	5 × 8				42			16	5.6	•06	6		
Date	Run No.	Size	Make	Type	Jet Size	Depth Out	Metres Drilled.	Hours Run	Un Bit	R.P.M.	Pump Pressure	Vert Dev.	Stks/min	Ann Vel Ft./min	Condition T-B-G
	1	172	REED	132	3×16	133	/33	7	5/15	12/140	900	0	100		
	2	124	KEED	311 J	3 × 13	901	768	295	715	140	1100	0	95		
	3	85	REED	F6182	3×9	1327	426	342				2.	110	105	4·5·I
	4	8 2	REED	HP 13 I	3×9	1614	287	29	i [©] /15	120	1800	i °	110	105	5.2.3/16
	5	85	KEED	3216	3×9	1726	112	16	19/15	100	2050	/*	100	105	5.6.I
	6	8 1/2	REED	FPSIA	3×9	1997	271	452	19/25	100	1950	立。	118	102	2.4.4
	7	85		FP 51A			120	13	15	100	2050	7.	118	105	2.3.3/8 REAme
	8	82	1	5215		2278	147	172		100		2	11.8	107	6.7. ½
<u> </u>	9	85		FP51		2541	263	61	20	100	3100	37	110	105	
	10	7 1/8	REED	HP 57	3×9	2608	67	221/2	20	1000	2100	5°	110	105	1.2.10
	-				<u> </u>					-	<u> </u>				
,	<u> </u>		ļ									-			
<u> </u>															
				_		-									
F					ļ										
				<u> </u>	-										
<u> </u>											<u> </u>				
		-					-								
-					<u> </u>		1								
			 	-	 	<u> </u>	 					-			
 			-		<u> </u>				<u> </u>		 				
				+	 	 					1			+	
			 	+					 						
				 					1		 				
							†			†			T		
F			 				<u> </u>								
	 									 		1			
F															
REM	ARKS Du.	e 4	0 b	# £	9.	2 0	Jaco	Je.	728"	^	un	to	7.0	B	Save
•	ming														

7. GRAPHS

8. DAILY MUD REPORTS

DRILLING MUD REPORT NO. /

And the second		DKESSE			P. O. BO		7005		か //	DATE _	17-	/2 ,	85	DEPTH	114
N/I	VCCUBV	R GROUP		HOUS	STON, TE	EXAS /	/265	4	-				PRESEN	TACTIVITY	,
		lustrie	s, In	c.				ſ		SPUD D	ATE /	7-12-85	-		
OPERATOR	Οι .	. 0.4	. 0	•			•	CONT	RACTOR	_	<i>D.</i> S		F	RIG NO.	
REPORTATO	r nden	1x ou	<u>ل</u> ر	IAS				REPO	RT FOR				s	ECT, TWNS	IP., RANG
<u> </u>	ne Ja	<u>cleman</u> .	Ja	rcle	Lam	ber	HOCK			eth		HOREAREA	STATE /	PROVINCE	·
WELL NAME		Slopes	#	١.		PEF	> 10	1		, rAR. OF		IOREARD		<u>د</u>	
DRILLING				CASING			ND NOF		BBL)			CIRCUL	ATION DA	ATA .	
BIT SIZE	TYPE	JET SIZE	SURF	ACE		н	OLE	P	ITS	PUMP SI	ZĘ	X IN.		NULAR VEL	
172 DRILL PIPE	TYPE	3415	SET @	RMEDU	FT.	TOTA	L CIRC	ULATIN	IG VOL.	PUMP MA	KE, MO	DEL ASSU	MED CIRC	DC	
SIZE			SET @		FT.		DRAGE			.		FFF.		TOMS .	
DRILL PIPE SIZE	TYPE	LENGTH	SET @	RMEDIA	FT.			WEIGH	11	BBL/STI		311/	UP (MIN	
DRILL COLLA	R SIZE	LENGTH	PRODU	CTION O	R LINER FT.	MUD	TYPE			BBL/MII	N	GAL/N	IT HO	AL CIRC. E (MIN)	
		l	pere	MUD	PROPER	TIES						TY SPECIFIC			
SAMPLE FR	OM	2.1		<u> </u>	□F.L.	□ PIT	□F.L.	□ріт	WEIGH	ř -	VIS	COSITY	FILTR	ATE	
TIME SAMPI				1. 1. 1		•			8.3			45	س ا	ı 19	
					Н		Ц		BY AUT	HORITY	/: 52 a	PERATOR S WRITTE	<u> </u>	DRILLING CONTRA	CIOR
DEPTH (ft)		1	•		2		5	- :				PERATOR 5 REPRESI			
	(PP9) [] (I	b/cu.ft) 🗌 S	p. G		0		0		· PR	ODUCTS	3		TREAT	TMENT	
FUNNEL VI	SCOSITY (s	ec./qt.) API @)	٩F		,									
PLASTIC VI	SCOSITY of	• @		. °F	N		. A1	*-		·					
YIELD POIN	IT (Ib/100ft	²)			A		A				Νì				
GEL STREN	GTH (lb/10	Oft ²) 10 sec./:	10 min.		T	/	7	<u>*</u>			. 10 (<u> </u>			
FILTRATE A	API (_{cm³} /30	min.)	14)		1		<u> </u>				:		
API HTHP F	ILTRATE (_{cm³} /30 min.)	@	٩F	U		V		<u> </u>			1. 1.			
CAKE THIC	KNESS (32r	nd in. API/HT	HP)		e /	<u> </u>	٩	/ .							
SOLIDS CONT	ENT (% BY \	Vol.) CALC	D. RE	TORT		. :		· · ·							
LIQUID CON	TENT (% E	BY Vol.) OIL/	WATER	N - 12	C/	/	C	/ -	 		V				
SAND CONT					L	1 4 4 4 4 4 4	1			-					
METHYLEN	E BLUE CA	PACITY B	b/bbi equ m³/cm³ n	iv. nud	A		a		REMAF			***			
PH □ S	TRIP	☐ METER @)	- °F.	1 7	en .	۲	· · ·	Spr	ro. t	ble	11.00 f	am.		
ALKALINIT	Y MUD (Pm	n)			\$,,	5	•,	11 -	jging		۵			
ALKALINIT	Y FILTRAT	ΓΕ (P _f /M _f)			/	/ 		<u>/</u>	'	77	7 -,	7.			
ALTERNAT	E ALKALIN	NITY FILTRA	TE (P, /F) ₂)	/	<u>/</u>			1						
CHLORIDE	(mg/L)								1						
TOTAL HAP	RDNESS AS	CALCIUM (r	ng/L)				<u></u>		1						
							<u> </u>								
									4						
				,	Ļ,		L.,		 						
•				/ /	/ /				ll			EQUIPM	IENT	···	
PRODUCT INVENTOR'	· / ,	/ /	/ /							нс	URS		HOURS		HOURS
STARTING	. [Centrifu	ıge		Desilter	_	H. S. Cent.	
INVENTOR	+		\nearrow			+	+	 	Degass	ar		Shaker	1 HR	Super	
RECEIVED		$-\sqrt{4}$				1-	-	ļ	Deyass	-				Cyclone	
USED LAST 24 HR.							<u> </u>		Desand			Other	ر ادر المعالمات	TIVE COST	<u> </u>
CLOSING INVENTOR	· /								DAILY	COST				ATIVE COST	
COST LAST 24 HR.										NIC	-		/	uic.	
MAGCOBA		R I				НО	ME ADI	DRESS					PH	ONE	
MOBILE UN	NIT					WA	REHOU	SE LO	ATION				PH	ONE	
												FORTH ON	TUE DEV	EDSE SIDE	

OPERATOR

Magcobar	(DRESSER)
	14

P. O. BOX 6504

	DRILLING MUD REPOR	 . 2	?.	
M	DATE 18- 12-		DEPTH	120 m
Y	SPUD DATE /7-12-	PRESE	NT ACTIV	UTY LIng
NTRACTO			RIG NO.	9

	ron, TEXA	S //265		DATE	<u> </u>	Time the second	PRESENT	CTIVITY	
MAGCOBAR GROUP				SBILL	_{ATF} /7-	12-85		RICCIN	9
Dresser Industries, Inc.			CONTRACTO				RIG	NO. 2	
thoenix Oil : 4AS	_		REPORT F	ر د د کر د), 		SEC	T, TWNSHP	, RANG
REPORT FOR Jackman. J. Lamb	ext		\	1	<u>uler</u>	RE AREA S	TATE / PR	OVINCE	
WELL NAME AND NO.	FIELD	OR BLOCK	. 11	I Y, PAR. UF		KEARDA 3	VI		
DRILLING ASSEMBLY CASING			_UME (BBL)			CIRCULA	TION DAT		
		HOLE	PITS	PUMP SI				LAR VEL. (
BIT SIZE TYPE JET SIZE SURFACE 172 Reed 3 4 6 SET @ 9 M DRILL PIPE TYPE LENGTH INTERMEDIA	FT.	TAL CIRC	ULATING VO	L. PUMP MA		- ACCLINA		LATION	900
SIZE SET @ /30 M	FT.	Z STORAGE	20	BBL/SŢI		STK		OMS	400
DRILL PIPE TYPE LENGTH INTERMEDIA	FT.	WIL	NIC	• •	7	/2		L CIRC.	
DRILL COLLARSIZE LENGTH PRODUCTION OR	FT.	UD TYPE	O NATIO			GAL/MI	N TIME	(MIN)	
	ROPERTIE	S		MUD PF		SPECIFICA		_	
SAMPLE FROM	OF.L OF		□PIT WEIG	HT	VISC	OSITY	FILTRAT	E-	
TIME SAMPLE TAKEN	. 17.**	- 18	94.	7.5		45-60	-		
			BY A	UTHORITY	Y: OPE	RATOR S WRITTEN		ILLING CONTRACT	OR
DEPTH (ft)	H	<i></i>	<u> </u>	PRODUCTS		AIOR S REPRESEN	TREATM		
WEIGHT (ppg) (lb/cu.ft) Sp. G	2		ζ	PRODUCT					
FUNNEL VISCOSITY (sec./qt.) API @ %	8		? 						
PLASTIC VISCOSITY cP @					+				
YIELD POINT (Ib/100ft²)	N R/		N H						
GEL STRENGTH (Ib/100ft²) 10 sec./10 min.	T		7			<u>بر</u>			
FILTRATE API (cm³/30 min.)									
API HTHP FILTRATE (cm 700 minn)	<u>'</u>		/				:		
SOLIDS CONTENT (% BY Vol.) CALCD. RETORT	e		2	/	itii -				
LIQUID CONTENT (% BY Vol.) OIL/WATER	/		7			.*			
SAND CONTENT (% BY Vol.)	•				,	No. of the second			
METHYLENE BLUE CAPACITY Cm³/cm³ mud			REN	ARKS:		N	· .		_1
PH STRIP METER® F				oulln.	ત્રં ચ	head	S) (2	10 m	45
ALKALINITY MUD (Pm)		<u> </u>		men	7 P	sint	at	139 m	۲.
ALKALINITY FILTRATE (P _f /M _f)	/		/		•				
ALTERNATE ALKALINITY FILTRATE (P1/P2)	/		/						
CHLORIDE (mg/L)									
TOTAL HARDNESS AS CALCIUM (mg/L)									
	<u> </u>								
			, , , -			EQUIPM	ENT		
///////////////////////////////////	/ /	/ /	/ 			EQUIPM			11011
PRODUCT / / / /		/_/_		Н	IOURS		HOURS		HOU
STARTING INVENTORY			Cer	ntrifuge	_	Desilter		H. S. Cent.	
RECEIVED			De	egasser	_	Shaker	12 HR	Super Cyclone	-
			De	sander		Other			1
24 HR.			I II	ILY COST		L	CUMULA	TIVE COST	
CLOSING INVENTORY								<i>1</i> (_	
COST LAST 24 HR.		I HOME A	DDRESS	NIL				W5/(7)	.1
MAGCOBAR ENGINEER			40	ld Ca	ost	·	PHO	310/1	<u>x</u>
BILE UNIT		WAREH	OUSE LOCĂTI	UN			1, 1,0	-	

BILE UNIT

OPERATOR

	DRILLING MUD REPORT NO	o. 3		
A	DATE 19- 12- 19			
		PRESE	NT ACTIV	/ITY
	SPUD DATE 17-12-85		VOC	·

MAGCOBAR GROUP			* <u>*</u>				_	i	ACTIVITY	,	
Dresser Industries, Inc.					SPUD DA	TE /7-1	2-85		voc_	<u> </u>	
OPERATOR Phoenix Oil : GAS			L	RACTOR	.D. S	<u> </u>	RIG NO.				
REPORT FOR J. Lamb	est		REPOR	RT FOR	. Fou	oler		SECT, TWNSHP, RANG			
WELL NAME AND NO. Green Slopes #1	FIEL	OR BLOCK	NO.	CTY	,PAR.ORG	OFFSHORI	E AREA	STATE /	ROVINCE		
DRILLING ASSEMBLY CASING		MUD VOL		BBL)			CIRCULA	ATION DATA			
BIT SIZE TYPE JET SIZE SURFACE	FT.	HOLE	P	ITS	PUMP SIZE X IN.			ANN DP_	ULAR VEL	• •	
DRILL PIPE TYPE LENGTH INTERMEDI.				IG VOL.	PUMP MAKE, MODEL ASSUMED			AFD CIRC	D CIRCULATION		
DRILL PIPE TYPE LENGTH INTERMEDIA	ATE II	STORAGE MLL	1	IT IC	BBL/STK	<i>ب</i>	STK/I	UP (I	UP (MIN)		
DRILL COLLAR SIZE LENGTH PRODUCTION O	R LINER N	NUD TYPE	20		BBL/MIN		GAL/M	TUM	AL CIRC. E (MIN)		
	PROPERTI					OPERTY S					
SAMPLE FROM	Of.L O	PIT DF.L	□ріт	WEIGH	Γ.	VISCOS	ITY	FILTRA	TE		
TIME SAMPLE TAKEN	1814	/9	*		- ' : ' '	-	,				
		7. 1		BY AUT	HORITY:		OR S WRITTEN		DRILLING CONTRA	CTOR	
DEPTH (ft)					• • • • • • • • • • • • • • • • • • • •	OPERATO	OR S' REPRESEN	NTATIVE C			
WEIGHT [] (ppg) [] (lb/cu.ft) [] Sp. G	W	u	ر	PR	ODUCTS			TREAT	MENT		
FUNNEL VISCOSITY (sec./qt.) API @ %F	0)		· · · · ·					,	
PLASTIC VISCOSITY cP @	C	- C			· · · ·						
YIELD POINT (Ib/100ft²)	1		,		\$1						
GEL STRENGTH (lb/100ft²) 10 sec./10 min.		·· ·· /							·		
FILTRATE API (cm ³ /30 min.)	1 17 Te										
API HTHP FILTRATE (cm³/30 min.) @ °F			/	· i.			·				
CAKE THICKNESS (32nd in. API/HTHP)		/			- :						
SOLIDS CONTENT (% BY Vol.) CALCD. RETORT			**************************************	71.			· · ·				
LIQUID CONTENT (% BY Vol.) OIL/WATER			<u>/</u>								
SAND CONTENT (% BY Vol.)				REMAF		<u> </u>					
METHYLENE BLUE CAPACITY Cm3/cm3 mud						133/8"	0.0	• •			
PH STRIP METER®		P. 41 2 3 4 7	2.15	15	an	(2)					
ALKALINITY MUD (Pm)	 			Co	ment						
ALKALINITY FILTRATE (Pf/Mf)	 /	/	,			• •	_ •	. C			
ALTERNATE ALKALINITY FILTRATE (P, /P2)		/		171	NMU	lus '	enp	iy 3	in an	w,	
CHLORIDE (mg/L)				R	am '	17"	Piae	40	ill an	·~	
TOTAL HARDNESS AS CALCIUM (mg/L)					J V	` ~			·		
	·										
	<u> </u>										
	<u> </u>	,		ļ							
ı /////	/ /						EQUIPMI	ENT		,	
PRODUCT / / / /		/ /			ног	JRS		HOURS		HOURS	
STARTING INVENTORY				Centrifu	ıge	De	esilter		H. S. Cent.		
RECEIVED				Degass	er	Si	naker	•	Super Cyclone		
USED LAST 24 HR.				Desand	ler	0	ther				
CLOSING INVENTORY				DAILY	COST			CUMULA	TIVE COST		
COST LAST 24 HR.				NIC NIC				·			
MAGCOBAR ENGINEER Dobson		HOME ADI	RESS (Sald	Cc	ont		PHC	ONE316 7	19	
OBILE UNIT		WAREHOU						PHO			

OPERATOR

P. O. BOX 6504

	DRILLING MUD REPORT NO	o. 4	٤	
D	DATE 20- 12- 19	85	DEPTH	130 n
		PRESE	NT ACTI	VITY
	SPUD DATE		WOO	<u> </u>
TRACTO			RIG NO.	

	HOUS	TON, TEX	AS 77265		DA	TE <u>00 -</u>	12- 1		DEPTH		
MAGCOBAR GROUP				\ <u>^1</u>				1	T ACTIVITY	,	
Dresser Industrie	s, Inc.				SPL	JD DATE	17-12-85		WOC		
OPERATOR PLOCHE OU	, GAS			CONTRA	CTORC.	0.5		RIG NO.			
REPORT FOR			<u></u>	REPORT	FUK.				ECT, TWNS	IP, RANGE	
WELL NAME AND NO.	1 Lav	FIELD	OR BLOCK			R.OROFFS	SHORE AREA		PROVINCE		
GRONSlopes	# I		MUD VOL				CIBCIII	ATION DA			
DRILLING ASSEMBLY BIT SIZE TYPE JET SIZE	CASING SURFACE		HDLE	DIVIE (BBC		AP SIZE	X IN.		NULAR VEL	. (FT/MIN)	
	SET @ 9 m		S S	II ATING	VOL BUN	D MOKE M	ODEL ASSU	DP_	DC	/	
SIZE	SET @ 136	NET.	<i>p</i>	<u>5 </u>			EFF.	% PRE	SSURE (PSI)		
DRILL PIPE TYPE LENGTH	INTERMEDIA SET @	FT.	STORAGE	WEIGHT	BBL	_/STK	→ STK/	UP (TOMS		
DRIM COLLAR SIZE LENGTH	PRODUCTION OF SET @	FT.	MUD	up.	BBI	-/MIN	GAL/N	itie/	AL CIRC. E (MIN)		
		ROPERTI					RTY SPECIFIC				
SAMPLE FROM	e e e e	OF.L 0	PIT DF.L.	□PIT W	EIGHT	VI	SCOSITY	FILTR	ATE		
TIME SAMPLE TAKEN		17	20	3 i.e.	9.0-	9.3	35-45	_ <	10 cc.	•	
	ាមិស្តី ភូសាស្ត្		· :,	. B/	Y AUTHO	RITY: 5	OPERATOR S WRITTEN	,	DRILLING CONTRA	CTOR	
DEPTH (ft)		M	M			<u> </u>	OPERATOR 5 REPRESE	NTATIVE L			
WEIGHT [] (ppg) [] (lb/cu.ft) [] Sr	o. G		<u> </u>		PRODU			TREAT	TMENT		
FUNNEL VISCOSITY (sec./qt.) API @		*	X		*	· · · · · · · · · · · · · · · · · · ·	10.400				
PLASTIC VISCOSITY cP @	° F	1/	10	.		· · · · · · · · · · · · · · · · · · ·					
YIELD POINT (lb/100ft²) GEL STRENGTH (lb/100ft²) 10 sec./1	0 min	K	K				<u> </u>				
					<u>-</u>		† · · · · · · · ·				
API HTHP FILTRATE (cm ² /30 min.)											
CAKE THICKNESS (32nd in. API/HTH		کیا	W	/	Agrico.	×, 1		27 1			
SOLIDS CONTENT (% BY Vol.) CALC		0	0			·		- - : [
LIQUID CONTENT (% BY Vol.) OIL/V		C	C		- 142 23	St. Inc	4 4 4 4	2.3			
SAND CONTENT (% BY Vol.)	Constant of the Constant	20 Aug. 14.	e i e i	2005							
METHYLENE BLUE CAPACITY C	n/bbl equiv. m³ /cm³ mud	i i i i i i i i i i i i i i i i i i i		R	EMARKS:		/	. 0.	5	4 44.	
PH STRIP METER @		Andreas and an	-		Trem	ped:	Tank		U Fra	th 172	
ALKALINITY MUD (Pm)					Mix	Ker	Palym	er i	mud,		
ALKALINITY FILTRATE (P _f /M _f)		/	/		Tak	1 9	wface	50	0 661	•	
ALTERNATE ALKALINITY FILTRA	TE (P, /P2)	/	/	<u> </u>	, —,		a fra		O O O O O O O O O O	•	
CHLORIDE (mg/L)											
TOTAL HARDNESS AS CALCIUM (m	ig/L)										
		•									
			l								
/ * / * * * * * * * * * * * * * * * * *	g/0./57	2/3	√ /	/ _			EQUIPM	ENT			
PRODUCT PRODUCT PRODUCT	0 /5 1/2	2 5 W	/ / _			HOURS		HOURS		HOURS	
STARTING THE STARTING INVENTORY 780 84 8	4 80 21	.		C	entrifuge		Desilter		FI. S. Cent.		
RECEIVED					Degasser		Shaker		Super Cyclone		
USED LAST 160 3 3	1 10 5	. , _			Desander		Other				
CLOSING A	9 -	1		II	AILY COS	T	_111	CUMULA	TIVE COST	L	
INVENTORY 520 81 5					\$4,301.93 \$4,301. <u>93</u>						
MAGCOBAR ENGINEER	300 530 19	5 234	HOME ADD	DRESS	^ ^	7] PH	ONE OIL	7.0	
MOBILE UNIT	Pn		WAREHOU	<u> </u>	old (io os	<i>T</i>		ONE 3/67	18	
			INVESTIGATION OF					1	-		

OPERATOR

P. O. BOX 6504 HOUSTON, TEXAS 77265

	7
11	
H	J
	-]

DATE 21- 12- 1985 DEPTH 133 ME

MAGCOBAR GROUP Pressure Te SPUD DATE 17-12-85 Dresser Industries, Inc. RIG NO. CONTRACTOR = GAS D. S REPORT FOR SECT, TWNSHP, RANGE CTY, PAR. OROFFSHORE AREA STATE / PROVINCE FIELD OR BLOCK NO. WELL NAME AND NO PEP 101 Nean Sla MUD VOLUME (BBL) **CIRCULATION DATA** DRILLING ASSEMBLY CASING g IN. ANNULAR VEL. (FT/MI) BIT SIZE SURFACE M JET SIZE PITS PUMP SIZE 500 DP_ DC. TOTAL CIRCULATING VOL INTERMEDIATE LENGTH WEIGHT DRILL PIPE SIZE STK/MIN INTERMEDIATE IN STORAGE LENGTH FT TOTAL CIRC. PRODUCTION OR LINER MUD DRILL COLLAR SIZE LENGTH BBL/MIN GAL/MIN FT. MUD PROPERTY SPECIFICATIONS MUD PROPERTIES FILTRATE WEIGHT DF.L DPIT □F.L MPIT SAMPLE FROM < 10 cc 35-42 9.0-9.2 16 00 1600 TIME SAMPLE TAKEN 204 DRILLING CONTRACTOR BY AUTHORITY: OPERATOR S WRITTEN
OPERATOR S REPRESENTATIVE OPERATOR S WRITTEN DEPTH (ft) **TREATMENT PRODUCTS** WEIGHT [] (ppg) [] (lb/cu.ft) [] Sp. G M 1 FUNNEL VISCOSITY (sec./qt.) API @ ٩F D ٥E PLASTIC VISCOSITY cP @ YIELD POINT (lb/100ft2) 1 T GEL STRENGTH (lb/100ft2) 10 sec./10 min. J FILTRATE API (cm3/30 min.) 1 : _U7. API HTHP FILTRATE (cm3/30 min.) @ 14/ K CAKE THICKNESS (32nd in. API/HTHP) SOLIDS CONTENT (% BY VOL) CALCD. RETORT 4 LIQUID CONTENT (% BY Vol.) OIL/WATER SAND CONTENT (% BY Vol.) REMARKS: METHYLENE BLUE CAPACITY | tb/bbi equiv. R ☐ STRIP ☐ METER @ 5... ١ ALKALINITY MUD (Pm) N ALKALINITY FILTRATE (Pf/Mf) ALTERNATE ALKALINITY FILTRATE (P, /P,) CHLORIDE (mg/L) TOTAL HARDNESS AS CALCIUM (mg/L) 7.5% **EQUIPMENT** PRODUCT HOURS HOURS **HOURS** NIL H. S. Cent. STARTING Centrifuge NIL Desilter NIL 40440 Super Cyclone Degasser Shaker NIL DN RECEIVED 40×40 USED LAST 24 HR. 8417 NIL Desander Other CUMULATIVE COST DAILY COS CLOSING INVENTORY \$4301.934 NIL COST LAST 24 HR. PHON316778 MAGCOBAR EN HOME ADDRESS INDER PHONE WAREHOUSE LOCATION MOBILE UNIT

OPERATOR

DRILLING MUD REPORT NO	o. 6		
DATE 22-12-19	85	DEPTH_	460
	DATE 28-12- 19	PRESE	DATE

MAGCOBAR GROUP		1	┻ / ١		17.00	DA		_	
Dresser Industries, Inc.				SPUD DATE	17-12-85	1 DY2/	ILLINA	3	
OPERATOR OL . OLA		CONTI	RACTOR	5		RI	IG NO.		
thoenix Oil > GAS		DEBO		.D.S.		SE	CT, TWNSH	P. RANG	
G Jackwan J. Lamb	a-+	REPOR	RT FOR	Fowler	_		2014111111		
WELL NAME AND NO.	FIELDOR	BLOCK NO.	CTY.	PAR.OROFF	SHORE AREA				
Greenslopes # 1.	PEP	101				<u>v</u>	16		
DRILLING ASSEMBLY CASING	Me	JD VOLUME (E	BBL)		ATION DAT				
BIT SIZE TYPE JET SIZE SURFACE 124 REED 3 13 SET @ 9	1	70 S		PUMP SIZE	6 × 8 × 3	ANNI 2 DP_4	ANNULAR VEL. (FT/MIN		
DOUL DOC TYPE LENGTH INTERMEDIA	TE TOTAL	CIRCULATING 70		PUMP MAKE, N P2 8	ODEL OCCUP	ACD CLOC	ULATION SURE (PSI)		
DRILL PIPE TYPE LENGTH INTERMEDIA		RAGE WEIGH		BBL/STK	STK/	MIN BOTT	TOMS 4		
SIZE 4 2 HW SET @		YPE 0	1	12.5	52	0			
62 + 82 140 SET @ -	FT.	KCL PO	ymed	BBL/MIN	GAL/N	IIN L'INIE	(IVIIN)	<u>, </u>	
8H9 MUDE	ROPERTIES		WEIGHT		RTY SPECIFIC	FILTRA	TE		
SAMPLE FROM		□F.L. □PIT					10 cc.		
TIME SAMPLE TAKEN	18.00	8600		, ~	35-42				
DATE	29 14	22 54	BY AUT	HORITY: 5	OPERATOR S WRITTEN	NIATIVE DO	RILLING CONTRACT	TOR	
DEPTH (ft)	360 M	400	PR	ODUCTS	.,	TREAT			
WEIGHT 🛣 (ppg) 🗌 (lb/cu.ft) 🗎 Sp. G	9.0	9.0	 		1/1/2 -				
FUNNEL VISCOSITY (sec./qt.) API @ F	≠35	40	CM	C HU	111.4	cosik	-		
PLASTIC VISCOSITY ¢P @	0	9	Pole	sal	Wall	y Le	es.		
YIELD POINT (Ib/100ft²)	B	2/4	S 11 -	-101	40 ×	40			
GEL STRENGTH (lb/100ft ²) 10 sec./10 min.	u	4/7	340		40 4	40 x	20		
FILTRATE API (cm ³ /30 min.)		1/	 	· · · · · · · · · · · · · · · · · · ·	40 7	70 7			
API HTHP FILTRATE (_{cm³} /30 min.) @ F	>/	3/32		<u> </u>	-	ilonografi al			
CAKE THICKNESS (32nd in. API/HTHP)	D/	3/32			 	- 1			
SOLIDS CONTENT (% BY Vol.) CALCD. ARETORT	1	7							
LIQUID CONTENT (% BY Vol.) OIL/WATER	N/	7// -					<u></u>		
SAND CONTENT (% BY Vol.)	5	.5%	11	RKS: K. 1.		· · · · <u> </u>			
METHYLENE BLUE CAPACITY Ib/bbl equiv.	A 11 a	26	71 -		H them		28T. Cl	a	
PH STRIP METER® %	P 11.0	9.5	Due	l:out:	Float C	oller s	Shoe	Om	
ALKALINITY MUD (Pm)	0		₽ Dw	iel 3m	. leal	coff	Tost	-	
ALKALINITY FILTRATE (Pf/Mf)	4/	7	P. 6	ે. ૦. ત	chong	e Be	ι Α.		
ALTERNATE ALKALINITY FILTRATE (P, /P2)	<u>m/</u>	7	∦	λο ·			••••		
CHLORIDE (mg/L)	e	\$4000	∥ ∪ ∗	elleng	ahea	ol.			
TOTAL HARDNESS AS CALCIUM (mg/L)	R	280	Ma	tor e	switch	on 1	Mud C	leone	
KCL 7.	7.5%	6.5	no.	good.		•			
Hydrostatic Head PSi	463	649 ps;	100	s Cercu	lation	nure	d 100	1651	
	ļ	L.,,	HIL	115 + 1	•	NUT F	Plug.		
PRODUCT PROPERTY AND A PROPERTY AND	/ / /	/ /			EQUIPM	IENT	, ,		
PRODUCT TO THE PRODUC				HOURS	ll	HOURS		HOUR	
STARTING TO 211			Centrifu	uge N/C	Anus den Besilter		H. S. Cent.	NIL	
RECEIVED			Degass	er On	Shaker	40440	11	NIL	
USED LAST			Desand		He	18 HR	_		
CI OSING		 	DAILY		<u> </u>		TIVE COST	·	
INVENTORY 35 300		+ +	∦	\$ 990.6	00	\$5	291.9	3.	
COST LAST 795 195		ME ADDRESS	<u>" '</u>			PHO	ON\$167		
MAGCOBAR ENGINEER			<u>gold</u>	Coast			3/0 7	1 &	
MOBILE UNIT	lwa	REHOUSE LO	CALION						

PRINTED IN U.S.A.

MAGCOBAR GROUP

P. O. BOX 6504 HOUSTON, TEXAS 77265

DRILLING MUD REPORT NO. 895 19.85 DEPTH PRESENT ACTIVE EM 7-12-85 字号2

uresse	r m	uus	CI IE	5 3 , I	110.							SPUU	DAIL					
OPERATOR P	h - 0	•	000	0 .	ÇΑ	•				CONTE	SACTOR					R	IG NO. 2	
REPORT FOR	noe									REPOF	TFOR		,			SI	ECT, TWNSH	IP., RANGE
WELL NAME A	ND NO.	•			-aw	rve	FIEL		BLOCK			PAR.C	POROFFSI	HORE AREA	STAT			
1 4	ens	•	es	#			1		2 10			CIRCULATION DATA						
DRILLING AS			CLZE		CAS		MUD VOL					DUMAD CLZE . Y IN				ANNULAR VEL. (FT/MIN		
122 6	20ed	JET S	× 13	SET (т.	4:	50	59	00	6 . 3		· 3	DP_//ODC			
DRILL PIPE TY	/PE	LEN	GTH	IN.	TERME	DIATE		TOTAL		SO	G VOL.	PUMPN	AAKE,MO	DEL ASSU			ULATION SURE (PSI)	
C170	YPE /	LEN	GTH		TERME	DIATE			RAGE	WEIGH		BBL/S	TK	STK / 9		BOTT UP (N	IOMS ~ 5	33
DRILL COLLAR		LEN	GTH	PROI	OUCTIO	N OR L	INER	MUDT	VPF	1-	ymer					TOTA	CIRC.	0
				SET	1		OPERT		,	100	-1			GAL/ TY SPECIFI	MILIA			
SAMPLE FROM						TE]F.L)	∮ PIT	□F.L.	⊠ PIT	WEIGHT		VIS	COSITY	FIL	TRA	TE	
TIME SAMPLE							180		06		9.0	19.	. 2	38 - 4	5	4	10 cc	
								دورم		20	BY AUTI	HORIT	ΓY: ≱ ο	PERATOR S WRITTE	. N		RILLING CONTRAC	TOR
DEPTH (ft)							770	m	95	5 8	75		. 🗆 o	PERATOR 5 REPRES	SENTATIVE			
WEIGHT 🥦 (p	pg) 🔲	(lb/cu.f	t) 🗌 S	p. G			9.3	!		1+	PRO	ODUC	TS		TR	EAT	MENT	
FUNNEL VISC	OSITY (sec./qt	.) API (<u> </u>		٩F	38			4		KCL		حان	سط	29		
PLASTIC VISC	OSITY	P @				°F	&			2	×c f	•	mer	Visc	<u> </u>	44		·····
YIELD POINT			10 /	110 min		·	<u>6</u>	4.		8	eu		,		<u> </u>	<u> </u>		
										8	NW		huq	hes	is Circ			
API HTHP FIL				<u> </u>		oF	<u> 11</u>			-		uce		usT	piu			
CAKE THICKN						·	3 /	3.2	2	32		u Sa		Wate		015		
SOLIDS CONTEN					RETOR	т	9	3.4		7	Ca		•	P. 14				
LIQUID CONT							/	91		191	Soc		, ے	Have	بابد	31.	Calc	un
SAND CONTE	NT (% B	Y Vol.)					15	7.	• .	5%	Soc		Asu	Hard	nes	(ч	
METHYLENE	BLUE C	APACI	тv 8¦	b/bbl e cm³ /cm	quiv. 13 mud			_	•	_	REMAR	KS: 🚄	416 m	. Los	8 0	in	c. apr	~ √
PH □STF	RIP	□ M	ETER	@	·	٩F	9.0	,	9.	.5	250	66		nced	100	ble	i Hi	vis
ALKALINITY	MUD (P	m)						_	-		me	a -	صلا	+ Plug	منم	e.	Circ	pill
ALKALINITY	FILTRA	TE (Pf	/M _f)						7	,	1		onil				les t	circ
ALTERNATE	ALKALI	NITY	FILTRA	ATE (P	/P ₂)		4						-	orhead	•	60 7	10 retu	•
CHLORIDE (m	ig/L)						40.			000	Mus	ed	1006	•	<i>SEI</i>	40	* post	for
TOTAL HARD	NESS A						<u>28</u>			70	CAS	ma	. Ho	ه حميه	3	i ~	ream	40
	11	/<	<u> </u>	7 <u>0</u>	10-	1	122			97			. 4n	m 9	St	an	ds of	4
	Mya	ردس	text	<u>c</u> /	1eac	1	~~	,	, ,		pott	DM	• •					
l		. /	\$/,,		8/,	5/6	y /×	× ~	3/	W/# 7				EQUIP	MENT			
PRODUCT	1	ט <i>ין</i> ו	3	7/4. O	34	3/2	7 /3 ³	9 2	,	15 to		F	IOURS		нои	RS		HOURS
INVENTORY	/*	/ 00	70	7 '0	7 2 4	/ =	/ 0 .	7	100	/ড	Ħ				ļ			
STARTING INVENTORY	120	5	55	5	46	4-2	81	206	10	400	Centrifu	ge	NIL	Desilter	24	-	H. S. Cent.	NIC
RECEIVED											Degasse	er	DN	Shaker	2	+	Super Cyclone	NIC
USED LAST 24 HR.	90	1	11	1	10	16	1	10	1	11	Desand	er	24	Other	NI			NIC
CLOSING INVENTORY	530	4	44	4	30	26	80	196	9	389	DAILY	COST		 -	CUM	ULA	TIVE COST	
COST LAST	1620		583	18:31		142.4		1			\$3.	393	.71.		\$	86	585.6	4.
MAGCOBAR E	GINE	ER	<u></u>					1	·	L	300	1	000	+	<u> </u>	PHO	DNE 3/67	7 8
MOBILE UNIT	Beno	<u> </u>	<u> </u>	פפפי	200			WAF	REHOL	SE LOC	1	<u> </u>	-00	<u> </u>		РНО		<i>L</i> .4
PRINTED IN U	U.S.A.		TH	IIS REI	PORT I	GOV	ERNE	D BY T	HE TE	RMS AN	D CONDI	TIONS	S AS SET	FORTH ON	THE	REVE	RSE SIDE	

OPERATOR

	DRILLING MUD REPORT NO	s. 8	
	DATE 24 - 12 - 19	85	DEPTH
T		PRESE	NT ACTIVITY
	SPUD DATE 17-12-85	h	ا.م.د

			HOUSIG	JN, IEX	AS //2	co:			A I E <u> </u>		، ا ـــــــــــــــــــــــــــــــــــ	JEF111		
MAGCOBAR		_		Ÿ			-	r			l l	T ACTIVITY	,	
Dresser Indi	ustrie	s, Inc						s	PUD DATE	17-12-8:		٠٥,८		
OPERATOR	Q'Q	2 C.	٧<			ľ	CONTI	RACTOR	2.9			RIG NO.		
REPORT FOR			Ţ 				REPOR	RT FOR	Foul	<i>-</i>	9	SECT, TWNS	IP., RANG	
WELL NAME AND NO.	Jack	man		FIEL	D OR BI			CTY,	AR. OROFF	SHORE AREA				
greensla	pès	# 1		╨	PE	PIC	51		_			اد		
DRILLING ASSEMBLY			ASING			VOLU					ATION DA			
BIT SIZE TYPE J	IET SIZE	SURFA		т.	HOL る	1	_	ITS PI	UMP SIZE	X IN.	DP	NULAR VEL	· · /	
DRILL PIPE TYPE L	ENGTH	INTER	MEDIATE	T			LATIN		JMP MAKE, N	MODEL ASSI	JMED CIR	CULATION SSURE (PSI)		
DRILL PIPE TYPE L	ENGTH		MEDIATE	וו ב	N STOR	AGE	WEIGH		BL/STK	STK		TOMS (MIN)		
DRIK COLLAR SIZE L	ENGTH	SET @ PRODUCT		INER N	AUD TY	PE	<u> </u>				ТОТ	CIRC.		
		SET @		т.		CL	Poly		BC/MIN	GAL/	IVIIIN I Z	E (MIN)		
			MUD PR	OPERTI			······································			RTY SPECIFI	CATIONS	ATE		
SAMPLE FROM		41.00	[]F.L []	PIT C	JFL [□РІТ	WEIGHT			FILIR			
TIME SAMPLE TAKEN				1500		<u>0600</u>		9.0-	9.2	40-45	~	10cc.		
		ŕ	***	33 K	0	24	٠٠٠	BY AUTH	•	OPERATOR S WRITTE		DRILLING CONTRA	CTOR	
DEPTH (ft)	4		,	R		D				OPERATOR S REPRES				
WEIGHT [] (ppg) [] (lb/	/cu.ft) 🔲 Sp	o. G		u		U		PRO	DUCTS		TREAT	TMENT		
FUNNEL VISCOSITY (sec	c./qt.) API @	7 - 7 -	٩F	N		m		Sel		for a	ormo	3 /cem	mt jo	
PLASTIC VISCOSITY CP	@		°F	· · · · · · ·		Р					···			
YIELD POINT (Ib/100ft ²))	***		<u>e</u>					·		· 			
GEL STRENGTH (Ib/100f	ft ²) 10 sec./1	0 min.		<u>A/</u>		+/						A. W		
FILTRATE API (cm3/30 n	min.)			<u>S</u> .					· · · · · · · · · · · · · · · · · · ·		•			
API HTHP FILTRATE (cm	_{n³/30 min.)} (<u> </u>	. °F	1		C			roj s oj	, , , , , ,				
CAKE THICKNESS (32nd	in. API/HTH	HP)	1 1	N	1 41 1	1 /·	1 2				· !			
SOLIDS CONTENT (% BY Vo	A.) CALCI	D. RETO	DRT	5		<u>e</u>								
LIQUID CONTENT (% BY	/ Vol.) OIL/V	WATER 1				a /			1 5+ 2 3× £					
SAND CONTENT (% BY V			194 4	• '		N	177	. Is .						
METHYLENE BLUE CAP	ACITY Ib	/bbl equiv. m³ /cm³ mu	d ·					REMARK	:S:			u		
PH STRIP] METER @		ᅊ			T		WT up mud to 9.9 1/25/661						
ALKALINITY MUD (Pm)						A		Circ	hale	run	سضعد	. the		
ALKALINITY FILTRATE	(P _f /M _f)			/		N/		Mexic	o e	wr up	, ice	o 661	high	
ALTERNATE ALKALINI	TY FILTRA	TE (P, /P,)		/		k/		Vis p	Ù . n	uma t	batt	en fe	Man	
CHLORIDE (mg/L)						۶.		3-		x	lum	oùi.		
TOTAL HARDNESS AS C	ALCIUM (m	ig/L)						72 E	ध अ	u. 5 (1	ا العلما ا	۳. د محد	f. 44.	
								8.00 H	nun	95/2"	iasu	4 80	Garton	
								Circ	cosi	ing. Ob	ment.	_		
								mie 3	60 661	Gel e	420 fo	r Cem	طعو جمہ	
/19	14/4	-/ or /	X 89	3 6	,/	7	7			EQUIP	MENT			
PRODUCT INVENTORY			A CONTRACTOR	ن جن کون	Y	/ /	/		HOURS		HOURS		HOURS	
STARTING INVENTORY 389 4	14 40	20 80	- 1	216			٠	Centrifuge	NIL	Desilter	20	H. S. Cent.		
RECEIVED	7	20 00	7					Degasser	VIC	Shaker	24	Super Cyclone		
USED LAST	2 /	3 1	1	25				Desander		Other	NIL		1	
CLOSING	. 20	17 70	7 3	191		$\neg \dagger$		DAILY CO				TIVE COST		
COSTIAST	06 29.56		0 19.31					\$39	715.3	<i>1</i> .	\$12	,600.9	5	
MAGCOBAR ENGINEER			<u> </u>	·•··=	HOME	ADDI	RES5-	-0-4	Coor	Į.	PHO	ONE 3167	78	
MOBILE UNIT		××			WARE	HOUS	ELOO	ATION	رونون	<u> </u>		ONE		

OPERATOR

	DRILLING MUD REPORT NO.	9	
(A)	DATE 25 - 12 - 19 S	DEPTH	901 m
	PI	RESENT ACT	
	SPUD DATE 17-12-85	W-0	. C

MAGCOBAR GROUP	.,,			· /	TI			1	TACTIVITY	
Dresser Industrie	s, Inc.					SPUD DAT	E 17-12-85	<u>u</u>	1.0.C	
OPERATOR Phoenix C	le Ca	C		1	TRACTOR	(F), S.	F	iig No. 2	
REPORT FOR	4 1 4 4 4 4	-		REP	ORT FOR	3an	, Fowl		ECT.,TWNS	IP., RANGE
WELL NAME AND NO.	il i	FIEL	Der BLO		ст	, PAR. ORG	F SHORE AREA		PROVINCE	
Green Slopes	CASING			VOLUME			CIRCUI	ATION DA		
DRILLING ASSEMBLY BIT SIZE TYPE DET SIZE	SURFACE	1, 0	HOLE		PITS	PUMP SIZE			IULAR VEL	. (FT/MJN)
	SET @ 9 M	F40'	200	DECLUAT	ING VOL	PLIMP MAKE	E, MODEL ASSIL	DP_	DC	/
DRILL PIPE TYPE CENGTH	INTERMEDIA					PUMP MAKE		% PRE	SSURE (PSI)	-
DRILL PIPE TYPE LENGTH	INTERMEDIA	TE 1/8	N STORA		اللاس	BBL/STK	SIK	UP (TOMS MIN	
DRILL OOLLAR SIZE LENGTH	PRODUCTION OF SET @	FT.	MUD TYP		Olyma	BBL/MIN	GAL/	l Tuefi	AL CIRC. E (MIN)	
	· · · · · · · · · · · · · · · · · · ·	PROPERT			J		PERTY SPECIFIC	-		
SAMPLE FROM		OF.L C	Зріт □ғ	F.L DPIT	WEIGH	Т	VISCOSITY	FILTRA	ATE	
TIME SAMPLE TAKEN] w si	71470		*		
		M	-	Д	E		OPERATOR S WRITTE		DRILLING CONTRA	TOR
DEPTH (ft)	المراجو الجارات	1		0	_		OPERATOR 5 REPRES			
WEIGHT [] (ppg) [] (lb/cu.ft) [] Si	o. G	×		0	PR	ODUCTS		TREAT	MENI	
FUNNEL VISCOSITY (sec./qt.) API	٩F	1		1	-	12.				
PLASTIC VISCOSITY cP @	<u>~ °F</u>	N		N	#			· •		
YIELD POINT (lb/100ft²)	IO min	5		5	-	<u> </u>		<u> </u>		
GEL STRENGTH (lb/100ft²) 10 sec./		K		é	╫					
API HTHP FILTRATE (cm3/30 min.)	@ °F	C	-	D = 30		र राज्यकः वृक्षे		775		
CAKE THICKNESS (32nd in. API/HT		. /		<u>L</u> /	-		32.			
SOLIDS CONTENT (% BY Vol.) CALC				7		1.50	1 11			
LIQUID CONTENT (% BY Vol.) OIL/		17/		m						
SAND CONTENT (% BY Vol.)		0		(
	o/bbl equiv.			R.	REMA			1.6		• ,
PH STRIP METER @		w			1070	al mu	o legs a	bon, a	ment	100
ALKALINITY MUD (Pm)		A			Cle		obbls.	. • .	1	
ALKALINITY FILTRATE (P _f /M _f)		τ/					Tonles	Muped	, 20-0 A	alski
ALTERNATE ALKALINITY FILTRA	TE (P, /P2)	E/	<u> </u>	_/	Dow	u wat	ter add Values, n	ed C	hemico	يىق
CHLORIDE (mg/L)		R							em 6	a much
TOTAL HARDNESS AS CALCIUM (n	ng/L)				_ ₩.	٥. حـ	cement Ehrvist mo			
3		<u> </u>	<u>' </u>		- M		20. · · · · · ·			
		-			∥ ՝՝՝	my ,	ermet mo	.		
	S/ U/	 					50.110			
PRODUCT INVENTORY	Can Series	′ /		/ /		HOU	EQUIP	HOURS		HOURS
ETARTING	1 - 1		$\overline{}$		#					
INVENTORY 530 42 196	79 9				Centrif	uge D	Desilter	NIL	H. S. Cent. Super	Nu
RECEIVED					Degass	ser N	Shaker	NIC	Cyclone	Nic
USED LAST 140 10 20	2 2				Desand	~ .	Other	مر، د		pric
CLOSING 390 32 476	77 7				DAILY				TIVE COST	- -
COST LAST 2526 530 780	ا 33 لير				\$	3935. L Coo	00	, ,	,535.9	
MAGCOBAR ENGINEER	Dobso	^	HOME	ADDRESS	Sala	l Coo	nt .	PHO	ONE 3167	78
MOBILE UNIT			WAREH	HOUSE LO				PHO	ONE	

OPERATOR

P. O. BOX 6504 HOUSTON, TEXAS 77265

H

DRILLING MUD REPORT NO. 10 .19_85 DEPTH PRESENT ACTIVITY

MAGCOBAR GROUP	_				\ .	◢ /			. 7	00.	
Dresser Industries	s, Inc.						D DATE 21	7-12-85	DM		
OPERATOR Phoenix Oil	e GA	ર				RACTOR C	·DS			G NO	
REPORT FOR	m]	T FOR	Fow	العد		CT, TWNSH	P, RAN
WELL NAME AND NO.	41		FIELD	BLOCK	NO.	CTY, PA	R.OROFFSH	ORE AREA	STATE / PI	C	
DRILLING ASSEMBLY	CASI	NG	M	IUD VOL	.UME (B	BL)		CIRCUL	ATION DAT		
BIT SIZE TYPE JET SIZE	SURFACE SET @ 9			OLE 20	1 _	TS PUN	IP SIZE	× 8 IN.	DP/		113
DRILL PIRE TYPE , LENGTH	INTERMED	<u> </u>		L CIRC		G VOL. PUM	P MAKE, MOI	DEL ASSU	MED CIRC PRES	ULATION SURE (PSI)	200
DRILL PIPE TYPE / LENGTH	INTERMED		1 IN ST	ORAGE	WEIGH	T BBL	./sтк 0 6	STK/	MIN BOTT	OMS 2	7
DRILL COLLAR SIZE LENGTH	PRODUCTION	OR LIN	IER MUD	TYPE	CL	Polyne BB	K-82	GAL/N	TOTA	AL CIRC	5
04	SET @ ML	FT ID PRO	PERTIES					TY SPECIFIC			
SAMPLE FROM		□F	L SPIT	□F.L	Д РІТ	WEIGHT	VIS	COSITY	FILTRA	TE	
TIME SAMPLE TAKEN	·		1400	DE	30	9.0.	9.5 4	40-45		10 ec	
	25	5 74	144 L			BY AUTHO	RITY: P	PERATOR S WRITTER	N D	RILLING CONTRAC	TOR
DEPTH (ft)	<u> </u>		901		38	PRODU	T	·	TREATI		
WEIGHT 🔀 (ppg) 🗌 (lb/cu.ft) 🗎 Sp			<u>B</u>	9.				38			
FUNNEL VISCOSITY (sec./qt.) API @		F	_R	4			00 Rpm	24	Tage Sale		
PLASTIC VISCOSITY CP @ YIELD POINT (Ib/100ft²)	•	F	N.	10			50 Kpm				
GEL STRENGTH (Ib/100ft²) 10 sec./1	0 min.		<u> 5</u>	2/	6	Li	me	Treat	Carbo	ates.	
FILTRATE API (cm3/30 min.)			1 - Ag	9	cc	Soda As	H	Treat	Comen	A Con	<u>k </u>
API HTHP FILTRATE (cm3/30 min.)	a '	Ŧ	Α	. 4	L e	Sod	Bic	Treat	Coman	+ an	<u>k</u>
CAKE THICKNESS (32nd in. API/HTH	HP)	·	3	2/	35	Cunc	2	Hi Vis	-		
SOLIDS CONTENT (% BY Vol.) CALCE	D. RETOR		D)	Poli	sal	upty	- 64	•	
LIQUID CONTENT (% BY Vol.) OIL/V	VATER			91	<u>/ </u>	صعن	tre	PH		·	
SAND CONTENT (% BY Vol.)	/bbl ogulu		· · · · · · · · · · · · · · · · · · ·		R	REMARKS			1.0		
METHYLENE BLUE CAPACITY Cr			0	-		Trea	luna c	out b	ad c	ement	
		*	<u> </u>)-0 	Com	2	م شعبة	and h		مناه
ALKALINITY MUD (Pm)			<u> </u>	_	1.75	u set o	- 1	ی د بهدیر	ne be		_
ALKALINITY FILTRATE (Pf/Mf)	TE (D /D)		8/		4	1000		mped Us Po	1000	is ac	
ALTERNATE ALKALINITY FILTRA	1E (F ₁ /F ₂)				,000	1000	21 H	ULE TO	Mones	WEL.	
CHLORIDE (mg/L) TOTAL HARDNESS AS CALCIUM (m	ng/L)	+			60	1					
1406 %)				5.5%						
						1					
9 :			. 0	بـــــــــــــــــــــــــــــــــــــ		 					
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6 / nor / 10	70.5	ð/ /	/ /				EQUIP	MENT	11	
PRODUCT OF DOWN	1/1/15	40	7	_/_	/-		HOURS		HOURS		HOU
STARTING S2 176 77	17 7	3				Centrifuge	NIL	Desilter	20	H. S. Cent.	<u> </u>
RECEIVED					<u> </u>	Degasser	NIL	Shaker	20	Super Cyclone	
USED LAST /3 15 2	3 3	3				Desander	20	Other	Nu	<u> </u>	<u> </u>
CLOSING 19 161 75	14 4	0				DAILY CO		_		TIVE COST	
COST LAST 682 585 72		54.93				314	168.4	3	718	004.38	5
MAGCOBAR ENGINEER	Dobsa		 H	OME AD	DRESS	Gold	Coos	J.	PHO	DNE 316	178
MOBILE UNIT	7 Grange	`	- w	AREHO	JSE LO				PHO	ONE	

MOBILE UNIT

PRINTED IN U.S.A.

DRILLING MUD REPORT

OPERATOR

	7
11	

DRILLING MUD REPORT NO. //

		STON, TEX		()		ате <u>27-</u>	12- 1	985 0	EPTH /	240	
MAGCOBAR GROUP		,, 0,,, , =,,	, 10 , , 200	14				PRESEN	TACTIVITY	,	
Dresser Industries	, inc.				SF	UD DATE	17-12-85	- DRI	LLING		
OPERATOR PROPRIE QU	ع کر د کر	۱.۶		İ	RACTOR (a. D. 9	S	F	ECT,TWNS	ID DANC	
REPORT FOR Jack	kman			1	RT FORB	Fou	ملعح			Tr., KANG	
well name and no.	#1	FIEL	SE Broo	K NO.	CTY, P	AR.OROFF	SHORE AREA	STATE / F	PROVINCE		
DRILLING ASSEMBLY	CASING		MUD V	LUME (BBL)		CIRCUI	ATION DA	TA		
BITOZE TXPE JET SIZE	SURFACE		HOLE			MPSIZE	6 × 8 IN.	ANN	ULAR VEL	. (FT/MIN	
DRILL PIPE TYPE . LENGTH	INTERMEDIA	FT.	250 OTAL CIR		NG VOL. PU	MP MAKE, M	ODEL ASSI	JMED CIRC	CULATION SSURE (PSI)	1750	
SIZE 42 16.6 782 s	ET @ /33	FT.	STORAG	E WEIGH		PZ.			TOMS		
SIZE 42 HW\$ 350 S	ET @ 900	FT.	MIL	الم	ال او	066		2 BOT	MIN) 4	14	
<i>f</i> 1	PRODUCTION OF ET @	R LINER M	14CL	Poly.	BE BE	7.26	3 <i>0</i>	MIN TOT	AL CIRC. E (MIN)	·o	
		PROPERTI		"			RTY SPECIFI				
SAMPLE FROM		□F.L 🗵	PIT DF.L	_ ⊠ PIT	WEIGHT	V	ISCOSITY	FILTRA	ATE		
TIME SAMPLE TAKEN		16-00	0	6 30	9.0-	9.5	35- 45	- 4	. 1000		
		26 th		7 75	11	ł .	OPERATOR S WRITTE		DRILLING CONTRA	TOR.	
DEPTH (%)(M)		1090		40			OPERATOR S REPRE	SENTATIVE D			
WEIGHT (ppg) (lb/cu.ft) Sp.	G	9.4		.4	PROD	OUCTS		TREAT	MENT		
FUNNEL VISCOSITY (sec./qt.) API @	٩F	36		3.5	K	CL		KCL			
PLASTIC VISCOSITY CP @ 26, Lao	. 22 %	10		9	2. Cm	ı C		dis			
YIELD POINT (Ib/100ft2) /6. 300	- 4	6		4	1	isal	Fluid	d Loss			
GEL STRENGTH (lb/100ft²) 10 sec./10	_	2/	4 1	/2	cai	oxic	Prehy	. Se	<u>l</u>		
FILTRATE API (cm3/30 min.)		9	(7.0	GE	۷	Vis	<u>: </u>			
API HTHP FILTRATE (cm3/30 min.) @	٩F	_			Soo	la Asu	Cer	vent.			
CAKE THICKNESS (32nd in. API/HTHP	")	2/3	2 2	132							
SOLIDS CONTENT (% BY Vol.) CALCD.	RETORT	9		0	.67	6 1681	Kine 1	261.			
LIQUID CONTENT (% BY Vol.) OIL/WA	ATER	91/	90			. /					
SAND CONTENT (% BY Vol.)		TR		25%							
METHYLENE BLUE CAPACITY Ib/t	bl equiv.			_	REMARK	_	~ • • •	(. 110		
PH STRIP METER @	olt.	10.5	- ,	11.0	1 .	ation	Celete	` `	rent) c	Binno '	
ALKALINITY MUD (Pm)		2.1	5 (4.0	get numb to gel. Added						
ALKALINITY FILTRATE (Pf/Mf)		-/	.5	/	Soda	Heu, !	Break,	preha	drated	gel	
ALTERNATE ALKALINITY FILTRATI	E (P ₁ /P ₂)	-/		†	eme	, , F	blysal.	, + H	20. +		
CHLORIDE (mg/L)		450	00 3	5000	Prea	Johate	d poli	mes.	P. H ~	eacini	
TOTAL HARDNESS AS CALCIUM (mg/	′L)	160	, 3	6 0			from	1N Z	to 13.	0	
KCL 7)	6	70 5	.5%	17	# C	alcuim.	(Lime)		•	
Mexicolatic	Head	1758	2	<u>000</u>	June	,0 C	eccum.		•		
		<u> </u>		,					······································		
/ , / 0 / 3		2021	/ /				EQUIP	MENT			
PRODUCT INVENTORY	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	/ /			HOURS		HOURS		HOURS	
STADTING .	1 0 1 .		$\neg \uparrow \neg$		Centrifuge	1.00	Desilter	24	H. S. Cent.	_	
RECEIVED 390 19 161 7	15 191 4			+	Degasser	NIL	Shaker	24	Super Cycione	-	
USED LAST		1		1	Desander	T	Other		I	_	
24 HR. 20 /9 /3		7		+	DAILY CO	ST 24		CUMULA	TIVE COST	<u> </u>	
	13 141 0	.6			\$30	065.0	0	ادد	,069.3	8.	
MAGCOBAR FINGINER	·	,5	HOME A	DDRES\$	ــــــــــــــــــــــــــــــــــــــ			PHO	ONE 316 7	20	
MOBILE UNIT			WAREHO		youa	Coos	<u> </u>		516 /	18	
			1					1			

OPERATOR

	DRILLING MUD REPORT NO	o. /2	2	
	DATE 28-12- 19		DEPTH	1370
F		PRESE	NT ACTI	VITY
	SPUD DATE 17-12-85	DR	ILLIM	9.
NTRACTOR	•		RIG NO.	

M	AGCOB	AR GF	ROUP	٠						1								TIVITY	
Dress				s, l	nc.							SPU	D DATE /	7-12.	-85	DK		7.9.	
OPERATOR										CONT	RACTOR	C	D S				RIGN	ري.٥٠	
REPORT FO	Phoe	NIX	0.	ع بد	948					REPOF	T FOR		<u> </u>				SECT.	TWNSH	P., RANG
	۲ . ۲		ema	<u> </u>			lierer D	OB I			15	PAR	OROFFS	HOREA	REA S	TATE /	PRO\	/INCE	
WELL NAME	AND NO		pes	#	ş		FIELD	E	2 10	31							ارزح		
DRILLING	7		V ·		CASI	NG		MU	ID VOL	UME (B	BL)			CIF	RCULA	TION D			
BIT SAZE	TXPE ,	JET S		l .	RFACE				LE		TS	PUMI	P SIZE	₹× 8	IN.	AN	NUL?	R VEL.	/48
DRILL PIPE	Keed TYPE	3,		SET @	FERME		т. то	TAL	CIRCL	JLATIN	G VOL.	PUMP	MAKE, MO	DEL	ASSUME	D CIE	CIII (ATION RE (PSI)	
SIZE45	16.6.	111	2	SET @		m=	∓.	STO	76		· ·	BBL/	PZ 8		STK/M	IN BO	TTOM	S	
DRILL PIRE	TYPE W	LENG	•	SET @	901) F	т.	N	14	NI			066		100) UP	(MIN)		25
DRILL COLL	AR SIZE	LENG	38	PROE	OUCTION		NER MU	ד סנ	KC6	Pol	ymer	BBL/	6		277		ME (M		40
13HH -		71 -		<u> </u>			OPERTIE	s			7		PROPER	TY SPE	CIFICA				
SAMPLE FR	OM						F.L. SP	ıT	□F.L	⊠ PIT	WEIGH	т		COSIT		FILTE	RATE		
TIME SAMP		J .			-	+	16.00	-+		60	9.0	-9	.5	35 -	45	. 4	_ (0)c c	
THE SAME		<u> </u>				_	27.4		28		BY AUT	THOR	ITY: 15#	PERATOR S	WRITTEN		DRILLIN	IG CONTRAC	TOR
DEPTH (ft)			.,.				1290	,	/37					PERATOR 5	REPRESEN				
WEIGHT \$	(ppg)	(lb/cu.f		p. G	:				9.		PF	RODU	CTS			TREA	TMEN	NT .	
FUNNEL VI			1			¥	31		3'	7				2.					
PLASTIC VI			.,,			¥ -	4			0(24)	•	•		45,6				
YIELD POIN						<u> </u>	2		. 4	4 (14					14.				
GEL STREN			10 sec./:	10 min			1/2		2 /	311									
FILTRATE				-			9		8										
API HTHP F				@		oF			_	. ,				-	7.0				
CAKE THIC					٠.		2/	•	2/	32				12.77	5000				
SOLIDS CONT					RETOR	_	9		9	4.15.		,							
LIQUID COI							91/		91	/									
SAND CON			V		.,		TK		TR			. 47 -		1		*.			
METHYLEN				b/bbl e	quiv.					2	REMA	RKS:		A	بار	1			
	TRIP		ETER @			%F	11-,5		11	. 0	P. 6	0.C	०५ ७	hon	ge	ممط			
ALKALINIT							4.0		7	.0	Du	ila	ه ه	head	مل.				
ALKALINIT			-/M+)				5/.	_		/			,						
ALTERNAT				ATE (P	. /P.)		/		7	4	1								
CHLORIDE					17. 27		3000		20		1								
		S CAL	CILIM (r	ma/i)		\dashv	360			50	1								
TOTAL HA	KUNESS A	13 CAL	KCL				5 %			90	1								
	4.00	~ Lo	L:	Head	/		2080			56	1								
	11900	مه ادر	<u>, </u>	, ego	·						1								
		04/	¥.0/	<u>/</u>	w/c	1.	J	7		7				E	QUIPME	ENT			
PRODUCT INVENTOR	Y XQ	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10		, C.	1 3		/_					HOURS			HOURS	;		HOUR
STARTING	1 4	73	341	14	40	146				١,	Centri	fuge	NIL	Clea		18	11	S. Cent.	N
RECEIVED		1.5									Degas	ser	ON	Sha	ker	40-6 40-6	. 11 -	Super Syclone	No
USED LAST	T 1	2	30	5	18	20					Desan	der	18	Otr	ner	NIL			N
CLOSING	RY 3	71	311	9	22	126					DAILY	cos						E COST	
COST LAST	-		585			780					1	\$2	1751.	00		\$.	23,	820	.38
24 HR. MAGCOBA	R ENGIN	EER-			701	,,,,,		но	ME AD	DRESS	C . 0.	oj.	Coas	4		Р	HONE	3167	78
MOBILE U	NIT		مدطعا	~				WA	REHOL	JSE LO	CATION	<u>~</u>	-5-5-2		w.r	P	HONE		`

OPERATOR

MAGCOBAR GROUP

	c]
1 1	
$\mathbf{A}\mathbf{H}$	U
	Γ /

DRILLING MUD REPO	ORT NO. 13	-	
DATE 29-12-	19 _¥ 5 _	DEPTH.	1590
	PRESE	NT ACTI	VITY

Dresser Indu	ıstrie	s, l	nc.							SPU	DATE	<u>1/-</u>	12-83	<u> </u>		11100	
OPERATOR PHOENIN	0:0	9	Cas	+ S				CONTR	RACTOR	9	\mathcal{G}	٤.				G NO.	
REPORT FOR	30000							REPOR	T FOR	3.	£	<u>)</u>	lex		SE	CT., TWNSH	P., RANGE
WELL NAME AND NO.	ol o	Car	#1		FIE	D OR	BLOCK	NO.	CTY.	PAR	OROF	SHO	ORE AREA		F/PF	ROVINCE	
	18/000	<u> </u>		NC	 	M	ID VOL	UME (B	BI \				CIRCULA			Α	
DRILLING ASSEMBLY BITSIZE TYPE JE	T SIZE	SII	CASI RFACE				LE			PUMI	PSIZE	5	X IN.		ANNU	JLAR VEL.	(FT/MIN)
X'z Reed	3 × 9	SET @			71.	26	0	50	00			6	x x in.			DS DC.	140
DRILL PIPE TYPE 6 L	332	INT	FERME		101.	OTAL	- CIRCL		G VOL.	PUMP	PZ.	800		5%	PRES:	SURE (PSI)	1800
	ENGTH	INT SET @	PERME		Λ .	_	RAGE	WEIGH	7	BBL/	\$7K6		STK/	_ 1	BOTT UP (M	OMS	2
DRYL COLLAR SIZE L	57572		DUCTION	OR L		I DUN	KCL	. Col	ymer	, 6	.6		27 GAL/N	/ 1	TOTA	(MIN)	60
		DE I			OPERTI	ES			/			ERT	Y SPECIFIC	ATIO	NS		
SAMPLE FROM]F.L. 🜠	PIT	□F.L	X PIT	WEIGHT				OSITY	- 1	TRA		
TIME SAMPLE TAKEN				1	12.€	0	06	60	9.0) _	9.5	4	0-45		_	10 e e	
					28		20	7 ~	BY AUT				RATOR S WRITTEN		D DR	RILLING CONTRAC	TOR
DEPTH (ft)		1.		-: T.	1450		159	0				OPE	RATOR 5 REPRESE	NTATIVE	□ o1	THER	
WEIGHT [] (ppg) [] (lb/	cu.ft) 🗌 S	p. G			9.6		9.0		PR	ODU	CTS.			TR	EATN	MENT	
FUNNEL VISCOSITY (sec	./qt.) API @			F	40		4			9c	ල දුර	3 ,	2 Add	45	٠	30-12-	25
PLASTIC VISCOSITY CP	9			F	9		14			ď	Sula	د عا	ු ලෙ.	١٦.			
YIELD POINT (Ib/100ft ²)					_3		· 7	(2))	-			3 4 4			0	
GEL STRENGTH (lb/100ft	t ²) 10 sec./:	10 min.	• .	_	2/	4	2/	6					ddec		لظهر	gen 3	courag
FILTRATE API (cm3/30 m	nin.)			* : :	_8		7.	2		<u> </u>		+	Zedu	نخس		efice	
API HTHP FILTRATE (cm	3 /30 min.)	@		F				, -				٠+,	^			~~~	
CAKE THICKNESS (32nd						32	2/	32				-#	Added		<u>~000</u>	O.P.	
SOLIDS CONTENT (% BY Vo	L) CALC	D. 🔲	RETOR	<u> </u>	9		7	/				-	Mag	مى		03.	<u></u>
LIQUID CONTENT (% BY	Vol.) OIL/	WATE	R		91/		91/	_				\dashv					
SAND CONTENT (% BY V		h/hhl e	auly.		•25		•2	2	REMAR	RKS:							
METHYLENE BLUE CAPA							9.	-		·	منع	al	ead.				
	METER @			F	<u> </u>				مهر ۵	100	, `S	l.	ام مما	F	ע ש	ured	
ALKALINITY MUD (Pm)					·3/	>	4.	<u> </u>	n Cou	محو	,	_	igs of	· `	1	Quate	Plan
ALKALINITY FILTRATE					7		•2/	4	Cm	C	40	g.	125	O , '	10	Syste	- N.
ALTERNATE ALKALINI	TY FILTRA	TE (P,	/P ₂)		<u>+</u>		7		Cha	موم	ed	(08	moth	Sc	ree	n to	
CHLORIDE (mg/L)					300		270		80	<i>V</i>	80	w	sh.				
TOTAL HARDNESS AS C		ng/L)		-+	350			20					•				
	1/66	1/-	- 1	-+	<u>238</u>		26										
Hydro	mane		ad		120			ppm									
OST KE	sidue	-	>0.9	•	130 1.4%	<u> </u>	7	/					EQUIPM	ENT			
PRODUCT X	2012	200	Jon,		3/						HOUR	s		HOU	RS		HOURS
STARTING 18 2	ام. ا	60	32	20					Centrif	ıge	NIC		Desilter	2	4	H. S. Cent.	
RECEIVED	2 /20		32	20					Degass	er	ON		Shaker	24	1	Super Cyclone	
	// 0	,		1			 		Desand	ier	24	1	Other				
24 HR	4 0	1	2	4	 				DAILY					CUM	1ULA	TIVE COST	<u> </u>
INVENTORY /	8 126	59	30	<u>16</u> マ				 	1	8	90.	31		7	524	+,710.	69
COST LAST 66 21		18-31				IHC.	ME ADI	DRESS				<u> </u>		<u> </u>			
MAGCOBAR ENGINEER	an L	90	300						Gale	<u>u</u>	<u>Cbo.</u>	<u>گرد</u>	· 		PHO	NE 316 7	/ •
MOBILE UNIT						WA	KEHOU	SE LOC	AHON						100		

OPERATOR

	DRILLING MUD REPORT NO	o. 14	t
D			DEPTH 1712
T		PRESE	NT ACTIVITY
<u> </u>	SPUD DATE 17-12-85	17/	PICKING

MAGCOBAR GROU					1				12-00	· ~		CLINA	
Dresser Industri	es, inc.				CONTE	RACTOR	SPUD DAT	re <u>/ /</u>	-12-85	_		IG NO.	
Thoenix 1	Oel 2 GF	15			REPORT FOR SECT, TWNSHP,								
REPORT FOR Jack	Man				REPOR	S ^{T FOR} S	. Fo	احب	er		SE	CI, IWNSH	P, RANGE
WELL NAME AND NO.	vocs #1	FIEL	٦٩٩	Brock	NO.	CTY.,	PAR.ORO	FFSH	ORE AREA	STAT		ROVINCE	
DRILLING ASSEMBLY	CASING		MU	ID VOLU	JME (B	BL)			CIRCUL	ATION	I DAT	ΓΑ	
BIT SIZE TYPE JET SIZE	SURFACE SET @	FT.	но 3	SO	~	TS F	PUMP SIZE	5,2	X Y IN.	ı	ANNI	ULAR VEL.	(FT/MIN)
DRILL PIRE TYPE . LENGTH	INTERMEDIA	TE T		CIRCU	LATIN		UMP MAKE	E, MOE	ASSU EFF	MED C	CIRC	ULATION SURE (PSI)	1800
DRILL PIPE TYPE LENGTH	INTERMEDIA			RAGE	WEIGH		BBL/STK			MIN		OMS 56	
DRILL COLLAR SIZE LENGTH	PRODUCTION OF	FT.	T DUN	YPE	20	4	<u>・066</u> フ・コ		30	5		AL CIRC.	
	SET @	FT. PROPERTI		KCL	10	7med 1	BEL/MIN	PERT	GAL/N Y SPECIFIC	VILLY I		· (lotter) · · · · · ·	
	MODI	DF.L 🔀		∏e. t	VOIT	WEIGHT			OSITY		TRA	TE	
SAMPLE FROM	•	160		06		90	- 9.5	9	5-42		_	10 cc	
TIME SAMPLE TAKEN		29	21		7/1	,	ORITY:	1	RATOR S WRITTE			RILLING CONTRAC	
DEPTH (ft)		1615		171	2		10.11.11		RATOR 5 REPRES				TOK
WEIGHT [] (ppg) [] (lb/cu.ft) []	Sp. G	9.6		9.6	•	PRO	DDUCTS		· · · · · · · · · · · · · · · · · · ·	TR	EAT	MENT	
FUNNEL VISCOSITY (sec./qt.) API	@ °F	39)	39)	Boi	te		Heavy	Pu	4	Trip	
PLASTIC VISCOSITY cP @	%=	12		12	34	1	Bican	6	Pm				
YIELD POINT (Ib/100ft²)		8			(22)	<u>a</u> u	~ _		V15	<u>.</u>			
GEL STRENGTH (lb/100ft²) 10 sec	./10 min.	2/	4		7	*C	• • • •		41.				
FILTRATE API (cm ³ /30 min.)	<u> </u>	7.	D	6.	0			\dashv					
API HTHP FILTRATE (cm3/30 mir				9 /	•								
CAKE THICKNESS (32nd in. API/F		2/3	2	2 /3	32		and the second		·				
SOLIDS CONTENT (% BY Vol.) CA		91/		91/	,								
SAND CONTENT (% BY Vol.) OI	_/WATER	1	•	TR		14.2	.,		· · ·				
METHYLENE BLUE CAPACITY	lb/bbl equiv.	TR		7.5	731	REMAR	KS:						
PH STRIP METER	· ·	9.5		10.	0	2	ill.		ah		_[
ALKALINITY MUD (Pm)		4-0		2. 0		Υ.			- 44	عحو			
ALKALINITY FILTRATE (Pf/Mf)		-2/		•2/									
ALTERNATE ALKALINITY FILT	RATE (P, /P,)	+		+	_								
CHLORIDE (mg/L)		250	000	220	200								
TOTAL HARDNESS AS CALCIUM	(mg/L)	20		25									
/<	حد	5	7。		%								
Hydroste	dic			28	20								
Sulphite R	esidue	400	ַ כ	35	0								
/ 3/25/	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	/ /							EQUIPM	/ENT		,	
PRODUCT INVENTORY	20/00/		<u> </u>				HOU	RS		HOU	RS		HOURS
STARTING 16 18 89	1 1 1				•	Centrifu	ge 🕡	14	Desilter	19		H. S. Cent.	
RECEIVED						Degasse	r On	[ر	Shaker	19	}	Super Cyclone	
USED LAST / 10 /	15					Desande		3	Other	Nι		_	
CLOSING INVENTORY 15 8 88	294					DAILY		. 0	1	١.		TIVE COST	
COST LAST 230 530 /8.3						7	1050	٠ ૪	}	٦,		761. s	
MAGCOBAR ENGINEER 3.	Obson			ME ADD		Sold	1 Coc	لمحاد	<u> </u>			NE3167	78
MODULE LIMIT			WAS	PEHOUS	SELOC	MOITA	_				PHO	NE	

OPERATOR

$\overline{}$	DRILLING MUD REPORT NO	o. /5	
$\mathbf{\Phi}$	DATE 34-12- 19	85	c
T		PRESE	7
	LCOUR DATE 17-17 -XX	كالتلا	4

	O. BOX 650		$\mathbf{\Psi}$	re 34 - 1	12 - 191	ts DE	ртн 1/2	6 0
MAGCOBAR GROUP	ron, TEXAS	17265		E	193	PRESENT	ACTIVITY	
Dresser Industries, Inc.		Ĺ	SPU	D DATE	-12-85	Den	سر	
OPERATOR O		CONT	RACTOR			RIC	G NO.	
Thoenix U1 - JA		REPO		SECT, TWNSHP, RANG				
REPORT FOR Jackman			13.	<u>Faul</u>	ORE AREA S	TATE / DE	OVINCE	
WELL NAME AND NO.	FIELDO	R BLOCK NO.	CTY, PA	R.OROFFSF	ORE AREA 3	IAIE/V	S INCL	
DRILLING ASSEMBLY CASING	. 1	MUD VOLUME (I	BBL)	. •	CIRCULA'			
BIT SIZE TYPE JET SIZE SURFACE SET @	1 -		ITS PUN	IP SIZE	IN.	ANNU	DC_DC	(FT/MIN
DRILL PIPE TYPE , LENGTH INTERMEDIA		AL CIRCULATIN	IG VOL. PUM	P MAKE, MOI	DEL ASSUM	ED CIRCU	JLATION SURE (PSI)	
SIZ 12 16.6 1532 SET @ 133		870 TORAGE WEIGH	IT BBI	PZ8	EFF 9	IN BOTT	OMS	
DRILL PIPE TYPE LENGTH INTERMEDIA' SIZE SET @ 100	FT.	UIL N		066	100) UP (M	IN) 5	5
DRILL COLLAR SIZE LENGTH PRODUCTION OR SET @	LINER MUE	KEL POL	mer BB	if _	GAL/MÍ	TIME	(MIN)	65
	ROPERTIES			D PROPER	TY SPECIFICA	TIONS		
SAMPLE FROM	□F.L. SEPIT	F.L SEPIT	WEIGHT	VIS	COSITY	FILTRA"	ΓE	
TIME SAMPLE TAKEN	1600	0600	9.0-9	ء ک	35-45	610) CC	
TIME SAMPLE TAKEN	30	31 5+	BY AUTHO		PERATOR S WRITTEN		ILLING CONTRAC	TOR
DEPTH (ft)	1725	1800			PERATOR 5 REPRESEN			
WEIGHT [(ppg) [] (lb/cu.ft) [] Sp. G	9.6	9.5	PRODU	JCTS		TREAT	/ENT	
FUNNEL VISCOSITY (sec./qt.) API @ °F	38	38	Kec		الا	دد		
PLASTIC VISCOSITY CP @ °F	1/	12	SOD B	ical	P.m.	Here	dren.	
YIELD POINT (Ib/100ft²)	8	10	×c		Vis			
GEL STRENGTH (lb/100ft²) 10 sec./10 min.	2/4	2/8	Polus	ما	Water	less.	Filter	<u>cake</u>
FILTRATE API (cm³/30 min.)	6.5	6.0						
API HTHP FILTRATE (cm³/30 min.) @ °F		_						
CAKE THICKNESS (32nd in. API/HTHP)	2 /32	2/32						
SOLIDS CONTENT (% BY Vol.) CALCD. FRETORT	9	9						
LIQUID CONTENT (% BY Vol.) OIL/WATER	91/	91/						
SAND CONTENT (% BY Vol.)	TK	TR						
METHYLENE BLUE CAPACITY Ib/bbl equiv.	7.5		REMARKS	:				
	10.0	9.5	Dille	in ahe	ad. P.	0.0.4	l cho	nge
	4.5	4.0	bit	R. 1. 6			ahead	a
ALKALINITY MUD (Pm)	•2/	-3/	 	~. I. E				<i>-</i>
ALKALINITY FILTRATE (P _f /M _f)	4	<u> </u>	Im >	and.				
ALTERNATE ALKALINITY FILTRATE (P, /P2)	20	70.000	1					
CHLORIDE (mg/L)	29 000	1						
TOTAL HARDNESS AS CALCIUM (mg/L)	250	200 5-0	1					
KCC Hood	2841	2934	1					
Hydrostatic Head	250	250	1					
Sulphite Residue	/ /	/ / /	1		EQUIPMI	ENT		
PRODUCT INVENTORY		/ / /		HOURS		HOURS		HOURS
STORTING A			Centrifuge	NIL	Desilter	17	H. S. Cent.	
STARTING 100 58 15 126	+		Degasser		Shaker	17	Super Cycione	_
			H Doronto	00	Other			
USED LAST 66 1 4 10			Desander DAILY CO	17 st	I Cuiei	CUMULA C	TIVE COST	L
CLOSING 10 S7 // 1/6			I		1	\$ 21	8,569	.21
COST LAST 1080 18-31 1320 390				08.3		•	-	
MAGCOBAR ENGINEER DOSSON		HOME ADDRESS	Gold	Coos	#	PHO	ONE 3/6 7	118
MOBILE UNIT	v	WAREHOUSE LC	CATION			РНО	NE	

OPERATOR

MAGCOBAR GROUP

DRILLING MUD REPORT NO	o. 16	>
DATE / - / - 19	86	_{DEPTH} <u>/9</u> 5
		T ACTIVITY
SPUD DATE 17-12-85	70	رالهذع
		010 110

Dresser Industries	s, Inc.							DATE //	-12-83		<u> </u>	
OPERATOR PLOENTS OIL	e Cas				CONTRACTOR G.D. C.						RIG NO.	
	· 44-2				REPORT FOR Souler							P., RANG
WELL NAME AND NO.	•	FIE	LDOR	BLOCK		CTY	,PAR.	OROFFSH	ORE AREA	STATE /		
Greenslopes	#1	l	PEP	10							<u>,, C</u>	
DRILLING ASSEMBLY	CASING	ì			JME (BBL) CIRCULATION DATA PITS PUMP SIZE 5-X IN. ANNULAR VEL. (F							(FT/MIN
BIT SIZE TYPE JET SIZE	SURFACE SET @ 9	FT.	7) S	52	D		6`	× 8	DP.	185 DC_	140
DRILL PIPE TYPE LENGTH	INTERMEDIA	ATE FT.	TOTAL	CIRCL 87	ATIN	G VOL.	PUMP	MAKE, MOI	DEL ASSUM		CULATION ESSURE (PSI)	1800
DRILL PIPE TYPE LENGTH	INTERMEDIA	ATE		RAGE			BBL/S	TK	STK/	MIN BO	TTOMS (MIN)	b
1 11	SET @ 700 PRODUCTION O	FT. R LINER	MUD T	TYPE	0.		6.	_	277	7 TO	TAL CIRC.	
	SET @	FT.		KCC	10/4	mes	BBL/	MIN	<u>GAĽ/Ń</u> TY SPECIFIC	MN_L	ME (MIN) /	<u>'O</u>
	MUD	PROPER'				WEIGH			COSITY	FILTE	RATE	
SAMPLE FROM	111.14	□F.L.		□F.L		1					450	
TIME SAMPLE TAKEN	<u> </u>	1	00	08	00 st	9.0	- 7.	5 3	75 - 45		1000	
		31		/		BY AUT	THORI		PERATOR S WRITTEN		DRILLING CONTRACT	FOR
DEPTH (ft)		189		19.		PR	ODUC		ENATOR S RETRES		TMENT	
WEIGHT 🔀 (ppg) 🗌 (lb/cu.ft) 🗌 Sp			4	9.				,				
FUNNEL VISCOSITY (sec./qt.) API @	°F	38	5	37			. 4					· · · ·
PLASTIC VISCOSITY cP @	°F.	"		1:								
YIELD POINT (Ib/100ff²)	0 min	8	14	70	,							
GEL STRENGTH (lb/100ft²) 10 sec./1	o mm.	2/		2/	0							
FILTRATE API (cm ³ /30 min.)	o °F	7.	0	6.		80 J	: 15,7	1 6. 1	-	5		
API HTHP FILTRATE (cm3/30 min.)		-	/	2/	32					* . 1		
CAKE THICKNESS (32nd in. API/HTH		2 /	72	-	<u> </u>							
SOLIDS CONTENT (% BY VOL.) CALCE		-	/91	-	191							
LIQUID CONTENT (% BY Vol.) OIL/V	VATER	~		77				- 34.	1.5			
SAND CONTENT (% BY Vol.) METHYLENE BLUE CAPACITY Cr	/bbl equiv.	77	•			REMAI	RKS:					
PH STRIP METER @			5	10	.0	\mathcal{D}	rill	eig a	head.	23		
ALKALINITY MUD (Pm)		4.		. 2		Ra			head. 1 Shua	٠ 🖈	0000 -1	
ALKALINITY FILTRATE (P _f /M _f)		.21	7	.2/		000	0		1 Suca	b 4	henp	· Correct
ALTERNATE ALKALINITY FILTRA	TF (P /P.)		4	7	/	46	x . (idde	d tola	e of	75 66	ils.
CHLORIDE (mg/L)	12 (1712)		000	250		1						
TOTAL HARDNESS AS CALCIUM (m	ng/L \	25		250		1						
	5 C		.5	5		1						
Hya	erstatic	309		3/4	5]						
/O	11. 1	20		25	D							
/ /×00/a	2/4/0	المعني الم	$\overline{}$	$\overline{}$	7				EQUIPN	MENT		
PRODUCT INVENTORY		38						HOURS		HOURS		HOUR
	8 9 1	. 1	$\overline{}$	f -	(Centrif	uge		Desilter	944	H. S. Cent.	_
STARTING INVENTORY 311 71 60	8 9 1	6	-			#		NIL	-	24	Super	
RECEIVED				<u>. </u>	ļ	Degas	ser	NIL	Shaker	24	Cyclone	
USED LAST 16 2 2	8 1	<u> </u>				Desan		24	Other	1000000		
CLOSING 301 69 58		5				DAILY				1	ATIVE COST	
COST LAST IRC 33 38		2	1]	<i>څ</i> ۲۶	0.00		,	9,299.81	
MAGCOBAR FUGINEER		•	Но	ME AD	DRESS	C ale	-d	Con	PHONE 3/6778			
MOBILE UNIT WAREHOUSE LOCATION												
. 1	IS REPORT IS G	OVERNE	ED BY 1	THE TE	RMS AN	ND CONE	DITIO	NS AS SET	FORTH ON	THE RE	VERSE SIDE	

OPERATOR

=	DRILLING MUD REPOR	RT NO. 17	
	DATE 2-/ -	1986	DEPTH
T	17 12 6	PRESE	ACTIVITY

MAGCOBAR GROUP		_				SPUD DATE 17- 12-85						Reaming			
Dresser Industrie	25, IN	G.				PIG NO							IG NO		
OPERATOR PROCESSIX D	1 2 S	As						<u>۲. ۲</u>	<u>), S</u>			C.	2.	P. RANGE	
REPORT FOR Jacken	A:0					REPOR	T FOR	5 h	اسم	er				,	
WELL NAME AND NO.		<u>+</u> ,	FIEL	DOR.	BLOCK	NO.	CTY.	PAR.O	ROFFS	HOREAR	REA STA	ATE / P	ROVINCE		
Green Slope		CASING	·			OLUME (BBL) CIRCULATION D						ON DA	ΓΑ		
DRILLING ASSEMBLY BIT SAFE TYPE PET SIZE		FACE			DLE		1	PUMP S	IZE 5 ;	4 × ¢	IN.		ULAR VEL.	(FT/MIN)	
84 3×9	SET @	9 m	2T.		L CIRCU		00	РИМР ЈД	6	-×8	ASSUMED	DP	ULATION	7	
DRILL PIPE TYPE LENGTH	SET @	RMEDIA	FT.					10	<u> </u>	<u> </u>	FF95	% PRES	SURE (PSI)		
DRILL PIPE TYPE LENGTH	1 4	PMEDIA	1		RAGE	WEIGH	_	BBL/ST			/00		roms ,		
DRILL COLLAR SIZE LENGTH		CTION OF		MUD 7		Poly	nes	6./M	IN	G	277 AL/MIN	TIME	CIRC.		
	PEI W	MUDF	ROPER			ď				RTY SPEC		IONS			
SAMPLE FROM			□F.L.	≸ PIT	□F.L	⊠ PIT	WEIGHT	Г	. [SCOSITY	1	ILTRA			
TIME SAMPLE TAKEN			160	0	06	00	9.0	-9.5	7. -	35-4	5	210)< <u>c</u>		
		- 34		* .** /		.40	BY AUT	HORIT	<u> -</u> Y: \ ⊊	OPERATOR S	WRITTEN		RILLING CONTRAC	TOR	
DEPTH (ft)	1.4 -		190	50	199		-			OPERATOR 5	REPRESENTAT				
WEIGHT ☑ (ppg) ☐ (lb/cu.ft) ☐	Sp. G		9.	6	9.	5	PR	ODUCT	S	1		TREAT	MENT		
FUNNEL VISCOSITY (sec./qt.) API	@	℉	3	8	4	/		<u> </u>	_****=						
PLASTIC VISCOSITY cP @	17	٩F	10		10				•	<u> </u>					
YIELD POINT (Ib/100ft2)			9		/3			····				·			
GEL STRENGTH (lb/100ft ²) 10 sec.	/10 min.		2/	4 -	2/	8		-	·						
FILTRATE API (cm³/30 min.)		7-	0		<u> </u>										
API HTHP FILTRATE (cm³/30 min.) @ %F				-	/-	ļ . , .		<u>11 - 1 - 1</u>							
CAKE THICKNESS (32nd in. API/H			7	32	2/	32		***		+	* 4.				
SOLIDS CONTENT (% BY Vol.) CAL		TORT		<u>, </u>	7	191				-					
LIQUID CONTENT (% BY Vol.) OIL	-/WATER		_	91					• • • •		4.				
SAND CONTENT (% BY Vol.)	lb/bbl eau	ıiv.	- 3 -	K	4	K	REMAR	RKS:						<u></u>	
METHYLENE BLUE CAPACITY		mud °F	9	<u>-</u> 5	9.	0	P. O.	. O. H	d	hongo	e bi	t.			
PH STRIP METER		- · · · · · · · · · · · · · · · · · · ·	3-			.5	Rear		~ 1	hange	Star	ds	to 60	Hom	
ALKALINITY MUD (Pm) ALKALINITY FILTRATE (Pf/Mf)			. 2 /		.2 /	/ 		(62\X			•			
ALTERNATE ALKALINITY FILTR	ATE (P. /	P ₂)	9	<u></u>	-/	_	 								
CHLORIDE (mg/L)	<u>- \\ 1</u> /	2.	270	00	28	000	İ								
TOTAL HARDNESS AS CALCIUM	(mg/L)		23			20									
	(<u>.</u> ,		5			70									
11 4	extic		32:			53	1								
Seel	lide		20	0	15	0	L							·	
13/28	.v/\	///	/ /	7						EO	UIPMEN	T			
PRODUCT NVENTORY	67.50 130.50	/ /						Н	IOURS		н	ours		HOURS	
STARTING	1 1		1				Centrif	uge	NIC	Desil	ter	8	H. S. Cent.	_	
RECEIVED 16 19 36	1-17			1	1		Degass		DN	Shak	er /	8	Super Cyclone	_	
USEDIAST	+ +			+	-		Desand		18	Oth		<u></u>			
24 HR. 30 / 7	15			-			DAILY		10_			UMULA	TIVE COST	L	
CLOSING INVENTORY 86 68 295			_		 		∦ ¢	1515	. 00			\$30	,814 · 8	1.	
COST LAST 1170 36.0 136	\$ 172.5			<u> </u>	ME AD	DESS	7								
MAGCOBAR ENGINEER HOME ADDRES							Told Cost 310778								
MOBILE UNIT				1	REHOU			NTIC S	- 00 00	ET EOST	HONTH				
PRINTED IN U.S.A.	HIS REPO	ORT IS G	OVERNE	D BY	THE TE	KMS AN	ID COME	אטוווע	- M3 3t	ELFURI	514 111	- K=V	ERSE SIDE		

OPERATOR

	DRILLING MUD REPORT NO	o./8	
	DATE 3 - / 19	86_	DEPTH 2075
T	SPUD DATE /7-12-85	PRESE	illua

MAGCUBAR GROUP	_			\ 4 /				ACTIVITY	1
Dresser Industries	s, Inc.			SP	UD DATE	7-12-8		Munia	
OPERATOR Choenix Oil	9 GAS		cc	NTRACTOR	.D. S		1	RIG NO.	
REPORT FOR Jack ma.			RE	PORT FOR	Forile		5	ECT, TWNS	HP., RANG
WELL NAME AND NO.	#1	FIELDO	R BLOCK NO	D. CTY, P/	AR. OROFFS	HORE AREA	11	ROVINCE	·
DRILLING ASSEMBLY	CASING		NUD VOLUM	IE (BBL)		CIRCUI	LATION DA		
BIT SIZE TYPE JET SIZE	SURFACE		IOLE	PITS PU	MP SIZE 5	/	ANI	NULAR VEL	
DOUL DIE TYPE I ENOTH	SET @ 9	FT. 43	AL CIRCULA	TING VOL. PU	MP MAKE, MO	ODEL ASSI	IMED CIR	//O_DC	
SIZE 45 166 1807 S	SET @ /30	FT.	950 ORAGE WE		PZ 8	EFF	95% PRE	SSURE (PSI	2000
SIZE	INTERMEDIA	FT. N	16	NIC.	L/STK 066		& UP	MIN) 6	/
11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRODUCTION OF SET @		KCL P		7. 8 L/MIN	3.	J ITIM	E (MIN)	80
	MUD	PROPERTIES		7	•	TY SPECIFI			
SAMPLE FROM		□F.L. ŒPIT	OF.L S	PIT	VI	SCOSITY	FILTR	ATE	
TIME SAMPLE TAKEN		1700	06 30	90 - 9	1.5 . 3	3-45	· 4	610cc	
	1 11	2 40	3 K12	BY AUTHO	yer.	PERATOR S WRITT		DRILLING CONTRA	CTOR
DEPTH (ft)	1995	REAMING				PERATOR'S REPRE			
WEIGHT [] (ppg) [] (lb/cu.ft) [] Sp.	G '	9.5	9.2				THEAT	MENT	
FUNNEL VISCOSITY (sec./qt.) API @	<u>°</u> F	40	40	Kol	ysal	Wal	e-los	· S .	
	35°F	9	10	34 24	.	ļ			
GEL STRENGTH (Ib/100ft²) 10 sec./10	300 24.	7/18	6/14	. 11					
FILTRATE API (cm ³ /30 min.)		8	7.5						
API HTHP FILTRATE (cm3/30 min.) @	 %F	-	-		,		`		
CAKE THICKNESS (32nd in. API/HTHI		2/32	2/32	,					
SOLIDS CONTENT (% BY Vol.) CALCD.	RETORT	11	10						
LIQUID CONTENT (% BY Vol.) OIL/W	ATER	/89	190	5					
SAND CONTENT (% BY Vol.)		TR	TR	. 1	* 12 \$ 8 C				
METHYLENE BLUE CAPACITY Ib/I	bbl equiv. 3 /cm3 mud	-		REMARKS	. 0 6	0.0	ΣΛ _	- 1 0	
PH KSTRIP METER @	%	9.0	9.5	2010	, c) c	0.04			over
ALKALINITY MUD (Pm)		1.0	1.0	Jano	pe che	ek bu			eam t
ALKALINITY FILTRATE (Pf/Mf)		.2/	1.5/	betto		illung	from	apros	c
ALTERNATE ALKALINITY FILTRAT	E (P ₁ /P ₂)	/	7	9 Am	2-1-	-86. C	24 HRS	.).	
CHLORIDE (mg/L)		27000	26000	Screen	الحد د	e ho	· 6441	-00	_
TOTAL HARDNESS AS CALCIUM (mg,	/L)	200	210	- ani	ed. (No No	dial	ouche	5
KCC		4.5	4.0			<u></u>	104).		
Hydrost	-tic	3252	33//						
Sulide	, , ,	75	100	, 					
PRODUCT INVENTORY	/ / /	' / /		´	HOURS	EQUIP	HOURS		HOURS
STARTING 86				Centrifuge	1	Desilter	12	H. S. Cent.	
RECEIVED RECEIVED			+ +	Degasser	NIC	Shaker		Super	
USED LAST			+	Desander	12	Other	12	Cyclone	
24 HR. JO				DAILY COS	1	II	CUMULA	TIVE COST	<u> </u>
COST LAST				- \$78	0.00		\$31,	594.8	81.
MACCORAR ENGINEER	Dobson	НС	ME ADDRE		0-	L	1 '	ONE 3/6	
MOBILE UNIT	JUNON		REHOUSE L	OCATION	405	7	PHC		118

OPERATOR

MAGCOBAR GROUP

P. O. BOX 6504 HOUSTON, TEXAS 77265

13	E
	DI

DATE 4-1- 1986 DEPTH 2180

PRESENT ACTIVITY

17-12-85 Delicing

Dresser Industrie	s, Inc.				r		PUD DATE	17-12-85	DRIL	Ling	
OPERATOR PROPERTY OF	l & CAS			c	CONTI	RACTOR	3. D. S			RIG NO.	
REPORT FOR TO A TO A				R	REPOR	RT FOR	Fow			SECT, TWNS	HP., RANG
WELL NAME AND NO.	. •	FIELD	OR BL	OCK N	١٥.	CTY,		FSHORE AREA			
Greenslope	23 #1.								<u> </u>	ار د	
DRILLING ASSEMBLY	CASING			VOLU					ATION DA		
BIT SIZE TYPE JET SIZE	SURFACE	FT.	470	1	50 Pi			23×8 IN.	DP	106 DO	140
DRILL PIPE TYPE LENGTH	INTERMEDIA	TE T	OTAL C	IRCUL	ATIN	G VOL. PL	JMP MAKE,	MODEL ASSI	JMED CIR	CULATION SSURE (PSI	2000
DRILL PIPE TYPE LENGTH	INTERMEDIA SET @ 700 M	TE IN	STORA N/C	1			BL/STK	STK	MIN BOT	TOMS	64
DRILL COLLAR SIZE LENGTH	PRODUCTION OF	R LINER M	UD TYP	PE			7.6	31	9 TO	TAL CIRC	185
D.16 208	SET @ MUD I	FT. PROPERTII	1.	<u> </u>	1016	mer B		GAL/ ERTY SPECIFI	IVIIIN I		·
SAMPLE FROM		□F.L 184	PIT 🗆	F.L 🕦	PIT	WEIGHT		/ISCOSITY	FILTR	ATE	
TIME SAMPLE TAKEN		1700		063	2	9.0-	9.5	35-45	ے ۱۰۰	10cc	
	1 - 1 - 1 - F V - 1	34	0 .		-4	BY AUTH		POPERATOR S WRITTE		DRILLING CONTRA	CIOR
DEPTH (ft)	12	1995		2180	0		Ĺ	OPERATOR S REPRES	SENTATIVE D		
WEIGHT M (ppg) ☐ (lb/cu.ft) ☐ Sp.	. G	9.3	5 Q (4)	9.5		PRO	DUCTS		TREAT	TMENT	
FUNNEL VISCOSITY (sec./qt.) API @	°F	40		40			· · ·				
PLASTIC VISCOSITY cP @	°F	7		8		ý:					
YIELD POINT (Ib/100ft²)		15.		14			•				
GEL STRENGTH (lb/100ft²) 10 sec./10	0 min.		4	7.//	13	·					
FILTRATE API (cm³/30 min.)	ga Maria and a second	8.0		6.0					-		
API HTHP FILTRATE (cm ³ /30 min.) @			- 1	- :							
CAKE THICKNESS (32nd in. API/HTH	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	3/3	<u> </u>	$\frac{3}{3}$	-						
SOLIDS CONTENT (% BY Vol.) CALCE		91/		<u>/0</u> 91/			-	-			
LIQUID CONTENT (% BY Vol.) OIL/W	ATER	///		5.7		ing the second of the second o					
SAND CONTENT (% BY Vol.)	/bbl equiv.	25% 7				REMARK	S:				
METHYLENE BLUE CAPACITY 1b/cm		9.0		9.5		1.		,	1944 100 o 1	e. i	
	° F.	1.5		1.0		Cena	1000 CD	honge 81 abilizars. pilles	ALM ST	ov.	
ALKALINITY MUD (Pm)		.2/	-	$\frac{7.0}{2/}$		Ø .	11 5	abilizari.	a	2	
ALKALINITY FILTRATE (P _f /M _f) ALTERNATE ALKALINITY FILTRAT	TE (P. /P.)	-/		1		~. /.	14	rellens o	shead	. .	
CHLORIDE (mg/L)	E (F ₁ /F ₂)			1							
TOTAL HARDNESS AS CALCIUM (mg		210	0 ~	0 80 210							
	:/ <u>-</u>) .CL	3.5		5.0							
	adic Head	3183	7	3553							
	lehita	40		/00							
13/2/0	. /	77	7	7	7			EQUIPN	MENT		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		/ /	/ /	/		HOURS		HOURS		HOURS
STARTING	610					Centrifuge	NL	Desilter	18	H. S. Cent.	
RECEIVED						Degasser	DN	Shaker	18	Super Cyclone	•
USED LAST 15 15 6 10	00					Desander	18	Other	NIL	—	_
CLOSING	510					DAILY CO		·	,	TIVE COST	<u> </u>
COST LAST 585 172.5318 18						\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	875.	20	· · · · · · · · · · · · · · · · · · ·	4470.	
MAGCOBAR ENGINEER		HOME	ADDRE	\$2875.50 ESSG ald Coost				PHO	PHONE 316778		
MOBILE UNIT	WAREH	IOUSE	LOC				PHO				

OPERATOR

2307

	DRILLING MUD REPORT NO	o. 20
D	DATE 5 ~ 1 19	86
TI		PRESE
	SPUD DATE 17-12-85	Dr

		STON, TEX		7265	- (/		DATE 5	~1	1	<u>986</u>	DEPTH	307	
MAGCOBAR GROUP		1						NT ACTIVITY	,				
Dresser Industries, Ind) .						SPUD DAT	E ! 7	7-12-P3	<u> </u>			
OPERATOR Phoenis Dil & G	AC				CONT	RACTOR	9. P.	S			RIG NO.		
REPORT FOR	•••				REPO	RT FOZ		.(62 		SECT, TWNS	IP, RANG	
WELL NAME AND NO.		FIEL	A) OR	BLOCK P 10	NO.	CTY,	PAR. OROF	FFSH	ORE AREA	STATE	PROVINCE		
Greenslopes #1										<u> </u>	/12		
	ASING			DD VOL				_	1 0	ATION D	NULAR VEL	(ET (MIN	
BIT SIZE TYPE JET SIZE SURFA	GE	FT.	_	DLE O	1	its P	PUMP SIZE	_	×8	DP	108 DC	140	
DRILL PIPE TYPE LENGTH INTER	MEDIA 30	TE FT.		LCIRC	JLATIN	IG VOL. P	UMP MAKE		DEL ASSU	UMED CIRCULATION PRESSURE (PSI) 2 300			
DRILL PIPE TYPE LENGTH INTER	MEDIA	TE I		DRAGE	WEIGH		BL/STK		STK	MIN BOTTOMS 65			
DRILL COLLAR SIZE LENGTH PRODUCT	TION OF	FT.		TYPE	N		<u>• 066</u> 7.8	·	33	TC	TAL CIRC.		
		FT.		ccc/	Poly		BL/MIN		GĀL/I	MIN I''	ME (MIN) /	ro	
	MUDI	PROPERT				WEIGHT	MODPRO		COSITY	ICATIONS FILTRATE			
SAMPLE FROM	·.	Of.L 2	PIT	□F.L							2/0 ec		
TIME SAMPLE TAKEN		17.0		06	<u> </u>	7.0.	7 3.		35-45		2,000		
		4 "		S		BY AUTH			PERATOR S WRITTE		DRILLING CONTRA	CTOR	
DEPTH (ft)	•	226		230		PRC	RODUCTS		OPERATOR S REPRESEN		TREATMENT		
WEIGHT 🙎 (ppg) 🗌 (lb/cu.ft) 🗎 Sp. G		9.4		9.			HUDUCIS						
FUNNEL VISCOSITY (sec./qt.) API @	°F	39		4:		\	•	11.		1		1. B.	
PLASTIC VISCOSITY CP @	<u>°</u> F	10		12 (4			2000	,	water L		to thick, Con		
YIELD POINT (lb/100ft²) GEL STRENGTH (lb/100ft²) 10 sec./10 min.		7/	19	8/20			our hi		P. H.	- 4622			
FILTRATE API (cm ³ /30 min.)		6.5	•		0	x c lolyma			Vis.				
API HTHP FILTRATE (cm³/30 min.) @			-	_			_ (0.0%						
CAKE THICKNESS (32nd in. API/HTHP)		3/	? <u>2</u>	3 /	31			- :					
SOLIDS CONTENT (% BY Vol.) CALCD. RET	ORT	10		1	0		11 12 4	1					
LIQUID CONTENT (% BY Vol.) OIL/WATER					90/		Part I						
SAND CONTENT (% BY Vol.)		TR		TR			a the same of the						
METHYLENE BLUE CAPACITY Cm3/cm3 mi	id			-		REMARKS:							
PH STRIP METER @	약	9.5		9.	0	P.O	. O. H	•	D 226	o e	lange	bet	
ALKALINITY MUD (Pm)		1.0		. •5		R.1	. н і	Die	lluc; c	3 hea	d		
ALKALINITY FILTRATE (P _f /M _f)		.2/		.2/	<i>'</i>		_		7		• • •		
ALTERNATE ALKALINITY FILTRATE (P, /P2)	1		/	/								
CHLORIDE (mg/L)		2800	90	260	000								
TOTAL HARDNESS AS CALCIUM (mg/L)		200)	210	<u> </u>								
ILCL		5.0		4.									
Agdo static		368	4	37	60								
Sulphit	,	100)	15	٥								
PRODUCT INVENTORY	/	/ /							EQUIPN	MENT			
PRODUCT INVENTORY							HOUF	RS		HOURS		HOURS	
	1					Centrifug	e NI	,	Desilter	24	H. S. Cent.		
				-			10.		Shaker		Super Cyclone		
RECEIVED				-		Degasse	DN	<u>'</u>		24	Cyclone		
USED LAST 2 4 R. 15 2 2 2						Desande	- 7		Other	- IC: 154: 11	ATIVE COST		
CLOSING INVENTORY 36 66 9 6					DAILY				1 .				
COST LAST 585 172 660 120					\$1329.00				\$35799.31				
MAGGODAD ENGINEED	1801		НО	ME ADI	RESS	2004	Ca	_	 	PI	316°	778	
MOBILE LINIT	100×	<u> </u>	WA	REHOU	SE LOC	ATION		72.		PH	HONE	·	

OPERATOR

	DRILLING MUD REPORT NO	o. 21	
Ψ			DEPTH 2439
Y		PRESE	NT ACTIVITY
	3700 DATE		DIC NO

MAGCOBAR GROUP								1-					1 - 9	NT ACTIVITY	′		
Dresse	r Ind	us	trie	es, l	nc.						<u> </u>		DATE 17	- 12 - 85	12m	لللبرق	
OPERATOR PL	^ -	•	<i>v</i> :	0 .	C	e				CONT	RACTOR	\mathcal{T}	. 5			RIG NO.	
REPORT FOR	Wen	17	<u> </u>	<u> </u>	7.					REPOR	RT FOR		roles			SECT, TWNS	HP., RANGE
WELL NAME A	ND NO.	1	ma	<u>~</u>			FIE	D OR	BLOCK	NO.		7, PAR.	OROFFSI	ORE AREA	STATE	/ PROVINCE	· 2+24-7-14
	reen	510	spe	1 	CASI				UD VOL		IL			CIRCUI	ATION I		
DRILLING ASS		lier c	17F	SII	RFACE	NG			OLE VOL		TS	PUMP	SIZE 5			NNULAR VEL	. (FT/MIN)
82 R		JET S	9	SET (FT.	5	20	50	\sim			×8	DI	P /OS DO	139
DRILL PIPE TY	6·6	LENG 21		SET 6	TERMED		FT.		10,	20	G VOL.		02 8	EFF	75% PF	RESSURE (PSI	2200
DRILL PIPE TY		LENG	aTH.	IN SET	TERME		TE FT.		PRAGE	WEIGH		BBL/S	• -	STK	MIN BO	OTTOMS P (MIN)	57
DRILL COLLARS		LENG	TH.	PROI	DUCTION		LINER	MUD	TYPE	Police		BBL/N	8	33 GAL/I)U 17	OTAL CIRC. IME (MIN) /	80
ਤ ਜਨ	<u> </u>	20	00	SET		D P	FT. PROPERT			019.	nei_			TY SPECIFIC		S	
SAMPLE FROM					l		□F.L.		□F.L.	⊠PIT	WEIGH	T	Vis	COSITY	FILT	RATE	
TIME SAMPLE					2 3 5	+	18			30	9.0.	- 9.	5 3	5-45		4 7cc	
THE SAMEL	TAKEN) <u>h</u>	1	<u> </u>	1	•		PERATOR S WRITTE	1	DRILLING CONTRA	CIOR
DEPTH (ft)						\dashv	23		24	39				PERATOR 5 REPRES	ENTATIVE		
WEIGHT [] (pr	pg) [] (i	b/cu.ff	t) 🗆 s	p. G	* **		9.		9.		PF	RODUC	TS		TRE	ATMENT	
				:		F	4	,		0							
	NNEL VISCOSITY (sec./qt.) API @ ASTIC VISCOSITY cP @						26) 8	,	7	7 (25	Ba	WITE		Piu +	o Te	io	
YIELD POINT (b/100ft	²)			18.72		19) 11		1.	2 (19		2860		WTL	220		
GEL STRENGT	H (lb/10	Oft²)]	LO sec./	10 min	•		4/	11	5/	12		CL		CL			
FILTRATE API	(_{cm³} /30	min.)					6.	5_	6.	2	Ca	esti	c	PH			
API HTHP FILT	RATE (m³/3	0 min.)	@ .		F	3,000	• ; ;		,	×	<u> </u>		ULS			
CAKE THICKN	ESS (32n	d in. A	API/HT	HP)	.:			32	21	32	الما	me		Courb.	- Bic	ab	
SOLIDS CONTEN	T (% BY \	/ol.) [CAL	D. 🗆	RETOR	ř .	18	·- :	10	<u> </u>			- ''				
LIQUID CONTE	ENT (% E	Y Vol	.) OIL,	WATE	R		90/	<u></u>	90,	<u></u>							
SAND CONTEN				b/bbl o	auly.		TR		78	?	REMA	RKS	· · ·				
METHYLENE B						-	9		-	······································			a	head.			
PH 🔀 STR			ETER	@ :	•	F	9.		9.		ii _ ^	۱ .	7	1.1 1.1		لصب	والمراجع ا
ALKALINITY							7.0	/	1. 1	<u> </u>	ad	Ø					NI COM
ALKALINITY F		<u>-</u>					· ol /		1.2/	, 	10	w w	T W	wel to	sy	stem.	
ALTERNATE A		VITY F	-ILTR/	ATE (P.	1 /P ₂)		77		72								
CHLORIDE (mg							230		20	<u> </u>							
TOTAL HARDI	NESS AS	CALC			,		20 4.			.0							
				KCC don	tatic		383		39		1						
				0	li do		/00		15		1						
		17	₽/ ₹		0/0	,	/ 	7	1 /	7				EQUIPA	MENT		
PRODUCT INVENTORY	\(\frac{1}{\pi}\)	/ /よる	3/8	2/3 2/8	923.	/							HOURS		HOUR	s	HOURS
STARTING INVENTORY	5.0	a	66	1					<u> </u>	$\lceil - \rceil$	Centrif	uge	NIC	Desilter	24	H. S. Cent.	_
RECEIVED	510	7	20	40	264						Degas		on	Shaker	24	Super Cyclone	-
USED LAST	2	_		10) e-		_	+	 		Desan		24	Other	-		-
24 HR.	30	2	2	12			-	+			DAILY		27	Щ	СИМИ	LATIVE COST	
COST LAST	4%	7	64	28	249			 	-		5	319	12.50	>	\$3	37,711 . 8	1.
24 HR. MAGCOBAR E		660 R •	72	468	172.5			 HC	ME AD	DRESS	<mark>ي </mark>	·		<u> </u>	 F	PHONE 316	220
	<u>101</u>	en		عمل	2500						<u> يا ه</u>	ol C	doos d	-		HONE 71 0	118
MODIFE OW!	OBILE UNIT WAREH														1		

OPERATOR

	DRILLING MUD F	REPORT NO. 4	22	
	DATE 7- 1	1986	DEPTH_	2510
Y	SPUD DATE 17-		Dully Delly	
NTRACTO			RIG NO.	

7	ACCOD!	VD CD	OLID		- 11	10031	OIV, IL	AA3 /	7200	_	7/	<u> </u>			PRES	SENT	ACTIVITY		
MAGCOBAR GROUP Dresser Industries, Inc.								SPUD DATE 17-12-85 Drill				_							
OPERATOR	Δı.	~	\ \A							CONT	DACTOR						G NO.		
REPORT FO	<u>thoeni</u>	<u> بال</u>	للا	• 4	AS		-			REPOR	RIFUR	<u>q.b.</u>				SE	CT., TWNS	IP., RANGE	
	15.	aw	स	<u>9.</u>	Jac	<u>then</u>	an	•		<u> </u>	10-5	<u>3. &</u>	<u>ي(و</u>	C ADEA	OCT AT	E (D)	OVINCE		
WELL NAME	EAND NO.	lope	4 4	(FIEL	P	BLOCK	0 (CTY	PAR.OR)FFSI	HORE AREA	SIAI	E (7),			
DRILLING	1				CAS	SING		M	ND AOF	.UME (E	BBL)			CIRCUL	ATION	DAT	Α		
BIT SIZE	TYPE	JET S		SET (RFACI		FT.		OLE 25		ITS OO	PUMP SIZ	E 51	x & IN.		ANNU	JLAR VEL	. (FT/MIN) /40	
DRILL PIRE	TYPE	LENG	TH_	IN'	TERME	DIAT	E		L CIRC			PUMP MAI	Œ, MO	DEL ASSU	MED	CIRC	ULATION SURE (PSI)		
	TYPE	LENG	42 TH	SET (TERME	DIAT	FT.		DRAGE	WEIGH		BBL/STK	_	sŢĸ	MIN	BOTT UP (M	OMS	69	
DRILL COLLA	AR SIZE	LENG	TH	SET (© 7€		FT. JNER	MUD		00	در	<u>. 66</u> 7. s	<u>6</u> }	730		TOTAL CIRC.			
DRILL COLLA	A	LENG 26	8	SET (FT.		حد	pely	are	BBL/MIN	UDED.	GĀL/i TY SPECIFIC	/MIN THE (MIN) /2 3				
				·	IVI		OPERT		□F.L	Пот	WEIGHT			COSITY		TRA	TE		
SAMPLE FR							1800		06		9.0	-9.5	•	35-45		4	7 00.		
TIME SAMPL	LETAKEN						, 14	•	-7	# <u></u>		HORITY:							
DEPTH (ft)	DEPTH (ft)							2490			1	AUTHORITY: OPERATOR S WRITT							
WEIGHT 🔀	(ppg) [] (lb/cu.ft) 🗆 s	p. G		1	9.5	-	9.		PR	RODUCTS		τ		EATN	MENT		
FUNNEL VI			·, ·			ᅊ	40	,	4	-/		- · · ·		**					
PLASTIC VI	PLASTIC VISCOSITY cP @							9											
YIELD POIN	VIELD POINT (Ib/100ft²)						/2		/3	22	3								
GEL STREN	GTH (lb/10	00ft²) 1	0 sec./	10 min	•		5/	10	6/	14				,					
FILTRATE A	API (_{cm³} /3	0 min.)				-	6.	0	6.	0									
API HTHP F	ILTRATE ((_{cm³} /30	min.)	@		9F		,	•	-	<u> </u>								
CAKE THIC	KNESS (32	nd in. A	PI/HT	HP)	4.14	, .	2 /	32	12/	32	C	,							
SOLIDS CONT	ENT (% BY	Vol.) [CALC	D. 🗆	RETOF	RT .	9		0	,		1983 a 44			1				
LIQUID CON	NTENT (%	BY Vol.) OIL/	WATE	R ·	·	91/		9,	/ ::									
SAND CONT			· · ·				TK	<u> </u>	71	?	DEMAG	VC.							
METHYLEN	E BLUE CA	APACIT	∨ H ;	m³/cm	quiv. 13 mud						REMAR	00.		۸			01		
рн ⋤ ѕ	TRIP	☐ ME	TER	<u> </u>	<i>'</i>	%F	9. s		+	.0		حسينين	૾ૺૢ૽૿ૼ	nead	aa	a	2004	<i>usi</i> s	
ALKALINIT	Y MUD (Pr	m)					1.0	<u>, </u>	1 7	75	•	prev	unc.	ed pe	lym		40 3	yā/len	
ALKALINIT							·2/	,	1.//	/	ove	- la	*	24 H	45.			•	
ALTERNAT		NITY F	ILTRA	ATE (P	₁ /P ₂)						1				•				
CHLORIDE							200			200	1								
TOTAL HAR	RDNESS AS	CALC					18	<u>。</u> アる	3.		1								
		11	<u>/C</u>	<u>در</u>	<i>i</i> ·		40			91	1								
		***	040	zrav	re		40.	s 7 <u>.</u>	40	71_	1								
	7	7/	7:	ن ر	4		0 /		' 	7				EQUIPN	MENT				
PRODUCT	\ Dr) (U	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	و کو					-	но	JRS		HOU	RS		HOURS	
INVENTOR		· 1		1.50	/ ~	1	/	\leftarrow	/		 								
STARTING INVENTOR	y 36	480	64	7-	5	28		<u> </u>			Centrifu	ige No	<u>(</u>	Desilter	24	-	H. S. Cent. Super		
RECEIVED						<u> </u>		<u> </u>			Degass	er O	N	Shaker	24		Cyclone		
USED LAST 24 HR.	20		2	,	2	5					Desand		4_	Other	10::::	-	/		
CLOSING INVENTOR	v 16	480	62	6	3	23					DAILY	105T			d d	_	IVE COST	.	
COST LAST 24 HR.	780		72	330	12	195	•				1 2	1387	. 00	·	4	39	,		
MAGCOBA	PENGINE	ER	N	Λ	<u>~~</u>	•		НО	ME ADI	ORESS	Fold	(iv	7			PHO	NE 316.	2)8	
MOBILE UNIT								WA	WAREHOUSE LOCATION					PHONE					

OPERATOR

	DRILLING MUD REPORT NO. 2	3
	DATE 8-1 - 19 86	DEPTH 2562
T		NT ACTIVITY
NTRACTOR		RIG NO.

MAGCOBAR GROUP	s. Inc.		ſ		ID DATE	7-12-5	of D	Q.		
OPERATOR A	O . 6			CONT					IG NO.	
Phoen in	Dr ECT	91		REPO	RT FOR	<u>, ۷-></u>	•	S	ECT. TWNSH	P., RANGE
9. Jacker	nan			İ	\\\\	رح	sec.			7
WELL NAME AND NO.	开1	FIELD	RBLOCK	NO.	CTY, PA	R.OROFFSI	HORE AREA	STATE	ROVINCE	
DRILLING ASSEMBLY	CASING	N	NOD VOL	UME (E	BBL)		-/ -			
BIT SIZE THE JET SIZE	SURFACE					APSIZE >	NE S'IN.	DP_	10 DC.	150
DRILL PIPE TYPE _ LENGTH	INTERMEDIAT	E TOT	AL CIRCL	LATIN	IG VOL. PUM		DEL ASSU	MED CIRC	ULATION SURE (PSI)	290./
DRILL PIPE TYPE LENGTH	INTERMEDIAT	E INST			IT BBL	/STK	STK	MIN BOT	TOMS /	
DRILL COLLAR SIZE LEMSTH		LINER MUD		0.0		7.8	37	TOT	AL CIRC.	2
13/4/7 208	SET @ MUD PE		KEL	127	IBBL MU	D PROPER		VIIN I		
SAMPLE FROM			□F.L	□ріт	WEIGHT				TE	
					9.0-	9.5 3	5-45	-	700	
		71				· I		1	RILLING CONTRAC	TOR
DEPTH (ft)		2526	> 25			o	PERATOR 5 REPRES	ENTATIVE L		
DPERATOR OPERATOR REPORT FOR SECT, TWISHR, RAN WELL NAME AND NO. DRILLING SESSMELY CASING MUD VOLUME (BBL) DRILLING SESSMELY CASING OPERATOR OPER										
FUNNEL VISCOSITY (sec./qt.) API @	%=	3.9	4	1	Son	ر	17. W	PM		
	٥Ę	11	1 1	2	idy	<u>ک</u>	<u>ω</u>	- 1		
	0	16/12	+ <	<u> </u>	3004	, 6 00	<u>س ،</u>	× WU		
	o min.	4/12	6.	<u> </u>						
	a 9=		<u> </u>	_		. •				
		1/30	2/	/32 -		·	2 -	· -		
						· .				
		91/	91/	/						
- ,	3 4 4 4 1	10	TR	1.0						
METHYLENE BLUE CAPACITY Cr	/bbl equiv. n³ /cm³ mud		-		REMARKS		~~~	- 	bit	
PH STRIP METER @	প প	9.5			7.0		6 m	5. 80		
ALKALINITY MUD (Pm)			•	<u>B_</u>	Ku	_ (8. 1-			
ALKALINITY FILTRATE (Pf/Mf)	•	<u>- / /· 🎖</u>	. 2/	: 7	are	ر، حب				
ALTERNATE ALKALINITY FILTRA	TE (P ₁ /P ₂)	<i></i>	1							
CHLORIDE (mg/L)		2000	1 -							
	ng/L)		8							
KCC		<u>ه/ د</u>	47	,						
			1 3//	<u> </u>						
- /3 /X /vY	, , , , ,		/ / /	7			EQUIPN	/ENT		
PRODUCT INVENTORY	/ / /					HOURS		HOURS		HOURS
STARTING SE 16 949					Centrifuge	ne-	Desilter	14	H. S. Cent.	
					Degasser		Shaker	14	Super Cyclone	
USED LAST S 16 75					Desander		Other	_		
CL CCUNO					DAILY COS	ST .	<u> </u>	CUMULA	TIVE COST	
COSTINGT		 	_		\$1049.00 \$40,149.81					81
MAGCOBAR ENERNEER								ONE -	70:	
Aman L	المعض	- w	AREHOU	SE LO	ATION	ردي		PHO		78

OPERATOR

	DRILLING MUD REPORT NO	. 24		
D			DEPTH_	2608
		PRESE	NT ACTI	VITY
	SPUD DATE 17-12-85	Lo	SSIN	5
TRACTO	5		RIG NO	_

MAGCOBAR GROU		- 1-			/7 /7	. I .	SENT ACTIVITY	Y			
Dresser Industri	es, inc.			<u></u>		SPUD DAT	E17-12-	25	-OGGING		
OPERATOR Phoenis Q	1 & GAS				RACTOR	G.D.	<u>S.</u>		RIG NO. 2		
REPORT FORG. Jacky	^^^			REPOI	RT FOR	B. F	swler		SECT, TWNS	HP, RANG	
WELL NAME AND NO.	s #1	FIELD	OR BLOCK	NO.	CTY.	PAR.OROF	FSHORE AREA	STAT	E/PROVINCE		
DRILLING ASSEMBLY	CASING		MUD VOL	UME (E	BBL)		CIRCU	LATION	DATA		
BIT SIZE TYPE JET SIZE	SURFACE SET @	FT.	HOLE	1	ITS F	PUMP SIZE	52× 8 IN.	1	ANNULAR VEL		
DRILL PIPE TYPE LENGTH	INTERMEDIA	TE TO	در و TAL CIRCU O7/	JLATIN		OMP MAKE	MODEL ASS	UMED	CIRCULATION PRESSURE (PSI		
DRILL PIPE TYPE LENGTH	SET @ 150 INTERMEDIA SET @ 900		STORAGE			BBL/STK		K/MIN I	BOTTOMS UP (MIN)		
DRILL COLLAR SIZE LENGTH	PRODUCTION OR		ID TYPE					į.	TOTAL CIRC.		
	SET @ MUD P	FT. PROPERTIES	KCL S	100	ymer		GAL PERTY SPECIF	/IVILIN I			
SAMPLE FROM		□F.L □PI		□ріт	WEIGHT	• -	VISCOSITY	FIL	TRATE		
TIME SAMPLE TAKEN		1700	06	30	90.	9.5	35-45	-	27cc.		
		87	9	74	BY AUTI	HORITY:	PE OPERATOR S WRIT	TEN	DRILLING CONTRA	ACTOR	
DEPTH (ft)	, i.e.	2580	260	8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OPERATOR 5 REPR	ESENTATIVE			
WEIGHT [] (ppg) [] (lb/cu.ft) []	Sp. G	9.4	9.	4	PRO	DDUCTS		TR	EATMENT		
FUNNEL VISCOSITY (sec./qt.) API	@ ° F	41	4								
PLASTIC VISCOSITY cP @	% F	11									
YIELD POINT (lb/100ft²)	/10 min	1+	20								
GEL STRENGTH (lb/100ft²) 10 sec	/10 mm.	4 / 1 <u>2</u>		8/21							
API HTHP FILTRATE (cm ³ /30 min.)	.) @ %F	2.0	- 0.	-							
CAKE THICKNESS (32nd in. API/F	-,	2/32	2/	32							
SOLIDS CONTENT (% BY Vol.) CAI		9				• [-1]		•			
LIQUID CONTENT (% BY Vol.) OI		91/	91/	<u>,</u> /::::		.3%					
SAND CONTENT (% BY Vol.)		7K	TH			1 1 44 27	. D. 1985 18	j* -			
METHYLENE BLUE CAPACITY	lb/bbl equiv.			taka	REMAR						
PH STRIP METER	a set of the set of th	9.5	10	٠0	Dulling ahead to 2608m.						
ALKALINITY MUD (Pm)		- 8		8	7.5	ර. න	aprox	24	1.00 HRS	•	
ALKALINITY FILTRATE (Pf/Mf)		.2/.8	1 .2/	· 8	8-	-1 - 86	` `				
ALTERNATE ALKALINITY FILT	RATE (P, /P,)	+	+		w :		P.O. O. L		Run to		
CHLORIDE (mg/L)		20 000	16	000	7	-	(, , , , , ,	`, '	run +o	· 35 ·	
TOTAL HARDNESS AS CALCIUM	(mg/L)	70		٥_							
	-CL	2.0%	6 1	5 %							
/\o\/ \y	:u/ /	 	/ /				EQUIP	MENT			
PRODUCT INVENTORY STARTING			///			HOUR	11	HOUF	RS	HOURS	
STARTING NVENTORY 23 7 64					Centrifug	ge N14	Desilter	18	H. S. Cent.	_	
RECEIVED					Degasse	r ON	Shaker	18	Super Cyclone		
USED LAST 24 HR. 10 / 1					Desande	er 18	Other	18			
CLOSING 13 6 63					DAILY		CUMULATIVE COST				
COST LAST 390 330 361				\$756.00 \$40,905.8							
MAGCOBAR ENGINEER	Dolsson		HOME ADDRESS Gold Cooch PHONE 3/6							1)8	
-4T		lv.	MAREHOLI	5年 しつぐ	ATION			1	PHONE		

52001

BIT RECORD

WATER SOURCE: FUEL SOURCE: MO. | DAY | YEAR T.P. DRILLERS: TOTAL ROT. HRS.: T.D.: TOTAL DAYS: INTER.: sPUD: U.S.: 0.D. X 1.D. X LENGTH × | | | | DRILL PIPE: T.J. TYPE: ROCK BIT COMPANY
A Baker International Company
P. O. BOX 2119, HOUSTON, TEXAS 77001 DEPTH & H.P. RATING: PUMP MAKE 1: PUMP MAKE 2: DRAWORKS: MUD TYPE: ¥. COUNTY DEP. 10 DIZ ILLIMGS ETZVIECES GIELD: H.L.; GENEHMET DIZI GREEWSLOWES VICTOTE IA E NO.

REMARKS (FAILURE, MUD, ETC)						-	REALMOD							
υ OND.			5. I	1/2	J-1	×2,	%	3	2/2	3				
DULL COND			2,	5 2	ند. در	2 4	2 3	6 3	19	7				
<u>si</u>	,	1		3		38	39	38	43 6	16				
M Y Y	,	5		17	6 9,5 35	9.6	4.6	5,6	95	94 96				
N Z	ن.	ي.	,		79									
N N N N N N N N N N N N N N N N N N N	125	135	1		160									ļ
- <u>- </u>	.9	9	2/2	3.72		2/5	9	1/3	5/2	110 5/2				
N N M M M M M M M M M M M M M M M M M M	100	95	110	ira	-	118	811	811	<i>Q</i>	110				
PUMP PRESS.	go	240095	1750 110 5/2	1800 11g 5/2	20 5c	1950 118	1/2 2050 118	Z100 118 52	6, 90 3 14 2300 110 512	Zeer				
VERT. DEV.	0	Ð	20	0/) c	1/20	1/2	/2	3/4	100 500				
MPM	7./2	140	07.1	22/2	100	100	100	100	90	1010				
WT. 1000 LB.	15,	5/15	07.1 3.2/51	16/2	125100	001 52/	15 100	20/ 122	28/	25				
ACCUM. HOURS			,											
HOURS	7	29 1/2	34/2	29	16	45 1/2	/3	741	19	22/2				
POOTHUE !	33	768	126	287	112	27/ 45/2	120	/ 2h]	263	6.7				
DEPTH F	133 133	. 10	27 1	14	97,	197	/3/	711 Lh 1 8122	541					
ä	,	6	13	16	"	6/	2	N	X	26		ļ	ļ	-
BIT SER, NO.		168385 901 768 29/2	90683 1327 426 342	8/2 REED HP1359 9 9 X71769 1614 287 29	5 8 1/2 REED 5219 9 9 9 HAH 343 1726 112	1997 Para FRIA 9 9 9 LM5947 1997	7 8/2 Reas 1251A 9 9 9 547341 2131 120 13	8 81/2 Rees 5214 9 9 4 NAM 627	8 1/2 REED 1705/A 9 9 9 JH 7364 2541 263 61	W55311 2608				
o Ni	3/	13	6	0	5	2	6	6	<u>c-</u>	6 6				
JETS-32ND	17	13	6	9	2	5	6	0-	3	5		-	-	-
TYPE -	17 1/2 Rices 137 1/6 1/6 1/6	12/4 REED SIIJ 13 13 13	8/2 Rep FP127 9 9 9	P.1359	6 5/2	P 812.5	2514 9	214 9	2 4129	77/6 REED HPSIA 9				-
MAKE T	1 023	502	Sep Fi	Haz	E 5 5	TED F	A A A	eeb 5	(det)	ZED H				
	1/2 12	1/4 12.	7 2	2 73	2 X	7 7 7	\ \\ \(\times \)	1/2 R	1,2	1/2 ×		+-	+	+
UN SIZE	11	12,	3 8 1		1,00	X	18/2	8	3					