

FINAL WELL REPORT
ESSO AUSTRALIA PETROLEUM CO.
TERAKIHI No.1
GIPPSLAND BASIN
APRIL 1990

ATTACHMENT TO WER VOLI TERAKIHI-I WI025

22 JUN 1990

FINAL WELL REPORT

ESSO AUSTRALIA PETROLEUM CO.

TERAKIHI No.1

GIPPSLAND BASIN

April 1990

bу

EXPLORATION LOGGING Australia LTD.

CONTENTS

ī.	INTRODUCTION	page
	a. Well and Rig Data	1
	b. Prognosis	2
2.	DRILLING AND ENGINEERING	
-	a. Well History	3
	b. Bit Optimisation	6
	c. Hydraulics Optimisation	7
	d. Borehole Condition	8
3.	PRESSURE EVALUATION	
	a. Formation Fracture Pressure	11
	b. Formation Pore Pressure	11
4.	GEOLOGY AND SHOWS	13
5.	TESTING AND EVALUATION	
	a. Wireline Logs	16
	b. Coring	16
	c. Testing	17
6.	DATA INVENTORY	18
7.	CONCLUSIONS	19

APPENDICES

A. TABLES

Table	Contents
1	Casing and Cementing Data
2	Drilling Fluid Properties
3	Bit Data
4	Hydraulics Data
5	CST Headspace gas analysis
6	RFT pressure data.

B. DATA PLOTS

i.	Drilling Data Pressure Plot	1:2500
ii.	Temperature Data Pressure Plot	1:2500
iii.	Pressure Evaluation Plot	1:5000
iv.	Drilling Data Printout	
v.	Drill Data Plot	1:2500
vi.	Drill Cost Plot	1:2500

C. ENGINEERING DATA

- i. Daily Geological-Engineering Reports
- ii. Weekly Geological-Engineering Reports
- iii. Hydraulics Printouts

D. CORE DESCRIPTIONS

E. FORMATION EVALUATION LOG

1. INTRODUCTION

A. Well and Rig Data

Operator:

ESSO Australia Ltd.

Well Name:

Terakihi No.1

Location:

Offshore Gippsland Basin,

Bass Strait Victoria

Position:

Lat: 38° 30′ 20.70″ South Long: 148° 32′ 43.23″ East

Field:

Exploration

Permit:

VIC/P24

Rig:

Southseas "Southern Cross"

Semi-submersible

RKB - MSL:

21 metres

RKB - SB:

424 metres

Spud Date:

30th March 1990

Total Depth:

3040 meters

Completion Date:

21 st April 1990

Completion Status:

Cased and suspended

Exlog Unit:

244, GEMDAS X

Crew - Gemdas:

M. Sale, D. Thornton, D. New,

D. Marburger

Logging:

H. Naim, A. Thangam, M. Orr,

D. Marburger

Tritium:

D. Rozendaal, G. Norton.

B. Prognosis

Terakihi-1 was a wildcat exploration well drilled 20.0 km to the west-north-west of the Mackerel platform in the Bass Strait by the semi-submersible drilling rig "Southern Cross". The well was programed to reach a total depth of 2971m (RKB) and to take 39 days from spud to the rig release date. The closest wells are Hapaku-1 (5.0 km to the south-south-east), Blackback-1 (5.0 km to south-east), Volador-1 (9.0 km to the north) and Mackerel-1, 9.0 km to the north.

Terakihi-1 was proposed to evaluate the hydrocarbon content of an erosional remnant mapped at the top of the Latrobe Group and sealed by the Lakes Entrance Formation. Thus, the primary targets were the top Latrobe sands.

Exploration Logging provided a Geological Engineering Monitoring and Data Acquisition System (GEMDAS) service from spud, with Formation Logging and Pressure Evaluation services on Terakihi No.1 from the start of the 12.25" hole at 1141m to total depth. Continuous evaluation of pressures and drilling progress from real time data will provide an aid in optimising drilling costs and ensure drilling continues with maximum safety to personnel, the well and equipment.

The operator was continuously advised as to the status of these analyses. The printouts and plots of the results and services are contained in the appendices of this report.

2. DRILLING AND ENGINEERING

a. Well History

Terakihi No.1 was spudded on the 30th March 1990 at 06:30 hours by the semi-submersible drilling rig "Southern Cross". All depths unless otherwise stated are in metres along hole below the RKB. RKB to mean sealevel was 21m and RKB to seafloor was 424 metres (sea depth 403 metres).

26" Hole Section: 424 to 551 metres.

After ballasting the rig to drilling depth, the TGB was run to the seafloor, due to a considerable angle, it was pulled and a section of 13.375" casing welded to it to aid in stability.

NB#1, a HTC R1 26" run with a 26" hole opener, spudded Terakihi No.1. This bit drilled to 551m, a distance of 127m in 3.3 hrs at an average rate of penetration of 38.5 m/hr. The drilling fluid was seawater with Hi Vis sweeps being circulated on each connection. At 551m the hole was swept with a 100 bbl Hi Vis pill, a survey dropped and the bit tripped to the seafloor. The bit was tripped back to bottom with no fill and a 250 bbl Hi Vis pill was spotted, three stands pulled and another 250 bbl Hi Vis pill spotted, and the bit pulled to run casing.

Casing (10 joints of 20", X52, 94 ppf) was run with the shoe set at 540m. The casing was cemented with 750 sx class "G" cement at 13.2 ppg followed by 600 sx class "G" cement with 1.15% CaCl at 15.8 ppg.

17.5" Hole Section: 551 - 1141 meters

After running the marine riser and BOP stack, the 17.5" BHA and NB#2, a HTC X3A, was run in the hole to the top of cement at 533m. The cement and shoe were drilled to 551m and new hole drilled to 1141m with no problems. At 1141m, bottoms-up was circulated, and a survey dropped (dev = 0.25° at 1141m). A 100 bbl Hi Vis slug was pumped around the hole to sweep the riser, and a slug pumped prior to pulling out of the hole to the shoe, where the survey barrel was retrieved. The bit was then run back to bottom with no fill being recorded. Bottoms-up was then circulated to condition the mud and a slug pumped prior to pulling out of the hole to run wireline logs. Wireline logs were then run (BHC-GR-Cal) without problems. The bit made 590m in 11.1 hrs (on-bottom) with an average rate of penetration of 53.2 m/hr, and was graded T2 B2 G0.

Casing (60 joints of K55, 54.5 lb/ft, 13.375") was then run with the shoe set at 1124m. The casing was cemented with 1000 sacks of class "G" cement at 15.8 ppg.

After testing the BOP's, NB#3, a Hycalog PDC DS40, was run in and drilled cement and the shoe track from 1100m. New hole was drilled to 1144m where bottoms-up was circulated and a leak-off test performed. With a gauge pressure of 1300 psi, this gave a fracture pressure of 16.0 ppg EMW.

Drilling continued with NB#3 from 1144m to 1214m where returns were circulated, a survey dropped (dev = 0.5°) and the bit tripped due to low rate of penetration. No overpull was recorded during the trip out. NB#3 drilled from 1141m to 1214m, a distance of 73m, in 5.7 hrs at an average rate of penetration of 12.4 m/hr and was graded 10% worn. The lithology was limestone grading to calcareous claystone.

NB#4, a HTC ATJ1 12.25" was run in the hole with no problems and no fill. Drilling continued at rates of penetration varying from 10 to 30 m/hr to 1774m where the bit was tripped due to high bit hours and a low rate of penetration, having drilled 560m in 33.9 hrs at an average rate of penetration of 16.5 m/hr. The bit was graded as T3 B3 G0. The lithology was limestone, occasionally grading to calcareous claystone. Tight hole was recorded on the trip out, with up to 80 klb overpull being recorded from most stands to the shoe.

RRB#3, a Hycalog PDC DS40 12.25" bit was run in with no problems. Drilling continued through the Gippsland Limestone to 2273m at rates of penetration ranging from 10 to 40 m/hr. At 2273m a Hi Vis pill was circulated, a survey dropped (misrun) and a 20 stand wiper trip made with no hole problems. Drilling then continued through the Gippsland Limestone at rates of penetration varying from 10 to 25 m/hr to 2475m where the rate of penetration increased to over 30 m/hr marking the top of the Lakes Entrance formation. At 2506m the Seawater-gel mud system was displaced with a KCl-Polymer mud system. Drilling continued through the calcareous claystones of the Lakes Entrance Formation at rates of penetration varying from 20 to 50 m/hr. At 2841m the rate of penetration increased to over 60 m/hr and a flow check was made at 2844m with no flow. This drilling break marked the top of the Latrobe Group, the primary target, and bottoms-up was circulated with a maximum gas of 16% (800 u) and C1-C5 being recorded. Based on this it was decided to core, and a wiper trip was made to the shoe with overpull of up to 100 klb being recorded from the interval 2776m - 2498m on the trip out. The bit was run back to bottom with no problems and bottoms-up circulated with a trip gas of 64u (1.28%) recorded. The bit was then pulled with no hole problems. RRB#3 drilled from 1774m-2844m, a distance of 1070m in 41.2 hrs (on-bottom), at rates of penetration varying from 10 to 60 m/hr and averaging 26 m/hr.

CB#1, a Christenson RC476 12.25" (rerun from a previous well and graded at 20% worn), and the core barrel were picked up and run in the hole with the interval 2830m - 2844m being reamed on the way in. Bottoms-up was circulated, the ball dropped, and Core-1 was cut from 2844m to 2862.5m (18.5m) in 1.4 hrs at an average rate of penetration of 13.2 m/hr. Tight hole was noted from the first two stands of the trip out with a maximum

overpull of 100 klb. It was not possible to pump a slug resulting in a wet trip. While breaking out the core barrel, it was discovered that the top joint of the inner fiberglass sleeve had become jammed in the outer barrel and had broken off at both the top and bottom. Both sleeves were layed down and 12.6m (68%) of sandstone recovered. As there were indications of hydrocarbons in the bottom of the core it was decided to continue coring.

The core barrel and RRCB#1 were run in the hole to 2805m and the interval 2805m - 2862.5m reamed with tight hole being noted at 2839m. Bottoms-up was circulated with a trip gas of 110 units (2.2%) and the ball dropped. When the ball seated the pump pressure surged to 2000+ psi before returning to normal. It is likely that the fiberglass sleeve was jammed against the outer barrel and that this pressure surge burst the sleeve. Core-2 was then cut from 2862.5m to 2881m, a distance of 18.5m, in 1.7 hrs at an average rate of penetration of 10.9 m/hr. Tight hole was again noted on the trip out and it was necessary to pick up the kelly and backream from 2881m - 2788m. This tight hole may have been due to cuttings packing off round the BHA as the annular velocities while coring were low. The core sleeves were layed down (the top sleeve was broken about 5m from the top) and 9.9m (53.5%) of sandstone recovered.

The BOP's were tested and NB#6, a Smith F27D, picked up and run in the hole to 2800m where the kelly was picked up and the interval 2800m -2881m reamed/washed to bottom. Drilling continued through the sandstones of the Latrobe Group at rates of penetration varying from 60 to 2 m/hr. The torque seen on this bit run was erratic and often very high and the bit had to be pulled up and worked back to bottom on many occasions. At 3040m TD was reached, bottoms-up circulated, and a 10 stand wiper trip made with only minor overpull being noted on the trip out. Bottoms-up was again circulated, a survey dropped (misrun) and the bit pulled to run logs. NB#5 drilled 159m in 15.4 hrs (on bottom) at an average rate of penetration of 10.3 m/hr.

Wireline logs were then run as follows:

Run 1: DLL-MSFL-LDT-CNL-GR-Cal

Run 2: RFT (10 pressure points, 1 sample)

Run 3: RFT (Two samples)

Run 4: BHC-GR-Cal

Run 5: SHDT

Run 6: WST

Run 7: CST (Shot 30, recovered 27)

On the basis of core and log data it was decided to case and suspend the well and RRB#6 was picked up and run in the hole for a wiper trip. The interval 2995m-3040m was reamed/washed on the trip in and a 100 bbl Hi Vis pill circulated with common small, blocky to platy, cavings (possibly from the Latrobe Group) being noted on bottoms-up. The kelly was rat-holed and an attempt made to pull out of the hole. This was not possible due to the BHA packing off and the kelly picked up and a 200 bbl Hi Vis pill circulated. Common fresh platy cavings (also from the Latrobe Group) were noted on bottoms-up. The hole instability did not appear to be due to overpressuring as the

cavings were fairly small and were not curved. It is possible that the Latrobe Group siltstones are microfractured as this would produce the type of cavings seen. A wiper trip was then made to 2450m with the kelly being used to pump out singles over the interval 3010m - 2995m on the trip out and the same interval being reamed on the trip in. A 90 bbl 15.3 ppg pill was circulated and the bit pulled with the interval 3010m - 2995m being worked on the trip out.

Casing (222 joints of 9.625", N80, 47 lb/ft) was then run and cemented with the shoe at 3001m. The wellhead was then secured and the rig released.

B. Bit Optimisation

Bit performance was continuously monitored and the operator advised of cost performance, rate of penetration, torque and formation changes. Cost analysis was performed on the basis of bit cost, rig cost and an average tripping speed and are a guide only. A plot of the results and a bit record can be found in the attached appendices. No bits were pulled purely on a cost basis.

The 26" hole section was drilled with a Reed R1 (IADC 111), rerun from the previous well, a distance of 127m, in 3.3 hrs, at an average rate of penetration of 38.5 m/hr and was graded at T1 B1 G0 and could be rerun. The bit was pulled to run 20" casing.

The 17.5" hole section (a distance of 590m) was drilled with NB#2, a HTC X3A. The bit run was 11.1 hrs through argillaceous limestones of the Gippsland Limestone at an average rate of penetration was 53.2~m/hr. The bit was pulled to run 13.375" casing and was graded T2 B2 G0.

The 12.25" section was drilled with 1 tooth, 1 PDC bit (run twice), 1 rerun core bit (also run twice) and 1 insert tricone bit. This 1899m section was drilled in 99.3 hrs at an average rate of penetration of 19.1 m/hr.

NB#3 was a PDC DS40 12.25" bit which drilled the shoe and 73m of new formation in 5.7 hrs at an average rate of penetration of 12.8 m/hr. The bit was in good condition when pulled and the low rate of penetration may have been due to the formation (limestone) being too soft for this type of bit and it is suggested that this type of bit would be more suited to the slightly firmer mid-Gippsland Limestone.

NB#4, a HTC AT-J1 was then run and drilled from 1214m to 1774m, a distance of 560m, in 33.9 hrs at an average rate of penetration of 16.5 m/hr. The bit was pulled at 1774m due to a decrease in rate of penetration and high bit hours. This bit

suited the unabrasive limestone through which it drilled and was graded as T2 B4 G0.

RRB#3, a Hycalog DS-40 12.25" PDC bit was run next and drilled from 1774m to 2844m, a distance of 1070m in 41.2 hrs (onbottom) at an average rate of penetration of 26.0 m/hr. While this bit was suited to the argillaceous limestones of the Gippsland Limestone and averaged over 23 m/hr it was ideal for the calcareous claystones of the Lakes Entrance Formation and drilled at an average of 34 m/hr through this formation. The bit was tripped at 2844m to cut core 1 and was 40% worn. Cuttings seen during this bit run were generally of good quality although smaller than those produced by a conventional bit. The rates of penetration seen during this bit run were not as dependant on lithology as those from a conventional bit would have been. However there was still enough variation in the rate of penetration for this to be used to determine changing lithology while drilling, for example at the top of the Latrobe the rate of penetration increased from 30-40 m/hr in the claystones to over 60 m/hr in the sandstone.

A Christenson RC476 core bit was run next and cut Cores #1 and #2 from 2844m to 2881.0m (37.0m) in 3.1 hrs at an average rate of penetration of 11.9 m/hr with only. The bit, which was rerun from a previous well was graded as 20% worn prior to the start of coring and 45% at the end. Most of the bit wear appears to have been caused by cemented sands seen in the second core.

NB#6 was a Smith F27D and drilled through siltstones and abrasive sandstones of the Latrobe group and was pulled at 3040m (TD) to run logs. This bit drilled 159m in 15.4 hrs (on bottom) at an average rate of penetration of 10.3 m/hr. High and very erratic torque, frequently causing the rotary table to stall out was seen while drilling with this bit. Wireline logs indicated that this section of hole was exactly in-gauge and the torque may have been caused by the stabilizer hanging up in tight hole.

C. Hydraulics Optimisation.

Hydraulic analyses were provided for ESSO Australia on a daily basis and as required. Results of these analyses are provided on the daily Gemdas report and on selected hydraulic printouts in Appendix D.

The Southern Cross was equipped with two Oilwell A-1700PT triplex pumps (12" stroke) fitted with 6.5" liners to give a 5.00 gal/stk output at 97% efficiency for Terakihi No.1.

The 26" hole section was drilled with seawater and high-viscosity sweeps. This along with moderately high annular velocities, ensured adequate hole cleaning through this interval. The hole was displaced with high viscosity mud prior to running casing and the riser.

The 17.5" section was drilled with seawater and high-viscosity sweeps on every second connection with flow rates of around 950 gpm. These flow rates were sufficient, with the Hi Vis sweeps, to keep the hole clean but low enough to prevent any serious hole washout. As native low gravity drilling solids began to increase the mud density, the sand traps were dumped every connection and water was added constantly to maintain mud weights at around 9.3 ppg. Bit hydraulics through this section were generally good, with a jet impact force of 7.6 lb/sq" and a hydraulic power of 800 hp.

The 12.25" section to 2500m was drilled with seawater-gel mud system with native clays from the formation being used to maintain viscosity. At 2500m the mud system was converted, while drilling, to a KCl-Polymer mud and this system was used to TD. Mud weights increased from 9.2 ppg at 1144m to 9.5 by 1774m and then remaining at around 9.5 -9.6 ppg. to TD .

Moderately high flow rates (750 to 800 gpm) were used in this hole section (apart from while coring) giving annular velocities of 50 ft/min in the riser and 220 - 230 ft/min at the drill collars. These appeared to be sufficient to keep the hole clean as no fill was noted after trips. While coring flow rates were only 220 gpm, resulting in low annular velocities (only 14 ft/min in the riser) and hence inefficient cutting removal. This probably contributed to the cutting packing off round the BHA and the tight hole seen after each core. Critical velocities at the collars were estimated to be 300 ft/min with the seawater-gel mud and 400 ft/min (Power law model) with the KCl-Polymer mud. Thus the flow regime was probably laminar throughout the system and hence hole washouts were kept to a minimum. This was verified by carbide data which indicated that the hole above 2500m was either in-gauge or slightly undergauge but that below 2500m some washouts were occurring, mainly in the sands of the Latrobe Group.

Nozzles sizes and flow rates were chosen to give as near optimal bit hydraulics as possible while keeping the pump pressures below 3000 psi. On the first run with the PDC bit 3x13 and 2x15 nozzles were used resulting in a hp at the bit of only 3.7 hp/sq in. This comparatively low hp may have contributed in part to the low rate of penetration seen on this bit run. For the remainder of the 12.25" hole (apart from the cored interval) bit hydraulics were near optimal resulting in good penetration rates.

D. Borehole Condition

The borehole condition was monitored during drilling and tripping by observing the overpull or drag associated with tripping and connections which would indicate tight hole or other problems. Torque measurement was also utilised as an aid in bore hole analysis. Carbides were run periodically and the average open hole size for an interval calculated on the return

of the maximum gas peak. Wireline caliper logs were looked at to pin point major hole washouts occurred and to correlate these if possible with lithology.

No hole problems were seen while drilling either the 26" or 17.5" hole sections. Maximum deviation was 0.5° in the 26" hole and 0.25° in the 17.5" hole.

Hole problems in the 12.25" hole section above 2800m were generally restricted to tight hole, with up to 100 klb overpull, on the first trip through a newly drilled section. This was generally attributed to the slight hydrating and swelling of the clays in the Gippsland Limestone and Lakes Entrance Formations. On both trips out of the hole with the core barrel the BHA was initially packed off and up to 100 klb overpull was recorded. This was probably due to the low flow rates and annular velocities used while coring being insufficient to remove the cuttings and lost core from the hole.

Hole problems were also noted on the wiper trip after logging with the interval 2995m to 3040m was reamed/washed on the trip in. A 100 bbl Hi Vis pill was circulated at 3040m with common small blocky to platy cavings (from the Latrobe Group?) being noted on bottoms-up. The kelly was rat-holed and an attempt made to pull out of the hole. This was not possible due to the BHA packing off and the kelly picked up and a 200 bbl Hi Vis pill circulated. Common fresh platy cavings (also from the Latrobe Group) were noted on bottoms-up. The hole instability did not appear to be due to overpressuring as the cavings were fairly small and were not curved. It is possible that the Latrobe Group siltstones are microfractured as this would produce the type of cavings seen. A wiper trip was then made to 2450m with the kelly being used to pump out singles over the interval 3010m -2995m on the trip out and the same interval being reamed on the trip in. A 90 bbl 15.3 ppg pill was circulated and the bit pulled with the interval 3010m - 2995m being worked on the trip out.

Torque was often high and erratic while the PDC bit was being run. This was thought to be due to either the action of the cutting surfaces on the formation or the stabilizer hanging up in in gauge or rugose hole. From 2881m to 3040m very high, erratic, torque was recorded, frequently causing the rotary table to stall out necessatating the bit being pulled up and worked back to bottom. This tight hole may have been due to the stabilizer hanging up in in gauge hole however the nature of the cutting seen while circulating Hi Vis pills after logging indicates that the silstones of the Latrobe may be microfractured. If this were the case then the high torque may have been produced by the action of the bit on the fractures rather than the stabilizer.

Carbides run at 1525m, 1755m and 2206m indicated that the hole was undergauge with a minimum diameter of 10.8" at 1755m. Carbides and other lag data indicated that below 2200m the hole was washedout to a maximum of 13.0" at 2598m.

Hole deviation varied from 0.5° at 1214m to 2.75° at 1774m and 2844m to give a true vertical depth of 3038.26m at TD (3040m). No doglegs were present and no problems from keyseats etc were noted.

3. PRESSURE EVALUATION

A. Formation Fracture Pressure

Formation fracture pressures were calculated during drilling and recorded in the daily reports (Appendix C). Plotted data can be found in Appendix B (iii). Offset well data from Blackback No.1 was used in the calculation of an initial overburden gradient for the well. Once density data became available from logs the overburden gradient was recalculated and this data used to determine the final fracture gradient.

One formation integrity test was performed as follows:-

Hole Depth	Hole Size	Casing Shoe (m)	Mud Dens (ppg)	Fracture Press; EQMD(ppg) PSI;
1144	12 "	1124	9.2	16.0 3062

Data from this test and the estimated overburden gradient was used to determine fracture pressures while drilling and the results of these calculations reported to the operator each morning or as required.

No significant downhole mud losses were recorded while drilling Terakihi No.1. The minimum estimated fracture pressure in the 12.25" hole section was 16.0 ppg EMW at the 13.375" casing shoe this was significantly higher than the maximum equivalent circulating density of 9.8 ppg and mud losses due to hydraulic fracturing were therefore considered unlikely.

B. Formation Pore Pressure

Formation pore pressure indicators were monitored on a continuous basis while drilling and pore pressure estimates were reported to the operator daily, or whenever significant variations were encountered. Plots of the relevant pore pressure indicators are available in Appendix B (iii).

The 26" hole was drilled with returns to the seafloor and therefore no meaningful pressure analysis is possible for this section (424m - 551m).

Connection gas were encountered from 551m - 700m whilst drilling with 8.7 ppg mud indicating that the pore pressure may have increased slightly to 8.6 - 8.7 ppg EQMD, which is within the region expected from a salt water pressure gradient. The origin of this gas is thought to be from a biogenic window within the Gippsland Limestone. By 700m mud weight increased to 9.3 ppg and no connection gas was encountered. Other indicators suggest that the pore pressure gradient remained normal in the 17.5" hole.

Pore pressure through the 12.25" hole section appears to have remained normal at 8.5 ppg EMW. The most reliable pressure indicators through this section were gas values, which was

generally low, and cavings which were generally only minor. While trip gasses of up to 64u were recorded the peaks were fairly sharp and gas values quickly returned to normal after bottoms up. The tight hole seen on trips and while drilling below 2844m was attributed cuttings packing off round the BHA and to the stabilizer hanging up in gauge hole and was not an indicator of increasing pore pressure.

The Dxc plot was of little value below 1774m due to the use of a PDC bit this depth to the top Latrobe. Below 2881m a conventional insert bit was used and Dxc indicated a normal trend.

Flowline temperature was damped and unresponsive due to heat loss in the riser and pits and was of little value in pressure detection. A gradual warming trend was noted to 2880m where both temperature in and temperature out showed a trend reversal and from 2880m to 3040m temperatures decreased. However delta T remained constant and this trend reversal was attributed to a decreasing ambient temperature at this time.

RFT's were run through the Latrobe sands and indicated that the formation was normally pressured at 8.35 ppg EMW and indicated a maximum formation pressure of 4048 psi at 2868.5m to give an extrapolated bottom hole pressure of 4292.4 psi. The RFT data indicates a near freshwater gradient for this well and hence a lower than estimated normal formation pressure gradient.

4. GEOLOGY AND SHOWS

Lagged cuttings samples were collected at 10m intervals from 1144-2600m, and then at 5m intervals to TD. Spot samples were also taken on all gas peaks or on bottoms up from significant drilling breaks to aid in lithological identification. All regular samples were packaged by EXLOG personal and distributed as per Esso's requirements.

A FID total gas detector, FID chromatograph, CO2 detector and H2S sensor were used to analyze all formation gasses and the results shown on the mudlog. A fluoroscope was used to check for liquid hydrocarbons. Gas values down to the top Latrobe at 2840m were generally low and no shows were seen. At 2840m a drilling break was noted and bottoms-up were circulated at 2844m with 800u (16%) gas being recorded from bottoms up. No fluorescence was seen in the mud or cuttings but the presence of C1-C5 in the gas indicated the possible presence of oil and two cores were cut. Good shows were seen in the top of the first core with up to 90% bright yellow white fluorescence with good cut being recorded (see appendix D: Core Descriptions). Gas values below the cored interval were low indicating that this interval was water saturated. Log analysis indicated 15m of gross pay over the interval 2840m - 2855m.

All depths below RKB :

RKB to Mean sea level RKB to Seabed

21m KB 424m GIPPSL. Lims

2475 M LAKES ENTRANCES

Returns to seabed until 551 metres

551 to 1144 metres NO SAMPLES REQUIRED

1144m to 1240metres

LIMESTONE: light to medium grey, calcarenite to calcailtite, soft to firm occasionally moderately hard, trace forams with common fossil fragments. Minor trace pyrite, trace foraminifera.

1240 to 1450 metres

LIMESTONE: medium to light grey, occasionally off white to medium brown, calculative to occasionally calcarenitic, slightly to occasionally very argillaceous, common micro and macro fossil fragments, common foraminifera, rare carbonaceous flecks, soft to occasionally firm, subblocky.

1450 to 1850 metres

LIMESTONE: medium to light grey and light grey brown to occasionally medium brown, calcilutitic-calcisiltitic, trace to occasionally common calcarenite, moderately argillaceous in part, trace foraminifera and fossil fragments, rare carbonaceous flecks, soft to occasionally firm, sticky, subblocky.

1850 to 2200 metres

LIMESTONE: light olive grey to medium grey brown, calcilutitic to calcisiltitic, moderate to common calcarenite, argillaceous in part, trace foraminifera and glauconite, trace pyrite and

carbonaceous flecks, soft to occasionally moderately hard, blocky to subblocky.

2200 to 2480 metres

LIMESTONE: light to medium grey, occasionally dark grey brown, calcisiltitic, common calcarenite, moderately to very argillaceous in part, trace glauconite and foraminifera, rare pyrite and carbonaceous flecks, firm to moderately hard, blocky to occasionally subfissile.

2480 - 2510 metres

Shakers being bypassed, no samples.

2510 - 2650 metres

CALCAREOUS CLAYSTONE: very light grey to medium grey to light olive grey, very calcareous, trace foraminifera and glauconite, rare carbonaceous flecks, rare medium to coarse subrounded quartz grains, soft to firm, sticky in part.

2650 - 2840 metres

CALCAREOUS CLAYSTONE: medium grey to medium dark grey, soft to firm, occasionally moderately hard, very calcareous, silty in part, trace carbonaceous/coaly detritus, trace diseminated pyrite and foraminifera, occasional fine clear quartz grains, blocky to subfissile.

Top Latrobe Formation at 2840m (RKB)

2840 - 2856 metres

Core 1: 2844m - 2862.5m

SANDSTONE: off white to light grey, clear to medium grey grains, loose to friable, medium to conglomeratic, dominantly coarse to very coarse, poorly sorted, subangular to rounded, no cement or matrix, trace lithic grains, very good visual porosity.

SHOWS: The sandstone has 70% to 90% bright yellow white fluorescence giving a fast streaming moderately bright cut fluorescence with a thick to thin ring residual. The core sample had a strong hydrocarbon odor.

Note: Fluorescence only seen in the core samples. No fluorescence was seen in the cuttings samples.

2856 - 2881 metres

SANDSTONE: off white to medium grey, occasionally medium brown grey, clear to dark grey grains, loose to occasionally hard, fine to conglomeratic, dominantly fine and very coarse (bimodal), poorly sorted, subangular to dominantly rounded, trace to occasionally common dolomitic and siliceous cement, trace calcareous cement in part, nil to trace brown grey argillaceous matrix, trace to common lithic grains, trace carbonaceous detritus and mica, rare glauconite and pyrite, fair to very good visual porosity.

SHOWS: The sandstone has trace to 10% dull white yellow to yellow green spotty fluorescence giving a very slow diffuse cut fluorescence and a very dull yellow green crush cut fluoresence with a faint thin ring residual. The core samples had a slight

to moderate hydrocarbon odor.

Note: Fluorescence only seen in the core samples. No fluorescence was seen in the cuttings samples.

2881 - 2950 metres
SANDSTONE: very light to light grey, clear to dark grey grains, friable to moderately hard, coarse to very coarse, conglomeratic in part, poorly to moderately sorted, subrounded to rounded, trace siliceous and dolomitic cement, trace arenaceous matrix, trace pyrite and lithic grains, fair to good porosity, no fluorescence.

2950 - 3040 metres (TD)

SANDSTONE: off white to medium brown grey, friable to moderately hard, fine to occasionally medium, moderately sorted, subangular to subrounded, common siliceous cement, trace dolomite cement, trace to occasionally common pyrite, trace glauconite and mica, very poor to poor visual porosity, no fluorescence, interbedded with

SILTSTONE, medium grey to medium brown grey, very argillaceous, arenaceous in part, dolomitic in part, trace to common carbonaceous flecks, trace nodular pyrite and glauconite, moderately hard, blocky.

5. TESTING AND EVALUATION

A. Wireline Logs

The following is a summary of the logs run on Terakihi No.1:

Depth	Hole Size	Logs Run
1141	17.5"	Run 1: BHC-GR-CAL
3040	12.25"	Run 1: DLL-MSFL-CNL-LDL-GR-SF-CAL Run 2: RFT Pretests/sample Run 3: RFT Sampling Run 4: BHC-GR-CAL Run 5: SHDT Run 6: WST Run 7: CST (Shot 30, recover 27)

B. Coring

Two full hole cores were cut using fiberglass sleeves. On both cores the sleeve broke and became jammed in the outer barrel. The cores were cut as follows (see Appendix D, Core descriptions for detailed descriptions):

. CORE No.1: 2844.0m - 2862.5m

CUT: 18.5m

RECOVERED: 12.6m (68%)

LITHOLOGY: 100% Sandstone with fair to good shows.

CORE No.2: 2862.5m - 2881.0m

CUT: 18.5m

RECOVERED: 9.9m (53.5%)

LITHOLOGY: 100% Sandstone with trace to poor shows.

C. Testing

No DST's or production tests were run. RFT's were run with the following recoverys.

RFT run 1 at 2841m: 3.1 m³ of gas and 17.7 liters of foamy mid

brown oil.

RFT run 2 at 2851m: 3.1 m³ of gas and 17.7 liters of foamy mid

brown oil. The second chamber was kept sealed for later analysis at reservoir

pressure.

Gas analysis for these samples were as follows: RFT 1

Sample 1 (2841m): Gas Analysis

	C1	; C2	C3	iC4	nC4	; C5 ;	C6 ¦
ppm	580640	90440	; 33820	6200	6540	; 1440 ;	trace;
rel %	80.7	12.6	; 4.7	0.9	0.9	; 0.2 ;	

Total Gas was 92.3%

CO2 was 0.2%

H2S was 10 ppm

SG of the gas = 0.69

RFT 2

Sample 1 (2851m): Gas Analysis

+	C2	C3 .	¦ iC4	nC4	; C5 ;	C6 ;
ppm	104720	37380 4.9	5952 0.8	¦ 6104 ¦ 0.8	; 1547 ; ; 0.2 ;	trace;

Total Gas was 92.8%

CO2 was 0.2%

H2S was 60 ppm

SG of the gas = 0.70

A comprehensive list of RFT pressures is given in Appendix 1. Table 6

6 DATA INVENTORY

The following were supplied to ESSO Australia ltd directly from the Southern Cross:

Weekly Geological and Engineering Report
Daily Hydraulics Printouts
Daily Engineering Reports
Formation Evaluation Log (supplied as required)

3 sets of washed and dried cuttings samples 1 set geochemical samples 1 set air dried bulk sample Miscellaneous RFT fluid samples

At the end of the well all the Tritium equipment, including all unused consumables supplied by Esso, was packed up and returned to Esso.

During and at the completion of the well, six copies of a Final Well Report was compiled by Exlog personal. Five of these were forwarded to ESSO offices in Sydney and Sale. A copy was retained by Exlog in Perth. Exlog also retains at its Perth office copies of all data disks.

EXPLORATION LOGGING will use all reasonable diligence to maintain and store the listed information and items in a manner to reasonably prevent damage or loss. Provided, however, EXPLORATION LOGGING assumes no responsibility for the loss, damage or theft of the items or the information contained herein and shall not be liable to the operator in any such event, irrespective of cause, fault or the active or passive negligence of EXPLORATION LOGGING or its employees.

7 CONCLUSIONS

Terakihi No.1 was a wildcat exploration well drilled in VIC/P24, Bass Strait, by the semi-submersable drilling rig Southern Cross. The well was spudded on the 30 March 1990 and reached a Total Depth of 3040m on the 14th April 1990. A total of 6 bits (8 bit runs) were used to drill 2616m in 113.7 hrs (on bottom) at an average rate of penetration of 23.1 m/hr. Two 18.5m cores were cut, with Core-1 recovering 12.6m of sandstone with good shows, and Core-2 recovering 9.9m of sandstone with only minor shows.

The primary objective of the well was to evaluate the hydrocarbon content of an erosional remnant mapped at the top of the Latrobe Group and sealed by the Lakes Entrance Formation. This was achieved with 15m of gross pay being mapped in the Top Latrobe Group sand.

The normal pore pressure gradient was estimated as 8.5 ppg (fresh to brackish water) and all monitored pressure parameters indicated that the well was normally pressured throughout and no evidence of any overpressuring was seen. RFT's run in the top Latrobe sands indicated a formation pore pressure gradient of 8.35 ppg EMW.

The fracture pressure was estimated using leak off test data and the constant effective stress ratio method. Fracture pressures were always greater than both the mud hydrostatic and effective circulating density and no downhole mud losses due to hydraulic fracturing were noted.

APPENDICES

A. TABLES

Table	Contents
1	Casing and Cementing Data
2	Drilling Fluid Properties
3	Bit Data
4	Hydraulics Data
5	CST Headspace gas analysis
6	RFT pressure data.

Table 1.Casing and Cementing.

DEPTH metres	HOLE SIZE inches	CASING OD/ID	SHOE DEPTH metres	GRADE 1b/ft	#JOINTS	CEMENTING
551	26"	20"/19.124"	540	X52 94	10	750 sx class "6" @ 13.2ppg with 2.5% gel and 600 sx class 6 with 1.15% CaCl at 15.8 ppg
1144	17.5"	13.375"/12.61"	1124	K55 54	60	1000 sx neat class "G" @ 15.8ppg
3040	12.25"	9.625/8.681	3001	N80 47	222	700 sx class "G" at 15.8 ppg

Table 2: Drilling Fluid Properties

Date	Time	Depth metres	M₩ ppg	Vis sec	PV/YP	Gel	Filt	fc	Sol %	Sand %	MBT	рН	Oil %	Cl ppm	Ca ppm
30/03	1200	551	8.9	100+	-	-	-	-	-	-	-	-	-	-	-
01/04	2330	596	8.7	28	3/1	1/1	-	-	1	tr	-	9.5	0	18000	2000
02/04	1000	943	9,4+	31	5/5	4/6	-	-	4	tr	-	9.5	0	15000	1200
02/04	2000	1141	9.4	38	7/19	12/18	-	-	6	tr	9	10.0	0	12000	600
04/04	2200	1144	9.2	40	8/40	16/17	-	-	4	tr	8	12.0	0	17500	1200
05/04	0845	1214	9.2+	42	6/18	11/14	-	-	.8	tr	10	10.0	0	16000	1200
05/04	2215	1330	9.3	40	6/14	11/12	-	-	8	tr	10	10.0	0	16000	1240
06/04	1100	1490	9.4	32	6/16	10/12	-	-	9	tr	9	10.4	0	17000	1320
06/04	2200	1635	9.4+	32	6/13	11/12	-	-	9	tr	12	10.0	0	16000	1160
07/04	1100	1774	9.5	33	6/16	12/14	-	-	10	0.1	14	10.4	0	16000	1020
07/04	2130	1775	9.5	33	6/18	14/15	-	-	10	0.1	17	10.0	0	16000	920
08/04	1100	2010	9.5+	33	6/18	12/14	-	-	10	tr	14	10.4	0	16500	1000
08/04	2130	2205	9.5+	32	6/17	14/14	-	-	10	tr	13	10.0	0	17000	920
09/04	1030	2290	9.5+	32	6/16	12/14	-	-	10	tr	12	10.0	0	17000	980
09/04	2230	2470	9.5+	32	6/17	13/14	-	-	10	0.1	12	10.2	0	17000	1000
10/04	1200	2752	9.6	45	16/20	4/6	5.6	1	8	0.2	6	10.0	0	29000	220
10/04	2300	2844	9.5+	44	15/20	4/6	5.4	1	8	0.25	6	10.2	0	30000	240
11/04	1200	2844	9.5+	44	16/21	4/6	5.4	1	8	0.25	6	9.8	0	29000	240
11/04	2200	2844	9.5	45	16/20	4/6	5.0	1	8	0.25	7	9.5	0	29000	240
12/04	1200	2862	9.5	45	15/20	4/6	5.2	1	9	0.20	7	9.8	0	29000	220
12/04	2000	2862	9.5	44	15/20	4/6	5.4	1	9	0.25	7	9.8	0	30000	ŀ -
13/04	2200	2881	9.5	44	15/19	4/6	5.4	1	9	0.25	7	9.8	0	30000	240
14/04	1300	2953	9.5	44	15/19	4/6	4.8	1	9	0.25	7	9.6	0	32000	120
14/04	2300	3030	9.5	44	15/20	4/6	5.0	1	9	0.20	7	9.8	0	32000	120

Bit #	Size ins	Туре	IADC	Jets 32nds	Depth In	Bit m	Bit hrs	ROP avg	WOB klb	RPM	Torque avg-max	SPP (psi)	Grade T B G
RRB1	26	HTC R1	1 1 1	20,20,20	424	127	3.3	38.5	6	80-100	15-50	1000	
NB2	17.5	HTC X3A	1 1 4	18,18,16	551	590	11.1	53.2	10-35	120-130	250-350	2800	2 2 0
NB3	12.25			3x13,1x15	1141	73	5.7	12.8	5-15	100-150	500-620	1700	10% worn
NB4	12.25		1116	16,16,16	1214	560	33.9	16.5	25-40	100-140	200-450	2800	3 3 0
RRB3	12.25			2x13,12,1	1774	1070	41.2	26.0	5-20	90-160	200-750	2900	40% worn
CB1	12.25	• •		TFA=1 sq :		18.5	1.4	13.2	5-10	80-100	200-550	550	20% worn
RRCB1	12.25			TFA=1 sq		5 18.5	1.7	10.9	8-10	80-90	400-550	400	45% worn
NB6	12.25		5 3 7	16,16,14	2881	159	15.4	10.3	40-45	80-100	350-750	2900	3 3 1

Table 4. Hydraulics Data

		DIAM	NOZZLES	MUD WT		PV/YP	FLOW Rate	16	SURE per	5q.i	in '	feet	LAR V	min	CRIT DC VEL	VEL	THE I		Bit	P PRES To Calc	otal
#	A	inch	32nds"	ppg	ppg		gpm	burt	Pipe	Ann	pit	Risr	Libe	C011	fpm	<u>f/s</u>	hp	105	h	Lait	nc c
1	551	26	20,20,20	8.7	9.2	1/1	950	50	203	0	852	-	36	40	67	331	472	1417	85	1432	1000
2	780	1	18,18,16	8.7	9.1	3/1	940	352	639	i	1465	67	82	109	31	434	802	1835	56	2457	2620
2			18,18,16	9.4	9.6	5/5	930	364	777	1	1562	70	81	108	117	430	848	1957	52	2704	3000
- 1			3x13,2x15	9.2	9.5	8/40	793	571	476	51	957	59	144	225	591	341	443	1289	52		1850
i i			16,16,16	9.3	9.4	6/14	782	674	594	18	1507	59	153	223	315	426	687	1603	55		2750
4		;	16,16,16	9.4+	9.5+	6/13	760	646	662	20	1443	50	149	216	298	414	640	1536	52		2800
	:	: 1	3x13,14,15	9.51	9.6+	6/18	780	679	665	34	1184	51	153	222	367	375	539	1429	46	2562	2600
2 -!			3x13,14,15		9.7	6/17	796	709	811	41	1240	52	156	227	353	382	576	1496	43	2800	2700
			3x13,14,15	1	9.7	6/17	780	683	854	46	1190	51	153	222	353	375	542	1436	42	2772	2850
•	:	1 1	3x13,14,15		9.7	5/20	800	715	1536	53	1252	52	157	228	390	384	584	1511	43	3557	2900
•	•	:	TFA=1sq in	1	9.6	16/20	220	65	173	25	42	14	43	63	391	71	5	76	13	305	550
1 :	.	f :	TFA=1sq in	:		15/20	210	58	165	26	38	14	41	59	390	67	5	68	10	287	400
1	1	1 1	16,16,14	9.5		15/19	480	532	1261	47	1377	45	134	194	377	403	548	1351	48	3216	2850
	•	ŧ :	16,16,14	9.5		15/20	675	522	1278	53	1349	44	132	192	390	399	531	1324	47	3201	2900

Table 5: CST gas analysis

Core No.	C1 %	C2	C3	iC4 %	nC4	C5 %
140 *	ía	·	"			
i	EMPTY					1
2	0.0057	0.0031	0.0012	0.0000	0.0049	-
3.	-	-	-	-	-	-
4	-	-	-	-	-	-
6	-	-	-	-	-	_
7	tr	0.0005	0.0009	0.0000	0.0006	-
8	0.0005	0.0010	0.0013	0.0000	0.0012	-
9	0.0005	0.0010	0.0013	0.0000	0.0010	-
10	0.0012	0.0031	0.0037	0.0003	0.0013	tr
11	0.0029	0.0053	0.0049	0.0006	0.0016	tr
12	0.0019	0.0030	0.0036	0.0006	0.0016	tr ·
13	0.0010	0.0018	0.0036	0.0012	0.0022	tr
14	-	-	-	-	-	-
15	tr	0.0006	0.0009	-	-	-
16	-	-	0.0010	0.0004	0.0010	tr
17	EMPTY					
18	-	_	-	-	-	-
19	0.0458	0.0107	0.0125	0.0018	0.0049	0.0016
20	0.0029	0.0101	0.0071	0.0025	0.0049	0.0021
21	0.0010	0.0071	0.0125	0.0022	0.0062	0.0029
22	0.0019	0.0036	0.0320	0.0186	0.0359	0.0362
23	0.0010	0.0059	0.0125	0.0037	0.0076	0.0033
24	tr	l tr	0.0173	0.0155	0.0283	0.0240
25	EMPTY		1		1	
26	tr	tr	0.0062	0.0086	0.0152	0.0107
27	tr	0.0036	0.0231	0.0143	0.0294	0.0336
28	0.0019	0.0036	0.0080	0.0062	0.0076	0.0048
29	-	-	tr	tr	tr	-
30	-	-	-	-	-	-

Table 6: RFT Pressure Data.

 RFT No 1 seat #	DEPTH (m) RKB mSS	INITIAL psi	HYDROSTATIC gradient ppg	FORMATION psi g	PRESSURE radient ppg	COMMENTS
 1/1p 1/2p 1/3p 1/4p 1/5p 1/6p 1/7p 1/8p	2841 2820 2847 2826 2851 2830 2854.5 2833.5 2857 2836 2860 2839 2864 2843 2868.5 2847.5	4755.6 4761 4767	9.847 9.845 9.843 9.846 9.847 9.847 9.846 9.846	4017.55 4022.15 4025.70 4029.26 4031.98 4036.38 4041.78 4048.50	8.366 8.357 8.353 8.350 8.348 8.349 8.349	Good perm.
 1/9s 1/10p 2/1s	2841 2820 2842.5 2821.5 2851 2830	4729.8 4732.9 4742	9.849 9.840 9.839	4017.65 4018.92 4026.30	8.366 8.364 8.354	Good perm. Good perm. Good perm.

B. DATA PLOTS

i. Drilling Data Pressure Plot

1:2500

PE 602108

PE602108

This is an enclosure indicator page. The enclosure PE602108 is enclosed within the container PE903385 at this location in this document.

The enclosure PE602108 has the following characteristics: ITEM_BARCODE = PE602108 CONTAINER_BARCODE = PE903385 NAME = Drilling Data Pressure Log BASIN = GIPPSLAND PERMIT = VIC/P24 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Drilling Data Pressure Log, 1:2500, (enclosure from Final Well Report--attachment to WCR) for Terakihi-1 REMARKS = DATE_CREATED = DATE_RECEIVED = 22/06/90 $W_NO = W1025$ WELL_NAME = Terakihi-1 CONTRACTOR = EXLOGCLIENT_OP_CO = Esso Australia Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

ii. Temperature Data Pressure Plot 7 1:2500

PE602109

PE602109

This is an enclosure indicator page. The enclosure PE602109 is enclosed within the container PE903385 at this location in this document.

The enclosure PE602109 has the following characteristics:

ITEM_BARCODE = PE602109
CONTAINER_BARCODE = PE903385

NAME = Terakihi 1 Temperature Analysis Log

BASIN = GIPPSLAND PERMIT = VIC/P24

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Terakihi 1 Temperature Analysis Log,

1:2500, (enclosure from Final Well

Report--attachment to WCR)

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 22/06/90

 $W_NO = W1025$

WELL_NAME = Terakihi-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Esso Australia Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

iii. Pressure Evaluation Plot

1:5000

PE602110

PE602110

This is an enclosure indicator page. The enclosure PE602110 is enclosed within the container PE903385 at this location in this document.

The enclosure PE602110 has the following characteristics:

ITEM_BARCODE = PE602110
CONTAINER_BARCODE = PE903385

NAME = Pressure Gradient Analysis Plot

BASIN = GIPPSLAND PERMIT = VIC/P24

TYPE = WELL SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Gradient Analysis Plot,

1:5000, (enclosure from Final Well Report--attachment to WCR) for

Terakihi-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 22/06/90

 $W_NO = W1025$

WELL_NAME = Terakihi-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Esso Australia Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

'iv. Drilling Data Printout

ESSO AUSTRALIA: Terakihi No.1 Data Printed at time 05:59 Date Aor 12 '90
Data Recorded at time 06:30 Date Mar 30 '90

TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: m m/hr: AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT : m hr TW: +----- + Spud Terakihi #1 at 0630 hrs on 30th March 1990. : RRB#1, HTC R1, with 3 X 20 jets, in tandem with a 26" hole opener. 1 4 0632 425.06 71.8:15.0 16.0 80 3.70 800:424.00 8.7 0.0 398 0 53.1 0.0 502:1.06 0.0 0.00: .51 .52 8.7 8.5:D† ; 5 0633 426.02 65.4;15.0 15.0 80 3.70 800;424.00 8.7 0.0 398 0 53.1 0.0 501;2.02 0.0 0.00; .51 .52 8.7 8.5;D† .0 0.001 .50 .51 8.7 8.5ID 1 6 0633 426.16 62.915.00 5.00 80 4.92 8001424.00 8.7 0.0 398 0 53.1 0.0 50012.16 .0 .00¦ .41 .41 8.8 8.5¦Dt 1 7 0635 427.02 12715.00 5.00 80 6.38 8001424.00 8.7 0.0 398 0 53.1 0.0 50813.02 51613.91 .0 .001 .49 .49 8.8 8.51D 52015.02 .0 .001 .51 .51 8.8 8.51D 1 8 0636 427.91 75.1115.0 15.0 80 6.08 8001424.00 8.7 0.0 398 0 53.1 0.0 .51 8.8 8.51D .54 8.8 8.51D-0 53.1 0.0 ! 9 0637 429.02 71.2115.0 15.0 80 6.84 8001424.00 8.7 0.0 398 0 53.1 0.0 52116.00 .0 .001 .53 1 10 0637 430.00 59.1115.0 15.0 80 6.63 8001424.00 8.7 0.0 398 1 10 0639 431.00 8.18;15.0 15.0 80 6.35 800;424.00 8.7 0.0 404 0 53.1 0.0 527;7.00 .1 .01; .86 1 12 0639 432.00 18.3;15.0 15.0 80 6.35 800;425.00 8.7 0.0 409 0 53.1 0.0 528;8.00 .1 .01; .72 1 13 0640 433.00 22.1;15.0 15.0 80 6.35 800;426.00 8.7 0.0 412 0 53.1 0.0 528;9.00 .1 .01; .65 .86 8.8 8.51D4 .73 8.8 8.51D4 .66 8.8 8.51D+ .49 8.8 8.51D+ 0 53.1 0.0 527;10.0 .1 .01; .48 1 14 0640 434.00 56.2115.0 15.0 80 6.35 8001427.00 8.7 0.0 412 .1 .021 .70 .71 8.9 8.5¦D+ 0 53.1 0.0 528:11.3 1 15 0643 435.30 89.3115.0 15.0 80 6.35 8001428.30 8.7 0.0 398 .2 .031 .56 .56 8.9 8.5104 1 16 0653 436.08 25.5115.0 15.0 80 2.18 5001429.08 8.7 0.0 429 0 53.1 0.0 525;12.1 1 17 0653 437.07 298115.0 15.0 80 5.39 5001430.07 8.7 0.0 433 .2 .031 .25 .26 8.9 8.51D 0 53.1 0.0 524:13.1 .33 8.9 8.51D .64 9.0 8.51Dt 0 53.1 0.0 522:14.0 .2 .03: .32 1 18 0653 438.01 189115.0 15.0 80 5.36 5001431.01 8.7 0.0 430 0 53.1 0.0 509115.0 .3 .031 .64 1 19 0656 439.01 25.1115.0 15.0 80 5.02 5001432.01 8.7 0.0 398 .55 9.0 8.510 0 53.1 0.0 510:16.0 .3 .03: .55 1 20 0657 440.00 42.5115.0 15.0 80 4.84 5001433.00 8.7 0.0 398 1 21 0659 441.00 49.7115.0 15.0 80 5.23 5001434.00 8.7 0.0 405 0 53.1 0.0 521117.0 .3 .041 .53 1 22 0701 442.01 64.1115.0 15.0 80 5.76 5001435.01 8.7 0.0 400 0 53.1 0.0 520118.0 .4 .041 .50 .53 9.0 8.51D-.50 9.0 8.51D4 0 53.1 0.0 518119.0 .50 9.0 8.51D .56 9.1 8.51D-.4 .041 .49 1 23 0702 443.01 62.8115.0 15.0 80 5.39 5001436.01 8.7 0.0 424 0 53.1 0.0 523120.0 .4 .051 .56 <u>124 0706 444.00 39.2115.0 15.0 80 4.93 5001437.00 8.7 0.0 270</u> .35 9.1 8.51D† 0 53.1 0.0 517121.0 .6 .061 .35 5 0714 445.02 113/15.0 15.0 80 2.26 500/438.02 8.7 0.0 243 1 26 0716 446.01 58.2115.0 15.0 80 3.75 5001439.01 8.7 0.0 315 .48 9.1 8.51D+ 0 14.7 0.0 490122.0 .6 .061 .47 1 27 0718 447.01 57.0115.0 15.0 80 3.58 5001440.01 8.7 0.0 310 0 14.7 0.0 477123.0 .6 .071 .47 0 14.7 0.0 464124.0 .6 .071 .52 .47 9.1 8.5ID .52 9.1 8.51D 1 28 0719 448.01 40.4115.0 15.0 80 3.30 5001441.01 8.7 0.0 365 .47 9.1 8.510 0 14.7 0.0 455125.0 .7 .071 .47 1 29 0720 449.01 62.6115.0 15.0 80 4.00 7501442.01 8.7 0.0 397 .52 9.2 8.5ID 0 14.7 0.0 449126.0 .7 .071 .51 1 30 0721 450.00 43.3115.0 15.0 80 3.81 7501443.00 8.7 0.0 388 .51 9.2 8.51D 1 31 0723 451.02 48.2115.0 15.0 80 4.19 7501444.02 8.7 0.0 394 0 14.7 0.0 447127.0 .7 .071 .51 1 32 0724 452.01 55.0115.0 15.0 80 4.03 7501445.01 8.7 0.0 400 0 14.7 0.0 445128.0 .48 9.2 8.51D .7 .081 .48 .51 9.2 8.51D .48 9.2 8.51D .53 9.3 8.51D .7 .081 .50 0 14.7 0.0 443129.0 1 33 0725 453.01 48.0115.0 15.0 80 4.15 7501446.01 8.7 0.0 408 1 34 0726 454.00 59.9115.0 15.0 80 4.75 7501447.00 8.7 0.0 405 0 14.7 0.0 441130.0 .8 .08 .48 1 35 0736 455.01 27.8115.0 15.0 80 2.24 7501448.01 8.7 0.0 399 0 14.7 0.0 521131.0 .8 .081 .53 1 36 0737 456.01 39.9115.0 15.0 80 1.69 9501449.01 8.7 0.0 447 0 14.7 0.0 512132.0 .8 .091 .46 .46 9.3 8.51D 1 37 0738 457.01 40.4115.0 15.0 80 1.74 9501450.01 8.7 0.0 461 0 14.8 0.0 509133.0 .8 .091 .46 .46 9.3 8.51D 1 38 0740 458.02 53.8115.0 15.0 80 1.71 9501451.02 8.7 0.0 461 0 14.8 0.0 501134.0 .9 .091 .42 .42 9.3 8.51D 1 39 0741 459.00 57.5115.0 15.0 80 2.16 9501452.00 8.7 0.0 461 0 14.8 0.0 500135.0 .9 .091 .43 .43 9.3 8.51D 1 40 0742 460.02 39.4115.0 15.0 80 1.28 9501453.02 8.7 0.0 461 0 14.8 0.0 500136.0 .9 .091 .44 .44 9.3 8.51D | 41 0743 461.00 62.9|15.0 15.0 80 1.20 950|454.00 8.7 0.0 463 0 14.8 0.0 | 42 0744 462.01 80.1|15.0 15.0 80 1.27 950|455.01 8.7 0.0 462 0 14.8 0.0 | 43 0745 463.00 50.6|15.0 15.0 80 1.03 950|456.00 8.7 0.0 460 0 14.8 0.0 501137.0 .9 .101 .38 .38 9.4 8.510 501138.0 .9 .101 .35 .36 9.4 8.51D 1 43 0745 463.00 50.6115.0 15.0 80 1.03 9501456.00 8.7 0.0 460 0 14.8 0.0 502139.0 1.0 .101 .40 .40 9.4 8.51D 1 44 0747 464.04 32.0115.0 15.0 80 1.64 10101457.04 8.7 0.0 461 0 14.8 0.0 538140.0 1.0 .101 .48 .48 9.4 8.51D : 45 0756 465.00 18.8:15.0 15.0 80 1.21 500:458.00 8.7 0.0 545 0 14.8 0.0 526:41.0 1.0 .10: .52 .53 9.4 8.5:DX 1 46 0758 466.01 52.2115.0 15.0 80 1.04 5001459.01 8.7 0.0 551 0 14.8 0.0 508142.0 1.0 .111 .39 .39 9.4 8.51D 147 0759 467.02 46.7115.0 15.0 80 1.65 5001460.02 8.7 0.0 552 0 14.8 0.0 499143.0 1.1 .111 .43 .43 9.5 8.51D 148 0800 468.01 46.8115.0 15.0 80 2.51 5001461.01 8.7 0.0 550 0 14.8 0.0 495144.0 1.1 .111 .46 .46 9.5 8.51D 508(42.0 1.0 .11) .39 .39 9.4 8.5(D 1 49 0801 469.01 52.7:15.0 15.0 80 2.70 500:462.01 8.7 0.0 554 0 14.8 0.0 489:45.0 1.1 .11: .45 .45 9.5 8.5:D

1 89 0909 509.00 41.4115.0 15.0 80 4.45

90 0910 510.01 48.7:15.0 15.0 80 4.64

; 91 0911 511.01 40.0115.0 15.0 80 3.78

1 92 0913 512.00 29.3115.0 15.0 80 3.66

: 93 0922 513.00 42.4115.0 15.0 80 4.85 5001507.12 8.7 0.0 538

1 94 0924 514.00 31.0115.0 15.0 80 6.13 5001508.09 8.7 0.0 556

1 95 0926 515.02 30.1115.0 15.0 80 6.64 5001509.11 8.7 0.0 561

Data Recorded at time 08:03 Date Mar 30 '90 ! F# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: m m/hr: AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT : m hr TW: ------+-----495146.0 1.1 .111 .47 .47 0 14.8 0.0 : 50 0803 470.01 40.9:15.0 15.0 80 2.33 5001424.00 8.7 0.0 561 .50 9.5 8.51D 500:424.00 8.7 0.0 0.0 8.41 0 502147.0 1.1 .121 .50 518 ; 51 0805 471.00 33.1;15.0 15.0 80 2.47 .48 9.5 8.51D 495148.0 1.2 .121 .48 : 52 0806 472.01 38.5;15.0 15.0 80 2.61 940;424.00 8.7 0.0 0.0 14.8 0.0 469 .44 9.6 8.51D 0 14.8 0.0 491149.0 1.2 .121 .44 9401424.00 8.7 0.0 469 1 53 0807 473.02 48.0115.0 15.0 80 2.10 1.3 .131 .62 .62 8.9 8.51Dt 0 14.8 0.0 565150.0 1 54 0818 474.00 15.7115.0 15.0 80 2.15 9201460.00 8.7 0.0 396 .48 9.0 8.51D 1.3 .131 .48 0 14.8 0.0 561151.0 ; 55 0818 475.01 69.2;15.0 15.0 80 4.97 930;460.00 8.7 0.0 450 .48 9.0 8.51D 0 14.8 0.0 558152.0 : 56 0819 476.00 60.1:15.0 15.0 80 4.17 940:460.00 8.7 0.0 1.3 .13 .48 461 1.3 .131 .42 .42 9.0 8.51D : 57 0820 477.02 91.2:15.0 15.0 80 4.26 940:460.00 8.7 0.0 0 14.8 0.0 556153.0 463 1.3 .131 .39 .39 9.0 8.51D : 58 0821 478.01 114:15.0 15.0 80 4.42 940:460.00 8.7 0.0 0 14.8 0.0 555154.0 464 .50 9.0 8.51D 0 14.8 0.0 548155.0 1.3 .131 .50 1 59 0822 479.01 50.3115.0 15.0 80 3.80 9501460.00 8.7 0.0 465 .38 9.0 8.51D 1.3 .141 .38 0 14.8 0.0 544156.0 1 60 0822 480.00 114115.0 15.0 80 3.62 9501460.00 8.7 0.0 465 .46 9.1 8.510 1.4 .141 .46 1 61 0823 481.01 54.1115.0 15.0 80 2.71 9501460.00 8.7 0.0 0 14.8 0.0 535157.0 465 .41 9.1 8.5ID-: 62 0824 482.00 81.0:15.0 15.0 80 2.7B 950:460.00 8.7 0.0 0.0 14.8 0.0 522158.0 1.4 .14 .41 466 .50 9.1 8.51D 0 14.8 0.0 499159.0 1.4 .14: .50 1 63 0830 483.01 50.1115.0 15.0 80 4.13 9501460.00 8.7 0.0 378 .34 9.1 8.51D 0 14.8 0.0 496:60.0 1.4 .141 .34 1 64 0830 484.01 157115.0 15.0 80 4.90 9501460.00 8.7 0.0 433 .52 9.1 8.51D 1.4 .141 .52 0 14.8 0.0 493:61.0 1 65 0832 485.01 44.7115.0 15.0 80 4.17 9501460.00 8.7 0.0 463 .43 9.1 8.5!Dt 1.4 .141 .43 0.0 14.8 492162.0 1 66 0833 486.03 81.1115.0 15.0 80 3.97 522 500:460.00 8.7 0.0 ,44 9.2 8.5ID 504163.0 1.5 .151 .44 0.0 8.41 0 550 1 67 0834 487.01 74.6115.0 15.0 80 4.06 5001460.00 8.7 0.0 1.5 .15! .46 .46 9.2 8.51D 521164.0 0 14.8 0.0 5001460.00 8.7 0.0 562 : 68 0835 488.01 64.4:15.0 15.0 80 4.07 .44 9.2 8.510 1.5 .151 .44 529165.0 : 69 0835 489.01 75.3:15.0 15.0 80 4.08 500:440.00 8.7 0.0 565 0.0 4.8 0.0 .43 9.2 8.51D 507 0 14.8 0.0 528166.0 1.5 .151 .43 1 70 0836 490.03 82.4115.0 15.0 80 4.74 5001460.00 8.7 0.0 .36 9.2 8.510 1.5 .151 .35 526167.0 171 0837 491.01 132115.0 15.0 80 4.17 9601460.00 8.7 0.0 478 0 14.8 0.0 .45 9.2 8.51D 1.5 .15! .45 524168.0 0 14.8 0.0 1 72 0837 492.00 66.2115.0 15.0 80 3.61 9601460.00 8.7 0.0 462 .42 9.3 8.51DX 0 14.8 0.0 499169.0 1.5 .151 .42 1 73 0844 493.00 103115.0 15.0 80 6.16 9501460.00 8.7 0.0 416 1.6 .151 .51 .51 9.3 8.51D 478170.0 950:460.00 8.7 0.0 454 0 14.8 0.0 1 74 0845 494.02 49.2115.0 15.0 80 4.85 1.6 .161 .51 .51 9.3 8.51D 0 14.8 0.0 487171.0 1 75 0846 495.01 50.3115.0 15.0 80 4.92 9501460.00 8.7 0.0 456 .50 9.3 8.51D-456 0 14.8 0.0 491172.0 1.6 .161 .50 9501460.00 8.7 0.0 1 76 0847 496.00 52.5115.0 15.0 80 5.10 .46 9.3 8.51D 1.6 .161 .46 495173.0 9501460.00 8.7 0.0 457 0 14.8 0.0 1 77 0847 497.00 77.1115.0 15.0 80 6.41 .49 9.3 8.5ID 1.6 .161 .49 950:460.00 8.7 0.0 501174.0 457 0 14.8 0.0 ; 78 0848 498.00 62.9:15.0 15.0 80 6.08 1.6 .161 .61 .61 9.3 8.51D 0.14.8 0.0 503175.0 9501460.73 8.7 0.0 456 ; 79 0850 499.01 30.2115.0 15.0 80 6.51 .59 9.3 8.51Dt 1.7 .17! .59 500:461.45 8.7 0.0 0 14.8 0.0 488176.0 559 : 80 0853 500.01 31.3:15.0 15.0 80 5.67 489177.0 1.7 .171 .65 . 65 9.4 8.51D-0 14.8 0.0 500:461.87 8.7 0.0 569 1 81 0854 501.00 20.2115.0 15.0 80 5.65 .60 9.4 8.51D 488178.0 1.7 .171 .60 0 14.8 0.0 5001462.55 8.7 0.0 572 ; 82 0855 502.00 31.1115.0 15.0 80 6.09 488:79.0 1.7 .17: .60 .60 9.4 8.51D-0 14.8 0.0 500:462.72 8.7 0.0 572 1 83 0856 503.02 32.1115.0 15.0 80 6.71 .52 9.4 8.51D 1.8 .18; .52 521 0 14.8 0.0 503180.0 : 84 0903 504.00 52.1:15.0 15.0 80 6.57 5001463.94 8.7 0.0 9.4 8.51D-.50 1.8 .181 .50 0.14.8 0.0 497181.0 5001464.15 8.7 0.0 543 1 85 0903 505.01 54.1115.0 15.0 80 5.52 9.4 8.5;D .54 481182.0 1.8 .181 .54 0 14.8 0.0 1 86 0905 506.01 39.7115.0 15.0 80 5.06 552 5001464.87 8.7 0.0 .52 1.9 .18; .52 9.4 8.51D 465183.0 500:465.56 8.7 0.0 555 0.14.8 0.0 1 87 0906 507.01 45.1115.0 15.0 80 5.28 1.9 .191 .49 .49 9.4 8.5ID 0 14.8 0.0 461184.0 554 : 88 0907 508.00 57.8115.0 15.0 80 5.60 500:466.07 8.7 0.0 473185.0 1.9 .191 .52 .52 9.4 8.51D

5001466.85 8.7 0.0

5001467.45 8.7 0.0

500:468.22 8.7 0.0

500:469.24 8.7 0.0

1 96 0928 516.01 24.2115.0 15.0 80 5.65 5001510.36 8.7 0.0 562 0 14.8 0.0 381192.0 2.2 .211 .67

555

554

551

554

1 97 0931 517.00 20.4115.0 15.0 80 4.98 5001511.81 8.7 0.0 562 0 14.8 0.0 342193.0 2.2 .221 .68 .68 8.8 8.510 |-----+

0 14.8 0.0

0 14.8 0.0

0 14.8 0.0

0 14.8 0.0

0.0 14.8 0.0

496186.0 1.9 .191 .50

518:87.0 2.0 .19: .51

500188.0 2.0 .191 .55

468189.0 2.1 .201 .56

0 14.8 0.0 447190.0 2.1 .211 .63

0 14.8 0.0 418191.0 2.1 .211 .65

.50 9.4 8.51D

.51 9.4 8.51D

.55 9.4 8.51D

.56 8.8 8.51DX

.63 8.8 8.51D

.65 8.8 8.510

.67 8.8 8.51D

._______ : F# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: ! m m/hr! AVG MAX AVG AVG PRES!DEPTH IN OUT IN OUT IN OUT ! m hr TW! ______ 297194.0 2.3 .221 .68 .68 8.8 8.510 5001513.34 8.7 0.0 482 0 14.8 0.0 ; 98 0934 518.01 19.6115.0 15.0 80 4.64 256195.0 2.3 .221 .65 .65 8.8 8.51D : 99 0937 519.00 23.1:15.0 15.0 80 4.66 930:514.43 8.7 0.0 461 0 14.8 0.0 940:515.55 8.7 0.0 461 0 14.8 0.0 236196.0 2.4 .231 .67 .67 8.8 8.510 1100 0939 520.01 22.4115.0 15.0 80 5.13 1101 0941 521.01 41.4115.0 15.0 80 4.49 9501516.16 8.7 0.0 465 0 14.8 0.0 259197.0 2.4 .231 .56 .56 8.8 8.51D 350198.0 2.4 .231 .55 .55 8.8 8.51DX 1102 0950 522.02 44.5115.0 15.0 80 4.65 9501517.18 8.7 0.0 440 0 14.8 0.0 322199.0 2.4 .241 .56 .56 8.8 8.51D 1103 0951 523.00 43.5115.0 15.0 80 4.95 9501517.74 8.7 0.0 459 0 14.8 0.0 :104 0953 524.00 30.6:15.0 15.0 80 5.01 960:518.54 8.7 0.0 459 0 14.8 0.0 322: 100 2.5 .24: .62 .61 8.8 8.5:D 1105 0955 525.01 30.6115.0 15.0 80 5.12 960(519.39 8.7 0.0 460 0 14.8 0.0 324; 101 2.5 .24; .62 .62 8.8 8.51D 1106 0957 526.00 33.2115.0 15.0 80 4.22 9601520.12 8.7 0.0 460 0 14.8 0.0 3281 102 2.5 .241 .59 .58 8.8 8.51D .55 8.8 8.51D 330: 103 2.6 .25: .56 1107 0958 527.01 40.7:15.0 15.0 80 4.27 960:520.75 8.7 0.0 460 0 14.8 0.0 1108 1000 528.00 38.8115.0 15.0 80 4.36 9601521.38 8.7 0.0 451 0 14.8 0.0 3321 104 2.6 .251 .56 .56 8.8 8.510 1109 1001 529.01 49.8115.0 15.0 80 4.41 9601521.85 8.7 0.0 453 0 14.8 0.0 3331 105 2.6 .251 .53 .52 8.8 8.51D 1110 1004 530.00 30.4115.0 15.0 80 3.60 5001522.76 8.7 0.0 548 0 14.8 0.0 3861 106 2.6 .251 .58 .58 8.8 8.51D1 326; 107 2.7 .26; .57 .56 8.8 8.51DX 1111 1012 531.00 32.6115.0 15.0 80 3.31 9801524.08 8.7 0.0 447 0 14.8 0.0 1112 1014 532.00 24.3115.0 15.0 80 2.61 9801525.10 8.7 0.0 463 0 14.8 0.0 2551 108 2.7 .261 .59 .59 8.8 8.51D 1113 1015 533.01 63.0115.0 15.0 80 3.53 9801525.49 8.7 0.0 461 0 14.8 0.0 2451 109 2.7 .261 .47 .47 8.8 8.51D .49 8.8 8.51D 231 110 2.8 .26 .49 9801526.02 8.7 0.0 462 0 14.8 0.0 1114 1017 534.01 49.1115.0 15.0 80 2.93 .51 8.8 8.510 2.8 .261 .51 1115 1018 535.01 42.3115.0 15.0 80 2.75 9801526.62 8.7 0.0 463 0 14.8 0.0 232: 111 .48 8.8 8.51D 2641 112 2.8 .271 .48 1116 1019 536.01 49.6115.0 15.0 80 2.60 9801527.15 8.7 0.0 463 0 14.8 0.0 1117 1021 537.00 27.6115.0 15.0 80 3.07 9801528.06 8.7 0.0 464 0 14.8 0.0 3181 113 2.8 .271 .58 .58 8.8 8.510 2.9 .271 .55 .55 8.9 8.51D 1118 1023 538.00 39.8115.0 15.0 80 4.03 9801528.67 8.7 0.0 464 0 14.8 0.0 3111 114 1025 539.00 30.2115.0 15.0 80 3.19 9801529.51 8.7 0.0 463 0 14.8 0.0 3021 115 2.9 .271 .57 .57 8.9 8.5ID 1120 1026 540.02 39.7!15.0 15.0 80 3.10 980!530.15 8.7 0.0 464 0 14.8 0.0 296! 116 2.9 .28! .53 .53 8.9 8.51D 1121 1033 541.01 47.2115.0 15.0 80 3.57 5001530.47 8.7 0.0 463 0 14.8 0.0 2841 117 3.0 .281 .51 .51 8.9 8.51DX .57 8.9 8.51D† 1122 1036 542.01 29.3115.0 15.0 80 3.11 9801531.62 8.7 0.0 462 0 14.8 0.0 2791 118 3.0 .281 .57 1123 1038 543.02 47.4115.0 15.0 80 2.95 9801532.15 8.7 0.0 461 0 14.8 0.0 2811 119 3.0 .281 .50 .50 8.9 8.51D .48 8.9 8.51D 1124 1039 544.01 41.1115.0 15.0 80 1.73 9901532.71 8.7 0.0 461 0 14.8 0.0 2821 120 3.0 .28; .48 .52 8.9 8.5iD 1125 1041 545.01 35.6115.0 15.0 80 2.31 9901533.44 8.7 0.0 464 0 14.8 0.0 2801 121 3.1 .291 .52 1126 1042 546.01 40.0115.0 15.0 80 2.60 9901534.05 8.7 0.0 464 0 14.8 0.0 .51 8.9 8.51D 2821 122 3.1 .291 .51 .53 8.9 8.51D .57 8.9 8.51D 1127 1044 547.00 33.4115.0 15.0 80 2.56 9901534.90 8.7 0.0 464 0 14.9 0.0 2811 123 3.1 .291 .54 1128 1046 548.00 25.6:15.0 15.0 80 2.41 990:536.08 8.7 0.0 463 0 14.9 0.0 279: 124 3.1 .29: .57 .53 8.9 8.510 1129 1048 549.01 30.9115.0 15.0 80 2.03 9901537.31 8.7 0.0 902 0 14.9 0.0 2801 125 3.2 .301 .53 1130 1057 550.01 14.5115.0 15.0 80 2.12 9801542.53 8.7 0.0 920 0 14.9 0.0 2891 126 3.3 .301 .64 .64 8.8 8.51D 1131 1107 551.00 3.53115.0 15.0 80 4.25 1010|547.02 8.7 0.0 937 0 14.9 0.0 291| 127 3.3 .31| .94 .94 8.8 8.5|D+ † Pump high-vis mud around hole prior to making a wiper trip to the sea-bed. ! POOH at 551m to run 20" casing. + NB#2, HTC X3A, with 2 X 18, 1 X 16 jets. Date Apr 1 '90 ! 1136 2147 552.01 41.21 203 247 73 16.1 21501551.00 8.7 8.7 888 866 11.1 23.1 5151 .93 0.0 0.001 .75 .75 8.7 8.51D 1137 2148 553.02 155; 167 192 85 15.2 2250;551.00 8.7 8.7 889 877 11.1 23.1 516;1.99 0.0 0.00; .49 .49 8.7 8.51D 1138 2148 554.02 1131 155 173 78 14.1 24901551.00 8.7 8.7 906 922 11.1 23.1 51612.99 0.0 0.001 .53 .53 8.8 8.51D 1139 2148 555.02 139: 173 190 75 14.9 2500:551.00 8.7 8.7 935 939 11.1 23.1 515:3.98 0.0 0.00: .48 .49 8.8 8.51D .52 8.8 8.51D 1140 2149 556.01 1151 148 163 78 13.5 25001551.00 8.7 8.7 960 951 11.1 23.1 51514.97 0.0 0.001 .52 1141 2150 557.02 98.31 194 222 72 13.7 23701551.00 8.7 8.7 964 938 11.1 23.1 51416.00 .0 .001 .54 .54 8.8 8.51D 1142 2159 558.01 61.01 128 188 77 12.1 2290;551.00 8.7 8.7 861 885 11.1 23.0 53816.99 .0 .001 .63 .63 8.8 8.5 Dt 1143 2200 559.03 1121 215 286 67 14.2 22401551.00 8.7 8.7 890 882 11.1 23.0 53817.98 .0 .001 .50 .51 8.8 8.51D

4 2200 560.01 108; 195 265 72 14.4 2240;551.00 8.7 8.7 898 903 11.1 23.0 538;8.96 .0 .00; .52 .53 8.9 8.5;D

	•						+							+			+				+
	TIME SESTI	0001	TODA	nuc i	оры	นกอ	DIMOTOTONIC	MD 11	h/ns1	EI UI	d/MIN	TFM	(C)	PVT:	-THIS	BII-	E511	DXC	NYB	ELD	NATIUI
}	A	m/hrl	AVG	MAX	AVG	AVG	PRESIDEPTH	IN	TUO	IN	OUT	IN	OUT	;	A	hr	TWI				; +
+	0000 5/0 6/	+·				11 5	2240 551.00	g 7	g.7	901	 888	 11.1	23.0	+ 5391	11.0	.0	.001	.58	.58	8.9	8.51D
1146	2202 562.01	/8.3i	140	740	01 75	11.5	23501551.00	8.7	8.7	919	909	11.1	23.0	5391	12.0	. 1	.011	.72	.72	8.9	8.5iD
114/	2207 202.01	21.01	115	177	92	13.0	2360:551.00	8.7	8.7				23.0		13.0	. 1	.01:	.64	.65	8.9	8.510
1140 1140	2204 304.01	49 A!	117	145	81	13.6	2440:551.00	8.7	8.7				23.0		14.0						8.51D
:147	2203 303.02	89.21	123	141	79	14.3	24501551.00	8.7	8.7				23.0		15.0						8.51D
:150	2200 300.01	93.01	109	122	79	14.2	24401551.00	8.7	8.7				23.0		16.0	. 1	.01;	.56			8.5!D
!157	2214 548 00	53.41	82.4	138	82	12.9	2310:551.00	8.7	8.7	900	901	11.0	23.0	5371	17.0	. 1	.01;	.67			8.51D1
1153	2216 569.01	1061	133	147	87	8.33	23201551.00	8.7	8.7	908	893	11.0	23.0	536	18.0			.50			8.51D-
1154	2217 570.05	151	150	174	87	10.2	23201551.00	8.7	8.7	913	903	11.0	23.0	537	19.0		.02:				8.510
1155	2217 571.01	1391	113	131	88	7.97	23201551.00	8.7	8.7	916	908	11.0	23.0	535	20.0		.021				8.51D
115/	2219 572.05	61.71	96.8	157	100	5.34	23201551.00	8.7	8.7	918	919	11.0	23.0	537	21.0		.021				8.51D
115	2219 573.02	1231	126	166	112	6.82	23201551.00	8.7	8.7	915	918	11.0	23.0		22.0		.02				8.510
115	2220 574.04	76.91	116	172	114	6.75	23201551.00	8.7	8.7	916	895	11.0	23.0		23.0		.02		.57		8.5ID
115	2221 575.01	1061	135	151	116	8.99	23201551.00	8.7	8.7				23.0		24.0		.02				8.510
116	2221 576.02	88.0	120	150	117	8.27	2310:551.00	8.7	8.7				23.0		25.0		.03				8.51D
116	2222 577.01	73.61	115	153	117	7.37	2280;551.00	8.7	8.7				23.0		26.0		.03				8.510
116	2 2233 578.00	1331	21.5	160	105	9.70	2480:557.58	8.7	8.7				23.4		127.0						8.51D
116	3 2234 579.02	1311	149	186	114	8.53	24801558.17	8.7	8.7				23.3		128.0				.50		8.510
116	4 2234 580.02	103	123	165	115	7.36	24801558.68	8.7	8.7				23.3		129.0				.53		8.510
116	5 2237 581.01	53.1	195.5	119	116	5.38	24801558.79	8.7	8.7				23.2		130.0				.61		8.510
:16	6 2237 582.02	81.6	109	124	115	6.92	24801559.35	8.7	8.7				23.2		131.0						8.510
116	7 2238 583.01	106	130	153	115	8.12	25001560.30	8.7	8.7				23.2		132.0						8.510
116	8 2238 584.02	93.0	112	138	115	7.79	26201561.67	8.7	8.7				23.2		133.0				.56		8.510 8.510
116	9 2240 585.01	45.9	189.1	107	116	6.36	26101563.54	8.7	8.7				23.2		134.0						8.510
117	0 2240 586.04	121	1116	132	115	7.93	26201563.66	8.7	8.7				23.2		135.0						8.51D
117	1 2241 587.01	138	105	121	116	7.48	26101563.97	8.7	8.7				23.1		136.0				.48 .54		8.510
117	2 2252 588.03	3 90.1	159.6	110	99	7.53	26001569.43	8.7	8.7				2 23.6		137.0				.56		9.510 8.510
117	3 2253 589.0	1 61.8	100	117	96	5.36	26001569.43	8.7	8.7				2 23.6		138.0				.50		9.51I
117	4 2254 590.0	1 107	1118	140	98	6.92	26001569.43	8.7	8./				2 23.5		139.0						8.51
117	5 2255 591.0	2 101	1114	136	98	6.84	26001569.49	8./	8./				2 23.5		140.0						8.5H
117	6 2256 592.0	1 53.0	104	133	97	6.46	26001570.74	8./	8./				2 23.4		141.0 142.0						9.5H
117	7 2256 593.0	4 107	1 117	128	95	7.24	2600 571.78	8./	8./				2 23.4		1142.0 1143.0					9	0 8.5¦I
117	8 2257 594.0	0 71.8	189.9	112	101	5.67	26701572.40	8./ n =	შ./ ი -	97Z			2 23.4 3 23.3		1143.0			1 .62	.62		0 8.5
117	9 2258 595.0	1 47.4	191.2	118	100) 5.80	26701574.16	8./ n =	\.ŭ./				3 23.3		1145.0			1 .43	.43		0 8.51
118	0 2259 596.0	3 149	193.5	117	91	5 6.2/	26701574.79	ij./ n ⁊	/וּמָ ירסי	980 001			3 23.3		5146.0			1 .57	.57		0 8.5
118	11 2259 597.0	0 66.2	184.3	105) ¥() b.ll	26701576.21	/. d . /	0./	981 704			3 23.3 4 23.2		1147.0			. 40	.41		2 8.511
							1840 580.00						4 23.2		1:48.0			51	.52		2 8.5
118	13 2326 599.0	0 91.1	181.4	114	11.	3.76 , e n:	1840:582.00	. a./	0./ 7 0 1				4 23.2 4 23.2		3149.0			64	.64		2 8.5
110	34 2326 600.0	0 41.2	(181.4	114) [].) 3.76 , c n,	1840:589.01	0./ . o .	/.ים דם י	/70 701			4 23.2		4151.0			56			2 8.51
111	35 2326 602.0	v 80.8	161.4	114	† 11.	3 0.70 10 2 5	18501590.00	0./	0./ 7.0				4 23.2		5153.0			51 .56			2 8.51
11	36 2326 604.0	V 113	161.4 101.4	114	† 11. 6 44	3 0.76 7 E 0/	1840:595.00	1 0 1	0./ 7 0 1				4 23.2		4155.0			47	.47		2 8.51
11	1/ Z3Z6 606.0	N 140	/idl=4	1 11	1 11. 4 11	3 J.70 7 S O/	1840:596.00	, Q./	. u./	797			4 23.2		4155.8			.45			3 8.5
11	18 Z3Z6 60/.0	V 87.6	1.101.4 20.4 12	. 11	11.	ა J.70 ი გ იი	3 1840 598.00	, 0.7	י.ט 7 ק	835			4 23.9		9157.0			35			3 8.51
11	37 2334 608.0	0 220)i 122	, 14\ , 14\	ילע היס	0 L AC	3 21101599.00	/ Q./	0./ 7 0.7	000 Q5/			4 24.0		9158.0			71 .42			9 8.51
11	70 2334 607.0	ו/1 או	1; 11 <i>/</i>	/ 14: 7 44:	יא נח	0 0.40 0 5 5/	5 2120:599.00	, 0./	; 0./ 7 0.7				4 24.0		8159.0			71 .50			9 8.5
) 21601599.00 2 24701599.00						5 23.8		5160.0			71 .63			9 8.5
							7 26701599.00						.5 23.8		6160.9			71 .48			9 8.51
11	42 5329 915°C	11 12	oi IZ	0 10	o il	7 O.I	9 26701599.00 		. 0./	701					_+						

------T# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC MXB ECD NXMD: m m/hr¦ AVG MAX AVG AVG PRES¦DEPTH IN OUT IN OUT IN OUT ! m hr T₩! ; 1194 2336 613.02 2181 143 160 114 9.44 26701599.00 8.7 8.7 969 976 11.5 23.8 486161.9 .9 .071 .43 .42 487163.0 .9 .071 .44 .43 8.9 8.510 1195 2337 614.01 1861 112 132 115 7.42 26601599.00 8.7 8.7 971 977 11.5 23.7 972 952 11.5 23.6 486:64.0 .9 .08: .61 .60 9.0 8.5ID 1196 2338 615.02 64.9188.8 105 116 6.18 26601599.00 8.7 8.7 1197 2340 616.03 22.0193.0 167 115 7.78 26701599.00 8.7 8.7 972 976 11.5 23.5 483165.0 .9 .091 .83 .82 9.0 8.51D 1198 2351 617.01 72.9110.0 16.0 81 7.78 4801600.71 8.7 8.7 394 385 11.5 24.1 506166.0 .9 .091 .55 .55 8.9 8.51D* 1199 2352 618.02 82.0199.2 105 96 4.50 5101600.71 8.7 8.7 394 380 11.5 24.1 516167.0 .9 .091 .51 .51 8.9 8.51D1 1200 2354 619.03 47.8192.7 115 98 4.97 26301602.38 8.7 8.7 897 924 11.5 24.0 523168.0 .9 .091 .61 .60 9.0 8.51D 1201 2354 620.00 161: 120 139 101 7.42 2640:602.43 8.7 8.7 940 957 11.6 23.7 527:69.0 .9 .09: .44 .44 9.0 8.51D 1202 2354 621.04 1741 117 134 99 7.52 26401602.53 8.7 8.7 956 970 11.6 23.7 530170.0 1.0 .091 .42 .42 9.0 8.51D 1203 2355 622.04 149: 119 133 97 7.93 2650:602.64 8.7 8.7 964 952 11.6 23.7 530:71.0 1.0 .09: .45 .45 9.0 8.51D .48 9.0 8.51D 531172.0 1.0 .091 .48 1204 2355 623.03 1201 103 135 99 7.32 26401602.97 8.7 8.7 966 955 11.6 23.6 1205 2355 624.02 1561 117 129 98 8.33 26401603.21 8.7 8.7 971 955 11.6 23.6 530172.9 1.0 .091 .45 .44 9.0 8.51D 1206 2356 625.01 1471 119 135 94 8.09 26301603.41 8.7 8.7 971 956 11.6 23.6 530174.0 1.0 .091 .45 .44 9.0 8.51D ; ! Date Apr 2 '90 1207 0004 626.07 141186.5 139 96 7.39 27201604.15 8.7 8.7 732 851 11.7 23.6 524174.9 1.0 .091 .45 .45 9.0 8.51D1 1208 0004 627.01 241; 148 174 116 5.78 27301604.28 8.7 8.7 838 907 11.7 23.6 524;76.0 1.0 .09; .37 .37 9.0 8.51D 1209 0006 628.00 61.81 104 133 116 4.58 27301604.73 8.7 8.7 979 967 11.8 23.7 522177.0 1.0 .101 .58 .57 9.1 8.5ID 1210 0007 629.01 76.91 108 137 116 7.45 27301604.73 8.7 8.7 983 962 11.8 23.7 524178.0 1.0 .101 .59 .59 9.1 8.51D .53 9.1 8.51D 1211 0007 630.01 109; 107 129 116 7.91 2730;604.73 8.7 8.7 982 960 11.8 23.6 522;79.0 1.0 .10; .53 1212 0008 631.02 90.11 105 125 116 7.71 27301604.73 8.7 8.7 981 960 11.8 23.6 522180.0 1.0 .101 .56 .56 9.1 8.51D .69 9.1 8.51D 1213 0009 632.02 40.6193.4 119 116 7.39 27201604.73 8.7 8.7 982 984 11.8 23.6 521181.0 1.1 .111 .70 0011 633.03 50.0188.9 126 117 8.11 27201604.73 8.7 8.7 982 960 11.8 23.5 521182.0 1.1 .111 .67 .67 9.1 8.51D .54 9.1 8.51D 275 0011 634.03 106193.9 122 116 8.76 27201604.73 8.7 8.7 990 982 11.9 23.5 518183.0 1.1 .111 .55 .75 9.1 8.5!D1 1216 0019 635.00 30.6156.7 111 105 8.52 27201604.73 8.7 8.7 925 941 11.9 23.8 513184.0 1.1 .121 .75 1217 0019 636.05 3061 122 131 114 5.11 27201604.73 8.7 8.7 956 956 11.9 23.8 513185.0 1.1 .121 .32 .31 9.1 8.5!D* 1218 0021 637.07 1971 118 165 115 5.62 27201604.73 8.7 8.7 976 967 11.9 23.7 509186.0 1.1 .121 .39 .39 9.2 8.5101 .50 9.2 8.51D 1219 0021 638.03 1091 106 149 115 6.47 27201605.17 8.7 8.7 978 959 11.9 23.6 507187.0 1.1 .121 .50 1220 0022 639.02 1191 108 128 115 7.38 27301606.52 8.7 8.7 978 969 11.9 23.6 508188.0 1.1 .121 .50 .50 9.2 8.51D 1221 0022 640.02 1231 100 112 115 7.42 27301607.35 8.7 8.7 977 956 11.9 23.6 509189.0 1.1 .121 .50 .49 9.2 8.51D-1222 0023 641.05 84.41 106 126 115 7.43 27201607.98 8.7 8.7 977 963 11.9 23.6 507190.0 1.2 .121 .56 .56 9.2 8.51D 1223 0024 642.01 86.81 102 125 115 6.98 27201608.71 8.7 8.7 982 961 11.9 23.6 505191.0 1.2 .131 .55 .55 9.2 8.51D 1224 0025 643.05 49.51 128 157 115 7.40 27201611.74 8.7 8.7 977 980 11.9 23.5 507192.0 1.2 .131 .66 .65 9.2 8.51D 1225 0032 644.00 104:81.0 147 113 8.83 2690:613.33 8.7 8.7 900 941 11.8 24.2 497:93.0 1.2 .13: .54 .54 9.2 8.51Dt 1226 0032 645.02 1221 122 150 97 4.00 26901613.39 8.7 8.7 949 948 11.8 24.2 498194.0 1.2 .131 .42 .42 9.2 8.51D 1227 0033 646.00 63.51 111 127 96 3.76 26901613.72 8.7 8.7 965 959 11.8 24.1 497195.0 1.2 .131 .52 .51 9.2 8.51D-1228 0034 647.01 59.71 102 117 97 3.43 26901614.10 8.7 8.7 968 954 11.8 23.9 497196.0 1.2 .131 .52 .52 9.2 8.51D 1229 0035 648.01 61.4: 103 121 93 3.11 2690:614.48 8.7 8.7 970 975 11.8 23.8 498:97.0 1.2 .14: .50 .50 9.2 8.51D 1230 0036 649.05 66.21 143 181 96 3.56 26901615.43 8.7 8.7 968 948 11.8 23.8 496198.0 1.2 .141 .50 .50 9.2 8.51D .57 9.2 8.5;D 1231 0037 650.01 43.01 121 165 99 3.43 26901618.80 8.7 8.7 970 956 11.8 23.7 494199.0 1.3 .141 .57 1232 0038 651.00 66.91 141 173 95 4.91 27001620.72 8.7 8.7 971 950 11.8 23.7 4931 100 1.3 .141 .53 .53 9.1 8.51D .66 9.1 8.51D 1233 0040 652.01 31.81 120 165 94 5.16 26901624.51 8.7 8.7 969 955 11.8 23.6 4931 101 1.3 .151 .66 1234 0041 653.00 56.1197.9 115 97 6.02 26901624.88 8.7 8.7 968 959 11.8 23.6 4891 102 .58 9.1 8.51D 1.3 .151 .59 .64 9.1 8.5!D* 1235 0055 654.00 37.2176.2 113 90 5.82 27401628.29 8.7 8.7 936 966 11.8 23.5 4771 103 1.3 .15! .64 1236 0055 655.02 82.71 101 115 115 6.89 27401629.65 8.7 8.7 973 980 11.8 23.5 4751 104 .56 9.1 8.51D 1.4 .151 .57 1237 0056 656.03 59.41 144 170 114 7.42 27401630.66 8.7 8.7 979 968 11.9 23.4 4731 105 1.4 .161 .63 .63 9.1 8.51D 1238 0057 657.04 1151 149 168 114 8.10 27401631.04 8.7 8.7 982 973 11.9 23.4 4721 106 1.4 .161 .52 .52 9.1 8.51D ¥9 0058 658.05 82.1! 157 182 115 7.45 2740|631.66 8.7 8.7 981 983 11.9 23.4 471¦ 107 1.4 .16¦ .57 .57 9.1 8.5ID 40 0058 659.01 112: 167 187 113 8.74 2740:632.13 8.7 8.7 977 955 11.9 23.4 471: 108 1.4 .16: .53 .53 9.1 8.5:D +-------

Data Printed at time 06:32 Data Recorded at time 00:59 Date Apr 2 '90'

._____ ! F# TIME DEPTH ROP! TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW! _____ 978 965 11.9 23.4 4711 109 1.4 .161 .59 9.1 8.51D .58 1241 0059 660.00 84.21 147 168 115 8.63 27401633.12 8.7 8.7 9.1 8.5 D 1.4 .171 .68 983 967 11.9 23.4 4691 110 .68 1242 0100 661.01 45.31 133 148 114 7.68 27401633.83 8.7 8.7 1.5 .171 .72 .72 9.1 8.51D 1243 0101 662.01 37.5! 148 173 115 8.06 27401635.70 8.7 8.7 979 964 11.9 23.4 4661 111 .55 9.1 8.51D 1.5 .171 .56 4661 112 978 981 11.9 23.4 1244 0102 663.03 1071 176 186 113 10.3 27401635.70 8.7 8.7 .54 9.1 8.51D 1.5 .171 .55 4701 113 984 970 11.9 23.4 1245 0102 664.01 96.71 127 171 98 10.0 26801636.58 8.7 8.7 .57 9.1 8.51Dt 490: 114 1.5 .171 .57 929 944 11.9 23.5 1246 0110 665.02 82.11 112 148 97 9.35 27101638.72 8.7 8.7 1.5 .18: .47 .47 9.1 8.5HD 959 973 11.9 23.5 4941 115 1247 0110 666.01 1471 152 170 114 7.75 27101639.23 8.7 8.7 1.5 .18: .58 .57 9.1 8.51D 976 984 12.0 23.5 5021 116 1248 0111 667.02 80.61 153 166 115 7.32 27201640.03 8.7 8.7 .65 9.1 8.510 1.5 .18! .66 1249 0113 668.01 39.81 154 178 97 6.42 27701642.11 8.7 8.7 503: 117 977 967 12.0 23.4 .50 9.1 8.51D 1.5 .18; .50 1250 0113 669.02 1081 155 163 95 8.03 27701642.59 8.7 8.7 976 964 12.0 23.4 504: 118 .61 9.1 8.51D 1.6 .181 .61 979 959 12.0 23.4 501; 119 1251 0114 670.01 53.71 144 169 95 7.03 27701643.78 8.7 8.7 .66 9.1 8.5ID 980 983 12.0 23.4 4991 120 1.6 .191 .66 1252 0116 671.04 49.5; 157 184 96 9.36 2770;644.03 8.7 8.7 .46 9.1 8.51D 1.6 .191 .46 498: 121 980 966 12.0 23.4 1253 0116 672.00 149: 165 181 95 9.93 2770:644.16 8.7 8.7 .61 9.1 8.51D 1.6 .191 .61 4961 122 1254 0117 673.01 61.51 151 174 95 8.67 27701645.02 8.7 8.7 978 982 11.9 23.4 .69 9.1 8.51Dt 1.6 .191 .70 967 962 11.9 23.4 4891 123 1255 0125 674.02 33.41 118 178 100 6.55 27301648.77 8.7 8.7 .57 9.1 8.51D 969 972 11.9 23.4 4891 124 1.6 .201 .58 1256 0126 675.01 60.71 115 154 116 4.61 27301649.69 8.7 8.7 .48 9.1 8.51D 1.7 .201 .48 1257 0127 676.01 1151 148 171 114 5.21 27301650.21 8.7 8.7 4881 125 969 974 11.9 23.3 1.7 .201 .56 .55 9.1 8.51D 971 975 11.9 23.3 487; 126 1258 0128 677.01 55.01 148 175 115 3.25 27301651.06 8.7 8.7 .61 9.1 8.5ID 1259 0129 678.02 53.31 149 175 115 5.34 27301651.87 8.7 8.7 1.7 .201 .61 971 974 11.9 23.3 4891 127 .64 9.1 8.51D 966 952 11.9 23.3 4861 128 1.7 .211 .65 1260 0130 679.03 54.61 160 175 114 7.52 27301652.83 8.7 8.7 .65 9.1 8.51D 1.7 .211 .65 967 954 11.8 23.3 4841 129 1261 0131 680.01 50.31 147 160 114 6.91 27301653.33 8.7 8.7 .69 9.1 8.51D 969 955 11.8 23.3 4821 130 1.8 .211 .70 1262 0133 681.01 42.4; 160 186 114 8.06 27201653.64 8.7 8.7 .70 9.1 8.51D 1.8 .221 .70 968 974 11.8 23.3 4841 131 1263 0134 682.00 45.51 163 197 114 9.04 27301654.38 8.7 8.7 ,60 9.1 8.51D 4841 132 1.8 .221 .60 1264 0135 683.01 72.91 132 180 100 9.94 27301655.40 8.7 8.7 968 947 11.8 23.3 .56 9.1 8.51Dt 1.8 .221 .56 4771 133 1265 0142 684.01 88.21 125 161 95 9.98 27801658.75 8.7 8.7 956 948 11.8 23.3 .60 9.1 8.51D 1.8 .221 .61 972 959 11.8 23.3 4751 134 1266 0142 685.01 78.41 119 143 115 9.00 27801659.91 8.7 8.7 1.8 .221 .65 . 65 9.1 8.5 D 4771 135 1267 0143 686.00 61.11 116 135 115 9.15 11001660.65 8.7 8.7 950 875 11.8 23.3 .65 9.1 8.5ID 4791 136 1.8 .231 .66 1268 0144 687.01 63.9; 135 168 114 10.1 10001661.05 8.7 8.7 642 578 11.8 23.3 1.9 .231 .72 .72 9.1 8.51D 565 544 11.8 23.3 4791 137 1269 0146 688.03 43.61 119 155 114 9.64 9901661.80 8.7 8.7 9.1 8.51D 1.9 .231 .64 .63 4781 138 1270 0146 689.04 75.61 139 166 115 10.8 10001662.55 8.7 8.7 564 543 11.8 23.3 9.1 8.5ID 1.9 .241 .72 .71 565 551 11.8 23.3 4771 139 1271 0147 690.00 52.11 140 167 114 11.9 8801663.41 8.7 8.7 .82 9.1 8.51D 1.9 .241 .83 1272 0150 691.01 27.81 116 166 114 11.2 27301663.90 8.7 8.7 891 916 11.8 23.3 4701 140 .71 9.1 8.51D 2.0 .251 .71 468: 141 1273 0151 692.00 56.11 119 146 115 12.6 27301665.43 8.7 8.7 959 965 11.8 23.3 .67 9.0 8.51D* 2.0 .251 .67 337 317 11.8 23.3 482; 142 1274 0200 693.03 49.21 110 148 74 13.9 4201667.29 8.7 8.7 .59 9.1 8.51Dt 2.0 .251 .60 408 413 11.9 23.3 4981 143 1275 0204 694.00 71.01 100 115 97 9.17 5701668.26 8.7 8.7 2.1 .26: .80 .80 9.1 8.510 1276 0207 695.01 22.1191.2 120 95 8.77 28101670.03 8.7 8.7 512: 144 962 977 11.9 23.3 .75 9.0 8.510 2.1 .261 .75 5141 145 1277 0209 696.02 33.8193.6 114 97 10.3 27801672.50 8.7 8.7 976 952 11.9 23.3 .77 9.0 8.51D 2.1 .26: .78 1278 0211 697.03 33.11 100 132 97 11.7 27601672.98 8.7 8.7 967 945 12.0 23.3 5131 146 .72 9.1 8.51D 2.1 .271 .72 969 955 12.0 23.3 5121 147 1279 0212 698.01 47.8: 119 149 97 13.2 27501673.05 8.7 8.7 .73 9.1 8.51D 1280 0213 699.00 47.11 117 146 98 14.5 27501673.82 8.7 8.7 967 953 12.0 23.3 5111 148 2.2 .271 .74 2.2 .271 .75 .74 9.0 8.51D 5101 149 953 938 12.0 23.3 1281 0215 700.02 43.31 109 130 94 14.4 26601675.72 8.7 8.7 .68 9.0 8.51D 509; 150 2.2 .28; .68 1282 0215 701.02 62.81 109 135 98 14.6 26101676.36 8.7 8.7 950 927 12.0 23.3 .80 9.0 8.51D 1283 0217 702.01 32.11 104 128 92 14.6 26201677.89 8.7 8.7 942 921 12.0 23.3 2.2 .281 .81 5071 151 .69 9.0 8.51Dt 1284 0226 703.03 49.51 127 189 82 14.4 25301680.55 8.7 8.7 914 901 12.1 23.4 503: 152 2.3 .28: .70 503| 153 2.3 .28| .73 .72 9.0 8.510 1285 0227 704.01 54.51 147 169 116 12.9 25301681.29 8.7 8.7 921 901 12.1 23.4 5021 154 2.3 .291 .72 .71 9.0 8.51D 1286 0228 705.02 57.21 133 152 117 12.7 25301682.30 8.7 8.7 927 904 12.1 23.4 501: 155 2.3 .29: .67 .66 9.0 8.51D 1287 0229 706.02 72.51 130 152 117 12.7 25301682.75 8.7 8.7 923 914 12.1 23.4 1288 0230 707.02 32.3! 115 165 117 12.5 2540 683.50 8.7 8.7 924 908 12.1 23.4 500 | 156 2.3 .29 | .83 .82 9.0 8.51D

1. F 11ME DEFFH GOP TURQUE RPM MUB PUBEFIRTHENS MUB DUFFIRTHENS MUB BLAY MUB MUB																+			+				}
1289 0231 708,016 83.81 158 184 116 15.9 25016847.2 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	: F#	TIME	DEPTH	RNP!	TOR	OUE F	RPM	MO8	PUMP!RTRNS	MD	lb/gal	FLO	W/MIN	TE	IP (C)	PVT	-THIS	BIT-	EST!	DXC	NXB	ECD	NXMD:
1289 0233 708.01 85.08 158 189 184 116 15.9 25401681-R2 8.7 8.7 92 97 11.00 233 497 1183 24. 301. 77 .76 9.0 8.510 1291 0233 710.00 45.51 120 189 171 135.3 25401687.08 8.7 8.7 92 97 11.00 233 497 1180 24. 301. 77 .76 9.0 8.510 1292 0235 711.00 45.51 103 119 117 13.1 25401687.08 8.7 8.7 92 97 121.02 33.4 9501 159 2.4 301. 77 .76 9.0 8.510 1292 0235 711.00 43.51 103 119 117 13.1 25401687.08 8.7 8.7 92 97 121.02 33.5 951 160 2.4 311. 70 .69 9.0 8.510 1294 0235 713.02 1021 164 180 94 10.1 25501687.08 8.7 8.7 93 91 12.0 23.4 4981 162 2.4 311. 70 .69 9.0 8.510 1294 0235 715.01 73.81 147 159 95 95.5 25501697.38 1.8 8.7 935 913 12.0 23.4 4981 162 2.4 311. 70 .69 9.0 8.510 1298 0247 717.01 55.11 12 13 98 8.93 25601693.8 8.7 8.7 93 93 913 12.0 23.4 4981 165 2.5 321. 63 .64 9.0 8.510 1298 0247 717.01 55.11 12 12 13 98 8.92 25501697.8 8.7 8.7 92 97 97 97 97 97 97 97 97 97 97 97 97 97	; ; ;	11112	a a	m/hrl	AVG	MAX A	AVG	AVG	PRESIDEPTH	IN	OŪT	IN	TUO	··IN	OUT	!	n	hr	TWI				1
1299 0233 709.02 46.51 120 149 117 13.5 25501486.08 8.7 8.7 927 917 12.0 233.4 4991 158 2.4 .301.77 .76 9.0 8.516 1222 0233 711.00 43.51 13 37 181 12.8 25601487.09 8.7 8.7 926 9011.20 233.5 5011 150 2.4 .311.76 .69 9.0 8.516 1222 0233 711.00 43.51 103 119 117 13.1 25601487.09 8.7 8.7 92 92 11.20 233.4 4981 161 2.4 .311.76 .69 9.0 8.516 1299 0247 714.00 13.8 18 10 18 10 17 12.5 25601487.01 8.7 8.7 92 92 11.20 233.4 4981 162 2.4 .311.54 .55 9.0 8.516 129 0247 714.00 13.8 18 17 18 97 95 9.5 25501487.3 18.7 8.7 92 93 12.0 233.4 4981 162 2.4 .311.54 .55 9.0 8.516 1297 0247 714.00 13.8 18 17 18 97 95 9.5 25501487.3 18.7 8.7 93 915 12.0 23.4 4981 162 2.4 .311.54 .55 9.0 8.516 1297 0247 714.00 15.8 11 12 13 98 8.7 92 5501487.3 18.7 8.7 93 915 12.0 23.4 4981 162 2.5 .311.54 .55 9.0 8.516 1297 0247 714.00 15.6 11 12 13 98 8.7 92 5501487.3 18.7 8.7 93 915 12.0 23.4 4981 162 2.5 .321.48 4.0 4.0 8.516 1299 0249 718.0 245 714.0 55.1 12 12 180 91 12.0 91 12 12 12 12 12 12 12 12 12 12 12 12 12	}			+					+							+			+				+
1294 0235 711.00 15.15 133 159 118 12.8 2501687.86 8.7 8.7 923 914 12.0 23.4 501 159 2.4 3.01 .77 7.9 9.0 8.518 1292 0235 711.00 15.15 11.00 14.1 117 13.1 2501687.9 8.7 923 91.2 12.0 23.5 101.00 150 2.4 3.11 .79 .79 9.0 8.518 1294 0245 713.02 1021 144 180 94 10.1 2501692.3 1.3 1.7 9.7 9.0 8.518 1294 0245 713.02 1021 144 180 94 10.1 2501692.3 1.3 1.7 9.7 9.0 8.518 1294 0245 713.02 1021 144 180 94 10.1 2501692.3 1.3 1.7 9.7 9.0 8.518 1295 0245 714.0 15.8 11 17 15.9 95 9.5 2501692.3 18.7 18.7 9.7 9.7 9.7 9.7 9.7 9.0 8.518 1298 0245 715.0 175.8 147 159 95 9.5 2501692.3 18.7 18.7 9.7 9.7 9.7 9.7 9.7 9.7 9.0 8.518 1298 0247 717.0 15.11 122 143 98 8.2 2501692.3 18.7 18.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9	1289	0231	708.01	63.81	158	184 1	116	15.9	25401684.72	8.7	8.7	926	905	12.0	23.4	5001	157	2.5	.301	./5	./2	9.0	8.3iV
1292 0235 711.00 43.5; 103 119 117 13.1 25401689.90 8.7 8.7 923 909 12.0 23.5 5011 160 2.4 311 .78 .77 9.0 8.518												927	917	12.0	23.4	4991							
1279 0247 1712.01 58.81 104 183 107 12.5 25401691.68 8.7 8.7 841 861 12.0 23.4 4951 162 2.4 311 .70 .69 9.0 8.518 1294 0247 1713.02 1021 164 180 94 10.1 25601692.31 8.7 8.7 902 921 12.0 23.4 4951 165 2.5 321 .67 3.9 9.0 8.518 1296 0247 171.01 56.11 122 143 96 8.29 25501692.31 8.7 8.7 92 933 12.0 23.4 4951 165 2.5 321 .67 5.9 9.0 8.518 1298 0247 171.01 56.11 122 143 96 8.29 25501692.31 8.7 8.7 8.7 925 915 12.0 23.4 4951 165 2.5 321 .64 .64 9.0 8.518 1298 0247 171.01 56.11 122 143 96 8.29 25501692.31 8.7 8.7 8.7 925 915 12.0 23.4 4951 165 2.5 .321 .64 .64 9.0 8.518 1298 0247 171.01 56.11 122 143 96 8.29 25501692.31 8.7 8.7 8.7 925 915 12.0 23.4 4951 165 2.5 .321 .64 .64 9.0 8.518 1298 0247 171.01 56.11 122 143 96 8.29 25501692.31 8.7 8.7 8.7 925 915 12.0 23.4 4951 165 2.5 .321 .65 .62 9.0 8.518 1299 0247 171.01 55.11 122 143 96 8.29 25501692.31 8.7 8.7 8.7 925 915 12.0 23.4 4951 165 2.5 .321 .65 .66 9.0 8.518 1299 0247 171.01 55.11 120 142 96 11.0 25501693.49 8.7 8.7 925 907 12.0 23.4 4951 165 2.5 .321 .65 .66 9.0 8.518 1301 0250 72.0 02 58.0 1152 168 97 11.7 25501693.19 8.7 8.7 928 907 12.0 23.4 4961 167 2.5 .321 .67 .66 9.0 8.518 1301 0250 72.0 02 58.0 1152 168 97 11.7 25501693.19 8.7 8.7 928 907 12.0 23.4 4961 167 2.5 .321 .67 .66 9.0 8.518 1301 0250 72.0 02 58.0 1161 189 102 11.1 25501693.19 8.7 8.7 91.7 922 928 12.1 23.4 4961 167 2.5 .321 .67 .66 9.0 8.518 1300 02297 724.0 284.7 1141 169 117 9.4 25501693.8 8.7 8.7 91.9 921 12.0 23.4 4961 167 2.5 .321 .67 .66 9.0 8.518 1300 0229 724.0 284.7 1411 169 117 9.4 25501693.8 8.7 8.7 91.9 921 12.0 23.4 4961 167 2.5 .331 .60 .59 9.0 8.518 1304 0238 723.0 153.1 131 181 195 115 11.6 25601693.19 8.7 8.7 91.9 921 12.0 23.4 4961 167 2.5 .331 .60 .59 9.0 8.518 1304 0238 723.0 153.1 131 181 195 115 11.6 25601693.1 8.7 8.7 91.9 921 12.0 23.4 4961 167 2.5 .331 .60 .59 9.0 8.518 1304 0238 723.0 153.1 151 181 195 115 11.6 25601693.1 8.7 8.7 91.9 921 12.0 23.4 4961 167 2.5 .331 .60 .59 9.0 8.518 1304 0238 723.0 153.1 151 181 17.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12																							
1294 0245 713.02 1021 144 180 94 10.1 2501692.07 8.7 8.7 902 921 12.0 23.4 4941 162 2.4 311 54 533 9.0 8.510 1295 0244 714.00 81.1 125 1197 176 94 97.7 25501692.31 8.7 8.7 925 931 12.0 23.4 4951 165 2.5 321 .59 .53 .59 .8 .510 1297 0244 714.00 153.81 147 159 95 9.55 25501692.39 8.7 8.7 93 934 12.0 23.4 4961 185 2.5 321 .59 .59 .59 .0 8.510 1297 0244 714.00 153.81 131 151 98 8.93 2501693.80 8.7 8.7 930 934 12.0 23.4 4961 185 2.5 321 .59 .59 .59 .0 8.510 1299 0247 717.0 153.11 122 134 98 .29 25016943.80 8.7 8.7 930 934 12.0 23.4 4961 185 2.5 .321 .65 .68 .69 .0 8.510 1299 0248 718.02 45.51 135 155 98 9.41 2501694.38 8.7 8.7 925 906 12.0 23.4 4961 185 2.5 .321 .65 .68 9.0 8.510 1299 0248 718.02 45.51 135 155 98 9.41 2501694.38 8.7 8.7 925 906 12.0 23.4 4961 185 2.5 .321 .66 .68 9.0 8.510 1299 0240 718.02 45.51 150 157.51 161 180 96 12.0 2501695.40 8.7 8.7 925 906 12.0 23.4 4961 187 2.5 .321 .66 .68 9.0 8.510 1300 0249 719.01 73.11 148 162 96 11.8 2501694.38 8.7 8.7 913 907 12.0 23.4 4941 170 2.6 .331 .62 .67 .66 9.0 8.510 1300 0249 71.0 13.11 148 162 96 11.8 2501694.38 8.7 8.7 915 910 12.1 23.4 4941 170 2.6 .331 .67 .66 9.0 8.510 1300 0249 71.0 13.11 181 187 115 11.6 2501699.08 8.7 8.7 8.7 915 910 12.1 23.4 4941 170 2.6 .331 .55 .55 9.0 8.510 1300 0249 71.0 14.1 12.0 14.1 14.1 12.4 25501701.38 8.7 8.7 919 922 12.1 23.4 4921 171 2.6 .331 .55 .55 9.0 8.510 1300 0229 72.0 18.0 14.0 191 79.4 2501901.38 9.7 8.7 919 922 12.1 23.4 4921 172 2.6 .331 .55 .55 9.0 8.510 1300 0229 72.0 18.0 14.0 191 79.4 2501901.38 9.7 8.7 919 922 12.1 23.4 4921 172 2.6 .331 .55 .55 9.0 8.510 1300 0229 72.0 18.0 14.0 117 12.4 25501701.04 8.7 8.7 919 922 12.1 23.4 4921 173 2.6 .34 177 7.6 9.8 8.510 1300 0229 72.0 18.0 14.0 117 14.0 2501701.38 8.7 8.7 919 922 12.1 23.4 4921 173 2.6 .34 177 7.6 9.8 8.510 1300 0229 72.0 18.1 12.0 13.4 148 151 11.9 25701701.78 8.7 8.7 919 922 12.1 23.4 4921 173 2.6 .34 177 7.6 9.8 8.510 1300 0220 72.0 18.1 12.0 13.4 148 151 11.9 25701701.78 8.7 8.7 919 922 12.1 23.4 4921 173 2.6 .34 177 7.7 9.0 8.510 1300 030 72.0																							
1995 0244 714,00 8B.28 159 176 94 9.74 25501692.31 8.7 8.7 923 933 12.0 25.4 4951 165 2.5 311 .56 .55 9.0 8.510 1296 0247 171.01 56.11 122 143 78 8.29 25501694.38 8.7 8.7 925 915 12.0 23.4 4961 165 2.5 .321 .65 .65 9.0 8.510 1298 0247 171.01 56.11 122 143 78 8.29 25501694.38 8.7 8.7 925 915 12.0 23.4 4961 165 2.5 .321 .65 .65 9.0 8.510 1298 0247 171.01 56.11 122 143 78 8.29 25501694.38 8.7 8.7 925 915 12.0 23.4 4961 165 2.5 .321 .65 .65 9.0 8.510 1300 0249 719.01 57.51 161 180 96 12.0 25601695.10 8.7 8.7 925 915 12.0 23.4 4961 165 2.5 .321 .65 .65 9.0 8.510 1300 0249 719.01 57.51 161 180 96 12.0 25601695.10 8.7 8.7 928 907 12.0 23.4 4961 167 2.6 .321 .65 .66 9.0 8.510 1301 0250 720.02 58.01 152 168 97 11.7 25601696.10 8.7 8.7 928 907 12.0 23.4 4941 169 2.6 .331 .62 .62 9.0 8.510 1302 0251 721.01 86.01 161 198 102 11.1 25601696.13 8.7 8.7 8.7 928 907 12.0 23.4 4941 170 2.6 .331 .62 .62 9.0 8.510 1303 0258 722.01 86.01 161 198 102 11.1 25601696.13 8.7 8.7 8.7 92 910 12.1 23.4 4941 170 2.6 .331 .62 .62 9.0 8.510 1305 0258 722.00 1081 131 195 115 11.6 25601696.18 8.7 8.7 92 928 12.1 23.4 4941 170 2.6 .331 .62 .62 9.0 8.510 1305 0258 722.00 1081 131 197 117 255016196.18 8.7 8.7 92 928 12.1 23.4 4921 172 2.6 .331 .62 .62 9.0 8.510 1306 0350 725.01 54.2 1 109 134 117 12.7 25501701.32 8.7 8.7 919 912 12.1 23.4 4921 172 2.6 .331 .65 .64 9.0 8.510 1308 0350 725.01 54.2 1 109 134 117 12.7 25501701.32 8.7 8.7 919 912 12.1 23.4 4921 172 2.6 .331 .65 .64 9.0 8.510 1303 0304 729.00 80.8 148 189 119 11.7 25501701.79 8.7 8.7 919 912 12.1 23.4 4921 172 2.6 .331 .65 .64 9.0 8.510 131 0305 730.0 6.8 148 189 119 11.7 25501701.79 8.7 8.7 919 912 12.1 23.4 4921 172 2.7 .341 .58 .57 9.0 8.510 131 0305 730.0 6.8 148 189 189 11.2 12.7 2501701.79 8.7 8.7 919 912 12.1 23.4 4921 172 2.7 .341 .58 .57 9.9 9.0 8.510 131 0305 730.0 6.8 148 189 189 11.2 12.2 2501701.99 8.7 8.7 919 912 12.1 23.4 4931 170 2.7 .341 .58 .57 9.																							
1276 0245 715.01 73.81 147 159 95 95.5 25016972.99 8.7 8.7 935 93 12.0 23.4 961 164 2.5 321 .59 .59 9.0 8.51D 1279 0245 716.01 55.81 131 151 98 8.93 2501693.80 8.7 8.7 930 934 12.0 23.4 961 165 2.5 321 .63 .62 9.0 8.51D 1299 0249 719.01 57.51 161 180 96 12.0 2501695.40 8.7 8.7 925 906 12.0 23.4 4961 164 2.5 321 .63 .62 9.0 8.51D 1300 0249 719.01 57.51 161 180 96 12.0 2501695.40 8.7 8.7 925 906 12.0 23.4 4961 164 2.5 321 .63 .62 9.0 8.51D 1301 0250 702.00 250.01 57.51 161 180 96 12.0 2501695.40 8.7 8.7 925 906 12.0 23.4 4961 164 2.5 321 .65 .68 9.0 8.51D 1301 0250 702.00 250.01 8.00 161 181 188 02 11.2 15501695.15 8.7 8.7 925 906 12.0 23.4 4961 167 2.5 321 .67 .66 9.0 8.51D 1301 0250 702.00 250.01 8.00 161 181 189 102 11.1 2501695.49 8.7 8.7 925 906 12.0 23.4 4941 107 2.6 .331 .67 .66 9.0 8.51D 1302 0251 721.01 73.11 148 162 95 11.8 2501695.49 8.7 8.7 925 912 12.0 23.4 4941 107 2.6 .331 .67 .66 9.0 8.51D 1302 02527 720.02 18.01 161 189 102 11.1 2501695.15 8.7 8.7 897 912 12.0 23.4 4941 107 2.6 .331 .67 .65 9.0 8.51D 1304 02528 723.03 1151 181 195 115 11.6 2501695.15 8.7 8.7 897 912 12.0 23.4 4941 107 2.6 .331 .60 .53 .59 .90 8.51D 1300 0250 702.00 28.1 111 111 111 111 111 111 111 111 111																							
1279 0244 716.01 55.81 131 151 98 8.93 25001693.80 8.7 8.7 930 934 12.0 23.4 4961 165 2.5 321 .64 .64 9.0 8.51D																							
1299 0247 717.01 56.11 122 143 96 8.29 2551694.38 8.7 8.7 925 915 12.0 23.4 495 1166 2.5 321 .63 .62 9.0 8.51b 1299 0248 718.02 46.51 135 155 98 9.41 25601694.89 8.7 8.7 925 905 12.0 23.4 496 167 2.5 321 .63 .62 9.0 8.51b 1300 0249 719.01 97.51 161 180 96 12.0 25601695.40 8.7 8.7 928 901 12.0 23.4 496 167 2.5 321 .65 .65 9.0 8.51b 1301 0250 720.02 58.01 152 168 97 11.7 25601696.10 8.7 8.7 928 901 12.0 23.4 494 1169 2.6 .331 .67 .66 9.0 8.51b 1302 0251 721.01 73.11 148 162 95 11.8 25601696.10 8.7 8.7 928 901 12.0 23.4 494 1169 2.6 .331 .67 .65 9.0 8.51b 1306 0258 723.03 1151 181 195 115 11.6 25601698.13 8.7 8.7 915 912 12.0 23.4 494 1169 2.6 .331 .65 .55 9.0 8.51b 1306 0258 723.03 1151 181 195 115 11.6 25601698.94 8.7 8.7 915 912 12.0 23.4 494 1171 2.6 .331 .59 .59 9.0 8.51b 1306 0259 724.02 44.71 141 169 117 .946 25501699.02 8.7 8.7 922 928 12.1 23.4 4921 172 2.6 .331 .65 .55 9.0 8.51b 1306 0259 724.02 44.71 141 169 117 .946 25501699.02 8.7 8.7 922 928 12.1 23.4 4921 173 2.6 .331 .65 .55 9.0 8.51b 1306 0302 727.00 1681 131 159 117 11.7 25601701.29 8.7 8.7 915 922 12.1 23.4 4921 175 2.6 .331 .65 .55 9.0 8.51b 1306 0302 727.00 1681 131 159 117 11.7 25601701.29 8.7 8.7 917 920 12.1 23.4 4921 175 2.6 .331 .65 .55 9.0 8.51b 1306 0303 728.00 42.21 150 184 117 12.4 25501701.79 8.7 8.7 917 920 12.1 23.4 4921 175 2.6 .341 .65 .64 9.0 8.51b 1306 0303 728.00 42.21 150 184 114 13.7 92 5601702.52 8.7 8.7 917 920 12.1 23.4 4921 175 2.6 .341 .65 .64 9.0 8.51b 1310 0305 730.01 62.31 144 181 117 13.2 8501702.52 8.7 8.7 917 920 12.1 23.4 4921 175 2.6 .341 .65 .64 9.0 8.51b 1310 0306 731.02 61.31 148 181 141 13.9 8001702.58 8.7 8.7 917 920 12.1 23.4 4921 175 2.7 .341 .58 .57 9.0 8.51b 1310 0306 731.02 61.31 148 181 141 13.9 8001702.58 8.7 8.7 919 924 12.1 23.4 4921 175 2.7 .341 .58 .57 9.0 8.51b 1310 0306 731.02 61.31 148 181 141 13.9 8001702.8 8.7 8.7 919 924 12.1 23.4 4921 175 2.7 .341 .58 .57 9.0 8.51b 1310 0306 731.02 61.31 148 181 141 13.9 8001702.8 8.7 8.7 919 924 12.1 23.4 4921 175 2.7 .341 .58 .59 9.0 8.51b 1310 0306 731.																							
1299 0249 718.02 46.51 135 155 98 9.41 25601694.69 8.7 8.7 925 90.6 12.0 23.4 494 130 25.5 12.5 12.6 68 9.0 8.51D 1300 0205 70.02 58.0 152 168 97 117. 25601695.10 8.7 8.7 928 907 12.0 23.4 494 130 2.6 .331 .67 .66 9.0 8.51D 1300 2052 72.01 86.0 1161 198 102 11.1 25601698.13 8.7 8.7 928 907 12.0 23.4 494 130 2.6 .331 .62 .62 9.0 8.51D 1300 0205 72.01 86.0 1161 198 102 11.1 25601698.13 8.7 8.7 928 907 12.0 23.4 494 130 2.6 .331 .62 .62 9.0 8.51D 1300 0205 72.01 86.0 1161 198 102 11.1 25601698.13 8.7 8.7 915 910 12.1 23.4 494 130 2.6 .331 .62 .62 9.0 8.51D 1305 0205 72.02 16.0 1161 198 102 11.1 25601699.02 8.7 8.7 915 910 12.1 23.4 491 170 2.6 .331 .62 .63 .63 .63 .63 .63 .63 .63 .63 .63 .63																							
1300 0249 719.01 97.51 151 161 08 96 12.0 25501495.40 8.7 8.7 928 914 12.0 23.4 4961 168 2.5 321 .67 .66 9.0 8.510 1301 0250 720.02 58.01 152 168 97 11.7 25501696.10 8.7 8.7 928 972 12.0 23.4 4941 169 2.6 331 .67 .66 9.0 8.510 1302 0251 721.01 73.11 148 162 95 11.8 25501690.9 8.7 8.7 924 926 12.0 23.4 4941 167 2.6 331 .67 .66 9.0 8.510 1302 0251 721.01 73.11 148 162 95 11.1 25501698.13 8.7 8.7 925 972 12.0 23.4 4941 167 2.6 331 .67 .66 9.0 8.510 1304 0258 723.03 1151 181 195 115 11.6 25501699.8 8.7 8.7 925 921 12.0 23.4 4941 171 2.6 331 .59 .59 9.0 8.510 1304 0258 723.03 1151 181 195 115 11.6 25501699.8 8.7 8.7 915 972 928 12.1 23.4 4921 172 2.6 331 .65 .55 9.0 8.510 1306 0300 725.01 54.21 109 134 117 7.25 25501698.80 8.7 8.7 912 92.0 12.1 23.4 4921 172 2.6 331 .65 .55 9.0 8.510 1307 0301 726.00 42.21 150 184 17 12.4 25501701.04 8.7 8.7 913 922 12.1 23.4 4921 173 2.6 331 .65 .55 9.0 8.510 1309 0300 727.00 1081 131 159 117 11.7 25501701.29 8.7 8.7 917 920 12.1 23.4 4921 173 2.6 331 .65 .64 9.0 8.510 1309 0300 727.00 1081 131 159 117 11.7 25501701.29 8.7 8.7 917 920 12.1 23.4 4921 173 2.7 341 .55 .57 9.0 8.510 1309 0300 727.00 182.31 144 151 17 12.7 25501701.29 8.7 8.7 917 920 12.1 23.4 4921 173 2.7 341 .55 .57 9.0 8.510 1310 0305 730.01 62.31 144 151 17 12.7 25501701.29 8.7 8.7 917 920 12.1 23.4 4921 173 2.7 341 .55 .57 9.0 8.510 1310 0305 730.01 62.31 144 151 17 12.7 25501701.29 8.7 8.7 919 924 12.1 23.4 4921 178 2.7 341 .72 7.0 9.1 8.510 1310 0305 730.01 62.31 144 151 17 13.2 8501702.26 8.7 8.7 919 924 12.1 23.4 4921 178 2.7 341 .72 7.0 9.1 8.510 1310 0305 730.01 62.31 144 151 17 13.2 8501702.26 8.7 8.7 919 924 12.1 23.4 4921 178 2.7 351 .66 6. 53 9.1 8.510 1310 0305 730.01 62.31 144 151 17 13.7 25601702.0 8.7 8.7 92 91 12.1 23.4 4921 179 2.7 .351 .70 .69 9.1 8.510 1310 0305 730.01 62.31 144 151 17 13.4 2210 170.20 8.7 8.7 93 91 921 23.23 4 5161 180 2.8 361 .71 .70 9.1 8.510 1310 0305 730.01 62.31 144 151 17 13.4 2210 170.00 8.7 8.7 8.7 939 192 12.3 23.4 5161 180 2.8 361 .71 .70 9.1 8.510 1310 0305 730.01 63.1																							
1501 0230 729.02 58.01 152 168 97 11.7 2580 1896.10 8.7 8.7 928 907 12.0 23.4 4941 169 2.6 .331 .67 .66 9.0 8.510 1502 0251 721.01 73.11 148 162 96 11.8 2580 1896.49 8.7 8.7 924 926 12.0 23.4 4941 170 2.6 .331 .67 .66 9.0 8.510 1303 0258 722.01 86.01 161 198 102 11.1 2580 1896.13 8.7 8.7 925 912 10.2 33.4 4941 170 2.6 .331 .50 .55 9.0 8.510 1304 0258 723.03 1151 181 195 115 11.6 2580 1896.24 8.7 8.7 915 910 12.1 23.4 4921 172 2.6 .331 .50 .55 9.0 8.510 1306 0300 725.01 54.21 109 134 117 7.25 2540 1899.80 8.7 8.7 915 910 12.1 23.4 4921 172 2.6 .331 .50 .55 9.0 8.510 1306 0300 725.01 54.21 109 134 117 7.25 2540 1899.80 8.7 8.7 919 922 12.1 23.4 4921 172 2.6 .341 .75 .6 9.0 8.510 1306 0300 727.00 1081 131 159 117 11.7 2550 1701.32 8.7 8.7 919 922 12.1 23.4 4921 172 2.6 .341 .75 .6 9.0 8.510 1308 0302 727.00 1081 131 159 117 11.7 2550 1701.32 8.7 8.7 919 921 12.1 23.4 4921 175 2.6 .341 .75 .76 9.0 8.510 1409 0303 728.01 54.41 137 193 116 11.9 2570 1701.79 8.7 8.7 919 921 12.1 23.4 4921 175 2.6 .341 .75 .76 9.0 8.510 140 140 140 140 140 140 140 140 140 1																							
1300 0251 721.01 73.11 148 162 96 11.8 25801896.49 8.7																							
1303 0228 722.01 88.01 161 198 102 11.1 25001698.13 8.7 8.7 8.7 8.9 912 12.0 23.4 491: 171 2.6 .33 .59 .59 9.0 8.510 1304 0238 723.03 115! 181 195 115 11.6 25001698.54 8.7 8.7 915 910 12.1 23.4 492: 172 2.6 .33 .50 .55 9.0 8.510 1305 0259 724.02 84.7: 141 169 117 7.25 25401699.80 8.7 8.7 912 12.2 12.3 4 492: 172 2.6 .33 .50 .55 9.0 8.510 1307 0301 726.00 42.2! 150 184 117 12.4 25501701.04 8.7 8.7 918 897 12.1 23.4 492: 174 2.6 .34! .55 .64 9.0 8.510 1307 0301 726.00 42.2! 150 184 117 12.4 25501701.04 8.7 8.7 918 897 12.1 23.4 491: 175 2.6 .34! .55 .64 9.0 8.510 1307 0301 726.00 42.2! 150 184 117 12.4 25501701.07 8.7 8.7 917 920 12.1 23.4 491: 175 2.6 .34! .55 .64 9.0 8.510 1308 0302 727.00 108! 131 159 117 11.7 25501701.79 8.7 8.7 917 920 12.1 23.4 491: 175 2.7 .34! .52 .7 .70 9.0 8.510 1308 0302 727.00 108! 131 159 117 11.7 25501701.79 8.7 8.7 917 920 12.1 23.4 491: 175 2.7 .34! .52 .7 .70 9.0 8.510 1308 0302 727.00 108! 131 16 1.9 25701701.79 8.7 8.7 917 920 12.1 23.4 491: 175 2.7 .34! .52 .7 .70 9.0 8.510 1308 0302 727.00 108! 131 14 161 117 13.2 8501702.26 8.7 8.7 919 924 12.1 23.4 491: 175 2.7 .34! .72 .70 9.1 8.510 1310 0305 730.01 62.3! 144 161 117 13.2 8501702.26 8.7 8.7 919 924 12.1 23.4 491: 175 2.7 .34! .72 .70 9.1 8.510 1312 0306 731.02 61.3! 148 183 114 13.9 8501702.26 8.7 8.7 95 894 820 12.1 23.4 491: 176 2.7 .35! .70 .69 9.1 8.510 1313 0304 732.00 69.8! 148 201 89 14.1 2510704.51 8.7 8.7 931 922 12.3 23.4 516: 180 2.7 .35! .70 .69 9.1 8.510 1314 0314 733.02 61.02 145 165 115 13.4 26101705.40 8.7 8.7 931 922 12.3 23.4 516: 181 2.8 .36! .75 .73 9.1 8.510 1316 0316 735.02 68.0 146 169 116 13.2 26201706.47 8.7 8.7 931 922 12.3 23.4 516: 183 2.8 .36! .71 .70 9.1 8.510 1316 0317 736.0 1 103: 156 173 116 15.0 26201707.33 8.7 8.7 930 921 2.3 23.4 516: 183 2.8 .36! .75 .73 9.1 8.510 1320 0320 739.01 63.6: 121 158 118 13.0 26201708.07 8.7 8.7 930 921 2.3 23.5 506: 190 2.9 .38! .62 .61 9.1 8.510 1320 0330 739.01 63.6: 121 158 142 26401713.68 8.7 8.7 930 931 12.3 23.5 506: 190 2.9 .38! .62 .61 9.1 8.510 1320																						9.0	8.51D
1304 0228 723.03 115; 181 195 115 11.6 2501698.54 8.7 8.7 915 910 12.1 23.4 492; 172 2.6 .33; .56 .55 9.0 8.51b 1305 0259 724.02 84.7; 141 169 117 9.46 25501699.02 8.7 8.7 929 928 12.1 23.4 492; 172 2.6 .33; .56 .59 9.0 8.51b 1306 0300 727.00 108; 131 159 117 11.7 25501701.04 8.7 8.7 919 922 12.1 23.4 492; 174 2.6 .34; .65 .64 9.0 8.51b 1308 0302 727.00 108; 131 159 117 11.7 25501701.03 8.7 8.7 919 922 12.1 23.4 491; 175 2.6 .34; .77 .76 9.0 8.51b 1308 0302 727.00 108; 131 159 117 11.7 25501701.03 8.7 8.7 919 924; 12.1 23.4 491; 175 2.6 .34; .77 .76 9.0 8.51b 1309 0302 727.00 108; 131 159 117 11.7 25501701.03 8.7 8.7 919 924; 12.1 23.4 491; 175 2.6 .34; .77 .74 9.0 8.51b 1309 0302 727.00 108; 131 159 117 11.7 25501701.03 8.7 8.7 919 924; 12.1 23.4 491; 175 2.6 .34; .77 .74 1.58 5.7 9.0 8.51b 1310 0305 730,01 62.3; 144 161 117 13.2 8501702.26 8.7 8.7 919 924; 12.1 23.4 491; 178 2.7 .35; .64 .63 9.1 8.51b 1312 0305 730,01 62.3; 148 188 183 114; 13.9 8301702.26 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7																							
1505 0259 724.02 B4.71 141 169 117 9.46 2550 169 0.02 0.03 0																4921	172					9.0	8.510
1306 0300 725.01 54.21 109 134 117 7.25 2540 1699.80 8.7 8.7 919 922 12.1 23.4 4921 174 2.6 341 .65 .64 9.0 8.51D 1307 0301 726.00 42.21 150 184 117 12.4 2550 1701.04 8.7 8.7 918 897 12.1 23.4 4921 175 2.6 .341 .77 7.6 7.0 9.0 8.51D 1308 0302 727.00 1081 131 159 117 11.7 2550 1701.07 8.7 8.7 919 924 12.1 23.4 4921 176 2.7 .341 .78 .77 .70 9.1 8.51D 9.0																4931	173	2.6	.331	.60	.59	9.0	8.510
1300 0301 726.00 42.21 150 184 117 12.4 25501701.04 8.7 8.7 918 897 12.1 23.4 4931 175 2.6 341 .77 .76 9.0 8.51D												919	922	12.1	23.4	4921	174	2.6	.34:	.65	.64	9.0	8.51D
1308 0302 727.00 1081 131 159 117 11.7 25501701.32 8.7 8.7 9.7 970 12.1 23.4 4921 176 2.7 341 58 57 9.0 8.51D												918	897	12.1	23.4	4911	175	2.6	.341	.77	.76	9.0	8.5iD
309 0303 728.01 54.41 137 193 116 11.9 25701701.79 8.7 8.7 919 924 12.1 23.4 4931 177 2.7 341 72 7.70 9.1 8.51D 0304 729.00 82.41 138 169 117 12.7 25601702.03 8.7 8.7 919 911 12.1 23.4 4911 178 2.7 .351 .64 .65 9.1 8.51D 1311 0305 730.01 62.31 144 161 117 13.2 8501702.26 8.7 8.7 8.7 894 820 12.1 23.4 4921 179 2.7 .351 .70 .69 9.1 8.51D 1312 0305 731.02 61.31 148 183 114 13.9 8301702.26 8.7 8.7 8.7 864 516 12.1 23.4 4921 179 2.7 .351 .71 .70 9.1 8.51D 1313 0314 732.00 69.81 148 201 89 14.1 26101704.51 8.7 8.7 922 931 12.3 23.4 5161 181 2.7 .351 .63 .63 9.1 8.51D 1314 0314 733.02 61.21 145 165 115 13.4 26101705.00 8.7 8.7 931 922 12.3 23.4 5161 181 2.7 .351 .63 .63 9.1 8.51D 1316 0316 735.02 68.01 146 169 116 14.2 26201706.47 8.7 8.7 931 922 12.3 23.4 5161 182 2.8 .361 .71 .70 9.1 8.51D 1316 0316 735.02 68.01 146 169 116 14.2 26201707.33 8.7 8.7 930 909 12.3 23.4 5161 183 2.8 .361 .55 .73 9.1 8.51D 1319 0319 738.01 55.61 121 158 118 13.0 26201707.33 8.7 8.7 930 909 12.3 23.4 5161 184 2.8 .361 .69 .68 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.0 26201708.97 8.7 8.7 929 911 12.3 23.4 5141 186 2.8 .371 .70 .69 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.0 26201708.79 8.7 8.7 929 933 12.3 23.4 5141 186 2.8 .371 .70 .69 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.0 26201708.79 8.7 8.7 929 933 12.3 23.4 5141 186 2.8 .371 .70 .69 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.0 26201708.59 8.7 8.7 929 933 12.3 23.4 5141 188 2.8 .371 .70 .69 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.0 26201708.59 8.7 8.7 929 933 12.3 23.5 5061 190 2.9 .381 .64 .65 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.0 26201701.58 8.7 8.7 929 933 12.3 23.5 5061 190 2.9 .381 .64 .65 9.1 8.51D 1320 0320 740.05 70.81 120 13.6 118 13.3 26101710.20 8.7 8.7 929 933 12.3 23.5 5061 190 2.9 .381 .64 .65 9.1 8.51D 1320 0320 740.05 70.81 120 13.1 141 12 11.2 26301711.58 8.7 8.7 929 933 12.3 23.5 5061 190 2.9 .381 .74 .77 9.1 8.51D 1320 0330 740.05 64.11 135 167 181 14.2 26301711.68 8.7 8.7 930 916 12.3 23.5 5071 192 2.9 .381 .74 .75 9												917	920	12.1	23.4	4921	176	2.7	.341	.58	.57		
0 0304 729.00 82.41 138 169 117 12.7 25601702.03 8.7 8.7 919 911 12.1 23.4 491 178 2.7 .351 .64 .63 9.1 8.510 1310 3056 730.01 62.31 144 161 117 13.2 8501702.26 8.7 8.7 894 80 12.1 23.4 4921 179 2.7 .351 .70 .69 9.1 8.510 1312 0306 731.02 61.31 148 183 114 13.9 8301702.26 8.7 8.7 566 516 12.1 23.4 5061 180 2.7 .351 .70 .69 9.1 8.510 1313 0314 732.00 69.81 148 20 89 14.1 26101704.51 8.7 8.7 922 931 12.3 23.4 5161 181 2.7 .351 .63 .63 9.1 8.510 1314 0314 733.02 61.21 145 165 115 13.4 26101705.40 8.7 8.7 921 921 21.3 23.4 5161 181 2.7 .351 .63 .63 9.1 8.510 1315 0316 734.01 51.61 150 191 115 13.8 26201706.44 8.7 8.7 931 922 12.3 23.4 5161 182 2.8 .361 .71 .70 9.1 8.510 1316 0316 735.02 68.01 146 169 116 14.2 26201706.77 8.7 8.7 930 90 12.3 23.4 5161 183 2.8 .361 .69 .68 9.1 8.510 1317 0317 736.01 1031 155 173 116 15.0 26201707.33 8.7 8.7 930 909 12.3 23.4 5161 184 2.8 .361 .69 .68 9.1 8.510 1319 0319 738.01 55.61 121 158 118 13.0 26201708.91 8.7 8.7 930 909 12.3 23.4 5161 184 2.8 .361 .69 .68 9.1 8.510 1320 0320 739.01 63.61 122 148 118 13.0 26201708.91 8.7 8.7 932 911 12.3 23.4 5141 186 2.8 .371 .70 .69 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.0 26201708.91 8.7 8.7 932 911 12.3 23.4 5141 188 2.8 .371 .70 .69 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.0 26201708.91 8.7 8.7 932 911 12.3 23.4 5141 188 2.8 .371 .70 .69 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.0 26201708.91 8.7 8.7 932 911 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.510 1320 0320 739.01 63.61 127 148 118 14.2 26401715.80 8.7 8.7 932 911 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.510 1320 0320 740.05 70.81 120 136 118 13.3 26101710.20 8.7 8.7 932 911 12.3 23.5 5061 190 2.9 .381 .72 .71 9.1 8.510 1320 0330 740.02 65.91 169 184 118 16.0 26401715.80 8.7 8.7 937 914 12.3 23.5 5061 190 2.9 .381 .72 .71 9.1 8.510 1320 0337 740.02 65.91 169 184 118 16.0 26401715.80 8.7 8.7 932 911 12.3 23.5 5061 190 2.9 .381 .74 .73 9.1 8.510 1320 0337 748.02 65.91 169 184 118 12.2 26301711.77 8.7 8.7 932 911 12.3 23.5 5061 190 3.0 .401 .77 .76 9.1 8.510 1320												919	924	12.1	23.4	4931	177						
1312 0306 731.02 61.3; 148 183 114 13.7 830;702.26 8.7 8.7 566 516 12.1 23.4 506; 180 2.7 .35; .71 .70 9.1 8.5; 0 1313 0314 732.00 69.8; 148 201 89 14.1 2610;704.51 8.7 8.7 922 931 12.3 23.4 516; 181 2.7 .35; .63 .63 9.1 8.5; 0 1314 0314 733.02 61.2; 145 165 115 13.4 2610;705.40 8.7 8.7 931 936 12.3 23.4 516; 182 2.8 .36; .71 .70 9.1 8.5; 0 1315 0316 734.01 51.6; 150 191 115 13.8 2620;706.44 8.7 8.7 931 932 12.3 23.4 516; 182 2.8 .36; .75 .73 9.1 8.5; 0 1316 0316 735.02 68.0; 146 169 116 14.2 2620;706.77 8.7 8.7 8.7 930 916 12.3 23.4 516; 183 2.8 .36; .65 .68 9.1 8.5; 0 1316 0316 735.02 68.0; 146 169 116 14.2 2620;706.77 8.7 8.7 8.7 930 916 12.3 23.4 516; 183 2.8 .36; .62 .61 9.1 8.5; 0 1319 0319 738.0; 153.6; 173 116 15.0 2620;707.33 8.7 8.7 930 916 12.3 23.4 516; 184 2.8 .36; .62 .61 9.1 8.5; 0 1319 0319 738.0; 153.6; 121 158 118 13.0 2620;708.9; 8.7 8.7 929 915 12.3 23.4 516; 185 2.8 .36; .62 .61 9.1 8.5; 0 1319 0319 738.0; 55.6; 121 158 118 13.0 2620;708.9; 8.7 8.7 929 915 12.3 23.4 514; 186 2.8 .37; .70 .68 9.1 8.5; 0 1320 0320 739.0; 63.6; 127 148 118 13.4 2620;709.57 8.7 8.7 929 915 12.3 23.4 514; 186 2.8 .37; .70 .68 9.1 8.5; 0 1320 0320 739.0; 63.6; 127 148 118 13.3 2610;710.20 8.7 8.7 929 932 11.2 23.2 55 14; 188 2.8 .37; .70 .69 9.1 8.5; 0 1322 0331 740.05 70.8; 120 120 136; 118 13.3 2610;710.20 8.7 8.7 929 933 12.3 23.4 514; 188 2.8 .37; .70 .69 9.1 8.5; 0 1322 0331 740.05 70.8; 120 120 120 120 120 120 120 120 120 120												919	911	12.1	23.4	4911	178						
1313 0314 732.00 69.81 148 201 89 14.1 26101704.51 8.7 8.7 922 931 12.3 23.4 5161 181 2.7 .351 .63 .63 9.1 8.510	1311	0305	730.01	62.31	144	161	117	13.2	850:702.26	8.7	8.7	894	820	12.1	23.4	,							
1314 0314 733.02 61.21 145 165 115 13.4 26101705.40 8.7 8.7 931 936 12.3 23.4 5161 183 2.8 .361 .71 .70 9.1 8.510 1315 0316 734.01 51.61 150 191 115 13.8 26201706.77 8.7 8.7 930 916 12.3 23.4 5161 183 2.8 .361 .67 .73 9.1 8.510 1316 0316 735.02 68.01 146 149 116 14.2 26201706.77 8.7 8.7 930 916 12.3 23.4 5141 184 2.8 .361 .69 .68 9.1 8.510 1317 0317 736.01 1031 156 173 116 15.0 26201707.33 8.7 8.7 930 909 12.3 23.4 5141 184 2.8 .361 .69 .68 9.1 8.510 1319 0319 738.01 55.61 121 158 118 13.0 26201708.97 8.7 8.7 929 915 12.3 23.4 5141 184 2.8 .371 .70 .68 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 929 915 12.3 23.4 5141 184 2.8 .371 .70 .68 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 929 933 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.3 26101710.20 8.7 8.7 929 933 12.3 23.4 5121 189 2.9 .371 .68 .67 9.1 8.510 1322 0331 741.02 74.11 134 212 112 11.2 12.2 26301711.56 8.7 8.7 929 933 12.3 23.4 5121 189 2.9 .371 .68 .67 9.1 8.510 1322 0331 742.02 82.11 173 192 116 11.4 26301712.40 8.7 8.7 927 914 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.510 1325 0333 744.02 65.91 169 184 118 16.0 26401713.83 8.7 8.7 927 914 12.3 23.5 5071 192 2.9 .381 .64 .65 91 8.510 1325 0333 744.02 65.91 169 184 118 16.0 26401715.80 8.7 8.7 930 916 12.3 23.5 5071 192 2.9 .381 .74 .73 9.1 8.510 1328 0335 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 930 916 12.3 23.5 5071 193 2.9 .381 .74 .73 9.1 8.510 1328 0335 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 930 916 12.3 23.5 5071 193 2.9 .381 .74 .73 9.1 8.510 1329 0337 748.02 57.31 170 195 117 18.2 26301710.78 8.7 8.7 930 912 12.3 23.5 5071 193 2.9 .381 .74 .73 9.1 8.510 1320 0335 745.01 67.91 168 181 17 18.4 2640172.26 8.7 8.7 932 912 12.3 23.5 5071 193 2.9 .391 .74 .75 9.1 8.510 1330 0338 749.01 68.51 173 191 117 18.6 26401712.82 8.7 8.7 932 912 12.3 23.5 5071 193 2.9 .391 .77 .76 9.1 8.510 1330 0338 749.01 68.51 173 191 117 18.6 26401712.82 8.7 8.7 932 912 12.3 23.5 5071 193 2.0 .401 .77 .76 9.1	1312	0306	731.02	61.3	148	183	114	13.9	8301702.26	8.7	8.7												
1315 0316 734.01 51.6; 150 191 115 13.8 26201706.44 8.7 8.7 931 922 12.3 23.4 516; 183 2.8 .36; .67 .73 9.1 8.5; 0.1 0.3; 156 0.3; 16 0.3; 156 0.3; 16 0.3; 156 0.3; 16 0.3; 156 0.3																							
1316 0316 735.02 68.01 146 169 116 14.2 26201706.77 8.7 8.7 930 916 12.3 23.4 5141 184 2.8 .361 .69 .68 9.1 8.51D 1317 0317 736.01 1031 156 173 116 15.0 26201707.33 8.7 8.7 930 909 12.3 23.4 5151 185 2.8 .361 .62 .61 9.1 8.51D 1318 0318 737.01 68.41 143 161 116 14.4 26101708.07 8.7 8.7 929 915 12.3 23.4 5141 186 2.8 .371 .70 .68 9.1 8.51D 1319 0319 738.01 55.61 121 158 118 13.0 26201708.91 8.7 8.7 929 915 12.3 23.4 5141 186 2.8 .371 .70 .68 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 932 911 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 932 911 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.51D 1320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 932 911 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.51D 1320 0320 740.05 70.81 120 136 118 13.3 26101710.20 8.7 8.7 929 933 12.3 23.4 5121 189 2.9 .371 .68 .67 9.1 8.51D 1322 0331 741.02 74.11 134 212 112 11.2 26301711.55 8.7 8.7 927 914 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.51D 1322 0333 744.02 82.11 173 192 116 11.4 26301712.40 8.7 8.7 927 914 12.3 23.5 5071 191 2.9 .381 .63 .62 9.1 8.51D 1325 0333 744.02 65.91 169 184 118 16.0 26401714.91 8.7 8.7 930 916 12.3 23.5 5071 192 2.9 .381 .74 .73 9.1 8.51D 1326 0334 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 930 916 12.3 23.5 5071 193 2.9 .381 .74 .73 9.1 8.51D 1328 0334 747.01 57.31 180 203 117 18.7 26301717.77 8.7 8.7 8.7 938 921 12.3 23.5 5071 193 2.9 .381 .74 .73 9.1 8.51D 1329 0337 748.02 57.31 170 195 117 18.2 26301718.65 8.7 8.7 932 911 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 911 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 911 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401719.8 8.7 8.7 932 911 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401718.8 8.7 8.7 932 912 12.4 23.5 5001 200 3.0 .401 .77 .76 9.1																							
317 0317 736.01 1031 156 173 116 15.0 26201707.33 8.7 8.7 930 909 12.3 23.4 5151 185 2.8 .361 .62 .61 9.1 8.510 318 0318 737.01 68.41 143 161 116 14.4 26101708.07 8.7 8.7 929 915 12.3 23.4 5141 186 2.8 .371 .70 .68 9.1 8.510 320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 936 928 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.510 321 0321 740.05 70.81 120 136 118 13.3 26101710.20 8.7 8.7 929 913 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.510 322 0331 741.02 74.11 134 212 112 11.2 26301711.56 8.7 8.7 927 913 12.3 23.4 5141 188 2.8 .371 .70 .69 9.1 8.510 323 0331 742.02 82.11 173 192 116 11.4 26301712.40 8.7 8.7 927 914 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.510 324 0332 743.00 54.11 145 167 118 14.2 26401713.83 8.7 8.7 937 917 12.3 23.5 5071 191 2.9 .381 .64 .62 9.1 8.510 325 0333 744.02 65.91 169 184 118 16.0 26401714.91 8.7 8.7 937 916 12.3 23.5 5071 192 2.9 .381 .74 .73 9.1 8.510 326 0334 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 938 912 12.3 23.5 5071 193 2.9 .381 .74 .73 9.1 8.510 328 0336 747.01 57.31 180 203 117 18.7 26301717.77 8.7 8.7 936 937 12.3 23.5 5051 190 3.0 .391 .79 .78 9.1 8.510 329 0337 748.02 57.31 170 195 117 18.2 26301718.65 8.7 8.7 932 911 12.3 23.5 5051 193 3.0 .391 .79 .78 9.1 8.510 330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 911 12.3 23.5 5051 193 3.0 .391 .79 .78 9.1 8.510 331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 911 12.3 23.5 5051 193 3.0 .401 .77 .76 9.1 8.510 333 0348 752.02 64.91 171 188 117 19.4 26201723.39 8.7 8.7 925 912 12.4 23.5 5051 199 3.0 .401 .77 .76 9.1 8.510 333 0348 752.02 64.91 171 188 17.9 26201724.58 8.7 8.7 925 912 12.4 23.5 5051 201 3.1 411 .76 .74 9.1 8.510 334 0351 755.01 50.81 135 165 118 17.9 26201724.58 8.7 8.7 927 914 12.4 23.5 4991 204 3.1 441 .74 .72 9.1 8.510 335 0350 754.01 63.11 127 144 118 16.4 26201723.39 8.7 8.7 927 914 12.4 23.5 4991 204 3.1 441 .74 .72 9.1 8.510 336 0351 755.01 50.81 135 165 118 17.9 26201724.58 8.7 8.7 927																							
1318 0318 737.01 68.41 143 161 116 14.4 26101708.07 8.7 8.7 929 915 12.3 23.4 5141 186 2.8 .371 .70 .68 9.1 8.510 1319 0319 738.01 55.61 121 158 118 13.0 26201709.57 8.7 8.7 9.7 936 928 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 9.7 932 911 12.3 23.4 5141 187 2.8 .371 .70 .69 9.1 8.510 1321 0321 740.05 70.81 120 136 118 13.3 26101710.20 8.7 8.7 929 933 12.3 23.4 5141 188 2.8 .371 .70 .69 9.1 8.510 1322 0331 741.02 74.11 134 212 112 11.2 26301711.56 8.7 8.7 929 933 12.3 23.4 5121 189 2.9 .371 .68 .67 9.1 8.510 1322 0331 742.02 82.11 173 192 116 11.4 26301712.40 8.7 8.7 927 914 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.510 1323 0331 742.02 82.11 173 192 116 11.4 26401713.83 8.7 8.7 937 914 12.3 23.5 5071 191 2.9 .381 .74 .73 9.1 8.510 1325 0333 744.02 65.91 169 184 118 16.0 26401714.91 8.7 8.7 930 916 12.3 23.5 5071 192 2.9 .381 .74 .73 9.1 8.510 1326 0334 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 934 917 12.3 23.5 5071 192 2.9 .381 .72 .71 9.1 8.510 1320 0335 746.01 47.91 150 173 117 16.1 26301716.89 8.7 8.7 934 917 12.3 23.5 5071 194 2.9 .391 .72 .71 9.1 8.510 1329 0337 748.02 57.31 170 195 117 18.2 26301718.65 8.7 8.7 938 921 12.3 23.5 5071 195 3.0 .391 .79 .78 9.1 8.510 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 911 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.510 1331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 917 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.510 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 917 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.510 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 917 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.510 1330 0338 749.01 68.51 173 191 117 18.6 26201724.58 8.7 8.7 932 917 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.510 1330 0339 750.01 76.91 188 117 19.4 26201724.58 8.7 8.7 927 914 12.4 23.5 5001 200 3.0 .401 .77 .76 9.1 8.510 1330 0339 750.01 63.11 127 144 118 16.4 26201724.99 8.7 8.7 927 914 12.4 23.5 501 201 3.1 .411 .74 .72 9																							
1319 0319 738.01 55.61 121 158 118 13.0 26201708.91 8.7 8.7 936 928 12.3 23.4 5141 187 2.8 .371 .72 .71 9.1 8.510 1320 0320 739.01 63.61 127 148 118 13.4 26201709.57 8.7 8.7 932 911 12.3 23.4 5141 188 2.8 .371 .70 .69 9.1 8.510 1321 0321 740.05 70.81 120 136 118 13.3 26101710.20 8.7 8.7 929 933 12.3 23.4 5121 189 2.9 .371 .68 .67 9.1 8.510 1322 0331 741.02 74.11 134 212 112 11.2 26301711.56 8.7 8.7 917 912 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.510 1323 0331 742.02 82.11 173 192 116 11.4 26301712.40 8.7 8.7 927 914 12.3 23.5 5071 191 2.9 .381 .63 .62 9.1 8.510 1324 0332 743.00 54.11 145 167 118 14.2 26401713.83 8.7 8.7 931 911 12.3 23.5 5071 192 2.9 .381 .63 .62 9.1 8.510 1325 0333 744.02 65.91 169 184 118 16.0 26401714.91 8.7 8.7 930 916 12.3 23.5 5071 192 2.9 .381 .74 .73 9.1 8.510 1326 0334 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 930 916 12.3 23.5 5071 192 2.9 .381 .72 .71 9.1 8.510 1327 0335 746.01 47.91 150 173 117 16.1 26301716.89 8.7 8.7 938 921 12.3 23.5 5071 193 2.9 .381 .72 .71 9.1 8.510 1328 0336 747.01 57.31 180 203 117 18.7 26301717.77 8.7 8.7 936 937 12.3 23.5 5061 196 3.0 .391 .79 .78 9.1 8.510 1320 0338 749.01 68.51 173 191 117 18.2 26301718.65 8.7 8.7 932 911 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.510 1331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 917 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.510 1332 0347 751.03 49.71 137 200 100 18.1 26201721.82 8.7 8.7 932 917 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.510 1333 0348 752.02 64.91 71 188 117 19.4 26201723.39 8.7 8.7 925 912 12.4 23.5 5001 201 3.1 .411 .76 .74 9.1 8.510 1336 0351 755.01 50.81 135 165 118 17.9 26201724.58 8.7 8.7 927 933 12.4 23.5 4991 204 3.1 .411 .74 .72 9.1 8.510 1336 0351 755.01 50.81 135 165 118 17.9 26201724.59 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .411 .74 .72 9.1 8.510 1336 0351 755.01 50.81 135 165 118 17.9 26201724.59 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .411 .74 .72 9.1 8.510 1336 0351 755.01 50.81 135 165 118 17.9 26201724.59 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .411 .74 .72 9.1 8																							
1320 0320 739.01 63.6 127 148 118 13.4 26201709.57 8.7 8.7 932 911 12.3 23.4 514 188 2.8 .37 .70 .69 9.1 8.5 0 1321 0321 740.05 70.8 120 136 118 13.3 2610 1710.20 8.7 8.7 929 933 12.3 23.4 512 189 2.9 .37 .68 .67 9.1 8.5 0 1322 0331 74 .02 74.1 134 212 112 11.2 2630 1711.56 8.7 8.7 917 912 12.3 23.5 506 190 2.9 .38 .64 .63 9.1 8.5 0 1323 0331 742.02 82.1 173 192 116 11.4 2630 1712.40 8.7 8.7 927 914 12.3 23.5 507 191 2.9 .38 .64 .63 9.1 8.5 0 1324 0332 743.00 54.1 145 167 118 14.2 2640 1713.83 8.7 8.7 927 914 12.3 23.5 507 191 2.9 .38 .63 .62 9.1 8.5 0 1325 0333 744.02 65.9 169 184 118 16.0 2640 1714.91 8.7 8.7 930 916 12.3 23.5 507 192 2.9 .38 .74 .73 9.1 8.5 0 1326 0334 745.01 62.8 156 181 117 15.1 2640 1715.80 8.7 8.7 934 917 12.3 23.5 507 193 2.9 .38 .72 .71 9.1 8.5 0 1327 0335 746.01 47.9 150 173 117 16.1 2630 1716.89 8.7 8.7 938 921 12.3 23.5 507 194 2.9 .39 .72 .71 9.1 8.5 0 1328 0336 747.01 57.3 180 203 117 18.7 2630 1716.89 8.7 8.7 936 937 12.3 23.5 507 195 3.0 .39 .79 .78 9.1 8.5 0 1329 0337 748.02 57.3 170 195 117 18.2 2630 1718.65 8.7 8.7 932 911 12.3 23.5 505 197 3.0 .40 .77 .76 9.1 8.5 0 1331 0339 750.01 76.9 168 181 117 18.4 2640 1714.88 8.7 8.7 932 911 12.3 23.5 505 197 3.0 .40 .77 .76 9.1 8.5 0 1332 0347 751.03 49.7 137 200 100 18.1 2620 1721.82 8.7 8.7 935 917 12.3 23.5 505 199 3.0 .40 .77 .76 9.1 8.5 0 1334 0349 753.01 49.3 171 188 117 19.4 2620 1721.82 8.7 8.7 925 912 12.4 23.5 501 201 3.1 .41 .76 .74 9.1 8.5 0 1334 0349 753.01 49.3 171 188 16.4 2620 1721.82 8.7 8.7 925 912 12.4 23.5 501 201 3.1 .41 .76 .77 9.1 8.5 0 1336 0351 755.01 50.8 135 165 118 17.9 2620 1726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .41 .74 .72 9.1 8.5 0 1336 0351 755.01 50.8 135 165 118 17.9 2620 1726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 185 0 18																							
1321 0321 740.05 70.81 120 136 118 13.3 26101710.20 8.7 8.7 929 933 12.3 23.4 5121 189 2.9 .371 .68 .67 9.1 8.51D 1322 0331 741.02 74.11 134 212 112 11.2 26301711.56 8.7 8.7 917 912 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.51D 1323 0331 742.02 82.11 173 192 116 11.4 26301712.40 8.7 8.7 927 914 12.3 23.5 5071 191 2.9 .381 .63 .62 9.1 8.51D 1324 0332 743.00 54.11 145 167 118 14.2 26401713.83 8.7 8.7 931 911 12.3 23.5 5071 192 2.9 .381 .74 .73 9.1 8.51D 1325 0333 744.02 65.91 169 184 118 16.0 26401714.91 8.7 8.7 930 916 12.3 23.5 5071 192 2.9 .381 .72 .71 9.1 8.51D 1326 0334 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 930 916 12.3 23.5 5071 193 2.9 .381 .72 .71 9.1 8.51D 1327 0335 746.01 47.91 150 173 117 16.1 26301716.89 8.7 8.7 938 921 12.3 23.5 5071 194 2.9 .391 .72 .71 9.1 8.51D 1328 0336 747.01 57.31 180 203 117 18.7 26301717.77 8.7 8.7 8.7 936 937 12.3 23.5 5071 195 3.0 .391 .79 .78 9.1 8.51D 1329 0337 748.02 57.31 170 195 117 18.2 26301718.65 8.7 8.7 932 911 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 911 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.51D 1331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 917 12.3 23.5 5051 199 3.0 .401 .77 .76 9.1 8.51D 1333 0348 752.02 64.91 171 188 117 19.4 26201721.82 8.7 8.7 925 912 12.4 23.5 5011 201 3.1 .411 .76 .74 9.1 8.51D 1334 0349 753.01 49.31 140 162 118 17.9 26201724.58 8.7 8.7 927 914 12.4 23.5 4991 202 3.1 .411 .80 .79 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.59 8.7 8.7 927 914 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118																							
1322 0331 741.02 74.11 134 212 112 11.2 26301711.56 8.7 8.7 917 912 12.3 23.5 5061 190 2.9 .381 .64 .63 9.1 8.51D+1	1320	0320	739.01	63.61	127	148	118	15.4	26201709.57	8./	8./												
1323 0331 742.02 82.11 173 192 116 11.4 26301712.40 8.7 8.7 927 914 12.3 23.5 5071 191 2.9 .381 .63 .62 9.1 8.51D 1324 0332 743.00 54.11 145 167 118 14.2 26401713.83 8.7 8.7 931 911 12.3 23.5 5071 192 2.9 .381 .74 .73 9.1 8.51D 1325 0333 744.02 65.91 169 184 118 16.0 26401714.91 8.7 8.7 930 916 12.3 23.5 5071 193 2.9 .381 .72 .71 9.1 8.51D 1326 0334 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 934 917 12.3 23.5 5071 194 2.9 .391 .72 .71 9.1 8.51D 1327 0335 746.01 47.91 150 173 117 16.1 26301716.89 8.7 8.7 938 921 12.3 23.5 5071 195 3.0 .391 .79 .78 9.1 8.51D 1328 0336 747.01 57.31 180 203 117 18.7 26301718.65 8.7 8.7 936 937 12.3 23.5 5061 196 3.0 .391 .78 .76 9.1 8.51D 1329 0337 748.02 57.31 170 195 117 18.2 26301718.65 8.7 8.7 932 911 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 933 935 12.3 23.5 5051 198 3.0 .401 .74 .72 9.1 8.51D 1331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 917 12.3 23.5 5051 199 3.0 .401 .74 .72 9.1 8.51D 1332 0347 751.03 49.71 137 200 100 18.1 26201721.82 8.7 8.7 905 904 12.4 23.5 5001 200 3.0 .401 .77 .76 9.1 8.51D 1334 0349 753.01 49.31 140 162 118 17.9 26201724.58 8.7 8.7 927 933 12.4 23.5 4991 202 3.1 .411 .76 .74 9.1 8.51D 1334 0349 753.01 49.31 140 162 118 17.9 26201724.58 8.7 8.7 927 933 12.4 23.5 4991 202 3.1 .411 .74 .72 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201724.99 8.7 8.7 927 929 12.4																							
1324 0332 743.00 54.1 145 167 118 14.2 2640 713.83 8.7 8.7 930 916 12.3 23.5 507 192 2.9 .38 .74 .73 9.1 8.5 D 1325 0333 744.02 65.9 169 184 118 16.0 2640 714.9 8.7 8.7 930 916 12.3 23.5 507 193 2.9 .38 .72 .71 9.1 8.5 D 1326 0334 745.01 62.8 156 181 117 15.1 2640 715.80 8.7 8.7 930 916 12.3 23.5 507 194 2.9 .39 .72 .71 9.1 8.5 D 1327 0335 746.01 47.9 150 173 117 16.1 2630 716.89 8.7 8.7 938 921 12.3 23.5 507 194 2.9 .39 .72 .71 9.1 8.5 D 1328 0336 747.01 57.3 180 203 117 18.7 2630 717.77 8.7 8.7 8.7 938 921 12.3 23.5 507 195 3.0 .39 .79 .78 9.1 8.5 D 1329 0337 748.02 57.3 170 195 117 18.2 2630 718.65 8.7 8.7 932 911 12.3 23.5 505 197 3.0 .40 .77 .76 9.1 8.5 D 1330 0338 749.01 68.5 173 191 117 18.6 2640 719.48 8.7 8.7 932 917 12.3 23.5 505 198 3.0 .40 .77 .76 9.1 8.5 D 1331 0339 750.01 76.9 168 181 117 18.4 2640 720.26 8.7 8.7 932 917 12.3 23.5 505 198 3.0 .40 .71 .70 9.1 8.5 D 1332 0347 751.03 49.7 137 200 100 18.1 2620 721.82 8.7 8.7 905 904 12.4 23.5 500 200 3.0 .40 .77 .76 9.1 8.5 D 1333 0348 752.02 64.9 171 188 117 19.4 2620 723.39 8.7 8.7 925 912 12.4 23.5 501 201 3.1 .41 .76 .74 9.1 8.5 D 1340 0349 753.01 49.3 140 162 118 17.9 2620 724.58 8.7 8.7 927 914 12.4 23.5 499 202 3.1 .41 .70 .70 9.1 8.5 D 1350 0350 754.01 63.1 127 144 118 16.4 2620 724.99 8.7 8.7 927 914 12.4 23.5 499 202 3.1 .41 .74 .72 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 724.99 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 724.99 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 724.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 724.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929																							
1325 0333 744.02 65.9! 169																							
1326 0334 745.01 62.81 156 181 117 15.1 26401715.80 8.7 8.7 934 917 12.3 23.5 5071 194 2.9 .391 .72 .71 9.1 8.51D 1327 0335 746.01 47.91 150 173 117 16.1 26301716.89 8.7 8.7 938 921 12.3 23.5 5071 195 3.0 .391 .79 .78 9.1 8.51D 1328 0336 747.01 57.31 180 203 117 18.7 26301717.77 8.7 8.7 8.7 936 937 12.3 23.5 5061 196 3.0 .391 .79 .76 9.1 8.51D 1329 0337 748.02 57.31 170 195 117 18.2 26301718.65 8.7 8.7 932 911 12.3 23.5 5061 196 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 913 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.51D 1331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 917 12.3 23.5 5051 198 3.0 .401 .71 .70 9.1 8.51D 1332 0347 751.03 49.71 137 200 100 18.1 26201721.82 8.7 8.7 905 904 12.4 23.5 5001 200 3.0 .401 .77 .76 9.1 8.51D 1333 0348 752.02 64.91 171 188 117 19.4 26201723.39 8.7 8.7 925 912 12.4 23.5 5011 201 3.1 .411 .76 .74 9.1 8.51D 1334 0349 753.01 49.31 140 162 118 17.9 26201724.58 8.7 8.7 929 933 12.4 23.5 4991 202 3.1 .411 .76 .79 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 914 12.4 23.5 4991 203 3.1 .411 .74 .72 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929																							
1327 0335 746.01 47.91 150 173 117 16.1 26301716.89 8.7 8.7 938 921 12.3 23.5 5071 195 3.0 .391 .79 .78 9.1 8.51D 1328 0336 747.01 57.31 180 203 117 18.7 26301717.77 8.7 8.7 8.7 936 937 12.3 23.5 5061 196 3.0 .391 .78 .76 9.1 8.51D 1329 0337 748.02 57.31 170 195 117 18.2 26301718.65 8.7 8.7 932 911 12.3 23.5 5051 197 3.0 .401 .77 .76 9.1 8.51D 1330 0338 749.01 68.51 173 191 117 18.6 26401719.48 8.7 8.7 932 911 12.3 23.5 5051 198 3.0 .401 .74 .72 9.1 8.51D 1331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 917 12.3 23.5 5051 198 3.0 .401 .71 .70 9.1 8.51D 1332 0347 751.03 49.71 137 200 100 18.1 26201721.82 8.7 8.7 905 904 12.4 23.5 5001 200 3.0 .401 .77 .76 9.1 8.51D 1333 0348 752.02 64.91 171 188 117 19.4 26201723.39 8.7 8.7 925 912 12.4 23.5 5011 201 3.1 .411 .76 .74 9.1 8.51D 1334 0349 753.01 49.31 140 162 118 17.9 26201724.58 8.7 8.7 929 933 12.4 23.5 4991 202 3.1 .411 .80 .79 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D 1326 0351 755.01 755.01 755.01 755.01 755.01 755.01 755.01 755.01 75																							
1328 0336 747.01 57.3 180 203 117 18.7 2630 717.77 8.7 8.7 8.7 936 937 12.3 23.5 506 196 3.0 .39 .78 .76 9.1 8.5 D 1329 0337 748.02 57.3 170 195 117 18.2 2630 718.65 8.7 8.7 932 911 12.3 23.5 505 197 3.0 .40 .77 .76 9.1 8.5 D 1330 0338 749.01 68.5 173 191 117 18.6 2640 719.48 8.7 8.7 932 913 12.3 23.5 505 198 3.0 .40 .74 .72 9.1 8.5 D 1331 0339 750.01 76.9 168 181 117 18.4 2640 720.26 8.7 8.7 932 917 12.3 23.5 505 198 3.0 .40 .71 .70 9.1 8.5 D 1332 0347 751.03 49.7 137 200 100 18.1 2620 721.82 8.7 8.7 905 904 12.4 23.5 500 200 3.0 .40 .77 .76 9.1 8.5 D 1333 0348 752.02 64.9 171 188 117 19.4 2620 723.39 8.7 8.7 925 912 12.4 23.5 501 201 3.1 .41 .76 .74 9.1 8.5 D 1334 0349 753.01 49.3 140 162 118 17.9 2620 724.58 8.7 8.7 929 933 12.4 23.5 499 202 3.1 .41 .80 .79 9.1 8.5 D 1336 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1336 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1336 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1360 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D																							
1329 0337 748.02 57.3 170 195 117 18.2 2630 1718.65 8.7 8.7 932 911 12.3 23.5 505 197 3.0 .40 .77 .76 9.1 8.5 107 0338 749.01 68.5 173 191 117 18.6 2640 1719.48 8.7 8.7 933 935 12.3 23.5 505 198 3.0 .40 .74 .72 9.1 8.5 108 108 108 108 108 108 108 108 108 108																							
1330 0338 749.01 68.5 173 191 117 18.6 2640 719.48 8.7 8.7 933 935 12.3 23.5 505 198 3.0 .40 .74 .72 9.1 8.5 D 1331 0339 750.01 76.9 168 181 117 18.4 2640 720.26 8.7 8.7 932 917 12.3 23.5 505 199 3.0 .40 .71 .70 9.1 8.5 D 1332 0347 751.03 49.7 137 200 100 18.1 2620 721.82 8.7 8.7 905 904 12.4 23.5 500 200 3.0 .40 .77 .76 9.1 8.5 D 1333 0348 752.02 64.9 171 188 117 19.4 2620 723.39 8.7 8.7 925 912 12.4 23.5 501 201 3.1 .41 .76 .74 9.1 8.5 D 1334 0349 753.01 49.3 140 162 118 17.9 2620 724.58 8.7 8.7 929 933 12.4 23.5 499 202 3.1 .41 .80 .79 9.1 8.5 D 1336 0351 755.01 50.8 135 165 118 17.9 2620 724.99 8.7 8.7 927 914 12.4 23.5 499 203 3.1 .41 .74 .72 9.1 8.5 D 1336 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D 1336 0351 755.01 50.8 135 165 118 17.9 2620 726.19 8.7 8.7 927 929 12.4 23.5 499 204 3.1 .42 .80 .78 9.1 8.5 D																							
1331 0339 750.01 76.91 168 181 117 18.4 26401720.26 8.7 8.7 932 917 12.3 23.5 5051 199 3.0 .401 .71 .70 9.1 8.51D																							
1332 0347 751.03 49.7! 137 200 100 18.1 26201721.82 8.7 8.7 905 904 12.4 23.5 500! 200 3.0 .40! .77 .76 9.1 8.5!D1 1333 0348 752.02 64.9! 171 188 117 19.4 26201723.39 8.7 8.7 925 912 12.4 23.5 501! 201 3.1 .41! .76 .74 9.1 8.5!D1 1334 0349 753.01 49.3! 140 162 118 17.9 26201724.58 8.7 8.7 929 933 12.4 23.5 499! 202 3.1 .41! .80 .79 9.1 8.5!D 135 0350 754.01 63.1! 127 144 118 16.4 26201724.99 8.7 8.7 927 914 12.4 23.5 498! 203 3.1 .41! .74 .72 9.1 8.5!D 136 0351 755.01 50.8! 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 499! 204 3.1 .42! .80 .78 9.1 8.5!D																							
1333 0348 752.02 64.91 171 188 117 19.4 26201723.39 8.7 8.7 925 912 12.4 23.5 5011 201 3.1 .411 .76 .74 9.1 8.51D 1334 0349 753.01 49.31 140 162 118 17.9 26201724.58 8.7 8.7 929 933 12.4 23.5 4991 202 3.1 .411 .80 .79 9.1 8.51D 1350 0350 754.01 63.11 127 144 118 16.4 26201724.99 8.7 8.7 927 914 12.4 23.5 4981 203 3.1 .411 .74 .72 9.1 8.51D 1336 0351 755.01 50.81 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 4991 204 3.1 .421 .80 .78 9.1 8.51D																					.76		
334 0349 753.01 49.3! 140 162 118 17.9 26201724.58 8.7 8.7 929 933 12.4 23.5 499! 202 3.1 .41! .80 .79 9.1 8.5!D 85 0350 754.01 63.1! 127 144 118 16.4 26201724.99 8.7 8.7 927 914 12.4 23.5 498! 203 3.1 .41! .74 .72 9.1 8.5!D 1336 0351 755.01 50.8! 135 165 118 17.9 26201726.19 8.7 8.7 927 929 12.4 23.5 499! 204 3.1 .42! .80 .78 9.1 8.5!D																		3.1	.41	.76	.74	9.1	8.510
35 0350 754.01 63.1; 127 144 118 16.4 2620;724.99 8.7 8.7 927 914 12.4 23.5 498; 203 3.1 .41; .74 .72 9.1 8.5;D 336 0351 755.01 50.8; 135 165 118 17.9 2620;726.19 8.7 8.7 927 929 12.4 23.5 499; 204 3.1 .42; .80 .78 9.1 8.5;D																					.79	9.i	8.51D
336 0351 755.01 50.8; 135 165 118 17.9 2620; 726.19 8.7 8.7 927 929 12.4 23.5 499; 204 3.1 .42; .80 .78 9.1 8.5; D												927	914	12.4	23.5	498	203						
					135	165	118	17.9	26201726.19	8.7	8.7	927											

Data Printed at time 06:47 Date Apr 12 '90 Data Recorded at time 03:53

								+							+-			+				
		SCSTII	5051	TOO	our	ODM	เมกก	DIMOTOTOME	MIN 1	h/nol	FLO	W/MIN	TEN	4P (C)	PVT!	-THIS	BIT-	EST!	DXC	NXB	FCD	NIADI
1 4	,	A	m/hrl	AV6	MAX	AVG	AV6	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	1	n	hr	TW:				
			+					+							+-			+				
777	ÁTET	754 At	10 01	177	140	119	17.9	26301727.69	8.7	8.7	929	916	12.4	23.5	4991	205	5.l	.421	.61	./7	7.1	D.J.
778	0354	757.00	34.3!	123	153	104	17.4	26201729.57	8.7	8.7	927	918	12.4	23.5	5021	206	3.2	.44i	.00	,04	7 - 1	0.0
339	0355	758.01	58.01	131	151	102	18.7	26201730.72	8.7	8.7	934	911	12.4	23.5	501;	207	5.2	.431	./0	./4	7:1	0.0
340	0358	759.00	19.11	115	133	100	18.2	26101732.01	8.7	8.7	926	930	12.4	23.5	5001	208	5.2	.431		.97		
341	0417	760.00	16.51	109	183	99	18.6	26001740.38	8.7	8.7	861			23.5						1.01		8.5
1342	0418	761.02	64.61	225	241	113	24.5	26001740.52	8.7	8.7	923			23.5				.44		.79		8.5
1343	0419	762.00	60.11	214	230	119	23.5	26001741.22	8.7	8.7	921	900	12.6	23.5	4971	211			.82	.81		8.5
344	0419	763.01	83.31	208	229	121	23.3	26001742.04	8.7	8.7	925	927	12.6	23.5	4981	212	3.3	.45	.75	.73		8.5
345	0420	764.01	89.41	210	230	120	24.0	26101742.71	8.7	8.7				23.5								8.5
:346	0421	765.02	88.88	224	250	118	25.1	26101743.33	8.7	8.7				23.5				.45		.73		8.5
1347	0421	766.00	82.3	212	241	119	24.7	26001744.00	8.7	8.7				23.5				.45		.74		8.5
: 749	0422	767.01	73.6	183	210	122	22.9	26001744.81	8.7	8.7	921	901	12.7	23.5	4971	216			.78	.76		8.5
1749	0423	749.02	53.5	204	238	120	24.5	26101745.76	8.7	8.7	922	907	12.7	23.5	5001	217			.86	.84		8.5
. 350 ! 350	0474	769.01	72.1	215	228	119	25.8	26001746.48	8.7	8.7	920	912	12.7	23.5	499;	218			.80			8.5
1751	0123	770.05	63.0	197	223	117	26.1	26201750.53	8.7	8.7	789	869	12.8	23.5	494 :	219	3.4	.47	.83	.82		8.5
1359	NARR	771.01	78.8	205	729	115	29.7	26301750.70	8.7	8.7	904	895	12.8	23.5	4951	220			.80			8.5
: 352 : 353	ATA	777 05	74.3	173	202	117	27.1	26301750.91	8.7	8.7	925	933	12.8	23.5	5001	221	3.5	.47	.80	.78		8.5
1754	0407	. 773 N	. 11 T	! 191	233	114	24.1	26301752.28	8.7	8.7				23.5		222	3.5	.48	.91	.89		8.5
1755	0430	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	54.8	197	218	117	24.8	26301753.16	8.7	8.7				23.5		223	3.5	.48	.84	.83	9.0	8.5
1756	0437	773.91 775.01	1 00.0	1 179	194	. 119	24.0	26301754.25	8.7	8.7				23.5		224	3.5	.48	.87	.85	9.0	8.5
1330	0436) //J.V.) 47.6 1 A7 L	: 170 : 151	105	119	27.1	26301755.41	8.7	8.7				3 23.5		225	3.6	.49	.89	.87	9.0	8.5
1997	0407	770.V	, 42:0	i 150	191	119	777	9401756.11	8.7	8.7				3 23.5		226	3.6	.49	90	.88	9.0	8.5
1000	V441	1///*V	1 44.0 1 45 0	: 107 : 170	101	110	20.2	9401756.82	9.7	8.7				3 23.5		227			.90		9.0	8.5
1307	0443	(//@.V') 42.0 \ EA 1	1 1/9 1 1/9	171	1 117	, 27.2 , 97.5	9701757.40	9 7	8 7				3 23.6		228			.86		9.0	8.5
1350	044.	3 //7.V'	7 40 0 7 40 0	1 100	777	, 174 1 174	: 20.0	26001758.80	9 7	9.7				3 23.6		229			1 .82		9.0	8.5
1301	V40.	704.0) 40.0	: 100	. 201) 100 1 117) 40:7 1 99 9	26101758.99	0.7	9.7				3 23.6		230			1.79		9.0	8.3
1302	V40.	3 /81.V		1 21.	220	9 110)	26201759.27	0.7	0.7				B 23.6		231			: .80		9.0	8.5
1303	040	4 /82.V	1 37.7	i Z11	241	3 114 7 (1)	, 77°'	20201737127	0.7	97				B 23.6		232			1.77		9.0	8.5
1364	045	5 /83.0	2 /0.6	: 211	. 22.	/ 114 D 44/	1 22.7 1 22 4	26101759.48	0:/	7.0				B 23.6		233			1.73			8.5
1365	045	6 /84.0 	1 84.4	1 170) ZV	7 110	22.4	26101759.63	0.7	0.7				8 23.6		234			1 .71			8.5
								26101759.70						8 23.6						.67		8.
1367	045	7 786.0	1 43./	151	18.	Z 111	8 ZV.3	26101759.73	0.1	0.7				8 23.6					.72			8.
1368	3 045	8 787.0	2 77.3	15	19	8 11.	/ 18.8	26201759.73	9.1	, 0.7				o 23.6 8 23.6		1 237				.75	9.	
1369	045	9 788.0	0 58.9	14	3 20	Z 11	8 1/.4 ,	26101759.73	b.	/וּמַּיוּ						1 238			., .70 21 .79			18.
1370	050	0 789.0	1 52.7	1 15	Z 20	3 III	b 18.5	26001759.73	8	/ O./				8 23.6		1 239			21 .58			18.
								26301761.08						7 23.7		1 237			:			18.
137	2 050	9 791.0	1 104	11 21	2 22	5 11	3 21.5	26401761.63	8.	/ 8./				7 23.7					31 .76			i 8.
137	3 051	0 792.0	1 67.4	11 19	5 21	3 11	6 21.3	26301762.78	В.	/ 8./				7 23.6		241			31 .70 31 .83			. o. 18.
137	4 051	1 793.0	1 51.2	2; 18	5 21	9 11	7 21.1	26401764.45	8.	/ 8./				7 23.6		1 242			31 .89			18.
								3 26401766.38						7 23.6		1 243						i 8.
137	6 051	3 795.(4 54.	11 20	0 21	5 11	6 22.5	5 26401767.39	8.	/ 8.7				7 23.6		1 244			41.82 41.07			18.
								26401768.56						7 23.6		1 245			41 .80			18.
137	8 051	5 797.0	1 51.	31 20	8 22	3 11	5 23.	7 26401769.30	8.	7 8.7				7 23.6		1 246			41 .85			18.
137	9 051	6 798.	1 58.	21 21	2 22	6 11	4 25.	1 26301769.65	6.	7 8.7				7 23.6		1 247			41 .83		_	
138	0 051	8 799.	2 57.	41 20	4 23	1 8	4 25.	3 26301769.67	8.	7 8.7				7 23.6		1 248			51 .70			1 8
138	1 052	27 800.	0 93.	41 24	6 26	9 10	3 26.	8 26901771.5	8.	7 8.7				6 23.7		11 249			51 .70			1 8
138	2 052	27 801.	2 77.	11 23	0 25	52 12	25 25.	3 27001772.13	3 8.	7 8.7	92			.6 23.7		31 250			51 .79			1 8
: 70	3 052	28 802.	00 57.	71 18	3 21	17 13	51 22.	3 2710:772.83	28.	7 8.7	92	6 90	4 12.	.6 23.6		11 251			51 .8	4 .82 7 .75		1 8 1 8
:96								0 27001773.5		7 0 -			7 10	1 57 6	51/	H 252	Æ	n 5	L' 7	. / 🛰	Ψ.	(8.

4.7 .651 .52

4.7 .661 .53

4.7 .66: .61

.51 9.2 8.51D

.60 9.2 8.51D

4.7 .661 .59 .57 9.2 8.51D

4.7 .661 .68 .66 9.2 8.510

5251 296

Data Printed at time 06:54 Date Apr 12 '90 Data Recorded at time 05:30 Date Apr 2 '90 .______ # TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT; -THIS BIT- EST: DXC NXB ECD NXMD: ! m m/hr! AVG MAX AVG AVG PRES!DEPTH IN OUT IN OUT IN OUT ! m hr TW! ! 1385 0530 804.03 80.71 211 233 128 24.2 27001774.13 8.7 8.7 927 929 12.6 23.6 5151 253 4.0 .561 .77 .75 9.1 8.51D 9.1 8.5ID 1386 0531 805.04 67.21 205 231 130 23.5 27001774.85 8.7 8.7 928 914 12.6 23.6 5141 254 4.0 .561 .81 .79 4.1 .56! .80 9.1 8.51D 928 907 12.6 23.6 5131 255 .78 1387 0532 806.01 68.7! 206 229 128 23.4 2700:775.38 8.7 8.7 4.1 .571 .82 .80 9.1 8.51D 1388 0532 807.01 62.21 183 194 132 22.9 27001776.07 8.7 8.7 925 910 12.6 23.6 5141 256 1389 0533 808.03 71.81 180 200 132 23.2 27001776.75 8.7 8.7 927 914 12.6 23.6 5151 257 4.1 .571 .79 .77 9.1 8.51D 1390 0543 809.00 74.81 207 272 102 24.4 26801779.25 8.7 8.7 880 886 12.7 23.7 5121 258 4.1 .57! .74 .72 9.1 8.51D .76 9.1 8.510 .74 9.1 8.510 1391 0544 810.01 58.01 210 223 97 23.7 26901779.87 8.7 8.7 922 911 12.7 23.7 5121 259 4.1 .581 .78 1392 0545 811.01 61.31 202 218 94 23.0 27001781.00 8.7 8.7 926 906 12.7 23.6 5131 260 4.1 .581 .75 1393 0546 812.01 53.71 198 212 97 22.3 26901782.18 8.7 8.7 924 927 12.7 23.6 5131 261 4.2 .581 .78 .77 9.1 8.51D 1394 0547 813.01 51.41 202 216 96 23.0 26901783.50 8.7 8.7 922 913 12.7 23.6 5121 262 .78 9.1 8.51D 4.2 .581 .80 .74 9.1 8.51D 1395 0548 814.01 61.31 200 220 92 23.1 26901784.87 8.7 8.7 922 926 12.7 23.6 5121 263 4.2 .581 .75 1396 0549 815.01 55.91 195 213 97 23.7 26901786.32 8.7 8.7 922 902 12.7 23.6 5141 264 .77 9.1 8.51D 4.2 .591 .79 1397 0550 816.04 68.81 190 205 96 23.2 27301787.35 8.7 8.7 927 914 12.7 23.6 5121 265 .72 9.1 8.51D 4.2 .59! .73 .76 9.1 8.51D 1398 0551 817.01 57.11 180 197 95 23.1 27301788.21 8.7 8.7 929 909 12.8 23.6 5121 266 4.2 .591 .77 1399 0601 818.02 86.11 192 252 102 23.4 26501789.03 8.7 8.7 741 819 12.9 23.7 5341 267 .68 9.1 8.51D 4.3 .591 .70 1400 0602 819.01 1401 220 241 113 23.2 26301789.63 8.7 8.7 839 897 12.9 23.7 5331 268 .59 9.1 8.51D 4.3 .591 .61 .68 9.1 8.510 1401 0602 820.00 91.11 183 202 115 21.2 26701790.91 8.7 8.7 912 926 12.9 23.7 5331 269 4.3 .591 .70 .84 9.1 8.51D 1402 0604 821.01 37.6; 144 202 115 17.8 2700;792.37 8.7 8.7 927 912 13.0 23.7 533; 270 4.3 .601 .86 .70 9.1 8.510 1403 0605 822.02 72.51 146 213 115 18.0 27001793.00 8.7 8.7 924 927 13.0 23.7 5331 271 4.3 .601 .72 4.3 .601 .75 .73 9.1 8.51D 5341 272 925 904 13.0 23.7 1404 0606 823.02 65.81 164 221 115 19.2 26901793.58 8.7 8.7 .79 9.1 8.510 4.4 .611 .81 1405 0607 824.02 53.81 176 204 115 21.1 27001794.50 8.7 8.7 924 911 13.0 23.7 5341 273 .82 9.1 8.51D 6 0608 825.01 50.2; 188 223 114 22.6 2700;795.60 8.7 8.7 923 909 13.0 23.7 5331 274 4.4 .611 .84 -407 0609 826.02 54.11 199 217 115 23.4 27001796.62 8.7 8.7 926 906 13.0 23.7 5341 275 4.4 .611 .83 .81 9.1 8.510 1408 0610 827.01 75.31 162 199 114 22.9 27101797.63 8.7 8.7 925 916 13.0 23.7 .73 9.1 8.5 Dt 5181 276 4.4 .611 .75 .69 9.0 8.51D 4.4 .621 .71 929 934 13.0 23.8 4741 277 1409 0620 828.02 98.31 212 236 115 25.9 27301800.60 8.8 8.9 .73 9,1 8,51D 4.4 .621 .75 1410 0621 829.01 86.71 218 232 116 26.5 27301801.32 8.8 8.9 929 909 13.0 23.8 4741 278 .76 9.1 8.51D 4.5 .621 .78 930 909 13.1 23.7 4731 279 1411 0622 830.00 76.11 223 247 115 27.4 27301802.21 8.8 8.9 928 908 13.0 23.7 4751 280 4.5 .621 .77 .75 9.1 8.51D 1412 0622 831.01 82.61 226 239 115 27.8 27401803.09 8.8 8.9 .79 9.1 8.510 930 916 13.0 23.7 4751 281 4.5 .621 .81 1413 0623 832.01 67.81 212 241 116 27.2 27401804.10 8.8 8.9 .82 9.1 B.51D 927 931 13.0 23.7 4761 282 4.5 .631 .84 1414 0624 833.00 60.31 211 249 116 27.4 27301805.16 8.8 8.9 .80 9.1 8.51D 925 911 13.0 23.7 4761 283 1415 0625 834.01 62.31 168 202 117 25.1 20301806.10 8.8 8.9 4.5 .631 .82 .77 9.1 8.51D 635 560 13.0 23.7 4891 284 4.5 .63: .78 1416 0626 835.00 62.31 198 220 97 26.3 9801806.80 8.8 8.9 4.5 .631 .82 .80 9.1 8.51D 1417 0627 836.01 51.91 172 204 99 25.2 10101807.40 8.8 8.9 5031 285 540 542 13.0 23.7 1418 0637 837.01 47.81 196 270 94 25.8 26901808.56 8.9 9.0 907 900 13.0 23.8 5171 286 4.6 .641 .83 .81 9.1 8.5 Df .68 9.1 8.51D 916 909 13.0 23.8 518; 287 4.6 .641 .70 1419 0637 838.00 1031 243 262 113 26.7 26901809.11 8.9 9.0 .71 9.1 8.51D 917 904 13.1 23.8 5191 288 4.6 .641 .73 1420 0638 839.01 88.31 231 245 114 26.2 26901809.78 8.9 9.0 .67 9.1 8.5ID 919 906 13.1 23.8 5181 289 4.6 .641 .69 1421 0638 840.01 1031 214 235 115 24.8 26901810.33 8.9 9.0 4.6 .641 .75 .73 9.1 8.51D 918 902 13.1 23.8 520; 290 1422 0639 841.00 77.41 198 219 115 24.2 26901811.02 8.9 9.0 4.6 .651 .82 .80 9.1 8.51D 1423 0640 842.01 57.11 199 217 115 24.8 27001811.96 8.9 9.0 919 898 13.1 23.8 5211 291 .80 9.1 8.51D 4.7 .651 .82 1424 0641 843.01 57.91 202 219 115 25.2 27001812.75 8.9 9.0 917 895 13.1 23.8 5231 292 4.7 .651 .77 .75 9.1 8.51D 917 897 13.1 23.8 5221 293 1425 0642 844.00 75.01 212 229 115 26.0 26901813.41 8.9 9.0 .70 9.2 8.51D 4.7 .651 .72 1426 0643 845.02 91.71 184 201 116 24.7 26901814.06 8.9 9.0 918 923 13.1 23.8 5241 294 .72 9.1 8.51D1 4.7 .651 .74 1427 0650 846.06 78.21 176 250 115 22.8 28301816.52 8.9 9.0 874 893 13.2 23.8 5251 295 .50 9.1 8.51D

1428 0650 847.05 1871 236 243 99 24.4 28301816.70 8.9 9.0 914 910 13.2 23.8

 1429 0650 848.02
 1691 225
 238 96 23.5
 28301816.87
 8.9
 9.0
 931 941 13.2 23.8
 5261 297

 1430 0651 849.02
 1281 206 215
 98 22.3
 28301817.09
 8.9
 9.0
 940 923 13.2 23.8
 5281 298

 331 0651 850.01
 1041 188 208 95 21.3
 28401817.11
 8.9
 9.0
 943 948 13.2 23.8
 5271 299

32 0652 851.02 82.4: 178 195 100 21.5 2830:817.19 9.0 9.1 942 921 13.2 23.8 528: 300

ESSO AUSTRALIA: Terakihi No.1...

	١				•			+			1	vata	Kecor	מבמ ער	rime.	VOIZ	,	Dare	uhı T	,,,		
	L							PUMP:RTRNS		h/as1	בו חו	H/MTN	TCN	4D (C)	PUT!	 21415	RIT-	. FGT!	DYC	NXB	FCD	NXMD!
			KUPi	IUK	MUF	KFN	MUD	PRESIDEPTH	IN I	UIIT D\AT	TN	71110 7110	IN	OUT	!	M	hr	TWI	DRO			
1		A	#/nri	HVU	LIHY	HYO	HYO	+	114		714				+			+				+
1404		000 01	+· 50 7:	271	201	110	79 T	27701873.48	9.3	9.4	920	900	13.6	24.1	5221	349	5.6	.761	.84	.81	9.6	8.51D
107	V027	001 01	47 R!	254	280	119	32.0	27701873.52	9.3	9.4	920	923	13.6	24.1	5231				.82			8.5ID
TOR	0020	902.01	60.71	239	256	120	31.7	27701873.84	9.3					24.1			5.6	.761	.83	.80	9.6	8.510
1403	0770	903.00	45.71	188	282	97	27.6	27601875.41	9.3	9.4				24.1			5.6	.771	.82	.80	9.6	8.51D†
1485	0848	904.01	74.01	206	291	111	28.4	27201880.71	9.3	9.4				24.2		353	5.7	.771	1.00	.98	9.6	8.51D1
1486	0849	905.02	69.21	253	302	111	31.2	27301881.31	9.3	9.4				24.3		354	5.7	.781	.78	.76	9.6	8.51D
1487	0850	906.01	57.01	232	253	113	29.8	27301882.08	9.3	9.4	910	889	13.6	24.2	4581	355	5.7	.781	.82	.80		8.5HD
1488	0851	907.00	50.81	233	250	113	30.1	27201883.09	9.3	9.4	912	903	13.6	24.2	4581	356		.781		.83		8.51D
1489	0852	908.01	53.21	235	249	114	30.3	27201884.03	9.3	9.4				24.2	4601			.781				8.51D
1490	0853	909.00	56.01	231	246	116	30.4	27201885.03	9.3	9.4				24.2	4591			.791				8.5ID
1491	0855	910.00	48.61	240	255	104	31.2	27201885.79	9.3	9.4				24.2	4581			.791		.83		8.51D
1492	0856	911.00	40.81	257	271	105	32.1	27201886.10	9.3	9.4				24.2	4601			.791		.87		8.510
1493	0858	912.00	45.01	228	266	86	32.6	27201886.14	9.3	9.4				24.2	4641			.791		.81		8.51D†
1494	0909	913.01	46.4	290	312	106	31.0	27701889.41	9.3	9.4				24.2	4721			.801		.84		8.51D1
1495	0910	914.00	67.91	277	295	115	29.2	27701889.96	9.3	9.4				24.3	4761			.801				8.510
1496	0910	915.01	74.9	260	282	101	28.5	27701890.48	9.3	9.4				24.3	4761			.80				8.5iD
1497	0911	916.01	50.21	232	252	101	26.9	2770:891.90	9.3	9.4				24.3	4791			.80				8.51D 8.51D
1498	0913	917.01	56.41	233	254	103	27.3	27601892.87	9.3	7.4				24.3	4801			.80				8.5ID
:499	0914	918.00	48.1	225	263	104	28.0	27701894.09	9.3	7.4				24.3		367		.81 18.				8.5ID
1500	0915	919.01	55.01	224	257	103	28.4	27701894.75	7.5	7.4				24.3		368 369		.81				8.51D
1501	0916	920.00	49.61	224	244	103	28.2	8801895.00	7.3	7.4 n.a				24.3		370		.81				8.51D
	0918	921.01	37.31	225	2/3	100	2/.5	9401895.03	7.3	7.4				24.3 24.3		371		.82				8.5¦D
1503	0919	922.05	3/.01	246	264	102	27.0	28001895.32	7.3	7 • 4 D A				24.4		372		.82		.83		8.5:D†
1504	0929	923.01	46.Zi	222	201	104	27.0 70.7	28101897.68	7.3	7.4 0 A				24.3		373		.82		.84		8.5¦D
1505	0731	924.00	10.16 I	2/7	301 207	110	20.2	28101899.00 28101899.94	7.0 Q T	7.7 9 A				24.3		374		.83		.78		8.5ID
1006) U73Z ! A077	720.01	C#:11	2/3	207	117	27.0	28101901.06	9.3	9.4				24.3		375		.83		.82		8.5ID
1907	. 00733 . 0074	720.01	17:11 10 78	24T	707	121	20.7	28001902.43	9.3	9.4				24.3		376				.86		8.5¦D
1500) 472 4) 4075	020 01	10.01	250	271	171	29.8	28001903.74	9.3	9.4				24.3		377		.83		.86		8.510
1510	, 0133 1 0037	070 A1	44 1!	242	301	120	30.8	28101904.58	9.3	9.4				24.3		378			.89		9.6	8.5ID
1210	/ 0737 A979	930.02	. 40.11 10.11	257	281	121	31.4	2800:904.82	9.3							379	6.2	.84	.88	.85	9.6	8.510
1517	0700	931.03	41.8	243	272	121	30.9	28001905.23	9.3	9.4	923	909	13.9	24.3	530	380	6.2	.85		.89		8.5¦D
1513	0951	932.01	31.9	228	335	118	30.0	28101906.13	9.3	9.4	899	916	13.8	24.3	5421	381	6.2	.85	.96	.94	9.6	8.51D†
1514	0952	933.01	56.25	320	346	110	36.7	28101907.07	9.3	9.4	920			24.4		382	6.2	.85	.86	.84	9.6	8.510
								28101908.49			920	900	13.8	24.4	546	383	6.3	.86	.94	.91		8.51D
								28101909.87			918	897	13.8	24.4	548	384		.86		.93		8.51D
1517	7 0957	936.01	43.9	269	295	122	33.6	28001911.15	9.3	9.4				24.4	549	385		.86		.90		8.510
								28001912.23						24.4		386		.87		.90		8.510
1519	9 0959	938.00	40.21	237	273	123	32.1	2780:913.28	9.3	9.4				24.4		387		.87		.91		8.51D
1520	1001	939.01	33.3	272	297	122	32.1	28001914.39	9.3	9.4				24.4		388		.88		.95		8.5¦D
1521	1 1003	940.01	45.5	275	299	122	32.4	28001914.95	9.3	9.4				24.4		389		.88		.88		8.5¦D
1522	2 1004	941.02	45.0	249	290	123	31.8	28001915.18	9.3	9.4				24.4		390		.89		.88		8.51D
								2750:918.28						24.5		391		.89		.82		8.5iD↑
								27501919.47						24.5		392		.89		.80		8.510
								27701920.52						24.5		393		.89		.79		8.51D
1528	6 1017	945.01	40.5	239	267	121	24.6	27801921.77	9.3	9.4				24.5		394		.90		.85		8.51D
	7 1018	946.01	1 44.6	238	277	121	26.3	27401922.97	9.3	7.4	711	840	15.9	74.5	472	375 1707			1 .87			8.51D 8.51D
1528	B 1019	947.0	1 57.1	284	303	119	30.2	27001924.03 	9.3	4.4	411	417	15.7	74.4	483	396				.81 		
÷				+															·			- 1

Data Printed at time 07:16 Date Apr 12 '90 Data Recorded at time 10:20 Date Apr 2 '90

: F#	TIME	DEPTH	ROP	TOR	QUE	RPN	WOB	PUMP:RTRNS PRES:DEPTH	MD I	b/gal OUT	FLOI TN	NIM\W Tiln	TEM	P (C) OUT	PVT!	-THIS	BIT- hr	EST!	DXC	NXR	ECD 1	I UMXN
								+							+-							}
1529	1020	948.04	54.5	275	291	119	30.6	27501924.63	9.3	9.4	913	916	13.9	24.4	4491	397	6.6	.911	.85	.82	7.6	8.51D
1530	1021	949.02	52.01	273	297	120	31.5	27401924.63	9.3	9.4	911	897	13.9	24.4	4221	378	6.0 	1711	.0/ 0/			8.5¦D
1531	1023	950.01	46.8	274	297	120	32.3	27301924.63	9.3	7.4 D.A					415¦ 420¦		6.6			.81		8.51D
1532	1024	951.05	55.21	263	283	109	32.4	27301925.06	4.9	7:4 0:4					4241				.82			8.5:D†
1533	1034	952.04	59.71	255	282	108	33.2	27901929.42	7.3	7.7					4271				.84	.81		8.51D
1534	1034	953.00	6/.8i	273	311	124	33.U	27801930.04 27801930.65	7.3 Q T	7.7 9.4					4281				.85	.82		8.51D
1535	1035	704.01	17.60 10 22 1	211	274	120	34.D	27801931.44	9.3	9.4					4291				.88	.85	9.6	8.51D
1000	1030	700.02	. JJ.7:	259	200 274	127	34.9	27801932.41	9.3	9.4				24.5			6.7	.93	.93	.90	9.6	8.51D
1570	1030	730.VI 957 A1	39.5	258	277	127	35.4	27801933.43	9.3	9.4				24.5	4331	406	8.8	.93	.98	.95		8.510
1570	1040	958.01	46.9	259	277	127	36.2	27801933.83	9.3	9.4	920	901	14.2	24.5	4341	407			.94	.91		8.5iD
1540	1047	959.02	54.1	261	279	127	36.4	27901933.85	9.3	9.4	919	899	14.2	24.5	4351	408			.90	.87		8.510
1541	1043	960.01	48.4	253	271	128	36.2	27801933.88	9.3	9.4				24.5	4361				.93	.90		8.510
1542	1044	961.02	55.0	247	263	128	36.6	27701934.06	9.3	9.4					4361				.90	.87		8.51D
1543	1053	962.02	72.4	252	310	106	31.2	28001937.10	9.3	9.4					440 !				.76	.73		8.51D†
1544	1054	963.00	59.5	282	300	98	28.4	2800!937.77	9.3	9.4					4411				1 .77	.74		8.5¦D
1545	1055	964.02	2 54.5	289	309	98	28.9	28001938.55	9.3	9.4					441				1 .79	.77 .79		8.51D 8.51D
1546	1056	965.00	50.0	279	292	100	29.4	28001939.42	9.3	9.4					4431				1 .82 1 .80	.78		8.51D
1547	1057	966.0	2 53.8	269	284	100	29.5	28001939.89	9.3	9.4				24.5		415			1 .82			8.5¦D
1548	3 1058	967.0	51.7	264	281	101	29.9	28001940.58	9.3	9.4				24.5		416 417			.84			8.51D
1549	1059	968.0	1 46.0	1 270	293	100	30.5	28001941.48	7.5	9.4				24.5 24.5		418			1 .86			8.51D
1550) 1101	969.0	0 43.8	1 276	304	101	31.0	28001942.46	A * 2	7.4				24.5		419			85			8.51D
155	1102	7/0.0	1 45.1	1 281	307	77 100	.21.7 . ₹₹ 7	28001943.25 27801943.94	7.0	7.7					451				1 .85			8.51D†
1997	2 1107 2 1117	/ 7/1.V \ 070 A	1 40.0 7 47 0	1 Z7V	320) 100 1110	33.7 R AF	27801944.68	9.3	9.4					452				1 .82			8.5¦D
100	4 111; 5 111;) 7/2.V 977 N	2 02.7 N 54 5	1 200	312	7 11V 2 113	34.4	27801945.56	9.3	9.4					453				1 .85		9.6	8.51D
199,	9 111. 5 111'	1 113.0 7 974.0	1 47.4	1 287	307	7 114	34.4	27801946.48	9.3	9.4					455		7.1	.98	11 .89	.86	9.6	8.5;D
155	6 111:	3 975.0	1 45.4	1 276	297	7 118	34.3	27901947.33	9.3	9.4	915	894	14.5	24.6		424			.91			8.510
155	7 111	5 976.0	2 48.0	1 275	29:	3 120	34.4	27801948.32	9.3	9.4	915	920	14.5	24.6		425			.90			8.51D
155	8 111	6 977.0	1 46.9	1 255	284	4 121	34.6	27801949.38	9.3	9.4				24.6		426			71 .91			8.51D
155	9 111	7 978.0	1 40.0	1 278	299	9 120	35.0	2780:950.71	9.3	9.4	913				458				71 .95			8.51D
156	0 111	9 979.0	0 50.9	1 263	30:	1 120	34.6	27801951.68	9.3	5 9.4	912				460				71 .89			8.510
156	1 112	0 980.0	2 38.8	1 229	26	0 12:	33.7	27801952.99	9.3	3 9.4	913	917	14.5	24.6	459	429			.95			8.510
156	2 112	8 981.0	1 49.1	1 220	30	0 104	26.6	28101953.95	9.	3 9.4	908	899	14.6	24.7	464	1 450	1.2	1.00	נט. וע נט. וע	./U	7.0	8.510
								28101954.01						24.7		431); .79); .79			8.51D
156	4 113	0 983.0	1 56.8	31 291	30	6 10	2 28.5	28101954.96	9.	5 4.4				5 24.7		1 432 1 433			, ./7 11 .80			8.51D
156	5 113	1 984.0	1 50.5	51 279	7 30	1 9	7 28.1	28101956.07	, y.,	3 7.4 7 n =				5 24.7 5 24.7		1 434			11 .82			8.51D
154	6 113	2 985.0)1 49.() 28:	29	8 10	1 28.0	28101957.17	7.	ა 7.4 ₹ 0 1				5 24.7 5 24.7		1 435			1; .80 1; .80			8.51D
154	/ 113	3 486.()0 55.1 Va co 1	11 28	Z 29	7 10	2	28001957.99	7 7. L D	. 7.4 7.0 A				7 24.7		1 436			1: .82			8.51D
								5 28101958.60 1 28101959.3						7 24.7		1 437			11 .78			8.510
		5 988.(6 989.(7 24.7		1 438			21 .78		_	8.51D
								4 28801963.4						8 24.8		1 439			21 .79			5 8.5¦D↑
								7 28601963.6						8 24.7		440			21 .84			6 8.51D
								5 27601964.0						8 24.7		1 441		5 1.0	21 .84			6 8.51D
								6 28101964.7						8 24.7		1 442			31 .83			6 8.51D
								6 28101966.1			917			8 24.7		443						6 8.51D
15	76 119	7 005	7A 00	9! 28	A 30	3 11	7 26.	A 28101967.4	0 9.	3 9.4	910	90	5 14.	8 24.7	518	11 444				.83		6 8.51D
				,												+			-+			+

								+										+				+
: F#	TIME	DEPTH	RNP:	TOR	QUE	RPM	WOB	PUMPIRTRNS	MD 1	b/qal	FLO	W/MIN	TE	MP (C)	PVT:	-THIS	BIT-	EST!	DXC	NXB	ECD	HUMKN
; L			@/NFi +	AYU 		HVO	HYO 	PRESIDEPTH			114		1H		+	n: 		· · · · · · · · · · · · · · · · · · ·				+
!577	1154	996.01	55.31	286	304	121	26.5	28501968.24	9.3	9.4	920	911	14.8	24.7	5191	445	7.5	1.031	.82	.79	9.6	8.510
578	1155	997.03	53.31	282	302	122	26.5	28901969.23	9.3	9.4	929	916	14.9	24.8	5211	446	7.6	1.04:	.83	.80	9.6	8.511
								28901969.88						24.8	5201					.71		8.5:0
								28001973.06			895	910	14.9	24.8	5231					.76		8.511
								29901974.68			898	913	15.0	24.8	5281							8.5;[
1583	1210	1001.0	50.01	260	280	101	28.0	29901975.77	9.3	9.4				24.8	5281				.81			8.510
1584	1211	1002.0	53.21	273	293	100		29801976.70						24.8	5261				.80			8.511
		1003.0						29801977.58						24.8	5271				.82			8.510
								29701978.61						24.8	5281			1.05		.79		8.511
1587	1215	1005.0	48.31	273	294	96	29.6	29901979.50	9.3	9.4				24.8	5291			1.05		.79		8.510
		1006.0						29801980.38						24.8	5301			1.06		.79		8.511
589	1217	1007.0	47.31	280	297	99	29.8	29901981.41	9.3	9.4				24.8	5311			1.061		.81		8.511
		1008.0						29901981.67						24.8	5321			1.06		.82		8.511
								29801982.47						24.8	5311			1.061		.80		8.511
								28601984.87						24.9	5401			1.061		.80		8.511
								28601985.70						24.9	5421			1.071		.79		8.5
								28701986.69						24.9	5251			1.071		.82		8.511
								28701987.65						24.9	4981			1.071		.82		8.511
								28701988.62						24.9	4681			1.071		.83		8.5
597	1235	1015.0	53.01	232	270	118	31.2	28601989.60	9.5	7.5				24.9	449 :			1.08		.82		8.5
								28601990.59						24.9	4521			1.08		.81		8.5!
								28501991.48						24.9	4541			1.08		.80		8.511
								28601992.25						24.9	4561			1.08		.87		8.511
								29801993.74						25.0	463;			1.091		.76		8.511
								29801994.83						25.0	4641			1.09		.78		8.5
								29801995.82						25.0	4671			1.091		.78		8.511
								29701996.72						25.0	4681			1.09		.78		8.511
								29701997.58						25.0	4691			1.09		.78		8.5
								29701998.47						25.0		473		1.10		.74		8.511
								29701999.34						25.0	4701			1.10		.70		8.511
								2970:1000.5						25.0	4701			1.10		.74		8.511
								2970:1001.1						25.0		476		1.10		.76		8.511
								2790:1002.0						25.1	4791			1.10				8.5
								2800:1002.2						25.1		478		1.11				8.5
								2790:1002.5						25.1	4821			1.11		.80		8.51
								2780:1002.6						25.1		480		1.11		.77		8.51
								3030:1003.4						25.1	4841			1.11		.82		8.51
								303011004.3						25.1		482		1.11		.79		8.5
								3030:1005.2						25.1		483		1.12		.79		8.51
								302011006.2						25.1		484		1.12		.81		8.51
								3020:1007.3						25.1		485		1.12		.83		8.5
								303011008.3						25.1		486		1.12		.85		8.51
								292011011.4						25.2		487		1.13		.86		8.5
								292011011.5						25.2		488		1.13		.78		8.51
								293011012.1						25.2		489		1.13		.80		8.51
								293011013.3						25.2		490		1.13		.81		8.5
24	1329	1042.0	42.4	293	308	111	30.5	293011014.6	y.5	Y.5	932	411	10.5	75.7	4781	491			.87			8.51
625	1330	1043.0	50.2	298	311	114	31.1	2920:1015.7	y.5	7.5	932	711	15.5	25.2	4671	472	8.5	1.14	83	.81	7./	i G. Ø

F# 1 1 1626 1627				TABLE				+										•				
 626 627 628				របកប	iue i	RPM	MOB	DIMOTOTORS	MIN 1	k/asl		d/MTN	TFM	P (C)	PVII	-1H15	BII-	E511	UXL	NAD	CUU	HYLLD
626 627 628		A	m/hri	AVG	MAX	AVG	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	1	A	hr 	T₩;				i +
627 628	4 770	1 A 4 8 A	20 DI	275	204	170	41 fi	7910: 1111A X	¥ . 7	7	7.10	7110	(1).0	4014	T-0/:	7/4	010	* * * *				
1628	1332	1044.V	14.VC	2/3	273 295	12V 103	31.4	2910;1018.0	9.5	9.5	431	911	15.5	Z3.Z	4011	474	0.0	1:17:	.00	.00	! : !	0:0:5
1070	1224	1043.0 1044.0	53.7!	201	288	107	32.3	2910:1018.9	9.5	9.5	931	934	15.5	Z3.Z	430 i	470	0.0	1:17:	.04	* F F	1 1 2	0:0:0
1429	1335	1047.0	41.11	275	297	103	32.7	294011020.2	9.4		935	916	15.5	25.2	4341	496	8.6	1.15	.88	.85	9.7	8.510
1830	1349	1048.0	49.31	300	348	103	32.6	295011023.3	9.5	9.5				25.3		497	8.6	1.15	.84	.81	9.7	8.51D
! A31	1350	1049.0	54.41	317	330	107	32.0	294011024.2	9.5	9.5				25.3								8.510
632	1351	1050.0	54.4	321	340	108	32.5	295011025.1	9.5	9.5				25.3		499						8.510
1633	1352	1051.0	59.91	306	329	110	32.1	2940:1025.9	9.5	9.5				25.3								8.510
1634	1353	1052.0	59.01	297	310	113	32.2	2950:1026.8	9.5	9.5				25.3		501	8.7	1.16				8.511
1635	1354	1053.0	52.31	290	311	114	32.5	2940:1027.9	9.5	9.5				25.3			8./	1.15	68.	.82	7./	8.5H 8.5H
1636	1356	1054.0	42.21	275	293	115	33.0	2960:1029.5	9.5	9.5				25.3								8.511
1637	1357	1055.0	41.6	273	292	115	34.0	295011030.6	9.5	9.5				25.3			გ./ იი	1.1/1	17.	.00	9.7	8.5H
:638	1359	1056.0	37.6	267	303	115	33.3	295011031.0	9.5	9.5				25.3		505 507	0.0	1:1/:	.73 . OA	.70 40	9.7	8.5
1639	1408	1057.0	42.4	255	284	115	31.9	297011033.0	9.5	9.5				25.3								8.511
1640	1409	1058.0	55.6	310	346	107	30.9	297011033.7	9.4	9.5				25.4		507 508						8.511
641	1410	1059.0	47.6	320	338	104	32.4	297011034.7	9.5	4.5				25.4		509						8.5
1642	1411	1060.0	51.5	316	332	105	32.6	296011035.6	9.5	9.5				25.4		510						8.51
1643	1412	1061.0	53.3	304	321	97	32.8	297011036.5	9.5	7.5				25.4		511						8.51
1644	1413	1062.0	51.7	294	320	93	33.1	298011037.5	9.5	7.0				25.4		512						8.51
1645	1415	1063.(47.1	283	301	93	33.5	2970:1038.4	7.0	4.0				25.4		513						8.5
1646	1416	1064.	42.1	281	308	96	34.7	297011039.4	A.5	A*5				25.4 25.4		514						8.51
1647	1418	1065.	34.3	286	322	93	36.3	296011040.6	7.5	7.3				25.4		515	9.0	1.19	. 94	.91	9.7	8.51
1648	1419	1066.	35.5	1 282	308	78	3/.8	295011041.3	7.0	7.3				25.5		516						8.5
1649	1428	1067.	1 39.7	289	460	9/	44.4	289011042.8	7.3	7.3				5 25.5		517						8.5
1650	1431	1068.	0 42.0	1 298	3/3	¥/!	32.1	305011044.9	7.5	7.3				5 25.5		518						8.51
1651	1432	1069.	0 51.2	1 202	322	102	70.2	3050:1045.8	7.5	95				5 25.5		519						8.51
1652	1433	10/0.	0.VG V	i 27/	217	100	70.Z	3050¦1046.8 3080¦1047.9	9 4	9.5				25.5		520						7 8.51
1655	1455	10/1.	V 44.0 A #/ 9	i 207	310	107	30.0 31.0	308011048.9	9.4	9.5				5 25.5		521						7 8.5
1604	1430	10/2:	V 40.Z A 40 5	1 700	211	100	, 31.0	2980:1049.7	9.5	9.5				5 25.5		522						7 8.5
1699	143/	10/5.	V 47.0 A 57.0	11 279	317 310	100	. 31.4 C 31.4	2980 1050.3	9.5	9.5				5 25.5		523	9.2	2 1.21	.82	.79	9.	7 8.5
1050	1490	1074.	0 JJ.Z	11 273	207	100	31.5	2980:1050.8	9.5	9.5				6 25.5		524	9.2	2 1.21	1 ,84	.80	9.	7 8.51
1671	' 1990 1881	1075.	0 45 A	.: 277 .: 278	293	103	31.7	2980:1050.8	9.5	9.5				6 25.5		525	9.2	2 1.22	21 .85			7 8.5
:050) 1450	1070.	0.55.4	1: 288	310	117	30.2	2890:1052.0	9.5	9.5	916	907	15.	6 25.6	535	1 526			.82	.78		7 8.5
144!) 1450) 1451	1078.	0 43.7	1 302	315	118	30.3	3000 1053.3	9.5	9.5				6 25.6	520	1 527			21 .89	.85		7 8.5
! 44!	1457	1079.	0 47.1	11 301	313	5 119	30.6	303011054.4	9.4	9.5	934	913	15.	6 25.6	489	1 528			21 .87	.84		7 8.5
144	. 1454 2 1454	1080.	0 46.9	7: 300	313	12:	1 31.1	304011055.5	9.4	9.5	943	922	2 15.	6 25.6	467	1 529			31 .88	.84		7 8.5
		, 1000. 5 1081.												6 25.6		1 530			31 .90	.86		7 8.5
		5 1082.									948			6 25.6		531			31 .90	.86		7 8.5
1441	5 145	3 1083.	0 43.4	41 299	313	3 12	1 32.3	302011058.4				930	0 15.	7 25.6		1 532			31 .90			7 8.5
166	6 145	7 1084	.0 37.	81 299	338	3 12	0 32.5	3030:1059.4	9.	5 9.5	944			7 25.6		\$1 533			41 .94	.90		7 8.5
166	7 150	0 1085	.0 43.	B: 297	31;	3 12	0 32.8	303011060.1	9.	5 9.5	943			7 25.6		51 534			41 .90			7 8.5
		2 1086				0 12	0 33.8	303011060.1	9.	5 9.5	94			7 25.6		51 535			41 .92			7 8.5
166	9 151	0 1087	.0 47.	91 289				5 2910:1062.9			91			9 25.6		51 536			51 .86			7 8.5
167	0 151	2 1088	.0 48.	91 308	32	7 12	2 32.	7 291011064.0	9.	4 9.5	92			9 25.6		51 537			51 .88			.7 8.5
167	1 151	3 1089	.0 55.	21 308	32	8 12	0 32.	6 2900:1064.	9.	5 9.5	92			9 25.6		8: 538			51 .85			.7 8.5
167	2 151	4 1090	.0 52.	71 293	3 30	7 12	5 32.	7 2900:1065.9	B 9.	5 9.5	92			.9 25.6		4: 539			.87			.7 8.5
			A 25	T1 00		A 40	10 71	4 292011066.	7 0	5 0 5	(97	2 90	7 15	.9 25.8	35	41 540	9.	.5 1.2	.90	.86		.7 8.5

F# TIME DEPTH ROP! TORQUE RPM WOB PUMP;RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT; -THIS BIT- EST; DXC NXB ECD NXMD; m m/hr¦ AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW! : 921 913 16.0 25.6 332; 541 9.6 1.26; .95 9.7 8.51D 1674 1517 1092.0 36.71 250 269 125 31.9 292011067.7 9.5 9.5 .96 9.7 8.510 1675 1519 1093.0 30.81 243 262 123 33.4 300011068.8 9.5 9.5 919 900 16.1 25.6 3381 542 9.6 1.27:1.00 .97 9.7 8.51D 1676 1521 1094.0 31.21 252 275 122 35.3 300011069.7 9.5 9.5 934 914 16.1 25.6 3581 543 9.6 1.2711.01 1677 1523 1095.0 28.21 225 248 123 34.1 305011069.9 9.5 9.5 939 920 16.1 25.6 3741 544 .98 9.7 8.510 9.7 1.28:1.02 .96 9.7 8.51Dt 1678 1533 1096.0 27.31 212 290 114 32.1 2980 1071.9 9.5 9.5 915 903 15.9 25.7 4011 545 9.7 1.28 11.00 1679 1534 1097.0 32.61 272 303 100 28.6 299011073.3 9.4 9.5 931 936 15.9 25.7 4141 546 9.7 1.281 .90 .87 9.7 8.51D 1680 1536 1098.0 36.81 296 332 96 30.3 299011074.6 9.5 9.5 931 917 15.9 25.7 4291 547 .84 9.7 8.51D 9.8 1.291 .87 .81 9.7 8.51D 1681 1537 1099.0 41.91 308 341 93 30.7 299011075.6 9.5 9.5 931 911 15.9 25.7 4391 548 9.8 1.291 .84 1682 1539 1100.0 42.41 306 322 95 31.2 298011076.8 9.5 9.5 931 917 15.8 25.7 4431 549 9.8 1.291 .85 .82 9.7 8.51D .83 9.7 8.51D 1683 1540 1101.0 40.71 307 324 94 31.3 297011077.9 9.5 9.5 930 916 15.8 25.7 444; 550 9.8 1.29; .86 1684 1542 1102.0 42.31 315 328 93 32.4 297011079.0 9.5 9.5 929 932 15.8 25.7 4461 551 .82 9.7 8.51D 9.9 1.291 .85 .84 9.7 8.51D 1685 1543 1103.0 41.31 315 330 95 33.0 301011079.6 9.5 9.5 932 924 15.8 25.8 4481 552 9.9 1.301 .87 .82 9.7 8.51D 1686 1544 1104.0 43.91 312 343 94 33.1 301011079.6 9.5 9.5 937 917 15.7 25.8 9.9 1.301 .85 4501 553 1687 1546 1105.0 40.5; 312 329 93 33.5 3010:1079.8 9.5 9.5 939 917 15.7 25.8 451; 554 9.9 1.30; .87 .84 9.7 8.51D 1688 1557 1106.0 46.21 286 376 103 30.5 300011084.1 9.4 9.5 937 918 15.6 25.8 4881 555 9.9 1.301 .84 .81 9.7 8.51D1 1689 1559 1107.0 38.21 325 392 111 33.1 300011085.3 9.5 9.5 940 919 15.6 25.8 4901 556 10.0 1.301 .92 .89 9.7 8.51D .91 9.7 8.51D .93 9.7 8.51D 1690 1601 1108.0 34.91 273 309 122 30.7 300011086.5 9.5 9.5 940 920 15.6 25.8 4921 557 10.0 1.311 .95 1691 1602 1109.0 31.61 264 280 123 30.1 299011087.7 9.5 9.5 937 923 15.6 25.8 4931 558 10.0 1.311 .97 1692 1604 1110.0 31.6; 254 272 124 30.9 2990; 1089.1 9.5 9.5 938 941 15.6 25.8 495; 559 10.1 1.32; .98 .94 9.7 8.51D 1693 1606 1111.0 34.0! 255 279 124 31.8 2990 1089.8 9.4 9.5 940 918 15.6 25.8 495 560 10.1 1.32 .97 .93 9.7 8.510 .98 9.7 8.51D 1694 1608 1112.0 26.61 243 265 124 31.2 299011090.2 9.5 9.5 939 942 15.6 25.8 497; 561 10.1 1.33;1.02 .94 9.7 8.51D 938 924 15.7 25.8 4991 562 10.2 1.331 .98 5 1610 1113.0 29.3; 252 274 112 32.4 3000;1091.5 9.5 9.5 939 945 15.7 25.8 5001 563 10.2 1.331 .96 9.7 9.5 9.7 8.51D 1696 1612 1114.0 29.21 244 266 100 32.9 300011093.4 9.5 9.5 .93 9.7 8.51D 937 928 15.7 25.8 5021 564 10.2 1.341 .96 1697 1614 1115.0 29.11 249 277 99 33.5 300011094.9 9.5 9.5 .86 9.6 8.51D 1698 1624 1116.0 40.91 284 350 107 32.8 273011097.6 9.5 9.5 891 896 15.8 25.9 506; 565 10.3 1.34; .90 .91 9.6 8.51D 507: 566 10.3 1.34: .95 1699 1626 1117.0 34.71 293 313 117 31.3 274011098.4 9.5 9.5 891 882 15.8 25.9 507; 567 10.3 1.35; .95 .91 9.6 8.5;D 507; 568 10.4 1.35; .98 .94 9.6 8.5;D 1700 1627 1418.0 34.51 328 366 114 32.1 274011099.1 9.5 9.5 891 870 15.9 25.9 1701 1629 1119.0 34.01 287 320 125 32.7 300011099.6 9.5 9.5 931 919 15.9 25.9 5051 569 10.4 1.3511.01 .97 9.7 8.51D 1702 1631 1120.0 30.11 282 295 127 33.5 302011099.8 9.5 9.5 940 944 15.9 25.9 504: 570 10.4 1.36: .99 .95 9.7 8.5:D 1703 1633 1121.0 33.51 273 296 125 33.6 302011100.5 9.5 9.5 940 943 16.0 25.9 .96 9.7 8.51D 504: 571 10.4 1.36:1.00 1704 1635 1122.0 32.01 269 300 122 34.0 303011101.7 9.5 9.5 939 919 16.0 25.9 504: 572 10.5 1.37:1.05 1.01 9.6 8.5:D 940 919 16.1 25.9 1705 1637 1123.0 25.61 257 293 122 34.1 303011103.3 9.5 9.5 .99 9.6 8.51D 941 920 16.2 25.9 502: 573 10.5 1.37:1.03 1706 1639 1124.0 27.51 247 276 122 33.9 303011104.8 9.4 9.5 502: 574 10.6 1.38: .96 .92 9.6 8.510 1707 1650 1125.0 34.91 299 356 104 36.3 307011108.6 9.5 9.5 933 941 16.4 26.0 .91 9.6 8.51D 1708 1652 1126.0 29.51 270 294 100 30.8 307011109.3 9.5 9.5 944 950 16.4 26.0 5001 575 10.6 1.381 .95 .94 9.6 8.51D 4981 576 10.6 1.381 .97 1709 1654 1127.0 26.61 260 287 102 31.1 308011109.3 9.5 9.5 941 932 16.4 26.0 .95 9.6 8.51D 941 919 16.5 26.0 497; 577 10.7 1.39; .99 1710 1656 1128.0 25.81 269 303 98 33.3 307011110.1 9.4 9.5 495; 578 10.7 1.39; .99 .95 9.6 8.51D 1711 1659 1129.0 26.41 261 288 99 33.7 307011111.5 9.4 9.5 940 931 16.5 26.0 495; 579 10.8 1.39;1.02 .98 9.6 8.5;D 1712 1701 1130.0 24.31 255 276 99 34.3 307011112.8 9.5 9.5 937 928 16.6 26.0 1713 1703 1131.0 26.11 258 283 98 35.6 308011113.9 9.5 9.5 940 919 16.7 26.0 494; 580 10.8 1.40;1.01 .97 9.6 8.5;D 494: 581 10.8 1.40:1.00 .96 9.6 8.5:D 1714 1706 1132.0 27.31 253 279 99 35.9 307011115.0 9.4 9.5 941 920 16.7 26.0 944 923 16.7 26.0 494! 582 10.9 1.40!1.03 .99 9.6 8.5!D 1715 1708 1133.0 25.11 253 291 99 36.5 310011116.1 9.5 9.5 922 903 16.9 26.0 490; 583 10.9 1.41;1.04 1.00 9.6 8.5;Df 1716 1721 1134.1 22.71 245 302 97 35.7 299011119.0 9.4 9.5 1717 1722 1135.0 30.31 304 353 91 29.6 306011119.8 9.5 9.5 936 929 16.9 26.0 4911 584 11.0 1.411 .91 .88 9.6 8.51D 1718 1724 1136.0 32.01 297 332 96 30.0 305011120.9 9.5 9.5 938 917 16.9 26.0 4901 585 11.0 1.411 .91 .88 9.6 8.51D 1719 1726 1137.0 28.51 297 347 95 30.5 306011122.1 9.5 9.5 936 916 16.9 26.0 4901 586 11.0 1.421 .94 .91 9.6 8.51D .89 9.6 8.51D 20 1728 1138.0 31.7: 297 318 96 31.0 3060:1123.0 9.5 9.5 939 918 16.9 26.0 490: 587 11.0 1.42: .92 1721 1730 1139.0 30.51 306 341 93 32.4 306011124.1 9.5 9.5 941 920 17.0 26.0 4891 588 11.1 1.421 .94 .90 9.6 8.51D

					•						i	ata	Kecor	060 97	. LTME	1/10		Nare				
				***		nnu	1100	PUMPIRTRNS PRESIDEPTH	MT 3	4/221	בו חו	J/MTN	TEM	וחו פ	PVT!	-THIS	RIT-	· F511	1) X (.	NIH	ELD	NAMUI
			+-				 71 7	705011125 0			077	919	 17 A	26 1	489!	589	11.1	1.421	 .91	.88	9.6	+ 8.5¦D
722	1732	1140.0	34.01	308	336 735	74	32.1 79 1	305011125.9	7.3	7.5	737 940	91B	17.0	26.1	4881	590	11.1	1.43;	.95	.91	9.6	8.5¦D
723	1/34	1141.0	27.1i	278 278 -	- 523 1-114	70 1= +	oz.i	. 13 775" caci	7 s d n n	7:5	ערו	,10	1/10	1011		2						I S
PUL	JH W1T	N NB#Z	. HIL .	a Nek Uvr	[114 Ai ne	OUL IB F	NCAN	13.375" casi with 3 % 13,	ոց. 7 Y 1	5 jets	at i	141m.										i
. KII	7-L-	Apr 4	12.20	nıc	HLUU	FUL	יידטע	MICH O A 101	_ ^ 1	u je.												į
770	DATE	1142 A	ים פפ	101	259	104	5 19	1900:1141.0	9.5	9.5	772	770	22.7	32.2	5031	.99	0.0	0.001	.75	.77	9.5	8.510
132	2100	1142.0	70 71	711	230	109	7.14	1890 1141.0	9.5	9.5	774	753	22.7	32.2	5031	2.00	. 1	0.001	./l	./4	7.3	0.0:0
		FIT at			272	107	7	30.7														8.5i0
775	7710	1144 0	79 RI	180	223	107	7.02	2220:1144.0	9.5	9.5	852	843	22.7	31.9	4871	2.99	. 1	.00:	.75	.78	9.5	8.5:0
1733 1734	2317	1147.0	11.6!	794	344	105	6.44	2220:1144.0	9.4	9.5				31.9	4911	4.00	.2	.02;	.90	.93	9.5	8.510
:/\Q :777	2327	1145.0	12.31	322	394	113	9.09	227011144.0	9.4	9.5				31.8	4921	4.99	.3	.051	.9 7	1.00		8.510
1737 1770	227	1140.0	7 79!	445	518	112	14.4	2270:1144.0	9.4	9.5	860	838	21.1	31.8	4961	6.00	.4	.091	1.16	1,20	9.6	8.510
./30 :770	2337	1149 0	11.3!	562	598	121	35.9	207011144.0	9.5	9.5				31.7	4991	7.00	.5	.14	1.40	1.44	9.6	8.5;[
1737 1780	2277	1140.0	9.47!	598	617	132	42.8	1960:1144.0	9.5	9.5	796	776	20.8	31.7	503;	7.99	.6	.21	1.55	1.59		8.5
! / TV ! 741	2351	1150 0	7.851	552	618	125	41.1	196011144.3	9.5	9.5	794	780	21.0	31.6	5051	8.98	.8	.28	1.57	1.60		8.51
!		Apr 5																				1
	0018	1151.0	13.3!	554	582	124	32.0	1950:1146.4	9.5	9.5	793	798	21.4	31.4	5151	9.99			1.32			8.51
:712 :743	0010	1152.0	11.4	563	574	134	12.3	187011146.5	9.5	9.5	793	779	21.4	31.4	514	11.0			1.08			8.51
: / 10 ! 744	0025	1153.0	11.8	576	617	140	15.5	186011147.5	9.5	9.5	794	780	21.5	31.4	516	12.0			1.14			8.5
: / 11 ! 745	0020	1154.0	12.4	576	594	137	17.9	1860:1148.3	9.5	9.5	794	774	21.5	31.4	518	13.0			1.17			8.51
:746	0034	1155.0	15.21	578	598	136	19.0	186011149.0	9.5	9.5	794	796	21.6	31.3		14.0			1.14			8.5
: 7 47	0037	1156.0	15.7	581	610	124	18.2	186011149.6	9.5	9.5	794	799	21.6	31.3	520	15.0			11.10			8.51
1749	0041	1157.0	14.9	576	593	115	16.2	1860:1150.1	9.4	9.5	793	795	21.7	31.3		16.0			11.06			8.51
1749	0046	1158.0	12.9	567	593	122	15.3	1870:1150.7	9.3	9.4	794	772	21.7	31.3	523	17.0			11.09			8.51
1750	0053	1159.0	9.19	525	567	119	17.5	1870:1150.7	9.2	9.3	794	780	21.8	31.3	528	18.0			11.19			8.51
1751	0106	1160.0	18.7	444	574	129	8.35	1870:1152.6	9.2	9.3	793	772	21.9	31.3	535	19.0			.90			8.5
1757	0109	1161.0	79.3	568	593	142	5.88	186011153.2	9.2	9.3	791	772	21.9	31.3	535	20.0			.85			8.5
1753	5 0113	1162.0	17.9	581	596	131	8.62	187011153.9	9.2	9.3	793	784	21.9	31.3	538	21.0			1 .92			8.51
1754	0116	1163.0	17.2	592	603	125	10.5	1870:1154.8	9.2	9.3	789	767	21.9	31.3		22.0			.96			8.51
1755	5 0119	1164.	19.2	583	597	132	11.1	187011155.6	9.2	9.3	790	776	21.9	31.3		23.0			1 .96			8.5
175	5 0127	1165.	7.90	1 569	598	137	13.2	1870 1157.5	9.2	9.3	790			31.3		24.0			11.20			8.51
175	7 0139	1166.	5.54	511	570	111	16.4	1620:1159.3	9.2	9.3	731			31.3		25.0			11.30			8.5
175	8 0144	1167.	12.1	591	623	98	18.9	1630:1159.4	9.2	9.3	734			2 31.3					11.14			8.51
175	9 0145	1168.	0 38.2	1 553	606	121	18.1	1630:1160.0	9.2	9.3	735			2 31.3		127.0				.93		8.5
176	0 0147	7 1169.	0 27.9	430	519	132	17.3	1630:1160.6	9.2	9.3				2 31.3		128.0			.99			8.5
176	1 0159	1170.	0 19.3	1 488	530) iii	10.9	7 1730:1162.6	9.2	9.3				3 31.4		129.0		4 .75		.95		8.5
176	2 0202	2 1171.	0 20.0	1 533	575	112	2 14.2	2 1670 1163.6	9.2	9.3				3 31.4		130.0				1.00		8.5
176	3 0207	7 1172.	1 16.0	1 499	536	141	16.3	3 1670:1164.3	9.2	9.3				3 31.4		131.1				1.13		8.5F
176	4 0213	3 1173.	0 12.9	1 491	587	108	3 15.8	5 1710:1164.5	9.2	9.3				3 31.4		132.0				1.11		8.5
176	5 0211	B 1174.	0 11.8	1 528	548	3 117	2 16.5	5 1710:1164.7	9.2	9.3				3 31.4		133.0				1.15		8.5 8.5
176	6 022	3 1175.	0 14.4	1 547	560	98	3 17.8	3 172011164.8	9.7	9.3				4 31.4		134.0				1.10		8.5
176	7 022	5 1176.	0 14.7	1 543	560	100	0 18.9	7 1710:1164.9	9.3	9.3				4 31.4		135.0				1.12		8.5
176	8 023	0 1177.	0 12.1	1 544	557	7 100	0 20.	1 172011165.4	9.3	2 9.3				4 31.4		136.0				1.18		, 8.5 4 8.5
176	9 023	4 1178.	0 14.2	1 543	553	3 103	2 20.	1 172011166.3	5 9.3	2 9.3				4 31.5		137.0				1.15		, o.j 4 8.5
177	0 025	0 1179.	0 12.8	11 534	571	1 10	7 11.	5 1720:1170.0	9.	2 9.3				6 31.5		138.0			7:1.02 3: .87	1.03		, e.j 3 8.5
17.7	1 025	3 1180.	0 16.8	11 568	3 576	6 104	4 7.0	6 1720:1172.2	2 9.3	2 9.3				6 31.5		139.0				.89		3 8.5
177	2 025	7 1181.	0 18.3	SI 570	57	7 10	3 8.4	6 1730:1172.0	5 7.	Z 9.3				6 31.5		140.0				.93		s 6.5 4 8.5
177	3 030	0 1182.	0 16.3	51 566	5 57	6 10	7 8.9	3 1720:1173.; 	5 9.	2 9.3	/53) /4	4 22.	6 31.5	534	1141.0						

.....+

______ # TIME DEPTH ROP: TORQUE RPM WOB PUMP!RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: ; m m/hr! AVG MAX AVG AVG PRES!DEPTH IN OUT IN OUT IN OUT I m 'hr TW! 1774 0304 1183.0 14.91 552 571 114 9.20 171011174.2 9.2 9.3 754 733 22.6 31.5 537142.0 3.3 .911 .95 .97 9.4 8.51D 1775 0308 1184.0 16.91 557 575 111 11.3 172011175.0 9.2 9.3 753 731 22.6 31.5 539143.0 3.3 .921 .97 .98 9.4 8.51D 1776 0312 1185.0 15.91 552 574 116 13.1 172011175.9 9.2 9.3 755 736 22.6 31.5 542144.0 3.4 .9311.02 1.03 9.4 8.51D 1777 0315 1186.0 17.41 556 568 113 14.6 172011176.5 9.2 9.3 753 733 22.6 31.5 542145.0 3.4 .9311.02 1.03 9.4 8.51D 1778 0321 1187.0 10.31 500 577 116 14.4 173011177.8 9.2 9.3 754 734 22.6 31.5 546146.0 3.5 .9411.13 1.15 9.4 8.51D 1779 0333 1188.0 8.001 386 454 105 14.7 169011178.4 9.2 9.3 736 724 22.7 31.6 550147.0 3.5 .9511.17 1.19 9.4 8.51Dt 1780 0333 1189.0 10.31 124 175 80 8.36 168011178.4 9.2 9.3 739 730 22.7 31.6 551148.0 3.5 .9511.28 1.29 9.4 8.51D 1781 0342 1190.0 11.01 497 569 120 15.8 170011180.8 9.2 9.3 748 728 22.8 31.6 536149.0 3.7 .9711.15 1.17 9.4 8.51D 1782 0348 1191.0 9.78; 547 589 127 20.8 1700:1182.5 9.2 9.3 746 731 22.8 31.6 491:50.0 3.8 .99:1.28 1.29 9.3 8.5:D 1783 0356 1192.0 7.321 517 530 116 22.1 170011184.6 9.2 9.3 745 747 22.9 31.6 495151.0 3.9 1.0111.35 1.36 9.3 8.51D 1784 0403 1193.0 8.401 513 527 117 21.8 169011186.6 9.2 9.3 746 726 23.0 31.6 499152.0 4.0 1.0211.31 1.32 9.3 8.51D 1785 0411 1194.0 7.711 512 526 119 20.9 169011187.4 9.2 9.3 747 750 23.1 31.7 505153.0 4.1 1.0411.32 1.33 9.3 8.51D 1786 0420 1195.0 6.421 521 533 115 21.5 169011189.5 9.2 9.3 746 750 23.3 31.7 510154.0 4.3 1.0711.37 1.38 9.3 8.51D 1787 0430 1196.0 5.871 491 532 117 21.8 170011191.2 9.2 9.3 747 734 23.3 31.7 515155.0 4.5 1.0911.40 1.41 9.3 8.51D 1788 0441 1197.0 5.74: 476 539 109 21.3 1690:1192.5 9.2 9.3 746 725 23.4 31.7 520:156.0 4.6 1.10:1.38 1.39 9.3 8.5:D 1789 0451 1198.0 6.07: 516 533 121 21.2 1710:1193.7 9.2 9.3 746 725 23.5 31.8 525:57.0 4.8 1.11:1.39 1.40 9.3 8.5:D 1790 0507 1199.0 18.5; 525 583 97 9.43 1650;1195.1 9.2 9.3 736 741 23.6 31.8 532;58.0 4.9 1.12; .89 .90 9.3 8.5;D† 1791 0509 1200.0 26.31 537 578 137 9.04 165011195.3 9.2 9.3 736 715 23.6 31.8 531159.0 4.9 1.121 .88 .88 9.3 8.51D 1792 0511 1201.0 29.91 516 574 150 9.81 165011195.6 9.2 9.3 735 721 23.6 31.8 530160.0 5.0 1.131 .89 .89 9.3 8.51D -76 0518 1205.0 34.4; 506 565 104 13.7 1660;1196.2 9.2 9.3 734 739 23.7 31.9 530;64.0 5.1 1.13; .85 .86 9.3 8.5;D 1797 0520 1206.0 38.8! 478 539 119 14.2 1660:1196.3 9.2 9.3 735 720 23.7 31.9 528:65.0 5.1 1.13! .86 .86 9.4 8.5!D 1798 0521 1207.0 40.11 516 561 102 15.3 165011196.5 9.2 9.3 734 737 23.8 31.9 529166.0 5.1 1.131 .83 .84 9.4 8.51D 1779 0534 1208.0 33.51 385 452 150 3.62 169011197.1 9.2 9.3 742 721 23.9 31.9 539167.0 5.2 1.141 .71 .71 9.4 8.51D 1800 0537 1209.0 22.31 391 485 126 4.39 169011197.4 9.2 9.3 741 743 23.9 31.9 543168.0 5.2 1.141 .77 .78 9.4 8.51D 1801 0543 1210.0 8.801 411 546 121 6.74 169011198.1 9.2 9.3 744 723 23.8 31.9 555169.0 5.3 1.1511.00 1.00 9.4 8.51D 1802 0547 1211.0 14.8; 543 548 114 10.4 1690:1198.1 9.2 9.3 742 720 23.8 31.9 561:70.0 5.4 1.15; .96 .99 9.4 8.5;D 1803 0552 1212.0 14.8 542 548 115 12.1 1680 1198.6 9.2 9.3 742 723 23.8 31.9 568 171.0 5.5 1.16 11.01 1.02 9.4 8.5 ID 1804 0556 1213.0 14.2 539 549 119 13.1 1680 1199.4 9.2 9.3 742 734 23.8 32.0 573 172.0 5.6 1.16 11.05 1.05 9.4 8.5 ID 1805 0605 1214.0 6.811 524 543 132 15.4 167011204.2 9.2 9.3 742 722 23.8 32.0 588173.0 5.7 1.1711.27 1.27 9.4 8.51D 1 + POOH with NB#3 at 1214m. 1 RIH with NB#4, 12.25" HTC ATJ1 with 3 X 16 jets at 1214m. 1811 1418 1215.0 20.81 313 357 102 17.6 262011214.0 9.2 9.3 788 767 20.7 29.4 5431 .98 .0 .0111.01 1.05 9.3 8.51D .1 .02:1.06 1.10 9.3 8.5:D 1812 1421 1216.0 20.71 292 314 114 19.0 264011214.0 9.2 9.3 793 796 20.2 30.1 54212.00 1813 1433 1217.0 12.9; 258 305 119 19.0 2580; 1214.0 9.2 9.3 769 765 18.3 30.0 540; 3.00 .1 .03; 1.18 1.21 9.3 8.5; D† 1814 1437 1218.0 17.31 273 307 122 14.0 260011214.0 9.2 9.3 783 762 18.0 29.9 53714.00 .2 .0411.03 1.07 9.3 8.510 1815 1440 1219.1 21.91 298 321 120 17.2 260011214.0 9.2 9.3 785 788 17.8 29.9 54014.98 .2 .0611.03 1.06 9.3 8.51D 1816 1442 1220.0 21.7; 319 342 117 19.9 2620;1214.0 9.2 9.3 786 772 17.7 29.9 536;6.00 .3 .07;1.06 1.10 9.3 8.5;D 1817 1445 1221.0 19.1; 288 313 122 19.9 2620;1214.0 9.2 9.3 786 791 17.6 29.8 533;7.00 .3 .08;1.10 1.14 9.3 8.5;D 1818 1448 1222.0 20.11 283 307 122 20.9 262011214.0 9.1 9.2 787 772 17.7 29.8 50918.00 .4 .1011.10 1.14 9.3 8.51D 1819 1452 1223.0 16.41 253 287 123 24.5 263011214.0 9.1 9.2 786 778 17.9 29.8 50818.99 .4 .1211.20 1.24 9.3 8.51D 1820 1502 1224.0 10.61 187 247 123 21.0 262011215.0 9.1 9.2 787 779 18.5 29.7 512110.0 .5 .1411.26 1.29 9.3 8.51D 1820 1302 1224.0 10.81 107 247 123 21.0 202011213.0 711 7.2 707 777 1010 2777 515111.0 .6 .1611.10 1.14 9.3 8.51D↑
1821 1508 1225.0 16.91 243 300 107 19.9 262011217.0 9.1 9.2 788 774 18.9 29.7 515111.0 .6 .1611.10 1.14 9.3 8.51D↑
1822 1512 1226.0 15.01 255 297 107 22.7 262011217.0 9.1 9.2 789 794 19.1 29.7 515112.0 .6 .1711.17 1.21 9.3 8.51D↑
1823 1520 1227.0 20.71 284 311 115 23.0 271011217.9 9.1 9.2 796 780 19.3 29.6 515113.0 .7 .1811.11 1.15 9.3 8.51D↑ 24 1524 1228.0 15.31 269 308 120 22.1 264011219.3 9.1 9.2 793 796 19.5 29.6 517114.0 .7 .2011.19 1.22 9.3 8.510

								+			1	vata	Kecor	0e0 at	1186	13:2	! 	+		/V 		+
+ F# 	TIME	DEPTH	ROP: m/hr:	TOD	UHE :	DDM	ผกช	PUMPIRTRNS PRESIDEPTH	MD 1	lh/gal	FLO	W/MIN	TEM	P (C)	PVT:	-THIS	BIT-	EST!	DXC	NXB	ECD	NXMD:
}			+							~ ~ ~	707				1			71!	1 1 1 1	1.18	9.7	8.510
1825	1527	1229.0	18.41	274	299	119	22.1	294011220.5	4.1	9.2	142	112	17.0	29.6	210	111.7	.0	. 411	1:17	1.16	,	U10:2
1826	1530	1230.0	17.4	262	291	117	20.5	297011221.5	7.1					29.6					1.14		9.2	8.510
1827	1534	1231.0	17.71	245	274	118	21.2	296011222.6	7.1	9.2				29.6		18.0			1.19			8.51D
828	1538	1232.0	13.21	214	241	120	17.7	296011223.3	7:1	7:4				29.6		119.0			1.19			8.51D
1829	1543	1233.0	13.81	210	20/	110	20.0	297011223.8	7:1	9.7				29.6		20.0			1.20			8.51D
1830	154/	1254.0	14.41	217	247	110	20 6	2970:1224.1 2970:1225.1	9 1	9.2				29.6		121.0			1.20			8.5ID
1831	1001	1230.0	10.11	207	234	110	20.0	297011226.2	9.1	9.7				29.6		122.0			1.18		9.3	8.51D
1832	1000	1230.0	14.01	213	700 700	117	14 A	2950:1228.0	9.1	9.2				29.6		123.0			1.09		9.3	8.51D
1833	100/	129/10	10.01	230	200	171	19.1	295011229.0	9.1	9.2				29.6		124.0			1.13		9.3	8.51D
1075	1010	1230.0	16.71	271	294	122	20.2	297011230.1	9.1	9.2				29.6		125.0	1.5	.37	1.16	1.18		8.510
1034	1410	1237.0	17 1!	237	282	122	21.0	296011231.4	9.1	9.2				29.6		126.0	1.5	.39	11.23	1.26		8.51D
1030	1017	1240.0	12.11	217	744	122	19.7	295011232.5	9.1	9.2				29.6		127.0	1.6	.40	11.21	1.24		8.51D
1031	1470	1241.0	14.81	236	266	122	21.8	296011233.4	9.1	9.2				29.6		128.0			11.17			8.5HD
1030	1620	1242.0	14.7	225	251	122	22.8	295011234.3	9.1	9.2				29.6		129.0	1.8	.43	11.21	1.24		8.5:0
100	1652	1244.0	14.9	217	243	122	20.6	2960:1235.3	9.1	9.2	793	796	20.1	29.6	536	130.0			11.18			8.51D
194	1440	1245.0	13.8	207	233	122	21.0	296011236.2	9.1	9.2	792	795	20.1	29.6	536	131.0			11.20			8.5¦D
184	1653	1746.0	15.4	221	333	122	20.5	290011237.7	9.1	9.2	781	760	20.2	29.7	537	132.0			11.17			8.51D1
184	1455	1247.0	21.9	284	356	149	20.1	288011238.4	9.1	9.2	781	765	20.2	29.7	536	133.0			11.13			8.510
184	1 1659	1248.0	17.2	250	275	151	20.3	2880:1239.3	9.1	9.2	781	766	20.2	29.7		134.0			11.19			8.51D
184	5 1702	1249.0	20.7	241	267	128	20.6	2890:1239.9	9.1	9.2				29.7		2:35.0			11.11			8.510
184	5 1704	1250.0	24.2	238	270	125	20.9	2880:1240.3	9.1	9.2				29.7		136.0			11.07			8.5¦D
184	7 1708	1251.0	16.1	228	264	120	21.5	2890:1241.0	9.	9.2	780			29.7		2:37.0			11.17			8.51D
184	B 1711	1252.0	20.2	242	269	121	22.0	2880:1241.8	9.	1 9.2	779			3 29.7		3138.0			11.12			8.51D
:84	7 1714	1253.0	17.5	226	253	121	20.5	289011242.7	9.	1 9.2	782			29.7		5:39.0			11.14			8.510
185	0 1717	1254.0	17.3	226	256	119	21.6	289011243.6	9.	1 9.2				29.7		5140.0			111.15			8.510
185	1 1721	1255.0	19.1	237	265	124	23.1	289011244.3	9.	1 9.2	782			29.7		3141.0			11.16			8.51D
185	2 1738	1256.	18.7	256	378	117	18.1	294011246.3	9.	1 9.2	784			1 29.8		6142.0			11.08			8.5¦D
185	3 1741	1257.	25.1	1 294	321	. 118	13.8	293011247.2	9.	1 9.2	787			1 29.8		8:43.0			1 .95			8.510
185	4 1743	1258.	0 26.2	285	314	123	3 15.3	293011247.7	9.	1 9.2				4 29.8		6144.0			.97			8.51D 8.51D
185	5 1748	1259.	0 17.6	: 268	295	127	2 16.1	212011248.6	9.	1 9.2				4 29.8		1145.0						8.51D
185	6 1749	1260.	0 21.9	264	316	123	3 17.3	3 2960:1249.6	9.	1 9.2	787	768	3 20.	4 29.8	54	6146.0				1.06		8.51D
185	7 1752	1261.	0 22.2	236	273	120	5 16.9	2960:1250.6	9.	1 9.2	792	778	3 20.4	4 29.8	54	814/.0	2.7	/ .b ¹	111,04	1.00		8.51D
185	8 1755	1262.	0 18.5	1 222	253	12:	2 17.7	296011251.5	9.	1 9.2				4 29.8		8:48.0	2.7			1.10		8.51D
185	9 1758	3 1263.	0 20.7	1 234	257	1 123	5 19.1	296011252.4	9.	1 9.2				4 29.8		8149.0	2.6			1.10		6.51D
188	0 1801	1264.	0 16.4	1 215	245	12:	2 18.0	2950:1253.6	9.	1 9.2				4 29.8		0150.0	2.9			1.08		8.51D
188	1 1803	5 1265.	0 18.2	1 223	5 278	12	8 15.7	7 297011254.6	9.	1 9.2				4 29.8		8151.0	2.5					8.5ID
188	2 181	6 1266.	0 26.4	1 287	7 335	5 14	7 14.5	5 2080:1256.0	9.	1 9.2				3 29.8		0152.0 0153.0	3.1			1.01		8.51D
186	3 181	9 1267.	0 18.5	251	286	5 12	7 15.3	2 293011256.0	9.	1 7.2				3 29.8		8154.0	3.			1.06		8.5¦D
188	4 182	2 1268.	0 21.7	1 249	27	3 12	2 17.	293011256.0	٧.	1 7.2				2 29.8		8155.0				1.05		8.5¦0
18	5 182	4 1269.	0 24.8	11 258	3 291	1 12	4 18.	5 2940:1256.0	٧.	1 7.2				2 29.8		0156.0				1.08		3 8.51D
18	6 182	7 1270.	0 22.6	1 26	302	2 12	0 19.3	5 293011257.0	, y.	.1 7.2				2 29.8 2 29.8		11157.0				1.08		3 8.5¦D
:8	7 182	9 1271.	0 22.4	11 23	5 26	3 11	8 17.	6 293011258.2	. y.	1 7.2						1158.0				1.09		3 8.510
:8	8 183	2 1272.	0 21.5	1 23	B 27'	4 12	Z 19.	3 294011259.2	. y.	.1 7.2				1 29.8 1 29.8		12:59.0				1.09		3 8.510
18	59 183	5 1273.	0 21.1	1 23	B 26	9 11	/ Z0.	0 2930:1260.3) Y.	1 7.4				1 27.0		3160.0				1.05		3 8.510
18	/0 183	/ 1274.	0 26.3	Si 241	B 2/	7 12	V 17.	9 293011261.2	. 7. . n	1 7.2				9 29.8		51:61.0				1.00		3 8.51
. !8	71 184	8 1275.	0 29.	/1 25	y 31	8 13	is 1/.	1 288011263.3) 7: 1 ^	1 7.4				9 29.8		52162.0						3 8.511
18	72 184	9 1276	0 42.	/1 31	y 33	6 15	io 15.	7 2880:1263.8	3 7	.1 7.4	. 11	1 10	£ 17:			4	٠٠					

F# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: m m/hr! AVG 'MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW: 551163.0 3.4 .781 .94 .95 1873 1851 1277.0 37.51 313 328 144 15.9 288011264.2 9.1 9.2 779 765 19.9 29.7 1874 1852 1278.0 44.71 342 414 120 19.0 289011264.5 9.1 9.2 780 766 19.9 29.8 551164.0 3.4 .781 .89 .91 9.3 8.51D 1875 1854 1279.0 28.91 336 417 117 26.2 289011265.1 9.1 9.2 779 765 19.9 29.8 553165.0 3.5 .7911.07 1.09 9.3 8.510 1876 1857 1280.0 20.61 258 293 126 21.3 288011265.4 9.1 9.2 779 765 19.9 29.8 553166.0 3.5 .8011.11 1.13 9.3 8.51D 1877 1901 1281.0 17.0: 242 276 127 19.8 2890:1265.7 9.1 9.2 778 765 19.9 29.8 552:67.0 3.6 .81:1.14 1.16 9.3 8.5:D 775 762 19.9 29.8 553168.0 3.6 .8311.23 1.25 9.3 8.51D 1878 1905 1282.0 13.41 226 296 128 22.0 288011267.4 9.1 9.2 1879 1908 1283.0 22.21 273 301 129 24.3 288011268.4 9.1 9.2 776 781 19.9 29.8 553169.0 3.7 .8311.14 1.16 9.3 8.510 1880 1911 1284.0 16.21 246 270 127 24.8 288011269.8 9.1 9.2 778 756 19.9 29.8 554170.0 3.7 .8511.22 1.24 9.3 8.51D 1881 1924 1285.0 23.91 247 298 139 20.0 288011273.2 9.1 9.2 775 762 19.9 29.7 551171.0 3.8 .8611.09 1.10 9.3 8.510 1882 1926 1286.0 31.81 323 345 112 20.8 288011274.0 9.1 9.2 775 755 19.9 29.7 553172.0 3.8 .861 .98 1.00 9.3 8.51D 1883 1928 1287.0 33.81 320 345 111 21.8 290011274.7 9.1 9.2 776 767 19.9 29.7 553173.0 3.8 .871 .98 .99 9.3 8.51D 1884 1930 1288.0 32.91 319 333 111 22.2 290011275.0 9.1 9.2 778 757 19.9 29.8 548174.0 3.9 .871 .99 1.00 9.3 8.51D 1885 1931 1289.0 37.01 318 333 114 23.6 289011275.0 9.1 9.2 776 756 19.9 29.7 546175.0 3.9 .881 .98 1.00 9.3 8.510 1886 1933 1290.0 27.31 300 320 114 24.0 289011275.2 9.1 9.2 774 753 19.9 29.8 547176.0 3.9 .8811.06 1.07 9.3 8.51D 1887 1935 1291.0 31.6: 295 308 116 24.8 2890:1276.5 9.1 9.2 776 756 19.9 29.8 548:77.0 4.0 .89:1.03 1.05 9.3 8.51D 548178.0 4.0 .8911.05 1.07 9.3 8.5ID 1888 1937 1292.0 30.41 279 299 119 24.7 289011277.7 9.1 9.2 776 767 19.9 29.8 1889 1940 1293.0 24.21 260 284 120 24.5 290011279.2 9.1 9.2 777 781 19.9 29.8 547179.0 4.0 .9011.11 1.12 9.3 8.51D 1890 1943 1294.0 19.31 241 268 122 25.0 290011280.2 9.1 9.2 777 769 19.9 29.8 548180.0 4.1 .9111.17 1.19 9.3 8.51D 1891 1958 1295.0 29.7; 294 356 124 21.0 2890;1283.1 9.1 9.2 775 753 19.8 29.8 549;81.0 4.1 .92;1.02 1.04 9.3 8.51D 1892 2000 1296.0 29.41 333 373 105 21.2 289011283.7 9.1 9.2 775 761 19.8 29.8 550182.0 4.2 .921 .99 1.01 9.3 8.51D 1893 2002 1297.0 29.61 337 354 116 22.3 288011284.2 9.1 9.2 776 754 19.8 29.8 549183.0 4.2 .9311.02 1.04 9.3 8.51D 2004 1298.0 23.11 327 343 118 23.4 2880|1284.7 9.1 9.2 773 753 19.8 29.8 550|84.0 4.3 .94|1.10 1.11 9.3 8.5|D 1895 2009 1299.0 17.1: 285 355 134 23.7 2880:1284.7 9.1 9.2 775 766 19.8 29.8 551:85.0 4.3 .95:1.21 1.22 9.3 8.5:D 1896 2013 1300.0 16.41 334 448 140 22.5 288011286.0 9.1 9.2 776 756 19.8 29.8 553186.0 4.4 .9611.21 1.22 9.3 8.51D 1897 2016 1301.0 19.41 282 309 139 22.8 288011287.6 9.1 9.2 775 753 19.8 29.8 550187.0 4.4 .9811.17 1.18 9.3 8.51D 1898 2019 1302.0 18.4! 280 304 125 24.5 2880;1289.4 9.1 9.2 774 780 19.8 29.7 552;88.0 4.5 .99;1.19 1.20 9.3 8.51D 1899 2022 1303.0 17.7: 267 289 130 25.2 289011291.1 9.1 9.2 775 761 19.7 29.7 552189.0 4.5 1.0011.21 1.22 9.3 8.5ID 1900 2045 1304.0 20.41 288 320 134 23.5 290011295.8 9.1 9.2 777 757 19.7 29.7 553190.0 4.6 1.0111.17 1.18 9.2 8.51D 1901 2047 1305.0 23.21 323 339 149 19.7 292011297.0 9.1 9.2 776 767 19.7 29.7 554191.0 4.6 1.0211.11 1.12 9.2 8.51D 1902 2050 1306.0 25.41 325 335 149 21.3 292011298.0 9.1 9.2 780 784 19.7 29.7 554192.0 4.7 1.0311.11 1.12 9.2 8.51D 1903 2054 1307.0 14.01 328 513 129 20.3 291011299.0 9.1 9.2 778 783 19.8 29.7 504193.0 4.8 1.0411.20 1.21 9.2 8.5ID 1904 2057 1308.0 20.1; 284 311 130 21.3 2900;1299.9 9.1 9.2 778 757 19.8 29.7 507;93.9 4.8 1.05;1.13 1.14 9.2 8.51D 1905 2100 1309.0 19.21 297 322 129 23.6 291011300.7 9.1 9.2 776 761 19.9 29.7 508195.0 4.9 1.0611.17 1.18 9.2 8.51D 1906 2103 1310.0 16.91 267 308 132 24.3 290011301.7 9.1 9.2 776 756 19.9 29.7 508196.0 4.9 1.0711.22 1.23 9.2 8.51D 1907 2106 1311.0 21.6: 269 293 132 25.7 2910:1302.5 9.1 9.2 777 756 19.9 29.7 509:97.0 5.0 1.08:1.18 1.19 9.2 8.51D 1908 2109 1312.0 19.81 245 300 124 23.8 290011303.4 9.1 9.2 775 755 20.0 29.7 9.2 8.51D 508198.0 5.0 1.0911.16 1.17 9.3 8.5iD 1909 2113 1313.0 17.6: 213 240 112 19.7 292011304.1 9.1 9.2 777 764 20.0 29.7 5.1 1.09;1.11 1.12 510199.0 1910 2125 1314.0 18.9; 251 298 129 17.7 2950:1304.1 9.1 9.2 779 759 20.0 29.7 511; 100 5.1 1.11; 1.09 1.10 9.3 8.51D 1911 2127 1315.0 36.2; 332 361 123 21.3 2950;1304.1 9.1 9.2 781 783 20.0 29.7 510; 101 5.1 1.111 .98 .99 9.3 8.51D 1912 2129 1316.0 33.71 331 344 104 22.5 294011304.1 9.1 9.2 781 759 20.1 29.7 5111 102 5.2 1.111 .97 .98 9.3 8.51D 1913 2130 1317.0 35.1; 300 329 108-21.7 2930;1304.1 9.1 9.2 780 771 20.1 29.7 511; 103 5.2 1.12; .96 .97 9.3 8.5;0 1914 2132 1318.0 35.91 318 347 106 23.5 294011304.3 9.1 9.2 781 786 20.1 29.7 5121 104 5.2 1.121 .97 .98 9.3 8.51D 1915 2134 1319.0 29.51 328 347 108 25.0 295011305.1 9.1 9.2 779 765 20.0 29.7 5101 105 5.3 1.1211.04 1.05 9.3 8.51D 1916 2137 1320.0 19.91 310 379 121 24.6 293011306.3 9.1 9.2 779 758 20.0 29.7 5131 106 5.3 1.1311.16 1.17 9.3 8.51D 1917 2141 1321.0 16.41 282 307 129 24.7 292011307.2 9.1 9.2 781 772 20.0 29.7 5141 107 5.4 1.14:1.22 1.23 9.3 8.5:D 1918 2144 1322.0 15.5; 279 308 124 25.1 2930;1308.5 9.1 9.2 780 759 20.0 29.7 515; 108 5.4 1.15;1.23 1.24 9.3 8.5;D 9 2149 1323.0 14.4: 263 289 125 25.5 2950:1309.7 9.1 9.2 780 767 19.9 29.7 515: 109 5.5 1.17:1.26 1.26 9.3 8.5:D 7720 2200 1324.0 20.1; 281 330 137 18.4 2930;1312.3 9.1 9.2 776 755 19.9 29.7 516; 110 5.6 1.18;1.10 1.11 9.3 8.5;D

______ ! F# TIME DEPTH ROP! TORQUE RPM WOB PUMP!RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW! +-----+ 1921 2203 1325.0 17.81 295 314 138 20.7 292011313.2 9.1 9.2 777 781 19.8 29.7 5141 111 5.6 1.19:1.16 1.17 9.3 8.5:D 1922 2206 1326.0 18.51 299 323 137 22.6 292011313.8 9.1 9.2 778 763 19.8 29.7 5151 112 5.7 1.2011.18 1.18 9.3 8.51D 1923 2209 1327.0 19.21 280 301 141 22.9 292011313.8 9.1 9.2 777 781 19.8 29.7 5161 113 5.7 1.2111.18 1.18 9.3 8.51D 1925 2216 1329.0 20.41 288 305 114 23.9 293011316.8 9.1 9.2 776 763 19.7 29.6 5171 115 5.8 1.2211.13 1.14 9.3 8.5ID 1926 2219 1330.0 16.2! 265 292 114 27.2 2930:1318.9 9.1 9.2 777 782 19.7 29.6 520: 116 5.9 1.23:1.23 1.24 9.3 8.51D 776 756 19.6 29.6 5171 117 5.9 1.2411.20 1.21 9.3 8.5ID 1927 2223 1331.0 18.41 250 270 117 26.9 292011320.0 9.1 9.2 778 758 19.6 29.6 5181 118 6.0 1.2511.23 1.24 9.3 8.510 1928 2226 1332.0 16.11 260 284 116 26.8 294011321.2 9.1 9.2 782 761 19.6 29.6 5181 119 6.1 1.2711.21 1.21 9.3 8.51D 1929 2240 1333.0 15.21 253 300 123 23.0 299011323.5 9.1 9.2 784 775 19.6 29.6 5181 120 6.2 1.2811.22 1.22 9.3 8.510 1930 2244 1334.0 13.41 250 275 138 20.0 298011323.8 9.1 9.2 9.3 8.5ID 1931 2247 1335.0 21.41 300 336 131 24.5 298011324.5 9.1 9.2 783 762 19.6 29.6 5191 121 6.2 1.2911.16 1.16 784 763 19.6 29.6 5201 122 6.3 1.3011.23 1.23 9.3 8.5ID 1932 2250 1336.0 17.81 288 314 133 25.7 299011325.5 9.1 9.2 9.3 8.510 6.4 1.3111.28 1.28 783 768 19.7 29.7 5191 123 1933 2255 1337.0 14.81 271 301 127 26.9 300011326.8 9.1 9.2 784 764 19.7 29.7 5211 124 6.4 1.3211.25 1.25 9.3 8.5ID 1934 2258 1338.0 15.31 265 293 112 27.9 2990:1327.8 9.1 9.2 786 766 19.7 29.7 5191 125 6.5 1.3311.28 1.28 9.3 8.51D 1935 2303 1339.0 13.21 250 284 115 26.8 299011329.3 9.1 9.2 783 762 19.7 29.7 5211 126 6.6 1.34:1.30 1.31 9.3 8.51D 1936 2307 1340.0 12.51 253 276 114 27.8 300011330.5 9.1 9.2 6.6 1.35|1.19 1.20 9.3 8.5|D 786 772 19.7 29.7 5251 127 1937 2313 1341.0 15.71 265 335 123 22.4 302011332.0 9.1 9.2 9.3 8.51D 785 763 19.7 29.7 5231 128 6.7 1.36:1.21 1.21 1938 2317 1342.0 15.01 290 322 114 23.8 300011332.9 9.1 9.2 9.2 8.5ID 1939 2331 1343.0 16.41 281 333 124 18.6 291011334.7 9.1 9.2 772 752 19.8 29.8 5251 129 6.8 1.3711.13 1.13 1940 2334 1344.0 17.31 324 360 113 22.5 291011335.8 9.1 9.2 773 759 19.9 29.5 5261 130 6.8 1.3711.15 1.16 9.2 8.51D 1941 2338 1345.0 15.21 271 296 123 22.9 314011336.9 9.1 9.2 803 794 19.9 29.6 5281 131 6.9 1.3811.21 1.21 9.2 8.51D 1942 2343 1346.0 13.51 260 311 120 24.2 298011338.1 9.1 9.2 778 782 19.9 29.6 5251 132 9.2 8.51D 7.0 1.4011.25 1.25 1943 2350 1347.0 11.61 249 334 99 28.9 276011339.8 9.1 9.2 782 769 19.9 29.5 5271 133 7.1 1.4011.30 1.31 9.2 8.51Df 9.2 8.510 782 761 19.9 29.5 529! 134 7.1 1.42!1.39 1.39 1944 2356 1348.0 10.31 233 288 107 31.4 275011340.9 9.1 9.2 į 1 Date Apr 6 '90 1945 0001 1349.0 12.81 240 263 111 31.2 276011341.9 9.1 9.2 783 768 19.9 29.5 5281 135 7.2 1.4311.34 1.34 9.2 8.51D 782 769 20.0 29.5 5281 136 7.3 1.4411.36 1.37 9.2 8.51D 1946 0005 1350.0 12701 248 271 112 31.8 275011342.8 9.1 9.2 9.2 8.51D 783 761 20.0 29.5 530! 137 7.4 1.45!1.35 1.36 1947 0011 1351.0 11.41 239 292 114 29.7 275011342.9 9.1 9.2 782 773 20.2 29.5 5321 138 7.5 1.4711.31 1.32 9.2 8.51D 1948 0032 1352.0 10.81 228 326 118 24.9 281011346.1 9.1 9.2 7.5 1.48:1.30 1.30 9.2 8.5:D 788 773 20.2 29.5 5321 139 1949 0036 1353.0 16.81 301 329 142 29.0 279011346.8 9.1 9.2 9.2 8.51D 780 766 20.2 29.5 5331 140 7.6 1.49:1.37 1.36 1950 0040 1354.0 14.0: 278 296 149 29.3 2740:1347.5 9.1 9.2 779 757 20.2 29.5 5351 141 7.7 1.5111.39 1.38 9.2 8.510 1951 0045 1355.0 12.61 253 277 149 28.7 2740:1348.2 9.1 9.2 780 767 20.2 29.5 535; 142 7.8 1.52;1.34 1.33 9.2 8.5;D 1952 0049 1356.0 12.81 243 270 121 29.2 274011349.1 9.1 9.2 780 784 20.2 29.5 5351 143 7.9 1.5411.33 1.33 9.2 8.510 1953 0055 1357.0 11.51 235 259 124 26.5 275011350.2 9.1 9.2 1954 0100 1358.0 10.81 232 267 121 25.3 2740:1351.2 9.1 9.2 779 765 20.1 29.5 534: 144 7.9 1.5511.33 1.32 9.2 8.51D 1955 0105 1359.0 10.11 222 247 123 25.9 274011352.2 9.1 9.2 780 766 20.1 29.5 5361 145 8.0 1.5611.35 1.35 9.2 8.510 1956 0111 1360.0 16.71 293 387 103 23.1 274011352.4 9.1 9.2 781 773 20.1 29.5 5371 146 8.1 1.57(1.15 1.15 9.2 8.5(D 1957 0115 1361.0 14.21 304 336 116 26.2 275011352.5 9.1 9.2 783 767 20.1 29.5 5391 147 8.2 1.5811.26 1.25 9.2 8.51D 1958 0127 1362.0 17.71 308 348 126 25.5 284011354.3 9.1 9.2 790 773 20.1 29.5 5371 148 8.2 1.5911.21 1.21 9.2 8.51D 1959 0131 1363.0 15.21 317 335 140 25.6 284011355.2 9.1 9.2 793 795 20.1 29.4 5381 149 8.3 1.6011.28 1.27 9.2 8.51D 1960 0135 1364.0 14.31 286 305 147 26.1 284011356.1 9.2 9.2 794 773 20.1 29.4 5401 150 8.4 1.6111.31 1.30 9.2 8.51D 1961 0139 1365.0 16.31 294 318 149 27.9 2840 1356.9 9.2 9.2 794 774 20.1 29.4 5381 151 8.4 1.6311.31 1.30 9.3 8.510 1962 0143 1366.0 16.21 299 319 129 29.3 284011357.6 9.2 9.2 794 784 20.1 29.4 5391 152 8.5 1.6411.29 1.28 9.3 8.51D 1963 0147 1367.0 13.91 287 310 139 28.7 281011358.4 9.2 9.2 792 771 20.2 29.4 5391 153 8.6 1.6511.34 1.33 9.3 8.510 1964 0151 1368.0 13.41 270 286 148 29.1 282011359.2 9.2 9.2 790 776 20.2 29.4 5401 154 8.6 1.6711.37 1.36 9.3 8.510 1965_0155 1369.0 14.21 272 296 147 29.6 283011359.8 9.2 9.2 791 778 20.2 29.4 5401 155 8.7 1.6811.35 1.34 9.3 8.51D 1966 0201 1370.0 10.01 234 291 154 24.2 281011361.2 9.2 9.2 791 778 20.3 29.4 5391 156 8.8 1.7011.38 1.36 9.3 8.51D 1 3 0216 1371.0 12.51 248 320 154 22.1 273011362.8 9.2 9.2 774 780 20.4 29.4 5451 157 8.9 1.7211.29 1.27 9.3 8.51D <u></u>

									+			* .	Durq	תפנטו	uen ar		VZ:1	; 	Dare		, ,v 		
	<u>,</u> -		nentii	 : ann				สกม	PUMP RTRNS	אח ז	h/a21	FI O	W/MTN	I TF	(C)	PVT!	-THIS	RIT-	FST!	DXC.	NXB	ECD	NXMD:
1	Ħ	IIME	DEPTH	AUF:	AUC	MVA	NETI AUG	AUG	PRES!NEPTH	IN	NIIT	IN	ווות דווח	IN	OUT	;	M	hr	TW:				i
				1) / 	HYU	IIIIA .	nyu 		PRESIDEPTH							+·			+				+
;		0210	1372 0	14 9!	321	347	149	21.0	2720:1363.7	9.2	9.2	775	762	20.4	29.4	5451	158	9.0	1.731	1.22	1.21	9.3	8.51D
;	5	0217 0222	1373.0	18.01	291	313	17R	21.9	281011364.5	9.2	9.2	792	796	20.5	29.4	5451	159	9.0	1.751	1.23	1.22	9.3	8.51D
•	L A	0227	1374.0	15.51	277	307	182	22.8	283011365.5	9.2	9.2	791	793	20.5	29.4	5441	160	9.1	1.761	1.29	1.27	9.3	8.51D
									283011366.3						29.4	5431			1.781				8.51D
									281011367.2			790	782	20.5	29.4	5441	162	9.2	1.791	1.30	1.28	9.3	8.510
									282011368.5			790	770	20.5	29.4	5441	163	9.3	1.81;	1.32	1.30	9.3	8.510
									282011369.2			791	777	20.5	29.4	5441	164	9.3	1.821	1.29	1.27	9.3	8.51D
									2820:1370.0			791	795	20.5	29.4	5441	165	9.4	1.831	1.28	1.27	9.3	8.510
									2810:1370.9			790	794	20.4	29.4	5451	166	9.5	1.85	1.33	1.31		8.51D
									280011371.6			786	776	20.5	29.4	5431	167	9.5	1.861	1.17	1.16		8.5ID
									2800:1372.4			788	779	20.5	29.4	5421	168		1.86;				8.51D
									2820:1373.6			790	795	20.5	29.4	5111	169	9.7	1.871	1.24	1.22		8.51D
i	16	0314	1384.0	15.01	278	299	126	25.6	2820:1374.7	9.3	9.2	791	771	20.5	29.4	5101			1.881				8.51D
ļ	17	0319	1385.0	13.11	268	304	138	26.1	2820:1376.1	9.3	9.2	790	795	20.5	29.4	5111			1.89;				8.51D
									2820:1377.0						29.4		172						8.510
									282011377.9						29.4		173						8.51D
									2820:1379.3						29.4		174						8.51D
									2830:1380.0						29.4		175						8.510
									2780:1381.0						29.5		176						8.510
									2760:1381.0						29.5		177						8.51D
									2760:1382.1						29.5		178						8.51D
	5	0356	1393.0	17.3	314	328	176	26.8	2750:1383.2	9.3	9.2				29.5		179						8.510
									2760:1384.0						29.5		180						8.51D
									2780:1385.1						29.5		181						8.5¦D 8.5¦D
									2770:1385.7						29.5						1.10 1.13		8.5ID
									2760:1386.3						29.5 29.5						1.15		
									276011387.0						27.5						1.20		
									2760:1387.7						29.5								8.51D+
									2830:1389.0						29.5								8.51D
									2830:1389.8 2830:1390.4						29.5								8.51D
									2830:1390.6														8.5!D
ŧ	3J 7L	0434	1403.0	17.0	1 330 1 333	331 331	147	20.0	283011370.0	7.0	9.7	789	770	20.9	29.5	5171	190	10.8	2.071	1.21	1.19	9.5	8.51D
1	30 77	0437	1404.0	17.7	770	757	145	25.5	2830:1373.1	9.3	9.7	788	767	20.9	29.5	5171	191	10.9	2.08	1.22	1.20	9.5	8.510
									283011394.6						29.5						1.19		8.51D*
									282011395.4						29.5						1.21		8.510
									283011396.2						29.5		194						8.51D
									282011397.7						29.5		195						8.51D
									274011400.4						29.5		196						8.5ID
									274011400.7						29.5		197						8.51D
									274011401.4						29.6						1.13	9.5	8.51D
									274011402.4						29.6		199						8.51D
									2730:1403.4			774	760	21.0	29.6		200						8.51D
									2740:1404.4			774	760	21.0	29.6	5051	201	11.4	2.17	1.19	1.17		8.510
!	48	0528	1416.0	18.7	293	315	124	24.4	274011404.9	9.3	9.3				29.6						1.14		8.51D
;	49	0533	1417.0	18.8	296	384	128	22.8	273011406.3	9.3	9.3						203						8.510
	50	0536	1418.(25.3	355	369	148	23.6	2750:1406.7	9.3	9.3	774	779	20.9	29.6								8.5iD
Ÿ	51	0548	1419.0	23.1	352	366	134	24.6	2830:1408.4	9.3	9.3	783	775	20.9	30.8	5001							8.5101
1.					1											+							+

F# TIME DEPTH ROP: TORQUE RPM WOB PUMPIRTRNS ND 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB m m/hr: AV6 MAX AV6 AV6 PRESIDEPTH IN OUT IN OUT IN OUT IN OUT im hr TW: m hr T	9.5 8.51 9.5 8.51 9.5 8.51 9.5 8.51 9.5 8.51
m m/hr: AV6 MAX AV6 AV6 PRESIDEPTH IN OUT	9,5 8,51 9,5 8,51 9,5 8,51 9,5 8,51 9,5 8,51
1 52 0550 1420.0 29.01 390 421 122 23.1 283011409.0 9.3 9.3 786 790 20.9 30.8 300 206 11.6 2.2011.03 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	9.5 8.5 9.5 8.5 9.5 8.5 9.5 8.5 9.5 8.5
1 52 0550 1420.0 29.01 390 421 122 23.1 283011409.0 9.3 9.3 786 790 20.9 30.8 300 206 11.6 2.2011.03 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	9.5 8.5 9.5 8.5 9.5 8.5 9.5 8.5 9.5 8.5
1 53 0552 1421.0 25.3; 386 423 135 24.7 2880; 1409.6 9.3 9.3 793 779 20.9 30.8 499; 207 11.7 2.20; 1.11 1.00; 54 0555 1422.0 26.3; 358 379 154 25.0 2870; 1410.1 9.3 9.3 794 799 20.9 30.8 499; 208 11.7 2.21; 1.13 1.10; 55 0557 1423.0 22.2; 329 352 167 24.9 2810; 1410.2 9.3 9.3 786 790 20.9 30.8 498; 209 11.7 2.22; 1.19 1.16; 56 0600 1424 0 24 2; 322 335 170 25.1 2810; 1410.2 9.3 9.3 783 788 21.0 23.8 499; 210 11.8 2.23; 1.18 1.15	9.5 8.5 9.5 8.5 9.5 8.5
1 54 0555 1422.0 26.31 358 379 154 25.0 287011410.1 9.3 9.3 794 799 20.9 30.8 4991 208 11.7 2.7111.13 1.10 1.10 1.10 1.10 1.10 1.10 1.1	9.5 8.51 9.5 8.51
1 55 0557 1423.0 22.21 329 352 167 24.9 281011410.2 9.3 9.3 786 790 20.9 30.8 498; 209 11.7 2.2211.19 1.10 1.54 0400 1424 0 24 21 322 335 170 25.1 281011410.2 9.3 9.3 783 788 21.0 23.8 499; 210 11.8 2.2311.18 1.15	7.5 8.5;
1 54 0400 1424 0 24 21 322 335 170 25.1 2810(1410.2 9.3 9.3 783 788 21.0 23.8 499; 210 11.8 2.23(1.18 1.13	7.3 0.31
I UU VUVA ITETIV ETIEL VEE VVO IIV EBIE BERTINING I	
1 57 0602 1425.0 20.91 304 322 176 24.6 281011411.1 9.3 9.3 783 761 21.0 21.3 5001 211 11.8 2.2411.21	
1 58 0606 1426.0 19.31 292 315 172 24.9 2800 1412.2 9.3 9.3 784 770 20.9 22.0 4981 212 11.9 2.2311.23 1.20	9.5 8.51 9.5 8.51
1 59 0610 1427.0 21.9; 305 371 155 20.0 2810;1413.8 9.3 9.3 781 787 20.9 22.1 496; 213 11.9 2.26;1.11 1.08	
1 60 0612 1428.0 26.8; 368 382 143 23.7 2800; 1414.6 9.3 9.3 781 783 20.9 22.0 498; 214 12.0 2.26; 1.09 1.07	
1 61 0624 1429.0 23.6; 326 402 142 23.2 2840;1417.1 9.3 9.3 787 768 20.8 30.7 492; 215 12.0 2.27;1.12 1.09	
4 07 00/1 (400.0 KY-0) 040 140 F110 FM:41+1+1+	
1 00 0000 1401:1 17:41 016 001 101 1017 10011:1101	
1 04 V032 1400.0 17.71 010 012 100 2010 Editoriates 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
I DO ADOR TIONS TAIN AND AN	
1 00 0000 1400.0 24.01 000 027 127 2011 10001111110 110 110 110	
1 0/ 400/ 140/10 1011 111 200 141 1010 10001111201 110	
1 00 Add 1430'A \$4'11 307 340 for 510 February	
1 Di Adio Tinito air and	
1 /0 U/UN (440.4 Z1.0) 2Z1 TV2 17Z Z010 1Z2V11Z010 '** '**	
1 /1 0/07 1441.0 Z0.01 020 041 100 Z2.0 120012.02.0	
1 /2 0/14 1442.0 10:11 000 041 101 1111 2010/1/10010 110 110 1111 101 1111 101 1111 101 1111 1111 1111 1111 1111 1111 1111 1111	
1/3 0/1/ 1440.0 20:01 0/4 002 11/ 2111 2001110212 11	
1 /4 U/17 1441.0 ZZ:41 000 000 100 ZDIV ZDZVIZ:0010	
1 /3 0/22 1443.0 20:21 30: 040 10: 21:0 202011:00:0	
1 /0 V/23 1440.V 10:// 010 002 1/2 10:// 2007/100//	
177 0729 1447.0 17.01 293 316 154 24.1 282011436.7 9.3 9.3 781 767 20.8 29.7 5071 233 12.9 2.4011.23 1.2 178 0732 1448.0 21.51 333 348 134 24.8 281011436.7 9.3 9.3 782 773 20.7 29.7 5081 234 13.0 2.4111.14 1.1	
1 78 0/32 1448.0 21.51 333 346 134 24.6 281011430.7 7.3 7.3 7.2 777 20.6 29.8 5091 235 13.0 2.4211.15 1.1	
1 80 0745 1450.0 17.71 320 348 163 25.0 284011438.0 9.3 9.3 784 787 20.6 29.8 5111 236 13.1 2.4311.24 1.2	
80 0745 1450.0 17.71 320 346 165 25.0 264011450.0 7.5 7.5 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	
81 0748 1431.0 17.81 323 343 162 24.1 204011437.2 713 783 788 20.6 29.8 5121 238 13.2 2.4511.23 1.1 82 0751 1452.0 17.51 316 348 164 23.6 284011439.3 9.3 9.3 783 788 20.6 29.8 5121 238 13.2 2.4511.23 1.1	
1 07 0754 1457 0 20 31 337 351 144 24 4 283011440 1 9.3 9.3 783 788 20.6 29.8 5131 239 13.2 2.4511.20 1.1	7 9.5 8.5
1 04 0757 1854 0 18 0! 323 381 140 24.2 2840!1441.5 9.3 9.3 782 760 20.5 29.8 514; 240 13.3 2.46!1.19 1.1	6 9.5 8.5
1 95 0800 1455 0 20.21 338 356 121 23.9 284011441.5 9.3 9.3 784 770 20.5 29.8 5141 241 13.3 2.4711.12 1.1	0 9.5 8.5
1 86 0803 1456.0 20.51 329 359 127 24.3 284011441.8 9.3 9.3 783 762 20.5 29.8 5131 242 13.4 2.4711.13 1.1	
1 87 0806 1457 0 20.61 338 350 130 23.9 283011443.1 9.3 9.3 785 775 20.5 29.8 5151 243 13.4 2.4811.14 1.1	
1 98 0917 1458 0 21.61 323 346 136 23.3 85011445.2 9.3 9.3 641 569 20.4 29.8 5171 244 13.5 2.4911.13 1.1	
1 99 0920 1459 0 15 9: 317 360 180 20.2 2840:1445.9 9.3 9.3 702 723 20.4 29.8 518: 245 13.5 2.50:1.22 1.1	
: 90 0824 1460.0 17.6; 293 310 194 20.6 2830;1446.9 9.3 9.3 785 792 20.4 29.8 519; 246 13.6 2.51;1.22 1	
1 91 0827 1461.0 19.61 328 343 181 24.0 284011447.9 9.3 9.3 786 765 20.4 29.8 5191 247 13.6 2.5211.23 1.	
1 92 0830 1462,0 19.81 326 380 171 23.5 285011448.1 9.3 9.3 782 769 20.3 29.8 5181 248 13.7 2.3311.20 1.	
93 0833 1463.0 20.61 360 382 155 25.5 286011448.9 9.3 9.3 784 787 20.3 29.8 5191 249 13.7 2.3411.20 1.	
: 94 0836 1464.0 20.0; 334 350 165 24.2 2850;1449.8 9.3 9.3 784 774 20.3 29.8 519; 250 13.8 2.55;1.20 1.	
95 0839 1465.0 18.41 321 340 152 23.6 284011450.8 9.3 9.3 783 768 20.3 29.8 5191 251 13.8 2.5611.19 1.	
1 96 0842 1466.0 18.71 332 347 128 25.0 285011451.7 9.3 9.3 782 762 20.2 29.8 5191 252 13.9 2.5611.1/ 1.	
1 97 0845 1467.0 19.41 331 361 123 23.8 285011452.8 9.3 9.3 784 786 20.2 29.8 521; 253 14.0 2.3/11.14 1.	11 9.5 8.
98 0902 1468.0 20.9; 332 398 118 21.1 2740;1454.7 9.3 9.3 696 740 20.1 29.8 519; 254 14.0 2.5/;1.0/ 1.	
1 99 0905 1469.0 20.6; 367 397 133 23.6 2770;1455.6 9.3 9.3 771 750 20.1 29.8 526; 255 14.0 2.58;1.14 1.	

Data Recorded at time 09:08 Date Apr 6 '90

TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD N m m/hr: AVG MAX AVG AVG PRES:DEPTH IN OUT IN OUT IN OUT : m hr TW:	XMD:
m m/br: ΔUG MΔY ΔUG DUG PRES:DEPTH IN OUT IN OUT IN OUT ! m hr T₩!	1
H HATEL THE THICK HE AND LABOUR TO THE	
1 B #/III (10 IIII III III III III III III III III	+
100 0908 1470.0 19.61 357 378 159 23.9 278011456.7 9.3 9.3 772 751 20.1 29.8 5261 256 14.1 2.5911.20 1.16 9.5	8.51D
100 0700 177010 17701 007 077 077 077 07	8.51D
1102 0914 1472.0 20.5; 344 368 166 23.6 2780;1457.9 9.3 9.3 771 776 20.1 29.8 527; 258 14.2 2.61;1.19 1.15 9.5	8.510
	8.51D
	8.5ID
105 0923 1475.0 17.2 314 339 155 26.4 2840 1460.9 9.3 9.3 783 762 20.1 29.8 528 261 14.4 2.63 1.25 1.22 9.5	8.5ID
1106 0929 1476.0 16.31 343 380 145 24.4 285011462.6 9.3 9.3 781 767 20.0 29.8 5301 262 14.4 2.6411.22 1.19 9.5	8.5HD
	8.5ID
1108 0942 1478.0 20.11 338 382 130 26.3 276011465.9 9.3 9.3 770 756 19.9 29.9 5321 264 14.5 2.6511.17 1.14 9.5	8.51D†
	8.510
1110 0949 1480.0 17.5; 338 358 139 26.2 2830;1467.7 9.3 9.3 779 765 20.0 29.9 534; 266 14.7 2.67;1.22 1.19 9.5	8.51D
1111 0952 1481.0 18.21 339 351 142 25.2 283011468.2 9.3 9.3 777 756 20.0 29.9 5341 267 14.7 2.6811.20 1.17 9.5	8.51D
1112 0956 1482.0 18.5 341 363 137 29.7 2840 1469.3 9.3 9.3 778 764 20.0 29.9 535 268 14.8 2.68 1.25 1.21 9.5	8.51D
1113 0959 1483.0 18.01 348 376 130 26.8 283011470.4 9.3 9.3 778 781 20.0 29.9 5351 269 14.8 2.6911.21 1.17 9.5	8.51D
114 1002 1484.0 19.1; 343 357 134 27.3 2830;1471.3 9.3 9.3 778 769 20.0 29.9 536; 270 14.9 2.70;1.20 1.17 9.5	8.51D
1115 1006 1485.0 16.81 339 354 120 26.2 282011472.6 9.3 9.3 779 766 20.0 29.9 5371 271 14.9 2.7011.19 1.16 9.5	8.510
116 1010 1486.0 19.0 335 359 110 24.5 2820 1474.1 9.3 9.3 776 762 20.0 29.9 537 272 15.0 2.71 1.12 1.09 9.5	8.51D
1117 1014 1487.0 15.6; 340 359 112 24.4 2820; 1475.1 9.3 9.3 776 781 20.0 29.9 536; 273 15.0 2.71; 1.17 1.14 9.5	8.51D
118 1025 1488.0 20.1; 339 398 111 24.5 2850 1476.8 9.3 9.3 778 757 20.0 29.9 535; 274 15.1 2.72 1.11 1.08 9.5	8.51D
119 1028 1489.0 18.6; 365 376 120 25.3 2850;1477.6 9.3 9.3 779 784 20.0 29.9 538; 275 15.2 2.72;1.16 1.13 9.5	8.51D
1120 1031 1490.0 17.7; 349 372 114 25.4 2850; 1477.7 9.3 9.3 779 758 20.0 29.9 538; 276 15.2 2.73; 1.16 1.13 9.5	8.51D
121 1034 1491.0 18.51 329 352 115 24.6 285011478.5 9.3 9.3 780 771 20.0 29.9 5361 277 15.3 2.7311.14 1.11 9.5	8.51D
2 1037 1492.0 20.5 365 379 108 25.3 2840 1479.3 9.3 9.3 779 757 20.0 29.9 536 278 15.3 2.73 1.11 1.08 9.5	8.51D
1123 1040 1493.0 18.91 344 357 119 25.3 284011480.3 9.3 9.3 778 758 20.0 29.9 5361 279 15.4 2.7411.15 1.12 9.5	8.51D
124 1044 1494.0 19.11 336 350 122 25.8 284011481.2 9.3 9.3 778 781 20.0 29.9 5371 280 15.4 2.7411.16 1.13 9.5	8.51D
1125 1047 1495.0 18.01 335 355 121 24.9 285011482.2 9.3 9.3 781 786 20.0 29.9 5391 281 15.5 2.7511.16 1.13 9.5	8.510
126 1050 1496.0 17.01 336 375 123 24.8 284011483.2 9.3 9.3 576 622 20.0 29.9 5411 282 15.5 2.7611.18 1.14 9.5	8.51D
1127 1054 1497.0 17.51 334 361 124 25.6 283011484.2 9.3 9.3 777 764 20.0 29.9 5401 283 15.6 2.7611.18 1.15 9.5	8.510
128 1106 1498.0 20.31 332 394 124 24.8 293011486.1 9.3 9.3 787 766 20.0 29.9 5351 284 15.6 2.7711.14 1.10 9.5	8.51D
1129 1108 1499.0 21.41 364 397 133 25.9 287011486.8 9.3 9.3 783 762 20.0 29.9 5351 285 15.7 2.7711.16 1.12 9.5	8.510
(130 IIII INVOINTIAL AND	8.51D
1131 1115 1501.0 19.31 340 377 137 24.2 287011487.6 9.3 9.3 781 786 20.0 29.9 5361 287 15.8 2.7811.17 1.13 9.5	
132 1117 1502.0 24.91 397 467 125 29.6 286011488.2 9.3 9.3 781 761 20.0 29.9 5371 288 15.8 2.7911.14 1.11 9.5	
1133 1119 1503.0 22.91 394 437 117 31.0 287011488.9 9.3 9.3 783 773 20.0 29.9 5371 289 15.9 2.7911.16 1.13 9.5	8.51D
1104 1170 100414 7414 010 100 140 741 700414444 110 110 110 110	8.5iD
1100 IIV Indain this in the same minarian	8.51D
ATOM LIVE INAMES TITOL AND TAL AND TOTAL TRANSPORTED TO	8.5ID
110/ 1141 100/10 2017 0/1 10/ 100 2/10 2/10/11///10 //2 //2 //2 //2 //2 //2 //2 //2 //2 //	8.510
IIOD IIIO IDODIO IDIII IVI IVI IVI IVI IVI IVI IVI	8.51D
ity indicate that one the terminal and the second of the s	8.510
1110 1110 201010 00111 110 110 110 110 1	8.5ID
1171 1100 101110 1/1/1 100 1/1 100 1/1 100 1/1 100 1/1 10 0 0 C	8.510
1117 TIGE TOTAL ALL SEL SEL SEL SEL SEL SEL SEL SEL SEL S	8.51D
1170 1100 101017 101 101 101 101 102 0011 102 111 0 5	8.510
illy tide ideals from the set is an area production.	8.51D
1740 IfO; Ididio Tolli ton 147 ton man manifestation in	8.51D
HAD ITAL INIDIA INC. ISA AND AND AND AND AND AND AND AND AND AN	8.51D1
7 1212 1517.0 23.81 421 468 129 36.5 2830 1501.6 9.3 9.3 774 776 20.2 29.9 547 303 16.5 2.85 1.24 1.19 9.5	8.51D

Fe Time BePTIM RoP! IDROBE RPM WIDE PURPLISTESS MO 116/94 FIGURITY FIRST DECK PUT THIS DIT FIRST DECK PUT THIS DIT REPLY REP	•											1	vata I	Kecor	060 st	 (186	17:1	4 	+ nqrg		70		+
149 1217 1519 0 0 0 1 93 35 12 93 8 220 1503 3 73 73 77 78 20 22 29 58 150 120 1	+ F# 	TIME	DEPTH m	ROP: m/hr:	TOR AVG	DITE	DDM	ипр	PHMP!RTRNS	MD 1	 h/nal	FLOS	 W/MIN	TEM	 P (C)	PVT:	-THIS	BIT-	EST	DXC	NXB	ECD 1	IXMD:
149 1217 1519 0 0 0 1 93 35 12 93 8 220 1503 3 73 73 77 78 20 22 29 58 150 120 1	4			-	4 4 4		120	 74 A	202011502 4	 Q 7	 و ع	773	776	 20.2	 29.9	548:	304	16.6	2.85	1.23	1.19	9.5	8.5¦D
1151 1220 15220, 0 22.51 378 408 128 35.1 282011504.3 9.3 9.3 771 762 20.2 9.9 548; 306 16.6 2.8611.24 1.19 9.5 8.518 151 1223 15220, 0 21.01 372 403 108 54.2 282011505.4 9.3 9.3 771 772 0.2 9.9 5461 307 16.7 2.8711.10 1.16 9.5 8.518 1512 1220 15220, 0 26.61 371 474 115 34.2 282011505.7 9.3 9.3 772 782 20.3 29.9 5471 308 16.7 2.8711.10 1.16 9.5 8.518 1515 1224 1525.0 25.31 455 474 128 35.2 282011507.5 9.3 9.3 772 782 20.3 29.9 5471 308 16.7 2.8711.10 1.12 9.5 8.518 1515 1224 1525.0 25.31 450 511 111 53.8 284011510.6 9.3 9.3 777 782 20.3 29.9 5471 308 16.8 2.8811.17 1.12 9.5 8.518 1155 1224 1525.0 25.31 450 511 111 53.8 284011511.0 9.3 9.3 777 782 20.3 29.9 5481 311 16.9 2.8811.17 1.12 9.5 8.518 1155 1224 1525.0 25.31 450 511 111 53.8 284011511.0 9.3 9.3 777 782 20.3 29.9 5481 311 16.9 2.8811.17 1.12 9.5 8.518 1157 1224 1525.0 25.01 450 450 450 450 450 450 450 450 450 450	1170	1414	1710.0	24:01	717	177	141	2017	TOTAL LOCAL L	7.0													
185 1228 1527-0 21.0 1 372 403 104 53.4 22091 1506.1 9.5 9.5 9.5 1512 1522 1522.0 22.0 23.6 391 474 115 34.6 22801 1506.1 9.3 9.3 774 777 20.2 29.5 546 307 16.7 2.8911.10 1.12 9.5 8.5 1515 1224 1523.0 30.3 14.5 494 128 35.2 22201 1506.7 9.3 9.3 777 779 20.2 29.9 546 307 16.8 2.8811.10 1.11 9.5 8.5 1155 1224 1525.0 25.3 13.5 14.5 125.0 25.0 25.3 14.5 111 11.5 2.8 2801 151.7 9.3 9.3 777 772 20.2 29.9 546 307 16.8 2.8811.10 1.11 9.5 8.5 1155 1224 1525.0 25.3 13.5 14.5 12.5	1147	121/	1520.0	20.71	373	408	128	35.1	282011504.3	9.3												9.5	8.510
1152 1230 1532, 0 23.6 391 474 115 34.6 280011501.3 9.3 9.3 775 776 20.3 29.9 5461 309 16.8 2.8811.1 61.11 9.5 8.510 1551 244 1525.0 25.0 445 494 128 35.2 280011501.5 9.3 9.3 777 776 20.3 29.9 5461 309 16.8 2.8811.17 1.13 9.5 8.510 155 1244 1525.0 25.0 1413 47 128 36.4 283011511.7 9.3 9.3 777 776 20.3 29.9 547 310 16.8 2.8811.17 1.13 9.5 8.510 155 1244 1525.0 25.0 1413 47 128 36.4 283011511.7 9.3 9.3 777 778 20.3 29.9 547 310 16.8 2.8811.17 1.13 9.5 8.510 157 1249 1527.0 22.5 1420 486 128 36.6 28011511.7 9.3 9.3 777 778 20.3 29.9 5481 312 16.9 2.8911.22 1.18 9.5 8.510 157 1249 1527.0 22.5 1420 486 128 36.6 28011511.7 9.3 9.3 777 778 20.4 29.9 5041 314 16.9 2.8911.22 1.12 9.5 8.510 159 1255 1529.0 19.6 1375 420 128 35.8 2801151.5 9.3 9.3 777 778 20.4 29.9 5091 315 17.0 2.9111.29 1.22 9.5 8.510 159 1255 1529.0 19.6 1375 420 128 35.7 28501151.8 9.3 9.3 777 758 20.4 29.9 5091 315 17.0 2.9111.29 1.22 9.5 8.510 150 1530 1533.0 133.0 18.1 332 386 129 35.3 28011518.8 9.3 9.3 777 758 20.5 29.9 5091 315 17.0 2.9111.28 1.23 9.5 8.510 166 1307 1533.0 18.1 332 380 129 35.4 28011518.8 9.3 9.3 777 764 20.5 29.9 5091 315 17.0 2.9311.31 1.19 9.5 8.510 166 1307 1533.0 18.1 332 380 129 35.4 28011518.9 3.3 9.3 777 764 20.5 29.9 5091 315 17.0 2.9311.31 1.19 9.5 8.510 166 1307 1533.0 18.1 332 380 129 35.4 28011518.8 9.3 9.3 777 778 20.5 29.9 5091 317 17.1 2.9211.28 1.24 9.5 8.510 166 130 1534.0 18.9 138 282 127 33.0 28011518.1 9.3 9.3 777 778 20.5 29.9 5091 317 17.1 2.9211.28 1.24 9.5 8.510 166 130 1534.0 12.0 130 1534.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	1150	1223	1521.0	21.01	372	403	104	35.4	283011505.4	9.3													
1155 1224 1522, 0 20, 31 465 494 129 35.6 282011507.5 79.3 9.3 777 775 20.3 29.9 5461 30 16.8 2.8811.17 1.17 9.5 9.5 9.5 1155 1244 1525, 0 25.3 1450 511 111 35.8 282011507.5 9.3 9.3 777 776 20.3 29.9 5471 310 16.8 2.8811.17 1.13 9.5 8.510 1155 1244 1525, 0 25.3 1450 511 111 35.8 282011511.7 9.3 9.3 777 776 20.3 29.9 5481 313 16.9 2.9011.25 1.21 9.5 8.510 1157 1249 1527 0.22.5 12.0 25.5 143 47 128 36.2 283011511.7 9.3 9.3 774 778 20.4 29.9 5481 313 16.9 2.9011.25 1.21 9.5 8.510 1159 1255 1529, 0 19.6 375 20 128 36.5 283011515.0 9.3 9.3 773 776 20.3 29.9 5481 313 16.9 2.9011.25 1.21 9.5 8.510 1159 1255 1529, 0 19.6 375 20 128 36.5 283011515.0 9.3 9.3 777 778 20.4 29.9 5091 315 17.0 2.9011.25 1.22 9.5 8.510 1160 1258 1530.0 21.6 1388 440 128 37.8 283011515.0 78.3 9.3 776 778 20.4 29.9 5091 315 17.1 2.9111.28 1.23 9.5 8.510 1160 1258 1530.0 21.6 136 320 1250.0 21.6 136 20.0 11.6 128 37.8 28011515.0 19.3 9.3 775 778 20.5 29.9 5091 315 17.1 2.9111.28 1.23 9.5 8.510 1161 1301 1531.0 20.9 1367 429 128 35.7 288011516.8 9.3 9.3 775 778 20.5 29.9 5091 315 17.1 2.9111.28 1.23 9.5 8.510 1461 1301 1531.0 20.9 1367 429 128 35.7 288011518.1 9.3 9.3 777 778 20.5 29.9 5091 315 17.2 2.9311.23 1.19 9.5 8.510 1461 1301 1530.0 150.0 12.0 140 140 140 140 140 140 140 140 140 14	1152	1230	1522.0	26.61	391	474	115	34.6	2820:1506.3	9.3	9.3	743	738	20.3	29.9								
1155 1234 1524,0 29.51 463 494 129 35.6 282011510,7 9.3 9.3 9.3 777 776 20.3 29.9 547 548 311 16.8 2.8811.1 1 1.12 9.5 8.519 1155 1247 1526,0 25.01 413 447 128 36.4 283011511,7 9.3 9.3 9.3 777 752 20.3 29.9 548 311 16.9 2.8811.1 1 1.12 9.5 8.519 1157 1249 1527.0 22.51 429 468 128 36.5 283011511,0 9.3 9.3 9.3 773 76 20.3 29.9 544 314 11.0 2.9011.27 1.22 9.5 8.519 1157 1258 1529,0 19.61 375 420 128 36.8 283011511,0 9.3 9.3 773 76 20.4 29.9 544 314 17.0 2.9011.27 1.22 9.5 8.519 1159 1255 1529,0 19.61 375 420 128 36.9 283011515.2 9.3 9.3 774 754 20.4 29.9 544 314 17.0 2.9011.27 1.22 9.5 8.519 1159 1255 1529,0 19.61 375 420 128 36.9 283011515.2 9.3 9.3 774 754 20.4 29.9 544 314 17.0 2.9011.27 1.22 9.5 8.519 1166 1288 1530.0 21.61 388 440 128 37.8 284011515.7 9.3 9.3 774 754 20.4 29.9 544 314 17.0 2.9011.27 1.22 9.5 8.519 1166 1280 1531.0 20.91 367 401 128 37.8 284011515.9 9.3 9.3 775 782 20.5 29.9 5991 316 17.0 2.9111.28 1.24 9.5 8.519 1162 1303 1532.0 23.41 370 429 128 35. 284011515.9 9.3 9.3 775 778 20.5 29.9 5991 316 17.0 2.9111.28 1.24 9.5 8.519 1165 1322 1535.0 19.91 346 41 41 09 351 28101521.8 9.3 9.3 775 761 20.5 29.9 5991 316 17.0 2.9111.28 1.24 9.5 8.519 1166 1320 1535.0 2.23 404 437 127 32.1 28291522.8 9.3 9.3 775 761 20.5 29.9 5991 316 17.0 2.9411.24 1.24 9.5 8.519 1166 1320 1535.0 2.23 404 437 127 32.1 28291522.1 9.3 9.3 775 754 20.5 30.0 5091 321 17.0 2.9411.24 1.16 9.5 8.519 1166 1330 1530.0 2.21 4109 446 127 340. 282011525.7 9.3 9.3 775 778 20.5 30.0 5091 321 17.0 2.9411.24 1.16 9.5 8.519 1166 1330 1530.0 19.4 1374 414 104 344. 282011525.9 9.3 9.3 777 778 20.5 30.0 5091 321 17.0 2.9411.2 1.16 9.5 8.519 1171 1339 1541.0 20.71 365 371 104 34.6 282011525.7 9.3 9.3 777 778 20.6 30.0 5091 321 17.0 2.9411.2 1.16 9.5 8.519 1171 1339 1541.0 20.71 365 371 104 34.6 282011525.9 9.3 9.3 777 778 20.6 30.0 5091 321 77.0 2.9411.2 1.16 9.5 8.519 1171 1339 1541.0 20.71 365 371 104 34.6 282011525.7 9.3 9.3 777 778 20.6 29.9 5091 331 17.0 2.9911.2 1.16 9.5 8.519 1171 1339 1544.0 20.71 365 371 104 34.6 282011525.9 9.3 9.	1153	1232	1523.0	30.31	465	494	128	35.2	2820:1506.7	9.3	9.3												
1155 1244 1325,0 25,31 450 511 111 53.8 284011510.6 9.3 9.3 9.3 770 752 20.3 29.9 5491 312 16.9 2.9911.12 1.13 9.5 9.3 9.1 1156 1247 1326,0 25.0 41.3 47 128 3.6. 284011512.9 9.3 9.3 773 760 20.4 29.9 5491 312 16.9 2.9911.22 1.22 9.5 8.5 19 1159 1252 1538,0 21.3 396 429 128 36.3 284011512.9 9.3 9.3 773 776 20.2 29.9 5491 312 16.9 2.9011.27 1.22 9.5 8.5 19 1159 1252 1538,0 21.3 396 429 128 36.3 283011515.2 9.3 9.3 774 754 20.4 29.9 5091 315 17.0 2.9911.29 1.24 9.5 8.5 19 1160 1258 1530.0 21.6 1388 440 128 37.8 284011515.7 9.3 9.3 776 767 20.4 29.9 5091 315 17.0 2.9911.29 1.24 9.5 8.5 19 1161 1301 1531.0 20.91 367 401 128 37.8 28401151.5 9.3 9.3 776 767 20.4 29.9 5091 315 17.1 2.9111.29 1.23 9.5 8.5 19 1161 1301 1531.0 20.91 367 402 128 36.3 28401151.8 9.3 9.3 777 764 20.5 29.9 5091 315 17.1 2.9111.29 1.24 9.5 8.5 19 1161 1301 1532.0 23.4 1370 429 128 33.7 288011516.8 9.3 9.3 777 764 20.5 29.9 5091 315 17.1 2.9111.29 1.24 9.5 8.5 10 1161 1301 1532.0 23.4 1370 429 128 33.7 288011516.8 9.3 9.3 777 764 20.5 29.9 5091 315 17.2 2.9311.23 1.19 9.5 8.5 10 1165 1322 1535.0 19.91 346 414 109 35.1 281011521.6 9.3 9.3 777 764 20.5 29.9 5091 315 17.2 2.9311.23 1.19 9.5 8.5 10 1166 1323 1537.0 22.2 143 34 252 127 35.0 282011521.6 9.3 9.3 777 774 20.5 29.9 5091 315 17.3 2.9411.24 1.19 9.5 8.5 10 1166 1323 1537.0 22.2 143 34 252 127 35.0 282011521.6 9.3 9.3 777 774 20.5 30.0 5091 321 17.3 2.9411.23 1.19 9.5 8.5 10 1166 1323 1537.0 22.2 143 34 452 127 33.0 282011521.7 9.3 9.3 777 778 20.5 30.0 5091 323 17.4 2.9511.22 1.17 9.5 8.5 10 1169 1333 1539.0 22.1 143 43 452 127 33.0 282011521.7 9.3 9.3 777 778 20.5 30.0 5091 323 17.4 2.9511.22 1.17 9.5 8.5 10 1171 1333 1539.0 22.1 143 44 109 34.4 282011525.7 9.3 9.3 777 778 20.6 30.0 5091 323 17.4 2.9511.22 1.17 9.5 8.5 10 1171 1333 1540.0 19.4 1374 414 109 34.4 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 323 17.4 2.9511.22 1.17 9.5 8.5 10 1171 1330 1540.0 19.4 1374 444 109 34.4 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 323 17.9 2.9911.20 1.16 9.5 8.5 10 1171 1330 1540.0 19.4 1374 444 109	1154	1234	1524.0	29.51	463	494	129	35.6	282011507.5	9.3	9.3												
1155 1247 1526.0 25.01 413 447 128 36.4 233011511.7 9.3 9.3 774 739 204. 29.9 541 314 17.0 2.9011.22 1.18 9.3 8.31 1517 1249 1527 0.2 2.51 420 481 281 36.2 284011515.2 9.3 9.3 773 780 204. 29.9 5541 314 17.0 2.9011.27 1.22 9.5 8.510 1159 1255 1529.0 19.61 375 420 128 36.3 283011514.0 9.3 9.3 773 780 204. 29.9 541 314 17.0 2.9011.27 1.22 9.5 8.510 1159 1255 1529.0 19.61 375 420 128 36.3 283011515.2 9.3 9.3 774 754 204. 29.9 591 315 17.0 2.9011.27 1.22 9.5 8.510 1160 1238 1530.0 21.61 388 440 128 37.8 284011515.7 9.3 9.3 776 767 204. 29.9 591 315 17.0 2.9011.27 1.22 9.5 8.510 1161 1301 1551.0 20.91 30.7 401 128 37.8 284011515.7 9.3 9.3 776 767 204. 29.9 591 317 17.1 2.9211.28 1.23 9.5 8.510 1162 1303 1532.0 23.41 370 429 128 35.7 285011516.8 9.3 9.3 777 764 20.5 29.9 591 317 17.1 2.9211.28 1.24 9.5 8.510 1163 1307 1533.0 18.11 325 380 129 38.3 284011518.1 9.3 9.3 777 764 20.5 29.9 591 317 17.1 2.9211.28 1.19 9.5 8.510 1164 1310 1554.0 18.81 338 372 110 36.4 284011519.3 9.3 9.3 775 778 20.5 29.9 591 317 17.1 2.9211.28 1.19 9.5 8.510 1165 1320 1533.0 18.11 325 38.0 129 38.3 284011519.1 9.3 9.3 775 776 12 0.5 30.0 501 320 17.3 2.9411.23 1.19 9.5 8.510 1165 1320 1533.0 19.9 1346 414 109 354. 282011525.8 9.3 9.3 772 778 20.5 30.0 501 322 17.4 2.9511.22 1.19 9.5 8.510 1168 1330 1538.0 22.1 409 446 127 34.0 282011525.7 9.3 9.3 777 776 20.5 30.0 501 322 17.4 2.9511.22 1.17 9.5 8.510 1168 1330 1538.0 22.1 349 44 110 34.4 282011525.2 9.3 9.3 777 778 20.5 30.0 501 322 17.4 2.9511.22 1.17 9.5 8.510 1169 1333 1539.0 22.0 396 435 114 34.5 282011525.7 9.3 9.3 777 778 20.5 30.0 501 322 17.4 2.9511.22 1.17 9.5 8.510 1171 1334 1545.0 2.9.1 384 41 10 34.4 282011525.7 9.3 9.3 777 778 20.5 30.0 501 322 17.4 2.9511.22 1.17 9.5 8.510 1171 1339 1541.0 20.7 356 38 41 410 34.4 282011525.7 9.3 9.3 777 778 20.5 20.5 30.0 501 325 17.5 2.9611.23 1.19 9.5 8.510 1171 1343 1545.0 2.7 358 48 41 10 34.5 282011525.7 9.3 9.3 777 777 777 777 777 777 777 777 777 7	1155	1244	1525.0	25.31	450	511	111	35.8	2840:1510.6	9.3	9.3												
1159 1252 15320 21.31 395 429 128 83.6 283011514.0 9.3 9.3 773 751 20.4 29.9 541 314 17.0 2.9011.27 1.22 9.5 8.510 1159 1255 1529.0 19.61 375 420 128 36.3 283011515.2 9.3 9.3 774 754 20.4 29.9 599 315 17.0 2.9011.27 1.22 9.5 8.510 1160 1258 1530.0 21.61 384 40 128 37.8 284011515.7 9.3 9.3 776 767 20.4 29.9 599 315 17.0 2.9011.27 1.22 9.5 8.510 1161 1301 1531.0 20.91 367 401 128 37.8 284011515.9 9.3 9.3 777 76 47 20.5 29.9 599 315 17.0 2.9011.28 1.23 9.5 8.510 1162 1303 1532.0 23.41 370 429 128 35.7 28501151.8 9.3 9.3 777 764 20.5 29.9 599 310 17.1 2.9011.28 1.23 9.5 8.510 1164 130 1534.0 18.81 338 372 110 36.4 284011519.3 9.3 9.3 777 764 20.5 29.9 599 310 17.2 2.9311.31 1.26 9.5 8.510 1164 130 1534.0 18.81 338 372 110 36.4 284011519.3 9.3 9.3 777 764 20.5 29.9 599 320 17.3 2.9411.25 1.19 9.5 8.510 1165 1327 1536.0 19.91 346 414 109 35.1 281011521.6 9.3 9.3 772 778 20.5 20.9 99 320 17.3 2.9411.25 1.19 9.5 8.510 1166 1325 1536.0 22.31 409 44 127 34.0 282011521.6 9.3 9.3 772 772 774 20.5 30.0 5091 322 17.4 2.9511.21 1.16 9.5 8.510 1167 1328 1537.0 22.21 409 44 127 34.0 283011524.1 9.3 9.3 775 754 20.5 30.0 5091 322 17.5 2.9611.23 1.18 9.5 8.510 1173 1339 1541.0 20.71 36.5 391 104 34.6 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 322 17.5 2.9611.23 1.18 9.5 8.510 1171 1339 1541.0 20.71 36.5 391 104 34.6 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 325 17.5 2.9611.22 1.17 9.5 8.510 1172 1342 1542.0 20.4 135 391 104 34.6 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 325 17.5 2.9611.21 1.17 9.5 8.510 1173 1349 1454.0 16.8 1335 379 104 34.6 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 325 17.5 2.9611.22 1.17 9.5 8.510 1173 1349 1454.0 16.8 1335 379 10 37.6 22.0 148 282011525.1 9.3 9.3 777 778 20.5 30.0 5091 325 17.5 2.9611.22 1.16 9.5 8.510 1173 1349 1540.0 20.1 414 47 52.0 37.6 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 325 17.5 2.9611.22 1.17 9.5 8.510 1174 1349 1540.0 20.1 414 47 52.0 37.6 282011525.7 9.3 9.3 777 778 20.5 30.0 5091 325 17.6 2.9711.20 1.16 9.5 8.510 1174 1349 1540.0 20.1 414 41 41 53.0 2.4 41 41 41 41 53.0 2.	1156	1247	1526.0	25.01	413	447	128	36.4	283011511.7	9.3	9.3												
1186 1259 1529, 0 19.61 375 420 128 35.2 283011515.2 9.3 9.3 774 754 20.4 29.9 5091 315 17.0 2.9111.29 1.24 9.5 8.510 1160 1288 1530.0 21.61 388 440 128 37.8 284011515.7 9.3 9.3 776 747 20.4 29.9 5091 316 17.1 2.9111.28 1.23 9.5 8.510 1161 1301 1531.0 20.91 346 740 1128 37.8 284011515.9 9.3 9.3 777 74 754 20.5 29.9 5091 316 17.1 2.9111.28 1.24 9.5 8.510 1162 1303 1532.0 23.41 370 429 128 35.7 285011516.8 9.3 9.3 777 74 754 20.5 29.9 5091 316 17.1 2.9111.28 1.24 9.5 8.510 1163 1307 1533.0 18.11 352 380 127 36.3 284011518.1 9.3 9.3 777 774 20.5 29.9 5091 316 17.2 2.9311.23 1.19 9.5 8.510 1164 1310 1534.0 18.81 333 372 110 34.4 284011519.3 9.3 9.3 777 776 12 0.5 29.9 5091 316 17.2 2.9311.23 1.19 9.5 8.510 1165 1322 1535.0 19.91 346 414 109 35.1 282011521.6 9.3 9.3 775 761 20.5 29.9 5091 316 17.2 2.9311.23 1.19 9.5 8.510 1166 1322 1535.0 19.91 346 414 109 35.1 282011521.6 9.3 9.3 772 778 20.5 30.0 5091 321 17.3 2.9411.25 1.19 9.5 8.510 1166 1330 1538.0 22.11 409 446 127 34.0 282011527.1 9.3 9.3 772 778 20.5 30.0 5091 321 17.4 2.9511.22 1.17 9.5 8.510 1168 1333 1539.0 22.01 384 345 22 73 33.0 282011527.1 9.3 9.3 772 778 20.5 30.0 5091 321 17.4 2.9511.22 1.17 9.5 8.510 1171 1339 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 772 778 20.5 30.0 5071 324 17.5 2.9411.22 1.17 9.5 8.510 1172 1340 1545.0 29.41 355 367 104 34.4 282011525.7 9.3 9.3 773 775 20.6 30.0 5031 325 17.5 2.9411.22 1.17 9.5 8.510 1172 1349 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 775 776 20.5 30.0 5031 325 17.5 2.9411.22 1.17 9.5 8.510 1172 1349 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 777 776 20.5 30.0 5031 327 17.6 2.9711.20 1.16 9.5 8.510 1172 1349 1541.0 20.71 358 344 116 33.48 282011525.7 9.3 9.3 777 776 20.5 30.0 5031 327 17.6 2.9711.20 1.16 9.5 8.510 1172 1473 1346 1546.0 23.41 445 491 20.3 4.8 282011525.7 9.3 9.3 777 776 20.5 30.0 5031 327 17.7 2.9811.28 1.29 9.5 8.510 1173 1449 1545.0 20.41 345 30 30 30 30 30 30 30 30 30 30 30 30 30	1157	1249	1527.0	22.51	420	468	128	36.6	2840:1512.9	9.3	9.3												
1159 1535 1550, 0 21,61 388 440 128 37.8 2840 1515.7 9.3 9.3 776 767 20.4 29.9 5091 316 17.1 2.9111.28 1.23 9.5 8.510 160 1258 1530, 0 21,61 388 440 128 37.8 2840 1515.7 9.3 9.3 777 784 20.5 29.9 5091 317 17.1 2.9111.28 1.24 9.5 8.510 162 1303 1532.0 23.4 137 429 128 35.7 2850 1516.8 9.3 9.3 777 784 20.5 29.9 5091 317 17.1 2.9211.28 1.24 9.5 8.510 163 1507 1533.0 18.11 352 380 129 36.3 2840 1518.1 9.3 9.3 777 784 20.5 29.9 5091 317 17.1 2.9211.28 1.1 1.9 9.5 8.510 164 1310 1534.0 18.81 338 372 110 36.4 2840 1519.3 9.3 9.3 777 784 20.5 29.9 5091 317 17.1 2.9311.28 1.1 1.9 9.5 8.510 164 1310 1534.0 18.81 338 372 110 36.4 2840 1519.3 9.3 9.3 777 781 20.5 29.9 5091 317 17.3 2.9411.28 1.21 9.5 8.510 166 1325 1535.0 19.9 346 441 40 35.1 2810 15121.6 9.3 9.3 78 78 78 20.5 29.9 5091 321 17.3 2.9411.28 1.21 9.5 8.510 1166 1325 1535.0 19.9 346 441 40 35.1 2810 15121.6 9.3 9.3 772 781 20.5 30.0 5091 321 17.3 2.9411.28 1.19 9.5 8.510 1167 1338 1537.0 22.1 413 452 127 33.0 2820 1522.7 9.3 9.3 772 781 20.5 30.0 5091 321 17.3 2.9411.28 1.19 9.5 8.510 1167 1336 1540.0 19.44 374 414 104 34.4 2820 11525.3 9.3 9.3 773 776 20.5 30.0 5091 321 17.3 2.9411.22 1.17 9.5 8.510 1170 1336 1540.0 19.44 374 414 104 34.4 2820 11525.7 9.3 9.3 773 776 20.5 30.0 5031 325 17.6 2.9411.20 1.17 9.5 8.510 1171 1339 1541.0 20.7 1365 391 104 34.6 2820 11525.7 9.3 9.3 773 776 20.5 30.0 5031 328 17.6 2.9711.20 1.16 9.5 8.510 1172 1340 1545.0 22.7 136 484 484 2820 11525.3 9.3 9.3 777 778 20.5 30.0 5031 328 17.6 2.9711.20 1.16 9.5 8.510 1173 1346 1543.0 15.4 1335 387 104 34.4 2820 11525.3 9.3 9.3 777 778 20.5 30.0 5031 328 17.6 2.9711.20 1.16 9.5 8.510 1173 1346 1543.0 15.4 1335 387 104 34.4 2820 11525.3 9.3 9.3 777 778 20.5 30.0 5031 328 17.6 2.9711.20 1.16 9.5 8.510 1173 1346 1545.0 22.1 1348 482 123 35.6 2830 11524.4 9.3 9.3 777 778 20.5 20.0 5061 332 17.9 2.9911.21 1.16 9.5 8.510 1175 1407 1547.0 22.11 418 482 123 35.6 2830 11535.4 9.3 9.3 777 778 20.6 29.9 5071 333 18.0 3.011.21 1.16 9.5 8.510 1174 1407 1547.0 22.11 418 482 123 35.6 2830 11535.4 9.3	1158	1252	1528.0	21.31	396	429	128	36.8	2830:1514.0	9.3	9.3												
1360 1531, 0 20,91 367 401 128 37.8 286011515.9 9.3 9.3 774 778 20.5 29.9 5091 317 17.1 2,9211,28 1.24 9.5 8.510 1462 1303 1532, 0 23.41 379 4291 28 35.7 285011516.8 9.3 9.3 775 778 20.5 29.9 5091 318 17.2 2,9311,23 1.12 9.5 8.510 1463 1303 1532, 0 18.11 352 380 129 36.3 284011518.1 9.3 9.3 777 778 20.5 29.9 5091 318 17.2 2,9311,23 1.12 9.5 8.510 1464 1310 1534, 0 18.81 358 372 110 36.4 284011519.3 9.3 9.3 775 778 20.5 29.9 5091 317 17.2 2,9311,23 1.12 9.5 8.510 1465 1305 1534.0 2.2.31 404 447 107 35.1 281011521.6 9.3 9.3 775 778 20.5 29.9 5091 320 17.3 2,9411.26 1.21 9.5 8.510 1466 1325 1534.0 22.31 404 447 7127 32.1 282011521.8 9.3 9.3 772 778 20.5 29.9 5091 320 17.3 2,9411.26 1.21 9.5 8.510 1466 1325 1534.0 22.31 404 447 7127 32.1 282011521.8 9.3 9.3 772 778 20.5 29.9 5091 320 17.3 2,9411.22 1.17 9.5 8.510 1466 1325 1534.0 22.31 404 437 127 32.1 282011521.8 9.3 9.3 772 778 20.5 30.0 5091 321 17.3 2,9411.22 1.16 9.5 8.510 1466 1325 1534.0 22.31 404 437 127 32.1 282011521.8 9.3 9.3 772 778 20.5 30.0 5091 321 17.3 2,9411.22 1.16 9.5 8.510 1469 1333 1539.0 22.11 409 446 127 34.0 283011524.1 9.3 9.3 772 778 20.5 30.0 5091 321 17.3 2,9411.22 1.16 9.5 8.510 1470 1336 1540.0 19.41 374 414 104 34.4 282011525.2 9.3 9.3 773 778 20.5 30.0 5091 324 17.5 2,9611.22 1.17 9.5 8.510 1470 1336 1540.0 19.41 374 414 104 34.4 282011525.2 9.3 9.3 773 778 20.5 30.0 5081 326 17.6 2,9711.20 1.16 9.5 8.510 1471 1334 1542.0 20.41 354 396 102 31.4 282011525.4 9.3 9.3 777 778 20.5 30.0 5081 326 17.6 2,9711.20 1.16 9.5 8.510 1472 1342 1542.0 20.41 354 396 102 31.4 282011525.4 9.3 9.3 777 778 20.5 30.0 5081 326 17.6 2,9711.20 1.16 9.5 8.510 1472 1349 1544.0 16.8 1335 370 143.4 48 282011526.9 9.3 9.3 777 778 20.5 30.0 5081 326 17.6 2,9711.20 1.16 9.5 8.510 1472 1349 1544.0 16.8 1335 370 1435 14.2 282011526.9 9.3 9.3 777 778 20.5 20.0 5081 327 17.6 2,9711.20 1.16 9.5 8.510 1472 1474 1474 1474 1474 1474 1474 1474	1159	1255	1529.0	19.61	375	420	128	36.3	2830:1515.2	9.3	9.3												
1161 1301 1331.0 23.14 370 429 128 35.7 285011516.8 9.3 9.3 775 778 20.5 29.9 5091 318 17.2 2.9311.23 1.19 9.5 8.510 1163 1307 1533.0 18.11 352 380 129 36.3 284011518.1 9.3 9.3 7.7 764 20.5 29.9 501 131 319 17.2 2.9311.23 1.19 9.5 8.510 1164 1310 1534.0 18.81 338 372 110 36.4 284011519.3 9.3 9.3 775 764 20.5 29.9 501 302 17.3 2.9411.25 1.19 9.5 8.510 1165 1322 1535.0 19.91 346 414 109 35.1 281011521.6 9.3 9.3 7.7 756 20.5 30.0 5091 321 17.3 2.9411.25 1.19 9.5 8.510 1167 1328 1537.0 22.1 413 452 127 33.0 282011521.8 9.3 9.3 777 776 20.5 30.0 5091 321 17.3 2.9411.25 1.19 9.5 8.510 1167 1328 1537.0 22.1 409 446 127 34.0 282011522.7 9.3 9.3 777 776 20.5 30.0 5091 323 17.4 2.9511.22 1.17 9.5 8.510 1168 1330 1538.0 22.11 409 446 127 34.0 282011524.1 9.3 9.3 777 776 20.5 30.0 5091 323 17.4 2.9511.22 1.17 9.5 8.510 1169 1333 1539.0 22.01 396 455 116 34.5 283011525.2 9.3 9.3 777 776 20.5 30.0 501 322 17.5 2.9611.23 1.19 9.5 8.510 1170 1336 1540.0 19.4 374 41 104 34.4 282011525.3 9.3 9.3 777 776 20.5 30.0 5051 325 17.5 2.9611.23 1.19 9.5 8.510 1171 1339 1540.0 20.1 355 391 104 34.6 282011525.7 9.3 9.3 777 776 20.5 30.0 5051 325 17.5 2.9611.23 1.19 9.5 8.510 1172 1342 1542.0 20.4 1 354 396 102 34.8 282011525.4 9.3 9.3 777 775 765 20.6 30.0 5021 327 17.6 2.9711.20 1.16 9.5 8.510 1173 1346 1543.0 154.1 325 371 04 34.4 282011529.4 9.3 9.3 777 775 765 20.6 30.0 5061 332 17.4 2.9511.22 1.17 9.5 8.510 1173 1340 1545.0 22.71 358 484 116 34.8 282011532.4 9.3 9.3 777 775 765 20.6 30.0 5061 332 17.9 2.9911.22 1.16 9.5 8.510 1171 1407 1547.0 22.11 814 424 486 102 35.7 283011532.4 9.3 9.3 777 775 20.6 29.9 5071 333 17.9 2.9911.22 1.20 9.5 8.510 1171 1407 1547.0 22.1 148 42 622 123 35.6 283011535.4 9.3 9.3 777 775 20.6 29.9 5071 333 17.9 2.9911.2 1.16 9.5 8.510 1171 1407 1547.0 22.1 148 42 622 123 35.6 283011535.4 9.3 9.3 777 775 765 20.6 29.9 5071 334 18.0 3.0011.22 1.16 9.5 8.510 1171 1407 1547.0 22.1 148 422 123 35.6 283011535.4 9.3 9.3 777 775 765 20.6 29.9 5071 333 17.9 2.9911.2 1.16 9.5 8.510 1171 1407 1547.0 22.1 1407 1407 1547	1160	1258	1530.0	21.61	388	440	128	37.8	2840:1515./	Y.3	9.5												
1165 1307 1533.0 18.11 352 380 129 34.5 280 1158.1 9.3 9.3 777 764 20.5 29.9 511 319 17.2 2.9311.31 1.26 9.5 8.510 1164 1310 1534.0 18.81 338 372 110 34.4 280115151.6 9.3 9.3 7.3 777 764 20.5 29.9 591 320 17.3 2.9411.26 1.21 9.5 8.510 1165 1322 1355.0 19.91 346 414 109 35.1 281011521.6 9.3 9.3 777 764 20.5 20.0 50.0 50.9 321 17.3 2.9411.26 1.21 9.5 8.510 1167 1328 1537.0 22.21 413 452 127 33.0 282011521.7 9.3 9.3 777 774 20.5 30.0 5091 322 17.4 2.9511.21 1.16 9.5 8.510 1168 1330 1538.0 22.11 409 446 127 34.0 283011524.1 9.3 9.3 777 774 20.5 30.0 5091 322 17.4 2.9511.21 1.17 9.5 8.510 1169 1333 1539.0 22.10 396 435 116 34.5 283011525.2 9.3 9.3 777 775 20.5 30.0 5091 322 17.4 2.9511.22 1.17 9.5 8.510 1170 1333 1540.0 19.41 374 414 104 34.4 282011525.3 9.3 9.3 777 776 20.5 30.0 5091 322 17.6 2.9711.22 1.17 9.5 8.510 1171 1339 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 777 776 20.5 30.0 5091 322 17.6 2.9711.22 1.17 9.5 8.510 1171 1339 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 777 776 20.5 30.0 5031 326 17.6 2.9711.22 1.17 9.5 8.510 1172 1342 1542.0 20.41 334 396 102 34.8 282011525.7 9.3 9.3 777 765 20.6 30.0 5031 326 17.6 2.9711.20 1.16 9.5 8.510 1173 1346 1543.0 15.41 335 367 104 34.4 283011528.4 9.3 9.3 777 765 20.6 30.0 5031 328 17.6 2.9711.20 1.16 9.5 8.510 1175 1401 1545.0 22.71 388 484 116 34.8 282011525.4 9.3 9.3 777 765 20.6 30.0 5041 329 17.7 2.9811.28 1.24 9.5 9.5 9.5 1175 1401 1545.0 22.71 388 484 116 34.8 282011532.4 9.3 9.3 777 765 20.6 20.0 50.0 5041 332 17.9 2.9911.22 1.16 9.5 8.510 1177 1407 1547.0 22.11 418 482 123 35.6 283011534. 9.3 9.3 777 775 20.6 29.9 5071 334 18.0 3.0011.22 1.18 9.5 8.510 1178 1410 1545.0 22.71 448 482 123 35.6 283011534. 9.3 9.3 777 775 20.6 29.9 5071 334 18.0 3.0011.22 1.18 9.5 8.510 1179 1413 1549.0 23.11 481 472 1540.0 440 475 120 37.6 283011535. 9.3 9.3 777 775 20.6 29.9 5071 334 18.0 3.0011.22 1.16 9.5 8.510 1179 1415 1550.0 26.6 455 479 113 37.6 283011535. 9.3 9.3 777 775 750 20.6 29.9 5071 334 18.0 3.0011.22 1.16 9.5 8.510 1187 1442 1557.0 19.9 143 443	1161	1301	1531.0	20.91	367	401	128	37.8	286011515.9	7.3	9.3												
1164 1310 1534,0 18.8 338 372 110 36.4 2940 1519,3 9.3 9.3 775 761 20.5 29.9 509 320 17.3 2.941 2.8 1.2 9.5 8.51b 165 1322 1535,0 19.9 346 441 109 35.1 2810 1521.6 9.3 9.3 772 774 20.5 30.0 509 321 17.3 2.941 1.2 1.16 9.5 8.51b 165 1325 1536,0 12.2 413 452 127 33.0 2820 1521.8 9.3 9.3 772 774 20.5 30.0 509 321 17.3 2.941 1.2 1.16 9.5 8.51b 167 1328 1537,0 22.21 413 452 127 34.0 2830 1524.1 9.3 9.3 772 774 20.5 30.0 509 323 17.4 2.951 2.2 1.17 9.5 8.51b 168 1330 1538.0 22.11 409 446 127 34.0 2830 1524.1 9.3 9.3 772 775 52.0 530.0 507 324 17.5 2.961 1.23 1.17 9.5 8.51b 170 1333 1539.0 22.0 1376 34.1 44.0 43.4 2820 1525.7 9.3 9.3 773 775 758 20.5 30.0 507 324 17.5 2.961 1.2 1.17 9.5 8.51b 170 1334 1540.0 19.4 374 414 40 43.4 2820 1525.7 9.3 9.3 773 775 775 20.5 30.0 503 326 17.6 2.971 2.0 1.16 9.5 8.51b 173 1346 1543.0 15.41 335 347 104 34.4 2820 1525.4 9.3 9.3 773 775 755 20.5 30.0 503 326 17.6 2.971 2.0 1.16 9.5 8.51b 173 1346 1543.0 15.41 335 347 104 34.4 2820 1525.4 9.3 9.3 775 755 20.6 30.0 504 329 17.6 2.971 2.0 1.16 9.5 8.51b 173 1449 1541.0 18.4 395 134 34.5 2820 1532.4 9.3 9.3 775 755 20.6 30.0 504 329 17.6 2.971 2.0 1.16 9.5 8.51b 173 1449 1541.0 1541.0 1441 144	1162	1303	1532.0	23.41	370	429	128	35./	285011516.8	4.9	7.3												
1165 1322 1335,0 19,91 346 414 109 35.1 2810 1521,6 9.3 9.3 7.6 7.50 20.5 30.0 5091 321 17.3 2.9411,23 1.19 9.5 8.51D 1166 1328 1537,0 22.21 413 452 127 33.0 2220 1522.7 9.3 9.3 772 774 20.5 30.0 5091 322 17.4 2.9511,22 1.17 9.5 8.51D 1169 1333 1539,0 22.10 396 435 16 34.5 2830 1525.2 9.3 9.3 775 754 20.5 30.0 5091 322 17.4 2.9511,22 1.17 9.5 8.51D 1169 1333 1539,0 22.10 396 435 116 34.5 2830 1525.2 9.3 9.3 775 754 20.5 30.0 5091 322 17.4 2.9511,22 1.17 9.5 8.51D 1170 1336 1540,0 19,41 374 41 104 34.4 2820 1525.3 9.3 9.3 773 775 20.5 30.0 5091 322 17.6 2.9911,22 1.17 9.5 8.51D 1171 1339 1541,0 20.71 365 391 104 34.6 2820 1525.7 9.3 9.3 773 775 20.5 30.0 5031 326 17.6 2.9911,2 1.16 9.5 8.51D 1172 1342 1542,0 20.41 354 376 104 34.6 2820 1525.8 9.3 9.3 777 778 20.6 30.0 5021 327 17.6 2.9911,2 1.16 9.5 8.51D 1173 1346 1543.0 15.41 335 373 104 35.4 2820 1526.6 9.3 9.3 777 778 20.6 30.0 5041 329 17.7 2.9911,2 1.16 9.5 8.51D 1175 1401 1545.0 22.71 388 484 116 34.8 2820 1532.4 9.3 9.3 777 778 20.5 30.0 5041 329 17.7 2.9911,2 1.16 9.5 8.51D 1176 1403 1546.0 12.71 1336 1345 1	1163	1307	1533.0	18.11	352	280	127	30.3	2040:1310:1	7.0	7.0												
1166 1325 1536.0 22.31 404 437 127 32.1 282011521.8 9.3 9.3 772 751 20.5 30.0 5101 322 17.4 2.9511.21 1.16 9.5 8.51D 1167 1328 1537.0 22.21 413 482 127 33.0 282011522.7 9.3 9.3 772 774 20.5 30.0 5071 323 17.4 2.9511.22 1.17 9.5 8.51D 1168 1330 1538.0 22.11 409 446 127 34.0 283011524.1 9.3 9.3 775 754 20.5 30.0 5071 324 17.5 2.9611.23 1.18 9.5 8.51D 1170 1336 1540.0 19.41 374 414 104 34.4 282011525.7 9.3 9.3 777 776 20.5 30.0 5071 324 17.5 2.9611.21 1.17 9.5 8.51D 1171 1339 1541.0 20.71 355 391 104 34.6 282011525.7 9.3 9.3 777 778 20.6 30.0 5031 326 17.6 2.9711.20 1.16 9.5 8.51D 1171 1339 1541.0 20.71 355 391 104 34.6 282011525.7 9.3 9.3 777 778 20.6 30.0 5031 328 17.6 2.9711.20 1.16 9.5 8.51D 1173 1346 1543.0 15.41 335 373 104 34.2 283011528.4 9.3 9.3 777 778 20.6 30.0 5041 329 17.6 2.9711.20 1.16 9.5 8.51D 1174 1349 1544.0 16.81 335 373 104 35.2 283011528.4 9.3 9.3 775 758 20.6 30.0 5041 329 17.6 2.9711.20 1.16 9.5 8.51D 1174 1349 1544.0 16.81 335 373 104 35.2 283011528.4 9.3 9.3 777 778 20.5 30.0 5041 329 17.6 2.9711.20 1.16 9.5 8.51D 1174 1349 1544.0 16.81 335 373 104 35.2 283011528.4 9.3 9.3 777 778 20.6 30.0 5041 329 17.6 2.9711.20 1.16 9.5 8.51D 1175 1401 1545.0 22.71 358 484 116 34.8 282011533.2 9.3 9.3 777 778 20.6 29.9 5071 333 17.8 2.9911.22 1.22 9.5 8.51D 1176 1403 1546.0 23.71 445 499 128 37.0 281011533.2 9.3 9.3 777 775 20.6 29.9 5071 333 17.9 2.9911.25 1.20 9.5 8.51D 1178 1401 1549.0 23.11 418 482 123 35.6 283011535.1 9.3 9.3 777 775 20.6 29.9 5071 333 17.9 2.9911.25 1.20 9.5 8.51D 1181 1417 1551.0 26.61 455 70 117 37.2 283011535.7 9.3 9.3 777 775 20.6 29.9 5071 333 17.9 2.9911.25 1.20 9.5 8.51D 1181 1424 1557.0 12.91 440 486 123 37.2 283011535.5 9.3 9.3 777 775 20.6 29.9 5071 333 18.0 3.0111.18 1.14 9.5 8.51D 1181 1424 1557.0 12.91 440 486 123 37.2 283011535.5 9.3 9.3 777 775 20.6 29.9 5071 333 18.1 3.0111.18 1.14 9.5 8.51D 1181 1424 1557.0 12.91 440 486 123 37.2 283011535.5 9.3 9.3 777 775 20.6 29.9 5071 333 18.1 3.0111.18 1.14 9.5 8.51D 1181 1442 1557.0 12.91 402 454 128 37.9 283011535.5 9.3 9.	1164	1310	1004.0	18.81	338	3/2	110	75.1	201011317.3	9.3	7.0 Q T												
1167 1328 1537.0 22.21 413 452 127 33.0 282011522.7 9.3 9.3 777 774 20.5 30.0 5091 323 17.4 2.9511.22 1.17 9.5 8.51D 1168 1330 1538.0 22.11 409 446 127 34.0 283011524.1 9.3 9.3 775 754 20.5 30.0 5071 324 17.5 2.9611.23 1.18 9.5 8.51D 1170 1335 1530.0 22.01 396 435 116 34.5 282011525.2 9.3 9.3 773 776 20.5 30.0 5051 325 17.5 2.9611.21 1.17 9.5 8.51D 1171 1339 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 773 776 20.5 30.0 5051 325 17.6 2.9711.20 1.16 9.5 8.51D 1171 1339 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 777 760 20.5 30.0 5021 327 17.6 2.9711.20 1.16 9.5 8.51D 1172 1342 1542.0 20.41 354 396 102 34.8 282011526.9 9.3 9.3 777 760 20.5 30.0 5021 327 17.6 2.9711.20 1.16 9.5 8.51D 1172 1342 1542.0 20.43 35 367 104 34.4 282011528.4 9.3 9.3 777 765 20.6 30.0 5021 327 17.6 2.9711.20 1.16 9.5 8.51D 1173 1346 1543.0 15.41 335 367 104 34.4 282011528.4 9.3 9.3 777 765 20.6 30.0 5041 329 17.7 2.9811.28 1.24 9.5 8.51D 1176 1403 1546.0 23.71 358 484 116 34.8 282011532.4 9.3 9.3 777 765 20.5 30.0 5041 329 17.7 2.9811.28 1.24 9.5 8.51D 1176 1403 1546.0 23.41 445 499 128 37.0 281011533.2 9.3 9.3 777 765 20.5 30.0 5061 331 17.8 2.9911.21 1.16 9.5 8.51D 1176 1403 1546.0 23.41 445 499 128 37.0 281011533.4 9.3 9.3 777 765 20.6 29.9 5071 333 17.9 3.0011.22 1.18 9.5 8.51D 1179 1413 1549.0 23.11 421 486 102 35.7 282011535.5 9.3 9.3 777 765 20.6 29.9 5071 333 17.9 3.0011.22 1.18 9.5 8.51D 1180 1415 1550.0 28.11 464 475 120 37.6 283011535.7 9.3 9.3 777 765 20.6 29.9 5071 333 18.0 3.0111.18 1.14 9.5 8.51D 1181 1417 1551.0 26.6 1455 79 13 37.6 283011535.7 9.3 9.3 777 765 20.6 29.9 5071 333 18.0 3.0111.18 1.14 9.5 8.51D 1181 1421 1557.0 29.41 455 400 37.2 283011535.7 9.3 9.3 777 765 20.6 29.9 5071 333 18.0 3.0111.18 1.14 9.5 8.51D 1181 1421 1557.0 29.41 455 400 37.2 283011535.7 9.3 9.3 777 765 20.6 29.9 5071 334 18.0 3.0011.22 1.16 9.5 8.51D 1181 1421 1557.0 24.01 434 5091 28 37.9 283011535.7 9.3 9.3 777 765 20.6 29.9 5071 334 18.0 3.0011.22 1.16 9.5 8.51D 1181 1442 1557.0 19.91 413 4350 5072 2.2 283011535.7 9.3 9.3 777 765	1100	1322	1000.0) 17,7; , 99 Ti	AAA	417	107	77 1	2920!1521.8	9.3	9.3											9.5	8.51D
168 133 1539, 0 22.01 407 446 127 34.0 283011524.1 9.3 9.3 775 754 20.5 30.0 5071 324 17.5 2.9611.23 1.18 9.5 8.510 1109 1333 1539, 0 22.01 396 435 116 34.5 283011525.2 9.3 9.3 773 776 20.5 30.0 5071 324 17.5 2.9611.23 1.18 9.5 8.510 1170 1333 1540, 0 19.41 374 414 104 34.4 282011525.3 9.3 9.3 772 758 20.6 30.0 5071 325 17.5 2.9611.23 1.18 9.5 8.510 1170 1336 1540, 0 19.41 374 414 104 34.4 282011525.3 9.3 9.3 772 758 20.6 30.0 5071 325 17.5 2.9611.23 1.16 9.5 8.510 1173 1346 1541.0 20.11 354 396 102 34.8 282011526.9 9.3 9.3 773 752 20.6 30.0 5021 327 17.6 2.9711.20 1.16 9.5 8.510 1173 1346 1543.0 15.41 335 377 104 35.2 283011526.9 9.3 9.3 775 765 20.6 30.0 5021 327 17.6 2.9711.20 1.16 9.5 8.510 1174 1349 1544.0 16.81 335 373 104 35.2 283011529.6 9.3 9.3 775 765 20.6 30.0 5041 339 17.7 2.9811.28 1.24 9.5 8.510 1175 1401 1545.0 22.71 358 484 116 34.8 282011524.4 9.3 9.3 775 753 20.5 30.0 5041 339 17.8 2.9911.21 1.16 9.5 8.510 1175 1401 1545.0 22.71 358 484 116 34.8 282011532.4 9.3 9.3 773 758 20.6 29.9 5071 333 17.8 2.9911.21 1.16 9.5 8.510 1177 1407 1547.0 22.11 418 482 123 35.6 283011534.4 9.3 9.3 772 753 20.6 29.9 5071 333 17.9 3.0011.24 1.19 9.5 8.510 1177 1407 1547.0 22.11 418 482 123 35.6 283011535.1 9.3 9.3 772 775 20.6 29.9 5071 334 18.0 3.0011.22 1.18 9.5 8.510 1180 1415 1550.0 28.11 464 475 120 37.6 283011535.5 9.3 9.3 773 778 780 20.6 29.9 5071 333 18.0 3.0011.22 1.18 9.5 8.510 1180 1415 1550.0 28.11 464 475 120 37.6 283011535.7 9.3 9.3 773 778 780 20.6 29.9 5091 338 18.0 3.0011.12 1.16 9.5 8.510 1181 1447 1551.0 26.61 465 479 113 37.6 283011535.4 9.3 9.3 773 778 780 20.6 29.9 5091 338 18.0 3.0011.12 1.16 9.5 8.510 1181 1424 1557.0 19.91 413 443 129 37.9 286011545.8 9.3 9.3 773 778 780 20.6 29.9 5091 338 18.0 3.0011.12 1.16 9.5 8.510 1181 1424 1557.0 19.91 413 443 129 37.9 286011545.8 9.3 9.3 773 775 766 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.510 1191 1453 1561.0 27.81 486 120 37.2 282011537.6 9.3 9.3 773 776 20.6 29.9 5151 340 18.3 3.0411.31 1.26 9.5 8.510 1191 1453 1561.0 27.81 485 20.42 49.9 4	1100	1323 1370	1537 (1 22.31	707 212	457	177	33.0	282011527.7	9.3	9.3											9.5	8.51D
169 1333 1539, 0 22,01 376 435 116 34.5 283011525.2 9.3 9.3 773 776 20.5 30.0 5051 325 17.5 2,9611.21 1.17 9.5 8.51D 170 1336 1540, 0 19.41 374 414 104 34.4 282011525.3 9.3 9.3 772 758 20.6 30.0 5021 327 17.6 2,9711.20 1.16 9.5 8.51D 171 1339 1541, 0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 773 772 20.6 30.0 5021 327 17.6 2,9711.20 1.16 9.5 8.51D 172 1342 1542, 0 20.41 354 396 102 34.8 282011526.9 9.3 9.3 774 760 20.6 30.0 5031 328 17.6 2,9711.20 1.16 9.5 8.51D 173 1346 1543.0 15.41 335 367 104 34.4 283011528.4 9.3 9.3 775 765 20.6 30.0 5041 330 17.8 2,9811.28 1.24 9.5 8.51D 175 1401 1545.0 22.71 358 484 116 34.8 282011532.4 9.3 9.3 775 765 20.6 30.0 5041 330 17.8 2,9811.28 1.24 9.5 8.51D 175 1401 1545.0 22.71 148 482 123 35.6 283011534.4 9.3 9.3 771 761 20.5 30.0 5061 331 17.8 2,9911.21 1.16 9.5 8.51D 177 1407 1547.0 22.11 418 482 123 35.6 283011535.1 9.3 9.3 772 775 20.6 29.9 5071 333 17.9 3.0011.22 1.18 9.5 8.51D 179 1413 1549.0 23.11 421 486 102 35.7 282011535.5 9.3 9.3 773 776 20.6 29.9 5071 333 17.9 3.0011.22 1.18 9.5 8.51D 181 1417 1551.0 28.61 465 475 120 37.6 283011535.9 9.3 9.3 773 778 20.6 29.9 5081 335 18.0 3.011.18 1.14 9.5 8.51D 182 1420 1552.0 25.31 455 466 120 37.2 282011537.6 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.011.18 1.14 9.5 8.51D 184 1424 1554.0 24.91 464 488 115 37.4 284011539.2 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.011.18 1.14 9.5 8.51D 184 1424 1554.0 24.91 464 488 115 37.4 284011539.2 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.011.18 1.14 9.5 8.51D 184 1424 1555.0 24.91 445 450 29.3 2.2 282011535.5 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.011.18 1.14 9.5 8.51D 185 1436 1555.0 27.1 443 45 52 20.4 37.9 280011535.9 9.3 9.3 773 778 20.6 29.9 5151 340 18.2 3.011.12 1.16 9.5 8.51D 185 1436 1555.0 24.01 473 519 28 36.9 280011534.6 9.3 9.3 773 778 20.6 29.9 5151 340 18.2 3.011.12 1.16 9.5 8.51D 185 1436 1555.0 24.01 473 519 28 36.9 280011534.5 9.3 9.3 773 778 780 20.6 29.9 5151 340 18.3 3.011.12 1.16 9.5 8.51D 187 3442 1557.0 19.4 444 450 129 37.2 280011535.9 9.3 9.3 775 756 20.6 29.	110/	1320 1771 :	1539.6	77.1	409	446	177	34.0	2830:1524.1	9.3	9.3					507	324	17.5	2.96	11.23	1.18	9.5	8.5;D
170 1336 1540.0 19.41 374 414 104 34.4 282011525.3 9.3 9.3 772 758 20.6 30.0 5031 326 17.6 2.9711.20 1.16 9.5 8.510 1713 1339 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 774 760 20.6 30.0 5031 328 17.6 2.9711.20 1.16 9.5 8.510 1713 1340 1543.0 15.41 335 367 104 34.4 283011528.4 9.3 9.3 775 765 20.6 30.0 5041 329 17.7 2.9811.22 1.24 9.5 8.510 174 1349 1544.0 16.81 335 373 104 35.2 283011529.6 9.3 9.3 775 765 20.6 30.0 5041 329 17.7 2.9811.22 1.24 9.5 8.510 175 1401 1545.0 22.71 358 484 116 34.8 282011532.4 9.3 9.3 775 765 20.6 30.0 5041 320 17.8 2.9811.22 1.26 1.22 9.5 8.510 176 1403 1546.0 23.41 445 499 128 37.0 281011533.2 9.3 9.3 772 758 20.6 30.0 5041 320 17.8 2.9811.22 1.16 9.5 8.510 176 1403 1546.0 23.41 445 499 128 35.6 283011534.4 9.3 9.3 772 758 20.6 29.9 5071 333 17.9 3.0011.24 1.19 9.5 8.510 177 1407 1547.0 22.11 418 482 123 35.6 283011535.5 9.3 9.3 772 775 20.6 29.9 5071 333 17.9 3.0011.24 1.19 9.5 8.510 179 1413 1549.0 23.11 421 486 102 35.7 282011535.5 9.3 9.3 772 775 20.6 29.9 5071 333 17.9 3.0011.24 1.19 9.5 8.510 1181 1417 1551.0 28.61 465 479 113 37.6 283011535.9 9.3 9.3 773 778 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.510 1181 1417 1551.0 28.61 465 479 113 37.6 283011534.9 9.3 9.3 773 778 20.6 29.9 5071 333 18.1 3.0111.18 1.14 9.5 8.510 1181 1424 1554.0 24.91 464 486 115 37.4 282011537.6 9.3 9.3 773 778 20.6 29.9 5071 333 18.1 3.0211.21 1.16 9.5 8.510 1181 1424 1554.0 24.91 464 486 115 37.4 282011537.6 9.3 9.3 773 778 20.6 29.9 5151 340 18.2 3.0211.16 1.11 9.5 8.510 1181 1424 1555.0 21.41 434 445 1555.0 21.41 444 450 129 37.2 282011537.6 9.3 9.3 773 778 780 20.6 29.9 5151 340 18.2 3.0311.22 1.16 9.5 8.510 1187 1442 1550.0 17.41 444 450 129 37.2 282011545.1 9.3 9.3 773 778 780 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.510 1187 1453 1550.0 17.4 434 450 129 37.2 282011545.1 9.3 9.3 773 778 766 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.510 1191 1453 1560.0 22.81 435 456 219 37.2 282011545.5 9.3 9.3 777 775 766 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.510 1191 1453 1560.0 22.81	!140	1333	1539.(22.01	396	435	116	34.5	2830 1525.2	9.3	9.3					505	325	17.5	2.96	11.21	1.17	9.5	8.51D
171 1339 1541.0 20.71 365 391 104 34.6 282011525.7 9.3 9.3 773 752 20.6 30.0 5021 327 17.6 2.9711.20 1.16 9.5 8.510 172 1342 1542.0 20.41 354 396 102 34.8 282011528.4 9.3 9.3 775 765 20.6 30.0 5041 329 17.6 2.9711.20 1.16 9.5 8.510 17.7 14.7 14.7 14.8 154.0 16.81 335 373 104 35.2 283011528.4 9.3 9.3 775 765 20.6 30.0 5041 329 17.7 2.9811.28 1.24 9.5 8.510 17.7 14.7 14.7 14.8 154.0 16.81 335 373 104 35.2 283011528.4 9.3 9.3 775 765 20.6 30.0 5041 330 17.8 2.9811.26 1.22 9.5 8.510 17.7 14.7 14.7 14.7 14.7 15.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14	1170	1336	1540.0	19.4	374	414	104	34.4	282011525.3	9.3	9.3	772	758	20.6	30.0								
172 1342 1542.0 20.41 354 396 102 34.8 282011526.9 9.3 9.3 775 765 20.6 30.0 5031 328 17.6 27711.20 1.16 9.5 8.510 173 1346 1543.0 15.41 335 367 104 34.4 283011528.4 9.3 9.3 775 765 20.5 30.0 5041 329 17.7 2.9811.28 1.24 9.5 8.510 175 1401 1545.0 22.71 358 484 116 34.8 282011532.4 9.3 9.3 775 753 20.5 30.0 5041 330 17.8 2.9811.26 1.22 9.5 8.510 176 1403 1546.0 23.41 445 499 128 37.0 281011533.2 9.3 9.3 771 761 20.5 30.0 5061 331 17.8 2.9911.21 1.16 9.5 8.510 177 1407 1547.0 22.11 418 482 123 35.6 283011534.4 9.3 9.3 772 753 20.6 29.9 5071 333 17.9 2.9911.22 1.20 9.5 8.510 179 1413 1549.0 23.11 421 486 102 35.7 282011535.5 9.3 9.3 772 775 20.6 29.9 5071 333 17.9 3.0011.22 1.19 9.5 8.510 1190 1415 1550.0 28.11 464 475 120 37.6 283011535.9 9.3 9.3 774 765 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.510 1181 1417 1551.0 26.61 465 479 113 37.6 283011535.7 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.510 1181 142 1553.0 29.41 455 400 117 37.2 282011537.6 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.510 1181 142 1555.0 21.71 434 509 128 38.3 286011542.8 9.3 9.3 773 778 782 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.510 1181 142 1557.0 19.91 413 443 129 37.9 286011545.4 9.3 9.3 775 756 20.6 29.9 5161 341 18.3 3.0311.20 1.16 9.5 8.510 1181 1449 1559.0 0 17.1 434 509 128 38.3 286011541.8 9.3 9.3 775 756 20.6 29.9 5161 341 18.3 3.0311.20 1.16 9.5 8.510 1181 1449 1559.0 0 17.1 434 509 128 38.3 286011541.8 9.3 9.3 775 756 20.6 29.9 5161 343 18.3 3.0311.20 1.16 9.5 8.510 1181 1449 1559.0 0 17.1 434 509 128 38.3 286011545.5 9.3 9.3 776 756 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.510 1181 1449 1559.0 0 17.6 410 459 129 36.9 286011545.5 9.3 9.3 776 756 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.510 1181 1449 1559.0 0 17.6 410 459 129 36.9 286011545.5 9.3 9.3 776 756 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.510 1191 1453 1561.0 27.8 456 514 128 36.1 286011545.5 9.3 9.3 777 757 750 20.6 29.9 5161 345 18.6 3.0711.25 1.20 9.5 8.510 1191 1453 1561.0 27.8 456 514 128 36.1 286011545.5 9.3	117	1339	1541.(20.7	365	391	104	34.6	282011525.7	9.3	9.3												
1173 1346 1543.0 15.4! 335	117	2 1342	1542.0	20.4	354	396	102	34.8	282011526.9	9.3	9.3												
1174 1349 1544.0 16.81 335	117	3 1346	1543.0	15.4	335	367	104	34.4	283011528.4	9.3	9.3												
1176 1403 1546.0 23.41 445 499 128 37.0 28101533.2 9.3 9.3 771 761 20.5 30.0 5061 332 17.9 2.9911.25 1.20 9.5 8.51D 1177 1407 1547.0 22.11 418 482 123 35.6 28301534.4 9.3 9.3 772 775 20.6 29.9 5071 333 17.9 3.0011.24 1.19 9.5 8.51D 1178 1410 1548.0 17.01 430 535 90 35.1 28301535.5 9.3 9.3 772 775 20.6 29.9 5071 334 18.0 3.0011.22 1.18 9.5 8.51D 1179 1413 1549.0 23.11 421 486 102 35.7 28201535.5 9.3 9.3 774 765 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1180 1415 1550.0 28.11 464 475 120 37.6 28301535.7 9.3 9.3 773 778 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1181 1417 1551.0 26.61 465 479 113 37.6 28301536.7 9.3 9.3 773 778 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1181 1417 1551.0 26.61 465 479 113 37.6 28301536.7 9.3 9.3 773 778 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1182 1420 1552.0 25.31 455 466 120 37.2 28201537.6 9.3 9.3 773 764 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1183 1422 1553.0 29.41 455 470 117 37.2 28301538.3 9.3 773 774 765 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1184 1424 1554.0 24.91 464 486 115 37.4 28401539.2 9.3 9.3 773 774 20.6 29.9 5151 340 18.2 3.0211.16 1.11 9.5 8.51D 1184 1424 1554.0 24.91 464 486 115 37.4 28401539.2 9.3 9.3 778 784 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 1184 1442 1557.0 19.91 413 443 129 37.9 28601541.8 9.3 9.3 775 756 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 1189 1449 1559.0 17.61 410 459 129 37.2 28701544.5 9.3 9.3 775 756 20.6 29.9 5151 342 18.3 3.0411.31 1.26 9.5 8.51D 1189 1449 1559.0 17.61 410 459 129 36.9 28601545.1 9.3 9.3 775 756 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1191 1453 1561.0 27.81 465 518 128 36.1 28601545.2 9.3 9.3 775 756 20.6 29.9 5161 346 18.5 3.0711.25 1.20 9.5 8.51D 1192 1456 1562.0 24.01 473 519 128 36.1 28601545.4 9.3 9.3 775 756 20.6 29.9 5171 347 18.5 3.0711.25 1.20 9.5 8.51D 1193 1458 1560.0 22.81 436 467 128 36.9 28601547.4 9.3 9.3 775 756 20.6 29.9 5171 349 18.5 3.0711.25 1.20 9.5 8.51D 1193 1458 1560.0 22.81 436 467 128 36.9 28601547.4 9.3 9.3 777 777 777 777	117	1349	1544.	16.8	335	373	104	35.2	283011529.6	9.3	9.3												
1177 1407 1547.0 22.11 418 482 123 35.6 283011534.4 9.3 9.3 772 753 20.6 29.9 5071 334 18.0 3.0011.24 1.19 9.5 8.51D 1178 1410 1548.0 17.01 430 535 90 35.1 283011535.5 9.3 9.3 772 775 20.6 29.9 5071 334 18.0 3.0011.22 1.18 9.5 8.51D 1181 1417 1551.0 26.61 465 479 113 37.6 283011535.7 9.3 9.3 774 765 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1181 1417 1551.0 26.61 465 479 113 37.6 283011535.7 9.3 9.3 771 758 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1182 1420 1552.0 25.31 455 466 120 37.2 282011537.6 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1183 1422 1553.0 29.41 455 470 117 37.2 283011538.3 9.3 9.3 773 764 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1184 1424 1554.0 24.91 464 486 115 37.4 284011539.2 9.3 9.3 773 774 775 20.6 29.9 5091 337 18.1 3.0211.21 1.16 9.5 8.51D 1185 1436 1555.0 21.71 434 509 128 38.3 286011541.8 9.3 9.3 773 774 775 20.6 29.9 5161 341 18.3 3.0311.20 1.16 9.5 8.51D 1187 1442 1557.0 19.91 413 443 129 37.9 286011542.8 9.3 9.3 776 762 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 1189 1449 1559.0 17.61 410 459 129 37.2 287011544.5 9.3 9.3 775 766 20.6 29.9 5151 340 18.4 3.0511.30 1.25 9.5 8.51D 1189 1449 1559.0 17.61 410 459 129 36.9 286011545.5 9.3 9.3 775 766 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.51D 1191 1453 1560.0 22.81 436 467 128 36.8 285011545.2 9.3 9.3 775 766 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.51D 1191 1453 1561.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 780 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1192 1456 1562.0 24.01 473 519 128 36.1 286011545.5 9.3 9.3 775 780 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1193 1458 1563.0 27.81 465 514 128 36.1 286011545.4 9.3 9.3 775 780 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1193 1450 1560.0 22.81 436 467 128 36.8 285011545.5 9.3 9.3 775 780 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1193 1450 1560.0 22.81 436 467 128 36.8 285011545.5 9.3 9.3 775 780 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1193 1450 1560.0 22.81 436 467 128 36.1 286011545.	117	5 1401	1545.	22.7	358	484	116	34.8	2820:1532.4	9.3	9.3												
1178 1410 1548.0 17.0 430 535 90 35.1 283011535.1 9.3 9.3 772 775 20.6 29.9 5071 334 18.0 3.0011.22 1.18 9.5 8.51D 1179 1413 1549.0 23.11 421 486 102 35.7 282011535.5 9.3 9.3 774 765 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1180 1415 1550.0 28.11 464 475 120 37.6 283011535.7 9.3 9.3 773 778 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1181 1417 1551.0 26.61 465 479 113 37.6 283011536.7 9.3 9.3 771 758 20.6 29.9 5081 336 18.0 3.0111.18 1.14 9.5 8.51D 1182 1420 1552.0 25.31 455 466 120 37.2 282011537.6 9.3 9.3 773 764 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1183 1422 1553.0 29.41 455 470 117 37.2 283011538.3 9.3 9.3 773 764 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1184 1424 1554.0 24.91 464 486 115 37.4 284011539.2 9.3 9.3 773 764 20.6 29.9 5151 340 18.2 3.0211.20 1.16 9.5 8.51D 1185 1436 1555.0 21.71 434 509 128 38.3 286011541.8 9.3 9.3 778 783 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 1187 1442 1557.0 19.91 413 443 129 37.9 286011542.8 9.3 9.3 776 762 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.51D 1188 1445 1558.0 19.41 414 450 129 37.2 287011544.5 9.3 9.3 775 766 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.51D 1189 1449 1559.0 17.61 410 459 129 36.9 286011545.1 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0611.32 1.27 9.5 8.51D 1190 1451 1560.0 22.81 436 467 128 36.1 286011545.5 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1191 1453 1561.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 756 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 1191 1453 1561.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 756 20.6 29.9 5161 345 18.5 3.0711.19 1.14 9.5 8.51D 1192 1456 1562.0 24.01 473 519 128 36.1 286011545.5 9.3 9.3 775 756 20.6 29.9 5161 345 18.5 3.0711.19 1.14 9.5 8.51D 1193 1458 1563.0 25.51 489 518 128 36.9 286011545.1 9.3 9.3 777 755 20.6 20.9 5161 345 18.5 3.0711.19 1.14 9.5 8.51D 1194 1511 1564	117	6 1403	3 1546.	0 23.4	445	499	128	37.0	281011533.2	9.3	9.3												
1179 1413 1549.0 23.11 421 486 102 35.7 282011535.5 9.3 774 765 20.6 29.9 5081 335 18.0 3.0111.18 1.14 9.5 8.51D 1415 1550.0 28.11 464 475 120 37.6 283011535.9 9.3 9.3 773 778 20.6 29.9 5081 336 18.0 3.0111.18 1.14 9.5 8.51D 1417 1551.0 26.6 465 465 479 113 37.6 283011535.7 9.3 9.3 771 758 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1418 1424 1552.0 25.31 455 466 120 37.2 282011537.6 9.3 9.3 773 764 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1418 1424 1553.0 29.41 455 470 117 37.2 283011538.3 9.3 9.3 772 751 20.6 29.9 5091 338 18.1 3.0211.21 1.16 9.5 8.51D 1418 1424 1554.0 24.91 464 486 115 37.4 284011539.2 9.3 9.3 773 754 20.6 29.9 5151 340 18.2 3.0211.16 1.11 9.5 8.51D 1418 1424 1555.0 21.71 434 509 128 38.3 286011541.8 9.3 9.3 778 783 20.6 29.9 5161 341 18.3 3.0311.28 1.23 9.5 8.51D 1418 1455 1550.0 19.21 402 454 128 37.6 286011542.8 9.3 9.3 776 762 20.6 29.9 5151 342 18.3 3.0411.31 1.26 9.5 8.51D 1418 1455 1550.0 19.41 414 450 129 37.2 287011544.5 9.3 9.3 775 756 20.6 29.9 5151 342 18.3 3.0411.31 1.26 9.5 8.51D 148 1445 1558.0 19.41 414 450 129 37.2 287011544.5 9.3 9.3 775 756 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.51D 148 1445 1550.0 22.81 436 467 128 36.8 285011545.2 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0611.32 1.27 9.5 8.51D 149 1451 1560.0 22.81 436 467 128 36.8 285011545.5 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0611.32 1.27 9.5 8.51D 149 1451 1560.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 760 20.6 29.9 5161 346 18.5 3.0711.25 1.20 9.5 8.51D 149 1451 1560.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 760 20.6 29.9 5161 346 18.5 3.0711.25 1.20 9.5 8.51D 149 1515 1560.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 755 20.6 30.0 5171 349 18.6 3.0611.32 1.27 9.5 8.51D 149 1515 1560.0 23.41 447 516 124 31.6 285011550.1 9.3 777 776 755 20.6 30.0 5171 349 18.6 3.0711.21 1.14 9.5 8.51D 149 1514 1545 0.24 417 477 18.6 3.0811.22 1.17 9.5 8.51D 149 1514 1546 0.24 417 477 18.6 34 130 36.4 288011551.5 9.3 777 776 776 775 20.6 30.0 5171 349 18.6 3.0711.21 1.16 9.5 8.51D 149 1514 1	117	7 1407	7 1547.	0 22.1	1 418	482	123	35.6	283011534.4	9.3	9.3												
1180 1415 1550.0 28.11 464 475 120 37.6 283011535.9 9.3 9.3 773 778 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1811 1417 1551.0 26.61 465 479 113 37.6 283011536.7 9.3 9.3 771 758 20.6 29.9 5091 337 18.1 3.0111.18 1.14 9.5 8.51D 1812 1420 1552.0 25.31 455 466 120 37.2 282011537.6 9.3 9.3 773 764 20.6 29.9 5091 338 18.1 3.0211.21 1.16 9.5 8.51D 1813 1422 1553.0 29.41 455 470 117 37.2 283011538.3 9.3 9.3 772 751 20.6 29.9 5091 338 18.1 3.0211.21 1.16 9.5 8.51D 1814 1424 1554.0 24.91 464 486 115 37.4 284011539.2 9.3 9.3 773 754 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 1815 1436 1555.0 21.71 434 509 128 38.3 286011541.8 9.3 9.3 778 783 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 1816 1439 1556.0 19.21 402 454 128 37.6 286011542.8 9.3 9.3 776 762 20.6 29.9 5151 342 18.3 3.0411.31 1.26 9.5 8.51D 1818 1445 1558.0 19.41 414 450 129 37.2 287011544.5 9.3 9.3 775 756 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.51D 1818 1445 1558.0 19.41 414 450 129 37.2 287011545.5 9.3 9.3 775 766 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.51D 1190 1451 1560.0 22.81 436 467 128 36.8 285011545.2 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0611.32 1.27 9.5 8.51D 1191 1453 1560.0 22.81 436 467 128 36.8 285011545.5 9.3 9.3 775 776 20.6 29.9 5161 346 18.5 3.0711.25 1.20 9.5 8.51D 1191 1453 1560.0 22.81 436 467 128 36.8 285011545.5 9.3 9.3 775 776 20.6 29.9 5161 346 18.5 3.0711.25 1.20 9.5 8.51D 1191 1453 1560.0 22.81 436 467 128 36.8 285011545.5 9.3 9.3 775 780 20.6 29.9 5161 346 18.5 3.0711.25 1.20 9.5 8.51D 1192 1456 1562.0 24.01 473 519 128 36.1 286011545.5 9.3 9.3 775 776 20.6 29.9 5171 347 18.5 3.0711.19 1.14 9.5 8.51D 1193 1458 1563.0 25.51 489 518 28 36.1 286011545.1 9.3 9.3 777 777 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.51D 1193 1458 1564.0 23.41 447 516 24 31.6 285011550.1 9.3 9.3 777 777 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.51D 1193 1458 1564.0 23.41 447 516 544 18.4 284011551.2 9.3 9.3 777 777 777 777 777 777 777 777 777 7	117	8 1410	1548.	0 17.0	430	535	9(35.1	283011535.1	7.3	9.5												
180 1415 1550.0 26.61 465	117	9 141	3 1549.	0 23.1	1 421	486	107	2 35.7	2820:1535.5	7.3	7.5												
181 1417 1551.0 26.81 485 477 113 37.8 283011537.6 9.3 9.3 773 764 20.6 29.9 5091 338 18.1 3.0211.21 1.16 9.5 8.510 183 1422 1553.0 29.41 455 470 117 37.2 283011538.3 9.3 9.3 772 751 20.6 29.9 5131 339 18.2 3.0211.16 1.11 9.5 8.510 184 1424 1554.0 24.91 464 486 115 37.4 284011539.2 9.3 9.3 773 754 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.510 185 1436 1555.0 21.71 434 509 128 38.3 286011541.8 9.3 9.3 778 783 20.6 29.9 5161 341 18.3 3.0311.28 1.23 9.5 8.510 187 1442 1557.0 19.91 413 443 129 37.9 286011543.6 9.3 9.3 776 762 20.6 29.9 5151 342 18.3 3.0411.31 1.26 9.5 8.510 188 1445 1558.0 19.41 414 450 129 37.2 287011544.5 9.3 9.3 775 756 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.510 189 1449 1559.0 17.61 410 459 129 36.9 286011545.1 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0611.32 1.27 9.5 8.510 19.1 1453 1561.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 780 20.6 29.9 5171 347 18.5 3.0711.25 1.20 9.5 8.510 192 1456 1562.0 24.01 473 519 128 36.1 286011545.4 9.3 9.3 775 776 777 20.6 29.9 5171 347 18.5 3.0711.25 1.20 9.5 8.510 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 775 776 777 20.6 29.9 5171 347 18.5 3.0711.19 1.14 9.5 8.510 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 775 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.510 193 1458 1563.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 776 775 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.510 193 1458 1563.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 776 775 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.510 193 1458 1563.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 777 775 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.510 193 1458 1563.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 777 775 20.7 30.0 5151 350 18.7 3.0911.12 1.16 9.5 8.510 193 1458 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 774 775 20.7 30.0 5151 350 18.7 3.0911.21 1.16 9.5 8.510 193 1458 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 774 775 20.7 30.0 5151 350 18.7 3.0911.21 1.16 9.5 8.510 193 1458 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 774 77	118	0 141	5 1550.	0 28.1	1 464	475	120	37.6	2830:1535.9	7.3	7.3	7/3	: //O 750) ZV.0	27.7	50 9	! 330	18.	1 3.0	111.18			
182 1420 1532.0 29.41 455 470 117 37.2 283011538.3 9.3 9.3 772 751 20.6 29.9 5131 339 18.2 3.0211.16 1.11 9.5 8.51D 1414 1424 1554.0 24.91 464 486 115 37.4 284011539.2 9.3 9.3 773 754 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 185 1436 1555.0 21.71 434 509 128 38.3 286011541.8 9.3 9.3 778 783 20.6 29.9 5161 341 18.3 3.0311.28 1.23 9.5 8.51D 186 1439 1556.0 19.21 402 454 128 37.6 286011542.8 9.3 9.3 776 762 20.6 29.9 5151 342 18.3 3.0411.31 1.26 9.5 8.51D 187 1442 1557.0 19.91 413 443 129 37.9 286011543.6 9.3 9.3 775 756 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.51D 188 1445 1558.0 19.41 414 450 129 37.2 287011544.5 9.3 9.3 774 777 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.51D 189 1449 1559.0 17.61 410 459 129 36.9 286011545.1 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0611.32 1.27 9.5 8.51D 190 1451 1560.0 22.81 436 467 128 36.8 285011545.2 9.3 9.3 775 780 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 191 1453 1561.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 780 20.6 29.9 5171 347 18.5 3.0711.25 1.20 9.5 8.51D 192 1456 1562.0 24.01 473 519 128 36.1 286011545.5 9.3 9.3 775 780 20.6 29.9 5171 347 18.5 3.0711.19 1.14 9.5 8.51D 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.51D 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.51D 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.51D 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.51D 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.51D 193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.51D 195 1514 1514 1565 0.2 44.516 541 130 36.4 288011551.2 9.3 9.3 777 777 20.7 30.0 5151 351 18.7 3.0911.21 1.16 9.5 8.51D	118	1 141	/ 1551.	0 26.6	1 462) 4/5	111	3 3/.0 0 77 1)	7.0	7.0												
188 1422 1535.0 27.41 433 476 117 37.2 284011539.2 9.3 7.3 754 20.6 29.9 5151 340 18.2 3.0311.20 1.16 9.5 8.51D 185 1436 1555.0 21.71 434 509 128 38.3 286011541.8 9.3 9.3 778 783 20.6 29.9 5161 341 18.3 3.0311.28 1.23 9.5 8.51D 186 1439 1556.0 19.21 402 454 128 37.6 286011542.8 9.3 9.3 776 762 20.6 29.9 5151 342 18.3 3.0411.31 1.26 9.5 8.51D 187 1442 1557.0 19.91 413 443 129 37.9 286011543.6 9.3 9.3 775 756 20.6 29.9 5151 343 18.4 3.0511.30 1.25 9.5 8.51D 188 1445 1558.0 19.41 414 450 129 37.2 287011544.5 9.3 9.3 774 777 20.6 29.9 5151 344 18.4 3.0511.30 1.25 9.5 8.51D 189 1449 1559.0 17.61 410 459 129 36.9 286011545.1 9.3 9.3 775 766 20.6 29.9 5161 345 18.5 3.0611.32 1.27 9.5 8.51D 19.0 1451 1560.0 22.81 436 467 128 36.8 285011545.2 9.3 9.3 773 759 20.6 29.9 5161 345 18.5 3.0711.25 1.20 9.5 8.51D 19.1 1453 1561.0 27.81 465 514 128 36.1 286011545.5 9.3 9.3 775 780 20.6 29.9 5171 347 18.5 3.0711.19 1.14 9.5 8.51D 19.1 1450 1562.0 24.01 473 519 128 36.1 286011545.5 9.3 9.3 775 780 20.6 29.9 5171 347 18.5 3.0711.23 1.18 9.5 8.51D 19.1 1451 1564.0 23.41 447 516 124 31.6 285011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.51D 19.1 1511 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 772 777 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.51D 19.4 1511 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 774 753 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.51D 19.4 1511 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 774 753 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.51D 19.4 1511 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 774 753 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.51D	118	2 142	0 1552.	0 25.3	1 400	9 400 : 47/) 17(0 3/. <i>.</i> 7 77 '	0./CLI:V2BZ	7.0	7.0 7.0												
184 1424 1534.0 24.71 444 450 129 37.9 2860 1541.8 9.3 9.3 778 783 20.6 29.9 516 341 18.3 3.03 1.28 1.23 9.5 8.5 D 188 1445 1558.0 19.4 414 450 129 37.2 2870 1544.5 9.3 9.3 775 756 20.6 29.9 515 342 18.3 3.04 1.31 1.25 9.5 8.5 D 189 1449 1559.0 17.6 410 459 129 36.9 2860 1545.1 9.3 9.3 775 766 20.6 29.9 515 344 18.4 3.05 1.30 1.25 9.5 8.5 D 19.1 1560.0 22.8 436 467 128 36.8 2850 1545.2 9.3 9.3 775 766 20.6 29.9 516 345 18.5 3.06 1.32 1.27 9.5 8.5 D 19.1 1453 1561.0 27.8 465 514 128 36.1 2860 1545.5 9.3 9.3 775 780 20.6 29.9 516 345 18.5 3.07 1.25 1.20 9.5 8.5 D 19.1 1453 1561.0 27.8 465 514 128 36.1 2860 1545.5 9.3 9.3 775 780 20.6 29.9 516 346 18.5 3.07 1.25 1.20 9.5 8.5 D 19.1 1453 1561.0 27.8 465 514 128 36.1 2860 1545.5 9.3 9.3 775 780 20.6 29.9 516 346 18.5 3.07 1.12 1.14 9.5 8.5 D 19.1 1450 1562.0 24.0 473 519 128 36.1 2860 1545.4 9.3 9.3 775 780 20.6 29.9 517 347 18.5 3.07 1.12 1.14 9.5 8.5 D 19.1 1564.0 23.4 447 516 124 31.6 2850 1550.1 9.3 9.3 776 755 20.6 30.0 517 349 18.6 3.08 1.22 1.17 9.5 8.5 D 19.4 1511 1564.0 23.4 447 516 124 31.6 2850 1550.1 9.3 9.3 774 753 20.7 30.0 515 351 18.7 3.09 1.21 1.16 9.5 8.5 D 19.5 1514 1565 0.24 4 514 545 544 130 36.4 2840 1551.2 9.3 9.3 774 753 20.7 30.0 515 351 18.7 3.09 1.21 1.16 9.5 8.5 D	118	3 142	2 1553. 4 1554	0 29.4 0 04.0	1 400	3 4/(1 40/) 11. L 11:	/ 3/., 5 77 /	. 2030:1330:3 1 2030:1330:3	9,0	, 7.0 7.0												
186 1439 1556.0 19.2; 402 454 128 37.6 2860 1542.8 9.3 9.3 776 762 20.6 29.9 515; 342 18.3 3.04 1.31 1.26 9.5 8.5 D 187 1442 1557.0 19.9; 413 443 129 37.9 2860 1543.6 9.3 9.3 775 756 20.6 29.9 515; 343 18.4 3.05 1.30 1.25 9.5 8.5 D 188 1445 1558.0 19.4; 414 450 129 37.2 2870 1544.5 9.3 9.3 774 777 20.6 29.9 515; 344 18.4 3.05 1.30 1.25 9.5 8.5 D 189 1449 1559.0 17.6; 410 459 129 36.9 2860 1545.1 9.3 9.3 775 766 20.6 29.9 516; 344 18.4 3.05 1.30 1.25 9.5 8.5 D 190 1451 1560.0 22.8; 436 467 128 36.8 2850 1545.2 9.3 9.3 775 766 20.6 29.9 516; 345 18.5 3.06 1.32 1.27 9.5 8.5 D 191 1453 1561.0 27.8; 465 514 128 36.1 2860 1545.5 9.3 9.3 775 780 20.6 29.9 516; 346 18.5 3.07 1.25 1.20 9.5 8.5 D 192 1456 1562.0 24.0; 473 519 128 36.1 2860 1545.5 9.3 9.3 774 761 20.6 30.0 517; 347 18.5 3.07 1.23 1.18 9.5 8.5 D 193 1458 1563.0 25.5; 489 518 128 36.9 2860 1547.4 9.3 9.3 776 755 20.6 30.0 517; 349 18.6 3.08 1.22 1.17 9.5 8.5 D 194 1511 1564.0 23.4; 447 516 124 31.6 2850 1550.1 9.3 9.3 774 753 20.7 30.0 515; 350 18.7 3.09 1.18 1.13 9.5 8.5 D 195 1514 1565 0 24 4; 514 544 544 130 36.4 2840 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09 1.21 1.16 9.5 8.5 D 195 1514 1565 0 24 4; 515 544 130 36.4 2840 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09 1.21 1.16 9.5 8.5 D 197 1514 1565 0 24 4; 516 544 130 36.4 2840 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09 1.21 1.16 9.5 8.5 D 198 1495 1514 1565 0 24 4; 516 544 130 36.4 2840 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09 1.21 1.16 9.5 8.5 D 199 1496 1497 1497 1497 1497 1497 1497 1497 1497	118	4 142 = 187	4 1334. L 1866	V 29.7	1 404 1 ATA	1 400 1 500	3 11: 3 17:	8 48 . 7 7/*.	7 204011537.2 3 28AN:1541.8	9.3	3 9.3												
1187 1442 1557.0 19.91 413 443 129 37.9 2860 1543.6 9.3 9.3 775 756 20.6 29.9 5151 343 18.4 3.05 1.30 1.25 9.5 8.5 D 1188 1445 1558.0 19.41 414 450 129 37.2 2870 1544.5 9.3 9.3 774 777 20.6 29.9 5151 344 18.4 3.05 1.30 1.25 9.5 8.5 D 1189 1449 1559.0 17.6 410 459 129 36.9 2860 1545.1 9.3 9.3 775 766 20.6 29.9 516 345 18.5 3.06 1.32 1.27 9.5 8.5 D 1190 1451 1560.0 22.8 436 467 128 36.8 2850 1545.2 9.3 9.3 773 759 20.6 29.9 516 346 18.5 3.07 1.25 1.20 9.5 8.5 D 1191 1453 1561.0 27.8 465 514 128 36.1 2860 1545.5 9.3 9.3 775 780 20.6 29.9 517 347 18.5 3.07 1.19 1.14 9.5 8.5 D 1192 1456 1562.0 24.0 473 519 128 36.1 2860 1545.6 9.3 9.3 774 761 20.6 30.0 517 348 18.6 3.07 1.23 1.18 9.5 8.5 D 1193 1458 1563.0 25.5 489 518 128 36.9 2860 1547.4 9.3 9.3 776 755 20.6 30.0 517 349 18.6 3.08 1.22 1.17 9.5 8.5 D 1194 1511 1564.0 23.4 447 516 124 31.6 2850 1550.1 9.3 9.3 774 753 20.7 30.0 515 350 18.7 3.09 1.18 1.13 9.5 8.5 D 1195 1514 1565 0 26 4 516 54 544 516 544 130 36.4 2840 1551.2 9.3 9.3 774 753 20.7 30.0 515 351 18.7 3.09 1.21 1.16 9.5 8.5 D	118	0 140 1 187	0 1227°	0 21.7 0 19 7	1 405 1 405	, JO:	1 12:	8 37. <i>1</i>	5 286011547.8 5 286011542.8	9.3	3 9.3											9.5	8.51D
188 1445 1558.0 19.4; 414 450 129 37.2 2870; 1544.5 9.3 9.3 774 777 20.6 29.9 515; 344 18.4 3.05; 1.30 1.25 9.5 8.5; 189 1449 1559.0 17.6; 410 459 129 36.9 2860; 1545.1 9.3 9.3 775 766 20.6 29.9 516; 345 18.5 3.06; 1.32 1.27 9.5 8.5; 190 1451 1560.0 22.8; 436 467 128 36.8 2850; 1545.2 9.3 9.3 773 759 20.6 29.9 516; 346 18.5 3.07; 1.25 1.20 9.5 8.5; 191 1453 1561.0 27.8; 465 514 128 36.1 2860; 1545.5 9.3 9.3 775 780 20.6 29.9 517; 347 18.5 3.07; 1.19 1.14 9.5 8.5; 192 1456 1562.0 24.0; 473 519 128 36.1 2860; 1546.6 9.3 9.3 774 761 20.6 30.0 517; 348 18.6 3.07; 1.23 1.18 9.5 8.5; 193 1458 1563.0 25.5; 489 518 128 36.9 2860; 1547.4 9.3 9.3 776 755 20.6 30.0 517; 349 18.6 3.08; 1.22 1.17 9.5 8.5; 194 1511 1564.0 23.4; 447 516 124 31.6 2850; 1550.1 9.3 9.3 772 777 20.7 30.0 515; 350 18.7 3.09; 1.18 1.13 9.5 8.5; 195 1514 1565.0 24.4; 516 544 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 195 1514 1565.0 24.4; 516 544 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 195 1514 1565.0 24.4; 516 544 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 195 1514 1565.0 24.4; 516 544 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 195 18.7 3.																							
189 1449 1559.0 17.6; 410 459 129 36.9 2860; 1545.1 9.3 9.3 775 766 20.6 29.9 516; 345 18.5 3.06; 1.32 1.27 9.5 8.5; 1.90 1451 1560.0 22.8; 436 467 128 36.8 2850; 1545.2 9.3 9.3 773 759 20.6 29.9 516; 346 18.5 3.07; 1.25 1.20 9.5 8.5; 1.91 1453 1561.0 27.8; 465 514 128 36.1 2860; 1545.5 9.3 9.3 775 780 20.6 29.9 517; 347 18.5 3.07; 1.19 1.14 9.5 8.5; 1.92 1456 1562.0 24.0; 473 519 128 36.1 2860; 1546.6 9.3 9.3 774 761 20.6 30.0 517; 348 18.6 3.07; 1.23 1.18 9.5 8.5; 1.93 1458 1563.0 25.5; 489 518 128 36.9 2860; 1547.4 9.3 9.3 776 755 20.6 30.0 517; 349 18.6 3.08; 1.22 1.17 9.5 8.5; 1.94 1511 1564.0 23.4; 447 516 124 31.6 2850; 1550.1 9.3 9.3 772 777 20.7 30.0 515; 350 18.7 3.09; 1.18 1.13 9.5 8.5; 1.95 1514 1565.0 26.4; 516 124 31.6 2850; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1.95 1514 1565.0 26.4; 516 134 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1.95 1514 1565.0 26.4; 516 134 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1.95 1514 1565.0 26.4; 516 134 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1.95 1514 1565.0 26.4; 516 134 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1.95 1514 1565.0 26.4; 516 134 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1.95 1514 1565.0 26.4; 516 134 130 36.4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1.95 1514 1565.0 26.4; 516 134 136 136; 5	119	, 177 8 144	- 2007. 5 558.	0 19.4	414	450	0 12	9 37	2 2870:1544.5	9.	3 9.3					515	344	18.	4 3.0	5:1.30	1.25		
190 1451 1560.0 22.8 436 467 128 36.8 2850 1545.2 9.3 9.3 773 759 20.6 29.9 516 346 18.5 3.07 1.25 1.20 9.5 8.5 D 191 1453 1561.0 27.8 465 514 128 36.1 2860 1545.5 9.3 9.3 775 780 20.6 29.9 517 347 18.5 3.07 1.19 1.14 9.5 8.5 D 192 1456 1562.0 24.0 473 519 128 36.1 2860 1546.6 9.3 9.3 774 761 20.6 30.0 517 348 18.6 3.07 1.23 1.18 9.5 8.5 D 193 1458 1563.0 25.5 489 518 128 36.9 2860 1547.4 9.3 9.3 776 755 20.6 30.0 517 349 18.6 3.08 1.22 1.17 9.5 8.5 D 194 1511 1564.0 23.4 447 516 124 31.6 2850 1550.1 9.3 9.3 772 777 20.7 30.0 515 350 18.7 3.09 1.18 1.13 9.5 8.5 D 185 1510 185 155 0 26.4 516 154 156 5.0 26.4 516 154 156 5.0 26.4 516 154 156 5.0 26.4 516 154 156 5.0 26.4 516 154 156 5.0 26.4 516 154 156 5.0 26.4 516 154 156 5.0 26.4 516 156 156 156 156 156 156 156 156 156																							
1191 1453 1561.0 27.8! 465 514 128 36.1 2860 1545.5 9.3 9.3 775 780 20.6 29.9 517; 347 18.5 3.0/;1.19 1.14 9.5 8.5;0 192 1456 1562.0 24.0; 473 519 128 36.1 2860 1546.6 9.3 9.3 774 761 20.6 30.0 517; 348 18.6 3.07;1.23 1.18 9.5 8.5;0 193 1458 1563.0 25.5; 489 518 128 36.9 2860 1547.4 9.3 9.3 776 755 20.6 30.0 517; 349 18.6 3.08;1.22 1.17 9.5 8.5;0 194 1511 1564.0 23.4; 447 516 124 31.6 2850 1550.1 9.3 9.3 772 777 20.7 30.0 515; 350 18.7 3.09;1.18 1.13 9.5 8.5;0 185 1518 1565 0 26 4; 516 541 130 36.4 2840 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09;1.21 1.16 9.5 8.5;0	119	0 145	1 1560.	0 22.8	11 43	5 46	7 12	8 36.	8 285011545.2	9.3	3 9.3	773											
1192 1456 1562.0 24.01 473 519 128 36.1 286011546.6 9.3 9.3 774 761 20.6 30.0 5171 348 18.6 3.0711.23 1.18 9.5 8.510 1193 1458 1563.0 25.51 489 518 128 36.9 286011547.4 9.3 9.3 776 755 20.6 30.0 5171 349 18.6 3.0811.22 1.17 9.5 8.510 1194 1511 1564.0 23.41 447 516 124 31.6 285011550.1 9.3 9.3 772 777 20.7 30.0 5151 350 18.7 3.0911.18 1.13 9.5 8.510 1195 1514 1565 0 26 41 516 541 130 36.4 284011551.2 9.3 9.3 774 753 20.7 30.0 5151 351 18.7 3.0911.21 1.16 9.5 8.510	119	1 145	3 1561.	0 27.E	11 46	5 51	4 12	8 36.	1 2860:1545.5	9.	3 9.3	775											
1193 1458 1563.0 25.5; 489 518 128 36.9 2860; 1547.4 9.3 9.3 776 755 20.6 30.0 517; 349 18.6 3.08; 1.22 1.17 9.3 8.5; 1194 1511 1564.0 23.4; 447 516 124 31.6 2850; 1550.1 9.3 9.3 772 777 20.7 30.0 515; 350 18.7 3.09; 1.18 1.13 9.5 8.5; 1195 1514 1565 0 24 4; 514 541 130 36 4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1195 1514 1565 0 24 4; 514 541 130 36 4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1195 1514 1565 0 24 4; 514 541 130 36 4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1195 1514 1565 0 24 4; 514 541 130 36 4 2840; 1551.2 9.3 9.3 774 753 20.7 30.0 515; 351 18.7 3.09; 1.21 1.16 9.5 8.5; 1195 1514 1565 0 24 4; 1195 1565 0 24 4; 1195 1565 0 24 4; 1195 1565 0 24 4; 1195 1565 0 24 4; 1	119	2 145	6 1562.	0 24.0	1 47	3 51	9 12	8 36.	1 2860:1546.6	9.	3 9.3	774											
1174 1311 1364.0 23.41 447 316 124 31.6 263011350.1 715 716 772 777 2017 1311 1364.0 23.41 447 316 124 31.6 263011350.1 715 716 712 777 2017 1311 1364.0 23.41 447 316 124 31.6 263011350.1 715 716 712 777 2017 1311 1364.0 23.41 447 316 124 31.6 263011350.1 715 716 712 777 2017 1311 1364.0 23.41 447 316 124 31.6 263011350.1 715 716 712 777 2017 1311 1364.0 23.41 447 316 124 31.6 263011350.1 715 716 712 777 2017 1311 1364.0 23.41 130 36.4 284011551.2 9.3 9.3 774 753 20.7 30.0 5151 351 18.7 3.0911.21 1.16 9.5 8.51D	119	3 145	8 1563.	0 25.5	1 48	9 51	8 12	B 36.	9 2860:1547.4	9.	3 9.3	776											
1195 1514 1565.0 26.41 516 541 130 36.4 284011551.2 9.3 9.3 774 753 20./ 30.0 515; 351 18./ 3.04;1.21 1.18 9.5 8.5.0	. 119	4 151	1 1564.	0 23.4	44	7 51	6 12	4 31.	6 2850:1550.1	9.	3 9.3		2 77	/ 20.	/ 30.0								
	119	75 151	4 1565	0 26.4	11 51	6 54	i 13	0 36.	4 2840 1551.2	9.	3 9.3	774	4 75	s 20.	/ 30.0 	516 	166 it	18.	7 3.0	·7 · 1 · 2 · ·-4	. 1.10	7::	+ 1 0.711

_												nara			+-			+				+
	TIME	DEPTH	+	 1001	 111C	DDM	HUB BUR	PUMPIRTRNS	MD 1	h/nal	FI N	H/MTN	I TEI	4P (C)	PVT	-THIS	BIT-	EST!	DXC	NXB	ECD	NXMD:
i Tif	IIUC	VELIU	m/hr!	ΔUG	₩ΔY	ΔVR	AVG	PRESIDEPTH	TN	OUT	IN	יייטס	IN.	OUT	1	M	hr	TW!				ļ
: 		III	#/## +	HYU				PRESIDEPTH							+			+				+
1194	1514	1544.0	24.2!	503	538	130	36.6	2840:1552.3	9.3	9.3	773	776	20.8	30.1	5161	352	18.8	3.101	1.24	1.19	9.5	8.5ID
1170	1519	1567.0	21.91	483	530	130	37.3	2850:1553.5	9.3	9.3	774	754	20.8	30.1	5161	353	18.8	3.10;	1.2/	1.22	A.9	8.510
1198	1577	1568.0	21.4	460	505	130	37.6	285011554.5	9.3	9.3	775	779	20.8	30.1								8.51D
1199	1525	1569.0	18.3	433	475	120	37.9	284011554.7	9.3	9.3	775	766	20.8	30.1								8.5¦D
1200	1528	1570.0	18.01	429	490	105	38.6	284011555.3	9.3	9.3	771	750	20.9	30.1								8.51D
1201	1532	1571.0	17.21	408	457	107	38.0	285011556.3	9.3	7.3	774	765	20.9	30.1								8.5¦D
1202	1535	1572.0	19.41	404	438	107	38.7	2850:1557.4	9.3	9.3				30.1								8.5ID
1203	1547	1573.0	16.41	380	445	107	39.1	2840:1559.5	9.3	9.3				30.2								8.51D1
1204	1549	1574.0	26.91	487	529	102	34.3	2840:1560.3	9.3	9.3				30.2								8.51D
1205	1552	1575.0	21.71	495	543	104	36.7	2840:1561.4	9.3	9.3				30.2								8.510
1206	1555	1576.0	21.11	447	487	103	37.0	2830:1562.6	9.3	9.3				30.2								8.510
1207	1558	1577.0	20.31	439	482	106	37.7	2830:1563.8	9.3	9.3				30.2								8.510
1208	1601	1578.0	18.01	421	488	103	38.1	2830:1564.0	9.3	9.3				30.2								8.510
1209	1604	1579.0	27.91	460	491	100	35.8	2830:1564.0	9.3	9.3				30.2								8.510
1210	1607	1580.0	27.01	471	486	106	36.9	2820:1564.8	9.3	9.3				30.2					1.15			8.5iD
1211	1609	1581.0	24.01	469	483	104	38.7	2820:1565.9	9.3	9.3				30.2					1.20			8.510
1212	1613	1582.0	31.2	458	542	105	34.3	2820:1566.9	9.3	9.3				30.2					1.09			8.510
1213	1626	1583.0	20.8	477	543	107	35.8	2830:1570.2	9.3	9.3				30.2					1.22			8.510
1214	1630	1584.0	17.3	397	415	121	33.9	2830:1571.2	9.3	9.3				30.2					1.28			8.510
								282011572.4						30.2						1.27		8.510
1216	1638	1586.0	13.6	353	380	121	33.3	2820:1573.6	9.3	9.3				30.2					1.34			8.51D 8.51D
	1643	1587.0	13.4	341	383	121	32.5	2820:1574.4	9.3	9.3				30.2					1.33			8.51D
								2820:1576.4						30.1						1.33		8.51D
1219	1652	1589.0	17.2	374	392	122	32.1	282011577.6	9.3	9.3				30.1						1.21		8.5ID
								282011578.9						30.1								8.51D
1221	1701	1591.0	12.5	340	398	122	39.1	2820:1580.7	9.3	9.3				30.1						1.38		8.510
1222	1706	1592.0	12.0	330	393	123	38.7	2820:1582.7	9.5	7.5				30.0						1.39 1.18		8.51D
1223	1720	1593.0	16.4	348	401	120	28.5	2870 1583.9	9.3	7.5				29.9						1.20		8.5ID
1224	1723	1594.0	19.5	438	480	120	33.8	286011584.6	7.5	7.3				29.9						1.24		8.5ID
1225	1726	1595.0	19.7	424	478	120	38.5	287011585.4	7.3	7.5				29.9						1.27		8.51D
1226	1730	1596.0	17.1	383	44/	118	. 38.6 . 70.4	288011586.3	7.3	7.3				29.8 29.8								8.5ID
1227	1/34	1597.0	15.5	i 35/	367	120	38.4	2870:1587.1 2880:1588.0	7.3	7.3	//O	755	71 : i	27.0								
1228	1/38	1598.0	14.5	1 333	220	120	70.7	200011300.0	7.0	7.0	111 77A	733	71.1	27.8	577	785	20.7	3.29	11.45	1.39	9.4	8.51D
								2870 1589.1 2870 1590.5						29.0					1.49			8.510
								288011591.5						27.1					1.40			8.5!D
(Z31	1/00	1400 /	19.1	: 474 : 305	47A	115	: 30./ : 34.7	2760:1593.1	.υ. 1.υ	9.5				29.7					11.32			8.51D
1202	1007	1,2VD1 1 FA11 (/ 10 0 / 1719	: 32J ! 707	72V 457	117	37.1	288011593.2	9.5	9.5				27.7					11.22			8.5!D
1200	1014	1600.1	1 15 1	1 377	471	107	. 37.1 79.0	2880:1574.3	9.5	9.5				27.8					11.33			8.510
								289011595.8						27.6					11.36			8.51D
1202	. 1071 . 1079	. 17V7! /	, 10.0 175	. 370 ! (14	310	104	39.7	286011597.1	9.4	9.5				27.5					11.39			8.51D
								286011578.5						28.4					11.40			8.51D
								285011599.7						29.3					11.40			8.510
								285011600.7						28.0					11.41			8.5ID
								286011601.9						29.0						1.36		8.510
1240	1040	, 1411 ; 1 1141)	, 10.3 17 1	. 201 ! 774	300	109	37.0	2840:1602.6	9.5	9.5				29.0						1.31		8.51D
1241 1241	100.	. 1617 1) 19 Å	366	431	125	35.0	287011603.8	9.4	9.5										1.20		8.510
	. 1017	, 1012. 7141 () 14 1	1 344	409	179	35.3	287011604.8	9.5	9.5	775	781	21.7	29.8							9.6	8.5iD
	: 1/14	, 10191,	. 10:1	. 000	197	11.								.								t

											i	vata i	recor	ueo at	 CTM6	17:1	7		np: 	u /V 		+
							uan	BUUBIBTANS	MR 1	L / 1	EL 01	LI / M T M	TCM	10 /61	PUT!	-THIG	RIT-	- FST	: DXC	NIH	FEO	NXMD;
i ∤*# !	IIUC	M M	m/hr!	AVG	MAX	AVG	AVG	PRESIDEPTH	IN	OUT	IN	DUT	IN	DUT	!	M	hr	TW	1 }			
+			+												+-				+			+
1244	1914	1614.0	17.51	352	382	127	20.0	286011003.0	7.3	7.0	114	/ OV	71:7	27:0	27/1	100		~				
1245	1917	1615.0	15.61	329	355	110	36.3	2870:1606.4	9.5	9.5	776	781	21.2	29.8	5511					1.24	9.6	0.51D
1246	1921	1616.0	17.01	333	367	104	37.8	2870:1607.1	9.5	9.5	775	778	21.3	29.8						1.22		8.510
1247	1925	1617.0	14.31	277	348	103	37.0	2870:1607.8	9.4	9.5	779											8.5¦D 8.5¦D
1248	1929	1618.0	14.71	278	314	104	37.4	287011608.6	9.5	9.5				27.9						1.25		8.51D
1249	1935	1619.0	10.91	280	324	106	38.2	2870:1609.6	9.5	9.5		756								1.34		8.51D
1250	1940	1620.0	11.5	265	297	105	37.9	287011610.5	9.5	9.5				27.7					11.37	1.32		8.510
1251	2112	1621.0	12.01	263	311	112	35.9	254011620.8	9.5	9.5				29.6					11.20			8.51D1
1252	2123	1622.0	24.01	370	413	119	35.4	2640;1620.8	9.5	9.5		715							11.29			8.510
1253	2127	1623.0	16.51	396	410	113	36.1	284011620.8	9.4	7.5				29.6					11.31			8.5iD
1254	2130	1624.0	17.11	377	403	123	37.0	286011620.8	9.5	7.5				29.6					11.38			8.5!D
1255	2134	1625.0	16.35	355	367	133	40.1	286011620.8	4.5	9.5				29.5						1.34		8.5:D
1256	2138	1626.0	14.6	327	354	141	38.9	287011620.8	7.5	9.5				29.6						1.43		8.51D
1257	2143	1627.0	11.3	286	318	147	39.4	287011620.8	7.5	7.0				29.6 29.6						1.44		8.5¦D
1258	2149	1628.0	11.0	268	297	150	39.4	287011620.8	7.4	4.3				27.6						1.46		8.51D
1259	2155	1629.0	9.59	257	313	150	3/.9	286011620.8	7.4	4.0				29.6						1.43		8.510
1260	2200	1630.0	11.1	282	310	140	37./	287011620.8	7.4	7.3				29.6						1.41		8.510
1261	2219	1631.0	10.3	299	420	17/	28.7	280011622.4	7.4	7:3				29.6						1.29		8.51D
1262	2222	1632.0	16.5	1 254	440	141	3/.3	2800:1623.4 2790:1624.3	7.3	7.5				29.6						1.28		8.510
1263	2226	1033.0	16.2	1 224	3/2	120	. 70 i	281011625.3	95	9.5				29.6								8.5¦D
1264	7229	1039.1	10.1	1 714	222	120	27:1	2810;1626.1	9.5	9.5				29.6							9.6	8.510
1200) <u>/</u> /204	1000.0	/ 19.0	1 201	332 775	120	70.5	2800 1627.2	9.4	9.5				29.6						1.41	9.6	8.510
1200	1 2237 1 2245	1630.0) 1V.Z	1 701	223	127	. 37.7 . 39.4	281011628.0	9.4	9.5				29.6							9.6	8.510
120	/ <u>/</u> /40	100/1	, 11.9 , 11.1	: ZOU	271	120	0.00.0 A Q7 (281011628.8	9.4	9.5				3 29.6						1.37	9.6	8.510
1200	3 223V	1000.	, 0 00 , 11.1	1 274	271 201	124	. 30.7 : 70 1	280011629.9	9.5	9.5				29.7						1.43	9.6	8.510
120	1 2231 1 7777	1237.1) 0.77 1 0 59	1 202	375	177	36.9	2850:1632.5	9.4	9.5				29.6						1.39	9.6	8.51D1
12/1	2 2323 1 737#	ILAI I	0 7.30 0 9 97	1 325	371	120	37.5	2850:1632.6	9.4	9.5				29.6	499	427	24.0	3.6	311.48	1.42	9.8	8.51D-
127	, 2027 7 7779	1647	0 17.A	: 358	395	110	38.3	2850:1634.1	9.5	9.5				29.6	501	428	24.	1 3.6	311.37	1.31		8.51D
127	2 232 <i>1</i> 2 3223	1447	0 13.8 0 13.8	1 339	360	116	39.0	2840:1635.4	9.4	9.5				2 29.7	500	429	24.3	2 3.6	411.37	1.30		8.510
127	4 2337	1644.	0 17.0	: 350	368	113	38.9	285011636.3	9.4	9.5	769	755	21.2	2 29.7						1.24		8.5iD
!27	. 234 <i>0</i>	1645.	0 15.9	354	378	113	3 39.2	2850:1637.0	9.4	9.5	766	769	21.3	2 29.7	501	431	24.3	3 3.6	511.33	1.26		8.51D
127	6 2345	1646.	0 14.6	364	379	110	0 40.1	2850 1637.9	9.5	9.5	767	772	21.	3 29.7								8.51D
127	7 2349	1647.	0 14.6	343	358	3 116	6 40.1	271011638.7	9.5	9.5	748	727	21.	3 29.7	504					1.30		8.51D
127	8 2353	1648.	0 14.0	1 339	355	5 115	5 39.2	2780 1639.6	9.5	9.5	758	738	21.	3 29.7						1.30		8.51D
127	9 2357	1649.	0 16.0) 354	367	7 110	0 39.7	7 277011640.2	9.4	9.5	756	735	21.	3 29.7	505	1 435	24.	6 3.6	811.33	1.26	9.	6 8.5ID
1		e Apr																			_	: -
128	0 001	1650.	0 17.7	71 389	43	5 11	3 39.9	7 2790 1641.2	9.5	9.5				4 29.7						1.24		6 8.51D
128	1 001	1651.	0 17.9	71 417	43.	3 11	8 39.7	7 2800:1641.2	9.4	9.5	760			5 29.7						1.24		6 8.5ID
128	2 001	7 1652.	0 16.1	11 393	41	1 13	0 40.	5 2780:1641.2	9.5	9.5	757			5 29.7						7 1.30		6 8.510
128	3 002	1653.	0 16.4	11 379	39:	2 13	7 39.1	8 2790:1641.7	9.	9.5	757			5 29.7						7 1.30		6 8.5ID
128	4 002	4 1654.	0 15.0): 371	39:	2 13	8 40.3	3 2780:1642.5	9.5	5 9.5	758			5 29.7						1 1.33		6 8.51D
128	5 002	8 1655.	0 15.7	71 367	7 38:	2 11	4 39.	3 279011643.4	9.	5 9.5	756			5 29.7						3 1.26		6 8.51D
128	86 003	2 1656.	0 16.	61 365	39	6 11	5 37.	8 2780:1644.4	9.5	5 9.5	758			5 29.7						0 1.23		6 8.51D 6 8.51D
128	7 003	5 1657.	0 16.	51 392	2 40	0 10	4 38.	5 278011645.2	2 9.4	4 9.5				5 29.7						8 1.22 0 1.23		6 8.5iD
128	8 003	9 1658.	0 17.	0: 384	4 39	8 10	7 40.	0 278011646.2	9.	5 9.5				5 29.8)i 444 \i aa⊏		77	78!1.0 78!1.0	0 1.23 7 1.20		6 8.51D
128	39 005	2 1659.	0 18.	31 367	7 39	8 11	3 37.	8 266011648.4	7 .	9.5		4 /1	o Zl.	5 29.8								6 8.51D
129	70 005	5 1660.	.0 19.	41 43	4 45	2 10	7 39.	1 2670 1649.2 	۷.۰	4 9.5	/38	b /2:	Z Z1.	0 77.8	311	.; 440 -4			, 711,4 +			+
																•						

TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD lb/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: ! m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW! : _____ ______ 1291 0058 1661.0 17.21 426 451 125 40.5 266011650.1 9.5 9.5 739 717 21.6 29.8 5101 447 25.3 3.7511.34 1.27 9.6 8.51D 1292 0102 1662.0 14.81 417 453 134 40.4 266011650.1 9.5 9.5 737 718 21.6 29.8 5101 448 25.4 3.7611.40 1.33 9.6 8.5ID 1293 0107 1663.0 11.31 375 417 144 40.7 281011651.1 9.5 9.5 762 749 21.7 29.8 5081 449 25.5 3.7711.50 1.42 9.6 8.510 1294 0114 1664.0 12.61 416 456 112 36.9 279011653.0 9.5 9.5 757 737 21.8 29.8 5101 450 25.6 3.7811.36 1.29 9.6 8.51D 1295 0118 1665.0 16.71 429 442 115 39.2 280011653.9 9.5 9.5 759 766 21.8 29.8 5101 451 25.6 3.7811.31 1.25 9.6 8.51D 1296 0121 1666.0 16.91 401 417 126 39.7 279011654.8 9.5 9.5 757 747 21.9 29.9 5101 452 25.7 3.7911.34 1.27 9.6 8.51D 1297 0125 1667.0 19.01 395 418 119 39.5 278011655.7 9.5 9.5 756 746 21.9 29.9 5111 453 25.7 3.7911.29 1.22 9.6 8.510 1298 0128 1668.0 17.31 389 407 127 39.8 280011656.6 9.5 9.5 757 735 22.0 29.9 5101 454 25.8 3.8011.34 1.27 9.6 8.51D 1299 0139 1669.0 22.21 420 463 113 37.2 280011658.8 9.5 9.5 759 745 22.1 29.9 5111 455 25.8 3.8011.21 1.14 9.6 8.51D 1300 0143 1670.0 18.61 437 462 128 40.1 280011659.3 9.5 9.5 759 738 22.1 29.9 5101 456 25.9 3.8111.32 1.25 9.6 8.51D 1301 0146 1671.0 18.31 405 420 143 40.7 280011659.4 9.4 9.5 759 745 22.2 29.9 5121 457 25.9 3.8211.36 1.29 9.6 8.51D 1302 0149 1672.0 19.71 408 434 142 40.5 280011659.9 9.5 9.5 758 737 22.2 29.9 5131 458 26.0 3.8311.34 1.26 9.6 8.51D 757 736 22.2 29.9 5131 459 26.0 3.8311.37 1.29 9.6 8.510 1303 0152 1673.0 18.11 411 424 148 40.1 280011660.9 9.5 9.5 759 739 22.2 29.9 5121 460 26.1 3.8411.42 1.34 9.6 8.51D 1304 0156 1674.0 16.31 377 397 160 40.0 280011661.9 9.5 9.5 1305 0200 1675.0 15.91 349 369 159 40.6 280011662.9 9.5 9.5 758 737 22.2 29.9 5151 461 26.2 3.8511.43 1.35 9.6 8.51D 1306 0203 1676.0 17.11 360 381 143 40.1 281011663.6 9.4 9.5 758 763 22.2 29.9 5141 462 26.2 3.8611.37 1.30 9.6 8.510 1307 0207 1677.0 14.51 359 378 138 39.7 280011663.8 9.5 9.5 758 744 22.2 29.9 5161 463 26.3 3.8711.40 1.33 9.6 8.51D 751 734 22.1 30.0 5151 464 26.4 3.8811.34 1.27 9.6 8.51DX 1308 0219 1678.0 15.91 351 370 124 38.6 281011665.9 9.4 9.5 758 745 22.1 30.0 5161 465 26.4 3.8811.20 1.13 9.6 8.51D 1309 0222 1679.0 23.41 416 466 120 35.3 282011666.6 9.5 9.5 760 763 22.1 30.0 5161 466 26.5 3.8911.31 1.24 9.6 8.51D 1310 0225 1680.0 16.81 437 449 111 40.1 282011667.7 9.4 9.5 1311 0229 1681.0 14.21 406 433 129 41.3 281011668.8 9.5 9.5 760 762 22.2 30.0 5171 467 26.5 3.8911.41 1.33 9.6 8.510 2 0234 1682.0 14.4; 380 398 142 41.6 2810; 1668.9 9.5 9.5 759 738 22.2 30.0 517; 468 26.6 3.90; 1.44 1.36 9.6 8.51D 3 0238 1683.0 14.6; 358 372 150 42.0 2800;1670.0 9.4 9.5 760 739 22.2 30.0 519; 469 26.7 3.91;1.45 1.37 9.6 8.5;D 756 736 22.3 30.0 517! 470 26.8 3.92!1.44 1.36 9.6 8.5!D 1314 0243 1684.0 11.8; 392 504 134 38.5 280011671.6 9.5 9.5 9.6 8.51D 1315 0247 1685.0 12.8: 347 362 119 40.1 2800:1673.2 9.4 9.5 756 760 22.3 30.0 5191 471 26.8 3.9311.40 1.33 1316 0252 1686.0 13.81 343 361 118 39.9 280011674.4 9.5 9.5 759 746 22.3 30.0 5171 472 26.9 3.9411.38 1.31 9.6 8.51D 1317 0256 1687 to 13.21 346 359 114 40.8 280011675.5 9.5 9.5 757 742 22.3 30.0 5181 473 27.0 3.9411.39 1.32 9.6 8.51D 749 752 22.5 30.0 518; 474 27.0 3.95;1.28 1.21 9.6 8.5;D 1318 0307 1688.0 17.21 388 460 104 38.9 275011677.5 9.5 9.5 749 752 22.5 30.0 5191 475 27.1 3.9511.32 1.25 9.6 8.51D 1319 0311 1689.0 15.21 424 448 107 39.5 274011678.3 9.5 9.5 762 741 22.5 30.0 5211 476 27.2 3.9611.35 1.28 9.6 8.51D 1320 0315 1690.0 14.61 398 411 115 39.3 284011678.5 9.5 9.5 1321 0319 1691.0 14.31 388 402 110 39.7 283011679.9 9.5 9.5 764 744 22.6 30.0 5211 477 27.2 3.9711.35 1.28 9.6 8.510 1322 0325 1692.0 13.5; 369 389 113 38.3 2830;1681.4 9.5 9.5 761 746 22.6 30.1 522; 478 27.3 3.97;1.36 1.28 9.6 8.5;Df 761 746 22.6 30.1 5231 479 27.4 3.9811.26 1.20 9.6 8.51D 761 764 22.6 30.1 5201 480 27.5 3.9811.34 1.27 9.6 8.51D 1323 0329 1693.0 15.81 422 464 95 38.0 284011682.3 9.4 9.5 1324 0333 1694.0 14.5; 405 482 108 39.8 2840;1683.3 9.4 9.5 1325 0337 1695.0 14.21 383 396 113 39.7 284011684.2 9.4 9.5 762 748 22.6 30.1 5211 481 27.5 3.9911.36 1.28 9.6 8.51D 1326 0341 1696.0 15.11 380 392 114 40.6 284011685.0 9.4 9.5 765 755 22.6 30.1 5211 482 27.6 3.9911.35 1.28 9.6 8.51D 1327 0353 1697.0 16.11 367 417 115 40.3 275011686.8 9.4 9.5 745 749 22.7 30.1 5191 483 27.7 4.0011.33 1.26 9.6 8.510 1328 0357 1698.0 13.71 430 452 114 40.0 273011687.7 9.5 9.5 747 726 22.7 30.1 521; 484 27.7 4.00;1.37 1.30 9.6 8.5;D 523: 485 27.8 4.01:1.41 1.33 9.6 8.5:D 1329 0401 1699.0 14.21 376 393 135 39.8 273011687.9 9.5 9.5 745 724 22.8 30.1 751 734 22.8 30.1 5221 486 27.9 4.0211.37 1.29 9.6 8.51D 1330 0407 1700.0 15.1: 365 436 127 39.2 2900:1689.2 9.4 9.5 521: 487 27.9 4.03:1.38 1.30 9.6 8.5:D 1331 0411 1701.0 14.51 408 440 122 40.3 289011690.3 9.5 9.5 768 754 22.8 30.1 1332 0415 1702.0 14.51 364 384 147 40.2 289011691.3 9.5 9.5 769 748 22.9 30.1 5221 488 28.0 4.0411.43 1.35 9.6 8.51D 1333 0419 1703.0 14.31 356 372 137 39.7 289011692.1 9.5 9.5 768 770 22.9 30.1 1334 0424 1704.0 12.91 352 370 113 40.8 288011693.1 9.4 9.5 769 749 22.9 30.1 522: 489 28.1 4.05:11.41 1.33 9.6 8.5:D 523; 490 28.2 4.05;1.40 1.32 9.6 8.5;D 1335 0429 1705.0 14.31 347 379 116 38.9 289011694.3 9.4 9.5 768 773 22.9 30.1 5261 491 28.2 4.0611.36 1.28 9.6 8.51D* _ 1336 0433 1706.0 14.41 389 476 105 38.6 289011695.2 9.5 9.5 768 746 23.0 30.1 5251 492 28.3 4.0611.32 1.25 9.6 8.51D 37 0444 1707.0 17.2; 389 443 126 39.6 2820;1697.1 9.5 9.5 763 748 23.1 30.1 525; 493 28.4 4.07;1.34 1.26 9.6 8.5;D 38 0449 1708.0 13.2: 377 393 136 40.7 2820:1697.3 9.5 9.5 760 739 23.2 30.1 525: 494 28.4 4.08:1.44 1.36 9.6 8.5:D +-----

			1					+							+-			+				+
			DOD!	TO	20115	DDM.	anu	DIMDIDTONC	MT)	lh/mal	FID	H/MIN	TFI	MP (C)	PVT!	-THIS	RIT-	EST:	DXC	NXB	FLD	NXMUI
		m	m/hrl	AVG	MAX	AVG	AV6	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	;	Ω	hr	TW:	L			; +
			-					2820:1698.5		05	750	 745	 วर ว	30.1	525!	495	 28.5	4.09	11.46	1.37	9.6	8.510
339	0453	1709.0	13.0	35/	3/9	138	71.9	282011679.8	7.4	9.5	759	763	23.2 23.2	30.1	5261	496	28.6	4,10	1.48	1.40	9.6	8.51D
340	0457	1/10.0	10.81	334	333 727	130	37.Z	282011700.7	9.4					30.1					1.49		9.6	8.510
391	V2V4	1711.0	11.0:	210	327 345	117	41.7	282011702.6	9.5	9.5				30.1					1.51		9.6	8.5¦D
342	0520	1712.0	7.141	241	240	119	41.5	282011704.4	9.5	9.5				30.1		499	28.9	4.14	1.57	1.48	9.6	8.5¦D
CPE	0525	1714 0	17 6!	325	384	118	34.8	283011705.5	9.4	9.5				30.1		500	29.0	4.14	1.33	1.25		8.5HD
785	0570	1715 0	13.25	359	378	117	39.3	2840:1706.6	9.4	9.5				30.1	5321	501	29.1	4.15	1.39	1.31		8.510
ZAL	0547	1716.0	13.9	348	408	115	37.8	287011707.7	9.5	9.5	760	751	23.1	28.4					11.35			8.510
347	0546	1717.0	15.0	394	410	107	40.4	283011708.6	9.4	9.5	762	767	23.1	28.4					11.34			8.510
348	0550	1718.0	14.7	366	385	114	41.4	140011709.5	9.5	9.5	715	641	23.1	28.4					11.37			8.510
349	0557	1719.0	11.1	345	386	118	40.5	287011710.7	9.4	9.5				28.4					11.45			8.510
: 350	0602	1720.0	13.0	364	379	108	40.9	2860:1711.6	9.4	9.5				28.4					11.39			8.510
:351	0606	1721.0	13.1	348	360	115	40.7	2870:1712.2	9.5	9.5				27.9					11.40			8.510
352	0610	1722.0	14.1	355	369	112	40.0	2860:1712.7	9.5	9.5				27.9					11.36			8.510
: 353	0615	1723.0	13.0	347	360	117	39.6	2860:1713.3	9.5	9.5				27.9					11.39			8.510
: 354	0620	1724.0	11.9	347	363	114		2860:1713.8						27.9					11.42			8.5¦[8.5¦[
:355	0625	1725.0	12.9	326	339	120	41.4	2860:1714.8	9.5	9.5				27.9					11.42			8.5:1
						97	39.7	2800:1716.2	9.5	9.5				3 28.4					11.30			8.5H
357	0642	1727.0	14.1	374				2800:1717.2						3 28.4					11.37			8.5
1358	0646	1728.	15.0	369	378	110	39.2	280011718.1	9.4	4 9.5				3 28.4					11.33			8.51
:359	0650	1729.	14.1	359	373	5 114	40.7	2800:1719.2	7.	5 9.5				3 29.6					11.38			8.51
1360	0655	5 1730.0	13.8	333	348	120	39./	2800:1719.6	7.3	3 7.3				3 29.6 3 29.7					11.42			8.511
1361	0659	7 1731.	0 13.0	1 300	5 327	126	1 37.4 1 70 1	277011720.6	7	. 7.J				3 30.1					11.42			8.5
1362	070	5 1/32.4	0 12./	: 28.	/ 300	104	(38.4 : 77.9	2780:1722.1	7::	J 7.J				3 30.1					11.28			8.51
136	0/0	1/33.	0 1/.1	1 751	5 3/1 5 7/1	2 11. 7 11.) 3/12 1 70 7	2780;1722.8 2780;1723.7	7.	7 / 1 2 5				3 30.3					711.36			8.5
1364	0/1	5 1/54,1	V 14.4	1 24	7 30: 5 71:	/ 110 1 173	3 27.2 7 70 0	278011725.4	9	4 9.5				4 30.4					711.29			8.5
17/) V/Z:	5 1/33.º	V 17.1 A 11 0	1 74:	ים? ח. יםני נ	7 12: 7 196	, 30., 1 79 7	285011725.8	9.	5 9.5				4 30.4					311.42		9.6	8.51
130	9 U/S 7 073'	1 1/30. 5 1737	v 11.0 n 17 1	: 34	5 359	R 125	. 37.2 5 39.7	2850:1726.4	9.	4 9.5				4 30.3						1.32	9.8	8.51
136	0/3: 2 674:	J 1/3/1 N 1739	0 13.1 0 17 9	: 33	4 350	0 121	8 4 0.0	2840:1727.5	9.	5 9.5				4 30.3						1.34	9.0	8.51
130	074 074	5 1739.	0 14.7	1 33	3 39	4 14	1 35.7	282011728.7	9.	5 9.5				4 30.3	522					1.28		8.5
137	0.075	0 1740. 0 1740.	0 14.5	. 38	0 40	0 12:	2 38.7	282011729.6	9.	5 9.5	758	737	23.	4 30.3	523	526	30.9	4.3	111.36	1.28	9.	8.5
137	1 075	4 1741.	0 13.6	1 35	1 36	7 12	6 39.2	282011730.7	9,	4 9.5	759	739	23.	4 30.3								8.51
137	2 075	8 1742.	0 13.4	: 33	5 35	0 13	1 39.2	282011731.6	9.	4 9.5	759	738	23.	4 30.3					211.41			8.51
137	3 080	3 1743.	0 12.3	1 33	3 34	9 12	9 38.2	282011732.5	9.	5 9.5				4 30.3						1.33		6 8.51
137	4 080	8 1744.	0 12.0): 32	2 34	9 13	0 39.3	3 281011733.6	9.	5 9.5				5 30.3						1.35		6 8.5
137	5 082	1 1745.	0 14.5	i: 31	3 37	5 13	8 37.	282011735.5	9.	4 9.5				6 30.2						1.29		6 8.5
137	6 082	6 1746.	0 12.8	31 33	7 37	6 16	1 40.	1 2800:1736.0	9.	5 9.5	757			6 30.2						1.39		6 8.51
137	7 083	1 1747.	0 14.5	5: 35	3 37	0 15	2 37.	0 281011737.1	9.	5 9.5	758			6 30.2						1.31		6 8.5¦
137	8 083	6 1748.	0 11.	51 34	0 35	7 15	6 39.	6 2800:1738.1	9.	5 9.5				.6 30.2						1.41		6 8.5; 4 9 5 9
137	9 083	9 1749.	0 12.	31 33	1 34	4 16	1 39.	9 2800:1738.7	9.	5 9.5				.6 30.2						1.39		6 8.5 6 8.5
138	0 084	4 1750	0 11.	31 32	24 33	9 13	3 39.	9 281011739.8	9.	4 9.5				.6 30.2						1.37		o o.s. 6 8.5
138	1 084	9 1751	0 15.	71 34	18 36	9 12	1 36.	0 2810:1741.0	9.	.5 9.5				.6 30.2						1.22		6 8.5
138	2 085	1752	0 18.	51 35	52 38	5 11	9 38.	0 1310:1741.6	9.	.5 9.5				.6 30.2						1.20		6 8.5
138	3 090	0 1753	.0 10.	01 34	19 38	31 12	1 38.	1 141011742.8	9.	.5 9.5				.6 30.2						1.37 1.28		6 8.5
138	4 09()4 1754	.0 14.	41 35	58 37	4 12	20 39.	1 135011743.4	9.	.b 9.5				.6 30.2 5 30.2						1.40		6 8.5
:38	15 092	21 1755	.0 9.6	81 34	19 4(00 12	39.	6 111011745.3) Y	.4 Y.D				.5 30.2 5 30.1						1.40		6 8.5
138	36 093	26 1756	.0 12.	01 31	33 4	19 15	2 40.	3 110011745.5	3 4	.5 4.5	46	ა 1 6	J 79	.5 30.1								

								+				nara	VECOR	.050 95		V71.	:7 	Pare				+
		BEATU	+					PUMP:RTRNS	ו חש	h/asl	FI N	W/MTN	I TEM	(C)	PVT!	-THT	RIT-	FST	DXC.	NXB	ECD I	!dexi
i T#	iInt	חברוח	NUF:	AUC	MVA	AUC	AUG	PREG!NEPTH	IN	TIIN	IN	תונה דווח	IN	· NIT ·		<u>.</u>	hr	TW!		****=		
i		M 	#/11/1 	HYO 	ITHA	HYU	nyu 	PRESIDEPTH							4.			+				+
1797	ngaa	1757 0	. A 01!	794	519	123	38.0	1480:1747.6	9.5	9.5	541	526	23.4	30.1	5221	543	32.4	4.461	1.60	1.51	9.6	8.510
1001	0959	1758.0	5.78!	287	350	116	37.5	272011749.7	9.5	9.5	743	730	23.4	30.1	5241	544	32.6	4.48	1.59	1.50	9.6	8.51D
1300	1003	1759.0	15.21	358	391	118	41.5	2890:1750.5	9.5	9.5	775	754	23.4	30.1	5251	545	32.6	4.481	1.37	1.28	9.6	8.51D
								294011751.7						30.1					1.48		9.6	8.51D
1391	1015	1761.0	10.11	305	330	133	39.5	291011753.2	9.4	9.5	771	750	23.4	30.1	533;	547	32.8	4.501	1.50	1.40		8.510
1397	1021	1762.0	9.431	275	292	139	40.0	291011755.0	9.5	9.5	772	775	23.5	30.1	5341	548	32.9	4.511	1.53	1.44	9.6	8.51D
1393	1029	1763.0	12.51	289	361	131	35.3	2930:1755.8	9.5	9.5	771	750	23.5	30.1					1.39			8.51D
								293011757.2			773	776	23.5	30.1					i.35			8.51D
1395	1041	1765.0	11.01	331	350	120	38.9	2930:1757.6	9.4	9.5	776	782	23.5	30.1					1.44			8.5ID
1396	1056	1766.0	13.3	374	505	136	36.1	2900:1758.4	9.5	9.5	775	758	23.6	30.2					1.39			8.51D
								2910:1759.6			770	756	23.6	30.2					1.44			8.5iD
								2980:1760.5			776	781	23.7	30.2					1.48			8.5¦D
								297011761.4						30.2					1.50			8.51D
								2980:1762.3			779	760	23.8	30.2					1.35			8.51D
1401	1120	1771.0	14.51	356	371	126	37.3	2980:1762.9	9.4	9.5				30.2					1.36			8.510
1402	1125	1772.0	13.61	340	355	126	38.7	2980:1763.2	9.4	9.5				30.2						1.29		8.51D
1403	1130	1773.0	11.91	319	339	131	39.0	2980:1763.9	9.5	9.5	778	757	24.0	30.2						1.34		
1404	1134	1774.0	13.11	314	323	131	41.0	2980:1764.8	9.4	9.5	781	760	24.0	30.2	5271	560	33.9	4.611	1.44	1.34	9.6	8.510
+ P0	OH wi	th NB#4	, HTC	ATJ1	at 17	774m		•														•
+ RI	H wit	h RRB#5	, HYCA	LOG P	DC DS	340	12.25"	', with 3 X 13	, 1	X 12,	1 X 15	jet	s at :	1774m.								
1409	2117	1775.0	8.441	425	603	140	7.22	2520:1774.0	9.5	9.5	753	742	19.4	27.2		1.00						8.5:01
0	2127	1776.0	6.221	401	694	115	10.1	2540:1774.0	9.5	9.5	765	756	17.7	27.1		1.99				1.05		
mi	2131	1777.0	14.4	620	669	106	13.8	2540 1774.0	9.5	9.5	766	770	17.0	27.1		3.00				1.05		
								2540:1774.1						27.1		4.00						8.510-
								256011774.1						27.0		5.00						8.51D-
1414	2143	1780.0	14.4	640	696	108	14.4	2560:1774.1	9.5	9.5				27.0		6.00						8.51D-
1415	2148	1781.0	11.9	513	695	116	14.8	2570:1774.1	9.4	9.5				27.1		7.00				1.12		8.5ID
1416	2152	1782.0	13.91	584	695	114	14.8	2570:1774.0	9.4	9.5				27.1		7.98						8.510-
1417	2157	1783.0	13.6	568	669	116	15.9	2580:1774.3	9.5	9.5				27.1		9.00				1.11		8.510
1418	2201	1784.0	15.6	603	685	112	14.9	2580:1774.6	9.5	9.5				27.2		10.0				1.05		8.510
1419	2229	1785.0	35.5	582	668	113	8.76	2650:1776.1	9.5	9.5	784			27.3		11.0				.78		8.51D*
1420	2235	1786.0	13.8	541	809	128	5.96	265011776.6	9.5	9.5				27.3		12.0						8.510
1421	2241	1787.0	11.8	502	648	132	10.2	265011777.2	9.4	9.5	783	774	20.2	27.3	4/91	13.0	. 4	.36	1.02	1.00	7.0	0.010
								263011778.5						27.3		14.0				1.13		8.510
								264011779.8						27.3		15.0				1.16		8.5ID
								2630:1781.0						27.4		16.0				1.13		8.51D 8.51D
								263011782.1						27.4		17.0			1.05			8.5iD
								2620:1783.1						27.4		18.0			.98			8.5iD
								2620:1783.5						27.5		19.0			1.08			8.51D
								262011783.5						27.5		20.0			1.03	.86		8.5;D
								261011784.1						27.6		21.0			.95			8.5ID
								2610:1784.8						27.6		22.0				1.02		8.510
								260011785.6						27.6		23.0				1.02		8.5iD
								261011786.7						27.7		24.0 25.0				1.00		8.510
1433				986	641	125	15.6	2600:1787.4	7.4	7.3	/01	112	ZV.0	27.7	الادن	70.V	1 : 7	: 47	11.00	1 1 V f	, , , 0	היסות
	Date	Apr (3 140					7////14700 4	o e	0 =	700	71.1	20 L	27 0	574	24.0	9 f	QΩ	11.01	1.02	9.4	8.5¦D†
	000	1800.0	10.2	1 484	845	117	7.20	2600:1789.1	7.0	7.5	/ 0V 101	700	20.0	77 0								8.51D
	000	1801.	16.6	i 3//	154	115	11.8	2600:1789.9	7.4	7.0	701	/07	401/	۲/۰0								

Data Recorded at time 00:07 Date Apr 8 '90 ------! F# TIME DEPTH ROP! TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT; -THIS BIT- EST; DXC NXB ECD NXMD; m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW! .90 9.6 8.51D 780 766 20.7 27.8 540128.0 2.1 .91! .90 1436 0007 1802.0 29.21 474 647 137 12.4 260011790.4 9.4 9.5 2.2 .931 .92 .93 9.6 8.51D 782 762 20.7 27.8 542129.0 1437 0009 1803.0 26.01 392 538 133 12.9 259011790.9 9.4 9.5 .94 9.6 8.51D 806 787 20.8 28.0 549:30.0 2.2 .961 .94 1438 0026 1804.0 19.51 327 488 139 10.2 276011792.7 9.5 9.5 2.3 .981 .89 .89 9.6 8.51D 808 793 20.8 28.0 551131.0 1439 0029 1805.0 20.61 335 482 153 7.53 275011792.4 9.5 9.5 .92 9.6 8.510 553;32.0 2.3 1.01; .92 807 793 20.8 28.0 1440 0032 1806.0 21.01 312 452 157 9.02 276011793.1 9.4 9.5 807 793 20.8 28.0 554133.0 2.4 1.041 .96 .97 9.6 8.510 1441 0035 1807.0 19.7! 323 476 156 10.6 2750!1794.0 9.5 9.5 807 785 20.8 28.0 555134.0 2.4 1.071 .96 .97 9.6 8.510 1442 0038 1808.0 20.01 338 456 157 10.6 274011794.7 9.5 9.5 .98 9.6 8.51D 807 799 20.8 28.0 558135.0 2.5 1.091 .98 1443 0042 1809.0 17.11 361 527 133 11.4 274011795.5 9.4 9.5 .93 9.6 8.51D 806 811 20.8 28.0 558136.0 2.5 1.111 .92 1444 0044 1810.0 22.8; 392 510 128 12.1 2740;1795.9 9.5 9.5 .92 9.6 8.51D 806 810 20.8 28.0 559137.0 2.6 1.121 .92 1445 0047 1811.0 24.61 384 509 132 12.3 274011796.2 9.4 9.5 .92 9.6 8.51D 808 798 20.8 28.1 560138.0 2.6 1.141 .92 1446 0049 1812.0 22.41 391 508 128 11.5 275011796.9 9.5 9.5 805 810 20.8 28.1 562139.0 2.7 1.161 .92 .92 9.6 8.51D 1447 0052 1813.0 23.21 390 501 128 12.0 274011797.3 9.5 9.5 .89 9.6 8.5101 2.7 1.181 .89 784 770 20.9 28.2 527140.0 1448 0107 1814.0 20.61 370 519 137 8.57 261011798.4 9.5 9.5 785 765 20.9 28.2 527:41.0 2.8 1.20: .84 .84 9.6 8.51D 1449 0109 1815.0 33.01 450 554 162 9.09 2610:1798.8 9.5 9.5 .89 9.6 8.51D 785 764 20.9 28.2 528142.0 2.8 1.221 .89 1450 0111 1816.0 31.31 429 537 162 11.4 263011799.5 9.5 9.5 784 790 20.9 28.2 530:43.0 2.8 1.24: .94 .94 9.6 8.51D 1451 0114 1817.0 25.41 407 524 163 11.6 262011800.6 9.5 9.5 .92 9.6 8.51D 784 763 21.0 28.2 531:44.0 2.9 1.261 .92 1452 0116 1818.0 26.61 405 548 165 10.9 260011801.5 9.5 9.5 .91 9.6 8.510 784 763 21.0 28.2 532145.0 2.9 1.281 .92 1453 0118 1819.0 28.41 386 484 165 11.4 261011802.1 9.5 9.5 .90 9.6 8.5ID 785 771 21.0 28.2 533146.0 2.9 1.301 .91 1454 0120 1820.0 25.91 380 511 166 9.92 261011802.1 9.5 9.5 .90 9.6 8.510 785 772 21.0 28.2 534147.0 3.0 1.321 .90 1455 0122 1821.0 31.11 422 546 165 11.5 2610 1802.1 9.5 9.5 .88 9.6 8.51D 784 769 21.0 28.2 534148.0 3.0 1.331 .88 1456 0124 1822.0 31.31 416 537 141 12.0 261011802.1 9.5 9.5 784 770 21.0 28.2 536;49.0 3.0 1.35; .89 .89 9.7 8.510 1457 0126 1823.0 26.81 397 511 132 11.6 261011802.3 9.5 9.5 .86 9.6 8.51D 788 794 21.1 28.3 543150.0 3.1 1.371 .86 1458 0143 1824.0 19.71 339 482 148 6.71 265011805.6 9.4 9.5 .88 9.6 8.51D 790 770 21.1 28.3 544:51.0 3.1 1.39; .88 1459 0146 1825.0 24.71 412 570 147 9.21 266011806.5 9.5 9.5 .88 9.6 8.51D 790 796 21.1 28.3 546152.0 3.2 1.401 .89 1460 0148 1826.0 31.51 432 554 162 11.1 270011806.9 9.5 9.5 .94 9.6 8.510 797 777 21.2 28.4 547:53.0 3.2 1.42: .94 1461 0150 1827.0 22.41 376 482 162 10.7 270011807.8 9.5 9.5 .89 9.6 8.51D 3.2 1.44: .90 1462 0152 1828.0 29.61 391 529 162 11.2 268011808.6 9.5 9.5 796 782 21.2 28.4 548154.0 3.3 1.461 .93 9.6 8.51D .93 797 801 21.2 28.4 550155.0 1463 0155 1829.0 24.31 412 551 162 10.8 268011809.5 9.4 9.5 3.3 1.48; .89 .89 9.6 8.5ID 797 788 21.2 28.4 549156.0 1464 0157 1830.0 29.51 424 529 162 10.8 269011810.3 9.5 9.5 .89 9.6 8.51D 800 780 21.2 28.4 552157.0 3.4 1.501 .90 1465 0159 1831.0 28.61 400 524 162 10.7 269011811.0 9.4 9.5 .91 9.6 8.5ID 797 802 21.2 28.4 553158.0 3.4 1.521 .91 1466 0201 1832.0 25.31 375 511 162 10.3 268011811.7 9.5 9.5 .82 9.6 8.51Dt 562159.0 3.4 1.531 .82 1467 0221 1833.0 30.5; 310 475 153 8.05 2680;1814.9 9.4 9.5 791 770 21.3 31.3 .67 9.6 8.51D1 564:60.0 3.5 1.54: .67 1468 0224 1834.0 31.81 324 486 127 3.60 266011816.2 9.4 9.5 791 782 21.3 31.3 .75 9.6 8.51D 566161.0 3.5 1.551 .76 794 773 21.4 31.4 1469 0226 1835.0 28.41 406 547 129 5.86 267011817.2 9.4 9.5 9.6 8.51D 566162.0 3.5 1.561 .75 .75 1470 0227 1836.0 35.01 422 551 130 7.19 2660:1818.0 9.4 9.5 794 799 21.4 28.5 .79 9.6 8.51D 1471 0229 1837.0 28.41 365 483 131 7.53 269011819.1 9.5 9.5 567163.0 3.6 1.571 .80 798 789 21.4 28.5 568164.0 3.6 1.581 .82 .82 9.6 8.51D 797 776 21.5 28.5 1472 0231 1838.0 29.41 382 501 132 9.01 267011820.1 9.5 9.5 .82 9.6 8.51D 569165.0 3.6 1.591 .83 796 774 21.5 28.5 1473 0233 1839.0 30.91 394 495 132 9.68 268011820.9 9.5 9.5 9.6 8.51D 571166.0 3.7 1.601 .85 .85 1474 0235 1840.0 29.41 396 560 133 10.7 268011821.5 9.5 9.5 798 778 21.5 28.5 9.6 8.51D .86 572167.0 3.7 1.611 .86 1475 0237 1841.0 31.21 422 528 131 12.0 270011821.5 9.4 9.5 797 777 21.6 28.6 .90 9.6 8.51D 573168.0 3.7 1.631 .90 1476 0240 1842.0 21.21 392 541 132 10.0 267011821.5 9.4 9.5 794 773 21.6 28.6 580169.0 3.8 1.641 .82 .81 9.6 8.51D 1477 0257 1843.0 28.81 417 549 156 7.16 2700:1824.8 9.4 9.5 798 777 21.7 31.7 .85 9.6 8.51D 581:70.0 3.8 1.66: .86 1478 0259 1844.0 25.21 432 563 160 7.69 269011825.7 9.5 9.5 800 779 21.7 31.7 .92 9.6 8.51D 583171.0 3.9 1.691 .92 1479 0302 1845.0 20.51 403 565 161 8.97 270011827.0 9.4 9.5 797 801 21.7 31.7 559172.0 3.9 1.711 .93 .92 9.6 8.51D 1480 0305 1846.0 20.11 353 488 161 8.88 269011828.4 9.5 9.5 797 776 21.7 31.7 558173.0 4.0 1.731 .95 .94 9.6 8.51D 1481 0308 1847.0 19.31 355 471 161 9.74 269011829.8 9.5 9.5 798 790 21.7 28.7 560174.0 4.0 1.741 .90 .89 9.6 8.51D 1482 0310 1848.0 27.71 443 577 155 10.7 265011830.7 9.5 9.5 797 775 21.7 28.7 1483 0313 1849.0 21.51 373 503 129 10.7 267011831.2 9.4 9.5 793 770 21.7 28.7 560175.0 4.0 1.761 .91 .90 9.6 8.51D

1 1 #	TIME	DEPTH	ROP!	TOR	QUE MAY	RPM avg	WOB AUG	PUMP:RTRNS PRES:DEPTH	MD :	lb/gal Nut	FLO	MIM\W TUO	TEM IN	IP (C) OUT	PVT!	-THIS	BIT-	EST!	DXC	NXB	ECD	NXMD:
+			+												-	 76.0	л.	1 771		.89		+ 8.5¦D
1484	0316	1850.0	21./i	382	322	133	10.1	266011831.2	7.4	7.3	/74 005	791 21	i 7	20.7	5641			1.791		.90		8.51D
								2730¦1831.2 2700¦1832.8				789 21			5701			1.801		.88		8.510
								269011833.9				784 21			5711			1.821		.80		8.51D
								2680:1834.9				774 21			5711			1.831		.84		8.510
		1855.0						269011836.0				801 21			5731			1.851		.89		8.510
								269011837.4				783 21			5761			1.861		.92	9.6	8.5iD
								269011838.5				801 21			5771	83.0	4.4	1.881	.90	.89	9.6	8.51D
								269011839.7			794	786 21	1.7	28.8	5781	84.0	4.4	1.901	.89	.88	9.6	8.51D
								269011840.4			797	777 21	1.7	28.8	5791	85.0	4.5	1.911	.86	.84	9.6	8.51D
								269011840.7			795	774 21	1.7	28.8	5801	0.48	4.5	1.931	.86	.84	9.6	8.5iD
								2680:1840.7			797	776 21	1.7	28.9	5821	87.0	4.5	1.941	.86	.85		8.51D
								262011843.1			784	770 21	8.1	31.8	5871	88.0	4.6	1.941	.63	.62		8.5¦D
								260011843.7			785	776 21	1.9	31.8	5871	89.0	4.6	1.951	.65	.64		8.5HD
								2600:1844.2			781	785 21	1.9	31.9	5901			1.961		.68		8.5ID
								2610:1844.7				764 21			5901			1.97		.66		8.510
								262011845.2				790 21			5921			1.971		.71		8.510
								260011845.7				788 21			5921			1.981		.72		8.510
								2610 1846.4				767 21			5941			1.991		.74		8.510
								2610:1847.0				769 21			5941			1.991		.75		8.51D
								261011847.5				775 21			5931			2.001		.76		8.510
								265011850.1				778 22			5571			2.01		.74		8.51D 8.51D
								2670!1850.1				785 22			5601			2.021		.71 .70		8.5ID
								266011850.1				769 22			5611			2.021		.73		8.510
								267011850.2				783 22 772 23			5631 5641			2.041		.77		8.51D
								266011850.6				773 2				102		2.05		.81		8.51D
								2670:1851.6 2670:1852.4				772 2				103		2.05		.80		8.51D
								2680:1853.2				770 2			5661			2.06		.80		8.510
								2670:1853.9				772 2				105		2.07		.81		8.510
								2660:1854.5				769 2				106		2.08		.80		8.51D
								260011857.6				758 2				107	5.1	2.09	.81	.79	9.7	8.51D
								260011858.7				762 2				108		2.103		.81	9.7	8.510
								2610 1859.6				760 2				109		2.115		.89	9.7	8.51D
								2610:1859.7				785 2				110		2.13		.90		8.510
								2600:1859.7				759 2			580	111	5.3	2.14	.81	.80		8.51D
								259011859.9			779	782 2	2.1	29.1	5791	112	5.3	2.15	.88	.86		8.510
1521	0512	1887.0	29.1	493	607	137	12.4	260011861.0	9.4	9.5	779	765 2	2.1	29.1		113		2.16		.87		8.510
1522	0514	1888.0	31.5	495	653	112	13.6	2600:1862.1	9.4	9.5		758 2				114		2.17		.84		8.510
1523	0516	1889.0	32.0	507	610	109	13.5	2600:1863.3	9.4	9.5		764 2				115		2.17		.83		8.510
								276011868.6				785 2				116		2.18		.84		8.5ID
								276011869.1				785 2				117		2.20		.76		8.5iD
								2740:1869.1				807 2				118		2.20		.77		8.510
								2730:1869.1				805 2				119		2.22		.80		8.510
								273011869.5				788 2				120		2.23		.84		8.510
								2740:1870.8				780 2				121		2.24		.88		8.51D
5 30	0540	1896.(32.5	428	548	159	11.6	2730 1871.9	y.5	y.5		806 2				122			.88			8.51D
5i	0542	1897.0	30.0	405	505	130	11.1	2720¦1873.0	4.5	9.5	802	788 2	Z.1	27.1		123				.83		8.5¦D

											~~~~~				+-			+				+
+	TIME	REDELL	0001	TOOL	OHE !	DOM	MUD	DIND! OTONG	MD	lh/nal	FI O	W/MIN	TEN	MP (C)	PVTI	-THIS	BIT-	ESTI	DXC	NXB	EUD	NIMUI
1		9	m/hr!	AVG	MAX	AVG	AVG	PRES!DEPTH	IN	OUT	IN	OUT	IN	OUT	į	M	hr	TW!				
<del></del>		 .pe-	+-					77901407* "		p =		700 °	77 1	 70 1	5551	124	5.7	2.771	.84	.87	9.7	8.5th
1532	0544	1898.0	29.11	408	546	126	10.5	272011874.2 273011875.3	7.4	7.5	802 902	ያለን '	72 1	27.1 29.1	ააპi 554'	125	5.7	2.781	.97 .87	.80	9.7	8.510
1533	0546 0557	1877.0	21.91	425 441	5/8 LAT	127	0.34 4 AF	2/30/10/0.5 2/50/1070 F	7.4	. 7.J	78º	74P	22.1	29.1	560!	126	5.8	2.291	.72	.70	9.7	8.51D
1034	υ <b>ο</b> 57	1400.0	33.71	441 570	09/ LAD	177	0.VJ 5 LO	2650:1878.5 2660:1878.5	7.J	9.5				29.1					.68			8.510
1035 1577	4660 1440	1701.0	יד דף. יד דף	332 375	947 544	125	5.47	265011878.8	9.5	9.5				29.1						.76	9.7	8.51D
1577	1000	1907 0	20.31 27 A1	372	514	125	7.27	264011879.6	9.5	9.5				29.1			5.9	2.311	.79	.77	9.7	8.510
,537 1570	1040	1904 0	23.21	341	440	130	8.33	264011880.7	9.5	9.5				29.1			5.9	2.321	.85	.83	9.7	8.51D
.539	0908	1905.0	27.0!	433	551	124	10.4	264011881.4	9.4	9.5				29.1			6.0	2.331	.85	.83		8.510
1540	0610	1906.0	33.21	463	571	126	11.3	2760:1882.0	9.4	9.5	804	795	22.2	29.1	5671	132			.83			8.510
1541	0612	1907.0	29.61	441	562	121	11.8	276011882.9	9.5	9.5	806	809	22.2	29.1	5681							8.51D
1542	0614	1908.0	32.51	520	630	120	13.3	2750:1883.7	9.4	9.5				29.1		134						8.510
1543	0627	1909.0	25.81	441	603	128	10.5	2680:1887.9	9.5	5 9.5				29.2								8.510
1544	0629	1910.0	22.11	403	561	144	4.30	268011888.2	9.5	5 9.5				29.2					.77			8.51D
1545	0631	1911.0	33.91	483	593	152	7.34	2680:1888.2	9.5	5 9.5	793			3 29.1		137						9.51D 8.51D
1546	0633	1912.0	31.41	494	638	148	9.27	268011888.2	9.5	9.5				79.1		138				.81 .88.		8.510 8.510
1547	0635	1913.0	27.61	463	583	151	10.4	268011888.7	9.1	y.5				5 29.1 5 29 1		139 140						v 8.510
1548	0637	1914.0	29.71	461	599	152	12.3	268011889.8	y.:	ა <b>ყ.</b> ნ ; იო				3 29.1 1 29.1		140 141						0.J.V 8.51D
1549	0639	1915.0	29.11	478	592 577	151	12.4	2680:1891.1	7.1	. 4.5 . 0 =				7 29.1 7 29.1								8.51D
								267011892.1						9 29.1 9 29.2					1 .85			7 8.510
								2670 1893.2 2660 1894.1						4 29.2					1 .83			7 8.51D
								2660:1894.1						4 27.2						.69		7 8.510
								271011897.7						4 29.2						.69	9.7	7 8.510
1004	0703	. 1720.t 1991 ^	. 41.71 1 35 11	401	91V	140	5.53	271011879.1	9.1	5 9.5				4 29.2		147	6.5	2.43	.73	.71	9.7	7 8.510
1227	. V/V4 0704	1977 0	) 32 0:	477	902	155	6.77	272011900.0	9.	5 9.5				4 29.2	5931	148	6.5	2.44	1.78	.76	9.7	7 8.510
								2870:1900.8						4 29.2		149	6.5	2.44	1 .84	.81	9.7	7 8.51
.550	0710	1974	) 31.7	1 462	583	154	9.79	2890:1901.6	9.	5 9.5				4 29.2	5961	150	6.6	2.44	.85	.82	9.7	7 8.5
1559	7 0712	1925.0	0 35.31	470	608	150	11.0	287011902.3	9.	5 9.5	824	811	22.4	4 29.2	5971	151	6.6	2.45	.84	.82		7 8.511
1560	0714	1926.0	0 34.0	492	614	149	7 12.3	288011903.0	9.	5 9.5	825	829	22.4	4 29.2	5661							7 8.5
1561	0715	1927.0	0 40.5	1 523	659	7 149	7 12.9	287011903.8	9.	5 9.5	823											7 8.511
1562	2 0717	7 1928.0	0 32.6	528	686	5 147	7 13.9	2880;1904.8	9.	5 9.5	824			4 29.2								7 8.5H
1563	3 0730	1929.(	0 29.4	371	546	5 149	9 6.27	286011907.2	9.	5 9.5	824			4 29.3								7 <b>8.</b> 511
1564	4 0732	2 1930.0	0 32.91	1 488	632	2 156	5.79	2870:1907.6	9.	5 9.5	822			4 29.3		156						7 8.511 7 8.511
1565	5 0733	3 1931.(	0 34.3	1 467	580	136	6 7.34	2870:1908.2	9.	5 9.5	822			4 29.3		157 159			71 .76 71 .76			7 8.511 7 8.511
								286011909.0						4 29.3 4 29 3		158 159			71 .76 71 .79			/ 8.50 7 8.50
								2860:1910.0						4 29.3 5 29 3		159			71 .79	.77 .79		/ 8.31 7 8.51
								2870:1910.9						5 29.3		160 161			31 .81			7 8.51 7 8.51
								2850 1911.5						5 29.3 5 29.3		161			81 .87			7 8.51
:570	υ 074.	2 1936.	0 32.2	471	1 61 <i>i</i>	, 131 , 105	4 12.9 ۱۲۰۶	7 284011912.4 284011913.4	т У. О	7.6 5 <u>0</u> 7				5 29.3		1 163			81 .86			7 8.51
1571	1 074	+ 1437. + 1070	0 32.0	476 ! AF1	; 61 ¹	7 12l	υ 13.l γ 17 °	2860:1913.4 2850:1914.3	, Y.	.u 7.6				5 29.3		164			71 .88			7 8.51
								2 2850:1 <b>9</b> 14.3 7 2910:1916.9						6 29.3		165			91 .81			7 8.51
10/.	ა V/5. გიშ∈ი	, 1737. 1 1010	0 25 4	1 4/2	, 9/1   550	3 13e	5 A 02	7 291011916.9 2 294011916.9	. 7.	1.C 5 9.L				6 27.3		1 166			91 .81		9.	7 8.51
13/	7 VPA	, 179V.	ZJ.4 10 35 4	. 720   501	: 74t - 70	, 12. 9 12/	4 10 2	2 294011916.9 2 287011916.9	. 7: 1 <b>G</b>	5 9.4				6 29.3		1 167			01 .79		9.	7 8.5
10/1	7 VOV.	, 1741. ) 1040	77 7 7 77 ()	., JUL 170	. 03	. 12. 0 12.	5 11 5	2 2870:1716.7 5 2870:1917.1	9	5 9.4				6 29.3		168	7.1	1 2.50	86. 10	.84	9.	7 8.51
:3/: :571	ים עמע ק מאט ד	. 1194. 5 1947	27.3 0 77.0	7/C	) 57	3 174	4 11.9	7 2860 1917.6	, 9.	5 9.4				.6 29.3		11 169	7.2	2 2.50	01.87	.85	9.	7 8.51
(J/  570	3 0av	7 1944	0 29 1	1 453	3 60	1 12	6 12 5	5 288011918.5	, ý.	5 9.6						1170	7.2	2 2.51	11 .87	.84		7 8.51
1570	O ADA	9 1945	0.32.9	1: 467	2 591	1 12	7 17.7	7 286011919.5	59.	.5 9.6	6 821	1 805	5 22.	.7 29.3	560	): 171	7.3	2 2.51	11 .85	.82		.7 8.5
.d/		/74:			<i></i>														-+			4

F# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: m m/hr: AVG MAX AVG AVG PRES:DEPTH IN OUT IN OUT IN OUT ! m hr TW! ! ..... 818 821 22.7 29.3 560: 172 7.3 2.51: .85 .83 9.7 8.51D 1580 0810 1946.0 31.21 442 627 123 12.6 286011920.6 9.5 9.6 1581 0812 1947.0 29.81 475 610 125 12.6 285011921.6 9.5 9.6 822 808 22.7 29.3 5611 173 7.3 2.511 .86 .84 9.7 8.51D 1582 0825 1948.0 30.61 457 567 120 9.48 268011925.7 9.5 9.6 792 771 22.7 29.4 5611 174 7.3 2.521 .80 .78 9.7 8.51Dt 1583 0827 1949.0 34.31 535 701 117 5.95 268011926.4 9.5 9.6 790 769 22.8 29.4 5621 175 7.3 2.521 .70 .68 9.7 8.51D 1584 0829 1950.0 35.71 522 678 122 7.71 271011926.7 9.5 9.6 794 798 22.8 29.4 5621 176 7.4 2.521 .74 .72 9.7 8.51D 1585 0831 1951.0 28.61 451 617 125 7.61 268011926.7 9.5 9.6 788 793 22.8 29.4 5631 177 7.4 2.521 .78 .76 9.7 8.51D .78 9.7 8.51D 1586 0833 1952.0 31.51 521 657 125 9.73 270011926.7 9.5 9.6 791 769 22.8 29.4 5631 178 7.4 2.521 .80 1587 0834 1953.0 34.71 521 652 130 10.9 269011926.8 9.5 9.6 789 781 22.8 29.4 5611 179 7.5 2.521 .81 .79 9.7 8.51D .82 9.7 8.51D 1588 0836 1954.0 30.81 459 584 130 11.5 268011927.3 9.5 9.6 790 776 22.8 29.4 5621 180 7.5 2.521 .85 1589 0838 1955.0 27.81 443 555 131 12.0 268011928.5 9.5 9.6 792 798 22.8 29.4 5631 181 7.5 2.531 .88 .85 9.7 8.51D 1590 0840 1956.0 28.41 473 606 132 12.1 267011929.6 9.5 9.6 791 794 22.7 29.4 5641 182 7.6 2.531 .88 .85 9.7 8.51D 1591 0843 1957.0 27.11 464 632 131 12.5 268011930.9 9.5 9.6 790 793 22.7 29.4 5641 183 7.6 2.531 .89 .86 9.7 8.51D .69 9.7 8.51Dt .70 9.7 8.51D 1592 0853 1958.0 50.01 384 631 148 7.74 282011934.5 9.5 9.6 809 800 22.7 29.4 5641 184 7.6 2.531 .72 1593 0855 1959.0 28.11 462 685 158 3.61 281011935.6 9.5 9.6 809 812 22.7 29.4 5641 185 7.7 2.531 .72 .73 9.7 8.51D 1594 0857 1960.0 33.11 521 669 161 5.73 280011936.4 9.5 9.6 812 816 22.7 29.4 5651 186 7.7 2.531 .76 1595 0858 1961.0 35.81 527 685 163 7.38 279011936.5 9.5 9.6 811 790 22.7 29.4 5651 187 7.7 2.541 .79 .76 9.7 8.51D 1596 0900 1962.0 36.41 561 727 160 10.9 280011936.5 9.5 9.6 809 812 22.7 29.4 5671 188 7.7 2.541 .85 1597 0901 1963.0 40.41 559 721 159 12.1 280011936.6 9.5 9.6 811 791 22.7 29.4 5661 189 7.8 2.541 .84 .82 9.7 8.51D .81 9.7 8.51D .85 9.7 8.51D 1598 0903 1964.0 35.3; 528 685 163 12.2 2810;1937.0 9.5 9.6 809 800 22.7 29.4 567; 190 7.8 2.541 .87 .82 9.7 8.510 1599 0904 1965.0 42.7! 582 701 161 13.3 279011937.6 9.5 9.6 809 788 22.7 29.4 5681 191 7.8 2.541 .85 1600 0906 1966.0 38.41 574 715 161 14.1 281011938.3 9.5 9.6 806 808 22.7 29.4 .85 9.7 8.51D 568: 192 7.8 2.54: .89 1 0916 1967.0 30.3! 470 667 136 14.0 2830!1941.4 9.5 9.6 809 790 22.8 29.4 602 0918 1968.0 36.2! 564 730 159 9.84 2840!1942.3 9.5 9.6 809 811 22.8 29.5 .87 9.7 8.51D1 7.9 2.55; .90 537: 193 .80 9.7 8.51D .80 9.7 8.51D 5391 194 7.9 2.551 .83 1603 0919 1969.0 37.8; 538 726 158 10.4 2840:1943.1 9.5 9.6 808 787 22.7 29.5 540: 195 7.9 2.55! .83 .84 9.7 8.51D 1604 0921 1970.0 34.5; 530 692 157 12.1 285011943.9 9.5 9.6 810 815 22.7 29.5 540; 196 8.0 2.55; .87 .89 9.7 8.51D 1605 0923 1971.0 31.4: 486 628 163 13.2 2850:1944.9 9.5 9.6 813 803 22.7 29.5 540: 197 8.0 2.551 .92 1606 0925 1972.0 27.41 494 680 163 13.6 283011945.8 9.5 9.6 810 801 22.7 29.5 5421 198 .92 9.7 8.51D 8.0 2.561 .95 1607 0927 1973.0 29.11 457 606 162 13.7 286011946.1 9.5 9.6 813 805 22.7 29.5 5431 199 .91 9.7 8.51D 8.1 2.56; .94 .93 9.7 8.51D 1608 0929 1974.0 26.1: 439 585 166 13.3 2830:1946.1 9.5 9.6 813 818 22.8 29.5 543: 200 8.1 2.561 .96 .91 9.7 8.51D 5441 201 8.1 2.561 .94 1609 0931 1975.0 26.31 453 619 144 14.2 284011946.7 9.5 9.6 815 818 22.8 29.5 .92 9.7 8.51D 1610 0934 1976.0 22.41 421 593 133 13.8 283011948.3 9.5 9.6 814 794 22.8 29.5 8.2 2.571 .95 5441 202 1611 0948 1977.0 35.21 461 672 138 9.39 283011952.4 9.5 9.6 812 791 23.0 29.6 .77 9.7 8.51D 5461 203 8.2 2.571 .80 1612 0949 1978.0 35.2; 556 690 130 9.83 2830;1953.1 9.5 9.6 811 792 23.0 29.6 .77 9.7 8.51D 8.3 2.57! .79 5461 204 .79 9.7 8.51D .79 9.7 8.51D 1613 0951 1979.0 33.51 550 689 126 10.6 282011954.0 9.5 9.6 810 789 23.0 29.6 548; 205 8.3 2.57! .81 1614 0953 1980.0 37.41 530 680 126 12.0 282011954.7 9.5 9.6 810 801 23.0 29.6 5491 206 8.3 2.57! .81 .86 9.7 8.51D 1615 0955 1981.0 29.51 496 620 126 13.6 283011955.6 9.5 9.6 810 813 23.0 29.6 5481 207 8.4 2.57; .88 1616 0956 1982.0 33.41 500 645 130 14.6 284011955.7 9.5 9.6 810 789 23.0 29.6 5491 208 8.4 2.581 .88 .85 9.7 8.510 .90 9.7 8.51D 1617 0959 1983.0 24.21 440 559 130 13.3 286011955.9 9.5 9.6 818 796 23.1 29.6 5491 209 8.4 2.58; .92 .87 9.7 8.51D 1618 1001 1984.0 27.7: 456 614 128 13.6 2860:1956.7 9.5 9.6 817 820 23.1 29.6 550: 210 8.5 2.581 .90 .89 9.7 8.51D 1619 1003 1985.0 26.11 445 565 131 13.7 286011957.9 9.5 9.6 817 796 23.1 29.6 5491 211 8.5 2.58! .92 .86 9.7 8.51D 1620 1006 1986.0 23.71 429 619 130 10.6 285011959.3 9.5 9.6 818 821 23.1 29.6 5511 212 8.5 2.58! .88 1621 1021 1987.0 30.31 451 667 157 7.93 282011964.6 9.5 9.6 802 784 23.1 29.6 5541 213 8.6 2.58; .82 .79 9.7 8.51Dt 1622 1022 1988.0 38.41 595 744 155 10.5 281011964.8 9.5 9.6 808 793 23.1 29.6 5541 214 .80 9.7 8.51D .83 9.7 8.51D 8.6 2.591 .82 1623 1024 1989.0 36.5! 582 754 158 11.7 282011964.9 9.5 9.6 806 786 23.1 29.6 554! 215 8.6 2.59! .86 1624 1026 1990.0 34.11 526 680 164 12.3 280011965.1 9.5 9.6 805 784 23.1 29.6 5551 216 8.7 2.591 .89 .86 9.7 8.51D 1625 1027 1991.0 33.11 485 636 164 13.7 282011965.7 9.5 9.6 806 797 23.1 29.6 5571 217 8.7 2.591 .91 .88 9.7 8.51D 26 1030 1992.0 23.7; 424 601 147 13.0 2790;1967.1 9.5 9.6 806 812 23.1 29.6 556; 218 8.7 2.59; .95 .92 9.7 8.5;D 27 1032 1993.0 32.31 473 621 138 12.8 281011968.1 9.5 9.6 808 794 23.1 29.6 555; 219 8.8 2.60; .87 .84 9.7 8.51D

											1	/dtd	Kecor	020 ac		10.01		+				+
C#	TIME	NEDTU	ene i	TOP	OHE	RPM	MUB	PHMP!RTRNS	MD I	b/oal	FLOV	MIM/N	TEN	P (C)	PVT!	-THIS	BIT-	- EST!	DXC	NXB	ECD	NXMD:
		ø	m/hrl	AVG	MAX	AV6	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	1	A	hr	1₩1 +				i +
			+ +	470			14 1	2790:1969.1	05	9 A	805	 791	23.1	 29.6	555!	220	8.8	2.601	.90	.88	9.7	8.5¦D
628	1034	1994.0	27.31	437	607 608	134	17.1	281011970.1	9.5	9.6	808	794	23.2	29.6	5551	221	8.8	2.601	.92	.89	9.7	8.510
627	1035	1997 V	77.01	404	707	153	9.44	283011973.6	9.5	9.6	809	788	23.2	29.7	5571	222	8.9	2.601	.84	.81	9.7	8.51D
721 700	1047	1770.V	40 A!	770 559	720	147	9.48	2840:1974.2	9.5					29.7	5581					.76	9.7	8.510
477	1051	1998.0	32.91	448	601	135	10.6	2820:1974.4	9.5	9.6				29.7	5591	224	8.9	2.61	.83			8.51D
727	1053	1999.0	23.31	378	537	135	10.5	283011974.9	9.5	9.6	809	800	23.2	29.7	5591	225	9.0	2.61	.89			8.510
434	1055	2000.0	27.31	428	598	133	12.8	283011975.6	9.5	9.6	812	815	23.3	29.7	5611	226			.90			8.5ID
435	1058	2001.0	23.31	351	535	135	12.4	2820:1977.1	9.5	9.6	812	798	23.3	29.7	5601				.93			8.51D
636	1100	2002.0	37.31	431	549	137	13.5	2840:1978.0	9.5	9.6	811	798	23.3	29.7	5611				.65			8.510
637	1101	2003.0	42.01	486	623	132	13.8	281011978.8	9.5	9.6				29.7	5611			2.61		.80		8.5iD
638	1103	2004.0	37.81	482	618	131	14.0	2840:1979.6	9.5	9.6				29.7	5621				.65	.82		8.510
1639	1104	2005.0	34.91	497	647	130	13.9	2830 1980.5	9.5	9.6				29.7	5631				.86			8.510
640	1115	2006.0	33.2	477	705	148	10.0	289011983.7	9.5	9.6				29.7	5621				.83			8.51D
641	1117	2007.0	39.71	513	668	159	9.46	2850:1984.2	7.5	9.6				29.7	5621				.80			8.510
642	1119	2008.0	31.8	497	669	161	10.7	288011984.7	9.5	9.6				29.7		234						8.5¦D 8.5¦D
1643	1122	2009.0	36.1	537	696	161	13.1	286011984.8	9.5	9.6				29.7		235						8.51D
644	1124	2010.0	31.8	492	626	163	14.3	293011984.8	9.5	9.6				29.7		236			.93 .96			8.510
1645	1126	2011.0	22.9	435	688	164	11.9	2940:1985.4	9.5	9.6				29.7		237				.73		8.510
:646	1128	2012.0	25.6	490	749	159	12.5	294011986.8	7.5	7.6				29.7		238 239			11.05			8.51D
647	1133	2013.0	13.1	316	457	165	10.9	2940:1989.3	7.0	7.0				29.7 29.8		240				.98		8.51D
1648	1146	2014.0	13.6	310	484	154	7.58	278011993.4	7.3	7.0 0 L				27.8		241			1 .91			8.510
1649	1149	2015.0	) 18.5	3/5	2/3	121	10.5	287011993.7	7.0	7:0 0 L				27.8		242			.92			8.51D
1650	1152	2016.0	) Z3.Z	i 413	710	122	10.4	284011993.9 285011995.3	7.J	7.0 9 k				29.8		243			.94			8.510
1601	1104	2017.4	1 20.4	1 43V 1 AEA	110	117	15.7	286011996.6	9.5	9 4				29.8		244			.94			8.5iD
1607	1100	ZV10*/	)	1 430 1 515	00V	117	15.0	287011770.4	9.5	9 4				29.8		245			.89			8.510
1000	1130	2017.1 2020.1	. 3V.7 100	1 717	424	171	14.3	2850:1998.7	9.5	9.6				29.8		246			11.01		9.7	8.510
1450	1201	. 2020.1 : 2021 /	0 16.0 0 16.5	1 700 1 746	574	174	16.0	285012000.4	9.5	9.6				29.8			9.9	9 2.66	11.04	1.01	9.7	8.510
100	1015	7021.	0 10.3 0 10 7	1 318	583	125	13.2	287012003.7	9.5	9.6				29.9	524							8.5
145	1 1714	2022	0 36.5	1 602	741	118	18.3	287012003.7	9.5	9.6				29.9	524	249	10.0	0 2.66	1 .89	.86	9.	8.51
145	1777	7 2023	0 29.2	1 474	603	136	17.9	282012006.9	9.5	9.6				7 29.9								7 8.51
1.454	1747	7 2025.	0 25.7	1 416	584	148	16.9	283012011.9	9.5	9.6	808	788	24.	30.0								7 8.5
166	1250	2026.	0 24.7	444	582	128	8 6.77	280012011.9	9.5	9.6	809	795	24.	30.0						.77	9.	7 8.510
166	125	2 2027.	0 22.8	434	578	108	3 11.4	283012012.1	9.5	9.6	808	795	24.3	2 30.0		253				.85		7 8.511
166	125	2028.	0 28.8	466	601	115	13.8	284012012.6	9.5	9.6	807	812	24.	2 30.0		254				.85		7 8.5
								283012013.5						2 30.0		255				.88		7 8.5
166	125	7 2030.	0 29.6	1 528	682	114	15.4	284012014.4	9.5	9.6	808			2 30.0		256				.86		7 8.511
166	5 130:	1 2031.	0 24.5	1 528	727	108	15.6	283012015.2	9.5	9.6	809			3 30.0		1 257				.90		7 8.51
166	6 130	3 2032.	0 24.2	1 443	640	113	5 14.(	283012016.3	9.5	9.6	808			4 30.0		258				.89		7 8.5
166	7 130	5 2033.	0 28.9	457	631	112	2 13.(	285012017.3	9.5	9.6	806			4 30.0		1 259				.83		7 8.511 7 8.51
166	8 131	7 2034.	0 40.5	11 575	698	130	7.82	2 2850:2019.1	9.5	9.6				6 28.5		1 260 1 261				.71 .70		7 8.51
166	9 131	B 2035.	0 47.5	600	682	2 13	5 8.5	2 284012019.4	9.5	3 7.6				6 28.5		1 262				.79		7 8.51
167	0 132	0 2036.	0 32.0	): 495	652	2 14	5 9.0	3 284012019.6	, y.,	) y.6				6 28.5 4 20 5					81 .87	.84		7 8.5¦
167	1 132	2 2037.	0 29.7	1 462	63(	14	/ 11.	1 284012019.8	: 7.	3 7,6 5 0,				6 28.5 6 28.5					88. 18	.85		7 8.51
167	2 132	4 2038.	0 29.	): 4Y4	66	/ 14	0 11.3	5 283012020.5	ים ו	. j.p				6 28.5					91 .87			7 8.51
167	3 132	5 2039.	0 34.4	11 516	יידי ה'	3 14	3 1Z.	7 285012021.2	. 7.	. 7.0 5 0 /	807 909			7 28.5					91 .88			7 8.51
167	4 132	7 2040.	.V 36.	11 588	1 /5	3 13 5 4#	J 14. A 17	7 284012021.8	7 7 Ø :	, 7.0 5 0 <i>l</i>				7 28.5					91 .88			7 8.51
167	5 132	9 2041.	.0 30.3	ZI 538	5 67	J 14	V 1Z.	5 285012021.7	7.	J 7.0	ove	1 /01	U 47:	/ 20.0								

______ TIME DEPTH ROP! TORQUE RPM WOB PUMP!RTRNS MD 16/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: i m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW! ! t-----t 1676 1331 2042.0 31.51 556 650 138 13.6 284012022.2 9.5 9.6 807 785 24.7 28.5 5381 268 10.7 2.691 .89 .86 9.7 8.51D 1677 1341 2043.0 29.21 537 662 135 10.2 282012023.4 9.5 9.6 802 780 24.7 30.0 5391 269 10.7 2.691 .85 .82 9.7 8.51Dt 1678 1343 2044.0 34.01 584 696 113 5.18 280012023.4 9.5 9.6 800 791 24.7 30.1 5381 270 10.8 2.691 .68 .66 9.7 8.51D 1679 1345 2045.0 30.01 532 704 115 6.70 279012023.4 9.5 9.6 801 780 24.7 30.1 5401 271 10.8 2.691 .74 .72 9.7 8.51D 1680 1347 2046.0 30.31 530 683 115 8.48 282012023.4 9.5 9.6 799 784 24.7 30.1 5411 272 10.8 2.691 .78 .75 9.7 8.51D 1681 1349 2047.0 29.61 511 692 115 10.5 281012023.4 9.5 9.6 801 780 24.7 30.1 5401 273 10.9 2.701 .82 ..79 9.7 8.51D 1682 1351 2048.0 23.81 448 601 119 9.28 279012023.4 9.5 9.6 802 793 24.7 30.1 5411 274 10.9 2.701 .84 .82 9.7 8.51D 1683 1354 2049.0 25.41 461 604 119 9.64 281012023.4 9.5 9.6 801 788 24.7 30.1 5411 275 10.9 2.701 .84 .81 9.7 8.51D 1684 1356 2050.0 29.71 524 671 120 12.1 280012023.9 9.5 9.6 804 782 24.7 30.2 5421 276 11.0 2.701 .85 .82 9.7 8.51D 1685 1358 2051.0 29.51 503 679 116 12.0 281012024.7 9.5 9.6 801 781 24.7 30.2 5431 277 11.0 2.701 .84 .82 9.7 8.51D 1686 1359 2052.0 34.11 492 614 119 11.4 280012025.4 9.5 9.6 802 804 24.7 30.2 5421 278 11.0 2.701 .81 .78 9.7 8.51D 1687 1407 2053.0 43.91 465 625 145 3.70 283012027.8 9.5 9.6 804 791 24.7 30.2 5421 279 11.1 2.701 .64 .61 9.7 8.51Dt 1688 1409 2054.0 29.21 388 539 151 2.79 282012028.7 9.5 9.6 805 810 24.7 30.2 2651 280 11.1 2.701 .67 .65 9.7 8.51D 1689 1412 2055.0 26.71 407 557 151 4.50 286012029.7 9.5 9.6 810 815 24.7 30.2 2651 281 11.1 2.711 .75 .72 9.7 8.51D 1690 1413 2056.0 36.8! 491 677 146 6.99 288012030.2 9.5 9.6 810 790 24.6 30.2 266! 282 11.2 2.71! .75 1691 1414 2057.0 50.9! 632 727 134 9.18 287012030.6 9.5 9.6 811 797 24.6 30.2 267! 283 11.2 2.71! .72 .72 9.7 8.510 .69 9.7 8.51D .71 9.7 8.510 1692 1416 2058.0 48.61 675 748 124 10.8 288012031.2 9.5 9.6 809 795 24.6 30.2 2721 284 11.2 2.711 .74 1693 1417 2059.0 44.01 704 769 117 11.7 288012031.7 9.5 9.6 811 803 24.6 30.2 3011 285 11.2 2.711 .76 .73 9.7 8.51D 1694 1419 2060.0 36.61 552 733 113 11.0 288012031.7 9.5 9.6 810 790 24.6 30.2 3181 286 11.2 2.711 .78 .75 9.7 8.51D 1695 1420 2061.0 37.91 635 734 103 12.7 288012031.7 9.5 9.6 810 790 24.6 30.2 2581 287 11.3 2.711 .78 1696 1430 2062.0 33.71 609 760 104 11.2 284012035.5 9.5 9.6 800 781 24.6 30.2 2471 288 11.3 2.711 .78 .75 9.7 8.5¦D .76 9.7 8.51Dt 1432 2063.0 31.21 563 767 134 6.12 286012036.4 9.5 9.6 804 791 24.6 30.2 2481 289 11.3 2.711 .75 .72 9.7 8.510 .73 9.7 8.51D ■8 1434 2064.0 34.5; 719 818 112 9.17 2850;2037.3 9.5 9.6 803 783 24.6 30.2 248; 290 11.4 2.72; .76 1699 1436 2065.0 28.81 625 793 127 8.77 284012038.5 9.5 9.6 804 785 24.5 30.2 2471 291 11.4 2.721 .81 .78 9.7 8.51D .79 9.7 8.51D 1700 1438 2066.0 31.21 564 694 142 9.32 284012039.5 9.5 9.6 804 790 24.5 30.2 2471 292 11.4 2.721 .82 1701 1440 2067.0 32.81 641 761 111 12.1 283012040.5 9.5 9.6 803 782 24.5 30.2 2471 293 11.5 2.721 .81 .79 9.7 8.51D 1702 1442 2068.0 34.11 641 779 106 12.6 285012041.2 9.5 9.6 804 809 24.6 30.2 2481 294 11.5 2.721 .80 .78 9.7 8.51D 1703 1443 2069.0 33.4! 727 831 82 14.8 286012041.4 9.5 9.6 804 795 24.7 30.2 248! 295 11.5 2.72! .78 .76 9.7 8.51D 802 782 24.7 30.2 248; 296 11.6 2.72; .84 .81 9.7 8.5;D 1704 1445 2070.0 31.41 660 802 101 14.6 285012041.4 9.5 9.6 1705 1447 2071.0 34.51 659 832 99 12.4 286012041.7 9.5 9.6 803 794 24.7 30.2 2481 297 11.6 2.721 .78 .76 9.7 8.51Dt .75 9.7 8.51Dt 1706 1458 2072.0 32.21 565 706 118 8.80 287012045.5 9.5 9.6 806 812 24.8 30.3 2461 298 11.6 2.721 .77 1707 1500 2073.0 35.5! 625 746 128 4.87 289012046.3 9.5 9.6 808 814 24.8 30.3 2471 299 11.6 2.721 .69 .66 9.7 8.51D .67 9.7 8.51D 1708 1501 2074.0 38.01 668 770 116 6.24 288012047.0 9.5 9.6 807 794 24.8 30.3 2461 300 11.7 2.731 .69 1709 1503 2075.0 32.41 640 754 128 7.55 287012047.7 9.5 9.6 806 798 24.9 30.3 2471 301 11.7 2.731 .76 .74 9.7 8.51D 1710 1506 2076.0 25.91 538 673 145 6.43 288012049.0 9.5 9.6 807 786 24.9 30.3 2461 302 11.7 2.731 .80 1711 1508 2077.0 23.21 479 599 145 6.32 287012050.3 9.5 9.6 808 787 25.0 30.3 2501 303 11.8 2.731 .81 .77 9.7 8.51D .79 9.7 8.51D .81 9.7 8.51D 1712 1511 2078.0 24.21 482 609 149 7.63 289012051.1 9.5 9.6 807 786 25.0 30.3 2491 304 11.8 2.731 .84 1713 1514 2079.0 20.81 466 620 150 9.91 288012051.5 9.5 9.6 808 813 25.0 30.3 2501 305 11.9 2.731 .92 .89 9.7 8.51D 807 786 25.1 30.3 2501 306 11.9 2.741 .85 .82 9.7 8.51D 1714 1516 2080.0 26.91 497 626 147 9.05 286012052.4 9.5 9.6 1715 1519 2081.0 22.51 484 599 122 8.83 286012053.7 9.5 9.6 807 798 25.1 30.3 2491 307 11.9 2.741 .85 .82 9.7 8.51D 1716 1532 2082.0 46.31 575 755 133 3.29 289012057.9 9.5 9.6 804 791 25.0 30.3 248; 308 12.0 2.74; .60 .58 9.7 8.51Dt .63 9.7 8.51D 1717 1534 2083.0 37.31 694 805 115 4.54 287012059.0 9.5 9.6 806 798 24.9 30.3 2501 309 12.0 2.741 .65 1718 1536 2084.0 34.51 696 795 116 6.01 288012060.1 9.5 9.6 806 808 24.9 30.3 2511 310 12.0 2.741 .70 .68 9.7 8.51D 1719 1537 2085.0 39.51 687 777 121 7.79 289012060.9 9.5 9.6 806 792 24.8 30.3 2501 311 12.0 2.741 .72 .70 9.7 8.51D 1720 1539 2086.0 40.51 576 710 144 7.59 289012060.9 9.5 9.6 807 786 24.8 30.3 2511 312 12.1 2.741 .75 .72 9.7 8.51D 1721 1540 2087.0 38.21 595 734 137 9.21 288012060.9 9.5 9.6 808 811 24.9 30.3 2501 313 12.1 2.741 .78 .75 9.7 8.51D 1722 1542 2088.0 35.31 552 716 143 7.59 289012061.0 9.5 9.6 807 792 24.9 30.2 2511 314 12.1 2.751 .77 .74 9.7 8.51D 1722 1542 2088.0 35.3! 552 716 143 7.59 2890!2061.0 9.5 9.6 807 792 24.9 30.2 251! 314 12.1 2.75! .77 23 1543 2089.0 42.2¦ 627 770 135 8.76 2900¦2061.2 9.5 9.6 806 809 24.9 30.2 251¦ 315 12.1 2.75¦ .75 .72 9.7 8.5¦D

+-----+

Far Time DePth													vala n	ecor (	160 9r		T3:T						+
A   Art   May   Max   May   May   May   May   May   May   Pages   Pages   Pages   May   May   May   May   May   May   Pages   Pages   May   Ma		T 1 1/2	BERTH	nan i	TODA	aur.	DDM	unp	DUMPIDTONE	MD I	b/nal	FIN	M/MTN	TFM	(0)	PVT!	-THIS	BIT-	· EST:	DXC	NXB	ECD	NXMD:
724 153-2 2970.0 37.0 644 791 102 11.3 28010205.3 9.5 9.6 98	FĦ	11111	<i>D</i> L1 111	m/hri	AVG	MAX	AV6	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	1	Æ	hr	TW:				;
724 153-2 2970.0 37.0 644 791 102 11.3 28010205.3 9.5 9.6 98				+												+-			<del>+</del>	74	77		<del> </del>
272 1555 2092.0 1071 576 697 137 1.45 28401206.5.2 9.5 9.6 800 792 24.7 30.4 2521 318 12.2 2.751 .42 9 9.7 8.51 172 1557 2093.0 36.1 60 791 17 4.27 25501206.2 9.5 9.6 802 80.6 24.6 30.4 2531 32 12.2 2.751 .65 .65 9.7 8.51 182 1559 2094.0 29.5 1600 799 1.5 14.2 25501206.2 9.5 9.6 802 80.6 24.6 30.4 2531 320 12.3 2.751 .65 .65 9.7 8.51 182 192 100 11.4 25012070.1 9.5 9.6 800 805 24.6 30.4 2541 322 12.3 2.751 .69 .66 9.7 8.51 182 182 1602 2099.0 33.5 1.5 807 781 100 11.4 25012070.1 9.5 9.6 800 805 24.5 30.4 2541 322 12.3 2.751 .69 .66 9.7 8.51 182 1602 2099.0 33.5 1.5 800 788 102 11.0 7. 24012070.7 9.5 9.6 800 805 24.5 30.4 2541 322 12.3 2.751 .74 .71 9.7 8.51 173 1602 2099.0 33.5 1.5 807 781 10 12.3 25501201.0 9.5 9.6 800 805 24.5 30.4 2541 322 12.3 2.751 .80 .77 9.7 8.51 173 1802 2010.0 41.2 864 788 119 10.1 258012071.7 9.5 9.6 803 806 24.4 30.4 2541 322 12.3 2.751 .80 .77 9.7 8.51 173 182 1602 2093 3.91 161 17.3 183 11.6 258012071.9 9.5 9.6 803 806 24.4 30.4 2471 327 12.5 2.761 .0 5 .80 9.7 8.51 173 182 182 182 182 182 182 182 182 182 182	/24	1545	2040.0	43.71	07/	114	117	10.7	71001700111	110	710												
728 1557 2073. 0 38.11 660 787 124 3.77 2801 2075. 2 9.5 9.6 90 80 24.6 30.4 253 320 12.3 2.75 1.69 .65 97 8.51 97 97 97 80.51 97 98 90 90 90 90 90 90 90 90 90 90 90 90 90	725	1554	2091.0	37.01	604	791	102	11.3	284012065.3	9.5	9.6	798	785	Z4.8 .	50.4	251 i	317	12.2	Z./3i	:/0	:/4	7:/	0.0101
124 1537 (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-3) (297-	726	1556	2092.0	1071	571	697	139	1.46	284012066.2	9.5	9.6												
728 1602 7097-0 73 0-10 62 1 737 105 6.31 289012097.2 9.5 9.6 90 80 80 74 2-5 0.4 254 321 12.3 2.75 1.74 .71 9.7 8.51 100 2097-0 5.5 180 9 80 90 284 50.4 254 321 12.3 2.75 1.74 .71 9.7 8.51 100 2097-0 5.5 180 9 80 90 284 50.4 254 321 12.3 2.75 1.75 .74 .71 9.7 8.51 100 2098-0 33.21 605 762 109 11.4 286012071-0 9.5 9.6 90 805 749 24.5 30.4 254 323 12.3 2.75 1.75 .74 .71 9.7 8.51 100 2099-0 22.31 541 775 110 12.3 285012071.0 9.5 9.6 90 790 24.5 30.4 254 323 12.3 2.75 1.76 .74 9.7 8.51 100 2009-0 22.4 544 702 113 12.5 282012071.7 9.5 9.6 90 790 24.5 30.4 253 325 12.4 2.75 1.89 8.6 9.7 9.5 154 1611 2100.0 28.6 544 702 113 12.5 282012071.7 9.5 9.6 90 780 24.5 30.4 253 325 12.5 2.76 1.78 1.79 9.7 8.51 10 11.2 28012071.0 9.5 9.6 90.3 806 24.4 30.4 241 327 12.5 2.76 1.78 1.79 9.7 8.51 105 10 12.3 10 11.2 28012071.0 9.5 9.6 90.3 806 24.4 30.4 241 327 12.5 2.76 1.78 1.79 9.7 8.51 105 102 10.3 9.7 9.5 9.6 90.3 806 24.4 30.4 241 327 12.5 2.76 1.78 1.79 9.7 8.51 105 102 200.0 38.4 161 57 351 311 4.2 28012071.0 9.5 9.6 80.3 806 24.4 30.4 241 321 12.5 2.76 1.78 1.79 9.7 8.51 105 102 200.0 38.4 161 551 565 140 14.9 28012071.7 9.5 9.6 807 792 24.4 30.4 241 324 12.4 2.75 1.80 1.80 1.79 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70	727	1557	2093.0	36.11	660	787	124	3.79	285012067.2	y.5	7.6												
1272   1011   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073   1073	728	1559	2094.0	29.51	600	739	117	4.29	285012068.2	7.5	7.6												
133   1605 2077-0   35.5   689   784   102   10.7   2840   2070-0   7.5   7.5   7.7   7.7   24.5   30.4   2541   323   12.3   2.75   1.75   7.4   9.7   8.5   1.73   1605 2079-0   22.3   1541   7.7   101   12.5   2850   12071-0   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5   7.5	729	1601	2095.0	30.01	621	737	105	6.31	285012069.2	7.5	7.0												
731 1602 2009.0 33.2; 665 762 109 11.4 2860:2070.9 9.5 9.6 80 780 24.5 30.4 234; 324; 12.4 2.75; 80 77 9.7 8.51; 733 1609 2009.0 22.3; 541 775 110 12.5 2850:2071.0 9.5 9.6 80 780 24.5 30.4 233; 325; 12.4 2.73; 89 8.6 9.7 8.51; 734 1611 2100.0 28.6; 564 786 119 10.1 2880:2070.9 9.5 9.6 80 780 24.5 30.4 233; 325; 12.4 2.73; 89 8.6 9.7 8.51; 734 1612 2100.0 36.8; 692 832 110 11.2 2880:2071.4 9.5 9.6 80 780 24.4 30.4 247; 327; 12.5 2.76; 85 .97 9.7 8.51; 737 1632 2103.0 39.1; 1611 73.7 2880:2075.4 9.5 9.6 80 780 24.4 30.4 247; 328; 12.5 2.76; 85 .97 9.7 8.51; 738 1624 2104.0 40.4; 648 767 127 13.7 2880:2075.7 9.5 9.6 80 806 24.4 30.4 241; 331; 12.6 2.76; 82 .79 9.7 8.51; 739 1626 2105.0 38.4; 1616 736 131; 14.2 2880:2077.1 9.5 9.6 80 780 24.4 30.4 241; 331; 12.6 2.76; 82 .99 9.7 8.51; 739 1626 2105.0 38.4; 1616 736 131; 14.2 2880:2077.1 9.5 9.6 80 780 24.4 30.4 241; 331; 12.6 2.76; 82 .99 9.7 8.51; 739 1626 2105.0 38.4; 1616 736 131; 14.2 2880:2077.1 9.5 9.6 80 780 24.4 30.4 241; 331; 12.6 2.76; 82 .99 9.7 8.51; 741 1632 2107.0 43.8; 455 750 133 14.8 2900; 2078.2 9.5 9.6 806 80 80 24.4 30.4 241; 331; 12.6 2.76; 82 .99 9.7 8.51; 743 1632 1200.0 51.8; 455 750 130 15.0 2870; 2078.2 9.5 9.6 804 807 24.5 30.4 238; 333; 12.6 2.76; 83 80 9.7 8.51; 743 1632 1200.0 51.8; 455 750 130 15.0 2870; 2078.2 9.5 9.6 804 807 24.5 30.4 238; 333; 12.6 2.76; 83 80 9.7 8.51; 744 1639 2110.0 47.3; 577 743 136 12.2 2860; 2080.7 9.5 9.6 80 80 80 24.5 30.4 238; 333; 12.6 2.76; 85 80 80 9.78 24.5 30.4 238; 333; 12.7 2.77; 1.79 1.75 9.75 9.75 8.51; 744 1646 2111.0 40.8; 627 861 833 4.77 8.80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 628 80; 62	730	1603	2096.0	33.31	625	736	108	8.09	284012070.1	7.0	7.0 0 i												
133 1609 2009.0 22.31 541 775 110 12.3 285012071.0 9.5 9.6 80 780 24.5 30.4 253 325 12.4 2.751 89 8.6 9.7 8.51 735 1620 2101.0 41.21 644 180 1200.0 28.61 564 702 113 12.5 285012071.0 9.5 9.6 80 80 780 24.5 30.4 2471 327 12.5 2.761 75 9.7 8.51 735 1620 2101.0 41.21 644 19 81 19 10.1 288012074.9 9.5 9.6 80 80 62 24.4 30.4 2471 327 12.5 2.761 75 75 9.7 8.51 737 1623 2103.0 39.11 611 735 133 11.6 288012074.9 9.5 9.6 80 80 24.4 30.4 2471 327 12.5 2.761 .81 .78 9.7 8.51 737 1623 2103.0 39.11 611 735 133 11.6 288012074.9 9.5 9.6 80 805 796 24.4 30.4 2481 330 12.6 2.761 .82 .79 9.7 8.51 739 1626 2105.0 38.41 616 736 131 14.2 286012074.7 9.5 9.6 80 807 792 24.4 30.4 2413 330 12.6 2.761 .82 .79 9.7 8.51 740 1627 2106.0 98.65 156 851 80 29012078.2 9.5 9.6 80 807 792 24.4 30.4 2413 331 12.6 2.761 .82 .79 9.7 8.51 740 1627 2106.0 98.65 156 851 80 29012078.2 9.5 9.6 80 80 782 24.4 30.4 2413 331 12.6 2.761 .82 .79 9.7 8.51 744 1629 2107.0 43.81 635 750 133 14.8 289012078.7 9.5 9.6 80 80 782 24.4 30.4 2413 331 12.6 2.761 .82 .79 9.7 8.51 744 1629 2107.0 43.81 635 750 133 14.8 290012078.2 9.5 9.6 80 810 24.5 30.4 2381 333 12.6 2.761 .82 .79 9.7 8.51 744 1639 210.0 47.31 577 750 130 15.0 28012079.2 9.5 9.6 80 80 792 24.5 30.4 231 333 12.6 2.761 .82 .79 9.7 8.51 744 1639 210.0 47.31 577 743 136 12.2 286012080.7 9.5 9.6 80 807 24.5 30.4 231 333 12.6 2.771 .78 .75 9.7 8.51 744 1649 211.0 60.81 627 898 133 81.0 2.2 285012080.8 9.5 9.6 98 798 718 24.6 30.5 2231 333 12.7 2.771 .80 .75 9.7 8.51 744 1642 2113.0 52.11 644 719 106 6.22 285012081.0 9.5 9.6 80 80 62 4.4 30.4 2213 334 12.7 2.771 .80 .75 9.7 8.51 749 1642 2113.0 52.11 647 719 103 121.3 28001209.9 9.5 9.6 80 80 792 24.5 30.5 2241 334 12.9 2.771 .80 .80 9.7 9.7 8.51 749 1642 2113.0 52.11 647 719 103 121.3 28001209.9 9.5 9.6 80 80 792 24.5 30.5 2241 334 12.9 2.771 .80 .80 9.7 9.7 8.51 749 1642 2113.0 52.11 647 719 103 121.3 28001209.9 9.5 9.6 80 80 792 24.5 30.6 2231 334 12.9 2.771 .80 .80 9.7 9.7 8.51 749 1642 2113.0 52.11 640 69 180 50 50 60 60 50 60 60 50 60 60 50 60 60 50 60	731	1605	2097.0	35.51	680	/84	102	10./	2840;2070.7	7.3	7.0												
133 1610 2010.0 28.6; 554 702 113 12.5 2820;2071.7 9.5 9.6 903 806 24.4 30.4 247; 328 12.5 2.76; .75 73 77 8.5; .75 736 1621 2102.0 36.8; .692 832 110 11.2 2880;2076.0 9.5 9.6 803 806 24.4 30.4 247; 328 12.5 2.76; .76 .75 9.7 8.5; .73 1623 2103.0 38.1; .611 743 133 11.6 2880;2076.0 9.5 9.6 803 806 24.4 30.4 247; 328 12.5 2.76; .76 .77 9.7 8.5; .73 1623 2103.0 38.1; .611 743 133 11.6 2880;2076.0 9.5 9.6 803 806 24.4 30.4 247; 328 12.5 2.76; .76 .81 .78 9.7 8.5; .73 1623 2105.0 38.4; .616 75 151 11.2 2880;2077.7 9.5 9.6 805 792 24.4 30.4 247; .328 12.6 2.76; .85 .81 9.7 8.5; .73 1623 2106.0 38.6; .561 695 140 14.9 2880;2077.7 9.5 9.6 806 807 72 24.4 30.4 247; .328 12.6 2.76; .85 .81 9.7 8.5; .740 1627 2106.0 38.6; .561 695 140 14.9 2880;2077.7 9.5 9.6 806 807 72 24.5 30.4 243; .330 12.6 2.76; .85 .81 9.7 8.5; .741 1629 2107.0 43.8; .655 750 133 14.8 290;12078.2 9.5 9.6 806 807 224.5 30.4 238; .331 12.6 2.76; .85 .80 9.7 8.5; .741 1629 2107.0 43.8; .657 750 130 15.0 2870;2079.2 9.5 9.6 806 802 24.5 30.4 238; .331 12.6 2.76; .85 .80 9.7 8.5; .744 1639 2110.0 47.3; .577 743 30 15.0 2870;2079.2 9.5 9.6 806 802 24.5 30.4 238; .331 12.6 2.77; .79 .76 9.7 8.5; .744 1649 2110.0 60.8; .657 698 133 4.57 2880;2080.8 9.5 9.6 799 778 24.6 30.4 221; .337 12.7 2.77; .79 .76 9.7 8.5; .744 1641 2112.0 60.9; .637 698 133 4.57 2880;2080.8 9.5 9.6 799 778 24.6 30.5 222; .337 12.7 2.77; .87 .75 9.7 8.5; .744 1642 2113.0 52.1; .646 719 106 6.22 2850;2081.0 9.5 9.6 800 802 24.5 30.4 223; .339 12.7 2.77; .89 .59 .79 .78 .51 .749 1464 2113.0 52.1; .646 719 106 6.22 2850;2081.0 9.5 9.6 800 802 24.5 30.5 222; .337 12.7 2.77; .80 .50 .97 8.5; .749 1448 2113.0 25.1 40 40 40 40 40 40 40 40 40 40 40 40 40	732	1606	2098.0	33.21	605	762	107	11.4	286012070.9	7.3	7.0 0 L												
737 1622 2101.0 41.2! 664 786 119 10.1 288012074.9 9.5 9.6 803 805 24.4 33.4 247! 327 12.5 2.761 .75 .75 9.7 8.51 7375 1620 2101.0 38.81 672 832 110 11.2 287012075.4 9.5 9.6 807 792 24.4 30.4 247! 327 12.5 2.761 .75 .75 9.7 8.51 7375 1622 103.0 39.1! 611 743 133 11.6 288012076.5 9.5 9.6 805 805 24.4 30.4 248! 330 12.6 2.761 .82 .79 9.7 8.51 739 1626 2105.0 38.41 616 736 131 14.2 286012077.1 9.5 9.6 806 792 24.4 30.4 248! 331 12.6 2.761 .82 .79 9.7 8.51 739 1626 2105.0 38.41 616 736 131 14.2 286012077.1 9.5 9.6 806 792 24.4 30.4 248! 331 12.6 2.761 .82 .79 9.7 8.51 741 1629 2107.0 43.81 635 750 133 14.8 290012078.2 9.5 9.6 804 807 24.5 30.4 238! 332 12.6 2.761 .83 .80 9.7 8.51 744 1639 2100.0 47.31 577 743 1631 22.2 286012080.7 9.5 9.6 806 810 24.5 30.4 238! 333 12.6 2.761 .83 .80 9.7 8.51 744 1639 2100.0 47.31 577 743 136 12.2 286012080.7 9.5 9.6 806 810 24.5 30.4 238! 333 12.6 2.77 777 1.79 .76 9.7 8.51 744 1649 2111.0 60.89 1633 783 104 6.71 288012080.8 9.5 9.6 801 806 24.6 30.4 221 333 12.6 2.77 777 1.79 .76 9.7 8.51 744 1642 2113.0 50.18 647 79 106 6.22 285012081.0 9.5 9.6 801 806 24.6 30.4 221 339 12.8 2.77 1.60 .58 9.7 8.51 748 1644 2114.0 31.61 626 766 102 8.24 286012082.3 9.5 9.6 801 806 24.6 30.5 2221 337 12.7 2.77 1.74 .60 .58 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.9 86012082.3 9.5 9.6 801 806 24.6 30.5 2221 339 12.8 2.77 1.74 .60 .89 9.7 8.51 745 1648 2116.0 29.81 655 750 131 13. 287012081.0 9.5 9.6 800 779 24.6 30.5 2221 344 12.8 2.77 1.78 .60 .89 9.7 8.51 745 1648 2116.0 29.81 655 76 103 11.3 287012081.0 9.5 9.6 800 779 24.6 30.5 2221 344 12.8 2.77 1.78 .70 9.7 8.51 7475 142 121.0 19.44 478 669 118 10.5 287012081.0 9.5 9.6 800 779 24.6 30.5 2221 344 12.8 2.77 1.79 .90 .70 8.51 745 1450 2117.0 28.33 588 754 110 10.5 287012081.0 9.5 9.6 800 779 24.6 30.5 2221 344 12.9 2.77 1.90 .67 8.51 745 1450 2117.0 28.33 588 754 110 10.5 287012081.0 9.5 9.6 800 787 24.6 30.5 2221 344 12.9 2.77 1.90 .67 9.7 8.51 745 1450 2110.0 9.1 470 674 132 221 3.0 2.31 484 699 118 10.3 288012109.9 9.5 9.6 800 787 24.6 30	733	1609	2099.0	22.31	341	7/0	110	17.0	203012071.0	7.3	7.0												
735 1622 102.0 36.81 697 882 110 11.2 287012075.4 9.5 9.6 807 792 24.4 30.4 247 328 12.5 2.761 .78 .75 9.7 8.51 737 1632 102.0 36.81 697 81 14.1 743 133 11.6 288012076.5 9.5 9.6 803 806 24.4 30.4 246 329 12.5 2.761 .81 .78 9.7 9.5 8.738 1624 2105.0 38.41 616 736 131 14.2 288012077.1 9.5 9.6 806 792 24.4 30.4 241 331 12.6 2.761 .82 .79 9.7 8.51 739 1626 2105.0 38.41 616 736 131 14.2 288012077.7 9.5 9.6 806 807 742 24.4 30.4 241 331 12.6 2.761 .85 .81 9.7 9.5 8.740 1627 2106.0 38.61 561 695 140 14.9 288012077.7 9.5 9.6 804 807 24.5 30.4 241 331 12.6 2.761 .87 .83 9.7 8.51 740 1627 2107.0 43.81 635 750 133 14.8 289012078.7 9.5 9.6 804 784 24.5 30.4 231 333 12.6 2.761 .87 .83 9.7 8.51 742 1630 2108.0 45.01 633 729 132 14.8 289012078.7 9.5 9.6 804 784 24.5 30.4 231 333 12.6 2.761 .83 .80 9.7 8.51 743 1631 2109.0 51.81 657 750 130 15.0 287012079.2 9.5 9.6 803 807 24.5 30.4 231 333 12.6 2.761 .83 .80 9.7 8.51 744 1639 2110.0 47.31 577 7 743 136 12.2 286012080.8 9.5 9.6 807 97 97 24.6 30.4 231 333 12.7 2.771 .78 .75 9.7 8.51 744 1639 2110.0 47.31 577 7 743 136 12.2 286012080.8 9.5 9.6 807 807 24.5 30.4 231 333 12.7 2.771 .78 .75 9.7 8.51 744 1639 2110.0 47.31 577 7 743 136 12.2 285012081.0 9.5 9.6 807 802 24.5 30.4 231 333 12.7 2.771 .78 .75 9.7 8.51 744 1642 2112.0 60.91 633 738 104 6.71 28801208.0 9.5 9.6 807 802 24.6 30.5 2221 337 12.7 2.771 .60 .58 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.92 286012082.3 9.5 9.6 807 802 24.6 30.5 2221 337 12.7 2.771 .60 .58 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.92 286012082.3 9.5 9.6 807 79 79 24.6 30.5 2221 337 12.7 2.771 .60 .58 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.92 286012082.9 9.5 9.6 807 79 24.6 30.5 2221 337 12.7 2.771 .80 .58 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.92 286012082.9 9.5 9.6 800 787 24.6 30.5 2221 337 12.7 2.771 .80 .58 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.92 28601208.9 9.5 9.6 800 787 24.6 30.5 2221 334 12.9 2.771 .81 .99 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.92 28601208.9 9.5 9.6 800 787 24.6 30.5 2221 344 12.9 2.771 .81	734	1611	2100.0	28.6	204	702	110	17.3	202012071.7	7.5	7.U												
1/36 1612 2103.0 39.11 611 743 133 11.6 288012076.0 9.5 9.6 803 806 24.4 30.4 241 329 12.5 2.761 81 .78 9.7 8.51 737 1623 2103.0 39.11 611 743 133 11.6 288012076.5 9.5 9.6 805 792 24.4 30.4 241 333 12.6 2.761 82 .79 9.7 8.51 737 1628 2106.0 38.61 561 695 140 14.9 288012077.7 9.5 9.6 804 807 22.4.4 30.4 241 331 12.6 2.761 .85 .81 9.7 9.5 8.51 744 1629 2107.0 43.81 635 750 130 15.0 287012078.7 9.5 9.6 804 807 22.4.5 30.4 238 330 12.6 2.761 .87 .83 9.7 8.51 744 1629 2107.0 43.81 635 750 130 15.0 287012078.7 9.5 9.6 804 807 24.5 30.4 238 333 12.6 2.761 .87 .83 9.7 8.51 744 1639 2110.0 47.31 577 743 1531 2109.0 51.81 657 750 130 15.0 287012079.2 9.5 9.6 804 802 24.5 30.4 231 334 12.7 2.761 .82 .79 9.7 8.51 7444 1639 2110.0 47.31 577 743 1531 2109.0 51.81 657 750 130 15.0 287012079.2 9.5 9.6 804 802 24.5 30.4 231 334 12.7 2.761 .82 .79 9.7 8.51 7444 1639 2110.0 47.31 577 743 1534 1212.0 60.91 648 738 104 6.71 288012080.8 9.5 9.6 790 799 24.6 30.4 219 336 12.7 2.771 .79 .76 9.7 8.51 744 1642 2113.0 52.11 645 719 1046 6.22 285012081.0 9.5 9.6 801 806 24.6 30.5 2231 338 12.7 2.771 .80 .58 9.7 8.51 744 1642 2113.0 52.11 645 719 1046 6.22 285012081.0 9.5 9.6 801 806 24.6 30.5 2231 338 12.7 2.771 .80 .58 9.7 8.51 7479 1648 2115.0 29.91 655 766 103 9.96 286012083.3 9.5 9.6 801 806 24.6 30.5 2231 338 12.7 2.771 .80 .6 9.7 8.51 7479 1648 2115.0 29.91 655 766 103 9.96 286012083.4 9.5 9.6 800 799 24.6 30.5 2231 342 12.9 2.771 .80 .6 9.7 8.51 7479 1448 2115.0 22.31 889 22.13 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 22.51 80 80 80 22.51 80 80 22.51 80 80 80 22.51 80 80 80 22.51 80 80 80 80 22.51	735	1620	2101.0	41.Zi	/02	/00	117	10.1	2001/2074.7	0.5	9.4												
1873   1624   2104.0   40.41   648   767   127   13.7   2890   2075.5   5.5   5.6   805   796   24.4   30.4   243   330   12.6   2.761   .82   .79   9.7   8.5   3.79   1627   2105.0   38.41   616   736   131   14.2   2860   2077.7   9.5   9.6   804   807   24.4   30.4   241   331   32   12.6   2.761   .82   .83   9.7   8.5   3.74   1627   2107.0   43.81   635   750   133   14.8   2900   2077.7   9.5   9.6   804   807   24.5   30.4   238   332   12.6   2.761   .83   .80   9.7   8.5   3.74   1627   2107.0   43.81   635   750   133   14.8   2900   2078.7   9.5   9.6   804   807   24.5   30.4   238   333   12.6   2.761   .83   .80   9.7   8.5   3.74   1632   2107.0   43.81   635   750   133   14.8   2900   2078.7   9.5   9.6   801   807   24.5   30.4   238   333   12.6   2.761   .83   .80   9.7   8.5   3.74   1632   2110.0   47.31   577   743   136   12.2   2860   2080.7   9.5   9.6   803   809   24.5   30.4   238   335   12.7   2.771   .79   .76   9.7   9.5   9.6   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   301   3	736	1621	2102.0	30.8i	072	747	110	11.2	20/01/074	9.5	9 4												
1739 1622 2105.0 38.4 i 616 736 131 14.2 286012077.7 9.5 9.6 806 792 24.4 30.4 241 331 12.6 2.76 85 .81 9.7 8.5 1740 1627 2106.0 38.6 i 561 995 140 14.9 288012077.7 9.5 9.6 804 807 24.5 30.4 238 332 12.6 2.76 83 .83 9.7 8.5 1742 1630 2108.0 45.0 i 634 729 132 14.8 289012078.7 9.5 9.6 804 804 24.5 30.4 238 333 12.6 2.76 i 8.8 30 9.7 8.5 1742 1630 2108.0 45.0 i 634 729 132 14.8 289012078.7 9.5 9.6 806 810 24.5 30.4 234 334 12.7 2.76 82 .79 9.7 8.5 1744 1639 2110.0 47.31 577 743 136 12.2 286012080.8 9.5 9.6 807 707 24.6 30.5 221 337 12.7 2.77 1.78 7.5 9.7 8.5 1744 1649 2111.0 60.8 627 698 133 4.57 288012080.8 9.5 9.6 799 770 24.6 30.4 221 333 35 12.7 2.77 1.78 7.9 9.7 8.5 1744 1649 2113.0 52.1 i 46 4 719 106 6.22 2886012081.0 9.5 9.6 799 778 24.6 30.5 222 337 12.7 2.77 1.78 9.7 9.7 8.5 1749 1646 2115.0 29.9 i 655 766 103 9.9 286012081.0 9.5 9.6 801 806 24.6 30.5 223 338 12.7 2.77 1.74 7.72 9.7 8.5 1749 1646 2115.0 29.9 i 655 766 103 9.9 286012081.0 9.5 9.6 801 806 24.6 30.5 224 341 12.8 2.77 1.74 7.7 9.7 9.7 9.5 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	737	1023	2103.0	37.13		743	100	17.7	289012076.5	9.5	9.6										.79	9.7	8.5ID
740 1627 2106.0 38.61 561 695 140 14.9 288012077.7 9.5 9.6 804 807 24.5 30.4 2381 332 12.6 2.761 .87 .83 9.7 8.51   741 1629 2107.0 43.81 635 750 133 14.8 290012078.2 9.5 9.6 804 784 24.5 30.4 2361 333 12.6 2.761 .83 .80 9.7 8.51   743 1632 1210.0 47.31 577 743 136 12.2 286012080.7 9.5 9.6 808 810 24.5 30.4 2341 334 12.7 2.771 .79 .76 9.7 8.51   744 1639 2110.0 47.31 577 743 136 12.2 286012080.8 9.5 9.6 808 809 24.5 30.4 231 335 12.7 2.771 .79 .76 9.7 8.51   744 1640 2111.0 60.81 627 699 133 4.57 288012080.8 9.5 9.6 797 776 24.6 30.5 2221 337 12.7 2.771 .79 .76 9.7 8.51   745 1640 2111.0 60.81 627 699 133 4.57 288012080.8 9.5 9.6 799 799 24.6 30.4 211 336 12.7 2.771 .69 .57 9.7 8.51   7474 1642 2113.0 52.11 646 719 106 6.22 285012081.0 9.5 9.6 801 806 24.6 30.4 221 339 12.7 2.771 .69 .59   7479 1644 2113.0 52.15 646 75 766 103 9.9 246 2801.0828.3 4 9.5 9.6 799 778 24.6 30.5 2221 337 12.7 2.771 .62 .60 9.7 8.51   748 1644 2114.0 31.61 626 766 102 8.24 286012082.3 9.5 9.6 801 806 24.6 30.5 2241 341 12.8 2.771 .74 .72 9.7 8.51   749 1646 2115.0 29.91 655 766 103 9.9 26 286012083.4 9.5 9.6 801 806 24.6 30.5 2241 341 12.8 2.771 .74 .72 9.7 8.51   7450 1648 2116.0 25.61 645 757 103 11.3 287012084.8 9.5 9.6 801 806 24.6 30.5 2241 343 12.9 2.771 .83 .81 9.7 8.51   7451 1650 2117.0 28.31 588 754 110 10.5 287012084.8 9.5 9.6 801 807 24.6 30.5 2241 343 12.9 2.771 .83 .81 9.7 8.51   7452 1220.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 807 72 2.6 30.6 2221 346 13.2 2.781 .88 8.8 9.7 8.51   7452 1220.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 787 24.6 30.5 2221 346 13.2 2.781 .89 .89   7458 1379 21220.0 19.11 470 674 132 7.18 28601209.9 9.5 9.6 800 779 24.6 30.5 2221 344 12.9 2.771 .80 .80 .80   7459 1779 21220.0 19.11 470 674 132 7.18 28601201.9 9.5 9.6 800 779 24.6 30.5 2221 344 12.9 2.771 .80 .80 .80   7450 1779 21220.0 19.11 470 674 132 7.18 28601201.9 9.5 9.6 800 779 24.6 30.5 2221 345 12.9 2.771 .80 .80 .80 .90 .80 .90 .90 .90 .90 .90 .90 .90 .90 .90 .9	:/38 :770	1024	2104.0	40.41 70 A	210 L1L	701 734	171	14.7	284012077.1	9.5	9.6										.81	9.7	8.510
1741 1629 2107.0 43.81 635 750 133 14.8 290012078.2 9.5 9.6 804 784 24.5 30.4 2361 333 12.6 2.761 .83 .80 9.7 8.51 1742 1830 2108.0 45.01 634 729 132 14.8 289012078.7 9.5 9.6 808 810 24.5 30.4 2341 333 12.7 2.761 .82 .77 9.7 8.51 1743 1630 2108.0 45.01 634 729 132 14.8 289012078.7 9.5 9.6 803 809 24.5 30.4 2341 333 12.7 2.771 .79 .76 9.7 8.51 1744 1639 2110.0 47.3 577 743 136 12.2 286012080.7 9.5 9.6 79 776 24.6 30.4 231 333 12.7 2.771 .79 .75 9.7 8.51 1745 1640 2111.0 60.81 627 698 133 4.57 288012080.8 9.5 9.6 797 776 24.6 30.5 2221 337 12.7 2.771 .60 .58 9.7 8.51 1746 1641 2112.0 60.91 683 738 104 6.71 288012080.8 9.5 9.6 797 776 24.6 30.5 2221 337 12.7 2.771 .60 .58 9.7 8.51 1749 1646 2115.0 29.91 655 766 103 9.96 286012083.4 9.5 9.6 801 806 24.6 30.5 2221 337 12.8 2.771 .62 .60 9.7 8.51 1749 1646 2115.0 29.91 655 766 103 9.96 286012083.4 9.5 9.6 801 806 24.6 30.5 2241 340 12.8 2.771 .78 .75 9.7 8.51 1750 1648 2116.0 25.61 645 751 03 11.3 287012084.8 9.5 9.6 801 806 24.6 30.5 2241 341 12.8 2.771 .78 .76 9.7 8.51 1755 1253 2118.0 22.51 540 695 117 12.2 285012087.8 9.5 9.6 801 806 24.6 30.5 2241 341 12.8 2.771 .83 .81 9.7 8.51 1755 1752 1210.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 787 24.6 30.5 2221 344 12.9 2.771 .83 .81 9.7 8.51 1755 1755 1752 1220.0 19.31 489 619 109 10.1 284012100.5 9.5 9.6 800 779 24.6 30.5 2221 344 12.9 2.771 .90 .87 9.7 8.51 1755 1733 1212 120.0 19.41 478 669 118 10.3 286012097.9 9.5 9.6 800 780 25.0 30.6 2221 344 12.9 2.771 .90 .87 9.7 8.51 1755 1733 2122.0 19.31 489 640 115 12.3 286012102.9 9.5 9.6 800 780 25.0 30.6 2231 348 13.2 2.781 .90 .87 9.7 8.51 1755 1733 2122.0 0 19.31 489 640 115 12.3 286012102.9 9.5 9.6 800 780 25.0 30.6 2231 349 13.3 2.781 .90 .87 9.7 8.51 1759 1739 2122.0 23.11 482 608 118 15.5 283012106.5 9.5 9.6 800 780 25.0 30.6 2231 349 13.3 2.781 .90 .87 9.7 8.51 1759 1733 2122.0 0 23.41 540 200 21.31 22.21 22.80 23.31 482 22.70 23.31 482 608 2120.8 9.5 9.6 800 780 25.0 30.6 2231 350 13.3 2.791 .00 .87 9.7 8.51 1759 1733 2122.0 0 23.41 640 200 21.31 22.21 48.	1727 1740	1020	2103.0	70.41	541	405 405	140	14.9	288012077.7	9.5	9.6										.83	9.7	8.51D
1742 1630 2108.0 45.01 634 729 132 14.8 289012078.7 9.5 9.6 806 810 24.5 30.4 2241 334 12.7 2.761 82 79 79 79 76 6.5 1743 1631 2109.0 47.31 577 743 135 12.2 286012080.7 9.5 9.6 803 809 24.5 30.4 2241 335 12.7 2.771 .79 .76 9.7 9.7 8.5 1744 1639 2110.0 47.31 577 743 135 12.2 286012080.7 9.5 9.6 79 776 24.6 30.5 2221 337 12.7 2.771 .79 .76 9.7 9.5 1744 1639 2110.0 60.81 627 698 133 4.57 288012080.8 9.5 9.6 797 776 24.6 30.5 2221 337 12.7 2.771 .79 .76 9.7 9.5 1747 1642 2113.0 52.11 646 719 106 6.22 285012081.0 9.5 9.6 801 806 24.5 30.4 2221 339 12.7 2.771 .60 .58 9.7 8.5 1748 1644 2114.0 31.61 626 766 102 8.24 286012082.3 9.5 9.6 801 806 24.5 30.5 2221 338 12.7 2.771 .74 .72 9.7 8.5 1749 1646 2115.0 29.91 655 766 103 9.96 286012083.4 9.5 9.6 801 806 24.5 30.5 2241 340 12.8 2.771 .80 .76 9.7 8.5 1750 1648 2116.0 25.61 645 737 103 11.3 287012084.8 9.5 9.6 801 787 24.6 30.5 2241 340 12.8 2.771 .81 .79 9.7 8.5 1751 1650 2117.0 28.31 588 754 110 10.5 287012086.2 9.5 9.6 801 787 24.6 30.5 2241 341 12.8 2.771 .81 .79 9.7 8.5 1752 1653 2118.0 22.55 540 695 117 12.2 285012087.8 9.5 9.6 801 787 24.6 30.5 2241 341 12.8 2.771 .83 .81 9.7 8.5 1752 1220.0 19.31 489 619 109 10.1 284012097.9 9.5 9.6 801 787 24.5 30.6 2221 344 12.9 2.771 .80 .83 9.7 8.5 1755 1732 1212.0 19.31 489 619 109 10.1 284012100.8 9.5 9.6 801 787 25.0 30.6 2221 344 12.9 2.771 .90 .87 9.7 8.5 1755 1733 2122.0 19.31 489 619 109 10.1 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 348 13.2 2.781 .88 .86 9.7 8.5 1755 1733 2122.0 19.31 489 619 109 10.1 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 340 13.2 2.781 .88 .86 9.7 9.7 9.5 1759 1733 2122.0 20.31 484 640 115 12.3 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 349 13.3 2.781 .99 .87 9.7 9.5 1.759 1733 2122.0 20.31 482 608 118 15.5 28301210.8 9.5 9.6 800 789 25.0 30.6 2231 349 13.3 2.781 .99 .87 9.7 9.5 9.6 800 782 25.0 30.6 2231 340 13.2 2.781 .88 .86 9.7 9.7 9.5 9.6 800 782 25.0 30.6 2231 340 13.2 2.781 .88 .86 9.7 9.7 9.5 9.6 800 782 25.0 30.6 2231 340 13.5 2.791 .90 .87 9.9 9.7 9.5 9.6 800 789 24.8 30.7 2221 353	:/4V :7#1	102/	2100.0	AT 9!	475	750	133	14.8	290012078.2	9.5	9.6					2361	333	12.6	2.76	.83	.80	9.7	8.510
1743 1631 2109.0 51.81 657 750 130 15.0 287012079.2 9.5 9.6 803 809 24.5 30.4 2331 335 12.7 2.771 .79 .76 9.7 8.51 1744 1639 2110.0 47.31 577 743 136 12.2 286012080.7 9.5 9.6 707 799 24.6 30.4 2191 336 12.7 2.771 .78 .75 9.7 8.51 1745 1640 2111.0 60.81 627 698 133 4.57 288012080.8 9.5 9.6 797 776 24.6 30.5 2221 337 12.7 2.771 .60 58 9.7 8.51 1747 1642 2113.0 52.11 646 719 106 6.22 285012081.0 9.5 9.6 801 806 24.6 30.5 2221 337 12.7 2.771 .60 58 9.7 8.51 1749 1646 2115.0 29.91 655 766 103 9.94 286012082.3 9.5 9.6 801 806 24.6 30.5 2221 337 12.8 2.771 .62 6.0 9.7 8.51 1749 1646 2115.0 29.91 655 766 103 9.94 286012082.3 9.5 9.6 801 806 24.6 30.5 2241 340 12.8 2.771 .78 .76 9.7 8.51 1750 1648 2116.0 25.61 645 757 103 11.3 287012084.8 9.5 9.6 801 806 24.6 30.5 2241 340 12.8 2.771 .78 .76 9.7 8.51 1751 1650 2117.0 28.31 588 754 110 10.5 287012084.8 9.5 9.6 801 806 24.6 30.5 2241 341 12.8 2.771 .83 .81 9.7 8.51 1751 1650 2117.0 28.31 889 675 17 12.2 285012081.8 9.5 9.6 801 787 24.6 30.5 2241 341 12.8 2.771 .83 .81 9.7 8.51 1753 1721 2120.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 787 24.6 30.5 2221 344 12.9 2.771 .81 .81 9.7 8.51 1755 1727 2122.0 19.31 489 619 109 10.1 284012100.5 9.5 9.6 800 779 24.6 30.5 2221 344 12.9 2.771 .81 .88 .83 9.7 8.51 1755 1730 2123.0 20.31 489 619 109 10.1 284012100.5 9.5 9.6 800 782 25.0 30.6 2221 341 13.2 2.781 .99 .87 9.7 8.51 1755 1730 2123.0 20.31 489 640 115 12.3 284012100.5 9.5 9.6 800 782 25.0 30.6 2231 340 13.2 2.781 .99 .89 9.7 8.51 1756 1732 2122.0 20.01 506 677 118 14.7 285012108.8 9.5 9.6 800 782 25.0 30.6 2231 340 13.2 2.791 .90 .97 9.7 9.7 8.51 1766 1742 2127.0 20.01 506 677 118 14.7 285012108.8 9.5 9.6 800 782 25.0 30.6 2231 350 13.3 2.791 .00 .97 9.7 9.7 8.51 1766 1742 2127.0 20.01 506 677 118 14.7 28501210.8 9.5 9.6 800 782 25.0 30.6 2231 350 13.3 2.791 .00 .97 9.7 9.7 8.51 1766 1742 2127.0 20.01 506 677 118 14.7 28501211.8 9.5 9.6 800 782 24.8 30.7 2251 355 13.5 2.791 .89 .89 .97 8.51 1766 1742 2127.0 25.01 60 270 114 11.0 288012110.8 9.5 9.6 800 782 24.8 30.7 225	1/41 1789	1627	2107.0 2108.0	45.0	434	729	137	14.8	289012078.7	9.5	9.6	806	810	24.5	30.4	2341	334	12.7	2.76	.82	.79		
1744 1649 2110.0 47.31 577 743 136 12.2 286612080.7 9.5 9.6 790 779 24.6 30.4 2191 3.8 12.7 2.771 60 6.9 77.7 1745 1640 2111.0 60.81 627 698 133 4.57 288012080.8 9.5 9.6 797 776 24.6 30.5 2221 337 12.7 2.771 60 6.9 7.7 7.7 1746 1641 2112.0 60.91 633 738 104 6.71 288012080.8 9.5 9.6 798 778 24.6 30.5 2231 338 12.7 2.771 60 6.9 7.7 8.51 1744 1642 2113.0 52.11 646 719 106 6.22 285012081.0 9.5 9.6 801 806 24.6 30.5 2231 338 12.7 2.771 60 6.9 7.7 8.51 1749 1646 2115.0 29.91 655 766 103 9.96 286012082.3 9.5 9.6 801 806 24.6 30.5 2241 340 12.8 2.771 74 72 9.7 8.51 1750 1648 2116.0 25.61 645 757 103 11.3 287012084.8 9.5 9.6 799 778 24.6 30.5 2231 342 12.9 2.771 83 .81 9.7 8.51 1751 1650 2117.0 28.31 588 754 110 10.5 287012084.8 9.5 9.6 801 787 24.6 30.5 2231 342 12.9 2.771 83 .81 9.7 8.51 1752 1653 2118.0 22.51 540 695 117 12.2 285012087.8 9.5 9.6 801 787 24.6 30.5 2231 342 12.9 2.771 81 .79 9.7 8.51 1752 120.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 787 24.6 30.5 2221 344 12.9 2.771 80 .83 9.7 8.51 1753 1721 2120.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 783 25.0 30.6 2221 344 12.9 2.771 90 .87 9.7 8.51 1755 1752 1212.0 19.41 478 669 118 10.3 284012100.5 9.5 9.6 801 783 25.0 30.6 2221 344 12.9 2.771 90 .87 9.7 8.51 1755 1733 2123.0 20.31 484 640 115 12.3 284012100.5 9.5 9.6 801 783 25.0 30.6 2231 348 13.2 2.781 88 .86 9.7 8.51 1756 1732 2123.0 20.31 484 640 115 12.3 28401210.8 9.5 9.6 802 783 25.0 30.6 2231 349 13.3 2.781 90 .87 9.7 8.51 1758 1733 2125.0 20.41 502 737 119 14.1 285012104.8 9.5 9.6 802 783 25.0 30.6 2231 349 13.3 2.781 90 .87 9.7 8.51 1760 1742 2127.0 20.01 506 677 118 14.7 286012102.9 9.5 9.6 800 782 24.8 30.7 2251 355 13.4 2.791 95 .99 9.7 8.51 1764 1744 2128.0 27.21 582 267 14 14.0 28801210.9 9.5 9.6 800 772 24.8 30.7 2251 355 13.5 2.791 8.8 .85 9.7 8.51 1765 1788 2130.0 23.61 574 767 124 8.50 28801211.9 9.5 9.6 800 779 24.8 30.7 2251 355 13.5 2.791 8.8 .85 9.7 8.51 1765 1850 2130.0 23.61 574 767 124 8.50 28801211.0 9.5 9.6 800 779 24.8 30.7 2251 355 13.5 2.791 8.8 .85 9.7 8.51 1766 180	1774 !787	1741	2100.0	51.8	457	750	130	15.0	287012079.2	9.5	9.6	803	809	24.5	30.4	2331	335	12.7	2.77	.79	.76		
1745 1640 2111.0 60.81 627 698 133 4.57 288012080.8 9.5 9.6 797 776 24.6 30.5 2221 337 12.7 2.771 .69 .57 7.7 8.51 7746 1642 2113.0 52.11 645 719 106 6.22 285012081.0 9.5 9.6 801 806 24.6 30.5 2221 339 12.8 2.771 .60 .58 9.7 8.51 749 1642 2113.0 52.11 645 78 102 8.24 286012082.3 9.5 9.6 801 806 24.6 30.5 2241 330 12.8 2.771 .74 .72 9.7 8.51 749 1646 2115.0 29.91 655 766 103 9.96 286012083.4 9.5 9.6 801 806 24.6 30.5 2241 340 12.8 2.771 .78 .76 9.7 8.51 750 1648 2116.0 25.61 645 737 103 11.3 287012084.8 9.5 9.6 801 787 24.6 30.5 2241 341 12.8 2.771 .83 .81 9.7 8.51 750 1648 2116.0 25.61 645 737 103 11.3 287012084.8 9.5 9.6 801 787 24.6 30.5 2241 341 12.8 2.771 .83 .81 9.7 8.51 755 1650 2117.0 28.31 588 754 110 10.5 287012086.2 9.5 9.6 801 787 24.6 30.5 2241 343 12.8 2.771 .83 .81 9.7 8.51 755 1753 1721 2120.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 787 24.6 30.5 2221 344 12.9 2.771 .80 .87 9.7 8.51 755 1754 1752 1220.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 787 24.6 30.5 2221 344 12.9 2.771 .90 .87 9.7 8.51 755 1753 1721 2120.0 19.41 478 669 118 10.3 284012100.5 9.5 9.6 801 787 25.0 30.6 2221 346 13.1 2.781 .86 .83 9.7 8.51 755 1753 2122.0 19.31 489 649 101 12.4 284012100.8 9.5 9.6 800 787 25.0 30.6 2221 346 13.1 2.781 .86 .87 9.7 8.51 755 1753 2122.0 2.31 482 608 118 15.5 28301210.8 9.5 9.6 800 787 25.0 30.6 2231 349 13.3 2.781 1.00 .97 9.7 8.51 755 1753 2122.0 2.31 482 608 118 15.5 28301210.8 9.5 9.6 800 782 25.0 30.6 2231 349 13.3 2.781 1.00 .97 9.7 8.51 756 1730 2123.0 20.31 482 608 118 15.5 28301210.8 9.5 9.6 800 782 25.0 30.6 2231 349 13.3 2.781 1.00 .97 9.7 8.51 756 1730 2123.0 20.31 482 608 118 15.5 28301210.8 9.5 9.6 800 782 25.0 30.6 2231 340 13.3 2.791 1.00 .97 9.7 8.51 756 1730 2123.0 20.31 482 608 118 15.5 28301210.8 9.5 9.6 800 782 25.0 30.6 2231 350 13.3 2.791 1.00 .97 9.7 8.51 756 1730 2123.0 20.31 482 608 118 15.5 28301210.8 9.5 9.6 800 782 25.0 30.6 2231 350 13.3 2.791 1.00 .97 9.7 8.51 756 1730 213.0 23.1 482 608 2130.0 23.6 577 1.0 14.1 328501210.8 9.5 9.6 800 782 25.0 30.6 223	!744	1639	2110.0	47.3	577	743	136	12.2	286012080.7	9.5	9.6	790	799	24.6	30.4								
1746 1641 2112.0 60.91 683 738 104 6.71 288012080.8 9.5 9.6 798 778 24.6 30.5 2231 338 12.7 2.771 .80 .58 9.7 8.51 1747 1642 2113.0 52.11 646 719 106 6.22 285012081.0 9.5 9.6 801 806 24.6 30.4 2221 339 12.8 2.771 .72 .76 8.51 1749 1646 2115.0 29.91 655 766 103 9.96 286012082.3 9.5 9.6 801 806 24.6 30.5 2241 340 12.8 2.771 .78 .76 9.7 8.51 1749 1646 2115.0 29.91 655 76 103 9.96 286012083.4 9.5 9.6 799 778 24.6 30.5 2241 340 12.8 2.771 .78 .76 9.7 8.51 1750 1648 2116.0 25.61 645 757 103 11.3 287012084.8 9.5 9.6 801 787 24.6 30.5 2241 340 12.8 2.771 .83 .81 9.7 8.51 1751 1650 2117.0 28.31 588 754 110 10.5 287012086.2 9.5 9.6 801 787 24.6 30.5 2241 340 12.8 2.771 .81 .79 9.7 8.51 1752 120.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 787 24.6 30.5 2221 342 12.9 2.771 .81 .79 9.7 8.51 1753 1721 120.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 801 789 24.9 30.6 2221 346 13.1 2.781 .88 .86 83 9.7 8.51 1755 1757 1723 2124.0 19.41 478 669 118 10.3 284012100.8 9.5 9.6 800 789 25.0 30.6 2221 347 13.2 2.781 .88 .86 9.7 8.51 1755 1757 1733 2124.0 15.91 465 699 122 13.3 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 348 13.2 2.781 .88 .86 9.7 8.51 1759 1739 2126.0 23.11 482 608 118 15.5 283012106.8 9.5 9.6 800 780 25.0 30.6 2231 349 13.3 2.781 .92 .89 9.7 8.5 1760 1742 2127.0 20.01 506 677 118 14.7 286012102.9 9.5 9.6 800 780 25.0 30.6 2231 350 13.3 2.791 1.00 .97 9.7 8.5 1764 1762 2127.0 20.01 506 677 118 14.7 286012108.8 9.5 9.6 800 778 24.8 30.7 2241 354 13.5 2.791 .98 .99 9.7 8.5 1764 1768 1800 2131.0 24.71 617 721 114 11.3 285012114.0 9.5 9.6 800 779 24.8 30.7 2241 354 13.5 2.791 .89 .85 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012114.0 9.5 9.6 800 779 24.8 30.7 2241 355 13.5 2.791 .89 .85 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012114.0 9.5 9.6 800 779 24.8 30.7 2241 355 13.5 2.791 .89 .85 9.7 8.5 1764 1800 2131.0 22.71 602 14.3 288012118.8 9.5 9.6 800 779 24.8 30.7 2241 355 13.5 2.791 .89 .85 9.7 8.5 1764 1800 2131.0 22.71 602 14.3 288012118.8 9.5 9.6 800 779 24.8 30.7 2241 350 13.7 2.801 .89 .99 .	1745	1640	2111.0	60.8	627	698	133	4.57	2880:2080.8	9.5	9.6	797	776	24.6	30.5								
1747   1642   2113.0   52.1   646   719   106   6.22   285012081.0   9.5   9.6   801   806   24.6   30.4   222   349   12.8   2.77   7.6   7.6   7.7   9.7   8.5   7.7   9.7   8.5   7.7   9.7   8.5   7.7   9.7   8.5   7.7   9.7   8.5   7.7   9.7   8.5   7.7   9.7   8.5   7.7   9.7   8.5   7.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7   9.7	1746	1641	2112.0	60.9	683	738	104	6.71	288012080.8	9.5	9.6	798	778	24.6	30.5								
1748   1644   2114.0   31.61   626   766   102   8.24   2860  2082.3   9.5   9.6   801   806   24.6   30.5   2241   341   12.8   2.771   78   7.6   79   79   78   24.6   30.5   2241   341   12.8   2.771   78   78   78   77   78   77   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78   78	1747	1642	2113.0	52.1	646	719	106	6.22	2850:2081.0	9.5	9.6	801	806	24.6	30.4								
1749   1646   2115.0   29.91   655   766   103   9.96   286012083.4   9.5   9.6   799   778   24.6   30.5   2241   341   12.8   2.771   .81   8.51   1750   1648   2115.0   25.61   645   757   103   11.3   287012084.8   9.5   9.6   801   787   24.6   30.5   2231   342   12.9   2.771   .81   .81   9.7   8.51   1751   1650   2117.0   28.31   588   754   110   10.5   287012084.8   9.5   9.6   801   787   24.6   30.5   2221   344   12.9   2.771   .81   .79   9.7   8.51   1752   120.0   19.11   470   674   132   7.18   286012097.9   9.5   9.6   800   779   24.6   30.5   2221   344   12.9   2.771   .90   .87   9.7   8.51   1752   1212.0   19.11   470   674   132   7.18   286012097.9   9.5   9.6   800   779   24.6   30.5   2221   344   12.9   2.771   .90   .87   9.5   9.5   1755   1727   2122.0   19.31   489   619   109   10.1   284012100.5   9.5   9.6   800   780   25.0   30.6   2221   347   13.2   2.781   .88   .84   9.7   8.51   1755   1730   2123.0   20.31   484   640   115   12.3   284012100.8   9.5   9.6   802   787   25.0   30.6   2231   349   13.3   2.781   .92   .89   9.7   8.51   1758   1737   2125.0   20.41   502   737   119   14.1   285012104.8   9.5   9.6   802   786   25.0   30.6   2231   349   3.3   2.781   .92   .89   9.7   8.51   1758   1737   2125.0   20.41   482   608   118   15.5   283012104.8   9.5   9.6   802   782   24.8   30.6   2251   352   13.4   2.791   .96   9.7   9.5   9.6   802   783   25.0   30.6   2231   349   3.3   2.781   .92   .89   9.7   8.51   1758   1730   2125.0   20.41   502   2.78   2.80   2.79   2.90   2.79   2.80   2.79   2.79   2.80   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79   2.79	1748	1644	2114.	31.6	626	766	102	8.24	286012082.3	9.5	9.6												
1750   1648   2116.0   25.6   645   757   103   11.3   2870   2084   8   9.5   9.6   797   790   24.6   30.5   223   342   12.9   2.77   .81   .79   797   8.5   1751   1650   2117.0   28.3   588   754   110   10.5   2870   2086   220   27.5   9.6   801   787   24.6   30.5   224   343   32.9   2.77   .81   .79   77   8.5   1752   1250.0   19.1   470   674   132   7.18   2860   2097.9   9.5   9.6   800   779   24.6   30.5   222   344   12.9   2.77   .90   .87   8.5   1754   1724   2121.0   19.4   478   669   118   10.3   2840   2099.1   9.5   9.6   801   793   25.0   30.6   222   344   13.1   2.78   .86   .83   9.7   8.5   1755   1727   2122.0   19.3   489   619   101   2840   2100.5   9.5   9.6   801   793   25.0   30.6   223   349   32.2   2.78   .90   .87   9.5   9.5   1756   1730   2123.0   20.3   484   640   115   12.3   2840   2100.8   9.5   9.6   800   787   25.0   30.6   223   349   33.2   2.78   .90   .87   9.5   9.5   1756   1730   2123.0   20.3   484   640   115   12.3   2840   2100.8   9.5   9.6   800   787   25.0   30.6   223   349   33.3   2.78   .90   .87   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   8.0   787   25.0   30.6   223   349   33.3   2.78   .90   9.7   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5	1749	1646	2115.	29.9	1 655	766	103	9.96	286012083.4	9.5	9.6												
7.75 1630 2118.0 22.13 180 22.5 540 695 117 12.2 285012087.8 9.5 9.6 800 779 24.6 30.5 2221 344 12.9 2.771 90 .87 9.7 8.5 1753 1721 2120.0 19.11 470 674 132 7.18 286012097.9 9.5 9.6 800 789 24.9 30.6 2221 346 13.1 2.781 86 .83 9.7 8.5 1754 1724 2121.0 19.4 478 669 118 10.3 284012100.5 9.5 9.6 801 793 25.0 30.6 2221 347 13.2 2.781 90 .87 9.7 8.5 1755 1727 2122.0 19.3 489 619 109 10.1 284012100.5 9.5 9.6 800 787 25.0 30.6 2221 347 13.2 2.781 90 .87 9.7 8.5 1756 1730 2123.0 20.3 484 640 115 12.3 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 348 13.2 2.781 92 .89 9.7 8.5 1757 1734 2124.0 15.9 465 699 122 13.3 28401210.8 9.5 9.6 800 787 25.0 30.6 2231 349 13.3 2.791 .00 .97 9.7 8.5 1758 1737 2125.0 20.4 502 737 119 14.1 285012104.8 9.5 9.6 800 780 25.0 30.6 2231 349 13.3 2.791 90 .97 9.7 8.5 1759 1739 2126.0 23.1 482 608 118 15.5 283012106.5 9.5 9.6 800 805 24.9 30.6 2251 351 13.4 2.791 96 .93 9.7 8.5 1760 1742 2127.0 20.0 506 677 118 14.7 286012108.8 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 95 .92 9.7 8.5 1762 1755 2129.0 25.4 619 772 96 12.9 289012113.5 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 88 .85 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012104.0 9.5 9.6 800 789 24.8 30.7 2251 355 13.5 2.791 88 .85 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 789 24.8 30.7 2261 357 13.6 2.801 84 .81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 801 789 24.8 30.7 2261 359 13.7 2.801 .85 81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012118.8 9.5 9.6 800 779 24.9 30.7 2261 359 13.7 2.801 .85 81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 361 13.8 2.801 .85 .82 9.7 9.7 8.5 1769 1813 2137.0 28.8 663 776 102 13.7 288012118.8 9.5 9.6 800 779 24.9 30.7 2271 361 13.8 2.801 .85 .82 9.7 9.7 8.5 1770 1813 2137.0 28.8 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .85 .99 9.7 8.5 1770 1813 2137.0 28.8 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .85 .99 9.7 8.5 177	1750	1648	2116.	25.6	645	757	103	11.3	287012084.8	9.5	9.6												
1752 1653 2118.0 22.31 340 674 132 7.18 286012097.9 9.5 9.6 803 789 24.9 30.6 2221 346 13.1 2.781 .86 .83 9.7 8.51 1754 1724 2121.0 19.41 478 669 118 10.3 284012099.1 9.5 9.6 801 793 25.0 30.6 2221 347 13.2 2.781 .90 .87 9.7 8.5 1755 1727 2122.0 19.31 489 619 109 10.1 284012100.5 9.5 9.6 800 792 25.0 30.6 2231 348 13.2 2.781 .88 .86 9.7 8.5 1756 1730 2123.0 20.31 484 640 115 12.3 28401210.8 9.5 9.6 800 787 25.0 30.6 2231 349 13.3 2.781 .92 .89 9.7 8.5 1757 1734 2124.0 15.91 465 699 122 13.3 28601210.9 9.5 9.6 802 783 25.0 30.6 2231 349 13.3 2.781 .92 .89 9.7 8.5 1758 1737 2125.0 20.41 502 737 119 14.1 285012104.8 9.5 9.6 800 786 25.0 30.6 2231 350 13.3 2.7911.00 .97 9.7 8.5 1759 1739 2126.0 23.11 482 608 118 15.5 283012106.5 9.5 9.6 800 805 24.9 30.6 2251 351 13.4 2.791 .96 .93 9.7 8.5 1760 1742 2127.0 20.01 506 677 118 14.7 286012108.8 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 .97 .99 9.7 8.5 1761 1744 2128.0 27.21 582 697 106 14.7 28401210.9 9.5 9.6 800 778 24.8 30.6 2251 353 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 800 778 24.8 30.7 2241 355 13.5 2.791 .85 .83 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2261 355 13.6 2.801 .84 .81 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 782 24.8 30.7 2261 357 13.6 2.801 .84 .81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 801 782 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 800 803 24.9 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1768 1809 2135.0 22.11 602 762 104.3 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .85 .85 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 28801218.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .82 .99 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 28801218.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .85 .82 .99 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 28801218.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .85 .82 .79 9.7	1751	1650	2117.	0 28.3	1 588	754	110	10.5	287012086.2	9.5	9.6												
1754 1724 2121.0 19.41 478 669 118 10.3 2840121099.1 9.5 9.6 801 793 25.0 30.6 2221 347 13.2 2.781 .88 .86 9.7 8.5 1755 1727 2122.0 19.31 489 619 109 10.1 284012100.5 9.5 9.6 800 782 25.0 30.6 2231 348 13.2 2.781 .88 .86 9.7 8.5 1756 1730 2123.0 20.31 484 640 115 12.3 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 349 13.3 2.781 .92 .89 9.7 8.5 1757 1734 2124.0 15.91 465 699 122 13.3 286012102.9 9.5 9.6 800 782 25.0 30.6 2231 349 13.3 2.7911.00 .97 9.7 8.5 1758 1737 2125.0 20.41 502 737 119 14.1 285012104.8 9.5 9.6 800 786 25.0 30.6 2231 350 13.3 2.7911.00 .97 9.7 8.5 1759 1739 2126.0 23.11 482 608 118 15.5 283012106.5 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 .96 .93 9.7 8.5 1760 1742 2127.0 20.01 506 677 118 14.7 284012109.9 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 .97 .94 9.7 8.5 1761 1744 2128.0 27.21 582 697 106 14.7 284012109.9 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 .88 .85 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 801 782 24.8 30.7 2251 358 13.7 2.801 .90 .87 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 800 779 24.9 30.7 2251 356 13.7 2.801 .89 .81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 800 779 24.9 30.7 2251 356 13.6 2.801 .87 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 800 779 24.9 30.7 2251 356 13.8 2.801 .95 9.9 9.7 8.5 1766 1809 2135.0 22.11 602 762 104.3 288012118.8 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1766 1809 2135.0 22.11 602 762 104.3 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .95 9.9 9.7 8.5 1768 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .95 9.9 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .99 9.7 8.5 1769	1752	165	3 2118.	0 22.5	540	695	117	12.2	285012087.8	9.5	9.6												
1755 1727 2122.0 19.31 489 619 109 10.1 284012100.5 9.5 9.6 800 787 25.0 30.6 2231 348 13.2 2.781 .88 .86 9.7 8.5 1756 1730 2123.0 20.31 484 640 115 12.3 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 349 13.3 2.781 .92 .89 9.7 8.5 1757 1734 2124.0 15.91 465 649 122 13.3 286012102.9 9.5 9.6 800 787 25.0 30.6 2231 350 13.3 2.7911.00 .97 9.7 8.5 1758 1737 2125.0 20.41 502 737 119 14.1 285012104.8 9.5 9.6 800 786 25.0 30.6 2231 350 13.3 2.7911.00 .97 9.7 8.5 1759 1739 2126.0 23.11 482 608 118 15.5 283012104.5 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 .96 .93 9.7 8.5 1760 1742 2127.0 20.01 506 677 118 14.7 284012109.8 9.5 9.6 800 780 24.9 30.6 2251 352 13.4 2.791 .97 .94 9.7 8.5 1761 1744 2128.0 27.21 582 697 106 14.7 284012109.9 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 798 778 24.8 30.7 2241 355 13.5 2.791 .88 .85 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012110.0 9.5 9.6 801 787 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 787 24.8 30.7 2251 358 13.7 2.801 .80 .80 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 801 782 24.8 30.7 2251 358 13.7 2.801 .90 .87 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 801 782 24.8 30.7 2261 359 13.7 2.801 .80 .80 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .80 .80 .80 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 800 779 24.9 30.7 2261 359 13.7 2.801 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80	175.	172	1 2120.	0 19.1	1 470	674	132	7.18	286012097.9	9.5	9.6												
1756 1730 2123.0 20.31 484 640 115 12.3 284012100.8 9.5 9.6 800 787 25.0 30.6 2231 349 13.3 2.781 .92 .89 9.7 8.5 1757 1734 2124.0 15.91 465 699 122 13.3 286012102.9 9.5 9.6 800 786 25.0 30.6 2231 350 13.3 2.7911.00 .97 9.7 8.5 1758 1737 2125.0 20.41 502 737 119 14.1 285012104.8 9.5 9.6 800 786 25.0 30.6 2251 350 13.3 2.7911.00 .97 9.7 8.5 1759 1739 2126.0 23.11 482 608 118 15.5 283012106.5 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 .95 .92 9.7 8.5 1760 1742 2127.0 20.01 506 677 118 14.7 286012108.8 9.5 9.6 800 786 25.0 30.6 2251 352 13.4 2.791 .95 .92 9.7 8.5 1761 1744 2128.0 27.21 582 697 106 14.7 284012109.9 9.5 9.6 800 788 24.8 30.6 2251 353 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 798 778 24.8 30.7 2241 355 13.5 2.791 .88 .85 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.9 9.5 9.6 801 782 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 801 782 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .89 .89 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1766 1804 2133.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 361 13.8 2.801 .92 .99 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7	1754	172	4 2121.	0 19.4	478	669	118	10.3	2840:2099.1	9.5	7.6												
1756 1730 2123.0 20.31 484 640 113 12.3 286012102.9 9.5 9.6 802 783 25.0 30.6 2231 350 13.3 2.7911.00 .97 9.7 8.5 1758 1737 2125.0 20.41 502 737 119 14.1 285012104.8 9.5 9.6 800 786 25.0 30.6 2261 351 13.4 2.791 .96 .93 9.7 8.5 1759 1739 2126.0 23.11 482 608 118 15.5 283012106.5 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 .97 .92 9.7 8.5 1760 1742 2127.0 20.01 506 677 118 14.7 286012108.8 9.5 9.6 799 777 24.9 30.6 2251 353 13.5 2.791 .97 .94 9.7 8.5 1761 1744 2128.0 27.21 582 697 106 14.7 284012109.9 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 798 778 24.8 30.7 2241 355 13.5 2.791 .88 .85 9.7 8.5 1763 1758 2130.0 23.61 574 767 124 8.50 288012114.8 9.5 9.6 801 787 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2251 356 13.6 2.801 .87 .84 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 787 24.8 30.7 2251 356 13.6 2.801 .87 .84 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 800 779 24.9 30.7 2261 359 13.7 2.801 .88 .85 9.7 8.5 1766 1809 2135.0 22.11 602 762 120 14.3 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 361 13.8 2.801 .82 .99 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .82 .79 9.7 8.5 1760 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .82 .99 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .82 .99 9.7 8.5 1760 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .82 .99 9.7 8.5 1760 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .82 .99 9.7	175	172	7 2122.	0 19.3	1 489	619	109	7 10.1	284012100.5	9.5	9.6												
1758 1737 2125.0 20.41 502 737 119 14.1 285012104.8 9.5 9.6 800 786 25.0 30.6 2261 351 13.4 2.791 .96 .93 9.7 8.5 1759 1739 2126.0 23.11 482 608 118 15.5 283012106.5 9.5 9.6 800 805 24.9 30.6 2251 352 13.4 2.791 .95 .92 9.7 8.5 1760 1742 2127.0 20.01 506 677 118 14.7 286012108.8 9.5 9.6 799 777 24.9 30.6 2251 353 13.5 2.791 .97 .94 9.7 8.5 1761 1744 2128.0 27.21 582 697 106 14.7 284012109.9 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 798 778 24.8 30.7 2241 355 13.5 2.791 .85 .83 9.7 8.5 1763 1758 2130.0 23.61 574 767 124 8.50 288012114.8 9.5 9.6 799 789 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 782 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .80 .85 9.7 8.5 1766 1809 2135.0 22.11 602 762 120 14.3 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .82 .79 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 363 13.8 2.801 .82 .79 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .82 .79 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .82 .80 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .82 .80	175	173	0 2123.	0 20.3	484	640	) 115	12.3	2840;2100.8	7.0	9.0												
1759 1739 2126.0 23.1; 482 608 118 15.5 2830; 2106.5 9.5 9.6 800 805 24.9 30.6 225; 352 13.4 2.79; .95 .92 9.7 8.5 1760 1742 2127.0 20.0; 506 677 118 14.7 2860; 2108.8 9.5 9.6 799 777 24.9 30.6 225; 353 13.5 2.79; .97 .94 9.7 8.5 1761 1744 2128.0 27.2; 582 697 106 14.7 2840; 2109.9 9.5 9.6 800 778 24.8 30.6 224; 354 13.5 2.79; .88 .85 9.7 8.5 1762 1755 2129.0 25.4; 619 772 96 12.9 2890; 2113.5 9.5 9.6 798 778 24.8 30.7 224; 355 13.5 2.79; .85 .83 9.7 8.5 1763 1758 2130.0 23.6; 574 767 124 8.50 2880; 2114.8 9.5 9.6 799 789 24.8 30.7 225; 356 13.6 2.80; .84 .81 9.7 8.5 1764 1800 2131.0 24.7; 617 72; 114 11.3 2850; 2116.0 9.5 9.6 801 787 24.8 30.7 226; 356 13.6 2.80; .84 .81 9.7 8.5 1765 1803 2132.0 22.1; 534 728 131 10.2 2880; 2117.2 9.5 9.6 801 787 24.8 30.7 226; 357 13.6 2.80; .87 .84 9.7 8.5 1766 1804 2133.0 32.9; 597 700 129 11.9 2870; 2117.9 9.5 9.6 802 808 24.8 30.7 226; 359 13.7 2.80; .85 .81 9.7 8.5 1766 1804 2133.0 30.5; 617 723 124 14.0 2880; 2118.5 9.5 9.6 800 779 24.9 30.7 227; 360 13.7 2.80; .88 .85 9.7 8.5 1769 1811 2136.0 30.8; 599 686 124 10.1 2870; 2118.8 9.5 9.6 800 803 24.9 30.7 227; 361 13.8 2.80; .95 .92 9.7 8.5 1769 1811 2136.0 30.8; 599 686 124 10.1 2870; 2118.8 9.5 9.6 800 803 24.9 30.7 227; 362 13.8 2.80; .85 .92 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8	175	7 173	4 2124.	0 15.9	1 465	699	1 127	( 15.5	2860:2102.9	7.3	7.0												
1760 1742 2127.0 20.01 506 677 118 14.7 286012108.8 9.5 9.6 799 777 24.9 30.6 2251 353 13.5 2.791 .97 .94 9.7 8.5 1761 1744 2128.0 27.21 582 697 106 14.7 284012109.9 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 798 778 24.8 30.7 2241 355 13.5 2.791 .85 .83 9.7 8.5 1763 1758 2130.0 23.61 574 767 124 8.50 288012114.8 9.5 9.6 799 789 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 782 24.8 30.7 2251 358 13.7 2.801 .90 .87 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1766 1804 2134.0 30.51 617 723 124 14.0 288012118.5 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .92 .92 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82	175	3 173	7 2125.	0 20.4	1 502	151	111	1 14.1		7.5	, 7.0 . o L												
1760 1742 2127.0 20.01 308 677 110 14.7 284012109.9 9.5 9.6 800 778 24.8 30.6 2241 354 13.5 2.791 .88 .85 9.7 8.5 1762 1755 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 798 778 24.8 30.7 2241 355 13.5 2.791 .85 .83 9.7 8.5 1763 1758 2130.0 23.61 574 767 124 8.50 288012114.8 9.5 9.6 799 789 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 782 24.8 30.7 2251 358 13.7 2.801 .90 .87 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1766 1806 2134.0 30.51 617 723 124 14.0 288012118.5 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .95 .92 9.7 8.5 1769 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82	175	7 173	9 2126.	0 23.1	1 482	608	3 113 3 446	10.0	, 40/0/4/100/9 , 40/0/4/100/9	7:4	; 7.0 ; 0 L												
1761 1744 2126.0 27.21 362 67 100 147.7 2012101.7 71 176 1775 2129.0 25.41 619 772 96 12.9 289012113.5 9.5 9.6 798 778 24.8 30.7 2241 355 13.5 2.791 .85 .83 9.7 8.5 1763 1758 2130.0 23.61 574 767 124 8.50 288012114.8 9.5 9.6 799 789 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 782 24.8 30.7 2251 358 13.7 2.801 .90 .87 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1767 1806 2134.0 30.51 617 723 124 14.0 288012118.5 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1768 1809 2135.0 22.11 602 762 120 14.3 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 361 13.8 2.801 .95 .92 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9	176	0 174	2 212/.	0 20.0	); 5V6	0//	/ 113 7 104	3 14./ 	, 504V:71A0:0 , 504V:51V0:0	7:0	7.0												
1762 1753 2127.0 23.41 617 772 76 12.7 288012114.8 9.5 9.6 799 789 24.8 30.7 2251 356 13.6 2.801 .84 .81 9.7 8.5 1764 1800 2131.0 24.71 617 721 114 11.3 285012116.0 9.5 9.6 801 787 24.8 30.7 2261 357 13.6 2.801 .87 .84 9.7 8.5 1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 782 24.8 30.7 2251 356 13.6 2.801 .87 .84 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1767 1806 2134.0 30.51 617 723 124 14.0 288012118.5 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1768 1809 2135.0 22.11 602 762 120 14.3 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 361 13.8 2.801 .95 .92 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7	1/6	1 1/4	4 2128. - 0400	0 Z/.Z	(i )82	: 07:	/ 1V(	0 14./ 1 17 0	/	7.0	, , ;												
1764 1800 2131.0 24.7; 617 721 114 11.3 2650; 2116.0 9.5 9.6 801 787 24.8 30.7 226; 357 13.6 2.80; .87 .84 9.7 8.5 1765 1803 2132.0 22.1; 534 728 131 10.2 2860; 2117.2 9.5 9.6 801 782 24.8 30.7 225; 358 13.7 2.80; .90 .87 9.7 8.5 1766 1804 2133.0 32.9; 597 700 129 11.9 2870; 2117.9 9.5 9.6 802 808 24.8 30.7 226; 359 13.7 2.80; .85 .81 9.7 8.5 1767 1806 2134.0 30.5; 617 723 124 14.0 2880; 2118.5 9.5 9.6 800 779 24.9 30.7 227; 360 13.7 2.80; .88 .85 9.7 8.5 1768 1809 2135.0 22.1; 602 762 120 14.3 2870; 2118.8 9.5 9.6 800 803 24.9 30.7 227; 361 13.8 2.80; .95 .92 9.7 8.5 1769 1811 2136.0 30.8; 599 686 124 10.1 2870; 2118.8 9.5 9.6 800 803 24.9 30.7 227; 362 13.8 2.80; .85 .79 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1810; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1810; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1810; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1810; 218.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5 1810; 218.8 9.5 9.6 800; 218.8 9.5	1/6	2 1/0 - 170	3 Z1Z7.	V Z3.4	11 D17	1 //: 1 7£	2 71 7 19:	0 12.7 1 0 50	7 Z07V;Z11J.U N 200N!211A 9	) /:: }	, ,,, , , ,												
1765 1803 2132.0 22.11 534 728 131 10.2 286012117.2 9.5 9.6 801 782 24.8 30.7 2251 358 13.7 2.801 .90 .87 9.7 8.5 1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1767 1806 2134.0 30.51 617 723 124 14.0 288012118.5 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1768 1809 2135.0 22.11 602 762 120 14.3 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 361 13.8 2.801 .95 .92 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5 1810 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12.801 12	1/5	0 1/0 4 400	0 413V. N 9171	O 24.5	): J/4 /: L17	, 10. , 79.	, 12°	7 11 T	3 2050;2114.0 3 2850:2114.0	, ,,,	. 7.4 5 9.4												
1766 1804 2133.0 32.91 597 700 129 11.9 287012117.9 9.5 9.6 802 808 24.8 30.7 2261 359 13.7 2.801 .85 .81 9.7 8.5 1767 1806 2134.0 30.51 617 723 124 14.0 288012118.5 9.5 9.6 800 779 24.9 30.7 2271 360 13.7 2.801 .88 .85 9.7 8.5 1768 1809 2135.0 22.11 602 762 120 14.3 287012118.8 9.5 9.6 800 779 24.9 30.7 2271 361 13.8 2.801 .95 .92 9.7 8.5 1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5	1/6	4 16V 5 10A	V ZIJI. Z 7177	0 24./ 0 77 1	! 57 <i>1</i>	12. 170	, 11.	1 10 1	2 28601211010	9.5	5 9.A	801											
1767 1806 2134.0 30.5; 617 723 124 14.0 2880;2118.5 9.5 9.6 800 779 24.9 30.7 227; 360 13.7 2.80; .88 .85 9.7 8.5 1768 1809 2135.0 22.1; 602 762 120 14.3 2870;2118.8 9.5 9.6 800 779 24.9 30.7 227; 361 13.8 2.80; .95 .92 9.7 8.5 1769 1811 2136.0 30.8; 599 686 124 10.1 2870;2118.8 9.5 9.6 800 803 24.9 30.7 227; 362 13.8 2.80; .82 .79 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880;2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5	1/0	T 40V A TÖA	N DITT	ላ ፈረነ ^ነ	)! 507	: 12: 7 70:	0 10 N 19	9 11 1	9 287012117.5	9.5	5 9.4												
1768 1809 2135.0 22.1; 602 762 120 14.3 2870;2118.8 9.5 9.6 800 779 24.9 30.7 227; 361 13.8 2.80; .95 .92 9.7 8.5 1769 1811 2136.0 30.8; 599 686 124 10.1 2870;2118.8 9.5 9.6 800 803 24.9 30.7 227; 362 13.8 2.80; .82 .79 9.7 8.5 1770 1813 2137.0 28.8; 663 776 102 13.7 2880;2118.8 9.5 9.6 799 785 25.0 30.7 227; 363 13.8 2.80; .85 .82 9.7 8.5	17/	0 10V 7 10A	7 7199.	0 22.7 0 30 9	,, 37 <i>1</i> 51	, 19 7 79	v 14 3 19	4 14 1	0 288012118	9.5	5 9.A												
1769 1811 2136.0 30.81 599 686 124 10.1 287012118.8 9.5 9.6 800 803 24.9 30.7 2271 362 13.8 2.801 .82 .79 9.7 8.5 1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5	1/0	/ 10V 0 10A	0 2134. 0 2175	0 99 1 0 99 1	11 ANS	, 14. , 71.	0 12 9 19	0 14	3 287012118.6	9.5	5 9.A											9.	7 8.5
1770 1813 2137.0 28.81 663 776 102 13.7 288012118.8 9.5 9.6 799 785 25.0 30.7 2271 363 13.8 2.801 .85 .82 9.7 8.5	1/0	0 101 0 100	1 2133.	0 ZC.	11 502 31 599	, 10.	. 12 6 19	4 10.	1 287012118.8	3 9.5	5 9.6												
1110 1010 TIVITA TOTAL T	1/9	0 101	. 2100. 3 2137	0 28.1	B! 663	. 03 3 77	5 10 6 10	2 13.	7 288012118.8	3 9.	5 9.6					227	1 363	13.	8 2.8	0: .85	.82		
	!77	1 121	A 2138	.0 76	4: 61:	7 68	3 12	2 15.	2 287012118.8	3 9.	5 9.8						364	13.	9 2.8	1: .93	.89	9.	7 8.5

TIME DEPTH ROP! TORQUE RPM WOB PUMP!RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT; -THIS BIT- EST; DXC NXB ECD NXMD; m m/hr¦ AYG MAX AYG AYG PRES¦DEPTH IN OUT IN OUT IN OUT ! m hr T₩! ; 1772 1825 2139.0 21.01 514 639 114 10.5 291012119.7 9.5 9.6 802 780 25.1 30.7 2301 365 13.9 2.811 .88 .86 9.7 8.51D? 1773 1827 2140.0 27.61 590 707 103 8.17 290012119.8 9.5 9.6 805 783 25.1 30.7 2311 366 13.9 2.811 .77 .74 9.7 8.51D 1774 1830 2141.0 28.61 595 731 101 10.4 290012120.1 9.5 9.6 803 807 25.1 30.7 2311 367 14.0 2.811 .80 .77 9.7 8.51D 1775 1832 2142.0 25.81 586 767 101 12.8 291012120.8 9.5 9.6 804 791 25.1 30.7 2301 368 14.0 2.811 .86 .83 9.7 8.51D 1776 1835 2143.0 21.81 536 718 109 13.1 290012121.8 9.5 9.6 805 783 25.1 30.8 2321 369 14.1 2.811 .91 .88 9.7 8.51D 1777 1837 2144.0 21.31 507 645 112 12.6 287012122.7 9.5 9.6 803 781 25.2 30.8 2331 370 14.1 2.811 .91 .88 9.7 8.51D 1778 1840 2145.0 24.7; 498 665 113 12.4 2900;2123.5 9.5 9.6 804 809 25.2 30.8 231; 371 14.1 2.81; .88 .85 9.7 8.5;D 1779 1842 2146.0 25.8; 539 660 110 12.2 2880;2124.1 9.5 9.6 803 781 25.2 30.8 231; 372 14.2 2.82; .86 .83 9.7 8.51D .84 9.7 8.51D 1780 1844 2147.0 26.31 565 692 103 13.2 289012124.9 9.5 9.6 802 807 25.3 30.8 2311 373 14.2 2.821 .86 1781 1846 2148.0 27.81 596 722 101 14.8 289012125.7 9.5 9.6 803 809 25.3 30.8 2321 374 14.3 2.821 .87 .84 9.7 8.51D 1782 1856 2149.0 24.8! 388 610 111 6.31 2880 2128.1 9.5 9.6 801 804 25.4 30.9 231 375 14.3 2.82 76 .74 9.7 8.51Dt 1783 1858 2150.0 27.91 603 717 96 9.11 289012129.1 9.5 9.6 802 794 25.4 30.9 2311 376 14.3 2.821 .77 1784 1901 2151.0 26.51 560 687 102 11.7 289012129.4 9.5 9.6 800 779 25.5 30.9 2311 377 14.4 2.821 .83 .75 9.7 8.51D .81 9.7 8.51D .85 9.7 8.51D 1785 1903 2152.0 23.9; 610 722 94 14.0 2890;2129.4 9.5 9.6 802 782 25.6 30.9 230; 378 14.4 2.82; .87 1786 1906 2153.0 22.51 511 624 110 14.8 289012130.2 9.5 9.6 802 782 25.6 30.9 2301 379 14.5 2.821 .93 .90 9.7 8.51D 1787 1908 2154.0 23.81 556 720 103 11.3 289012131.2 9.5 9.6 802 805 25.6 30.9 2301 380 14.5 2.821 .85 .83 9.7 8.51D 1788 1911 2155.0 21.41 513 645 107 12.6 288012132.3 9.5 9.6 802 806 25.6 30.9 2321 381 14.6 2.821 .90 .87 9.7 8.51D .86 9.7 8.51D 1789 1914 2156.0 24.2! 514 632 111 13.0 2930!2133.6 9.5 9.6 805 785 25.6 30.9 230! 382 14.6 2.83! .89 1790 1916 2157.0 25.91 633 743 96 15.7 292012134.8 9.5 9.6 807 787 25.6 30.9 2311 383 14.6 2.831 .88 .86 9.7 8.51D 1791 1925 2158.0 21.81 545 704 108 12.7 288012137.7 9.5 9.6 793 776 25.5 31.0 2311 384 14.7 2.831 .90 .87 9.7 8.5!D* 1792 1927 2159.0 25.41 626 744 94 4.47 289012138.8 9.5 9.6 800 786 25.4 31.0 2311 385 14.7 2.831 .68 .66 9.7 8.51D 1930 2160.0 25.7; 645 740 92 7.14 2890;2139.1 9.5 9.6 799 802 25.4 31.0 233; 386 14.8 2.83; .74 .72 9.7 8.51D .78 9.7 8.51D .83 9.7 8.51D 1774 1932 2161.0 23.81 612 737 98 9.32 289012139.5 9.5 9.6 797 799 25.3 31.0 2321 387 14.8 2.831 .81 1795 1935 2162.0 20.81 648 766 86 12.1 287012140.0 9.5 9.6 799 786 25.3 31.0 2331 388 14.8 2.831 .86 1796 1938 2163.0 24.71 602 763 98 14.3 288012141.2 9.5 9.6 800 780 25.3 31.0 2331 389 14.9 2.831 .88 .85 9.7 8.510 1797 1940 2164.0 22.31 622 730 99 14.9 289012142.4 9.5 9.6 800 804 25.3 31.0 2351 390 14.9 2.831 .91 .88 9.7 8.51D 1798 1943 2165.0 23.51 617 763 98 16.5 289012143.3 9.5 9.6 7 800 779 25.4 31.0 2351 391 15.0 2.841 .92 .89 9.7 8.510 .88 9.7 8.51D† .83 9.7 8.51D† 235; 392 15.0 2.84; .91 797 800 25.4 31.0 1799 1945 2166.0 24.01 603 765 102 15.6 288012144.3 9.5 9.6 1800 1948 2167.0 23.31 688 781 80 14.5 288012145.4 9.5 9.6 799 778 25.4 31.0 2371 393 15.1 2.841 .85 1801 2003 2168.0 24.41 608 698 110 9.27 291012149.0 9.5 9.6 804 783 25.4 31.1 2361 394 15.1 2.841 .82 .80 9.7 8.510 1802 2005 2169.0 22.8; 641 755 102 7.52 2910;2149.7 9.5 9.6 803 794 25.5 31.1 237; 395 15.1 2.84; .79 .76 9.7 8.51Dt .81 9.7 8.510 1803 2008 2170.0 24.81 627 736 110 9.94 291012150.7 9.5 9.6 804 806 25.5 31.1 2361 396 15.2 2.841 .83 1804 2010 2171.0 24.4; 659 760 99 12.0 2890; 2151.8 9.5 9.6 803 780 25.6 31.1 237; 397 15.2 2.84; .85 .83 9.7 8.51D .91 9.7 8.51D .90 9.7 8.51D 1805 2013 2172.0 21.81 598 754 124 13.6 291012152.8 9.5 9.6 804 807 25.8 31.1 2381 398 15.3 2.841 .94 1806 2015 2173.0 24.01 558 723 131 13.4 290012153.8 9.5 9.6 803 794 25.8 31.1 2391 399 15.3 2.851 .93 1807 2018 2174.0 25.01 634 759 113 14.1 289012154.7 9.5 9.6 800 805 25.9 31.1 2391 400 15.4 2.851 .91 .88 9.7 8.51D 1808 2021 2175.0 23.31 609 782 113 14.3 292012155.8 9.5 9.6 805 792 25.9 31.2 2341 401 15.4 2.851 .92 .89 9.7 8.51D 1809 2023 2176.0 27.51 618 690 118 14.0 291012156.7 9.5 9.6 807 810 25.9 31.2 2341 402 15.4 2.851 .89 .86 9.7 8.51D .87 9.7 8.51D 1810 2025 2177.0 27.31 650 720 113 15.2 294012157.7 9.5 9.6 806 793 25.9 31.2 2361 403 15.5 2.851 .90 1811 2034 2178.0 23.51 584 753 109 6.76 287012158.6 9.5 9.6 795 775 25.9 31.2 2391 404 15.5 2.851 .78 .75 9.7 8.51D 1812 2036 2179.0 22.21 644 760 86 8.81 286012159.4 9.5 9.6 796 798 25.9 31.2 2381 405 15.6 2.851 .79 .76 9.7 8.51D 1813 2039 2180.0 23.4; 625 746 97 11.2 2860;2160.5 9.5 9.6 795 786 25.9 31.2 240; 406 15.6 2.85; .84 1814 2041 2181.0 22.8; 608 759 95 14.1 2860;2161.6 9.5 9.6 795 798 25.9 31.2 240; 407 15.6 2.85; .89 .82 9.7 8.51D .86 9.7 8.51Dt 1815 2045 2182.0 17.81 496 628 115 14.8 288012162.7 9.5 9.6 796 776 26.0 31.3 2411 408 15.7 2.861 .99 .96 9.7 8.51D 1816 2048 2183.0 19.81 565 729 103 15.7 285012163.9 9.5 9.6 795 800 25.9 31.3 2431 409 15.8 2.861 .96 .93 9.7 8.51D 1817 2050 2184.0 22.51 576 688 104 14.9 286012164.8 9.5 9.6 797 782 25.9 31.3 2451 410 15.8 2.861 .92 .89 9.7 8.51D 188 2053 2185.0 20.41 501 654 117 12.5 286012166.0 9.5 9.6 796 782 25.9 31.3 2411 411 15.8 2.861 .93 .90 9.7 8.51D 9 2056 2186.0 21.5! 599 688 105 13.7 2870|2167.0 9.5 9.6 796 775 25.9 31.3 242| 412 15.9 2.86| .91 .89 9.7 8.5|D

			1					+							+-			+				+
. r.	TTME	BEDTH	nani	TODA	חווכ :	MOG	unn	PHIMP!RTRNG	MD 1	h/nal	FIN	W/MIN	TEM	(C)	PVTI	-THIS	BIT-	· EST!	DXC	NXB	ECD	NXMDi
i t		曲	m/hr¦	AVG	MAX	AVG	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	¦	A	hr	TWI				i +
}			<del>-</del>			104	11 ^	293012168.1	Q 5		807	782 1	75.8	31.3	247!	413	16.0	2.861	.87	.84	9.7	8.51D
1820	2105	2187.0	21.5	36Z	673 171	1V4 00	70 B	293012168.1	9.5	9.6	804	782	25.8	31.3	2481	414	16.0	2.861	.80	.78	9.7	8.51D
:0/1 :0/7	2110 2111	2100.V	21.11	409	773	97	11.4	292012168.4	9.5	9.6	805	809 3	25.8	31.3	2441	415	16.0	2.8/1	.85	.82	9.7	8.51D
1873	7111	2190.0	22.4!	632	767	94	14.6	293012169.3	9.5	9.6	805	796	25.8	31.3	2451	416	16.1	2.87;	.90	.87	9.7	8.51D
1874	2117	2191.0	20.21	623	781	88	16.2	292012170.5	9.5	9.6	805	796	25.9	31.4	2451	417	16.1	2.871	.93	.90	9.7	8.5¦D
1825	2120	2192.0	19.81	560	748	105	14.3	293012171.7	9.5	9.6	804	807	25.9	31.4	2451	418	16.2	2.871	.94	.91	9.7	8.5ID
1826	2122	2193.0	25.31	618	703	96	15.6	293012172.5	9.5	9.6						419	16.2	2.871	89	.86	9.7	8.510
1827	2125	2194.0	23.11	618	743	93	16.1	292012173.6	9.5	9.6				31.4		420						8.51D
1828	2129	2195.0	19.81	641	769	80	13.0	293012175.1	9.5	9.6				31.4								8.51D 8.51D
1829	2132	2196.0	21.01	662	782	85	13.9	291012176.3	9.5	7.6				31.4					.88. 1 .83			8.51D
1830	2143	2197.0	19.01	537	720	129	6.35	286012178.3	4.5	7.6				31.5								8.5ID
1831	2146	2198.0	19.9	507	711	134	8.08	288012179.4	7.5	7.6				31.5 31.5								8.51D
1832	2148	2199.0	28.91	278	/10	116	11.5	289012180.3	7.0	7.0 Q L				31.5								8.5¦D
1833	2151	2200.0	ול פנים יד פפ	4/1 557	0/0	197	10.0	287012181.4 290012182.2	9.5	9.4				31.5					.88			8.5ID
1075	2134	2201.0	19 4	575	741 740	117	10.4	288012183.3	9.5	9.6				31.5		428						8.510
1027	2100	2202.0 2207.0	25.5	, 515 R1A	740	99	12.7	288012184.2	9.5	9.6				31.5	2461	429	16.7	2.89	1 .84			8.5iD
1030	2200	7204.0	23.11	583	701	102	12.6	2870:2184.9	7.5	9.6				31.5	2481	430	16.8	2.89	88.	.85		8.51D
1838	2205	2205.0	25.6	625	717	94	14.8	289012185.8	9.5	9.6	796	776	26.1	31.5	2481	431	16.8	2.89	1 .87	.85	9.7	8.51D
1839	2215	2206.0	23.4	582	685	102	14.0	296012187.7	9.5	9.6	798	790	26.1	31.6							9.7	8.510
1840	2218	2207.0	21.6	598	745	101	5.47	295012188.5	9.5	9.6				31.6					1 .75			8.510
1841	2221	2208.0	23.7	606	699	97	8.01	295012189.4	9.5	9.6				31.6		434						8.510
1842	2223	2209.0	20.4	566	693	106	10.4	293012190.4	9.5	9.6				31.6								/ 8.5¦[ / 8.5¦[
1843	2226	2210.0	21.6	573	728	107	12.6	296012191.4	9.5	9.6				31.6								7 8.5HI 7 8.5HI
1844	2229	2211.0	22.4	587	732	105	12.8	295012192.2	7.5	7.6				31.6								7 8.5H
1845	2232	2212.(	18.9	521	685	109	15.0	296012193.3	7.1	, 7.6 , 0.4				31.6								7 8.5H
1844	2235	) 2213.( ) 2244.1	18.6	1 261	734	101	13.1	295012194.6 296012195.4	7.0	, 7.0				7 31.6								7 8.5
104/	773t	3 ZZI4.( 3 9915 /	2	740 i	/42 771	100 γΩ	17.5	295012196.0	9 5	; 9.h				7 31.6								7 8.511
1040	, 2291 , 775/	, 2213.1 ) 771 <i>1</i> (	, 27.3 ) 24.5	. 00V	770		9.11	289012197.4	9.5	5 9.6				7 31.6	2501	442	17.3	3 2.90	18. (	.78	9.7	7 8.511
:047 !Q5/	22JI 2251	. 2210.1   2217 (	) 19 9	1 665	781	83	4.67	288012178.2	9,5	5 9.6				31.7	2511	443	17.4	4 2.90	17. 10	.69	9.3	7 8.5
, 0JU	775	. 2218.1	) 20. <i>k</i>	575	783	106	6.28	288012199.1	7.	5 9.6				7 31.7	251 :	444	17.4	4 2.90	78.	.76	9.3	7 8.511
1852	225	9 2219.	0 22.5	1 578	721	106	9.03	288012200.2	9.5	5 9.6	798	784	26.0	0 31.7	2511							7 8.51
1853	230	2 2220.4	0 22.0	1 648	746	95	12.1	2880:2201.1	9.5	5 9.6	800	781	26.0	0 31.7		1 446						7 8.511
1854	230	5 2221.	0 19.0	: 533	669	7 110	13.2	287012202.0	9.5	5 9.6				1 31.7		1 447				.91		7 8.5
1855	230	9 2222.	0 17.5	: 512	669	7 113	3 13.5	288012203.2	9.	5 9.6				1 31.7		1 448				.94		7 8.51 7 8.51
1858	231	1 2223.	0 21.4	1 569	722	? 106	11.8	288012204.3	9.	5 9.6				1 31.7		1 449				.86 85		7 8.51 7 8.51
1857	231	4 2224.	0 22.8	621	767	95	13.5	287012205.3	9.	5 4.6 5 7 6				2 31.7		1 450 ! 451			11 .88			7 8.51 7 8.51
1858	232	4 2225.	0 15.7	531	698	105	13.4	292012207.0	9.	ა <b>ყ.</b> ნ				2 31.8					11 .73			7 8.51
185	232	/ 2226.	υ 23.4 Λ	593	) /2(	) 11( ) 400	, 4./3 , – ~-	392012207.5	7. o	3 7.6 5 0 /				2 31.8 2 31.8					21 .88			7 8.5
1860	233	v 2227.	v 16.0	11 569	1 /42	4 122 1 110	c 1.25	5 292012208.8 5 292012209 7	7.	. 7.0 5 0 L				2 31.8					21 .84			7 8.51
186	1 ZSS	ა 2228. L gann	v Z3.1	: 3/6 : 307	3 60: 1 <i>Lit</i>	) 11( ) 10:	v 7.42 1 11 *	5 292012209.7 1 292012210.8	7 : G	5 9 4				3 31.8					21 .93			7 8.51
186	د کاک حمدہ	o 2224. o 3372	0 17.4	i 47 <i>1</i> i and	, 00) , <u>1</u> 77	/ 1Z: 7 19/	. 11:5 1 14 5	292012210.8	. 7. Q	5 9.4				3 31.8					211.01			7 8.5
i db.	o 235 g 978	1 2230. 7 2231	0 14 Z	. 704 [] A17	, as. , so:	) 121 ) 171	. 17.1 7 11 <i>1</i>	2 2700:2211.7 1 2890:2213.3	9.	5 9.4				2 31.8					211.00			7 8.5
100	1 234 5 27#	5 7731.	0 20 7	,, 711 !! 500	3 YV:	, 12. 3 170	 0 13 /	5 290012214.2	9.	5 9.4				2 31.8					31 .95		9.	7 8.5
100		9 22321	0 19.7	7; 519	. 501 7 641	0 11	7 14-4	4 2900;2215.3	9.	5 9.6	800	0 780	0 26.	2 31.8	251	1 459	18.	2 2.93	31.97	.93	9.	7 8.5
								1 290012216.5	9.	5 9.6	804	4 789	9 26.3	2 31.9	252	1 460	18.	2 2.93	31.97	.94		7 8.5

			1					+							+							+
	TTHE	BEOTH	non i	TOD	nuc	оом	แกก	DIMOIDTOME	MD 1	b/as1	FIL	W/MTN	I TF	4P (C)	PVT!	-THIS	BIT-	· EST!	DXC	NXB	ECD	NXMD!
i		A	a/hr¦	AVG	MAX	AVG	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	i	M	hr	W i				i +
+			+		/00		15 A	290012216.9	0 5	0 L	904	 ልሰዩ	24.2	31.9	2511	461	18.3	2.931	1.01	.98	9.7	8.5¦D
1868				318	999	177	19.0	270012210.7	7.0	7:0	UVT	000	LUIL	0117	LUI				• • • •			1
1010	Nate	Apr 9	7V 24 4!	545	709	172	4.98	289012219.9	9.5	9.6	812	796	26.2	31.9	2521	462	18.3	2.93	.75	.72	9.7	8.5¦D
1007	0007	2230.0	14.5	484	631	158	6.61	287012221.3	9.5	9.6	795	774	26.2	31.9								8.51D
1070	0015	2238.0	21.01	544	662	148	10.8	286012222.2	9.5					31.9	2521	464	18.4	2.94	.94	.91	9.7	8.5iD
1872	0019	2239.0	19.91	564	690	138	13.4	288012223.2	9.5	9.6	796	802	26.3	31.9						.95		8.51D
1873	0022	2240.0	18.21	532	689	113	15.2	288012224.2	9.5	9.6	798	789	26.3	31.9								8.51D
1874	0025	2241.0	19.31	558	709	112	13.9	289012225.3	9.5	9.6	799	780	26.3	31.9						.92		8.510
1875	0028	2242.0	18.11	535	662	113	14.4	298012226.2	9.5	9.6				31.9						.95		8.510
1876	0031	2243.0	17.91	537	679	114	14.6	298012226.5	9.5	9.6	813	793	26.3	32.0						.95		8.51D
1877	0035	2244.0	19.01	514	665	117	14.5	297012227.3	9.5	9.6				32.0						.94		8.510
1878	0102	2245.0	20.01	567	768	116	12.0	296012231.7	9.5	9.6				32.1		471						8.5ID
1879	0105	2246.0	17.8	544	715	137	7.80	291012232.5	9.5	9.6				32.1		472						8.51D
1880	0111	2247.0	10.2	395	641	143	8.63	1260 2234.1	9.5	9.6				32.1		473				.99		8.5ID
1881	0114	2248.0	19.6	517	664	140	10.9	140012234.7	9.5	9.6				32.1		474						8.510
1882	0119	2249.0	12.8	437	675	114	12.2	141012235.7	9.5	9.6				32.1		475				.78		8.51D
								139012236.4						32.1		476				.97		8.51D 8.51D
								140012236.6						32.1		477				.94		8.51D†
								140012238.0						32.2		478				.96 .7		8.51D
								139012238.4						32.2		479				.67 .81		8.51D
								139012239.2						32.2		480 481				.82		8.510
$\overline{}$								1360:2241.1						32.2 32.2		482				.88		8.51D
								136012241.8						32.2		483						8.51D
								136012242.5						32.2		484						8.51D
								137012243.4 281012244.8						32.2		485						8.5101
1872	0217	7797.0	14.7	1 110 115 i	7/1	144	14.7	289012245.5	0.5	7.U				32.2		486						8.5ID
								290012245.9						32.2								8.5!D
1075	. 0221	2201.0	, 71.11 1 71 51	1 00 <i>1</i> 1 67A	950	1117	15.0	292012246.1	9.5	9.6				32.2								8.510
107	0220	2202.0	1 10 .0	! U/T ! AD7	749	174	14.9	291012246.1	9.5	9.6				32.2		489						8.51Dt
1070	0227 0245	2200.0	7 28 2	. 494 ! 494	974	136	2.37	292012248.0	9.5	9.6				32.3						.62	9.7	8.51D1
1999	0240	2245.0	15.4	. 10. ! 417	619	174	5.55	294012249.1	9.5	9.6				32.2							9.7	8.510
1070	) 0217 ) 0255	2266.0	44.1	538	696	113	3.24	294012251.3	9.5	9.6				32.2		492						8.5iDt
1900	0258	2267.0	20.9	501	679	115	9.43	294012252.3	9.5	9.6				32.2	2581	493	20.0	3.00	.87	.84		8.5¦D
								292012253.2			809	789	25.2	32.2	2591	494	20.1	3.00	1.91	.88		8.51D
1900	0303	2269.0	26.8	1 514	658	114	2.72	296012253.4	9.5	9.6	811	802	25.2	32.2	260	495	20.1	3.00	.65	.62		8.51D
190	0307	2270.(	17.8	1 468	606	117	6.38	294012253.4	9.5	9.6	810	796	25.2	32.3	259	496	20.2	3.00	1 .83	.80		8.51D
								294012255.4			810	800	25.3	32.3	260	497	20.2	3.00	.94	.91	9.7	8.510
		te Hi \																				1
190	0858	2273.	8.40	1 287	731	89	5.08	286012272.8	9.5	9.6				30.7						1.19		8.51D4
190	7 0905	2274.	11.7	1 476	717	125	11.5	287012272.8	9.5	9.6				30.7						1.01		8.51D1
191	0912	2275.	8.74	: 355	498	149	13.0	288012272.8	9.5	9.6				30.6						1.13		8.51D
191	0920	2276.	7.33	1 357	441	135	13.2	288012272.8	7.5	9.6				30.5						1.15		8.5ID
191	2 0929	2277.	12.6	411	598	122	7.25	288012272.8	9.5	9.6				30.4		503				.87		8.510
191	3 0933	2278.	15.8	460	635	128	7.31	286012272.8	9.5	9.6				30.4		504						8.51D
								287012272.8						30.4		505						8.510
191	5 0941	2280.	13.3	404	578	3 131	10.3	287012272.8	9.5	9.6				30.3		506						8.510
_	ANTE	2291	0 15.9	1 417	604	131	7.41	286012272.8	9.5	9.6	794	775	19.6	30.3	250	; 50/	21.0	3.03	i .90	.87	7.6	8.510

	TTUE	nestii	0001	TODO	1110	DOM	anu	+	MT	lh/nal	FLO	W/MIN	TEN	4P (C)	PVT:	-THIS	BIT-	· EST:	DXC	NXB	ECD	NXMDI
		A	m/hri	AV6	MAX	AV6	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	;	M	hr	TW:				i +
			t			120	0 45	2870¦2272.8	95	9 4	794	800	19.9	30.3	2451	508	21.1	3.04	.96	.93	9.6	8.5
41/ 010	0747 1001	2282.0	12.81	300 427	A21	157	6.06	287012272.8	9.5	9.6	791	770	20.7	30.3	2381	509	21.2	3.04	.91	.87	9.6	8.51
710 010	1004	2203.V	14.51	503	441	152	9.48	286012273.1	9.5	9.6	791	770	20.8	30.3	2381	510	21.2	3.04	.97	.93	9.6	8.51
717 020	1017	2207.V	11.4:	402	554	156	9.76	288012273.9	9.5	9.6	793	771	21.1	30.3	2391	51 i	21.3	3.05	1.05	1.01	9.6	8.5
72V 921	1013	2200.0	14.8	427	586	163	12.3	290012274.3	9.5	9.6	791	797	21.2	30.3	2411	512	21.4	3.05	1.06	1.02	9.6	8.5
977	1027	2287.0	12.91	402	597	154	12.4	288012275.0	9.5	9.6	791	777	21.4	30.3	2431	513	21.5	3.06	1.08	1.04	9.6	8.5
923	1027	2288.0	10.8	325	557	130	12.8	292012275.7	9.5	9.6										1.05		8.5
924	1031	2289.0	16.0	417	598	127	15.3	291012276.3	9.5	9.6	794	797	21.8							1.01		8.5
925	1038	2290.0	11.2	394	535	125	15.6	293012277.0	9.5	9.6	795	800	22.0	30.3						1.08		8.5
926	1042	2291.0	16.3	495	760	126	16.0	293012277.9	9.5	9.6	793	799	22.0							1.01		8.51
927	1056	2292.0	14.0	442	673	123	15.1	2970:2280.4	9.6	9.6		808								1.02		8.51
928	1100	2293.0	16.2	465	680	122	12.3	295012281.3	9.6	9.6		805								.95		8.5
929	1105	2294.0	13.1	370	535	129	11.3	296012282.1	9.6	9.6		790								.98		8.5
930	1108	2295.0	15.6	415	628	123	13.i	293012282.1	9.6	9.6	804	809	22.4	30.4	2591	521	22.1	3.08	11.00	.97		8.5
931	1114	2296.0	11.2	378	670	125	11.2	2950:2282.9	9.8	9.6	806	787	22.5	30.4	2581	522	22.2	3.08	11.04	1.00		8.5
932	1117	2297.0	16.8	503	747	121	11.7	294012283.9	9.8	9.6										.92		8.5
933	1121	2298.0	15.1	454	597	126	14.6	294012284.6	9.6	9.6										1.00		8.5
934	1124	2299.0	21.7	532	733	121	7.68	295012285.3	9.8	9.6				30.5						.80		8.5
935	1127	2300.0	18.0	481	663	125	7.14	295012286.1	9.6	9.6				30.5						.82		8.5
936	1131	2301.0	16.5	449	639	135	9.23	295012286.9	9.6	5 9.6				30.5								8.5
937	1142	2302.0	26.6	579	854	108	12.0	292012288.3	9.6	5 9.6				30.5	2651	528	22.5	3.10	68. 1			8.5
1938	1144	2303.0	30.9	674	827	100	10.8	293012288.8	9.0	6 9.6				30.5						.75		
1939	1146	2304.0	26.4	1 592	729	111	12.0	290012289.3	9.	6 9.6				7 30.5					1 .85			8.5
1940	1149	2305.0	19.6	1 487	662	115	14.6	291012289.8	9.	6 9.6				30.6						.92		8.5
1941	1152	2306.0	21.0	521	683	114	14.7	292012290.0	9.	6 9.6				30.6					.95			8.5 8.5
1942	1154	2307.0	33.0	643	803	99	16.3	293012290.4	9.	6 9.6				30.6					.85			
1943	1156	2308.	21.5	1 513	680	115	75.5	291012291.3	9.	6 9.6				30.6					.95			8.5 8.5
1944	1159	2309.0	25.7	1 608	817	109	17.1	293012291.8	9.	6 9.6				1 30.6					1 .93			9 0.J 8.5
1945	1201	2310.	28.5	1 585	729	110	16.1	292012291.9	9.	6 9.6				1 30.6						.86		9 8.5
1946	1203	3 2311.4	28.5	1 605	760	110	17.4	294012291.9	9.	6 9.6				1 30.6					.91			9 8.5
1947	1212	2 2312.	0 24.7	1 582	774	119	7 12.1	296012293.1	7.	6 9.6		785	23.1	2 30.6						.84		
1948	1214	2313.	0 27.9	1 617	771	132	2 6.15	294012293.5	9.	6 9.6					2723	507	20.1	) 3.11 ) 7 ()	li :/0	.73 .79	7.0	. o.s 3 8.5
1949	1217	7 2314.	0 25.7	1 649	869	125	9.22	295012294.0	٧.	6 7.6 1 0 1				3 30.6								8.5
1950	1219	2315.	0 26.2	621	859	129	10.2	296012294.6	٧,	0 Y.6				3 30.6 4 30.4								8.5
1951	1221	2316.	0 28.0	672	810	) 11.	/ 11.5	293012295.1	٧.	6 7.6 6 07				4 30.6 4 30.6					11 .85			8.5
1952	1223	3 2317.	0 28.1	1 621	770	) 10(	5 15./	295012295.4	y.	e 7.b				4 30.6 5 30.6					21 .87			8.5
								295012295.8						ა ას.ი 5 30.6					21 .93 21 .93			8 8.5
1954	122	/ 2319.	v 25.4	H 603	/87	, 11	4 10.7	294012296.6	7. n	0 7.0 L 0 L				ა ას.გ 6 30.6					21 .96			8 8.S
								294012297.2						6 30.7					21 .98			8 8.5
								293012299.3						6 30.7 6 30.7					2: .76			8 8.5
								) 2930:2300.2 : 2920:2301 1						7 30.7					21 .87			8 8.5
1958	124	y 2323. . ozo:	v 16.	71 38Z	/ 06	5 13 7 17	0 10 1 0 10 1	5 292012301.1	7. 10					7 30.7					31 .82			8.5
1755	125	1 Z3Z4. 7 0705	V 27.1	): 040 :: ene	ולן יחד	/ 12 0 17	7 1V:1 7 11 5	293012301.8 291012301.8	7.	. о 7.0 Д о L				7 30.7					31 .90			8 8.5
								5 2910 2301.8						7 30.7					31 .93			8 8.
176	125	0 Z3Z0. 0 0707	V ZZ.	/i Obl	75,	0 1/ 7 11	7 10:: L 15 :	1 292012302.2 1 291012303.8	. 7:	, u 7,0				7 30.7					31 .98			8 8.9
														7 30.7						.90		8 8.
: 76								7 289012304.5 7 290012305.4				7 802								3 .89		8 8.

______ F# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 16/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT I'm hr TW! 284: 556 23.7 3.13: .95 .91 9.8 8.5ID 1965 1307 2330.0 22.31 521 708 116 16.0 290012306.6 9.6 9.6 796 782 23.7 30.7 1966 1319 2331.0 30.71 515 722 114 9.77 295012310.1 9.6 9.6 800 779 23.8 30.8 2841 557 23.7 3.141 .79 .76 9.8 8.51Df 284: 558 23.7 3.14: .65 .62 9.8 8.5ID 1967 1321 2332.0 27.91 623 726 113 3.26 293012310.9 9.6 9.6 801 780 23.8 30.8 .72 9.8 8.51D 1968 1324 2333.0 25.01 619 758 109 6.53 294012311.5 9.6 9.6 800 804 23.8 30.8 2841 559 23.8 3.141 .75 1969 1327 2334.0 16.41 512 692 118 10.7 293012312.0 9.6 9.6 803 790 23.8 30.8 2861 560 23.8 3.141 .93 .90 9.8 8.51D 1970 1330 2335.0 26.8! 615 792 110 14.8 296012312.8 9.6 9.6 799 779 23.8 30.8 2841 561 23.9 3.141 .88 .85 9.8 8.51D 285; 562 23.9 3.14; .93 .90 9.8 8.5;D 1971 1332 2336.0 23.21 531 739 114 15.5 294012313.9 9.6 9.6 801 787 23.8 30.8 1972 1335 2337.0 18.61 484 661 116 16.2 293012315.4 9.6 9.6 802 781 23.8 30.8 2871 563 24.0 3.141 .99 .95 9.8 8.51D 1973 1337 2338.0 28.11 577 742 112 17.6 293012316.3 9.6 9.6 802 780 23.8 30.8 2871 564 24.0 3.151 .92 .88 9.8 8.51D 1974 1341 2339.0 17.61 446 633 118 17.8 294012317.9 9.6 9.6 803 783 23.8 30.8 2851 565 24.1 3.1511.03 .99 9.8 8.51D 1975 1343 2340.0 24.01 596 765 111 16.2 295012319.0 9.6 9.6 800 802 23.7 30.8 2841 566 24.1 3.151 .93 .89 9.8 8.51D 284: 567 24.2 3.15: .96 .92 9.8 8.5:D 1976 1355 2341.0 22.31 558 799 131 14.5 291012321.1 9.6 9.6 796 782 23.6 30.8 .98 9.8 8.51D 1977 1357 2342.0 22.81 532 728 143 18.6 293012321.4 9.6 9.6 796 776 23.5 30.8 285: 568 24.2 3.15:1.03 1978 1400 2343.0 21.41 570 806 140 18.0 290012322.1 9.6 9.6 796 777 23.5 30.8 2851 569 24.3 3.1611.03 .99 9.8 8.51D 1979 1404 2344.0 15.81 529 731 144 17.3 292012323.3 9.6 9.6 798 801 23.4 30.8 2861 570 24.3 3.1611.09 1.05 9.8 8.51D 1980 1406 2345.0 29.81 709 880 110 17.1 293012324.2 9.6 9.6 796 782 23.4 30.8 2871 571 24.4 3.161 .90 .86 9.8 8.51D 1981 1409 2346.0 23.01 625 829 109 17.0 293012325.2 9.6 9.6 797 782 23.4 30.8 2861 572 24.4 3.161 .95 .91 9.8 8.51D 1982 1411 2347.0 22.01 558 738 114 18.5 292012326.2 9.6 9.6 798 784 23.4 30.8 2861 573 24.5 3.161 .99 .95 9.8 8.51D 1983 1414 2348.0 19.61 549 790 114 18.5 291012327.3 9.6 9.6 800 780 23.3 30.8 2871 574 24.5 3.1711.01 .97 9.8 8.51D 1984 1417 2349.0 20.11 528 726 115 18.0 291012328.4 9.6 9.6 796 776 23.3 30.8 2861 575 24.6 3.1711.00 .96 9.8 8.51D 1985 1438 2350.0 20.51 530 732 124 13.5 294012332.5 9.6 9.6 797 778 23.5 30.9 2851 576 24.7 3.171 .95 .91 9.8 8.51D† 6 1440 2351.0 22.0 563 718 141 8.69 2930 2333.6 9.6 9.6 801 780 23.5 30.9 286 577 24.8 3.18 87 .83 9.8 8.51D · .99 9.8 8.51D 1787 1444 2352.0 16.71 490 695 147 13.8 293012334.7 9.6 9.6 800 786 23.6 30.9 2861 578 24.9 3.1811.03 .85 9.8 8.51D 1988 1446 2353.0 31.61 717 866 115 16.9 294012335.5 9.6 9.6 801 782 23.6 30.9 2841 579 24.9 3.181 .89 1989 1448 2354.0 30.11 677 820 118 17.5 293012336.3 9.6 9.6 800 779 23.6 30.9 2841 580 24.9 3.181 .91 .87 9.8 8.51D 1990 1450 2355.0 29.41 602 746 134 17.9 291012336.9 9.6 9.6 799 790 23.6 30.9 2841 581 24.9 3.181 .95 .91 9.8 8.51D 1991 1452 2356.0 23.41 574 799 136 13.7 294012337.8 9.6 9.6 800 791 23.6 30.9 2841 582 25.0 3.191 .94 .90 9.8 8.51D .87 9.8 8.51D 1992 1454 2357.0 29.5; 651 791 127 15.8 2910;2338.5 9.6 9.6 801 781 23.6 30.9 284; 583 25.0 3.19; .91 1993 1457 2358.0 25.91 642 899 115 12.1 293012339.4 9.6 9.6 798 785 23.6 30.9 2861 584 25.1 3.191 .86 .83 9.8 8.51Dt .78 9.8 8.510 1994 1459 2359.0 33.11 727 860 114 12.1 293012340.2 9.6 9.6 799 803 23.6 30.9 2871 585 25.1 3.191 .81 1 3 1520 2360.0 28.5! 573 802 112 7.10 2910!2344.6 9.6 9.6 800 778 23.6 31.0 285! 586 25.1 3.19! .75 .72 9.8 8.51Dt .73 9.8 8.510 .78 9.8 8.510 .86 9.8 8.510 1 4 1523 2361.0 25.91 537 692 112 7.08 292012345.2 9.6 9.6 799 786 23.7 31.0 2851 587 25.2 3.191 .77 1 5 1525 2362.0 24.81 526 685 116 8.92 293012346.1 9.6 9.6 799 785 23.7 31.0 2851 588 25.2 3.191 .82 6 1528 2363.0 22.2! 480 641 120 11.6 2930!2347.2 9.6 9.6 799 785 23.7 31.0 285! 589 25.3 3.19! .89 1 7 1530 2364.0 21.41 496 649 116 12.7 292012348.2 9.6 9.6 799 779 23.7 31.0 2861 590 25.3 3.201 .91 .88 9.8 8.51D 1 8 1533 2365.0 24.2! 509 626 116 13.0 290012349.0 9.6 9.6 801 787 23.7 31.0 286! 591 25.3 3.20! .89 .86 9.8 8.51D .85 9.8 8.51D .88 9.8 8.51D 1 9 1535 2366.0 24.4: 524 669 113 12.9 2940:2349.8 9.6 9.6 800 805 23.6 31.0 288: 592 25.4 3.20: .88 1 10 1538 2367.0 19.41 522 671 116 11.8 292012350.8 9.6 9.6 801 780 23.6 31.0 287: 593 25.4 3.20: .92 .81 9.8 8.51D 288: 594 25.5 3.20: .85 1 11 1541 2368.0 21.1: 474 616 117 8.86 293012351.4 9.6 9.6 797 802 23.5 31.0 290: 595 25.5 3.20: .84 .80 9.8 8.51D 1 12 1554 2369.0 24.21 488 719 124 9.23 295012351.5 9.6 9.6 797 789 23.3 31.0 1 13 1556 2370.0 25.91 570 733 140 4.89 295012351.6 9.6 9.6 799 804 23.3 31.0 .71 9.8 8.5ID 2911 596 25.6 3.201 .75 .75 9.8 8.51D .81 9.8 8.51D .82 9.8 8.51D 1 14 1558 2371.0 29.11 604 795 131 7.93 295012352.1 9.6 9.6 798 789 23.3 31.0 2921 597 25.6 3.201 .79 1 15 1600 2372.0 26.7; 569 745 139 9.41 2930; 2352.8 9.6 9.6 800 781 23.4 31.0 292; 598 25.6 3.21; .85 1 16 1602 2373.0 30.51 652 825 129 12.3 295012353.3 9.6 9.6 799 785 23.4 31.0 2931 599 25.7 3.211 .86 1 17 1604 2374.0 29.71 602 804 139 12.7 294012354.1 9.6 9.6 798 800 23.4 31.0 2941 600 25.7 3.211 .88 .84 9.8 8.51D 1 18 1607 2375.0 25.21 516 672 146 11.4 291012355.2 9.6 9.6 798 778 23.5 31.0 2941 601 25.7 3.211 .90 .86 9.8 8.51D 79 1609 2376.0 32.41 594 861 124 12.1 294012356.1 9.6 9.6 797 776 23.5 31.0 2941 602 25.8 3.211 .83 .79 9.8 8.51D 20 1611 2377.0 26.3: 550 769 121 12.0 2920:2357.1 9.6 9.6 798 788 23.5 31.0 295: 603 25.8 3.21: .87 .83 9.8 8.5:D

L			1					+							+-			+				+
	T 7 147	BEDTH.	DANI	TOP	งกมะ	DDM	นกม	PROTOIGNIO	MD I	h/nal	FIN	W/MIN	166	4P (C)	PVII	-1415	BII-	to!i	DYP	IV A D	CCD	ITATIL I
 !		A	m/hri	AVG	MAX	AVG	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	1	M	hr	TW				1
+			+					+							+-			+				O E I B
1 21	1613	3 2378.0	24.41	504	675	116	10.3	292012358.2	9.6	9.6	798	790	23.5	31.0	2971	604	25.8	3.211	.84	.81	7.8	0.510
22	1624	2379.0	19.11	516	721	103	8.55	2880:2361.0	9.6	9.6	792	772	23.5	31.0	2421	600	79.7	3.22	.04	.00	7:0	0.717:
1 23	1626	3 2380.0	16.51	454	558	111	6.67	290012361.0	9.6	9.6	792	795	23.4	31.0	2441	606	25.9	3.22	.83	.00	7.0	8.51D1 8.51D1
1 24	163	3 2381.0	14.2	461	552	103	7.96	293012361.0	9.6	9.6				31.0						.84 .79		8.510
25	163	5 2382.0	23.01	535	723	114	8.63	294012361.8	9.6	9.6				31.0						.80		8.5ID
: 26	163	8 2383.0	27.3	622	818	106	12.2	293012362.7	9.6	9.6				31.0								8.510
1 27	164	1 2384.0	21.5	539	702	115	14.9	294012363.9	9.6	7.6				30.9					.93			8.51D
1 28	164	3 2385.0	26.5	601	771	112	17.4	294012364.8	7.6	7.0				30.9					.94			8.5:D
1 29	164	5 2386.0	25.5	588	716	116	16.9	292012365.5	7.6	7.0				30.9 30.9					.97			8.510
: 30	164	8 2387.0	23.0	539	701	11/	1/.5	293012366.6	7:0	7.0				30.9					.93			8.510
1 31	165	0 2388.0	23.7	571	83/	110	16.0	295012367.6	7:0	7:0 0 L				30.7					.86			8.510
1 32	170	5 2389.(	20.6	541	136	108	10.1	286012370.7	7.0 0 L	7.0 0 L				30.9					.82			8.510
; 33	170	/ 2390.(	27.4	651	//J	100	17.7	289012370.7 288012370.7	7:Q Q L	0 . t				30.9					.87			8.510
34	1/0	9 2391.( • 0700 /	28.2	627 170	834	100	14.7	288012371.3	7.0 9 A	9 A				30.9					.89			8.51D
1 37	1/1	1 Z37Z.1	)	1 040 1 445	037	102	14.7	287012372.3	9.6	9.6				30.9					.90		9.8	8.5iD
1 30	) 1/1 , 171	0 2070:1 1 0708:1	, 70.0 7 70 4	1 717	747	103	14.4	288012373.3	9.6	9.6				30.9					88.		9.8	8.510
j 3.	1 1/1	0 2377.º	V 20.7 N 70 1	: 010 : 107	ידי. פרס י	97	15.7	288012374.2	9.6	9.6				30.9					.84		9.8	8.5ID
1 7	) 1/1 ) 177	0 7070. N	ז סט ז	: 07 <i>1</i> ! 478	920	97	15.9	288012375.3	9.6	9.6				30.9					1 .86		9.8	8.5¦D
1 3	1 1/2 1 177	0 2370. 9 2307 :	v 20.3 N 79 N	: 677 ! 647	910	. ,, 1 98	16.7	287012376.3	9.6	9.6				30.9	2551	623	26.7	3.24	.87	.83		8.51D
! A	, 172 1 173	. 2377 s	0 27.0 0 25.8	595	829	105	14.1	300012380.4	9.6	9.6	802	807	23.4	31.0	2561	624	26.7	3.24	88. ;	.84		8.510
! 4	1 170 2 173	19 2370. 19 2399.	0 17.6	1 478	671	137	10.0	2940 2381.3	9.6	9.6	802	805	23.3	31.0	2581	625	26.8	3.24	1 .93			8.510
; 4:	3 174	2400.	0 19.0	1 508	3 639	139	13.4	2900:2381.8	9.6	9.6	795	797	23.3	30.9					1 .98			8.510
1 4	4 174	6 2401.	0 17.5	1 468	603	146	14.7	291012382.7	9.6	9.6	795	781	23.3	30.9					11.03			8.510
: 4	5 174	8 2402.	0 21.8	: 569	687	7 135	14.2	288012383.3	9.6	9.6				30.9					.96			8.51D
1 4	6 175	1 2403.	0 19.4	1 555	5 737	7 129	14.6	290012384.2	9.6	9.6	790	795	23.4	30.9						.94		8.510
1 4	7 175	54 2404.	0 21.0	1 632	2 747	7 107	14.4	290012385.3	9.6	9.6	789	795	23.5	30.9						.89		8.51D
1 4	8 17	58 2405.	0 20.5	1 629	5 76	5 95	16.0	290012386.7	9.6	9.6				30.9	263	631	27.1	3.25	11 .95	.89		8.510
: 4	9 18	01 2406.	1 26.6	1 67	0 76	6 74	17.8	291012387.9	9.6	9.6				30.9								8.510
1 5	0 18	14 2407.	0 18.7	64	6 75	0 87	7 13.6	271012390.6	9.6	9.6				5 31.0								8.510 8.510
1 5	1 18	16 2408.	0 24.7	58	6 68	3 98	8.46	272012390.8	9.6	9.6				5 31.0		654	27.7	3.20	1 ./8			
: 5	2 18	19 2409.	0 21.5	1 60	0 70	0 8:	5 11.1	271012390.9	9.6	9.6				5 31.0		6 655	27	( ).Z(	1 .0Z	./7	7 : 1	8.5\I
1 5	3 18	21 2410.	0 26.2	1 57	4 69	9 91	6 13.4	273012391.5	9.6	9.6				6 31.0								8.5¦[ 8.5¦[
: 5	4 18	24 2411.	0 23.1	1 63	8 77	0 8:	2 15.4	272012392.8	9.6	9.6				6 31.0					61 .87 61 .85	.83 .82		8.5H
1 5	5 18	26 2412.	0 25.8	31 65	4 75	9 80	0 16.6	272012393.9	9.6	y .6				7 31.0					5: .0J 5: .94			8.5
1 5	6 18	30 2413.	0 18.8	3: 58	4 76	9 9	6 15.1	269012395.5	7.6	7.6				7 30.9 7 30.9					51 .7 <del>4</del> 51 .92			8 8.5H
1 5	7 18	34 2414.	0 20.7	/ 1 61	3 76 	8 8	/ 16.9	7 270012397.1	9.8	5 Y.6				7 30.9 7 30 0					61 .71			8 8.5H
1 5	8 18	37 2415.	.0 21.5	51 62	6 73	2 8	8 16.7	7 270012398.4	y.(	, n.				7 30.9 7 30.9					61 .71 61 .90			8 8.5H
1 :	9 18	39 2416	.0 23.	oi 63	o 74	8 8 የ	8 16.7 E 47.7	7 271012399.6	7.	0 7.0 L 0 /				7 30.7 6 30.9					61 .74			8 8.5
1 6	0 18	51 2417	.0 19.0	Ji 62	5 /4	1 8	3 1/12 6 7 03	2 288012400.4	7.	e 7.0 L 0 L				6 30.9					61 .77			8 8.51
1 (	1 18	54 2418	.0 ZS.	li 60 en	10 /0 11 (11	14 Y	7 17 E	3 288012400.6	7.1	1 0 Y				6 30.9					71 .86			8 8.5
1 (	2 18	D/ 2419	.0 24.	11 DB	1 /2	4 1Z	ያ ያለ። የ የን የ	B 289012401.2 8 287012402.2	. 7*'	u 7.0 L 9.L				6 30.7					71 .90			8 8.51
;	55 ld	107 2420	.U Zl.:	0: 01 {: 50	.i /3 25 AC	17 11 17 11	1 14.5 1 14	6 2870:2402.2 1 2880:2403.2	) ()	. 7.0 6 9.4				6 30.9					71 .92			8 8.51
1	14 17 Le 11	'V∠ Z4Z1 'N∠ 2#22	.V Z3.	11 J7 11 SC	ν /5 )Ω 74	// 11 // 10	0 17 ·	5 287012404.3	ζ 9	6 9.4				7 30.9					71 .90			8 8.5
i	11 LC 11 LC	100 Z4ZZ	ለ 21 ·	11 47 3! 54	19 AS	,, 10 11 11	4 17	4 288012405.3	ξ 9.	6 9.4				7 30.9					71 .94		9.	8 8.5
i :	20 11 17 10	ነህን ፈዓፈ <u>ን</u> ነኒን ግለግለ	.V. ZZ. 0.10	u: 44 5! 57	ii 9. 10 7.	13 5 11	7 15	2 289012406.	. /. 5 9.	6 9.8				7 31.0						.94	9.	8 8.5
1	61 10 10 10	116 6764 115 5855	.v 10.	u: 31 7! Li	10 7	78 II 74 IN	1 14	2 288012407.3	29.	6 9.6				6 31.0						.90		8 8.51
i	00 1,	179 5479	.v ZI:	/ i U*	10 /1	77 10		T TORAITIALE	- ''													+

F# TIME DEPTH ROP! TORQUE RPM WOB PUMP!RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT! -THIS BIT- EST! DXC NXB ECD NXMD! ! m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT ! m hr TW! !! : 69 1918 2426.0 20.5; 611 729 92 16.1 2870; 2408.3 9.6 9.6 789 775 23.6 31.0 234; 652 28.0 3.28; .93 .89 9.8 8.5; p : 70 1927 2427.0 26.7; 628 737 98 12.0 2900;2409.8 9.6 9.6 787 773 23.6 31.0 233; 653 28.1 3.28; .82 .79 9.8 8.5;Df ! 71 1931 2428.0 18.4; 594 764 102 10.6 2880;2410.3 9.6 9.6 787 766 23.6 31.0 235; 654 28.1 3.28; .88 .85 9.8 8.5; D 1 72 1934 2429.0 21.4; 557 663 125 11.5 2870;2411.4 9.6 9.6 791 797 23.5 31.0 235; 655 28.2 3.28; .91 .87 9.8 8.5; D : 73 1937 2430.0 19.4: 476 628 138 10.5 289012412.6 9.6 9.6 790 770 23.5 31.0 236: 656 28.2 3.28: .93 .89 9.8 8.5:D 1 74 1940 2431.0 21.91 561 684 112 11.0 288012413.7 9.6 9.6 790 769 23.5 31.0 2371 657 28.2 3.281 .87 .83 9.8 8.510 : 75 1942 2432.0 21.1: 498 626 108 10.3 2850:2414.9 9.6 9.6 785 788 23.5 31.0 237: 658 28.3 3.28: .86 .82 9.8 8.5:D 1 76 1946 2433.0 17.21 466 616 115 11.1 2880 2416.0 9.6 9.6 792 796 23.5 31.0 2371 659 28.4 3.291 .93 .89 9.8 8.51D 1 77 1949 2434.0 22.9; 584 739 95 12.0 2900;2416.8 9.6 9.6 792 782 23.4 31.0 238; 660 28.4 3.29; .85 .81 9.8 8.51D 1 78 1952 2435.0 19.71 546 657 105 13.3 289012417.9 9.6 9.6 793 798 23.4 31.0 2381 661 28.4 3.291 .92 .88 9.8 8.51D : 79 1955 2436.0 20.3: 565 698 101 14.7 2900:2419.1 9.6 9.6 793 774 23.2 31.0 238: 662 28.5 3.29: .93 .89 9.8 8.5:D 1 80 2008 2437.0 27.11 507 670 127 8.89 285012420.3 9.6 9.6 785 764 23.1 31.0 2431 663 28.6 3.291 .82 .78 9.8 8.51D⁺
1 81 2011 2438.0 20.61 525 656 134 5.73 285012421.5 9.6 9.6 787 765 23.0 31.0 2351 664 28.6 3.291 .80 .77 9.8 8.51D 1 82 2014 2439.0 22.5: 536 650 129 8.99 285012422.6 9.6 9.6 785 788 23.0 31.0 236: 665 28.6 3.29: .86 .82 9.8 8.5:D 1 83 2016 2440.0 21.91 551 706 127 12.0 285012423.6 9.6 9.6 786 786 23.0 31.0 2351 666 28.7 3.301 .91 .87 9.8 8.51D : B4 2019 2441.0 23.7; 603 732 116 15.3 2860;2424.3 9.6 9.6 785 770 23.0 31.0 236; 667 28.7 3.30; .93 .89 9.8 8.5;D 1 85 2023 2442.0 15.01 497 766 108 15.0 286012425.8 9.6 9.6 784 763 22.9 31.0 2381 668 28.8 3.3011.01 .97 9.8 8.51D 1 86 2026 2443.0 20.81 534 648 103 17.5 286012426.8 9.6 9.6 783 788 22.8 31.0 2371 669 28.8 3.301 .97 .93 9.8 8.51D 1 87 2030 2444.0 17.7; 497 706 106 17.8 2850;2427.6 9.6 9.6 783 763 22.7 31.0 240; 670 28.9 3.30;1.01 .97 9.8 8.5;D 1 88 2032 2445.0 21.61 601 727 93 19.2 287012428.6 9.6 9.6 785 787 22.7 31.0 2391 671 28.9 3.301 .96 .92 9.8 8.51D 1_89 2038 2446.0 17.71 646 766 85 19.2 283012429.9 9.6 9.6 782 762 22.7 31.0 2391 672 29.0 3.301 .98 .94 9.8 8.51D1 2055 2447.0 15.6; 500 638 131 13.3 2870;2433.0 9.6 9.6 787 766 22.9 31.0 243; 673 29.1 3.31;1.01 .97 9.7 8.5;D 1 2058 2448.0 23.3; 575 684 116 16.4 2830;2434.0 9.6 9.6 786 778 23.0 31.0 245; 674 29.2 3.3;; .95 .91 9.7 8.5;D ! 92 2100 2449.0 23.6; 570 674 102 18.6 2830;2434.8 9.6 9.6 783 788 23.0 31.0 245; 675 29.2 3.31; .95 .91 9.7 8.5;D 1 93 2103 2450.0 24.5! 581 682 98 19.9 283012435.6 9.6 9.6 781 767 23.0 31.0 245! 676 29.3 3.31! .95 .91 9.7 8.5!D : 94 2105 2451.0 20.4: 547 659 103 19.3 282012436.5 9.6 9.6 783 763 23.0 31.0 246: 677 29.3 3.31: .99 .95 9.7 8.5:D 1 95 2108 2452.0 22.41 533 663 106 19.0 284012437.5 9.6 9.6 783 769 23.0 31.0 2471 678 29.4 3.311 .98 .93 9.7 8.51D 1 96 2111 2453.0 21.71 521 642 109 18.9 283012438.4 9.6 9.6 783 769 23.0 31.0 2471 679 29.4 3.321 .99 .95 9.7 8.51D i 97 2113 2454.0 24.9; 562 677 103 18.2 2840;2439.0 9.6 9.6 781 787 22.9 31.0 246; 680 29.4 3.32; .94 .90 9.7 8.5;D 1 98 2116 2455.0 24.71 572 685 99 18.0 283012439.4 9.6 9.6 780 759 22.9 31.1 2461 681 29.5 3.321 .93 .89 9.8 8.510 1 99 2126 2456.0 23.41 555 703 105 14.7 282012439.9 9.6 9.6 779 784 22.9 31.1 2471 682 29.5 3.321 .91 .87 9.8 8.51D 1100 2128 2457.0 28.41 570 697 124 11.9 279012440.6 9.6 9.6 779 769 22.9 31.1 2481 683 29.6 3.321 .86 .82 9.8 8.51D 1101 2130 2458.0 24.51 560 685 116 13.9 282012441.6 9.6 9.6 778 780 22.8 31.1 2491 684 29.6 3.321 .91 .86 9.8 8.51D 1102 2132 2459.0 25.6: 579 725 97 16.7 2810:2442.4 9.6 9.6 778 756 22.8 31.1 250: 685 29.7 3.32: .90 .86 9.8 8.5:0 1103 2135 2460.0 25.9; 611 721 95 19.7 282012443.2 9.6 9.6 779 765 22.8 31.1 252; 686 29.7 3.32; .93 .89 9.8 8.5; 0 1104 2138 2461.0 19.7; 540 740 97 20.6 2810;2444.3 9.6 9.6 778 764 22.8 31.1 250; 687 29.7 3.32;1.01 .96 9.8 8.5;Dt 1105 2142 2462.0 22.51 610 740 79 19.5 284012445.1 9.6 9.6 779 766 22.8 31.1 2511 688 29.8 3.331 .92 .88 9.8 8.51D† 1106 2144 2463.0 23.81 576 716 88 19.4 284012445.9 9.6 9.6 780 771 22.8 31.1 2521 689 29.8 3.331 .93 .89 9.8 8.51D 1107 2147 2464.0 22.31 522 656 107 17.3 284012446.7 9.6 9.6 778 770 22.8 31.1 2531 690 29.9 3.331 .96 .91 9.8 8.51D 1108 2149 2465.0 26.11 614 713 83 19.2 281012447.5 9.6 9.6 779 759 22.7 31.1 2541 691 29.9 3.331 .89 .85 9.8 8.510 1109 2205 2466.0 25.41 536 722 108 16.4 283012449.1 9.6 9.6 780 759 22.7 31.1 2571 692 30.0 3.331 .92 .88 9.8 8.510 1110 2209 2467.0 19.31 460 632 138 13.1 285012449.2 9.6 9.6 782 767 22.7 31.1 2571 693 30.0 3.331 .98 .93 9.8 8.51D 1111 2211 2468.0 26.51 573 682 115 17.3 284012449.2 9.6 9.6 780 766 22.7 31.1 2591 694 30.0 3.331 .93 .89 9.8 8.51D 1112 2213 2469.0 23.61 602 725 109 20.5 283012449.3 9.6 9.6 781 785 22.7 31.1 2571 695 30.1 3.331 .99 .94 9.8 8.51D 1113 2216 2470.0 24.91 531 692 126 18.1 286012449.5 9.6 9.6 780 760 22.7 31.1 2591 696 30.1 3.341 .98 .93 9.8 8.510 1114 2218 2471 0 25.6: 551 709 120 17.6 2840:2450.2 9.6 9.6 779 765 22.6 31.1 260: 697 30.2 3.34: .95 .91 9.8 8.5:0 ¥5 2224 2472.0 17.4¦ 545 737 99 17.6 2830|2452.6 9.6 9.6 778 757 22.6 31.1 259¦ 698 30.2 3.34¦ .99 .95 9.8 8.5¦D† 

												no.	CU 11.C			+				-+				+
<b></b> -			+-				uan	PUMP : RTRNS	мп	 1h/na	 1 F	1 NW/	 MIN	TEMP	· (C)	PVT	-THI	S BIT	- ES	T! D	XC	NXB I	ECD N	: DM
F#	TIME	DEPTH	ROP	LUKI	MVA I	KMA AUC	WNG	PUMP:RTRNS PRES:DEPTH	IN	out Tuo	IN		OUT	IN	OUT	;	ñ	hr	Ţ	H :				1
i		A	m/hri	AYG	MHY	AVU	HYU	PRESIDEPTH								<del>}</del>				-+				·ŧ
<del></del>			t		777	107	17 7	285012454.3	9.6	9.6	. 77	79 7	59 22	2.5	2111	T-0						.84	7.8	1.510
1117	2229	2474.0	29.91	284 507	120	102	17.0	284012454.8	9.6	9.6	77	78 7	64 22	2.4								.80	7.8	3.51D
1118	2230	24/5.0	40.41	370 640	727	100	11 5	284012457.1	9.6	9.6					31.1			30.4				.71		
1119	2240	24/6.0	40.01	747	777	00	17.4	285012457.8	9.6	9.8					31.1	2611	703	30.4	3.3	4;	.77		9.8	
1120	2242	24//.0	36.31	500	197	77	14.0	283012458.4	9.6	9.6			769 2		31.1	261	704	30.4	3.3	4;	.79		9.8	
1121	2244	24/8.0	30.41	377	700	117	15.5	285012458.7	9.8	9.			765 2		31.1	262	705	30.4	3.3	4 !	.81		9.8	
1122	2245	2479.0	3/.Di	288	700	100	17.0	285012458.8	9.7	9.			757 2		31.1			30.5						8.5ID
1123	2247	2480.0	) 34.7i	041	777	72	10 /	285012458.9	9.1	5 9.,					31.1	260	707	30.5	3.3	351	.86			8.510
1124	2249	2481.0	32.01	498	197	00	27 t	2040:2450.7	9.	4 9.	4 7	79	782 2	2.5	31.1	261	708	30.	3.:	35 i	.86			8.5ID
1125	2250	2482.0	) 3/.Zi	021	725	70 00	21.7	284012459.5	9.	. 9.	6 7	79	770 2	2.5	31.1	261	709	30.	3.	351	.86			8.51D
1128	2252	2483.0	35.0	655	/33	70	40.7	285012460.2	9	69.		78	765 2	2.5	31.1	261	710	30.	5 3.	351	.87			8.5ID
1127	2254	2484.(	30.5	655	/00	71	17.0	285012461.1 290012463.3	0	6 Q.		85	764 2	2.4	31.1	260	711	30.	6 3.	351	.81			8.510
1128	3 2303	2485.	37.6	5/1	760	113	10.7					84	788 2	22.4	31.1	261	1 712	30.	7 3.	351	.85			8.510
1129	2305	2486.	32.3	655	723	113	14.4	290012463.5 288012464.4							31.1		1 713	30.	7 3.	35¦	.88	.84		8.5:0
1130	2307	2487.	0 32.1	600	/00	117	10./	70001270717		u					31.1		1 71	4 30.	7 3.	35¦	.90	.86		8.510
113	2308	2488.	0 32.5	521	6/3	13/	10.0	290012464.5	, ,. : 0	 L 9		785	745	22.4	31.1	261	1 713	5 30.	8 3.	35 i	.91			8.510
113	2 2310	2489.	0 32.0	1 512	604	138	15.9	288012465.	1 7: L C			794	763	77.3	31.1	261	1 71	6 30.	8 3.	35¦	.89			8.5101
113	3 2313	2490.	0 30.9	1 558	745	123	10.4	287012466.	2 7. 7 0	L Q					31.1			7 30.				18.		8.510
113	4 2315	2491.	0 35.3	1 603	704	107	1/.1	288012467	) 7: A D	.Q 7:					31.1			8 30.				.76		8.51D
113	5 2317	2492.	0 35.5	1 606	75/	101	14.1	290012468.	V 7.	.O /:					31.1			9 30.				.79		8.5iDt
113	6 2319	7 2493.	0 30.0	674	798	8/	15.4	289012468.	3 7: 7 0	L 0					31.1			0 30.						8.510
113	7 2330	2494.	0 31.5	11 558	/16	120	11./	288012469.	0 7: 7 0			783	761	22.1	31.1			1 31						8.510
113	8 233	1 2495.	0 39.4	11 523	664	151	7.00	287012469.	7 7 . 7 O	.u /		793	761	22.1	31.1	263	21 72	2 31	.0 3	.361	.83			8.51D
113	9 233	3 2496.	0 36.4	11 48/	628	108	10.7	288012470.	7 / 0 0	 					31.1		21 72	3 31	.0 3	.361	.86			8.51D
:14	0 233	5 2497.	.0 35.9	1 487	59:	2 15	12.3	287012471	U 7 L G	.u :					31.1			4 31						8.5:0
114	1 233	6 2498	.0 36.3	21 479	60	4 154	) 10.1	289012471	0 /	.u :					31.1			25 31						8.51D1
114	2 233	8 2499	.0 30.	1: 450	) 61	R 19	) 7.17 	289012472.	.J. (	.u .					31.0		31 72	26 31	.1 3	.371	.60			8.510
11	3 234	0 2500	.0 39.	51 52	2 64	5 12:	9 Z.Yi	3 289012473.	7 0	, u ,	L	79A	788	22.0	0.31.0	26	41 72	27 31	.13	.371	.66			8.5¦D
11	4 234	2 2501	.0 31.	31 46	1 54	4 IZ	/ 3.00	287012473	0 0	. L Q		705	700	22 (	0 71 0	2.5	4: 7:	28 - 31	.2 3	.371	.69	.65	9.8	8.510
11	15 234	3 2502	.0 39.	01 50	4 65	6 1Z	/ 6.0°	288012473	7 7 0 T	. L C		774	763	22.4	0 31.0	34	11 73	29 31	.2 3	.371	.76	.72	7.8	2.2.0
11	46 235	5 2503	.0 27.	91 41	4 55	8 13	0 6.3:	1 286012475	./ 7 	su i	_													i
+	Displa	ice Sea	water-	đej w	ud sy	stem	WITH	KCl-polymer	3 C	syste L C	i L	779	758	22.	0.31.0	34	91 7	31 31	.2 3	.37	.56	.53	9.8	8.5:D
11	48 235	18 2505	.0 46.	91 48	4 68	5 12	5 2.5	3 281012477	. 2 7	.0	.0	110	100											
ŧ	Dat	te Apr	10 '9	0				. 971019177	7 (	١	) <u>(</u>	790	762	21.	9 31.	34	91 7	32 31	.2 3	.37	.62	.58		8.5¦D
11	49 000	00 2506	.0 42.	51 55	8 /(	00 12	4 3.8	1 271012477	./ 7 A 0	1.0 3 L I	1.0 3 <i>L</i>	779	754	21.	9 31.			33 31				.65		8.510
; 1	50 000	01 2507	.0 36.	01 51	1 69	78 12	6 5.5	3 275012478	.0 7	7.0 3 L -	7.0 ) L				9 31.			34 3:				.70		8.510
11	51 00	03 2508	1.0 40.	11 51	0 6	30 12	2/ 8.8	3 279012478		7.0 5 L :	7.U	770 770	764	21.	9 31.			35 3				.80		8.510
11	52 00	05 2509	7.0 26	51 43	55 5	72 1.	51 7.6	5 275012479	.0	7 + D N - I	7.U D L				9 31.			36 3				.63		8.5
11	53 00	07 2510	0.0 33	.01 46	62 6	16 17	29 3.7	8 269012481	.0	7.0 n i	7.Q N <i>L</i>				9 31.			37 3						8.511
11	54 00	09 251	1.0 31	.61 49	70 6	41 1:	25 6.4	3 269012482		7.0 n /	7.0 0 L				.8 31.			738 3					9.8	8.5
11	55 00	12 251	2.0 24	.31 50	08 6	66 1	27 8.7	5 270012483		7.0	7.0 n /	707	700	, 21: 1 71	.8 30.			739 3					9.8	8.5
1	56 00	25 251	3.0 27	.91 4	98 6	87 1	36 5 (	)5 273012487	1.5	7.0 n./	7.0 n /	707	70	7 21:	.0 30.			740 3					9.8	8.5
1	157 00	27 251	4.0 33	.21 5	74 7	05 1	41 6.7	25 271012487	ř. 7	7:0 n /	7.0 0 7	770	: 171 : <b>7</b> 70	, 41 D 71	.0 30. .8 30.			741 3						
1	158 00	29 251	5.0 34	.91 5	21 7	01 1	24 8.1	19 27401248	j. d	7.0	7.0	774	. <i>11</i> 1	ያ ፈኔ ፈ ጋነ	.8 30.			742 3						8.51
	159 00	31 251	6.0 27	.7: 4	96 7	31 1	26 8.	39 274012491	0.0	7.6	4.6	711	. /79 } 77	u 41 171	.a 30.			743 3						
ţ	160 00	32 251	7.0 43	.61 6	00 7	45 1	19 6.	73 27401249	U./	7.0	7:0	704	. 11	, 41 0 71	.8 30			744 3					9.	
1	141 00	34 251	8.0 33	.21 5	35 8	67 1	25 6.	88 27201249	1.7	7.6	4.0	770	/ /Q 3 70	7 ZI	.8 30			745						8 8.51
1	142 00	34 251	9.0 27	.21 5	16 6	48 1	27 8.	30 27201249	2.8	4.6	7.0				.8 30			746						8 8.5
	163 00	038 252	0.0 34	.01 5	41 8	590 1	24 6.	93 26901249				187	7 //	J 41	.0 30		. 1 4 1		<i>.</i>					+

...... F# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: ; m m/hr! AVG MAX AVG AVG PRESIDEPTH IN OUT IN OUT IN OUT I m 'hr TW! ! +-----1164 0040 2521.0 28.01 504 648 121 7.73 268012494.4 9.6 9.6 791 777 21.8 30.8 2411 747 31.7 3.391 .78 .74 9.8 8.51D 1165 0043 2522.0 22.11 449 640 128 8.40 269012495.9 9.6 9.6 792 772 21.8 30.8 2341 748 31.8 3.391 .84 .80 9.8 8.510 1166 0054 2523.0 57.81 483 650 150 2.96 269012497.9 9.6 9.6 787 777 21.7 30.7 2091 749 31.8 3.391 .57 .54 9.8 8.51D* 1167 0055 2524.0 34.11 512 702 155 3.44 269012498.7 9.6 9.6 788 793 21.7 30.6 1911 750 31.8 3.391 .67 .64 9.8 8.51D .68 9.8 8.51D .72 9.8 8.51D 1168 0057 2525.0 33.91 477 649 160 4.71 263012499.6 9.6 9.6 788 793 21.7 30.6 1861 751 31.8 3.391 .72 1169 0059 2526.0 34.51 529 672 157 6.65 261012500.7 9.6 9.6 789 775 21.7 30.6 1871 752 31.9 3.391 .76 1170 0101 2527.0 23.61 475 636 159 7.07 284012502.3 9.6 9.6 839 819 21.7 30.6 1911 753 31.9 3.401 .84 .80 9.8 8.51D 1171 0103 2528.0 42.41 501 663 158 4.37 285012503.1 9.6 9.6 842 828 21.7 30.6 2001 754 31.9 3.401 .67 .63 9.8 8.51D† 1172 0104 2529.0 40.81 547 695 132 6.05 285012503.9 9.6 9.6 839 844 21.7 30.6 2121 755 32.0 3.401 .69 .65 9.8 8.51D 1173 0106 2530.0 31.21 531 698 124 6.92 287012505.1 9.6 9.6 840 843 21.7 30.5 2321 756 32.0 3.401 .74 .71 9.8 8.51D .71 9.8 8.51D .72 9.8 8.51D 1174 0108 2531.0 38.41 563 677 123 9.66 286012506.1 9.6 9.6 841 832 21.7 30.5 2431 757 32.0 3.401 .76 .72 9.8 8.51Dt 1175 0121 2532.0 40.81 507 679 122 10.3 262012507.8 9.6 9.6 797 783 21.7 30.4 2751 758 32.0 3.401 .76 1176 0123 2533.0 51.1: 569 731 146 2.45 2630:2508.3 9.6 9.6 800 791 21.7 30.4 271: 759 32.1 3.40: .57 1177 0124 2534.0 34.7: 495 617 156 3.75 2620:2509.3 9.6 9.6 799 785 21.7 30.4 267: 760 32.1 3.40: .68 .54 9.8 8.51D .65 9.8 8.51D .68 9.8 8.51D .75 9.8 8.51D† 1178 0126 2535.0 39.31 517 653 157 5.96 262012510.3 9.6 9.6 799 802 21.7 30.4 2621 761 32.1 3.401 .72 1179 0128 2536.0 27.01 450 648 159 6.20 261012511.8 9.6 9.6 796 775 21.6 30.3 2561 762 32.1 3.401 .80 1180 0130 2537.0 24.7; 441 640 159 5.74 2040;2513.2 9.6 9.6 787 773 21.6 30.3 250; 763 32.2 3.41; .80 .76 9.8 8.51D 1181 0132 2538.0 35.7; 518 673 156 5.79 1880;2513.7 9.6 9.6 667 648 21.6 30.3 251; 764 32.2 3.41; .74 .70 9.8 8.51D* 1182 0134 2539.0 34.31 496 662 158 7.32 1880|2514.4 9.6 9.6 659 663 21.6 30.3 251| 765 32.2 3.41| .78 .74 9.8 8.5|D 1183 0136 2540.0 35.5| 464 610 161 8.7| 1870|2515.1 9.6 9.6 658 645 21.6 30.3 257| 766 32.3 3.41| .81 .76 9.8 8.5|D 1184 0149 2541.0 34.7| 456 614 156 10.7 1830|2516.9 9.6 9.6 651 657 15.1 30.2 280| 767 32.3 3.41| .84 .80 9.8 8.5|D 5 0150 2542.0 37.8: 484 638 126 1.72 1850:2516.9 9.6 9.6 662 665 15.1 30.2 257: 768 32.3 3.41: .71 .67 9.8 8.51D* 187 0154 2544.0 32.61 516 676 123 7.95 196012518.5 9.6 9.6 662 640 15.6 30.2 1491 769 32.4 3.411 .70 .66 9.8 8.51D .67 9.8 8.51D†
.62 9.8 8.51D 1188 0156 2545.0 44.01 519 660 128 7.69 199012519.2 9.6 9.6 689 670 19.1 30.2 3201 771 32.4 3.421 .71 1189 0157 2546.0 47.51 503 624 132 5.62 199012519.8 9.6 9.6 689 692 19.1 30.2 3341 772 32.4 3.421 .66 1190 0159 2547.0 34.21 561 723 122 7.97 201012520.6 9.6 9.6 688 674 19 1 30.2 3441 773 32.5 3.421 .75 .71 9.8 8.51D 1191 0200 2548.0 41.5; 504 726 130 9.46 1960;2521.3 9.6 9.6 680 658 19.1 30.2 349; 774 32.5 3.42; .75 1192 0201 2549.0 40.8; 536 674 127 11.3 1960;2522.0 9.6 9.6 674 653 19.1 30.2 355; 775 32.5 3.42; .78 .71 9.8 8.51D .74 9.8 8.5ID .76 9.8 8.51D 1193 0203 2550.0 40.91 460 631 131 12.6 197012522.7 9.6 9.6 673 676 19.1 30.2 3621 776 32.5 3.421 .80 1194 0218 2551.0 36.0: 409 551 143 7.20 1740:2526.6 9.6 9.6 624 627 19.1 30.2 418: 777 32.6 3.42: .75 .71 9.8 8.51Df 1195 0220 2552.0 35.31 453 567 156 5.84 175012526.8 9.6 9.6 623 628 19.0 30.2 4191 778 32.6 3.421 .74 .70 9.8 8.51D 1196 0222 2553.0 38.01 474 593 158 8.13 175012526.8 9.6 9.6 623 609 19.0 30.2 4181 779 32.6 3.421 .78 1197 0223 2554.0 35.31 463 613 159 9.76 234012527.0 9.6 9.6 738 729 19.0 30.2 4151 780 32.6 3.421 .82 .73 9.8 8.51D .78 9.8 8.51D .77 9.8 8.51D .80 9.8 8.51D† 1198 0225 2555.0 45.51 486 624 158 12.4 227012527.2 9.6 9.6 728 705 19.0 30.2 4161 781 32.7 3.431 .82 1199 0227 2556.0 36.41 472 615 159 11.4 227012528.0 9.6 9.6 724 726 19.0 30.2 4171 782 32.7 3.431 .85 1200 0227 2557.0 60.2; 599 699 149 9.64 229012528.5 9.6 9.6 724 704 19.0 30.2 417; 783 32.7 3.43; .71 .66 9.8 8.5;D 1201 0229 2558.0 34.81 492 663 155 8.43 227012529.3 9.6 9.6 724 704 19.0 30.1 4161 784 32.7 3.431 .80 .75 9.8 8.51D 1202 0230 2559.0 44.61 498 634 158 10.6 226012530.0 9.6 9.6 724 704 19.0 30.1 4161 785 32.8 3.431 .79 .75 9.8 8.51D .82 9.8 8.51D† 1203 0245 2560.0 32.31 443 610 159 11.3 268012534.8 9.5 9.6 800 806 19.2 30.1 4161 786 32.8 3.431 .87 1204 0247 2561.0 39.61 538 712 149 7.04 268012535.6 9.5 9.6 801 786 18.9 30.1 4161 787 32.8 3.431 .74 .70 9.8 8.510 1205 0248 2562.0 43.61 470 581 155 7.46 266012536.1 9.5 9.6 802 783 18.9 30.1 4151 788 32.8 3.431 .74 .69 9.8 8.51D 1206 0250 2563.0 36.71 455 600 157 9.23 267012536.3 9.5 9.6 803 784 18.7 30.1 4141 789 32.9 3.441 .80 1207 0251 2564.0 42.31 499 630 157 11.1 265012536.0 9.5 9.6 802 805 18.7 30.1 4161 790 32.9 3.441 .81 .76 9.8 8.51D .76 9.8 8.51D .82 9.8 8.51D 1208 0253 2565.0 35.71 502 612 155 12.9 267012536.4 9.5 9.6 803 806 18.5 30.0 4161 791 32.9 3.441 .87 1209 0255 2566.0 30.11 445 580 158 9.79 265012537.3 9.5 9.6 801 804 18.6 30.0 4161 792 33.0 3.441 .85 .81 9.8 8.51D NIO 0257 2567.0 37.6: 453 552 159 10.6 2660:2538.3 9.5 9.6 798 779 18.6 30.0 415: 793 33.0 3.44: .83 .78 9.8 8.5:D

211 0258 2568.0 41.9; 454 590 158 12.7 2620;2539.1 9.5 9.6 801 779 18.8 30.0 415; 794 33.0 3.44; .84 .79 9.8 8.5;D

, C#			+-															•				
	TIME	DEPTH	ene!	TOR	DHE	RPM	MUB	+ Pump:rtrns	MD	lb/oal	FLOI	W/MIN	TEN	4P (C)	PVT:	-THIS	BIT-	- EST:	DXC	NXB	ECD	NIMDI
į		0	m/hrl	AVG	MAX	AVG	AV6	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	i i	A	hr	TH				1
+								2610¦2540.2			705	777		 70 0	+- 415!	795	33 0	+ ! &&		.84	9.8	8,510
1212	0300	2569.0	28.71	420	589	124	15.6	201012540.2	7.5 o =	7.6	797 797	113 777	10 ¥	20.0 20.0	417!	794	33.1	3.45!	,73	.59	9.7	8.510
1213	0332	2570.0	45.6	345	345 	144	1.4/	255012549.5	7.J	7.0 Q L	700 797	777 799	18.7	29.9	411;	797	33.1	3,45!	.75	.71	9.7	8.510
1214	0333	25/1.0	30.21	44/ 51=	3// L7E	190	J. 20 g 77	255012550.9	7.3	0 T				29.9						.70		8.51D
1215	0335	20/2.0	4/.li	40u 919	69 <u>0</u>	140	ο ον η•19	287012551.9 286012553.3	9.5	9.4				29.9				3.451		.78		8.510
1716	0336 0336	20/0.0	JJ.Vi	595	03V 450	154	13.0	288012554.1	9.5	9.6				29.9				3.451		.77	9.7	8.5¦D
121/	V440	23/4.0	70.71	42J 491	7Va	150	12.1	288012555.0	9.5	9.6				29.9				3.451		.80		8.51D
1710	V337	2574 A	49.7!	501	629	154	4,14	288012555.0	9.5	9.6				29.8				3.45		.61		8.510
1217	0242	2577 A	38.33	532	744	150	8,64	288012555.0	9.5	9.6				29.8	4091	803	33.3	3.451	.78	.74		8.510
1220	0344	2579 0	37.4!	459	614	158	8.24	287012555.0	9.5	9.6				29.8				3.461		.74		8.510
1222	0345	2579.0	40.1!	453	607	158	9.69	287012555.1	9.5	9.6				29.8				3.46		.76		8.5ID
1223	0402	2580.0	32.11	409	576	128	5.96	278012563.3	9.5	9.6				29.7				3.46		.69		8.51D
1774	0404	2581.0	33.61	392	506	128	7.47	280012564.5	9.5	9.6	819	798	18.0	29.7					.76	.72		8.51D
1225	0405	2582.0	48.0	462	609	132	11.1	281012564.6	9.5	9.6	819	805	17.8	29.7					.76	.72		8.51D
1774	0407	2583.0	35.3	445	586	130	12.1	282012564.6	9.5	9.6	821	825	17.7	29.7					.83	.79		8.51D
1227	0408	2584.0	48.3	496	638	132	10.0	282012564.6	9.5	9.6				29.7					.74			8.510
1228	0410	2585.0	35.5	472	588	131	10.9	283012564.6	9.5	9.6				29.7					.82			8.510
1229	0411	2586.0	37.8	516	711	127	12.6	284012564.7	9.5	9.6				29.7					.82			8.510
1230	0413	2587.0	28.5	463	651	130	14.0	286012566.0	9.5	9.6				29.7					.91	.86		8.510
1231	0415	2588.0	31.2	531	701	126	10.7	283012567.4	9.5	5 9.6				29.7					83	.79		8.510
1232	0428	2589.0	23.5	434	603	130	8.75	284012572.5						29.7					.85	.81 nr		8.5
1233	0431	2590.0	26.9	497	674	155	7.22	285012573.7	9.5	5 9.6				29.7					1 .83	.78		8.510 8.511
1234	0432	2591.0	38.6	459	703	167	6.51	285012574.0	9.5	5 9.6				29.7					1 .76	.72 .79		8.511 8.511
1235	0434	2592.(	34.9	475	631	163	9.51	284012574.0	9.	9.6				5 29.6					1.84	.79 .79		8.5H
123/	6 0435	2593.	39.4	506	648	160	11.1	285012574.0	9.1	9.6				5 29.6					1 .84	.82		8.5H
1237	7 0437	7 2594.0	39.0	474	627	162	12.6	285012574.0	9.	3 4.6				5 29.6					1 .94			7 8.5H
								284012574.0						7 29.6					1 .86			7 8.5H
								284012574.0						7 29.6					1 .87			7 8.51
								285012574.0						7 29.6					1 .93			7 8.5
124	044	2598.	v 26.5 n zo c	1 425	) 5/0	, 13( , ,,,	, 14.Y 1 10 =	281012574.0	7.	J 7.0 5 0 L				9 29.6					.77			7 8.51
124	z 0451	5 ZDYY.	4.4¢ v	1 467	) 060 r	, 11£ , 11¢	0.11.c	281012575.1 279012576.1	7.	5 9 A				9 29.6					.81			7 8.51
124	ა V45¹	7 ZOUU.	υ 34.0 α 10 *	1 476	, /Uz	c 11t 7 111	. 11.Z . 17 #	278012578.3	7:	5 9 L				9 29.6								7 8.51
i Z4:	4 UDO:	4 4001. 7 9409	v 17.4 n 17 ≉	1 400	/ 3Z) (53/	, 116 } 17/	. 12.4 ) 15 7	277012581.3	9	5 9.4	804			0 29.5					11.02	.97	9.	7 8.51
124	7 VEV	, 20V2. g gln7	ስ 1/ 1 ባ የነ ባ	. 545 . дао	. 30l 1	. 149 7 110	1 10 b	276012582.3	9	5 9.4				0 29.5					1 .94	.89	9.	7 8.51
124	0 VDV 7 NET	, 2009.	0 21.7	205 i	. U/. } 547	. 116 7 116	 } 71.7	276012583.7	9	5 9.4				0 29.5					11 .99	.94	9.	7 8.51
124	150 B	. 20V4. 3 71NS	0 20 1	. 370 ! #07	, 501 , 501	11 7 191	22.7	275012583.7	9.	5 9.8				0 29.5					11.00	.95		7 8.51
124	0 V21	5 2404. 5 2404.	0 34 3	43/	. 50.	7 119	5 24.1	276012583.7	9.	5 9.6				0 29.5	458	832	34.	3 3.49	11 .97	.91		7 8.51
127	0 021 160 0	5 2500. 6 2607	0 50 5	47/	5 A19	5 11°	7 24.7	276012583.7	9.	5 9.6				0 29.5	457	833	34.	3 3.49	71 .89			7 8.51
177	1 057	0 24Vb	0 37 5	397	3 50	: 7 121	B 20.4	277012586.0	9.	5 9.6				0 29.5	452	834	34.	4 3.50	.95	.90		7 8.51
175	2 053	2 2409	0 48 9	485	5 64	2 15	8 8.09	2840:2586.8	1 9.	5 9.6				0 29.5	452	835	34.	4 3.50	.74	.70		7 8.5
175	3 053	3 2610	0 42.4	48/	6 65	1 15	6 9.30	285012587.7	7 9.	5 9.6	815	808	5 i8.	9 29.5	454				01.79			7 8.5
125	4 053	6 2611	0 25.0	); 38	6 57:	5 16	1 7.54	285012589.4	1 9.	5 9.6	819	9 824	4 18.	9 29.5	454				01 .85			7 8.5
175		7 2612	0 59.7	7¦ 511	8 61	5 15	7 5.73	286012590.1	9.	5 9.6	818	804	4 18.	9 29.4	454				01 .66			7 8.5
170	6 053	8 2613	0 39.1	48	3 64	3 15	9 6.31	284012590.9	79.	.5 9.6	817	7 821	1 18.	9 29.4	455				01 .74			7 8.5
125	.5 054 57 054	0 2614	0 40	31 46	8 63	6 16	2 7.95	286012591.6	5 9	.5 9.6	817	7 797	7 18.	.9 29.4	455				0: .78			7 8.5
125	58 054	1 2615.	.0 37.7	71 44	0 59	9 16	2 9.66	6 284012592.4	4 9	.5 9.6	6 81°	9 824	4 18.	.9 29.4	455				01 .82			7 8.5
		17 2616	0.30	71 43	7 58	5 16	1 10.3	5 283012593.0	0.9.	.5 9.6	81	7 822	2 18.	.9 29.4	455	842	34.	.6 3.5	11 .88	.83		7 8.5

F#	TIME	DEPTH	ROP!	TOR AVG	QUE MAX	RPM AVG	WOB AVG	PUMP:RTRNS PRES:DEPTH	MD :	lb/gal OUT	FLO In	MIM\W Tuo	TEI In	MP (C) OUT	PVT i	-THI	BIT- hr	EST:	DXC	NXB	ECD 1	I DMXN
260	0553	2617.0	29.31	406	565	160	11.6	278012593.5	9.5	9.6	803	792	18.8	29.4	4561	843	34.6	3.511	.90	.85	9.7	8.51D1
261	0555	2618.0	48.61	486	<b>6</b> 33	155	8.47	281012594.0	9.5	9.6	805	785	18.8	29.4				3.511		.70		8.51D
262	0556	2619.0	50.01	468	587	162	8.75	280012594.5	9.5	9.6				29.4				3.51:		.71 .77		8.51D
								280012595.3						29.4				3.511 3.511		.// .84		8.5ID
								280012596.6						29.4				3.511		.75		8.510
								279012597.6				812						3.521		.84		8.51D
								281012598.9				797 790						3.521		.83		8.51D
								280012599.9						27.4				3.521		.82		8.510
								281012600.9						29.4				3.521		.76		8.510
								280012601.8						29.3				3.521		.77		8.51D
270	0620	2627.0	51.1i	426	610	140	7.11	288012603.0	7.3	7:0 0 L				29.3				3.521		.59		8.5ID
271	0622	2628.0	44.51	455	6//	14/	<b>3.43</b>	289012603.4	7.3	7.Q 0 L				29.3				3.531		.65		8.51D
								287012604.1				808						3.531		.75		8.510
								290012605.0						29.3				3.531		.77		8.5ID
								290012605.6						29.3				3.531		.80		8.510
								2880:2606.1						29.3				3.531		.82		8.51D
12/6	0631	2655.0	27.Zi	3/0	202	198	10.0	287012606.5	7.5	7:0 0 L				29.3				3.53		.82		8.51D
								290012607.0						29.3				3.54		.85		8.510
								288012607.9						29.3				3.54		.83		8.510
279	0645	2636.0	33.31	364	473	190	14.0	281012611.8	7:4	7:0 0 L				29.3				3.54		.64		8.51D
280	0647	2637.0	46.51	435	625	108	0.16	286012612.4	7.0	7.0				27.3				3.54		.73		8.51D
								284012612.4						27.3				3.54		.83		8.51D
								287012612.4						27.3				3.54		.77		8.510
								285012612.5						29.2				3.54		.69		8.51D
								286012612.7						29.2				3.54		.73		8.5!D
1285	0655	2642.0	38.31	411	5/0	101	7.01	285012613.3	7.5	7:0 0 L				29.2				3.55		.79		8.510
								286012614.5						29.2				3.55		.86		8.510
								284012615.4						29.2				3.55		.83		8.510
								284012616.5						29.2				3.55				8.510
								283012617.6						29.2				3.55		.79		8.510
1240	0/14	264/.0	44./1	280 775	920	149	14.0	285012621.1 282012621.8	7:0	7.U				29.2								
1271	0/10	Z040.V	74 01	3/3	323	170	10.7	283012621.8	7.0	7.0					4791							8.510
i 272	0701	2047.0	31.Zi	3/3	401	127	12.0	283012622.9	/ . d	. 7.u . 4.p	811	790	19 0									
: Z75	0/21	703V.V	17.Vi	330	UZÜ 554	171	17.0	283012624.1	7.4	9 4	810	815	19.0	29.2	479	877	35.7	3.56	.91	.86	9.7	8.51
								283012625.6						29.2				3.56		.98		8.510
								283012627.1						29.1				3.56		1.00		8.511
								283012628.1						29.1				3.57		.78		8.5;0
								283012629.1						29.1				3.57		.78		8.511
								283012630.1						29.1				3.57		.82		8.511
								284012631.9						29.1				3.57		.76		8.511
								284012631.9			809			29.1				3.57		.71		8.511
								285012632.4			808			29.1				3.57		.77		8.511
								285012633.4			809			29.1				3.57		.75		8.510
								286012634.4						29.1				3.57		.74		8.511
								2840:2635.1						29.1				3.57		.71		8.5!
								286012636.2						29.1				3.57		.80		8.511
								285012637.0						29.1				3.58		.80		8.51
TOU	V/J4	. 2004.	71	717				+														

! F# JIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC MXB ECD MXMD: m m/hr: AVG MAX AVG AVG PRES:DEPTH IN OUT IN OUT IN OUT : m hr TW: .86 9.7 8.51D 471; 891 36.1 3.58; .91 807 799 19.1 29.1 1308 0756 2665.0 31.61 479 708 129 16.0 284012638.0 9.5 9.6 807 786 19.1 29.1 4711 892 36.1 3.581 .92 .87 9.7 8.51D 1309 0758 2666.0 32.91 369 515 128 17.5 284012638.9 9.5 9.6 350 356 19.1 29.1 478! 893 36.1 3.58! .67 .63 9.7 8.51D* 1310 0807 2667.0 75.21 499 666 118 12.8 71012641.3 9.5 9.6 1311 0809 2668.0 35.8; 562 762 113 14.5 710:2641.7 9.5 9.6 350 336 19.1 29.1 475; 894 36.2 3.58; .84 .79 9.7 8.510 .78 9.7 8.51D 532 607 19.1 29.1 4751 895 36.2 3.581 .83 1312 0810 2669.0 39.41 472 652 120 14.7 251012641.8 9.5 9.6 803 792 19.1 29.1 4691 896 36.2 3.581 .91 .86 9.7 8.510 1313 0812 2670.0 34.1! 407 559 131 16.9 291012641.9 9.5 9.6 .86 9.7 8.51D 809 788 19.1 29.1 467! 897 36.2 3.58! .91 1314 0813 2671.0 35.51 421 560 125 18.5 292012641.9 9.5 9.6 1315 0816 2672.0 22.61 392 527 128 18.0 290012642.8 9.5 9.6 808 795 19.1 29.0 4701 898 36.3 3.5811.01 .95 9.7 8.51D 1316 0817 2673.0 41.01 481 621 130 15.1 290012643.7 9.5 9.6 809 788 19.0 29.0 4701 899 36.3 3.581 .84 .79 9.7 8.510 1317 0819 2674.0 48.81 465 552 127 16.6 292012644.4 9.5 9.6 809 789 19.0 29.0 4671 900 36.3 3.591 .82 .77 9.7 8.510 1318 0820 2675.0 34.91 481 686 124 15.3 293012645.3 9.5 9.6 811 813 19.0 29.0 4681 901 36.4 3.591 .87 .82 9.7 8.51D .81 9.7 8.51D 1319 0832 2676.0 37.71 374 531 138 14.4 292012649.8 9.5 9.6 807 812 18.8 29.0 468: 902 36.4 3.59: .86 .76 9.7 8.5ID 1320 0833 2677.0 46.71 479 687 154 12.4 294012650.6 9.5 9.6 810 792 18.8 29.0 4661 903 36.4 3.591 .82 4671 904 36.5 3.591 .86 .81 9.7 8.510 1321 0835 2678.0 37.41 437 667 154 12.6 293012651.4 9.5 9.6 813 794 18.8 29.0 811 803 18.8 29.0 467! 905 36.5 3.59! .82 .77 9.7 8.510 1322 0836 2679.0 45.41 450 580 156 12.5 293012652.0 9.5 9.6 809 795 18.7 29.0 467; 906 36.5 3.59; .88 .83 9.7 8.51D 1323 0838 2680.0 35.81 460 632 154 13.2 296012652.7 9.5 9.6 .75 9.7 8.51D 811 802 18.7 29.0 467! 907 36.5 3.59! .80 1324 0839 2681.0 56.61 527 638 152 14.3 293012653.1 9.5 9.6 1325 0840 2682.0 47.3: 476 645 156 14.5 2930:2653.5 9.5 9.6 811 790 18.7 29.0 464: 908 36.5 3.59: .84 .79 9.7 8.51D .84 9.7 8.51D 810 815 18.7 29.0 4661 909 36.6 3.601 .89 1326 0841 2683.0 39.51 511 696 150 15.8 292012653.6 9.5 9.6 1327 0843 2684.0 50.9; 532 631 154 17.3 2930;2654.0 9.5 9.6 807 788 18.6 29.0 466; 910 36.6 3.60; .86 .80 9.7 8.51D .89 9.7 8.51D 811 790 18.6 29.0 4621 911 36.6 3.601 .95 1328 0844 2685.0 34.11 424 581 159 16.8 293012654.9 9.5 9.6 802 805 18.7 29.0 461; 912 36.7 3.60; .80 .75 9.7 8.51D 1329 0856 2686.0 41.3! 441 657 150 10.5 2860:2657.8 9.5 9.6 .75 9.7 8.51D 802 789 18.7 29.0 4631 913 36.7 3.601 .80 1330 0857 2687.0 42.81 466 631 154 10.7 288012658.4 9.5 9.6 .77 9.7 8.5ID 463: 914 36.7 3.60: .82 803 783 18.7 29.0 1331 0858 2688.0 44.11 438 543 163 11.6 287012658.9 9.5 9.6 .80 9.7 8.51D 4641 915 36.7 3.601 .85 1332 0900 2689.0 42.61 422 549 164 13.1 286012659.4 9.5 9.6 801 779 18.7 29.0 .83 9.7 8.510 462: 916 36.8 3.61; .88 1333 0901 2690.0 40.51 471 599 162 14.3 286012660.1 9.5 9.6 803 782 18.7 29.0 .86 9.7 8.51D 1334 0903 2691.0 37.31 416 516 165 15.2 285012660.9 9.5 9.6 802 788 18.7 29.0 463: 917 36.8 3.61: .91 4631 918 36.8 3.611 .90 .84 9.7 8.51D 801 788 18.7 29.0 1335 0904 2692.0 37.01 462 615 162 14.1 286012661.9 9.5 9.6 .78 9.7 8.51D 1336 0906 2693.0 51.61 480 600 163 14.4 286012662.4 9.5 9.6 803 789 18.8 29.0 464: 919 36.8 3.61: .83 .84 9.7 8.51D 1337 0907 2694.0 40.11 470 596 162 15.0 288012663.0 9.5 9.6 805 791 18.8 29.0 4651 920 36.8 3.611 .89 .83 9.7 8.51D1 1338 0919 2695.0 32.01 398 530 160 11.3 287012664.6 9.5 9.6 465; 921 36.9 3.61; .88 800 785 18.9 28.9 .70 9.7 8.51D 4661 922 36.9 3.611 .75 1339 0920 2696.0 48.51 472 580 152 9.21 287012665.4 9.5 9.6 802 807 18.9 28.9 .78 9.7 8.51D 4671 923 37.0 3.621 .83 1340 0922 2697.0 30.31 445 610 142 9.33 288012666.6 9.5 9.6 803 805 18.8 28.9 .70 9.7 8.51D 4661 924 37.0 3.621 .75 1341 0923 2698.0 47.01 497 607 129 10.5 287012667.3 9.5 9.6 802 782 18.8 28.9 .73 9.7 8.5ID 468: 925 37.0 3.62: .78 1342 0925 2699.0 42.61 465 632 127 11.3 287012668.4 9.5 9.6 803 789 18.8 28.9 .74 9.7 8.510 1343 0926 2700.0 36.81 466 615 129 10.2 288012669.6 9.5 9.6 801 804 18.8 28.9 4671 926 37.0 3.621 .79 1344 0928 2701.0 43.2! 492 571 128 8.21 286012670.3 9.5 9.6 802 789 18.8 28.9 468: 927 37.1 3.62: .73 .68 9.7 8.510 .72 9.7 8.510 1345 0929 2702.0 37.61 442 579 130 8.67 289012671.2 9.5 9.6 802 789 18.8 28.9 4671 928 37.1 3.621 .76 .69 9.7 8.51D 4671 929 37.1 3.621 .73 1346 0931 2703.0 46.61 468 562 129 9.48 290012671.9 9.5 9.6 802 782 18.8 28.9 1347 0932 2704.0 35.61 436 591 131 9.74 288012672.4 9.5 9.6 804 789 18.8 28.9 .75 9.7 8.51D 4671 930 37.1 3.621 .79 .76 9.7 8.51Dt 1348 0945 2705.0 37.6! 483 616 140 10.5 2900!2676.7 9.5 9.6 807 786 18.8 28.9 4661 931 37.2 3.621 .81 .75 9.7 8.51D 4661 932 37.2 3.621 .80 1349 0946 2706.0 40.11 469 608 157 9.61 290012677.6 9.5 9.6 808 812 18.8 28.9 .75 9.7 8.51D 465: 933 37.2 3.62: .80 1350 0948 2707.0 40.91 461 576 159 9.31 289012678.2 9.5 9.6 807 786 18.8 28.9 1351 0950 2708.0 32.61 498 626 155 9.07 290012679.1 9.5 9.6 803 805 18.8 28.9 1352 0951 2709.0 32.51 436 558 158 8.95 289012680.3 9.5 9.6 806 797 18.8 28.9 .78 9.7 8.51D 4661 934 37.2 3.631 .83 .78 9.7 8.51D 466: 935 37.3 3.63: .83 .76 9.7 8.510 1353 0953 2710.0 39.71 479 569 158 9.76 288012681.3 9.5 9.6 806 792 18.9 28.9 466: 936 37.3 3.63: .81 .75 9.7 8.51D 1354 0954 2711.0 46.9: 481 596 157 11.3 291012682.1 9.5 9.6 803 783 18.9 28.9 4661 937 37.3 3.631 .80 1355 0956 2712.0 35.81 474 581 158 12.5 290012682.2 9.5 9.6 802 788 18.9 28.9 4651 938 37.3 3.631 .87 .82 9.7 8.51D <del>+------</del>

! F# TIME DEPTH ROP: TORQUE RPM WOB PUMP:RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT: -THIS BIT- EST: DXC NXB ECD NXMD: i m hr TW: m/hr! AVG MAX AVG AVG PRES!DEPTH IN OUT IN OUT IN OUT ______ ______ 9.7 8.510 .80 1356 0957 2713.0 39.71 472 590 158 12.6 290012682.3 9.5 9.6 801 792 18.9 28.9 4641 939 37.4 3.631 .85 9.7 8.51D1 463: 940 37.4 3.63: .84 .79 1357 1008 2714.0 38.41 434 557 156 11.3 295012684.8 9.5 9.6 807 812 18.9 28.9 9.7 8.510 462: 941 37.4 3.64: .76 .71 1358 1010 2715.0 37.91 508 679 149 7.29 294012685.9 9.5 9.6 812 791 19.0 28.9 .70 9.7 8.510 4611 942 37.5 3.641 .75 811 813 19.0 28.9 1359 1011 2716.0 45.91 511 650 157 8.09 293012686.9 9.5 9.6 9.7 8.510 4551 943 37.5 3.641 .77 .72 1360 1012 2717.0 39.41 521 646 161 7.39 294012687.9 9.5 9.6 810 796 19.0 28.9 451; 944 37.5 3.64; .80 .75 9.7 8.51D 1361 1014 2718.0 36.81 442 555 165 8.07 297012689.1 9.5 9.6 809 795 19.1 28.9 4511 945 37.5 3.641 .82 .76 9.7 8.51D 1362 1015 2719.0 39.21 460 605 164 9.66 294012690.3 9.5 9.6 813 799 19.1 28.9 .79 9.7 8.51D 451: 946 37.6 3.64: .84 813 818 19.1 28.9 1363 1017 2720.0 37.0: 482 613 163 10.6 2950:2691.2 9.5 9.6 4501 947 37.6 3.641 .81 .75 9.7 8.51D 1364 1018 2721.0 44.41 469 581 164 10.5 295012691.6 9.5 9.6 811 797 19.1 28.9 451: 948 37.6 3.641 .82 .77 9.7 8.510 1365 1020 2722.0 42.31 539 656 160 10.9 298012691.7 9.5 9.6 810 788 19.1 28.9 448! 949 37.6 3.65! .81 .76 9.7 8.51D 1366 1021 2723.0 41.41 451 599 164 10.2 295012691.7 9.5 9.6 810 801 19.1 28.9 .73 9.7 8.51D 449: 950 37.7 3.65: .78 1367 1031 2724.0 43.31 473 635 148 9.65 297012695.0 9.5 9.6 806 793 19.1 28.9 9.7 8.51D 1368 1033 2725.0 37.21 479 619 158 8.09 297012696.1 9.5 9.6 810 813 19.1 28.9 4511 951 37.7 3.651 .79 .74 4511 952 37.7 3.651 .75 .70 9.7 8.51D 805 790 19.1 28.9 1369 1034 2726.0 42.6! 482 588 159 7.14 292012696.9 9.5 9.6 .71 9.7 8.510 449! 953 37.7 3.65! .76 1370 1036 2727.0 42.01 493 613 158 7.80 291012697.8 9.5 9.6 806 797 19.1 28.9 451: 954 37.8 3.65: .80 .75 9.7 8.51D 1371 1037 2728.0 36.31 483 628 157 8.51 293012699.1 9.5 9.6 805 783 19.1 28.9 9.7 8.510 1372 1039 2729.0 39.31 462 598 159 9.49 292012700.3 9.5 9.6 805 784 19.1 28.9 4491 955 37.8 3.651 .81 .76 .74 449: 956 37.8 3.65: .79 9.7 8.51D 1373 1040 2730.0 42.61 484 616 159 9.36 293012700.8 9.5 9.6 806 811 19.1 28.9 9.7 8.5ID .78 1374 1042 2731.0 36.41 467 593 160 9.77 292012701.3 9.5 9.6 807 798 19.1 28.9 450; 957 37.8 3.66; .83 .82 9.7 8.51D 4501 958 37.9 3.661 .87 805 795 19.1 28.9 1375 1044 2732.0 31.01 510 655 156 11.0 291012701.3 9.5 9.6 .77 9.7 8.51D* 4491 959 37.9 3.661 .82 -76 1056 2733.0 35.91 484 645 141 10.9 292012705.0 9.5 9.6 804 790 19.1 28.9 9.7 8.51D 804 790 19.1 28.9 4491 960 38.0 3.661 .71 .67 598 129 7.80 292012706.0 9.5 9.6 7 1057 2734.0 44.7! 474 4501 961 38.0 3.661 .74 .70 9.7 8.51D 1378 1058 2735.0 36.51 487 618 125 7.82 292012707.1 9.5 9.6 806 787 19.1 28.9 9.7 8.510 4491 962 38.0 3.661 .76 .71 291012708.1 9.5 9.6 807 812 19.1 28.9 1379 1100 2736.0 34.01 440 588 130 7.47 .73 9.7 8.51D 1380 1102 2737.0 30.21 531 643 123 7.60 293012709.3 9.5 9.6 806 792 19.1 28.9 4491 963 38.1 3.661 .77 .74 9.7 8.510 4491 964 38.1 3.661 .78 1381 1104 2738.0 29.81 481 646 130 7.46 291012710.5 9.5 9.6 807 788 19.1 28.9 .65 9.7 8.51D 1382 1106 2739.0 35.11 509 661 128 4.98 292012710.7 79.5 9.6 448; 965 38.1 3.67; .69 806 784 19.1 28.9 4481 966 38.2 3.671 .75 .71 9.7 8.510 806 812 19.1 28.9 1383 1108 2740.0 26.71 491 647 130 5.41 293012710.7 9.5 9.6 .69 9.7 8.51D 448: 967 38.2 3.67: .73 1384 1110 2741.0 29.11 451 625 131 5.31 292012711.1 9.5 9.6 808 787 19.1 28.9 .71 9.7 8.51Dt 4591 968 38.2 3.671 .76 582 127 7.04 98012714.3 9.5 9.6 417 423 19.1 28.9 1385 1123 2742.0 32.21 401 .56 9.7 8.51D1 4591 969 38.2 3.671 .60 419 397 19.1 28.9 1386 1124 2743.0 58.01 512 661 150 3.50 95012714.6 9.5 9.6 .65 9.7 8.510 418 399 19.1 28.9 461: 970 38.3 3.67: .69 97012715.2 9.5 9.6 1387 1126 2744.0 34.01 430 578 161 3.42 .69 9.7 8.51D 463! 971 38.3 3.67! .73 437 459 19.1 28.9 1388 1128 2745.0 31.11 522 654 136 5.24 233012715.8 9.5 9.6 9.7 8.510 454: 972 38.3 3.67: .76 .71 1389 1129 2746.0 34.41 510 669 124 8.00 292012716.8 9.5 9.6 795 780 19.1 28.9 4561 973 38.4 3.671 .80 .75 9.7 8.51D 1390 1131 2747.0 30.11 497 717 121 9.21 291012718.1 9.5 9.6 803 788 19.2 28.9 458! 974 38.4 3.67! .85 .80 9.7 8.51D 1391 1134 2748.0 24.71 422 633 125 9.66 290012719.6 9.5 9.6 806 786 19.2 28.9 .75 9.7 8.51D 4561 975 38.4 3.681 .80 1392 1135 2749.0 37.71 606 749 108 13.4 292012719.9 9.5 9.6 806 810 19.2 28.9 458; 976 38.5 3.68; .85 .80 9.7 8.510 807 792 19.2 28.9 1393 1137 2750.0 34.31 569 708 113 15.0 289012720.0 9.5 9.6 .74 9.7 8.51D 4581 977 38.5 3.681 .79 700 111 15.8 291012720.0 9.5 9.6 802 781 19.2 28.9 1394 1138 2751.0 47.11 608 1395 1151 2752.0 33.71 554 676 119 16.2 290012723.7 9.5 9.6 798 793 19.1 28.9 4741 978 38.5 3.681 .88 .83 9.7 8.51D4 4781 979 .77 9.7 8.51D 38.6 3.681 .82 1396 1153 2753.0 29.41 490 637 117 10.4 289012725.1 9.5 9.6 804 790 19.0 29.0 .73 9.7 8.51D 4821 980 38.6 3.681 .77 803 782 19.0 29.0 1397 1154 2754.0 40.71 572 721 109 12.5 290012726.0 9.5 9.6 38.6 3.68! .81 .76 9.7 8.510 4851 981 1398 1156 2755.0 38.21 570 747 107 14.5 289012726.9 9.5 9.6 801 786 19.0 29.0 .83 9.7 8.510 1399 1158 2756.0 29.41 548 711 109 15.2 289012728.4 9.5 9.6 802 782 19.0 29.0 4881 982 38.7 3.681 .88 1400 1159 2757.0 51.81 583 668 108 14.9 289012728.9 9.5 9.6 802 781 18.9 29.0 4901 983 38.7 3.681 .75 .71 9.7 8.51D .77 9.7 8.51D <u>14</u>01 1200 2758.0 41.3¦ 582 674 112 16.0 2880¦2729.5 9.5 9.6 803 808 18.9 29.0 4931 984 38.7 3.681 .82 .86 9.7 8.51D 12 1202 2759.0 26.6; 518 660 113 15.4 2870; 2729.5 9.5 9.6 803 788 18.9 29.0 499: 985 38.7 3.68: .91 1403 1204 2760.0 48.1: 557 648 116 17.3 2880:2729.8 9.5 9.6 802 804 18.8 29.0 501: 986 38.8 3.68: .81 .76 9.7 8.51D 

								+										+				+
<b>-</b> "	TTME	NEDTH	0001	TODA	niic	вом	MUD	PROTO! DING	MD	lh/nal	FLO	H/HIN	TFM	P (C)	PVT:	-THIS	BIT-	· EST!	DXC	NXB	ECD	NXMD:
-		2	m/hri	AVG	MAX	AV6	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	OUT	!	A	hr	TW:				
			+				45.0	+	n =		007	 707	10 0	20 A	t: 504!	987 3	(A. B	3.481	 .82	.77	9.7	8.5¦[
								286012730.2 289012735.0														
405	1216	2762.0	32.31	58/ 50A	681	107	17:4	290012736.3	7.0	7.0	90J	797	19.9	29.0	5231	989	8.9	3.691	.85	.80	9.7	8.510
406	1218	2/63.0	32.31	37V	/44 771	120	11.7	288012737.5	7 . d	7.0	809	801	18.8	29.0	5241	990	38.9	3.691	.89	.84	9.7	8.511
407	1220	2/04.0	27.11	JZ1	701	170	14.7	288012738.9	9.5	9.6	808					991						8.5
5VP.	1220	7765.0	45 71	500	105	178	14.0	289012738.9	9.5	9.6	808					992				.80	9.7	8.511
407 416	1724	2/00.V 2747 ()	40./: 55 7!	597	673 677	147	17.8	290012738.9	9.5	9.6				29.0		993				.78	9.7	8.5
41V	1223	2767.V	10.00 !A 7A	594	708	138	18.3	289012739.2	9.5	9.6				29.0		994				.83	9.7	8.51
411	1221	2700.0	45 7!	599	447	141	19.3	288012739.6	9.5	9.6				29.0	5321	995	39.0	3.69	.89	.83	9.7	8.5
1117	1770	2707.0	AT 9!	514	617	143	17.6	290012740.7	9.5	9.6				29.0	5331	996	39.0	3.691	.88	.83	9.7	8.511
AIA	1230	2771.0	37.7	531	648	116	15.4	289012741.7	9.5	9.6				29.0	5351	997	39.1	3.69	.84			8.5
415	1744	2772.0	20.4	472	578	128	12.9	289012747.1	9.5	9.6				29.0	5461	998	39.2	3.70	.95			8.51
AIA	1749	2773.0	21.7	391	559	127	10.8	288012748.4	9.5	5 9.6	804	809	19.1	29.0	5471	999	39.2	3.70	.90	.85	9.7	8.51
417	1250	2774.0	46.7	589	741	108	14.6	290012748.8	9.5	5 9.6	806	793	19.1	29.0	5491	1000	39.2	3.70	.77			8.5
415	1251	2775.0	34.7	559	719	109	15.3	290012749.1	9.5	5 9.6	808	794	19.2	29.0	5511	1001	39.2	3.70				8.5
415	1253	2776.0	46.8	561	683	110	16.7	290012749.1	9.	5 9.6	808	792	19.2	29.0		1002						8.51
420	1254	2777.0	34.7	577	697	110	17.9	288012750.3	9.	5 9.6	808	810	19.2	29.0		1003				.83		
421	1256	2778.(	33.2	595	728	107	18.1	290012751.9	9.	5 9.6	805	791	19.2	29.0		1004						
427	1258	3 2779.(	29.0	557	753	110	17.5	290012753.3	9.	5 9.6	805	796	19.2	29.0		1005				.86		
423	1300	2780.0	32.8	520	624	116	15.3	290012754.3	9.	5 9.6	806	785	19.2	29.0		1006						8.5
424	1302	2 2781.0	32.5	539	693	112	16.4	290012755.3	9.	5 9.6	805	810	19.3	29.0	558	1007	39.4	3.70	88.	.83	9.7	8.51
425	1317	7 2782.(	17.4	361	511	142	11.2	295012759.7	9.	5 9.6				29.0		1008						
426	1319	7 2783.0	46.8	499	645	147	11.6	295012760.4	9.	5 9.6				29.0		1009						
42	1320	2784.	40.5	536	645	143	13.6	293012761.1	9.	5 9.6				29.0		1010						
142	3 1322	2 2785.	27.0	505	645	142	14.1	294012762.5	9.	5 9.6				29.0		1011						8.5
142	7 1324	4 2786.	0 31.2	466	638	148	15.7	294012763.8	9,	5 9.6				29.0		1012						8.5
:43	132	6 2787.	0 35.2	1 511	656	143	17.3	295012764.9	9.	5 9.6				29.0		1013						
43	1 132	8 2788.	0 27.9	466	648	147	16.0	294012766.2	9.	5 9.6				29.0		1014						
143	2 133	0 2789.	0 36.1	1 479	613	149	15.5	294012767.1	7.	5 9.6				29.0		1015						
143	3 133	1 2790.	0 39.1	545	674	131	16.6	295012768.2	9.	5 9.6				29.0		1016						
:43	4 134	4 2791.	0 33.3	495	646	119	13.7	293012770.3	9.	5 9.6				29.1		1017	37.6	3.72	1 .00	.0V	0.7	0.J)
43	5 134	5 2792.	0 61.7	1 516	649	146	10.1	292012770.6	9.	5 7.6				29.1	4/7	1018 1019	37.0	3 3.12 3 7 77	1 ./4	:0/	0.7	. 0 E:
: 43	6 134	7 2793.	0 45.7	1 517	619	147	12.3	293012771.3	9.	5 9.6				29.1								7 8.5
143	7 134	8 2794.	0 57.5	1 605	682	13E	14.7	294012771.7	9.	5 7.6				29.1		1020 1021				.76		8.5
143	8 134	9 2795.	0 48.4	1 642	796	128	16.1	293012772.2	9.	5 7.6				3 29.1		1021				.83		7 8.5
								294012772.8						7 29.1		1022				.90		7 8.5
144	0 135	2 2797.	0 28.5	1 576	709	1.54	16./	292012773.6	7:	5 7.6				7 29.1		11023				.80		7 -8.5
144	1 135	4 2798.	0 36.4	1 489	606	148	3 12.2	292012774.7	٧.	3 7.0				7 29.1		11025				.79		7 8.5
144	2 135	5 2799.	0 44.5	11 544	658	148	14.5	293012775.7	٦, م	3 7.0 5 0 /				7 29.1		11025				.80		7 8.5
								293012776.8						1 29.1		11028				.83		7 8.5
								292012780.4						1 27.1		11028				.71		7 8.5
								292012780.8						1 29.1		11029				.72		7 8.5
144	6 141	1 2803.	0 47.6	)i 6V4	) 686	10,	/ 10.\ / 10.	293012781.1	7.	.J 7.D 5 0 L				1 27.1		11030				.79		7 8.5
								3 292012781.1						1 27.1		11031				.78		7 8.5
144	8 141	4 2800,	V 41.	)i DD\ :: /^r	166 C	( 11. ; (A:	0 10 . 7 10 .(	3 292012781.2 1 291012781 5	7	.J 7.0 5 0 L				1 27.1		11032						7 8.5
:44	7 141	13 Z806.	V 41.	1: 0V) 1: 10:	1 /43 2 704	י ע ען ד	7 10:'	1 291012781.5 2 201012782 3	7	1.0 5 0 L				1 29.1		11033						7 8.5
140	V 141	L/ Z80/:	.V 34.1	21 677 11 171	) /7! ! 7^!	0 7 5 11	0 10 7 14	2 291012782.3 4 202012783 2	7	5 0 L						11034						
14:	114	18 5808	.0 3/.	bi 608	5 /0	J 10	/ 14.	6 292012783.2	. 7	7.0	QV.	. 11	. TA:	. 41.4								

F# TIME DEPTH ROP! TORQUE RPM WOB PUMP!RTRNS MD 1b/gal FLOW/MIN TEMP (C) PVT! -THIS BIT- EST! DXC NXB ECD NXMD! m m/hr! AVG MAX AVG AVG PRES!DEPTH IN OUT IN OUT IN OUT ! 'm hr TW! ! -----475:1035 40.3 3.74: .89 .84 9.7 8.5iD 1452 1421 2809.0 26.91 597 721 110 14.5 293012784.5 9.5 9.6 801 788 20.1 29.2 1453 1431 2810.0 39.11 634 737 106 14.5 291012788.7 9.5 9.6 792 784 20.2 29.2 47311036 40.3 3.741 .81 .76 9.7 8.51Dt .71 9.7 8.510 1454 1433 2811.0 37.41 625 778 100 10.9 293012789.5 9.5 9.6 803 807 20.2 29.2 47511037 40.4 3.741 .75 1455 1434 2812.0 35.91 699 788 84 13.0 294012790.2 9.5 9.6 802 807 20.2 29.2 4731103B 40.4 3.741 .76 .71 9.7 8.5ID 1456 1436 2813.0 39.41 691 760 92 14.8 290012790.9 9.5 9.6 804 790 20.2 29.2 47411039 40.4 3.741 .78 .73 9.7 8.51D :457 1438 2814.0 32.2: 653 817 95 13.7 2940:2791.7 9.5 9.6 804 795 20.2 29.2 472:1040 40.4 3.74: .81 .77 9.7 8.51D .69 9.7 8.51D1 .78 9.7 8.51D1 1458 1440 2815.0 34.51 724 828 80 11.6 295012791.8 9.5 9.6 803 808 20.2 29.2 47011041 40.5 3.741 .74 1459 1442 2816.0 28.91 637 838 96 12.7 295012791.8 9.5 9.6 803 783 20.2 29.2 47111042 40.5 3.741 .82 1460 1444 2817.0 29.01 616 752 101 13.6 293012792.1 9.5 9.6 802 789 20.2 29.2 47211043 40.5 3.741 .85 .80 9.7 8.5ID 1461 1447 2818.0 23.51 557 725 110 14.2 293012793.3 9.5 9.6 805 796 20.2 29.2 47211044 40.6 3.741 .91 .86 9.7 8.51D 1462 1449 2819.0 30.11 623 753 102 13.5 294012794.6 9.5 9.6 804 784 20.2 29.2 47011045 40.6 3.741 .84 .79 9.7 8.51D .76 9.7 8.51D¥ 1463 1500 2820.0 34.41 593 723 109 12.1 290012798.5 9.5 9.6 798 777 20.3 29.2 47011046 40.6 3.741 .81 1464 1503 2821.0 44.81 632 816 89 11.3 290012800.2 9.5 9.6 798 790 20.4 29.3 47011047 40.7 3.741 .70 .66 9.7 8.5iDt 1465 1505 2822.0 37.41 655 767 93 12.5 290012800.8 9.5 9.6 795 800 20.4 29.3 47011048 40.7 3.741 .76 .72 9.7 8.51D .74 9.7 8.5ID 1466 1506 2823.0 38.11 608 737 103 13.1 290012801.3 9.5 9.6 796 775 20.4 29.3 46911049 40.7 3.741 .79 1467 1509 2824.0 25.51 505 625 115 11.9 291012801.3 9.5 9.6 798 776 20.4 29.3 46811050 40.8 3.751 .87 .82 9.7 8.51D .72 9.7 8.51D 1468 1510 2825.0 41.01 623 741 102 12.7 292012801.3 9.5 9.6 799 801 20.4 29.3 46711051 40.8 3.751 .77 .76 9.7 8.51D 1469 1512 2826.0 37.81 593 724 110 13.5 292012801.5 9.5 9.6 798 776 20.4 29.3 46811052 40.8 3.751 .81 1470 1513 2827.0 37.01 594 697 108 12.3 292012802.2 9.5 9.6 797 801 20.4 29.3 46911053 40.8 3.751 .79 .74 9.7 8.51D .73 9.7 8.51D 1471 1515 2828.0 42.11 617 739 105 13.4 288012803.2 9.5 9.6 798 801 20.4 29.3 45711054 40.9 3.751 .77 .77 9.7 8.51D .64 9.7 8.51D 1472 1516 2829.0 35.31 581 702 108 13.8 291012804.7 9.5 9.6 797 776 20.4 29.3 45711055 40.9 3.751 .82 3 1528 2830.0 51.31 605 773 126 8.01 299012809.1 9.5 9.6 807 787 20.5 29.3 45411056 40.9 3.751 .69 .64 9.7 8.51D1 1474 1529 2831.0 44.0; 749 819 75 11.8 3000;2810.3 9.5 9.6 809 795 20.5 29.3 455;1057 40.9 3.75; .68 1475 1532 2832.0 33.61 655 861 83 13.4 300012810.8 9.5 9.6 810 802 20.5 29.3 45311058 41.0 3.751 .77 .73 9.7 8.51D 1476 1534 2833.0 22.91 675 817 94 15.0 300012810.8 9.5 9.6 810 789 20.5 29.3 44911059 41.0 3.751 .90 1477 1537 2834.0 21.91 525 820 112 14.8 299012811.6 9.5 9.6 809 795 20.5 29.3 45011060 41.0 3.751 .94 .85 9.7 8.51D .89 9.7 8.51D .76 9.7 8.51D 1478 1539 2835.0 40.81 628 762 104 15.4 299012812.7 9.5 9.6 807 795 20.5 29.3 44911061 41.1 3.751 .81 1479 1540 2836.0 45.11 577 713 107 14.2 299012813.6 9.5 9.6 811 814 20.5 29.3 44911062 41.1 3.751 .77 .72 9.7 8.51D .72 9.7 8.51D 1480 1541 2837.0 46.41 646 743 101 15.0 298012814.5 9.5 9.6 809 795 20.5 29.4 44611063 41.1 3.751 .77 
 1481 1543 2838.0 42.41 608
 721 109 14.3
 299012815.4
 9.5
 9.6
 807 793 20.5 29.4
 44711064 41.1 3.751 .79

 1482 1554 2839.0 49.11 583 691 108 13.7
 298012819.1
 9.5
 9.6
 802 798 20.5 29.4
 44911065 41.2 3.751 .76

 1483 1556 2840.0 45.31 727 838 106 8.19
 150012819.8
 9.5
 9.6
 541 527 20.5 29.4
 45311066 41.2 3.751 .69
 .74 9.7 8.51D .71 9.7 8.51Dt .64 9.7 8.5101 1484 1557 2841.0 57.71 619 769 138 6.78 150012820.2 9.5 9.6 542 522 20.5 29.4 45211067 41.2 3.761 .66 .62 9.7 8.51D 1485 1558 2842.0 51.51 636 732 133 7.97 272012820.2 9.5 9.6 621 677 20.5 29.4 45111068 41.2 3.761 .70 .65 9.7 8.51D 1486 1559 2843.1 68.41 588 688 145 8.83 299012820.2 9.5 9.6 784 776 20.5 29.4 44611069 41.2 3.761 .68 .63 9.7 8.51D + Circulate bottoms up at 2844m. + POOH at 2844m with RRB#5 to cut Core #1 + RIH with CB#1, Christensen RC476 at 2844m to cut Core#1. | Date Apr 12 '90 1495 0044 2844.5 10.8; 408 599 78 4.15 55012844.0 9.5 9.6 220 225 19.6 29.6 478; .65 .1 .00; .79 .84 9.5 8.51D† .92 9.5 8.51D 1496 0046 2845.0 11.1; 587 642 64 7.56 550;2844.0 9.5 9.6 221 207 19.6 29.6 478;1.00 .1 .00; .85 1497 0048 2845.5 10.9; 544 612 74 6.86 550;2844.0 9.5 9.6 219 222 19.6 29.6 479;1.50 .1 .00; .86 .92 9.5 8.51D 1498 0051 2846.0 10.21 542 603 75 6.77 53012844.0 9.5 9.6 220 201 19.8 29.7 48011.99 .2 .001 .88 .93 9.5 8.51D .91 9.5 8.51D 1499 0054 2846.5 10.91 540 597 73 6.30 55012844.0 9.5 9.6 221 200 19.8 29.7 48012.50 .2 .001 .85 .87 9.5 8.51D 1500 0056 2847.0 13.11 524 587 78 6.06 54012844.0 9.5 9.6 220 225 19.8 29.7 48113.00 .3 .001 .82 1501 0059 2847.5 11.31 498 580 80 6.49 55012844.0 9.5 9.6 219 210 19.8 29.7 48213.50 .3 .001 .86 .91 9.5 8.5ID 02 0101 2848.0 11.61 543 594 75 6.44 53012844.0 9.5 9.6 219 204 19.9 29.7 48314.00 .4 .001 .84 .90 9.5 8.510 303 0103 2848.5 16.1; 528 571 79 6.61 550;2844.0 9.5 9.6 220 206 19.9 29.7 484;4.50 .4 .00; .80 .85 9.5 8.5;D <u>+-----</u>

Data Printed at time 03:07 Date Apr 19 '90 Data Recorded at time 01:05 Date Apr 12 '90

FF TIME DEPTH   RePF  TORQUE   RPR   NOD   PUMPISTENS    70   16/19   16   17   17   17   17   17   17   17									+								<del>i</del>			+				+
1.504   0165   2849.0   14.0   1532   597   75   7.09   550  2344.0   9.5   9.6   220   206   19.7   25.7   48415.00   4.   -001   8.2   8.7   7.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5   9.5				6551	TAB	OUC	BOW	unn	DUMBLET	OMC	MD 11	a/mal	EI NI	4/HTM	TEM	P (C)	- PV1:	-1H15	HII-	ESII	UAL	NAD	CLU:	MANUAL 🛕
1504   1015   2849.0   14.91   532   597   78   7.09   5612844.0   9.5   9.6   220   208   19.9   29.7   48415.00   4.061   683   689   7.5   6.518   1505   1010   2860.0   14.4   516   505   522   208   6.37   5012844.0   9.5   9.6   218   198   19.7   27.7   48615.50   5.5   5.001   6.81   6.86   9.5   6.518   1506   1010   2850.0   14.4   516   578   81.7   525   5012844.0   9.5   9.6   218   198   19.7   27.7   48615.50   5.5   5.001   6.81   6.86   9.5   6.518   1506   1011   2850.0   14.4   516   578   81.7   578   5.518   500   1011   2851.0   13.77   521   527   87.77   5012844.0   9.5   9.6   218   198   20.0   29.7   48617.00   6.001   83   89   7.5   8.518   1510   0118   2852.0   13.77   521   527   79.74   5012844.0   9.5   9.6   218   198   20.0   29.7   48617.00   6.001   83   89   7.5   8.518   1510   0118   2852.0   13.77   521   527   87.74   5012844.0   9.5   9.6   219   192   20.0   29.7   48617.00   6.001   83   89   7.5   8.518   1510   0118   2852.5   14.27   498   527   79.74   5012844.0   9.5   9.6   219   20.0   29.77   48617.00   6.001   83   89   7.5   8.518   1510   0118   2852.5   14.27   498   527   79.74   5012844.0   9.5   9.6   219   20.0   29.77   48617.00   6.001   83   89   7.5   8.518   1511   0120   2852.5   14.27   498   522   79.74   5012844.0   9.5   9.6   219   20.0   29.77   48617.00   6.001   83   89   7.5   8.518   1511   0120   2852.5   13.41   495   538   79.87   5012844.0   9.5   9.6   219   20.0   29.77   48617.00   6.001   84   99.75   8.518   1511   0120   2852.5   13.41   495   538   98.81   97.75   5012844.0   9.5   9.6   219   20.0   29.77   48617.00   6.001   84   99.75   8.518   1511   0120   2855.5   13.41   495   538   98.81   97.75   5012844.0   9.5   9.6   219   20.0   29.77   48617.00   6.001   84   99.75   8.518   1511   0120   2855.5   13.51   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   495   49					8110	MAN	AHC	AHC	nnceinc	:070	T ki	MILT	TAL	nut	IN	11111	•	æ	ar	: 展;				1
1505 0100 2849, 5 14, 15 16 5 73 79 6, 18 60/2844, 0 9, 5 9, 6 21 9 700 19, 927, 9815, 0 15 700 112 2850, 14 14, 15 16 5 73 79 6, 18 60/2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 48161, 5 0 5, 0 101 2 2850, 15 13, 15 21 510 79 71, 2 501 2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 48161, 5 0 5, 0 101 2 35, 15 13, 15 21 510 79 71, 2 501 2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 48161, 5 0 5, 0 101 2 35, 15 13, 15 21 510 79 71, 2 501 2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 48161, 5 0 5, 0 101 2 35, 15 13, 15 21 510 79 71, 2 501 2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 48161, 5 0 5, 0 1, 15 30 31 3 6 5 8 171, 10 5 501 2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 48161, 5 0 5, 0 1, 15 30 31 3 6 5 5 8 171, 10 5 501 2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 48161, 5 0 5, 0 1, 15 30 31 3 6 5 5 8 171, 10 5 501 2844, 0 9, 5 9, 6 21 9 198 20, 0 29, 7 4811, 0 0 5, 0 1, 18 4, 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+			+										907		 an 7	+: : A O A	 5 00	A.	00:	 70	90	q s	8.510
1506 0110 2895.0 14.4 515 573 78 6.18 5012844.0 9.5 9.6 219 197 20.0 297. 48616.50 5. 001.81 .86 9.5 8.518 1507 0112 2895.0 15.2 516 570 81 7.52 5012844.0 9.5 9.6 219 197 20.0 297. 48616.50 5. 001.83 .89 9.5 8.518 1509 0114 2895.0 13.7 1521 502 79 7.23 5012844.0 9.5 9.6 219 197 20.0 297. 48617.00 6. 001.83 .89 9.5 8.518 1510 0120 2895.5 14.2 1498 52.0 15.3 14.9 1495 52 79 7.23 5012844.0 9.5 9.6 219 197 20.0 297. 48617.00 6. 001.83 .89 9.5 8.518 1510 0120 2895.5 14.2 1498 52.2 28 7.7 23 5012844.0 9.5 9.6 219 197 20.0 297. 48718.0 0.0 6. 001.83 .89 9.5 8.518 1512 0122 2895.5 14.2 1498 52.2 78 27.7 14 5012844.0 9.5 9.6 219 20.0 297. 48718.0 0.0 6. 001.81 .86 9.5 8.518 1514 0140 2854.0 13.8 149 552 79 8.7 14 5012844.0 9.5 9.6 219 20.0 297. 48719.0 0.0 7. 001.81 .86 9.5 8.518 1514 0140 2854.0 13.8 149 552 79 8.7 14 5012844.0 9.5 9.6 219 20.0 297. 48719.0 0. 7. 001.81 .86 9.5 8.518 1514 0140 2854.0 13.8 149 589 79 87.8 80 8012844.0 9.5 9.6 222 20.0 297. 48719.5 0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1504	0105	2849.0	14.01	532	597	76	7.09	550128	344.0	7.5	7.á	220	206	17.7	27:/	4011	J.VV 5 50	. <del></del> .	001	97	.87	9.5	8.510
1306 0110 2805.0 15.2: 515 570 81 75.25 5012844.0 9.5 9.6 219 199 20.0 29.7 48617.50 5.5 .601.83 4.9 9.5 8.510 1500 0112 28515.15.35 121 81 97 7.47 50512844.0 9.5 9.6 219 199 20.0 29.7 48617.50 .6 .6 .001.83 .89 9.5 8.510 1510 012 28525.15.15.35 121 81 81 97 7.47 50512844.0 9.5 9.6 219 199 20.0 29.7 48617.49 .6 .001.83 .89 9.5 8.510 1510 102 28525.16.44 501 505 81 81 77.10 50512844.0 9.5 9.6 219 199 20.0 29.7 48617.49 .6 .001.83 .89 9.5 8.510 1512 0122 2853.0 13.31 499 552 9.6 7.4 55012844.0 9.5 9.6 219 198 20.0 29.7 48618.0 .6 .001.83 .89 9.5 8.510 1512 0122 2853.0 13.31 499 552 9.6 7.4 55012844.0 9.5 9.6 219 198 20.0 29.7 48618.0 .9 .7 .001.84 .89 9.5 8.510 1512 0122 2853.0 13.31 499 552 9.6 7.4 55012844.0 9.5 9.6 218 204 20.0 29.7 48618.0 .9 .7 .001.84 .89 9.5 8.510 1513 0126 2855.0 13.13 42 543 97 8.39 5012844.0 9.5 9.6 218 204 20.0 29.7 48618.0 .9 .7 .001.84 .89 9.5 8.510 15140 140 2855.0 11.31 422 543 97 8.39 57012844.0 9.5 9.6 218 204 20.0 29.7 48811.0 .8 .001.81 .8 .99 5.8 .510 15140 140 2855.0 11.31 422 543 97 8.39 57012844.0 9.5 9.6 212 200 20.0 29.7 48811.0 .8 .001.81 .8 .99 5.8 .510 15140 140 2855.0 11.31 422 543 97 8.39 57012844.0 9.5 9.6 212 200 20.0 29.7 48811.0 .8 .001.84 .99 9.5 8.510 15140 140 2855.0 11.31 422 543 97 8.39 57012844.0 9.5 9.6 212 200 20.0 29.7 48811.0 .8 .001.84 .99 9.5 8.510 15140 140 2855.0 11.31 422 543 97 8.39 57012844.0 9.5 9.6 212 200 200 29.7 48811.0 .8 .001.84 .99 9.5 8.510 15140 140 2855.0 11.31 422 543 97 98.33 57012844.0 9.5 9.6 212 200 200 29.7 48811.0 .8 .001.84 .99 9.5 8.510 1519 0142 2855.5 15.51 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	:505	0108	2849.5	14.01	505	562	80	6.3/	550128	144.V	7.0	7.0	217	100	17.7 10 0	47:/ 90 7	1001	J.JV 4 AA	: 0	001	.81			
1509 0114 2891.0 14.9; 495 557 82 7.00 54012844.0 9.5 9.6 219 197 20.0 29.7 48817.0 0 .6 0.01 .83 .88 9.5 8.519 1509 0116 2891.5 15.31 521 581 79 7.47 55012844.0 9.5 9.6 219 197 20.0 29.7 48817.4 9 .6 0.01 .83 .88 9.5 8.519 1510 0118 2852.0 13.7; 52 582 79 7.23 54012844.0 9.5 9.6 219 197 20.0 29.7 48817.0 9 .6 0.01 .84 .99 9.5 8.519 1511 0122 2852.5 16.4 501 53 81 7.10 53012844.0 9.5 9.6 219 205 20.0 29.7 48818.0 9 .70 1.84 .89 9.5 8.519 1511 0122 2853.0 13.3; 499 552 79 6.74 53012844.0 9.5 9.6 219 205 20.0 29.7 48818.0 9 .70 1.84 .89 9.5 8.519 1511 0142 2855.5 14.2; 498 572 82 7.44 53012844.0 9.5 9.6 219 205 20.0 29.7 48818.0 9 .70 1.84 .89 9.5 8.519 1514 0142 2855.5 15.51 40.2 2855. 51.52 54 55.5 9.5 2012844.0 9.5 9.6 212 2013 20.0 29.7 48818.0 13.84 82 9.5 8.519 1514 0142 2855.5 15.51 40.2 285 39 8.82 57012844.0 9.5 9.6 221 207 20.0 29.7 48818.0 13.84 82 9.5 8.519 1514 0145 2855.0 11.31 462 543 97 8.38 57012844.0 9.5 9.6 221 207 20.0 29.7 48818.0 14.2 285.5 15.51 470 532 97 8.38 5012844.0 9.5 9.6 221 207 20.0 29.7 48818.0 14.2 285.5 15.51 470 532 97 8.38 5012844.0 9.5 9.6 221 201 19.9 29.6 49111.5 9.9 001.89 .92 9.5 8.519 1519 0151 2858.5 15.51 470 538 98 8.11 57012844.0 9.5 9.6 221 201 19.9 29.6 49111.5 9.9 001.89 .92 9.5 8.519 1519 0151 2858.5 15.51 470 538 98 8.11 57012844.0 9.5 9.6 221 201 19.9 29.6 49111.5 9.9 001.89 .92 9.5 8.519 1512 2015 2859.5 15.01 447 535 98 7.75 5012844.0 9.5 9.6 221 201 19.9 29.6 49111.5 9.9 001.88 .92 9.5 8.519 1512 2015 2859.5 15.01 447 535 98 7.75 5012844.0 9.5 9.6 221 201 19.8 29.6 49111.5 9.9 001.88 .92 9.5 8.519 1512 2015 2859.5 15.01 470 538 98 8.11 57012844.0 9.5 9.6 221 201 19.8 29.8 49111.5 1.0 0.001.89 .93 9.5 8.519 1522 0157 2859.5 15.01 447 535 98 7.8 5012844.0 9.5 9.6 221 201 19.8 29.8 49111.5 1.0 0.001.89 .93 9.5 8.519 1522 0157 2859.5 12.01 447 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.0	1506	0110	2850.0	14.4	516	573	/4	6.18																
1509 0114 2851.5 15.33 15 18 19 77 7.47																								
1509 0118 2851.0   13.1   251   251   252   252   79 7.2   35612844.0   9.5 9.6   219 908 20.0 29.7   48718.0   6.6 0.01 94   .90 9.5 9.5   5151 0112 2852.5   15.4   450   533   81 7.10   53612844.0   9.5 9.6   219 265 20.0 29.7   48718.0   6.6 0.01 94   .80 9.5   5.518   1512 0122 2853.0   13.31   498 572   92 7.4   45012844.0   9.5 9.6   219 205 20.0 29.7   48719.0   7.   001 .81   .80 9.5   5.518   1514 02285.5   15.4   402 543   78 .39   57012844.0   9.5 9.6   212 213 20.0 29.7   48719.0   48 .89 9.5   8.518   1515 0142 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 2855.5   15.51   470 28	1508	0114	2851.0	14.7	470	501	70	7.00																
1510   1012   2852.5   16.4   150   56.5   81   71.0   550   2844.0   9.5   9.6   219   205   20.0   29.7   486   18.4   49.7   6.0   181   .86   9.5   8.5   181   1012   2853.0   13.31   499   552   79   6.74   550   2844.0   9.5   9.6   219   205   20.0   29.7   487   19.5   7.   7.   7.   7.   7.   7.   7.																								
1311 0122 2853.0 13.31 497 552 79 6.71 55012844.0 9.5 9.6 219 200 29.7 48719.00 .7 .001 .84 .89 9.5 8.519 1315 0132 2853.5 14.21 498 572 82 7.41 65012844.0 9.5 9.6 219 213 20.0 29.7 488110.0 .8 .001 .84 .89 9.5 8.519 1315 0142 2854.5 13.41 482 563 96 8.62 57012844.0 9.5 9.6 221 213 20.0 29.7 488110.0 .8 .001 .84 .89 9.5 8.519 1316 0142 2854.5 13.41 482 563 96 8.62 57012844.0 9.5 9.6 221 213 20.0 29.7 488110.5 .8 .001 .84 .89 9.5 8.519 1316 0142 2854.5 13.41 75 527 97 5.8 57012844.0 9.5 9.6 221 220 200 29.7 488111.0 .9 .001 .88 .92 9.5 8.519 1316 0142 2855.5 15.51 470 532 97 8.3 57012844.0 9.5 9.6 221 220 200 29.7 488111.0 .9 .001 .88 .92 9.5 8.519 1319 0151 2856.5 13.51 470 538 99 8.11 57012844.0 9.5 9.6 221 221 707 20.0 29.7 488111.0 .9 .001 .88 .92 9.5 8.519 1319 0151 2856.5 13.51 470 538 99 8.11 57012844.0 9.5 9.6 221 221 201 19.9 29.6 491112.0 .9 .001 .88 .92 9.5 8.519 1319 0151 2856.5 13.51 470 538 99 8.11 57012844.0 9.5 9.6 221 221 31 19.9 29.6 491112.0 .9 .001 .88 .92 9.5 8.519 1320 0153 2857.0 15.71 483 547 99 8.33 56012844.0 9.5 9.6 221 221 31 19.9 29.6 49113.0 1.0 .001 .89 .91 9.5 8.519 1320 0153 2857.5 14.21 453 547 99 8.33 56012844.0 9.5 9.6 221 221 31 19.9 29.6 49113.0 1.0 .001 .88 .91 9.5 8.519 1320 0153 2858.5 14.31 470 565 98 7.75 56012844.0 9.5 9.6 221 221 31 19.8 29.6 494114.5 1.1 .001 .91 9.5 9.5 8.519 1320 0152 2855.0 14.31 470 565 98 7.75 58012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 .001 .99 .95 9.5 8.519 1324 0201 2899.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 .001 .99 .95 9.5 8.519 1320 0201 2899.0 14.11 512 577 95 8.19 50012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 .001 .99 .95 9.5 8.519 1320 0201 2899.0 14.11 512 577 95 8.19 5001284.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 .001 .99 .95 9.5 8.519 1320 0201 2899.0 14.11 512 577 95 8.19 5001284.0 9.5 9.6 222 225 19.8 29.6 494115.0 1.1 .001 .99 .95 9.5 8.519 1320 0201 2899.0 14.11 512 577 95 8.19 5001284.0 9.5 9.6 222 222 19.8 29.6 494115.0 1.1 .001 .99 .95 9.5 8.519 1320 0201 2880.5 11.7 147 473 559																						.86	9.5	8.51D
131 0152 2833.5 14.21 499 572 827.41																							9.5	8.510
131 0140 2834.0 13.81 493 548 91 9.59 5012844.0 9.5 9.6 221 213 20.0 29.7 488110.0 .8 .00 .81 48 .69 9.5 8.51b 1315 0142 2854.5 13.41 482 543 97 8.39 57012844.0 9.5 9.6 222 208 20.0 29.7 489110.5 .9 .00 .88 .92 9.5 8.51b 1317 0147 2855.5 15.51 470 532 97 8.36 57012844.0 9.5 9.6 221 207 20.0 29.7 489110.5 .9 .00 .88 .92 9.5 8.51b 1319 0151 2855.5 15.51 470 532 97 8.36 57012844.0 9.5 9.6 222 226 19.9 29.6 491112.5 .0 .00 .89 .92 9.5 8.51b 1519 0151 2855.5 15.51 470 538 99 8.11 57012844.0 9.5 9.6 221 201 19.9 29.6 491112.5 .0 .00 .89 .92 9.5 8.51b 1520 0153 2857.0 15.71 483 547 98 8.34 5012844.0 9.5 9.6 221 213 19.9 29.6 491112.5 .0 .00 .90 .99 .94 9.5 8.51b 1520 0153 2857.0 15.71 483 547 98 8.34 5012844.0 9.5 9.6 221 213 19.9 29.6 491112.5 .0 .00 .90 .99 .94 9.5 8.51b 1520 1052 2859.0 12.91 443 545 99 8.24 56012844.0 9.5 9.6 222 224 19.9 29.6 491112.5 .0 .00 .90 .90 .93 9.5 8.51b 1520 1057 2858.0 12.91 443 545 99 8.24 56012844.0 9.5 9.6 222 225 19.8 29.6 492113.5 .1 .0 .00 .90 .90 .93 9.5 8.51b 1520 1057 2859.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 201 19.8 29.6 492114.5 .1 .1 .00 .90 .90 .93 9.5 8.51b 1525 2023 2859.5 15.01 467 553 97 8.19 57012844.0 9.5 9.6 221 201 19.8 29.6 494115.5 .1 .0 .00 .90 .90 .93 9.5 8.51b 1525 2023 2859.5 15.01 467 553 97 8.19 57012844.0 9.5 9.6 221 201 19.8 29.6 494115.5 .1 .0 .00 .90 .90 .93 9.5 8.51b 1525 2023 2859.5 15.01 467 553 97 8.19 57012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 .1 .0 .00 .90 .90 .93 9.5 8.51b 1525 2023 2859.5 15.01 467 553 97 8.61 5012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 .1 .0 .00 .90 .90 .93 9.5 8.51b 1525 2024 2859.5 15.01 467 553 97 8.61 5012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 .1 .0 .00 .90 .90 .93 9.5 8.51b 1525 2024 2859.5 15.01 467 553 97 8.61 5012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 .1 .0 .00 .90 .90 .93 9.5 8.51b 1525 2024 2850.5 11.01 438 944 100 7.77 5012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 .1 .0 .00 .90 .90 .90 .90 .90 .90 .90 .90																						.89	9.5	8.5¦D†
1315 0142 2834.5 13.41 482 563 76 8.62 57012844.0 9.5 9.6 22 208 20.0 29.7 489110.5 8 .001.91 .95 9.5 8.510 1515 0142 2835.0 11.31 462 543 78 .39 57012844.0 9.5 9.6 221 207 20.0 29.7 489111.5 .9. 001.48 .92 9.5 8.510 1517 0147 2855.5 15.51 470 532 97 8.36 57012844.0 9.5 9.6 221 207 20.0 29.7 489111.5 .9. 001.48 .92 9.5 8.510 1510 0148 2835.0 15.71 495 559 95 8.88 50012844.0 9.5 9.6 221 201 19.9 29.6 491112.0 .9. 001.48 .92 9.5 8.510 1519 0151 2855.5 15.51 470 532 97 8.31 57012844.0 9.5 9.6 221 201 19.9 29.6 491112.5 .0. 001.48 .92 9.5 8.510 1520 1033 2857.0 15.71 483 547 98 8.44 57012844.0 9.5 9.6 221 201 19.9 29.6 491112.5 .0. 001.48 .92 9.5 8.510 1520 1033 2857.5 14.21 463 547 99 8.33 56012844.0 9.5 9.6 221 231 19.9 29.6 491112.5 .0. 001.49 .94 9.5 8.510 1522 0157 2858.0 12.91 463 545 99 8.24 56012844.0 9.5 9.6 221 231 19.9 29.6 491113.5 .0. 001.49 .93 9.5 8.510 1522 0157 2858.0 12.91 463 545 99 8.24 56012844.0 9.5 9.6 221 201 19.8 29.6 491113.5 .0. 001.49 .95 9.5 8.510 1525 0033 2859.5 15.01 467 555 97 8.31 57012844.0 9.5 9.6 221 201 19.8 29.6 491113.5 .0. 001.88 .92 9.5 8.510 1526 0202 2859.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 200 19.8 29.6 491113.5 .0. 001.88 .92 9.5 8.510 1526 0203 2859.5 15.01 467 555 97 8.31 56012844.0 9.5 9.6 221 200 19.8 29.6 491113.5 .0. 001.88 .92 9.5 8.510 1526 0202 2860.0 11.01 458 544 100 7.7 56012844.0 9.5 9.6 221 200 19.8 29.6 491115.0 .1. 001.89 .93 9.5 8.510 1529 0203 2850.5 14.71 473 559 96 7.92 58012844.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001.88 .92 9.5 8.510 1529 0203 2850.5 14.71 473 559 96 8.51 5401284.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001.89 .92 9.5 8.510 1529 0203 2850.5 14.71 473 559 86.51 5401284.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001.89 9.9 9.5 8.510 1529 0204 2861.5 13.01 456 555 98 8.61 54012844.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001.89 9.9 9.5 8.510 1529 0204 2861.5 13.01 456 555 98 8.61 5401284.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001.89 9.9 9.5 8.510 1529 0204 2861.5 13.31 500 685 9.0 9.0 0204 2862.5 9.5 9.6 210 20.9 0																						.89	9.5	8.51D1
1516 0145 2855.0 11.31 462 843 97 8.39 570/12844.0 9.5 9.6 221 207 70.0 29.7 488111.0 .9 .001 .94 .98 9.5 8.519 1516 0145 2855.0 11.51 462 583 97 8.36 570/12844.0 9.5 9.6 222 226 19.9 29.6 491111.0 .9 .001 .88 .92 9.5 8.519 1519 0151 2856.5 13.51 470 538 99 8.11 570/12844.0 9.5 9.6 221 201 19.9 29.6 491112.0 .9 .001 .88 .92 9.5 8.519 1519 0151 2856.5 13.51 470 538 99 8.11 570/12844.0 9.5 9.6 222 224 19.9 29.6 491112.0 .9 .001 .88 .92 9.5 8.519 1520 0153 2857.5 15.71 483 547 98 8.44 570/12844.0 9.5 9.6 221 201 19.9 29.6 491112.0 1.0 .001 .90 .99 .94 9.5 8.519 1520 0153 2857.5 15.71 483 547 99 8.33 560/12844.0 9.5 9.6 221 201 19.9 29.6 491112.5 1.0 .001 .90 .99 .99 .5 8.519 1522 0157 2858.0 12.91 463 545 99 8.24 560/12844.0 9.5 9.6 222 225 19.8 29.6 491113.0 1.1 .0 .001 .90 .99 .95 8.519 1522 0157 2858.0 12.91 463 545 99 8.24 560/12844.0 9.5 9.6 221 201 19.8 29.6 491114.0 1.1 .001 .91 .95 9.5 8.519 1524 0201 2859.0 14.11 512 577 98 8.19 570/12844.0 9.5 9.6 221 201 19.8 29.6 494114.5 1.1 .001 .88 .92 9.5 8.519 1526 0202 2859.5 15.01 447 553 97 8.31 550/12844.0 9.5 9.6 221 200 19.8 29.6 494114.5 1.1 .001 .88 .92 9.5 8.519 1526 0202 2850.0 11.01 438 544 100 7.77 560/12844.0 9.5 9.6 221 200 19.8 29.6 494114.5 1.1 .001 .88 .92 9.5 8.519 1526 0202 2850.0 11.01 438 544 100 7.77 560/12844.0 9.5 9.6 222 225 19.8 29.6 494115.0 1.1 .001 .89 .93 9.5 8.519 1527 0208 2860.5 14.71 473 559 98 7.79 580/12844.0 9.5 9.6 222 225 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.519 1527 0208 2860.5 14.71 473 559 98 7.79 580/12844.0 9.5 9.6 222 225 19.8 29.6 494115.0 1.1 .001 .89 .93 9.5 8.519 1528 0210 2861.5 13.01 435 555 99 8.61 540/1284.0 9.5 9.6 222 225 19.5 29.6 494115.0 1.1 .001 .89 .93 9.5 8.519 1527 0208 2860.5 14.71 473 559 98 7.92 580/12844.0 9.5 9.6 222 225 19.5 29.6 494115.0 1.1 .001 .89 .93 9.5 8.519 1528 0210 2861.5 13.01 435 555 99 8.61 540/1284.0 9.5 9.6 222 225 19.5 29.6 494115.0 1.1 .001 .89 .93 9.5 8.519 1528 0210 2861.5 13.01 435 555 99 8.61 540/1284.0 9.5 9.6 222 225 19.5 29.6 494115.0 1.1 .001 .89 .93 9.5 8.519 1528 02																						.95	9.5	8.51D
1517 0147 2855.5 15.31 470 532 97 8.36 57012844.0 9.5 9.6 222 226 19.9 29.6 491111.5 .9 .001 .88 .92 9.5 8.519 1519 0151 2856.5 15.51 470 538 99 8.18 5012844.0 9.5 9.6 221 201 19.9 29.6 491112.5 1.0 .001 .90 .94 9.5 8.519 1520 0153 2857.0 15.71 493 547 98 8.44 57012844.0 9.5 9.6 222 224 19.9 29.6 491112.5 1.0 .001 .90 .94 9.5 8.519 1520 0153 2857.0 15.71 493 547 99 8.33 5012844.0 9.5 9.6 221 213 19.9 29.6 491112.5 1.0 .001 .90 .94 9.5 8.519 1521 0155 2857.5 14.21 443 547 99 8.33 5012844.0 9.5 9.6 212 223 19.9 29.6 49113.5 1.0 .001 .90 .90 .93 9.5 8.519 1522 0157 2858.0 12.91 453 545 99 8.24 5012844.0 9.5 9.6 212 222 19.8 29.6 49113.5 1.0 .001 .90 .90 .93 9.5 8.519 1523 0159 2858.5 14.31 470 565 98 7.75 56012844.0 9.5 9.6 221 201 19.8 29.6 49114.5 1.1 .001 .88 .92 9.5 8.519 1524 0201 2859.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 201 19.8 29.6 494115.5 1.1 .001 .88 .92 9.5 8.519 1526 0205 2869.0 11.01 438 541 100 7.77 56012844.0 9.5 9.6 221 201 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.519 1526 0205 2860.0 11.01 438 541 100 7.77 56012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.519 1527 0208 2860.5 14.71 473 559 98 7.72 58012844.0 9.5 9.6 222 225 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.519 1529 0213 2881.5 13.01 435 555 99 8.61 54012844.0 9.5 9.6 222 225 19.8 29.6 494115.5 1.2 .001 .93 .97 9.5 8.519 1529 0213 2881.5 13.01 435 555 99 8.61 54012844.0 9.5 9.6 222 225 19.5 29.6 495117.5 1.3 .001 .92 .99 9.5 8.519 1529 0213 2881.5 13.01 437 585 555 98 8.6 54012844.0 9.5 9.6 222 225 19.5 29.6 495117.5 1.3 .001 .92 .99 9.5 8.519 1529 0213 2881.5 13.01 437 535 68 8.54 55012844.0 9.5 9.6 222 225 19.5 29.6 495117.5 1.3 .001 .92 .99 9.5 8.519 1529 0213 2881.5 13.01 437 585 555 98 8.6 5102844.0 9.5 9.6 222 225 19.5 29.6 495117.5 1.3 .001 .92 .99 9.5 8.519 1529 0213 2881.5 13.01 437 585 555 555 555 555 555 555 555 555 55																						.98	9.5	8.5ID
1518 0148 2856.0 15.71 495 559 98 8.08 56012844.0 9.5 9.6 221 201 19.9 29.6 491112.0 .9 .001 .88 .92 9.5 8.510 1519 0151 2856.5 13.51 470 538 99 8.11 57012844.0 9.5 9.6 222 224 19.9 29.6 491112.5 1.0 .001 .90 .94 9.5 8.510 1520 0153 2857.0 15.71 483 547 99 8.33 56012844.0 9.5 9.6 212 131 19.9 29.6 491113.0 1.0 .001 .90 .94 9.5 8.510 1521 0155 2857.5 14.21 463 545 99 8.24 56012844.0 9.5 9.6 212 201 19.8 29.6 492113.5 1.0 .001 .90 .93 9.5 8.510 1522 0157 2858.0 12.91 463 545 99 8.24 56012844.0 9.5 9.6 212 201 19.8 29.6 493114.0 1.1 .001 .91 .95 9.5 8.510 1524 0201 2859.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 .001 .89 .92 9.5 8.510 1524 0201 2859.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 .001 .89 .93 9.5 8.510 1526 0202 2859.5 15.01 467 553 97 8.31 55012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 .001 .89 .93 9.5 8.510 1526 0206 2860.0 14.11 473 559 96 7.92 58012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.510 1527 0208 2860.5 14.71 473 559 96 7.92 58012844.0 9.5 9.6 222 225 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.510 1520 0212 2861.0 11.91 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.510 1520 0215 2862.0 10.41 373 486 86 7.90 56012844.0 9.5 9.6 222 202 19.5 29.6 494115.5 1.2 .001 .88 .91 9.5 8.510 1520 0215 2862.0 10.41 373 486 86 7.90 56012844.0 9.5 9.6 222 202 19.5 29.6 494115.5 1.3 .001 .92 .96 9.5 8.510 1530 0215 2862.0 10.41 373 486 86 7.90 56012844.0 9.5 9.6 222 202 19.5 29.6 494115.5 1.4 .001 .98 1.03 9.5 8.510 1549 0040 2864.5 10.81 56.5 97 8.6 9.6 23 38012862.5 9.5 9.6 217 20.5 30.2 45911.00 1.4 .001 .98 1.99 9.5 8.510 1549 0040 2864.5 10.81 56.5 97 8.6 9.6 23 38012862.5 9.5 9.6 217 20.5 30.2 45911.00 1.4 .001 .98 1.99 9.6 8.510 1550 0041 2865.0 12.91 531 509 85 9.07 38012862.5 9.5 9.6 217 20.5 30.2 45912.00 1.4 .001 .98 1.99 9.6 8.510 1550 0042 2865.5 13.41 516 621 78 8.88 33012862.5 9.5 9.6 217 20.2 30.5 30.2 45912.00 1.4 .001 .99 9.6 8.510 1550 0042 2865.5 13.41 546 627 79.8																								
1519 0151 2856.5 13.51 470 538 99 8.11 57012844.0 9.5 9.6 222 224 19.9 29.6 491112.5 1.0 .001 .90 .94 9.5 8.510 1520 0153 2857.0 15.71 483 547 98 8.34 57012844.0 9.5 9.6 212 213 19.9 29.6 490113.0 1.0 .001 .98 .91 9.5 9.5 8.510 1521 0155 2857.5 14.21 463 547 99 8.23 56012844.0 9.5 9.6 212 222 19.9 29.6 49113.5 1.0 .001 .90 .93 9.5 8.510 1522 0157 2858.0 12.91 463 545 99 8.24 56012844.0 9.5 9.6 212 222 19.9 29.6 493114.0 1.1 .001 .91 .95 9.5 8.510 1524 0201 2859.0 14.11 512 577 95 8.17 57012844.0 9.5 9.6 221 201 19.8 29.6 494114.5 1.1 .001 .89 .93 9.5 8.510 1524 0201 2859.0 14.11 512 577 95 8.17 57012844.0 9.5 9.6 221 200 19.8 29.6 494114.5 1.1 .001 .89 .93 9.5 8.510 1526 0206 2860.0 11.01 438 544 100 7.77 56012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.510 1526 0206 2860.0 11.01 438 544 100 7.77 56012844.0 9.5 9.6 221 200 19.8 29.6 495116.5 1.2 .001 .88 .92 9.5 8.510 1527 0208 2860.5 14.71 473 559 96 7.92 58012844.0 9.5 9.6 222 225 19.8 29.6 495116.5 1.2 .001 .88 .91 9.5 9.5 8.510 1529 0213 2861.5 13.01 436 555 99 8.61 54012844.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001 .88 .91 9.5 9.5 8.510 1529 0213 2861.5 13.01 436 555 99 8.61 54012844.0 9.5 9.6 221 200 19.5 29.6 495116.5 1.2 .001 .88 .91 9.5 9.5 8.510 1529 0213 2861.5 13.01 436 555 99 8.61 54012844.0 9.5 9.6 221 200 19.5 29.6 495116.5 1.2 .001 .88 .91 9.5 9.5 8.510 1530 0215 2862.5 10.41 373 866 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495116.5 1.2 .001 .88 .91 9.5 9.5 8.510 1530 0215 2862.5 13.71 505 86 8.54 55012844.0 9.5 9.5 9.6 212 120 19.5 29.6 495116.5 1.4 .001 .98 1.03 9.5 8.510 1530 0215 2862.5 13.41 516 621 78 8.86 39012862.5 9.5 9.6 217 1800 19.5 29.6 495116.5 1.4 .001 .98 1.03 9.5 8.510 1530 0042 2865.5 12.9 12.9 12.9 12.9 12.9 12.0 12.0 12.9 12.9 12.9 12.9 12.9 12.0 12.0 12.9 12.9 12.9 12.9 12.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0																						.92	9.5	8.51D
1820 0153 2857.0 15.7; 183 547 96 8.44 57012844.0 9.5 9.6 221 213 19.9 29.6 490113.0 1.0 001 .88 .91 9.5 8.510 1510 1525 2857.5 14.2; 453 547 99 8.33 56012844.0 9.5 9.6 221 202 19.8 29.6 492113.5 1.0 001 .90 .93 9.5 8.510 1522 0157 2858.0 12.9; 453 545 99 8.24 56012844.0 9.5 9.6 221 202 19.8 29.6 494114.5 1.1 001 .91 .95 9.5 8.510 1523 0159 2858.5 14.3; 470 545 99 8.24 56012844.0 9.5 9.6 221 200 19.8 29.6 494114.5 1.1 001 .88 .92 9.5 8.510 1525 0203 2859.0 14.1; 1512 577 95 8.19 57012844.0 9.5 9.6 221 200 19.8 29.6 494114.5 1.1 001 .89 .93 9.5 8.510 1525 0203 2859.5 15.0; 467 553 97 8.31 55012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 001 .89 .93 9.5 8.510 1526 0208 2860.0 11.0; 458 547 09.7 75 56012844.0 9.5 9.6 221 200 19.8 29.6 494115.0 1.1 001 .89 .93 9.5 8.510 1526 0208 2860.0 11.0; 458 547 09.5 9.6 222 225 19.8 29.6 494115.0 1.2 001 .88 .92 9.5 8.510 1528 0210 2861.0 11.9; 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.8 29.6 495116.0 1.2 001 .89 .92 9.5 8.510 1528 0210 2861.0 11.9; 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.8 29.6 495117.5 1.3 001 .92 .96 9.5 8.510 1530 0215 2862.0 10.4; 373 486 86 7.90 56012844.0 9.5 9.6 222 225 19.5 29.6 495117.5 1.3 001 .92 .96 9.5 8.510 1530 0215 2862.0 10.4; 373 486 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 001 .92 .96 9.5 8.510 1530 0213 2862.5 13.1; 373 591 82 8.37 40012862.5 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 001 .92 .96 9.5 8.510 1530 0213 2862.5 13.1; 373 591 82 8.37 40012862.5 9.5 9.6 221 200 19.5 29.6 49511.0 1.4 .001 .80 9.9 1.0 9.5 8.510 1530 0213 2862.5 13.1; 15.1 15.2 006 84 8.85 38012862.5 9.5 9.6 221 200 19.5 29.6 49511.0 1.4 .001 .98 1.0 9.5 9.5 8.510 1530 0213 2862.5 13.4; 15.6 21 88.8 38012862.5 9.5 9.6 217 204 20.5 30.2 45913.0 1.4 .001 .98 1.0 9.6 8.510 1550 0043 2865.5 13.4; 15.6 221 88.8 38012862.5 9.5 9.6 217 204 20.5 30.2 45913.0 1.4 .001 .98 9.6 8.510 1550 0043 2865.5 13.4; 15.6 221 88.8 38012862.5 9.5 9.6 212 20.5 30.2 45913.0 1.4 .001 .88 9.9 9.6 8.510 1550 0042 2865.5 14.8; 15.6 221 79.9 3 3012862.5 9.5 9.6 212 20.5																						.94	9.5	8.510
1521 0155 2857.5 14.21 463 547 99 8.33 58012844.0 9.5 9.6 21 222 251 9.8 29.6 493113.5 1.0 0.01 90 .93 9.5 8.51B 1521 0155 2857.5 14.21 463 545 99 8.24 56012844.0 9.5 9.6 222 225 19.8 29.6 493114.0 1.1 .001 .91 .95 9.5 8.51B 1524 0201 2859.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 201 19.8 29.6 493115.5 1.1 .001 .88 .92 9.5 8.51B 1524 0201 2859.5 15.01 467 553 97 8.31 55012844.0 9.5 9.6 221 200 19.8 29.6 493115.5 1.2 .001 .88 .92 9.5 8.51B 1526 0206 2860.0 11.01 438 544 100 7.77 56012844.0 9.5 9.6 221 200 19.8 29.6 493115.5 1.2 .001 .88 .92 9.5 8.51B 1526 0206 2860.5 14.71 473 559 96 7.92 58012844.0 9.5 9.6 222 225 19.8 29.6 493115.5 1.2 .001 .88 .91 9.5 8.51B 1528 0210 2861.0 11.91 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.5 29.6 493115.5 1.2 .001 .88 .91 9.5 8.51B 1528 0210 2861.0 11.91 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.5 29.6 495117.0 1.3 .001 .92 .96 9.5 8.51B 1528 0210 2861.0 11.91 458 557 98 8.51 54012844.0 9.5 9.6 222 225 19.5 29.6 495117.0 1.3 .001 .92 .96 9.5 8.51B 1528 0210 2861.0 11.91 458 557 98 8.61 54012844.0 9.5 9.6 222 225 19.5 29.6 495117.0 1.3 .001 .92 .96 9.5 8.51B 1530 0215 2862.0 10.41 373 486 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495117.0 1.3 .001 .92 .96 9.5 8.51B 1530 0215 2862.0 10.41 373 486 86 5.54 55012844.0 9.5 9.6 221 200 19.5 29.6 495117.0 1.3 .001 .92 .97 9.5 8.51B 1549 0040 2864.5 10.81 566 597 88 9.62 38012862.5 9.5 9.6 217 202 20.5 30.2 45911.00 1.4 .001 .88 .93 9.6 8.51B 1549 0040 2864.5 10.81 566 597 88 9.62 38012862.5 9.5 9.6 217 202 20.5 30.2 45912.00 1.4 .001 .88 .93 9.6 8.51B 1550 0042 2865.5 15.31 590 85 9.07 38012862.5 9.5 9.6 217 202 20.5 30.2 45912.00 1.4 .001 .98 1.03 9.6 8.51B 1550 0042 2865.5 15.31 590 85 9.07 38012862.5 9.5 9.6 217 202 20.5 30.2 45912.00 1.4 .001 .93 1.00 .96 9.6 8.51B 1550 0042 2865.5 15.71 50 50 50 50 50 50 50 50 50 50 50 50 50																						.91	9.5	8.5ID
1522 0157 2858.0 12.91 485 545 99 8.24 56012844.0 9.5 9.6 222 225 19.8 29.6 493114.0 1.1 .001 .91 .95 9.5 8.51b 1523 0159 2858.5 14.31 470 565 98 7.75 56012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.1 .001 .88 9.2 9.5 8.51b 1526 0203 2859.5 15.01 467 553 97 8.31 55012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.51b 1526 0203 2859.5 15.01 467 553 97 8.31 55012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.51b 1526 0203 2859.5 15.01 467 553 97 8.31 55012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .88 .92 9.5 8.51b 1527 0203 2860.5 14.71 473 559 96 7.92 58012844.0 9.5 9.6 222 225 19.8 29.6 495116.5 1.2 .001 .88 .91 9.5 8.51b 1528 0210 2861.0 11.91 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.8 29.6 495116.5 1.2 .001 .88 .91 9.5 8.51b 1528 0210 2861.0 11.91 458 557 99 8.61 54012844.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001 .93 .97 9.5 8.51b 1529 0215 2862.0 10.41 373 886 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.51b 1530 0215 2862.0 10.41 373 886 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.51b 1530 0215 2862.0 10.41 373 886 85 7.90 56012844.0 9.5 9.6 221 201 19.5 29.6 495117.5 1.3 .001 .92 .97 9.5 8.51b 1530 0215 2862.5 10.81 566 597 86 9.54 50012844.0 9.5 9.6 221 201 19.5 29.6 495117.5 1.3 .001 .92 .97 9.5 8.51b 1547 0038 2865.5 12.51 373 591 82 8.73 40012862.5 9.5 9.6 217 202 20.5 30.2 45913.00 1.4 .001 .84 .87 9.6 8.51b 1547 0038 2865.5 12.51 373 591 82 8.73 40012862.5 9.5 9.6 217 202 20.5 30.2 45913.00 1.4 .001 .88 .93 9.6 8.51b 1550 0041 2865.0 12.91 531 590 85 9.07 38012862.5 9.5 9.6 217 202 20.5 30.2 45913.00 1.4 .001 .84 .89 9.6 8.51b 1550 0042 2865.5 12.91 531 590 85 9.07 38012862.5 9.5 9.6 216 202 20.5 30.2 45913.00 1.6 .001 .87 .92 9.6 8.51b 1555 0042 2866.5 12.91 537 92 421 79 9.03 36012862.5 9.5 9.6 216 202 20.5 30.2 45913.00 1.6 .001 .87 .92 9.6 8.51b 1555 0042 2866.5 14.81 529 621 79 9.8 3012862.5 9.5 9.6 216 202 20.5 30.2 45914.00 1.7 .001 .86 .93 9.6 8.51b 1555 0042 2866.5 1.81 529 621																			1.0	.00	.90	.93	9.5	8.510
1523 0157 2858.5 14.31 470 565 98 7.75 56012844.0 9.5 9.6 221 201 19.8 29.6 494114.5 1.1 .001 .88 .92 9.5 8.510 1524 0201 2859.0 14.11 512 577 95 8.19 57012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .89 .93 9.5 8.510 1525 0203 2859.5 15.01 467 553 97 8.31 55012844.0 9.5 9.6 221 200 19.8 29.6 494115.5 1.2 .001 .89 .93 9.5 8.510 1526 0206 2860.0 11.01 .038 544 100 7.77 56012844.0 9.5 9.6 222 225 19.8 29.6 494115.5 1.2 .001 .93 .97 9.5 8.510 1527 0208 2860.5 14.71 473 559 96 7.92 58012844.0 9.5 9.6 222 225 19.8 29.6 495116.0 1.2 .001 .93 .97 9.5 8.510 1528 0210 2861.5 11.91 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.5 29.6 495116.5 1.2 .001 .88 .91 9.5 8.510 1529 0213 2861.5 13.01 436 555 99 8.61 54012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.510 1529 0213 2861.5 13.01 436 555 99 8.61 54012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.510 1529 0213 2861.5 13.01 438 84 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.510 1531 0219 2862.5 8.181 379 505 86 8.54 55012844.0 9.5 9.6 221 201 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.510 1538 0040 2864.5 10.81 566 597 86 9.62 38012862.5 9.5 9.6 217 202 20.5 30.2 45911.00 1.4 .001 .88 .93 9.6 8.510 1549 0040 2864.5 10.81 566 597 86 9.62 38012862.5 9.5 9.6 217 202 20.5 30.2 45912.00 1.4 .001 .88 .93 9.6 8.510 1550 0041 2865.0 12.91 531 590 85 9.07 38012862.5 9.5 9.6 217 202 20.5 30.2 45913.00 1.4 .001 .87 .92 9.6 8.510 1550 0042 2865.5 13.41 516 621 78 8.88 39012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.4 .001 .87 .92 9.6 8.510 1550 0042 2865.0 14.61 494 600 78 8.88 39012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.4 .001 .87 .92 9.6 8.510 1550 0042 2865.0 12.91 537 624 71 9.18 35012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.4 .001 .87 .92 9.6 8.510 1550 0042 2865.0 14.81 529 621 70 9.03 36012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.4 .001 .87 .92 9.6 8.510 1550 0042 2865.0 14.81 529 621 70 9.03 36012862.5 9.5 9.6 218 221 20.5 30.2 45913.00 1.4 .001 .87 .90 9.6 8.510 1550 0042 2866.5 14.81 529 62																		14.0	1.1	.00	.91	.95	9.5	8.5¦D
1524 0201 2859.0 14.11 512 577 95 8.19   57012844.0 9.5 9.6   221 200 19.8 29.6   494115.0																		14.5	1.1	.00	.88	.92	9.5	8.510
ISSS 0203 2859.5   15.0   467   553   97   8.3     550   12844.0   9.5   9.6   221   200   19.8   29.6   494   15.5   1.2   .00   .88   .92   9.5   8.5   1526   0206 2860.0   11.0   438   544   100   7.77   560   12844.0   9.5   9.6   222   225   19.8   29.6   495   16.5   1.2   .00   .88   .91   9.5   8.5   1527   0208 2860.5   14.7   473   559   96   7.92   580   12844.0   9.5   9.6   222   225   19.8   29.6   495   16.5   1.2   .00   .88   .91   9.5   8.5   1528   0210 2861.0   11.9   458   557   97   8.13   560   12844.0   9.5   9.6   222   225   19.8   29.6   495   17.5   1.2   .00   .88   .91   9.5   8.5   1529   0213 2861.5   13.0   436   555   99   8.6   540   520   1244.0   9.5   9.6   221   200   19.5   29.6   495   17.5   1.3   .00   .92   .96   9.5   8.5   1529   0213 2862.0   10.4   373   866   87.90   560   12844.0   9.5   9.6   221   200   19.5   29.6   495   17.5   1.3   .00   .92   .96   9.5   8.5   1531   0219 2862.5   8.18   379   505   86   8.5   400   500   2844   8.5   8.5   12.5   8.5   12.5   8.5   1.4   .00   .92   .97   9.5   8.5   12.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5																		15.0	1.1	.00	.89	93	9.5	8.5ID
1526 0206 2860.0 11.0! 438 544 100 7.77   56012844.0 9.5 9.6   222   225 19.8 29.6   495!16.0   1.2   .00! .93   .97   9.5   8.5!D																		15.5	1.2	.00	.88	.92	9.5	8.510
1527 0208 2860.5 14.71 473 559 96 7.92 58012844.0 9.5 9.6 223 209 19.5 29.6 495116.5 1.2 .001 .88 .91 9.5 8.51B 1528 0210 2861.0 11.91 458 557 97 8.13 56012844.0 9.5 9.6 222 225 19.5 29.6 495117.0 1.3 .001 .92 .96 9.5 8.51B 1530 0215 2862.0 10.41 373 486 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.51B 1530 0215 2862.0 10.41 373 486 86 7.90 56012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.51B 1531 0219 2862.5 8.181 379 505 86 8.54 55012844.0 9.5 9.6 221 200 19.5 29.6 496118.0 1.4 .001 .92 .97 9.5 8.51B 1531 0219 2862.5 8.181 379 505 86 8.54 55012844.0 9.5 9.6 221 213 19.3 29.5 498118.5 1.4 .001 .98 1.03 9.5 8.51B 1531 0219 2862.5 8.181 379 505 86 8.54 55012844.0 9.5 9.6 217 202 20.5 30.2 45911.00 1.4 .001 .98 1.03 9.5 8.51B 1531 0219 2862.5 13.73 591 82 8.37 40012862.5 9.5 9.6 217 202 20.5 30.2 45911.00 1.4 .001 .84 .87 9.6 8.51B 1549 0040 2864.0 13.71 522 606 84 8.85 38012862.5 9.5 9.6 217 196 20.5 30.2 45912.00 1.4 .001 .88 .93 9.6 8.51B 1550 0041 2865.0 12.91 531 590 85 9.07 38012862.5 9.5 9.6 217 196 20.5 30.2 45912.00 1.4 .001 .88 .93 9.6 8.51B 1551 0043 2865.5 13.41 516 621 78 8.86 39012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.6 .001 .87 9.9 9.6 8.51B 1553 0047 2886.5 14.81 529 621 70 9.03 36012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.6 .001 .87 9.9 9.6 8.51B 1553 0047 2886.5 14.81 529 621 70 9.03 36012862.5 9.5 9.6 216 202 20.5 30.2 45913.00 1.6 .001 .87 9.9 9.6 8.51B 1555 0052 2867.5 13.71 504 586 72 9.18 39012862.5 9.5 9.6 216 202 20.5 30.2 45913.00 1.6 .001 .84 .87 9.9 9.6 8.51B 1555 0052 2867.5 13.71 504 586 72 9.73 41012862.5 9.5 9.6 216 202 20.5 30.2 45913.00 1.6 .001 .84 .90 9.6 8.51B 1559 0106 2869.0 6.571 374 527 72 9.73 41012862.5 9.5 9.6 216 202 20.5 30.2 45913.00 1.6 .001 .84 .90 9.6 8.51B 1559 0106 2869.0 6.571 374 527 72 9.73 41012862.5 9.5 9.6 216 202 20.5 30.2 45914.00 1.7 .001 .88 .99 9.6 8.51B 1550 0115 2869.5 5.751 338 486 75 10.1 37012862.5 9.5 9.6 216 201 20.6 30.3 46517.00 2.9 1011.00 1.00 9.6 8.51B 1560 0115 2869.5 5.751 339 4																	495	16.0	1.2	.00	.93	.97		
1528 0210 2861.0 11.91 458 557 97 8.13	1521	, 020E	. 2007 . . 1766 .	, 11.0 5 14 7	00 ! 473	559	9/	. 7.92										116.5	1.2	,00	.88	.91		
1529 0213 2861.5 13.0i 436 555 99 8.6i 54012844.0 9.5 9.6 221 200 19.5 29.6 495117.5 1.3 .001 .92 .96 9.5 8.5iB 1530 0215 2862.0 10.4i 373 486 86 7.90 56012844.0 9.5 9.6 222 202 19.5 29.6 496118.0 1.4 .001 .92 .97 9.5 8.5iB 1531 0219 2862.5 8.18i 379 505 86 8.54 55012844.0 9.5 9.6 221 213 19.3 29.5 498118.5 1.4 .001 .98 1.03 9.5 8.5iB 1531 0219 2862.5 8.18i 379 505 86 8.54 55012844.0 9.5 9.6 221 213 19.3 29.5 498118.5 1.4 .001 .98 1.03 9.5 8.5iB 1531 0219 2862.5 8.18i 379 505 86 8.54 55012844.0 9.5 9.6 221 213 19.3 29.5 498118.5 1.4 .001 .98 1.03 9.5 8.5iB 1531 0219 2864.5 12.5i 373 591 82 8.37 40012862.5 9.5 9.6 217 202 20.5 30.2 45911.00 1.4 .001 .84 .87 9.6 8.5iB 1549 0040 2864.5 10.8i 566 597 86 9.62 38012862.5 9.5 9.6 217 202 20.5 30.2 45912.00 1.4 .001 .98 1.00 9.6 8.5iB 1550 0041 2865.0 12.9i 531 590 85 9.07 38012862.5 9.5 9.6 217 202 20.5 30.2 45912.00 1.4 .001 .95 1.00 9.6 8.5iB 1551 0043 2865.5 13.4i 516 621 78 8.86 39012862.5 9.5 9.6 216 195 20.5 30.2 45913.00 1.6 .001 .87 .92 9.6 8.5iB 1552 0045 2866.0 14.6i 494 600 74 8.87 35012862.5 9.5 9.6 216 195 20.5 30.2 45913.00 1.6 .001 .87 .92 9.6 8.5iB 1553 0047 2866.5 14.8i 529 621 70 9.03 36012862.5 9.5 9.6 216 195 20.5 30.2 45913.00 1.6 .001 .84 .90 9.6 8.5iB 1555 0052 2867.5 13.7i 504 586 72 9.18 39012862.5 9.5 9.6 216 202 20.5 30.2 45914.00 1.7 .001 .83 .90 9.6 8.5iB 1559 0106 2869.0 6.57i 374 527 72 9.73 41012862.5 9.5 9.6 218 221 20.5 30.2 45914.00 1.8 .101 .95 1.02 9.6 8.5iB 1550 0152 2869.5 2.75i 328 486 75 10.1 37012862.5 9.5 9.6 217 202 20.5 30.2 45915.00 1.8 .101 .95 1.02 9.6 8.5iB 1562 0121 2870.5 12.2i 462 561 73 9.99 41012862.5 9.5 9.6 217 202 20.5 30.3 46217.50 2.1 .1011.00 1.14 9.6 9.6 8.5iB 1562 0121 2870.0 5.275 328 486 75 10.1 37012862.5 9.5 9.6 216 196 20.6 30.3 46217.50 2.1 .1011.00 1.14 9.6 8.5iB 1563 0123 2870.0 11.9i 459 566 72 9.57 36012862.5 9.5 9.6 217 202 20.6 30.3 46217.50 2.1 .1011.00 1.14 9.6 8.5iB 1563 0123 2870.0 11.9i 459 566 72 9.57 36012862.5 9.5 9.6 217 202 20.6 30.2 46318.50 2.1 .101 .90 .97 9.6 8.5iB 1563 0123 2870.0										844.0	9.5	9.6						117.0	1.3	,00	.92	.96	9.5	8.5HD
1530 0215 2862.0   10.41 373	157	0 0017	7 7041	5 17 0	L AKA	555	; Q(	14.8	54012	844.0	9.5	9.6	221	200	19.5	29.6	495	117.5	1.3	.00	.92	.96	9.5	8.510
1531 0219 2862.5 8.181 379 505 86 8.54   55012844.0 9.5 9.6   221 213 19.3 29.5   49818.5   1.4 .001 .98 1.03   7.5 8.319     + Core No.1: 2844m - 2862.5m. Cut 18.5m. Rev. 12.6m (68%).	157	/ V210	. 2001.	1010 111 A	: 373	48/	. R	. 2.22 4 7.90	56012	R44.0	9.5	9.6	222	202	19.5	29.6	496	118.0	1.4	.00	.92	.97	9.5	8.5HD
† Core No.1: 2844m - 2862.5m. Cut 18.5m. Rev. 12.6m (68%). † RRCB#1, Christensen RC476 12.25". Start depth 2862.5m.    Date Apr 13 '90	152	, 021. 1 0210	7947 °	5 8 18	1 379	509	5 8	6 8.54	55012	844.0	9.5	9.6	221	213	19.3	29.5	498	118.5	1.4	.00	.98	1.03	9.5	8.510
+ RRCB#1, Christensen RC476 12.25". Start depth 2862.5m.    Date Apr 13 '90	199	seo Ni	1 1 2	2 0:10 244m -	78A7	.5e.	Cur	18.5																à
Date Apr 13 '90   1547 0038 2863.5 12.51 373 591 82 8.37   40012862.5 9.5 9.6 217 222 20.5 30.2   45911.00   1.4 .001 .84 .87   9.6 8.51D   1548 0040 2664.0 13.71 522   606 84 8.85   38012862.5 9.5 9.6 217 204 20.5 30.2   45911.00   1.4 .001 .84 .87   9.6 8.51D   1549 0040 2864.5 10.81 566 597   86 9.62   38012862.5 9.5 9.6 217 196 20.5 30.2   45912.00   1.4 .001 .95   1.00   9.6 8.51D   1550 0041 2865.0 12.91 531   590 85 9.07   38012862.5 9.5 9.6 216   202 20.5 30.2   45912.00   1.4 .001 .84 .88   9.6 8.51D   1551 0043 2865.5 13.41 516   621 78 8.86   39012862.5 9.5 9.6 216   203 20.5 30.2   45913.00   1.6 .001 .87   9.6 8.51D   1552 0045 2866.0 14.61 494   600 74 8.87   35012862.5 9.5 9.6 216   195 20.5 30.2   45913.00   1.6 .001 .87   9.6 8.51D   1553 0047 2867.5 13.71 504 586   72 9.18   39012862.5 9.5 9.6 216   195 20.5 30.2   45913.00   1.6 .001 .84   90   9.6 8.51D   1555 0052 2867.5 13.71 504 586   72 9.18   39012862.5 9.5 9.6 216   202 20.5 30.2   45914.48   1.7 .001 .86   93   9.6 8.51D   1559 0106 2869.5 9.061 481   620   71 9.68   36012862.5 9.5 9.6   216   202 20.5 30.2   45914.00   1.7 .001 .86   93   9.6 8.51D   1559 0102 2868.5 9.061 481   620   71 9.68   36012862.5 9.5 9.6   216   202 20.5 30.2   45916.00   1.8 .101 .95   1.02   9.6 8.51D   1559 0102 2869.5 2.751 328   486   75 10.1   37012862.5 9.5 9.6   216   212 20.5 30.2   45916.00   1.8 .101 .95   1.02   9.6 8.51D   1560 0115 2869.5 2.751 328   486   75 10.1   37012862.5 9.5 9.6   216   212 20.6 30.3   46117.00   2.0 .1011.01   1.08   9.6 8.51D   1562 0121 2870.5 12.21 462   561   73 9.99   41012862.5 9.5 9.6   216   212 20.6 30.3   46318.00   2.1 .101 .90   9.79   9.6 8.51D   1563 0123 2871.0 11.91 459   566   72 9.57   36012862.5 9.5 9.6   216   212 20.6 30.3   46318.50   2.1 .101 .90   9.79   9.6 8.51D   1563 0123 2871.0 11.91 459   566   72 9.57   36012862.5 9.5 9.6   216   212 20.6 30.3   46318.50   2.1 .101 .90   9.79   9.6 8.51D   1563 0123 2871.0 11.91 459   566   72 9.57   36012862.5 9.5 9.6   216 202 20.6 30.2   46318.50   2.1	TD	DLC W	Chric	uttm tancan	RCA7	4 12.	.75"	. Sta	rt death	2862.														!
1547 0038 2863.5 12.5! 373 591 82 8.37 40012862.5 9.5 9.6 217 222 20.5 30.2 45911.00 1.4 .001 .84 .87 9.6 8.510 .1548 0040 2664.0 13.7! 522 606 84 8.85 38012862.5 9.5 9.6 217 204 20.5 30.2 45811.50 1.4 .001 .88 .93 9.6 8.510 .1549 0040 2864.5 10.8! 566 597 86 9.62 38012862.5 9.5 9.6 217 196 20.5 30.2 45912.00 1.4 .001 .95 1.00 9.6 8.510 .1550 0041 2865.0 12.9! 531 590 85 9.07 38012862.5 9.5 9.6 217 202 20.5 30.2 45912.00 1.4 .001 .84 .88 9.6 8.510 .1551 0043 2865.5 13.4! 516 621 78 8.86 39012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.6 .001 .87 .92 9.6 8.510 .1552 0045 2866.0 14.6! 494 600 74 8.87 35012862.5 9.5 9.6 216 195 20.5 30.2 45913.00 1.6 .001 .84 .90 9.6 8.510 .1553 0047 2866.5 14.8! 529 621 70 9.03 36012862.5 9.5 9.6 216 195 20.5 30.2 45913.00 1.6 .001 .84 .90 9.6 8.510 .1554 0049 2867.0 12.9! 539 624 71 9.18 35012862.5 9.5 9.6 216 202 20.5 30.2 45914.00 1.7 .001 .83 .90 9.6 8.510 .1558 0102 2868.5 9.06! 481 620 71 9.68 36012862.5 9.5 9.6 216 202 20.5 30.2 45914.48 1.7 .001 .86 .93 9.6 8.510 .1559 0106 2869.0 6.57! 374 527 72 9.73 41012862.5 9.5 9.6 218 223 20.5 30.2 45916.00 1.8 .101 .95 1.02 9.6 8.510 .1559 0106 2869.0 6.57! 374 527 72 9.73 41012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.510 .1560 0115 2869.5 2.75! 328 486 75 10.1 37012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.510 .1561 0118 2870.0 4.25! 437 523 73 9.05 42012862.5 9.5 9.6 216 221 20.6 30.3 46217.50 2.1 .1011.08 1.14 9.6 8.510 .1562 0121 2870.5 12.2! 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.510 .1563 0123 2870.5 12.2! 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.50 2.1 .101 .90 .97 9.6 8.510 .1563 0123 2870.5 12.2! 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.50 2.1 .101 .90 .97 9.6 8.510 .1563 0123 2870.5 12.2! 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.50 2.1 .101 .90 .97 9.6 8.510 .1563 0123 2870.5 11.9! 459 566 72 9.57 36012862.5 9.5 9.6 217 200 20.6 30.2 46318.50 2.1 .101 .90 .97 9.6 8.510 .1563 01		Note	s · Anr	17 '90																				;
1548   0040   2664.0   13.71   522   606   84   8.85   38012862.5   9.5   9.6   217   204   20.5   30.2   45811.50   1.4   .001   .88   .93   9.6   8.510   1549   0040   2864.5   10.81   566   597   86   9.62   38012862.5   9.5   9.6   217   196   20.5   30.2   45912.00   1.4   .001   .95   1.00   9.6   8.510   1550   0041   2865.5   13.41   516   621   78   8.86   39012862.5   9.5   9.6   216   203   20.5   30.2   45913.00   1.6   .001   .87   .92   9.6   8.510   1552   0045   2866.0   14.61   494   600   74   8.87   35012862.5   9.5   9.6   216   195   20.5   30.2   45913.00   1.6   .001   .84   .90   9.6   8.510   1553   0047   2866.5   14.81   529   621   70   9.03   36012862.5   9.5   9.6   218   221   20.5   30.2   45713.50   1.6   .001   .84   .90   9.6   8.510   1553   0047   2867.0   12.91   539   624   71   9.18   35012862.5   9.5   9.6   216   202   20.5   30.2   45714.00   1.7   .001   .83   .90   9.6   8.510   1558   0049   2867.5   13.71   504   586   72   9.18   39012862.5   9.5   9.6   216   202   20.5   30.2   45715.00   1.4   .101   .86   .93   9.6   8.510   1558   0102   2868.5   9.061   481   620   71   9.68   36012862.5   9.5   9.6   218   223   20.5   30.2   45916.00   1.8   .101   .95   1.02   9.6   8.510   1559   0106   2869.0   6.571   374   527   72   9.73   41012862.5   9.5   9.6   216   202   20.5   30.2   45916.00   1.8   .101   .95   1.02   9.6   8.510   1560   0115   2869.5   2.751   328   486   75   10.1   37012862.5   9.5   9.6   216   221   20.6   30.3   46116.50   1.9   .1011.01   1.08   9.6   8.510   1560   0115   2869.5   2.751   328   486   75   10.1   37012862.5   9.5   9.6   216   202   20.5   30.2   46318.50   2.1   .1011.08   1.14   9.6   8.510   1560   0121   2870.5   12.21   462   561   73   9.99   41012862.5   9.5   9.6   216   196   20.6   30.3   46217.50   2.1   .1011.08   1.14   9.6   8.510   1560   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5	106	7 0076	0.0027	E 10 5	1 777	59	1 8	2 8.37	40012	2862.5	9.5	9.6	217	222	20.5	30.2	459	11.00	1.4	.00	.84	.87	9.6	8.510
1549   0040   2864.5   10.81   566   597   86   9.62   38012862.5   9.5   9.6   217   196   20.5   30.2   45912.00   1.4   .001   .94   .88   9.6   8.510   1551   0043   2865.5   13.41   516   621   78   8.86   39012862.5   9.5   9.6   216   203   20.5   30.2   45913.00   1.6   .001   .84   .90   9.6   8.510   1552   0045   2866.0   14.61   494   600   74   8.87   35012862.5   9.5   9.6   216   195   20.5   30.2   45713.50   1.6   .001   .84   .90   9.6   8.510   1553   0047   2866.5   14.81   529   621   70   9.03   36012862.5   9.5   9.6   218   221   20.5   30.2   45714.00   1.7   .001   .83   .90   9.6   8.510   1554   0049   2867.0   12.91   539   624   71   9.18   35012862.5   9.5   9.6   216   202   20.5   30.2   45714.00   1.7   .001   .86   .93   9.6   8.510   1555   0052   2867.5   13.71   504   586   72   9.18   39012862.5   9.5   9.6   216   202   20.5   30.2   45715.00   1.4   .101   .86   .92   9.6   8.510   1558   0102   2868.5   9.061   481   620   71   9.68   36012862.5   9.5   9.6   218   223   20.5   30.2   45916.00   1.8   .101   9.5   1.02   9.6   8.510   1559   0106   2869.0   6.571   374   527   72   9.73   41012862.5   9.5   9.6   216   221   20.6   30.3   46117.00   2.0   .1011.20   1.26   9.6   8.510   1560   0115   2869.5   2.751   328   486   75   10.1   37012862.5   9.5   9.6   216   221   20.6   30.3   46217.50   2.1   .1011.08   1.14   9.6   8.510   1562   0121   2870.5   12.21   462   561   73   9.99   41012862.5   9.5   9.6   216   196   20.6   30.3   46318.00   2.1   .101   .90   .97   9.6   8.510   1563   0123   2871.0   11.91   459   566   72   9.57   36012862.5   9.5   9.6   216   196   20.6   30.3   46318.50   2.1   .101   .90   .96   9.6   8.510   1563   0123   2871.0   11.91   459   566   72   9.57   36012862.5   9.5   9.6   217   220   20.6   30.2   46318.50   2.1   .101   .90   .96   9.6   8.510   1563   0123   2871.0   11.91   459   566   72   9.57   36012862.5   9.5   9.6   217   220   20.6   30.2   46318.50   2.1   .101   .101   .101   .101   .101   .101   .101   .	154	7 004 R 004	o 2664.	0 13.7	1 522	60	 6 8	4 8.85	38012	2862.5	9.5	9.6	217	204	20.5	30.2	458	11.50	1.4	.00	. 99	.75	7.0	8.310-
1550 0041 2865.0 12.91 531 590 85 9.07   38012862.5 9.5 9.6 217 202 20.5 30.2   45712.53   1.4 .001 .84 .88   9.6 8.51D     1551 0043 2865.5 13.41 516 621 78 8.86   39012862.5 9.5 9.6 216 203 20.5 30.2   45913.00   1.6 .001 .87 .92   9.6 8.51D     1552 0045 2866.0 14.61 494 600 74 8.87   35012862.5 9.5 9.6 216 195 20.5 30.2   45713.50   1.6 .001 .84 .90   9.6 8.51D     1553 0047 2866.5 14.81 529 621 70 9.03   36012862.5 9.5 9.6 218   221 20.5 30.2   45714.00   1.7 .001 .83 .90   9.6 8.51D     1554 0049 2867.0 12.91 539 624 71 9.18   35012862.5 9.5 9.6 216   202 20.5 30.2   45914.48   1.7 .001 .86 .93   9.6 8.51D     1555 0052 2867.5 13.71 504 586 72 9.18   39012862.5 9.5 9.6 216   202 20.5 30.2   45914.48   1.7 .001 .86 .93   9.6 8.51D     1558 0102 2868.5 9.061 481 620 71 9.68   36012862.5 9.5 9.6 218   223 20.5 30.2   45916.00   1.8 .101 .95   1.02   9.6 8.51D     1559 0106 2869.0 6.571 374   527 72 9.73   41012862.5 9.5 9.6 216   221 20.6 30.3   46116.50   1.9 .1011.01   1.08   9.6 8.51D     1560 0115 2869.5 2.751   328   486 75 10.1   37012862.5 9.5 9.6   216   221 20.6 30.3   46117.00   2.0 .1011.20   1.26   9.6 8.51D     1562 0121 2870.5 12.21 462 561 73 9.99   41012862.5 9.5 9.6   217 220 20.6 30.3   46217.50   2.1 .1011.08   1.14   9.6 8.51D     1563 0123 2871.0 11.91 459 566 72 9.57   36012862.5 9.5 9.6   217   220 20.6 30.2   46318.50   2.1 .101 .90 .96   9.6 8.51D     1563 0123 2871.0 11.91 459 566 72 9.57   36012862.5 9.5 9.6   217   220 20.6 30.2   46318.50   2.1 .101 .90 .96   9.6 8.51D     1564 0113 2870.0 11.91 459 566 72 9.57   36012862.5 9.5 9.6   217   220 20.6 30.2   46318.50   2.1 .101 .90 .96   9.6 8.51D     1565 0123 2871.0 11.91 459 566 72 9.57   36012862.5 9.5 9.6   217   220 20.6 30.2   46318.50   2.1 .101 .90 .96   9.6 8.51D     1563 0123 2871.0 11.91 459 566 72 9.57   36012862.5 9.5 9.6   217   220 20.6 30.2   46318.50   2.1 .101 .90 .96   9.6 8.51D     1564 0118 2870.0 1.91 459 566 72 9.57   36012862.5 9.5 9.6   217 220 20.6 30.2   46318.50   2.1 .101 .90 .96   9.6 8.51D     1565	154	9 004	0 2864.	5 10.8	1 566	59	7 8	6 9.62	38012	2862.5	9.5	9.6	217	196	20.5	30.2	459	12.00	1.4	.00	64.	1.00	7.0	0.310-
1551 0043 2865.5 13.4; 516 621 78 8.86 39012862.5 9.5 9.6 216 203 20.5 30.2 45913.00 1.6 .001 .87 .92 9.6 8.510 1552 0045 2866.0 14.6; 494 600 74 8.87 35012862.5 9.5 9.6 216 195 20.5 30.2 45713.50 1.6 .001 .84 .90 9.6 8.510 1553 0047 2866.5 14.8; 529 621 70 9.03 36012862.5 9.5 9.6 218 221 20.5 30.2 45714.00 1.7 .00; .83 .90 9.6 8.510 1554 0049 2867.0 12.9; 539 624 71 9.18 35012862.5 9.5 9.6 216 202 20.5 30.2 45914.48 1.7 .00; .86 .93 9.6 8.510 1555 0052 2867.5 13.7; 504 586 72 9.18 39012862.5 9.5 9.6 217 196 20.5 30.2 45914.48 1.7 .00; .86 .92 9.6 8.510 1558 0102 2868.5 9.06; 481 620 71 9.68 36012862.5 9.5 9.6 218 223 20.5 30.2 45916.00 1.4 .10; .86 .92 9.6 8.510 1559 0106 2869.0 6.57; 374 527 72 9.73 41012862.5 9.5 9.6 217 220 20.5 30.2 45916.00 1.8 .10; .95 1.02 9.6 8.510 1560 0115 2869.5 2.75; 328 486 75 10.1 37012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.510 1561 0118 2870.0 4.25; 437 523 73 9.05 42012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.510 1562 0121 2870.5 12.2; 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101.09 .97 9.6 8.510 1563 0123 2871.0 11.9; 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101.09 .97 9.6 8.510 1563 0123 2871.0 11.9; 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101.09 .97 9.6 8.510													217	202	20.5	30.2	457	12.53						
1552 0045 2866.0 14.61 494 600 74 8.87 35012862.5 9.5 9.6 216 195 20.5 30.2 45713.50 1.6 .001 .84 .90 9.6 8.510 1553 0047 2866.5 14.81 529 621 70 9.03 36012862.5 9.5 9.6 218 221 20.5 30.2 45714.00 1.7 .001 .83 .90 9.6 8.510 1554 0049 2867.0 12.91 539 624 71 9.18 35012862.5 9.5 9.6 216 202 20.5 30.2 45914.48 1.7 .001 .86 .93 9.6 8.510 1555 0052 2867.5 13.71 504 586 72 9.18 39012862.5 9.5 9.6 216 202 20.5 30.2 45914.48 1.7 .001 .86 .92 9.6 8.510 1558 0102 2868.5 9.061 481 620 71 9.68 36012862.5 9.5 9.6 218 223 20.5 30.2 45916.00 1.8 .101 .95 1.02 9.6 8.510 1559 0106 2869.0 6.571 374 527 72 9.73 41012862.5 9.5 9.6 218 223 20.5 30.2 45916.00 1.8 .101 .95 1.02 9.6 8.510 1560 0115 2869.5 2.751 328 486 75 10.1 37012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.510 1561 0118 2870.0 4.251 437 523 73 9.05 42012862.5 9.5 9.6 217 208 20.6 30.3 46217.50 2.1 .1011.08 1.14 9.6 8.510 1562 0121 2870.5 12.21 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.510 1563 0123 2871.0 11.91 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.510										2862.5	9.5	9.6	216	203	20.5	30.2	459	13.00						
1553 0047 2866.5 14.81 529 621 70 9.03 36012862.5 9.5 9.6 218 221 20.5 30.2 45714.00 1.7 .001 .83 .90 9.6 8.510 1554 0049 2867.0 12.91 539 624 71 9.18 35012862.5 9.5 9.6 216 202 20.5 30.2 45914.48 1.7 .001 .86 .93 9.6 8.510 1555 0052 2867.5 13.71 504 586 72 9.18 39012862.5 9.5 9.6 217 196 20.5 30.2 45715.00 1.4 .101 .86 .92 9.6 8.510 1558 0102 2868.5 9.061 481 620 71 9.68 36012862.5 9.5 9.6 218 223 20.5 30.2 45916.00 1.8 .101 .95 1.02 9.6 8.510 1559 0106 2869.0 6.571 374 527 72 9.73 41012862.5 9.5 9.6 217 220 20.5 30.2 45916.00 1.8 .101 .95 1.02 9.6 8.510 1560 0115 2869.5 2.751 328 486 75 10.1 37012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.510 1561 0118 2870.0 4.251 437 523 73 9.05 42012862.5 9.5 9.6 217 208 20.6 30.3 46217.50 2.1 .1011.08 1.14 9.6 8.510 1562 0121 2870.5 12.21 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.510 1563 0123 2871.0 11.91 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.510										2862.5	9.5	9.6	216	195	20.5	30.2	457	13.50						
1554 0049 2867.0 12.9! 539 624 71 9.18 35012862.5 9.5 9.6 216 202 20.5 30.2 45914.48 1.7 .001 .86 .93 9.6 8.510 1555 0052 2867.5 13.7! 504 586 72 9.18 39012862.5 9.5 9.6 217 196 20.5 30.2 45715.00 1.4 .101 .86 .92 9.6 8.510 1558 0102 2868.5 9.06! 481 620 71 9.68 36012862.5 9.5 9.6 218 223 20.5 30.2 45916.00 1.8 .101 .95 1.02 9.6 8.510 1559 0106 2869.0 6.57! 374 527 72 9.73 41012862.5 9.5 9.6 217 220 20.5 30.2 46116.50 1.9 .1011.01 1.08 9.6 8.510 1560 0115 2869.5 2.75! 328 486 75 10.1 37012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.510 1561 0118 2870.0 4.25! 437 523 73 9.05 42012862.5 9.5 9.6 216 221 20.6 30.3 46217.50 2.1 .1011.08 1.14 9.6 8.510 1562 0121 2870.5 12.2! 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.510 1563 0123 2871.0 11.9! 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.510										2862.5	9.5	9.6	218	221	20.5	30.2	457	14.00	1.7					
1555 0052 2867.5 13.7; 504 586 72 9.18   390; 2862.5 9.5 9.6   217 196 20.5 30.2   457; 5.00   1.4   .10; .86   .72   9.6   8.5; 10.5; 1558 0102 2868.5 9.06; 481 620 71 9.68   360; 2862.5 9.5 9.6   218 223 20.5 30.2   459; 6.00   1.8   .10; .95   1.02   9.6   8.5; 10.5; 10.6 2869.0 6.57; 374   527   72 9.73   410; 2862.5 9.5 9.6   217   220 20.5 30.2   461; 6.50   1.9   .10; 1.01   1.08   9.6   8.5; 10.5; 10.6 0115 2869.5   2.75; 328   486   75 10.1   370; 2862.5   9.5   9.6   216   221 20.6 30.3   461; 7.00   2.0   .10; 1.20   1.26   9.6   8.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5; 10.5										2862.5	9.5	9.6	216	202	20.5	30.2			1.7					
1558 0102 2868.5 9.061 481 620 71 9.68 36012862.5 9.5 9.6 218 223 20.5 30.2 45916.00 1.8 .101 .95 1.02 9.6 8.51D 1559 0106 2869.0 6.571 374 527 72 9.73 41012862.5 9.5 9.6 217 220 20.5 30.2 46116.50 1.9 .1011.01 1.08 9.6 8.51D 1560 0115 2869.5 2.751 328 486 75 10.1 37012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.51D 1561 0118 2870.0 4.251 437 523 73 9.05 42012862.5 9.5 9.6 217 208 20.6 30.3 46217.50 2.1 .1011.08 1.14 9.6 8.51D 1562 0121 2870.5 12.21 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.51D 1563 0123 2871.0 11.91 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.51D																								
1559 0106 2869.0 6.571 374 527 72 9.73 41012862.5 9.5 9.6 217 220 20.5 30.2 46116.50 1.9 .1011.01 1.08 9.6 8.51D 1560 0115 2869.5 2.751 328 486 75 10.1 37012862.5 9.5 9.6 216 221 20.6 30.3 46117.00 2.0 .1011.20 1.26 9.6 8.51D 1561 0118 2870.0 4.251 437 523 73 9.05 42012862.5 9.5 9.6 217 208 20.6 30.3 46217.50 2.1 .1011.08 1.14 9.6 8.51D 1562 0121 2870.5 12.21 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.51D 1563 0123 2871.0 11.91 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.51D																								
1560 0115 2869.5 2.75; 328 486 75 10.1 370;2862.5 9.5 9.6 216 221 20.6 30.3 461;7.00 2.0 .10;1.20 1.26 9.6 8.5;10-1561 0118 2870.0 4.25; 437 523 73 9.05 420;2862.5 9.5 9.6 217 208 20.6 30.3 462;7.50 2.1 .10;1.08 1.14 9.6 8.5;10-1562 0121 2870.5 12.2; 462 561 73 9.99 410;2862.5 9.5 9.6 216 196 20.6 30.3 463;8.00 2.1 .10; .90 .97 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .96 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .90 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .90 9.6 8.5;10-1563 0123 2871.0 11.9; 459 566 72 9.57 360;2862.5 9.5 9.6 217 220 20.6 30.2 463;8.50 2.1 .10; .90 .90 9.6 8.5;10-1563 0123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0 123 2872.0									4101	2862.5	9.5	9.6	217	220	20.5	5 30.2								
1561 0118 2870.0 4.251 437 523 73 9.05 42012862.5 9.5 9.6 217 208 20.6 30.3 46217.50 2.1 .1011.08 1.14 9.6 8.510 1562 0121 2870.5 12.21 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.510 1563 0123 2871.0 11.91 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.510									37011															
1562 0121 2870.5 12.21 462 561 73 9.99 41012862.5 9.5 9.6 216 196 20.6 30.3 46318.00 2.1 .101 .90 .97 9.6 8.510 1563 0123 2871.0 11.91 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.510									5 42013															
1563 0123 2871.0 11.91 459 566 72 9.57 36012862.5 9.5 9.6 217 220 20.6 30.2 46318.50 2.1 .101 .90 .96 9.6 8.510									7 4101:															
									7 3601															
1564 0126 2871.5 10.7! 454 572 74 9.39 35012862.5 9.5 9.6 217 203 20.6 30.2 46519.00 2.2 .101 .92 .98 9.6 8.510	15	4 012	6 2871.	5 10.	71 45	4 57	2 7	4 9.3	7 3501															
1565 0129 2872.0 11.41 530 616 70 10.2 35012862.5 9.5 9.6 218 203 20.6 30.2 46419.50 2.2 .101 .91 .98 9.6 8.51D	15	55 012	9 2872	0 11.	41 53	0 61	6 7	70 10.3	2 3501	2862.5	9.5	9.6	218	203	20.	6 30.2								

<del></del>			+					+										<del>+</del>				+
<u> </u>	TIME	DEPTH	ROP!	TOR	QUE	RPM	WOB	PUMP!RTRNS	MD I	lb/gal	FLO	M/MIN TUO	TE)	4P (C)	PVT	-IHIS	Bli-	ESII	DXU	NXB	EUD	NAMD I I
		A	0/NFi 	AV6	TH A	HYD	870	PRESIDEPTH					1 14		: +			+				+
1566	0130	2872.5	13.41	505	615	71	10.4	380¦2862.5	9.5	9.6	218	208	20.6	30.2	4641	7.99	2.3	1.101	.89	.95	9.6	8.5ID-
1567	0150	2873.0	33.11	535	586	84	10.2	34012862.5	9.5	9.6	208	188	20.6	30.0	4671	10.5	2.3	.101	.74	.79	9.6	8.510
								34012862.5			209	195	20.6	29.9	4661	11.0				i.04		8.51D
		2874.0						34012862.5			209	188	20.6	29.9	4711	11.5				1.14		8.510
								43012862.5	9.5	9.6	207	212	20.6	29.8	4711	12.0				1.22		8.51D
		2875.0									208	189	20.6	29.8	4721					1.02		8.510
		2875.5							9.5	9.6	208	194	20.6	29.7	4721					1.03		8.510
1573	0215	2876.0	10.41	396	519	89	11.0	40012862.5	9.5	9.6				29.7	4721					1.03		8.510
1574	0218	2876.5	8.481	393	522	89	10.3	40012862.5	7.5	9.6	206	193	20.6	29.7		14.0				1.06		8.5ID
1575	0221	2877.0	11.8	438	574	87	10.7	38012862.5	9.5	9.6	208	189	20.6	29.7	4741					1.00		8.510
1576	0224	2877.5	10.13	388	490	88	10.5	410:2862.5	9.5	9.6	207	212	20.6	29.6	4761					1.03		8.510
		2878.0						39012862.5	9.5	9.6	208	194	20.6	29.6	4781					1.01		8.510
		2878.5						39012862.5	9.5	9.6	208	213	20.6	29.6	4781					.98		8.5¦D
1579	0231	2879.0	13.61	504	602	85	10.8	41012862.5	9.5	9.6	208	193	20.6	29.6	4781					.97		8.510
								410:2862.5	9.5	9.6				29.5						1.00		8.5ID
1581	0237	2880.0	10.9	444	587	74	10.5	39012862.5	9.5	9.6												8.51D
1582	0240	2880.5	8.941	437	539	73	10.2	40012862.5	9.5	9.6	208	187	20.6	29.5	4801	18.0	3.1	.101	.96	1.03	9.6	8.5¦D
								. Rec. 9.9m														i
								ets. Start de														i
:		Apr 1							•													į
1585	0242	2881.1	5.97	323	366	67	15.2	279012809.2	9.5	9.6	684	- 687	20.6	29.7	5681	.11	.6	.00;	1.09	1.14	9.9	8.510
								2780:2809.2			678	683	20.6	29.8	5691	.99	.7	.00!	.95	.99	9.9	8.5ID
:587	0253	2883.0	16.7	431	467	64	23.6	282012809.2	9.5	9.6	683	664	20.6	29.8	5691	2.00	.7	.00:	.97	1.02	9.9	8.5iD
	0255	2884.0	26.3	496	672	89	30.6	281012809.2	9.5	9.6	685	689	20.6	29.8	5701	2.98	8.	.00:	1.01	1.06	9,9	8.510
								282012809.2			685	665	20.6	29.8	5691	4.00	.8	.001	1.08	1.13	9.9	8.5¦D
								282012809.2			685	665	20.6	29.8	5681	5.00	.9	.001	1.06	1.11	9.9	8.510
								285012809.2			690	694	20.6	29.8	5261	5.99	.9	.00	1.01	1.04	9.9	8.5¦D
								285012815.6			685	664	20.6	29.8	5281	7.00	1.0	.00	1.33	1.37	9.9	8.510
								2850:2838.1			688	693	20.6	29.8	5281	8.00	1.2	.00	1.33	1.37	9.8	8.5iD
								284012844.8			682	662	20.6	29.8	5281	9.00	1.3	.00	1.32	1.37	9.8	8.5¦D
								283012881.8						29.8	5271	10.0	1.3	.00	1.19	1.24	9.6	8.510
								284012882.5						29.8	5271	11.0	1.4	.00	1.20	1.25	9.6	8.510
1597	0354	2893.0	13.6	385	449	88	31.9	284012883.7	9.5	9.6				29.8		12.0	1.5	.00	1.22	1.27	9.6	8.510
1598	0508	2894.0	4.40	317	751	87	33.9	281012890.2	9.5	9.6	687	673	20.6	29.9	5201	12.9	1.7	.00	1.53	1.58	9.6	8.510
								272012893.1						29.9		14.0				1.17	9.6	8.510
								272012893.4						29.9		15.0				1.27	9.6	8.510
								284012893.8						29.9		16.0	1.9	,00	1.18	1.24	9.6	8.51D
								284012894.0						29.9		17.0				1.14		8.510
								285012894.2						29.9		18.0				1.25		8.5iD
		) 2900.(												29.9		19.0				1.23		8.510
								286012894.2						29.9		20.0				1.11		8.510
								286012894.2						29.9		21.0				1.06		8.510
		, 2702.( , 2903.(												29.9		22.0				1.17		8.510
								287012894.2						29.9	.518					1.29		8.510
								283012894.2						29.9		24.0		.00		.97		8.510
								283012894.2						29.9		25.0				1.11		8.5:0
								285012894.2						30.0		26.0				1.28		8.5¦D
								286012894.2						30.0		27.0				1.29		8.510
1014	: VQZ	7 2700.1	1 14:4	1 404	207	94	Juid	700A1701117	1 4 -	110	444	707	1/10		212					<del>-</del> -		

<u>_____</u>

TIME	DEPTH M	ROP:	TOR AV6	QUE Max	RPM AVG	WOB AVG	PUMPIRTRNS PRESIDEPTH	MD : In	lb/qal OUT	FLO In	MIM\W Tuo	TEI In	4P (C) OUT	PVT:	-7HIS m	BIT- hr	EST:	DXC	HXB	ECD	I DMXM
661 1325	2957.0	19.61	268	357	82 4	43.7	285012947.9	9.5	9.6	685	664	18.0	29.2	5351	76.0	7.2	.14!	1.22	1.27	9.6	8.511
							286012948.1														
							2860:2949.1														
							286012949.6												1.10		
							286012950.4												1.20		
							287012950.6												1.22		
							287012951.9												1.42		
							2860;2953.1								83.0					9.6	
							287012953.3												1.54		
							287012953.7														8.51
							286012954.6														8.51
							287012955.7														8.51
							287012958.1														8.5
							287012958.8								89.0					9.6	
675 1509	2971.0	21.91	272	510	83 4	41.9	282012959.4	9.5												9.6	
							2820:2959.8						28.9		91.0					9.6	
677 1525	2973.0	23.81	242	295	101 4	43.3	282012960.4	9.5	9.6	671	651	17.8	28.8	5291	92.0	8.7	.191	1.21	1.26	9.6	8.5
							282012961.1														
679 1529	2975.0	33.71	215	277	101 4	43.5	282012961.2	9.5	9.6	672	651	17.8	28.8	5281	94.0	8.8	.191	1.12	1.16	9.6	8.5
680 1541	2976.0	14.11	303	748	99 4	40.6	276012962.7	9.5	9.6	674	678	17.7	28.8	5271	95.0	8.9	.201	1.33	1.37	9.6	8.5
							282012962.7													9.6	8.5
682 1547	2978.0	19.61	213	262	98 3	37.6	282012962.7	9.5	9.6	673	652	17.6	28.8	526	97.0	9.0	.20:	1.21	1.25	9.6	8.5
<u>48</u> 3 1550	2979.0	23.71	235	325	100 4	40.8	282012963.0	9.5	9.6	672	663	17.6	28.8	527	98.0	9.1	.201	1.19	1.23	9.6	8.5
1553	2980.0	17.71	347	756	92 4	41.6	282012963.6	9.5	9.6	674	653	17.5	28.7	5261	99.0	9.1	.211	1.26	1.30	9.6	8,5
							290012965.1												1.36		
							2810:2965.5									9.3	.21:	1.25	1.30	9.6	8.5
							2880:2966.1								102	9.3	.211	1.36	1.41	9.6	8.5
							289012966.6						28.7		103	9.4	.221	1.32	1.37	9.6	8,5
							288012967.6			680	682	17.4	28.7	522	104	9.5	.221	1.26	1.31	9.6	8.5
							288012967.8								105	9.6	.221	1.20	1.24	9.6	8.51
							287012968.0													9.7	8.5
							288012969.2														
693 1645	2989.0	9.43!	225	273	84 4	44.0	287012969.8	9.5	9.6	676	662	17.3	28.6	523	108	9.8	.231	1.42	1.47	9.7	8.5
494 1447	2990.0	35.01	239	286	84 /	43.9	288012970.0	9.5	9.6	678	681	17.3	28.6	521	109	9.9	.231	1.06	1.11	9.7	8.5
							2880:2974.0				665				110			1.42		9.6	8.5
							291012976.9						28.5		111				1.70		8.5
							290012977.7				686				112						8.5
							290012979.1						28.4		113			1.31			8.5
							2860:2980.7				660				114			1.34			8.5
							286012981.7				657				115			1.35			8.5
							286012982.1				682				116			1.30			8.5
701 1747 702 1757							287012782.1				660				117			1.34			8.5
							286012984.2				660				118			1.36			8.5
							285012785.5				666				119			1.34			8.5
							291012987.7				663 663				120			1.32			8.5
							291012988.6								121				1.35		8.5
							292012989.0								121						8.5
							289012989.2								123						8.5
							207V;2707.2 +														

L			1					+							+-			+			+
: CB	TIME	ncotu	pnp!	TORG	HE	RPM	MUB	PHMP!RTRNS	MI)	lb/mal	FLO	W/MIN	TEN	1P (C)	PVTI	-THIS	BIT-	EST: DXC	NXB.	ECD	NXMD:
I 3		A	m/hr!	AVG	MAX	AVG	AVG	PRESIDEPTH	IN	OUT	IN	OUT	IN	QUT	:	M	hr	TW!			¦ 4
†	1071	700Ë 0	+ 17 01	 270	 970	02	A: L	+ 288012990.0	95	 Q	479	 844	16.9	28.3	505 l	124	 11.1	.28!1.22	1.27	9.6	8.5iD
1747	1001	2007.0	17.71	207 247	707	94	A1 1	289012991.2	9.5	9.6	682	662	16.8	28.3	5021	125	11.2	.2811.24	1.28	9.6	8.5¦D
1711	1000	3000.V	10 21	273 277	714	94	79.4	2930:2991.6	9.5					28.3				.28:1.18		9.6	8.510
1717	1072	3007.0	19 4!	277	788	91	41.1	292012991.6	9.5	9.6				28.3				.2811.24		9.6	8.5HD
1712	1952	3000.0 0 P005	7 97!	277	298	91	41.8	292012992.5	9.5	9.6		687						.2911.47		9.6	8.5:0
1714	1007	3010.0	20.51	249	334	95	41.0	289012994.3	9.5	9.6				28.2	5001	129	11.5	.2911.22	1.26	7.6	8.5¦D
1715	1914	3011.0	15.01	250	329	100	42.6	288012995.2	9.5	9.6		681			5011	130	11.6	.29!1.33	1.37	9.6	8.510
1716	1919	3017.0	19.91	272	337	100	40.6	289012995.8	9.5	9.6		682			4961	131	11.6	.3011.24	1.28		8.51D
1717	1922	3013.0	19.9	306	576	99	40.5	288012996.4	9.5	9.6	678	669	17.0	28.2				.30!1.23			8.510
718	1926	3014.0	14.3	369	749	97	41.1	284012997.4	9.5	9.6	678	658	17.1	28.1				.3011.32			8.510
1719	1931	3015.0	14.61	301	514	97	40.7	288012998.2	9.5	9.6	676	662	17.1	28.1				.3011.31			8.510
1720	1934	3016.0	16.5	263	320	83	40.2	289012998.8	9.5	9.6	676	667	17.1	28.1				.3011.23		9.6	8.511
1721	1940	3017.0	11.2	300	466	83	41.6	289012999.8	9.5	9.6	675	679	17.1	28.1				.3111.35			8.510
1722	1944	3018.0	12.8	273	337	83	41.1	2880:3000.6	9.5	9.6	675	654	17.1	28.1				.3111.31			8.5!
1723	1951	3019.0	9.52	265	348	81	41.7	2890:3001.3	9.5	9.6	680	670	17.1	28.0				.3111.39			8.51
1724	2004	3020.0	13.0	287	452	82	41.2	2880:3003.1	9.5	9.6	679	658	17.1	28.0				.3211.30			8.511
								2880:3004.3			677	662	17.2	28.0				.32:1.22			8.5
1726	2012	3022.0	14.5	269	306	80	40.5	288013005.6	9.5	9.6	677	668	17.2	28.0				.3211.26			8.511
1727	2017	3023.0	13.3	266	299	81	40.8	2880:3006.8	9.5	9.6	677	656	17.2	28.0				.3211.29			8.51
								2870:3007.7			676	666	17.2	28.0				.3211.25			8.5
1729	2025	3025.0	14.2	262	312	82	39.8	2880:3008.1	9.5	9.6	677	656	17.2	28.0	4971	144	12.6	.33!1.26	1.31		8.5
								289013008.6			677	663	17.1	27.9	4921	145	12.6	.33 1.14	1.19		8.51
								2910:3010.2			679	664	17.1	27.9				.3311.15			8.5
								290013010.6			679	684	17.1	27.9				.33:1.23			8.5
1733	2058	3029.0	7.47	234	352	92	41.4	2870:3011.9	9.5	9.6	674	677	17.1	27.9	488	148	12.9	.3411.49	1.53		8.5
								288013015.1			674	660	17.1	27.9	4891	149	13.1	.3411.60	1.64		8.5
								2880 3019.9			675	654	17.0	27.9	485	150	13.5	.3611.77	1.82	9.6	8.5
								286013027.8			674	654	17.1	27.9	472	151	14.1	.38:1.98	2.02		8.5
								286013030.4						27.8	461	152	14.6	.39:1.90	1.94		8.5
1731	3 2254	3034.	0 3.79	225	320	83	49.2	2870:3031.4	9.5	5 9.6				27.8	453	153	14.8	.4011.75	1.80		8.51
173	7 2301	3035.	0 7.96	1 269	395	84	48.0	2860:3031.7	9.5	5 9.6				27.8	449	154	15.0	.4111.53	1.57		8.5
								2870 3032.0						27.7	448	155	15.1	.4111.61	1.65		8.5
								2880:3032.1						27.7	447	156	15.2	.41:1.21	1.25	9.6	8.5
:74	2. 2333	3 3038.	0 12.7	443	848	82	2 46.7	2930:3032.5	9.5	5 9.6	674	656	17.2	2 27.7				.4211.37			8.51
174	3 233/	4 3039.	0 18.9	1 283	392	99	40.9	2920:3032.5	9.5	5 9.6	681	668	17.2	2 27.7	441	158	15.3	.4211.25	1.29	9.6	8.5
174	4 2339	B 3040.	0 20.7	328	513	102	2 46.6	2920:3032.6	9.5	5 9.6	679	682	17.2	2 27.7	440	159	15.4	.4211.29	1.33	9.6	8.5
								and run 10 sta													i
										•	-										1

[{] Circulate bottoms up again and POOH.

l Run wireline logs.

v. Drill Data Plot

1:2500

PE602111

#### PE602111

This is an enclosure indicator page. The enclosure PE602111 is enclosed within the container PE903385 at this location in this document.

The enclosure PE602111 has the following characteristics:

ITEM_BARCODE = PE602111

CONTAINER_BARCODE = PE903385

NAME = Drilling Data Log

BASIN = GIPPSLAND

PERMIT = VIC/P24

 $\mathtt{TYPE} = \mathtt{WELL}$ 

SUBTYPE = WELL_LOG

DESCRIPTION = Drilling Data Log, 1:2500, (enclosure

from Final Well Report--attachment to

WCR) for Terakihi-1

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 22/06/90$ 

 $W_NO = W1025$ 

WELL_NAME = Terakihi-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Esso Australia Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

vi. Drill Cost Plot

1:2500

PE602112

#### PE602112

This is an enclosure indicator page.

The enclosure PE602112 is enclosed within the container PE903385 at this location in this document.

The enclosure PE602112 has the following characteristics:

ITEM_BARCODE = PE602112
CONTAINER_BARCODE = PE903385

NAME = Drilling Data Cost Plot

BASIN = GIPPSLAND PERMIT = VIC/P24

TYPE = WELL

SUBTYPE = WELL_LOG

for Terakihi-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 22/06/90

 $W_NO = W1025$ 

WELL_NAME = Terakihi-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Esso Australia Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

C. ENGINEERING DATA

i. Daily Geological-Engineering Reports



COMPANY <u>ESSO AUSTRACIA</u> WELL <u>TERAKIHI # 1</u>
DATE 31/3/1990 TIME 0600 Hrs
DEPTH LAST REPORT DEPTH
RIG OPERATIONS Pool offer cementing 20" cosing
REPORT BY (OPERATOR
DRILLING REPORT
Bit No.:
On Bit: Footage: 177m Hours: 3.3 ROP: 38.5 aug. WOB: 1-10 RPM: 80
Pump Press: 300 - 1000 SPM: 80 - 190 Torque:
HYDRAULICS REPORT
Mud Density In: 8.7 Mud Density Out: ECD: 8.8 - 9.4 PV/YP: Seawater
Gels: Salinity: PPM CI Solids:
Hole Volume:
Carbide Lag—Calculated Lag: Flowrate:
Drillpipe Annular Vel (Max. Dia. Sec.): 35.8 Drillpipe Annular Vel (Open Hole): 35.8
Drill Collar Annular Vel (Open Hole): 40-/ Critical Vel: 67
Pressure Loss System: 1000 Pressure Loss Bit: 852 % Pressure Loss: 35
Nozzel Vel:
PRESSURE PARAMETERS
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:
Drilling Exponent:         0.33 - 0.94         Flowline Temperature:           Shale Density:         Shale Factor:           Background Gas:         Max. Formation Gas:         @ Trip Gas:           Other Gas:         Trip Gas:
Drilling Exponent: 0.33 - 0.94   Flowline Temperature: Shale Density: Shale Factor: Shale Factor: Trip Gas: @ Trip Gas: @ Trip Gas: @
Drilling Exponent: 0.33 - 0.94   Flowline Temperature:
Drilling Exponent: 0.33 - 0.94   Flowline Temperature: Shale Density: Shale Factor: Shale Factor: Trip Gas: @ Trip Gas: @ Other Gas: Trip Gas: @ Average Size: ESTIMATED PORE AND FRACTURE PRESSURE
Drilling Exponent: 0.33 - 0.94   Flowline Temperature: Shale Density: Shale Factor: Shale Factor: Trip Gas: @ Trip Gas: @ Other Gas: Fill: 1/31/E Tight Hole: 1/31/E Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole):
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:  Shale Density: Shale Factor: Shale Factor:  Background Gas: Max. Formation Gas: @ Trip Gas: @  Other Gas: Fill: Mone Tight Hole: Mone Factor: Tight Hole: Mone Factor: Tight Hole: Mone Factor: Mone Factor: Tight Hole: Mone Factor: Tight Hole: Mone Factor: Mone Factor: Tight Hole: Mone Factor: Mone Factor: Mone Factor: Trip Gas: Mone Factor:
Drilling Exponent:
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:  Shale Density: Shale Factor: Shale Factor:  Background Gas: Max. Formation Gas: @ Trip Gas: @  Other Gas: Fill: Mone Tight Hole: Mone Factor: Tight Hole: Mone Factor: Tight Hole: Mone Factor: Mone Factor: Tight Hole: Mone Factor: Tight Hole: Mone Factor: Mone Factor: Tight Hole: Mone Factor: Mone Factor: Mone Factor: Trip Gas: Mone Factor:
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:  Shale Density: Shale Factor: Shale Factor:  Background Gas: Max. Formation Gas: @ Trip Gas: @  Other Gas: Tight Hole: Make Tight Hole: Make Tight Hole: Make Tight Hole: Tight Hole: Tight Hole: Make Tolerance: Min. Estimated Fracture Pressure (Open Hole): Tight Hole: Min. Estimated Pore Pressure: Stimated Pore Pressure: Stimated Pore Pressure: Stimated Pore Pressure: Stimated Pore Pressure (Open Hole): Stimated Pore Pressure at TD: Comments:
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:  Shale Density: Shale Factor: Background Gas: Max. Formation Gas: @ Trip Gas: @ Trip Gas: @ Trip Gas:
Drilling Exponent: 0.33 - 0.94   Flowline Temperature: Shale Density: Shale Factor: Shale Factor: Shale Factor: @ Trip Gas: @ Trip Gas: @ Other Gas: Fill: None Tight Hole: None Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): 8.5
Drilling Exponent: 0.33 - 3.94 Flowline Temperature:  Shale Density: Shale Factor:  Background Gas: Max. Formation Gas: @ Trip Gas: @  Other Gas:  Fill: Nome Tight Hole: Nome Average Size:  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): 8.5 @ Sealcd  Max. Estimated Pore Pressure: 8.5 Min. Estimated Pore Pressure (Open Hole): 8.5 @ Sealcd  Max. Estimated Pore Pressure (Open Hole): 8.5 @ Sealcd  These coloubations will be correct offer inserting the second of the s
Drilling Exponent: 0.33 - 0.94 Flowline Temperature:  Shale Density: Shale Factor: Shale Factor: Trip Gas: @ Trip Gas: @ Other Gas: Trip Gas: @ Trip Gas: @ Other Gas: Fill: None Tripht Hole: N
Drilling Exponent: 0.33 - 3.94 Flowline Temperature:  Shale Density: Shale Factor:  Background Gas: Max. Formation Gas: @ Trip Gas: @  Other Gas:  Fill: Nome Tight Hole: Nome Average Size:  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): 8.5 @ Sealcd  Max. Estimated Pore Pressure: 8.5 Min. Estimated Pore Pressure (Open Hole): 8.5 @ Sealcd  Max. Estimated Pore Pressure (Open Hole): 8.5 @ Sealcd  These coloubations will be correct offer inserting the second of the s



COMPANY ESSO AUSTRACIA	WELL TERAKIHI
DATE	TIME 0600 Hows
DEPTH _55/m LAST REPORT	
RIG OPERATIONS RUNING MARNIE RIS	
REPORT BY D. THORNTON REPORT RECEIV	VED BY(OPERATOR)
DRILLING REPORT	
Bit No.: Type: Size:	
On Bit: Footage: Hours: ROP:	WOB: RPM:
Pump Press:         SPM:         Torque:         TBR:	CP I: \$ CP B: \$
HYDRAULICS REPORT	
Mud Density In: 8.7 Mud Density Out: E	CD: PV/YP: seawater_
Gels: Salinity:	PPM CI Solids:%
Hole Volume: Annular Volume: Tubing Volum	me: Displaced Volume:
Carbide Lag-Calculated Lag:	Flowrate:
Drillpipe Annular Vel (Max. Dia. Sec.):	nnular Vel (Open Hole):
Drill Collar Annular Vel (Open Hole): C	Critical Vel:
Pressure Loss System: Pressure Loss Bit:	
Nozzel Vel: Jet Impact Force:	HHP:
PRESSURE PARAMETERS	
Drilling Exponent: Flowling	ne Temperature:
Shale Density:Shale	Factor:
Background Gas: Max. Formation Gas: @ .	Trip Gas: @
Other Gas:	·
Fill: Tight Hole:	
Cavings: Est %: Average Siz	e:
ESTIMATED PORE AND FRACTURE PRESSURE	
Kick Tolerance: Min. Estimated Fracture P	ressure (Open Hole):
Estimated Pore Pressure: 8.5 Min. Estimated Pore P	ressure (Open Hole): 85 @ Seales
Max. Estimated Pore Pressure (Open Hole): 3 5 @ 55/m	Estimated Fracture Pressure at TD:
Comments:	
	·
·	- Angelow
·*	

MAY 1980



COMPANY ESSO AUSTRALIA	WELL _ <i>TERAKIHI # /</i>
DATE 2/4/1990	TIME 0500 Hows
DEPTH LAST REF	PORT DEPTH
RIG OPERATIONS Drilling Abend	
REPORT BY D. THORKTON REPORT R	RECEIVED BY(OPERATOI
DRILLING REPORT	
Bit No.: #2 Type:	
On Bit: Footage: 228 Hours: 3.6 ROP:	·
Pump Press: <u>2620</u> SPM: <u>191</u> Torque: <u>160 - 23</u>	8твя: <u>23368</u> ср і:\$ ср в:\$
HYDRAULICS REPORT	
Mud Density In: 8.7 Mud Density Out: 8.7	•
Gels: Salinity:Seawater_	
Hole Volume: 8/7 Annular Volume: 734 Tub	_
Carbide Lag-Calculated Lag:	
Drillpipe Annular Vel (Max. Dia. Sec.): 67.5 Dr	
Drill Collar Annular Vel (Open Hole): 108.9	
Pressure Loss System: Z620 Pressure Loss Bit:/	·
Nozzel Vel: 434.3 Jet Impact For	rce:
PRESSURE PARAMETERS	77 / /)
Drilling Exponent: 0.50 - 0.8	_ Flowline Temperature:
Drilling Exponent: 0.50 - 0.8  Shale Density:	Shale Factor:
Drilling Exponent: 0.53 - 0.8  Shale Density:	Shale Factor: Trip Gas: 50 u @ 55/m
Drilling Exponent: 0.53 - 0.8  Shale Density:	Shale Factor: Trip Gas: 50 u @ 55/m
Drilling Exponent: 0.50 - 0.8  Shale Density:	Shale Factor: Trip Gas: 50 u @ 55/m
Drilling Exponent: 0.50 - 0.8  Shale Density:	Shale Factor:  @ Trip Gas: 50 u @ 55/m  00 U @ 6/6m , Zero C. F. D 700 m  erage Size:
Drilling Exponent: 0.53 - 0.8  Shale Density:	Shale Factor:  @ Trip Gas: 50 u @ 55/m  00 U @ 6/6m , Zero C. F. D 700 m  erage Size:
Drilling Exponent: 0.53 - 0.8  Shale Density:  Background Gas: 5-/3 u. Max. Formation Gas:  Other Gas: Maximum Cane Chica 905 / 3  Fill: Wolf Tight Hole: Wolf Ave  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Free Estimated Pore Pressure: 8 67 Min. Estimated	Shale Factor:
Drilling Exponent: 0.53 - 0.8  Shale Density:	Shale Factor:
Drilling Exponent: 0.53 - 0.8  Shale Density:	Shale Factor:
Drilling Exponent: 0.53 - 0.8  Shale Density:	Trip Gas: 50 u @ 55/m  O U © 6/6m Zers C.F. D 700 m  Perage Size:  Practure Pressure (Open Hole):  Od Pore Pressure (Open Hole):  Estimated Fracture Pressure at TD:
Shale Density:  Background Gas: 5-10 u. Max. Formation Gas:  Other Gas: Maximum Cannechae 305 10  Fill: None Tight Hole: Mone Ave  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Frestimated Pore Pressure: 867 Min. Estimated Frestimated Pore Pressure (Open Hole): 867 @ 7	Trip Gas: 50 u @ 55/m  O U © 6/6m Zers C.F. D 700 m  Perage Size:  Practure Pressure (Open Hole):  Od Pore Pressure (Open Hole):  Estimated Fracture Pressure at TD:
Drilling Exponent: 0.53 - 0.8  Shale Density:	Trip Gas: 50 u @ 55/m  OU D 6/6m Zers C.F. D 700 m  erage Size:  Tracture Pressure (Open Hole):  Od Pore Pressure (Open Hole):  T.D. Estimated Fracture Pressure at TD:  100 u st 2 st 702 m.
Shale Density:  Background Gas: 5-10 u. Max. Formation Gas:  Other Gas: Maximum Cannection 905 10  Fill: NoNE Tight Hole: NONE  Cavings: Est %: NONE AVE  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Fr  Estimated Pore Pressure: 8-67 Min. Estimated Fr  Estimated Pore Pressure (Open Hole): 8-67 @ 7  Comments:  **X Cannection Gas Peaked at Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Source of the 901 is fine Source of the 901 is fine Singenic paners fine wind the singenic	Shale Factor:
Shale Density:  Background Gas: 5-10 u. Max. Formation Gas:  Other Gas: Mozinaum Connection 305 10  Fill: MONE Tight Hole: MONE  Cavings: Est %: NOME  Ave  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Frestimated Pore Pressure: 867 Min. Estimated  Max. Estimated Pore Pressure (Open Hole): 8-67 @ 7  Comments:  *** Connection Gas: Max. Formation Gas: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Formation Gas: Max. Formation Gas: Max. Formation Gas: Max. Formation Gas: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Formation Gas: Max. Formation Gas: Max. Formation Gas: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Formation Gas: Max. Formation Gas: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Max	Shale Factor:
Shale Density:  Background Gas: 5-10 u. Max. Formation Gas:  Other Gas: Maximum Cannection 905 10  Fill: NoNE Tight Hole: NONE  Cavings: Est %: NONE AVE  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: Min. Estimated Fr  Estimated Pore Pressure: 8-67 Min. Estimated Fr  Estimated Pore Pressure (Open Hole): 8-67 @ 7  Comments:  **X Cannection Gas Peaked at Max. Estimated Pore Pressure (Open Hole): 3-67 @ 7  Comments: Source of the 901 is fine Source of the 901 is fine Singenic paners fine wind the singenic	Shale Factor:



COMPANY ESSO AUST WELL TERRAKIHI #1
DATE02.04.90 TIME2400
DEPTH LAST REPORT DEPTH
RIG OPERATIONS PULLING OUT OF HOLE TO RUN LOGS AND CASING
·
REPORT BY REPORT RECEIVED BY (OPERATOR)
DRILLING REPORT
Bit No.: 2 Type: HTC X3A Size: 17/2" Jets: 18/18/16
On Bit: Footage: <u>\$90 m</u> Hours: <u>11.1</u> ROP: <u>\$3.2 m   HR</u> WOB: <u>10.35k   15 RPM: 120-130</u>
Pump Press: 2900 PS1 SPM: 180 Torque: 250 -350AMPTBR: 77, 900 CP 1: \$ 150/m CP B: \$109/m
HYDRAULICS REPORT
Mud Density In: 9.4 + Mud Density Out: 9.5 ECD: 9.6/ PV/YP: 5/5
Gels: 4/6 Salinity: 15,000 PPM CI Solids: 4 %
Hole Volume: 1194 661 Annular Volume: 1084 661 Tubing Volume: 60 561 Displaced Volume: 50 561
Oarbide Lag - Calculated Lag: 910 4 STK Flowrate: 930 GPM
Drillpipe Annular Vel (Max. Dia. Sec.): 669 FT/MIN Drillpipe Annular Vel (Open Hole): 81 FT/MIN
Drill Collar Annular Vel (Open Hole): 94.1 FT/m/N Critical Vel: 106.8 FT/m/N
Pressure Loss System: 2373 ps / Pressure Loss Bit: 15(2 ps / % Pressure Loss:
Nozzel Vel: 430 3 FT SEC Jet Impact Force: 1957-5 HHP: 547-8
PRESSURE PARAMETERS
Drilling Exponent: O·5 - 1 0 Flowline Temperature: 26.13 (
Shale Density: Shale Factor:
Background Gas: 15 u Max. Formation Gas: 25 u @ 1080 m. Trip Gas: 215 u @ 1141 m.
Other Gas: CONNECTION GAS - SEE BELOW
Fill: NILL Tight Hole: OVERPULL ON FIRST 15 STANDS MITTH MAX OF SOKIO
Cavings: Est %: TRACE Average Size: 10 × 10 × 10 / 07/22
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole):
Estimated Pore Pressure: 8.4 ppg Min. Estimated Pore Pressure (Open Hole): 8.4 ppg @ TD
Estimated Pore Pressure: 8.4 PP9 Min. Estimated Pore Pressure (Open Hole): 8.4 PP9 @ TD  Max. Estimated Pore Pressure (Open Hole): 8-6 PP9 @ 63600 Estimated Fracture Pressure at TD:
Max. Estimated Pore Pressure (Open Hole): 3-6 ppg @ 63601 Estimated Fracture Pressure at TD:
Max. Estimated Pore Pressure (Open Hole): 8-6, ppg @ 63600 Estimated Fracture Pressure at TD:  Comments:  * CONNECTION GAS CONTINUES TO REDUCE AFTEIR REPORTS
Max. Estimated Pore Pressure (Open Hole): 3-6 ppg @ 63601 Estimated Fracture Pressure at TD:
Max. Estimated Pore Pressure (Open Hole): 8-6 ppg @ 636n Estimated Fracture Pressure at TD:  Comments:
Max. Estimated Pore Pressure (Open Hole): 8-6, ppg @ 636M Estimated Fracture Pressure at TD:  Comments:
Max. Estimated Pore Pressure (Open Hole): 8-6, ppg @ 636M Estimated Fracture Pressure at TD:  Comments:
Max. Estimated Pore Pressure (Open Hole): 8-6, ppg @ 636M Estimated Fracture Pressure at TD:  Comments:



COMPANY ESSO AUST	WELL TERAKIHI XI	
DATE 03.04.90	TIME24° [°]	
DEPTH	LAST REPORT DEPTH	THE RESERVE TO THE PERSON OF T
RIG OPERATIONS _RUNNING	13388" CASING AND CEMENTING	
REPORT BY My Date	REPORT RECEIVED BY	_(OPERATOR)
DRILLING REPORT		
	Size: Jets:	
	ROP: WOB:	
Pump Press: SPM:	Torque: TBR: CP I: \$	**************************************
HYDRAULICS REPORT		
	ut: 9.45 ECD: PV/YP:	
Gels: 17/18 Salinity:	12,000 PPM CI Solids: 6	%
Hole Volume: 836661 Annular Volume:	Tubing Volume: Displaced Volume	ne:
Carbide-Lag Calculated Lag:	Flowrate:	
Drillpipe Annular Vel (Max. Dia. Sec.):	Drillpipe Annular Vel (Open Hole):	
Drill Collar Annular Vel (Open Hole):	Critical Vel:	
Pressure Loss System:P	Pressure Loss Bit:	
Nozzel Vel:	Jet Impact Force: HHP:	
PRESSURE PARAMETERS		
Drilling Exponent:	Flowline Temperature:	
-	Shale Factor:	
-	mation Gas: @ Trip Gas:	_ @
Other Gas:		
Fill: N/L Tight Hole: _	· ·	
Cavings: Est %:	Average Size:	
ESTIMATED PORE AND FRACTUR	RE PRESSURE	
	Min. Estimated Fracture Pressure (Open Hole):	
Estimated Pore Pressure: 8.5 ppg	Min. Estimated Pore Pressure (Open Hole): 8.5ppg	@ <i>TD</i>
Max. Estimated Pore Pressure (Open Hole):	Estimated Fracture Pressure at TI	D:
Comments:		
		· · · · · · · · · · · · · · · · · · ·
·		
		· · · · · · · · · · · · · · · · · · ·
	·	
		<del></del>



COMPANY ESSO AUST WELL TERAKIHI **1
DATE 04.04.90 TIME 2400
DEPTHLAST REPORT DEPTH
RIG OPERATIONS DRILLING 121/4" HOLE
REPORT BY
DRILLING REPORT
Bit No.: 3 Type: PDC DS40 Size: 121/4" Jets: 3 x 13 2 x 15
On Bit: Footage: 9m Hours: 0.8 ROP: 11.25 M/HR WOB: 5-15 k/5 RPM: 130
Pump Press: 1850 ps / SPM: 150 Torque: 200-600 AMPTBR: 9, 696 CP 1: \$ 547 m CP B: \$5807 m
HYDRAULICS REPORT
Mud Density In: $9.2$ Mud Density Out: $9.2+$ ECD: $9.51$ PV/YP: $8/40$
Gels: 16/17 Salinity: 17,500 PPM CI Solids: 4 %
Hole Volume: 840 661 Annular Volume: 727 651 Tubing Volume: 60 361 Displaced Volume: 53 351
Oarbide-Lag-Calculated Lag: 6/05 STKS Flowrate: 793 GPM
Drillpipe Annular Vel (Max. Dia. Sec.): 59.5 FT/MIN Drillpipe Annular Vel (Open Hole):
Drill Collar Annular Vel (Open Hole): 225.9 FT/MIN Critical Vel: 591.9 FT/MIN
Pressure Loss System: 1507 PSI Pressure Loss Bit: 957 PSI % Pressure Loss: 64
Nozzel Vel: 341.3 F+/56C Jet Impact Force: 1289.2 15 HHP: 442.9 HP
PRESSURE PARAMETERS
Drilling Exponent: 0.75 - 1.65 Flowline Temperature: 31.5°C
Shale Density: Shale Factor:
Background Gas: Max. Formation Gas: @ Trip Gas: 2 U — @ [1/4/M
Other Gas:
Fill:Tight Hole:
Cavings: Est %: TNACE Average Size: 10 × 10 MA:.
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance: 15.96 ppg (6.36ppg) Min. Estimated Fracture Pressure (Open Hole): 16.0 ppg (9.540) Estimated Pore Pressure: 8.5 ppg Min. Estimated Pore Pressure (Open Hole): 8.5 ppg (9.540) Estimated Pore Pressure at TD: 16 ppg (1.50 m) Estimated Fracture Pressure at TD: 16 ppg (9.540)
Estimated Pore Pressure: 8:5:009 Min. Estimated Pore Pressure (Open Hole): 8:5 ppg @ 5405
Max. Estimated Pore Pressure (Open Hole):
Comments:
DRILL LENT FLOAT & SHOE TO 1141M & NEW HOLE TO 1144M - PERFORM FIT TO 1300PS, AND 16 PPG FRAM.



PANY ESSO AUST	WELL TERAKIHI XI	
)ATE 05, 04, 90	TIME 2400	
DEPTH 1349 m LAST RI		
RIG OPERATIONS DRILLING 121/4" 1		
REPORT BY D. NEW REPORT	RECEIVED BY(OPERATO	JR)
DRILLING REPORT		
Bit No.: NB#4 Type: HTC AT-JI Size:		
On Bit: Footage: 134m Hours: 7   N/25 ROP:		
Pump Press: 2750 SPM: 156 Torque: 200-3	SC TBR: 71500 CP 1:\$ 300 CP B:\$ 343	
HYDRAULICS REPORT		
Mud Density In: 9.3 Mud Density Out: 9.3	•	
Gels: 11 12 Salinity: 16,000		
Hole Volume: 935 BBC Annular Volume: 806 BBC To	•	
Carbide Lag-Calculated Lag:		
Drillpipe Annular Vel (Max. Dia. Sec.): 58.7 FT/min		
Drill Collar Annular Vel (Open Hole): 222.7 FT/min		
Pressure Loss System: 1243 psi Pressure Loss Bit:	•	
Nozzel Vel: 426 FT / SEC Jet Impact F	force: 1603 LB HHP: 697.4 HP	
PRESSURE PARAMETERS	- ^ 0	·
Drilling Exponent: 1.0-1.4 (NORMAL)	·	
Shale Density: 2.3 (ESTIMATED)		
Background Gas: 3 - 4 - Max. Formation Gas: 8 - Other Gas: 11	@ 1280m_Trip Gas:@	
Fill: Tight Hole: NIL		
	verage Size: SMALL, BLOCKY	
ESTIMATED PORE AND FRACTURE PRESSURE	,,	
Kick Tolerance: 5 S Li3 (GHL Min. Estimated	Fracture Pressure (Open Hole): 16-0 ppc Emcu	
Estimated Pore Pressure: 8 Sps Emw Min. Estimat	ted Pore Pressure (Open Hole): 1596 psi @ 1124 m	
Max. Estimated Pore Pressure (Open Hole): 1952 pg @	1349m. Estimated Fracture Pressure at TD: 16.5	
Comments: PRESSURE TREMPS NO	PMAL.	
LITHCLOGY: LIMES	-alp	
No shows		
	<u>-</u>	



		(SM)	1				
					_ WELL TE	ERAHIHI NO	2
С	OMPANY	Esso F	JUST.		WELL TIME2 DRT DEPTHI	4 CCHES	
	ATE	GTH HPP	16 110	LACT DEDC	DET DEPTH	349m	
١r	FPTH	1650					
	RIG OPFF	RATIONS DR	14 121	4 MOLE	CEIVED BY	-	(OPERA
١.	SEDORT I	BY D. NEU	<u>U</u>	. IILI OITT			
_		DEDODT				S > 1	·
	DRILLING	REPORT	ype: MTC A-	T Size:	12 1/4 17.7 M/MB. OTBR: 211000	WOB: 40	RPM: 1 3
	Bit No.:	. 435m H	ours: 24.6	MPSROP:_	1 / MIMIZ.	CP 1:8 297	_ CP B:\$_2c
		9 900 SPM:	132 10	quo.			
L	Pump Press:	LICE REPORT			سر روی سر	† DVIVD:	6/13
١	HYDRAU	LICS REPORT	Mud Density Out: _	94+	ECD:PPM CI	PV/YP:	
1	Mud Density	In:	Salinity: —	16000	ECD: PPM CI	Solids:	olume: 65
	Gels:	111122	Appular Volume:	990BBL Tut	ppm Ci ping Volume:	Displaced vo	numo.
	Hole Volume	e: 11441515L	LOLE IN C	sauce	Flowrate: Drillpipe Annular Vel (Op	160 0(19	9 FT I MI
١	Carbide Lag	-Calculated Lag:	(L9.7	PT[MIN D	Flowrate: Drillpipe Annular Vel (Op Critical Vel:	en Hole):	-/min
	Drillpipe An	nnular Vel (Max. Dia. S	216.4	PT MIN	orillpipe Annular Vel (Op Critical Vel: %	471	1.5%
	Drill Collar A	nnular Vel (Open Hole) ۲۰۰۱	57061 Pro	essure Loss Bit:	Critical Vel: %	Pressure Loss:	6. M
	Pressure Lo	oss System:	mr/cer	Jet Impact F	orce: 1536 L	<u>С</u> ННР:	
	N Vol	List Lite	F1   36 C				
	PRESS	URE PARAME	TERS	MA(.)	Flowline Temperati	ure:	
	Drilling Exp	ponent: 1.2 -	·4 (NOILI	71/1-/	Shale Factor:		
	Shale Den	sity:	May For	mation Gas:	Shale Factor:	Trip Gas:	
	Backgroun	nd Gas: 5-13	<u>دعد ،                                   </u>	maion dus.			
	1	N114					
	Fill:	NIL.		0%)	Average Size: Sm	ACC, BLOS	D4
	Cavings:	Est %: MIN C		DE PRESSIII	RE		, E
	ESTIM	MATED PORE	ND FRACIU	Min Estimate	RE ed Fracture Pressure (Or mated Pore Pressure (O	pen Hole):	reg L
t		/ 5				pen Hole): 1596	PVL@
	Estimate	ed Pore Pressure:	<u> </u>	388 pg/ @	1650m E	stimated Fracture Pressi	ure at ID:
	Max. Es	Limeted Pore Pressult	(Open no.e)			NING MENUE	
	Comr		012131 V CSE	<del></del>	ا موان معرف در سد س	てん) ビガルし	7
		M	OLE MA	1 BE NO	ted on 1	<u> </u>	
*	-				INC ANDRO	0BL	
1		ſ	PESSCE	RE TRE	uds Norn		
					IMESTOP		
1			-ITMOL	<u> </u>	•		
							EL P/N 1842
1	\					FORTH ON THE	REVERSE SID



WELL TERAHIHI No	<u> </u>
COMPANY ESSO AUST WELL TERALIHI NO	
DATE TIME	
DATE THE PRICE   THE LAST REPORT DEPTH _ IGSO M	
RIG OPERATIONS DRILL 12'14" HOLE	(OPERATOR)
REPORT BY D. NEW REPORT RECEIVED BY SIGNED	_,
DRILLING REPORT	14,1 × 15
1 7 10 5 DOD: 1 2 W 1 7 K WOD.	• • • • •
On Bit: Footage: 25 m Hours: 11 HR\$ ROP: 15 M TING WOS Pump Press: 2600 SPM: 156 Torque: 350-750 TBR: 37000 CP I: \$ 121	CP B:\$ 776
HYDRAULICS REPORT  Mud Density In: 9-5 Mud Density Out: 9-6 ECD: 9-67 PV/YP: 6	18
PPM CL Solids:	
E / COS comments of the Police VIII / Flowfale.	
Drilloine Annular Vel (Open Hole):	
777 Critical Vel:	
% Pressure Loss. —— % Pressure Loss. ——	
Pressure Loss System: 1416 F97 Pressure Loss Bit	/ J   ITF .
PARAMETERS	
Drilling Exponent: 1.0 CNORMAL FOR THIS Flowline Temperature:	_@ <u> </u> 800
Background Gas:Max. Formation Gas: @ Has a second control of the seco	
Other Gas: NIL  Fill: NIL Tight Hole: UP TO BOHLB DRAG ON TRIP	OUT.
Fill: NIL Tight Hole: OF 10 BOTTON TIGHT HOLE: SIMPLE, BLOCK!  Cavings: Est %: MINOR (LIOY) Average Size: SMALL, BLOCK!	
DDFOCUDE	
ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance:  Signated Pore Pressure:  Signated Pore Pressure at the Computation of the Pressure at the Computation of the Pressure at the Pore Pressure at th	PA EMW
Estimated Pore Pressure: 8.5 ppg Emw Min. Estimated Pore Pressure (Open Hole): 1596 ps	1@ 1124m
- (0 Hole)	<u></u>
CRESCURP TRENDS NORMAL	
LITHOLOGY: LIMESTONE	
LICTULOGI. TITLE	
EL P THIS REPORT IS GOVERNED BY THE TERMS AND CONDITIONS AS SET FORTH ON THE REVER	P/N 18429 MAY 19 RSE SIDE
THIS REPORT IS GOVERNED BY THE TERING AND CONDITIONS AS SET TO	Same Same Same Same Same



	SM TOPALINI NO
	WELL I CHANGE
COMP	WELL TERAHIMI NO WELL TERAHIMI NO TIME 24: OOMES
·	BTH III
DATE	1 2235m
DEPT	
RIG O	LAST REPORT DE.  PERATIONS DRILLING 12'14" HOLE  PERATIONS DRILLING 12'14" HOLE  REPORT RECEIVED BY
REPC	RT BY
DRILL	RT BY
DUIL	RRISH3 Type: MACREO DE 25.2 mIMP WOB: 300
Bit No.:	ING REPORT  RRISH3 Type: MACRICE OS40 Size: 12'14 Jets: 3'4'' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7' 7
On Bit:	2900 SPM: 159 Torque: 330 12 15
Pump F	RAULICS REPORT  PV/YP:  Bensity In: Mud Density Out: PPM CI Solids: Poly  Salinity: Salinity: PPM CI Solids: PSM CI Solids:
HYD	RAULICS REPORT  PV/YP:  ECD:
Mud E	ensity In:PPM CI SoliusPPM CI SoliusPicplaced Volum
Gels:	PPM CI Solids: 10 %  Italia Salinity: 17,000 PPM CI Solids: 10 %  Italia Salinity: 1222 BBL Tubing Volume: 123 BBL Displaced Volume: 796 GPM  Volume: 1424 BBL Annular Volume: 116 AUG MOUS Flowrate: 156 FI
Holo	Volume: 142413134 Annular Volume:
Hole	Volume: 14241316 Annular Volume: 1222 1316 Tubing Volume: 796 GPM  The Lag-Calculated Lag: 4765716 (11.6" AUG HOLE Flowrate: 156 FT  The Annular Vel (Max. Dia. Sec.): 52 FT   MIN
Carb	Critical Vel: 353:1 FT MIS
Drill	Collar Annular Vel (Open Hole): 227FT (MIN Critical Vel. C
Noz	Collar Annular Vel (Open Hole):  Source Loss System:  Sel Vel:  382.3 FT   SEC
PF	Tel Vel:
	Shale Factor:
יוטו	Shale Factor:Shale Factor:
Sr	Max. Formation Gas:Max. Formation Gas:
B	her Gas: PIL Tight Hole: VIL 13LOCHY
0	her Gas: PIL  Tight Hole: DIL  Average Size: SMALL 13LOCHY  avings: Est %: LRS THAN 10分c Average Size: SMALL 13LOCHY
	1.500 1717
	avings: Est %: LEZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
	Avings: Est %: LEGS (TIME PRESSURE PRESSURE STIMATED PORE AND FRACTURE PRESSURE  Min. Estimated Fracture Pressure (Open Hole): 1596 p.  Min. Estimated Pore Pressure (Open Hole): 1596 p.  Min. Estimated Pore Pressure (Open Hole): 3204 ps. @ 2235 Estimated Fracture Pressure
	(ick Tolerance: 3.2 ppg EMW Min. Estimated Pore Pressure (Open Hole). 1. Estimated Pore Pressure: 8.5 ppg EMW Min. Estimated Pore Pressure (Open Hole): 3204 psi @ 2235 Estimated Fracture Pressure  Max. Estimated Pore Pressure (Open Hole): 3204 psi @ 2235 HOLE UNDER
	Estimated Pore Pressure: 277 04 051 @ 2235 Estimated Fracture Pressure
	Estimated Pore Pressure:
	Comments: CARBIDE DATH TERD ON A
1	Max. Estimated Pore Pressure (Open ANDI CATES FLOOR ON E  COMMENTS: CARBIDE DATA INDICATES FLOOR ON E  TIGHT HOLE MAY BE ENCOUNTERD ON E  TIGHT HOLE MAY BE ENCOUNTERD ON E
	PRESCURE TRENDS PORTINE OF WHICH IS OFSET DUE TO TYPE OF
	WHICH
†: •	USED
1	LITHOLOGY: LIMESTONE
1	
Ę	- COURTIONS AS SET FORTH ON THE R



SM)	;
	WELL TERBLIHI
COMPANY ESSO AUST	WELL TERBLIEL  TIME 24:00 4
DATE 9TH APRIL 1990	TIME
DATE	LAST REPORT DEL
DEPTH 2506M RIG OPERATIONS DRILL 12'14	HOLE
RIG OPERATIONS DELLE 12-16 REPORT BY D. NEW	REPORT RECEIVED BY
REPORT BY D. NEW	7.17
DRILLING REPORT	S40 Size: 12'/4 Jets: 3×13.  ROP: 23.5 m/HR WOB: 2-15
Bit No.: RRBH3 Type: Type: Type: 71.5	2ROP:
On Bit: Footage: 732 Hours:	S40 Size: 1274 2 ROP: 23.5 m/HR WOB: 2-15 Forgue: 300-720 BR: 250000 CP 1:\$ 169
2850_SPM:	
LIVERALILICS REPORT	
Mud Density In: 9.5* Mud Density Out	t: 9 6 ECD:
13/14 Salliny	Set 13/3C Displace
15531313C Annulai Volumo -	Elourate:
Colculated Lag:	Val (Open Hole):
Carbide Lay Cultural (Max. Dia. Sec.): 51 F	Drillpipe Annular Ver (Open An
Drillpipe Annular Ver (Manuel 222:	FT MIN CHILDREN OF Pressure Loss:
Drill Collar Annular Ver (Open 1	Pressure Loss Bit: 1190 pg1 % Pressure Loss:
Pressure Loss System.	Pressure Loss Bit:
Negrol Vel: 314	
Nozzei vei.	~~°
PRESSURE PARAMETERS	Flowline Temperature: 30°
PRESSURE PARAMETERS	Flowline Temperature:
PRESSURE PARAMETERS	Flowline Temperature:
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5.9  Shale Density:	Flowline Temperature:
PRESSURE PARAMETERS  Drilling Exponent: 0-6-5-9  Shale Density:	Flowline Temperature:Shale Factor:Shale Factor:
PRESSURE PARAMETERS  Drilling Exponent: 0-6-5-9  Shale Density:	Flowline Temperature:Shale Factor:Shale Factor:
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5.9  Shale Density:	Flowline Temperature:Shale Factor:Shale Factor:Shale Factor:Sormation Gas: @
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5.9  Shale Density:	Flowline Temperature:Shale Factor:Shale Factor:Shale Factor:Sormation Gas: @
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5:9  Shale Density:  Background Gas: 5-74 Max. F  Other Gas: NIL  Fill: Tight Hole  Cavings: Est %: 4P TO 10%  ESTIMATED PORE AND FRACT	Flowline Temperature:Shale Factor:Shale Factor:
PRESSURE PARAMETERS  Drilling Exponent:	Flowline Temperature:  Shale Factor:  Shale Factor:  2250mTrip Gas:  E. NO TIGHT HOLE SA WIPER TO  Average Size:  SMALL I3 CO  WIRE PRESSURE  Min. Estimated Fracture Pressure (Open Hole):  GEMWMin. Estimated Pore Pressure (Open Hole):  155
PRESSURE PARAMETERS  Drilling Exponent:	Flowline Temperature:  Shale Factor:  Shale Factor:  2250mTrip Gas:  E. NO TIGHT HOLE SA WIPER TO  Average Size:  SMALL I3 CO  WIRE PRESSURE  Min. Estimated Fracture Pressure (Open Hole):  GEMWMin. Estimated Pore Pressure (Open Hole):  155
PRESSURE PARAMETERS  Drilling Exponent:	Flowline Temperature:  Shale Factor:  Shale Factor:  2250mTrip Gas:  E. NO TIGHT HOLE SH WIPER TO  Average Size:  SMALL I3CO  WIRE PRESSURE  Min. Estimated Fracture Pressure (Open Hole):  GEMWMin. Estimated Pore Pressure (Open Hole):  S97791 @ 2506 m Estimated Fracture I
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5:9  Shale Density:  Background Gas: 5-74 Max. F  Other Gas: NiL  Fill: Tight Hole  Cavings: Est %: 4-70 100/6  ESTIMATED PORE AND FRACT  Kick Tolerance: 2.5 PP  Estimated Pore Pressure: 6-70 Hole): 3-70 PP  Max. Estimated Pore Pressure (Open Hole): 3-70 PP  Comments: 5 PP  Comments: 5 PP	Flowline Temperature:  Shale Factor:  Shale Factor:  2250MTrip Gas:  END TIGHT HOLE ON WIPER TO  Average Size: SMALL I3 CO  Average Size: SMALL I3 CO  Average Size: SMALL I3 CO  EMW Min. Estimated Fracture Pressure (Open Hole): 156  GEMW Min. Estimated Pore Pressure (Open Hole): 156  SATPSI @ 250 Em Estimated Fracture I  THO ICHTES POSSI BLE OU  ENDICATORS SUGGEST AFT
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5:9  Shale Density:  Background Gas: 5-74 Max. F  Other Gas: NiL  Fill: Tight Hole  Cavings: Est %: 4-70 100/6  ESTIMATED PORE AND FRACT  Kick Tolerance: 2.5 PP  Estimated Pore Pressure: 6-70 Hole): 3-70 PP  Max. Estimated Pore Pressure (Open Hole): 3-70 PP  Comments: 5 PP  Comments: 5 PP	Flowline Temperature:  Shale Factor:  Shale Factor:  2250MTrip Gas:  END TIGHT HOLE ON WIPER TO  Average Size: SMALL I3 CO  Average Size: SMALL I3 CO  Average Size: SMALL I3 CO  EMW Min. Estimated Fracture Pressure (Open Hole): 156  GEMW Min. Estimated Pore Pressure (Open Hole): 156  SATPSI @ 250 Em Estimated Fracture I  THO ICHTES POSSI BLE OU  ENDICATORS SUGGEST AFT
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5:9  Shale Density:  Background Gas: 5-74 Max. F.  Other Gas: NiL  Fill: Tight Hole  Cavings: Est %: UP TO 10%  ESTIMATED PORE AND FRACT  Kick Tolerance: 2.8 PPO  Estimated Pore Pressure: 8:5 CP  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETER	Flowline Temperature:  Shale Factor:  Shale Factor:  2250 MTrip Gas:  END TIGHT HOLE ON WIPER TO  Average Size: SMALL BLOOM  Aver
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5:9  Shale Density:  Background Gas: 5-74 Max. F.  Other Gas: NiL  Fill: Tight Hole  Cavings: Est %: UP TO 10%  ESTIMATED PORE AND FRACT  Kick Tolerance: 2.8 PPO  Estimated Pore Pressure: 8:5 CP  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETER	Flowline Temperature:  Shale Factor:  Shale Factor:  2250mTrip Gas:  END TIGHT HOLE ON WIPER TO  Average Size:  SMALL BLOOM  Average Size:  Min. Estimated Fracture Pressure (Open Hole):  GEMWMin. Estimated Pore Pressure (Open Hole):  S97799 @ 2506m Estimated Fracture  D THDICHTES POSSIBLE OU  THDICHTES TOPE WITH
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5:9  Shale Density:  Background Gas: 5-74 Max. F.  Other Gas: NiL  Fill: Tight Hole  Cavings: Est %: UP TO 10%  ESTIMATED PORE AND FRACT  Kick Tolerance: 2.8 PPO  Estimated Pore Pressure: 8:5 CP  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETER	Flowline Temperature:  Shale Factor:  Shale Factor:  2250MTrip Gas:  END TIGHT HOLE ON WIPER TO  Average Size: SMALL I3 CO  Average Size: SMALL I3 CO  Average Size: SMALL I3 CO  EMW Min. Estimated Fracture Pressure (Open Hole): 156  GEMW Min. Estimated Pore Pressure (Open Hole): 156  SATPSI @ 250 Em Estimated Fracture I  THO ICHTES POSSI BLE OU  ENDICATORS SUGGEST AFT
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5:9  Shale Density:  Background Gas: 5-74 Max. F.  Other Gas: NiL  Fill: Tight Hole  Cavings: Est %: UP TO 10%  ESTIMATED PORE AND FRACT  Kick Tolerance: 2.8 PPO  Estimated Pore Pressure: 8:5 CP  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  MAX. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETERS  PRESSURE PARAMETERS  Max. Estimated Pore Pressure (Open Hole): 3  PRESSURE PARAMETERS  PRESSURE PARAMETER	Flowline Temperature:  Shale Factor:  Shale Factor:  2250mTrip Gas:  END TIGHT HOLE ON WIPER TO  Average Size:  SMALL BLOOM  Average Size:  Min. Estimated Fracture Pressure (Open Hole):  GEMWMin. Estimated Pore Pressure (Open Hole):  S97799 @ 2506m Estimated Fracture  D THDICHTES POSSIBLE OU  THDICHTES TOPE WITH
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5.9  Shale Density:	Shale Factor:  Shale Factor:  Shale Factor:  2250mTrip Gas:  E: No Tight Hole on wifer The Average Size:  Average Size:  Small Is an wifer The Average Size:  Average Size:  Small Is an wifer The Stimated Fracture Pressure (Open Hole):  Genw Min. Estimated Pore Pressure (Open Hole):  S977psi @ 250cm Estimated Fracture Is an Estimated Fracture Is an Estimated Fracture Is an Island Section Decreased Suggestion Decreased Suggesti
PRESSURE PARAMETERS  Drilling Exponent: 0.6-5.9  Shale Density:	Flowline Temperature:  Shale Factor:  Shale Factor:  2250mTrip Gas:  END TIGHT HOLE ON WIPER TO  Average Size:  SMALL BLOOM  Average Size:  Min. Estimated Fracture Pressure (Open Hole):  GEMWMin. Estimated Pore Pressure (Open Hole):  S97799 @ 2506m Estimated Fracture  D THDICHTES POSSIBLE OU  THDICHTES TOPE WITH



WELL Topping high
COMPANY ESSO AUST WELL TERAHIMI NO!
DATE 10TH APRIL 1990 TIME 24:00
DEPTH LAST REPORT DEPTH SOCIO
RIG OPERATIONS WIPER TRIP PRIOR TO CORE NO!
REPORT BY D. NEW REPORT RECEIVED BY(OPERATOR)
DRILLING REPORT
Bit No : 12 13 # 3 Type: PDC DS-40 Size: 12/4 Jets: 3×13 1×14 1×15
On Bit: Footage: 1070 Hours: 41.2 ROP: 26.0 m/Hb WOB: 5-20 RPM: 100-140
Pump Press: 2900 SPM: 160 Torque: 300-720 TBR: 312000 CP I: \$ 120 CP B: \$ 229
HYDRAULICS REPORT
Mud Density In: 9.51 Mud Density Out: 9.6 ECD: 9.7 PV/YP: 15/20
Gels: 46 Salinity: 30,000 PPM CI Solids: 8/6 %
Hole Volume: 1715 BBL Annular Volume: 1463 Tubing Volume: 158 Displaced Volume: 94 BBL
Carbide Lag-Calculated Lag: +799 5745 (13" AVE HOLE DIA) Flowrate: 800
Drillpipe Annular Vel (Max. Dia. Sec.): 52.3 FT [MIN] Drillpipe Annular Vel (Open Hole): 156.8 FT [MIN]
Drill Collar Annular Vel (Open Hole): 227 8 FT   MIN Critical Vel: 389 7 FT   MIN .
Pressure Loss System: 1648 ps; Pressure Loss Bit: 1252 ps; % Pressure Loss: 43.2%
Nozzel Vel: 384.2 FT   SEC Jet Impact Force: 1511.4 LB HHP: 584.4 HP.
PRESSURE PARAMETERS
Drilling Exponent: 0.7-1.0 Flowline Temperature: 29°C
Shale Density:Shale Factor:
Background Gas: 2-54 Max. Formation Gas: 800 @ 2844 m Trip Gas: @@
(16%)
Other Gas: OLL
Other Gas: NIL  Fill: NIL Tight Hole: Up TO 100HLB 0/P 2776m - 2495.
Other Gas: NIL  Fill: NIL Tight Hole: UP TO 100HUB 0/P 2776m - 2495.  Cavings: Est %: LESS THAN 10% Average Size: SIMBLE, BLOCKY.
Other Gas: NIL  Fill: NIL Tight Hole: UP TO 100HLB 0/P 2776m - 2498.  Cavings: Est %: LESS THAN 10% Average Size: SIMALL, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE
Other Gas: NIL  Fill: NIL Tight Hole: UP TO ICOHUS OF 2776m - 2495.  Cavings: Est %: LESS THAN ICO Average Size: SMALL, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2-6 p.g. EMW Min. Estimated Fracture Pressure (Open Hole): 16-0 ppg EMW
Other Gas: NIL  Fill: NIL Tight Hole: UP TO ICOHUS OF 2776m - 2498.  Cavings: Est %: LESS THAN IC % Average Size: SMALL, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 pg Emw Min. Estimated Fracture Pressure (Open Hole): 16 Oppg Emw  Estimated Pore Pressure: 8.5 pg Emw Min. Estimated Pore Pressure (Open Hole): 1596 @ 1124m
Other Gas: NIL  Fill: NIL Tight Hole: UP TO ICOHUS O[P 2776m - 2498.  Cavings: Est %: LESS THAN IC % Average Size: SMALL, ISLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 pg Emw Min. Estimated Fracture Pressure (Open Hole): 16 Oppg Emw  Estimated Pore Pressure: 8.5 ppc Emw Min. Estimated Pore Pressure (Open Hole): 1596 @ 1124m  Max. Estimated Pore Pressure (Open Hole): 4085 ps. @ 2844 m Estimated Fracture Pressure at TD: 20 ppg.
Other Gas: NIL  Fill: NIL Tight Hole: UP TO ICOHUS OF 2776m - 2498.  Cavings: Est %: LESS THAN IC % Average Size: SMALL, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 pg Emw Min. Estimated Fracture Pressure (Open Hole): 16 Oppg Emw  Estimated Pore Pressure: 8.5 pg Emw Min. Estimated Pore Pressure (Open Hole): 1596 @ 1124m
Other Gas:  Fill:  NIL  Tight Hole:  UP TO IOCHUS OF 2776m - 2495.  Cavings: Est %:  LESS THAN IO %  Average Size:  SMALL, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance:  2.6 pg Emw Min. Estimated Fracture Pressure (Open Hole):  Estimated Pore Pressure:  Min. Estimated Pore Pressure (Open Hole):  Max. Estimated Pore Pressure (Open Hole):  4085 pg. @ 2844 m Estimated Fracture Pressure at TD:  Comments:  LITHOLOGY AT TD: SANDSTONE
Other Gas: NIL  Fill: NIL  Tight Hole: Up To IOOHUB OF 2776m - 2498.  Cavings: Est %: LESS THAN 10% Average Size: SIMBLE, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 pg Emw Min. Estimated Fracture Pressure (Open Hole): 16.0 pg Emw  Estimated Pore Pressure: B.S pg Emw Min. Estimated Pore Pressure (Open Hole): 1596 @ 1124m  Max. Estimated Pore Pressure (Open Hole): 4085 pg. @ 2844 m. Estimated Fracture Pressure at TD: 20 pg.  Comments:
Other Gas:  Fill: NIL Tight Hole: Up To 100HLB O[P 2776m - 2498.  Cavings: Est %: LESS THAN 10% Average Size: Simple BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 ppg Emw Min. Estimated Fracture Pressure (Open Hole): 16.0 ppg Emw  Estimated Pore Pressure: 8.5 ppg Emw Min. Estimated Pore Pressure (Open Hole): 1596 @ 1124m  Max. Estimated Pore Pressure (Open Hole): 4085 ps. @ 2844 m. Estimated Fracture Pressure at TD: 20 ppg.  Comments:  LITHOLOGY AT TD: SANDSTONE.  Max. GAS 8004 (1676) FRom 2844 m.
Other Gas: NIL  Fill: NIL Tight Hole: UP TO ICOHUS OF 2776m - 2495.  Cavings: Est %: LESS THAN 10% Average Size: SMALL, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 pg EMW Min. Estimated Fracture Pressure (Open Hole): 16.0 ppg EMW  Estimated Pore Pressure: 8.5 ppg EMW Min. Estimated Pore Pressure (Open Hole): 1596 @ 1124m  Max. Estimated Pore Pressure (Open Hole): 4085 ps. @ 2844 m Estimated Fracture Pressure at TD: 20 ppg.  Comments:  LITHOLOGY BT TD: SAND STONE  MBX GBS 8004 (1676) FROM 2844 m.  DXC UNRELIABLE DUE TO BIT TYPE.
Other Gas:  Fill: NIL Tight Hole: Up To 100HLB O[P 2776m - 2499.  Cavings: Est %: LESS THAN 10% Average Size: SIMPLE, BLOCKY.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 ppg Emw Min. Estimated Fracture Pressure (Open Hole): 16.0 ppg Emw  Estimated Pore Pressure: 8.5 ppg Emw Min. Estimated Pore Pressure (Open Hole): 1596 @ 1124m  Max. Estimated Pore Pressure (Open Hole): 4085 ps. @ 2844 m. Estimated Fracture Pressure at TD: 20 ppg  Comments:  LITHOLOGY AT TD: SANDSTONE.



COMPANY ESSO AUST.	WELL TERAHIHI No!
DATE LITH APPIL	TIME <u>24'00 нв</u>
DEPTH 2844 m LAST REF	_
RIG OPERATIONS C. B.U PRIOR TO EUT	
REPORT BY D. NEW REPORT R	
DRILLING REPORT	
Bit No.: NBHS Type: CHRIS RC476 Size:	1214 Jets: TFA= 1.0 SQIN.
On Bit: Footage: ROP:	
Pump Press: <u>550</u> SPM: <u>44</u> Torque:	
HYDRAULICS REPORT	,
Mud Density In: 9.6 Mud Density Out: 9.6	
Gels: 4/6 Salinity: 29,000	
Hole Volume: 1715 1381 Annular Volume: 1469 1381 Tubi	
Carbide Lag-Calculated Lag: + 7995THS (13" NUC HOL	
Drillpipe Annular Vel (Max. Dia. Sec.): 14.4 FT/MIN Dri	_
Drill Collar Annular Vel (Open Hole): 62.7 F7 ( M I N	
Pressure Loss System: SCSP51 Pressure Loss Bit: 4	•
Nozzel Vel: 70 · G FT SEC Jet Impact Fore	ce: <u>76.4 LB</u> HHP: <u>5.4 HP</u>
PRESSURE PARAMETERS	
Drilling Exponent:	
	Shale Factor:
Background Gas:Max. Formation Gas:	@ Trip Gas: 13 U @ 人界44
Other Gas:	
Fill: NIL Tight Hole: LAST STAPD 7	
	rage Size:
ESTIMATED PORE AND FRACTURE PRESSURE	1.5
Kick Tolerance: 2.6 ppg Emus Min. Estimated Fr.	<b></b>
Estimated Pore Pressure: 8.5 Min. Estimated	•
Max. Estimated Pore Pressure (Open Hole): 4095 @ 2	Estimated Fracture Pressure at TD:
Comments:	. 18
	\(\text{i}\)



COMPANY ESSO AUST. WELL TERAHIHI NOT
DATE 12 APRIL 1990 TIME 24:00
DEPTH 2862.5 LAST REPORT DEPTH 2844 m
RIG OPERATIONS CIRCULATE BOTTOMS UP PRIOR TO CUTTING CORE
REPORT BY D. NEW REPORT RECEIVED BY(OPERATOR)
DRILLING REPORT
Bit No.: RRCBHI Type: CHRIS RC476 Size: 1214 Jets: 10 SQ IN TFA.
On Bit: Footage: Hours: ROP: WOB: RPM:
Pump Press: 350-506PM: 42 Torque:TBR: CP I: \$ CP B: \$
HYDRAULICS REPORT (FOR CORE NOZ)
Mud Density In: 9.5 Mud Density Out: 9.5 ECD: 9.6 PV/YP: 15/20
Gels: 46 Salinity: 30,000 H PPM CI Solids: 9% %
Hole Volume: 172413134 Annular Volume: 177613134 Tubing Volume: 16213134 Displaced Volume: 851314
Carbide Lag—Calculated Lag: +8005745 Flowrate: 210 GPM
Drillpipe Annular Vel (Max. Dia. Sec.): 13.6 FT(mix Drillpipe Annular Vel (Open Hole): 40.8
Drill Collar Annular Vel (Open Hole): 59.2 FT MIN Critical Vel: 389.7 FT MIN.
Pressure Loss System: 362 psi Pressure Loss Bit: 38 psi % Pressure Loss: 9.5
Nozzel Vel: 66-7 FT ( SEC Jet Impact Force: 68-3 LB HHP: 4-6 HP.
NOZZEI VEI. OCC III PACCI CIOC.
PRESSURE PARAMETERS
PRESSURE PARAMETERS
PRESSURE PARAMETERS  Drilling Exponent: Flowline Temperature: 29.4° C   Shale Density: Shale Factor:
PRESSURE PARAMETERS  Drilling Exponent:
PRESSURE PARAMETERS  Drilling Exponent:
PRESSURE PARAMETERS  Drilling Exponent: Flowline Temperature: 29.4°C.  Shale Density: Shale Factor: Trip Gas: 110 u @ 2862.5  Other Gas: No coz or H25 with Trip Gas: (2.2%)  Fill: NIL Tight Hole: UP TO 100 HU3 O/P ON TRIP OUT WITH C/3
PRESSURE PARAMETERS  Drilling Exponent:
PRESSURE PARAMETERS  Drilling Exponent: Flowline Temperature: 27.4°C.  Shale Density: Shale Factor:  Background Gas: Max. Formation Gas: © Trip Gas: 110 u @ 2862.5  Other Gas: No Col or H25 with Trip Gas (2.2%)  Fill: NIL Tight Hole: UP TO (OCHU) O/F ON TRIP OUT WITH C/3  Cavings: Est %: 90% (FROM CORE) Average Size: SMALL.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 Min. Estimated Fracture Pressure (Open Hole): 1596 psi @ 1124  Max. Estimated Pore Pressure: 9.5 ppg EM w Min. Estimated Pore Pressure (Open Hole): 1596 psi @ 1124  Max. Estimated Pore Pressure (Open Hole): 4170 psi @ 2881 m . Estimated Fracture Pressure at TD: 20.1  Comments: Core No! Cut (8.5m. Rec 12.6m (68%))
PRESSURE PARAMETERS  Drilling Exponent:
PRESSURE PARAMETERS  Drilling Exponent: Flowline Temperature: 27.4°C.  Shale Density: Shale Factor:  Background Gas: Max. Formation Gas: © Trip Gas: 110 u @ 2862.5  Other Gas: No Col or H25 with Trip Gas (2.2%)  Fill: NIL Tight Hole: UP TO (OCHU) O/F ON TRIP OUT WITH C/3  Cavings: Est %: 90% (FROM CORE) Average Size: SMALL.  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance: 2.6 Min. Estimated Fracture Pressure (Open Hole): 1596 psi @ 1124  Max. Estimated Pore Pressure: 9.5 ppg EM w Min. Estimated Pore Pressure (Open Hole): 1596 psi @ 1124  Max. Estimated Pore Pressure (Open Hole): 4170 psi @ 2881 m . Estimated Fracture Pressure at TD: 20.1  Comments: Core No! Cut (8.5m. Rec 12.6m (68%))
PRESSURE PARAMETERS  Drilling Exponent:
PRESSURE PARAMETERS  Drilling Exponent:



COMPANY ESSO AUST WELL TERAHIHI NO!
DATE FRIDAY 13TH APRIL TIME 24:00
DEPTH 2881m. LAST REPORT DEPTH 2862 Sm.
RIG OPERATIONS RIH WITH PR#6
REPORT BY D. NEW REPORT RECEIVED BY (OPERATOR)
DRILLING REPORT
Bit No.: NB # 6 Type: SMITH F27D Size: 12 1/4" Jets: 16,16,14
On Bit: Footage: Hours: ROP: WOB: RPM:
Pump Press:         2850         SPM:         136         Torque:         TBR:         CP I:\$         CP B:\$
HYDRAULICS REPORT
Mud Density In: 9.5 Mud Density Out: 9.5+ ECD: 9.6 PV/YP: 15/19
Gels: 4 6 Salinity: 3000 PPM CI Solids: 9% %
Hole Volume: 1733 Annular Volume: 147488L Tubing Volume: 15988L Displaced Volume: 99138L
Carbide Lag-Calculated Lag: + 79957HS (13" AVE HOLE DIA) Flowrate: 680 GPM
Drillpipe Annular Vel (Max. Dia. Sec.): 446 FT min Drillpipe Annular Vel (Open Hole): 133-6 FT min
Drill Collar Annular Vel (Open Hole): 194.2 FT   MIN Critical Vel: 377.2 FT   MIN
Pressure Loss System: 1473 ps. Pressure Loss Bit: 1377 ps. % Pressure Loss: 48.3%
Nozzel Vel: 402.9 PT/ SEC Jet Impact Force: 1350.9 HPLI3 HHP: 547.7 HP
PRESSURE PARAMETERS
Drilling Exponent:Flowline Temperature:
Drilling Exponent: Flowline Temperature: 29° C  Shale Density: Shale Factor:
Drilling Exponent:
Plowling Exponent:
Drilling Exponent:
Drilling Exponent:  Shale Density:  Shale Factor:  Background Gas:  Max. Formation Gas:  Other Gas:  Fill:  NIL  Tight Hole: PTO IOOHLE OF ON TRIP OUT WITH CORE?  Cavings: Est %: UP TO 80%  Average Size:  SMALL (FROM CORE!NC)  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance:  2 Sprg Emw Min. Estimated Fracture Pressure (Open Hole):  Estimated Pore Pressure:  8 Sprg Emw Min. Estimated Pore Pressure (Open Hole):  Max. Estimated Pore Pressure (Open Hole):  CORE No 2: 2862-5-2881 M.  CORE No 2: 2862-5-2881 M.
Drilling Exponent:
Drilling Exponent:  Shale Density:  Shale Factor:  Background Gas:  Max. Formation Gas:  Other Gas:  NIL  Tight Hole: UP TO IOOHLE OP ON TRIP OUT WITH CORE Z Cavings: Est %: UP TO 80%  Average Size:  SMALL (FROM CORE INC.)  ESTIMATED PORE AND FRACTURE PRESSURE  Kick Tolerance:  2 Sprg Emw Min. Estimated Fracture Pressure (Open Hole):  Estimated Pore Pressure:  8 Sprg Emw Min. Estimated Pore Pressure (Open Hole):  Max. Estimated Pore Pressure (Open Hole):  CORE No. 2 : 2862 S - 2881 M.  CUT 185 M.
Drilling Exponent:
Drilling Exponent:
Drilling Exponent:



COMPANY ESSO AUST WELL TERAHIHI No!	
DATE 14TH APRIL 1990 TIME 24:00 HRS	
DEPTH 3040 (TD) LAST REPORT DEPTH 2881 m.	
RIG OPERATIONS CIRC BTMS UP PRIOR TO WIFER TRIP	
REPORT BY D. NEW REPORT RECEIVED BY(OPERA	ATOR)
DRILLING REPORT	
Bit No.: NB #5 Type: SMITH F27D Size: 12 14 Jets: 16,16,14	100
On Bit: Footage: 159 Hours: 15-4 ROP: 10-3 WOB: 40-50 RPM: 80	
Pump Press: 2900 SPM: 135 Torque: 250-750TBR: 81,200 CP I; \$ 370 CP B: \$ 5	
HYDRAULICS REPORT	
Mud Density In: 9.5 Mud Density Out: 9.5+ ECD: 9.6 PV/YP: 15/20	
Gels:	%
Hole Volume: 1809BBLAnnular Volume: 1537BBL Tubing Volume: 169BBL Displaced Volume: 103	15/5/
Carbide Lag-Calculated Lag: + 800 STH (13" AUG DIA) Flowrate: 675 GPM	
Drillpipe Annular Vel (Max. Dia. Sec.): 44-1 FT/min Drillpipe Annular Vel (Open Hole): 132.3 FT/m	<del>/ N</del>
Drill Collar Annular Vel (Open Hole): 192.3 F7/MIN Critical Vel: 389.7 F7/MIN.	
Pressure Loss System: 1551 p51 Pressure Loss Bit: 1349 p5/ % Pressure Loss: 46.56/6	
Nozzel Vel: 398.8 FT   SEC	<u> </u>
PRESSURE PARAMETERS	
Drilling Exponent: 1.0 (557) - 1.6 Flowline Temperature: 29°C	
Shale Density: Shale Factor:	
Background Gas: 0.5-1 4. Max. Formation Gas: 58 4 @ 2891 m. Trip Gas: 17.5 4 @ 288	31m.
( )thor (-32; ) - · ·	
Fill: NIL Tight Hole: REAM (WASH 2800 - 2881 M ON TRIP I	
Cavings: Est %: UP TO 80% (DEC TO 70% Average Size: SMACL PLATH - BLOCKY	
ESTIMATED PORE AND FRACTURE PRESSURE	
Kick Tolerance: 2.4 ppg Ema Min. Estimated Fracture Pressure (Open Hole): 16.0 ppg Ema	
Estimated Pore Pressure: B-5 ppg EMW Min. Estimated Pore Pressure (Open Hole): 1596 pq @ 1124  Max. Estimated Pore Pressure (Open Hole): 4400 psi @ 3040 m Estimated Fracture Pressure at TD: 19.1	ppc
	<del>                                      </del>
Comments: TORQUE OFTEN HI AND EPPATIC - POSSIBLY DUE	TO
HARD (CEMENTED?) BANDS IN THE FORMATION C	R
POSSIBUL DUE TO THE STABILIZER HANNGING	CEP.
LITHOLOGY: SANDSTONE.	



COMPANY ESSO AUST WELL TERAHIHI No I
DATE 15TH APPIL 1990 TIME 24:00 HPS
DEPTH 3040m (TD) LAST REPORT DEPTH 3040m
RIG OPERATIONS RUNDING WIRELINE LOGS (RFT'S)
REPORT BY D. NEW REPORT RECEIVED BY(OPERATOR)
DRILLING REPORT
Bit No.: N345 Type: Sm174 F27D Size: 12'/4 Jets: 16,16,14
On Bit: Footage: 159 Hours: 15 4 ROP: 10 3 WOB:RPM:
Pump Press:         SPM:         Torque:         TBR:         CP I: \$ CP B: \$
HYDRAULICS REPORT
Mud Density In: Mud Density Out: ECD: PV/YP:
Gels: Salinity:%
Hole Volume: Annular Volume: Tubing Volume: Displaced Volume:
Carbide Lag-Calculated Lag: Flowrate:
Drillpipe Annular Vel (Max. Dia. Sec.): Drillpipe Annular Vel (Open Hole):
Drill Collar Annular Vel (Open Hole): Critical Vel:
Pressure Loss System:
Nozzel Vel:
PRESSURE PARAMETERS
Drilling Exponent: Flowline Temperature:
Shale Density: Shale Factor:
Real/ground Gas: @ Trip Gas: @
Other Gas: 60 ppm H25 FROM RFT SMP No2
Fill: Tight Hole:
Cavings: Est %:Average Size:
ESTIMATED PORE AND FRACTURE PRESSURE
2 - Le Mas EMW Min Estimated Fracture Pressure (Open Hole): 6 - ppg EMW
Estimated Pore Pressure: 8.5 ppg Emw Min. Estimated Pore Pressure (Open Hole): 1596 psi @ 1124 m
Max. Estimated Pore Pressure (Open Hole): 4400 P71 @ 3040 Estimated Fracture Pressure at TD: 191 ppg
Comments:
Comments:





COMPANY ESSO AUST. WELL TEN	ION IHIHAS
DATE 17TH APRIL 1990 TIME 24	.100 HRS
DEPTH 3040M LAST REPORT DEPTH 30	040m
RIG OPERATIONS POOM AFTER WIPER TRIP	
REPORT BY D. NEW REPORT RECEIVED BY	(OPERATOR)
DRILLING REPORT	
Bit No.: 273 HG Type: SMITH F270 Size: 121/4 J	
On Bit: Footage: WIPHGER TRIP ROP: WO	
Pump Press: 2800 SPM: 130 Torque:TBR: CF	P I:\$ CP B:\$
HYDRAULICS REPORT	
Mud Density In: 95 Mud Density Out: 95 ECD: 96	PV/YP:
Gels:PPM CI Soli	
Hole Volume: 180913BL Annular Volume: 153713BL Tubing Volume: 16913BL	
Carbide Lag-Calculated Lag: + 800 57H5 Flowrate: 65	OGPM
Drillpipe Annular Vel (Max. Dia. Sec.): Drillpipe Annular Vel (Open Hole	
Drill Collar Annular Vel (Open Hole): Critical Vel:	
Pressure Loss System: % Pressure Loss Bit: % Pressure	re Loss:
Nozzel Vel: Jet Impact Force	HHP:
PRESSURE PARAMETERS	
THEOGOTIETTIO	
Drilling Exponent: Flowline Temperature:	
Drilling Exponent: Flowline Temperature: Shale Density: Shale Factor:	
Drilling Exponent: Flowline Temperature:	Gas: 9u @ 3040
Drilling Exponent: Flowline Temperature: Shale Density: Shale Factor: Background Gas: Max. Formation Gas: @ Trip Other Gas:	Gas: 9u @ 3040.
Drilling Exponent:	Gas: 9u @ 3040 (0.18%) AT 3040m,
Drilling Exponent: Flowline Temperature: Shale Density: Shale Factor: Background Gas: Max. Formation Gas: @ Trip Other Gas:	Gas: 9u @ 3040 (0.18%) AT 3040m,
Drilling Exponent:	Gas: 9u @ 3040 (0.18%) AT 3040m,
Drilling Exponent:	Gas: 9u @ 3040 (0.18%) AT 3040M, PLATY
Drilling Exponent:	Gas: 9u @ 3040. (0.18%)  AT 3040M.  PLATY.
Drilling Exponent:	Gas: 9u @ 3040. (0.18%)  AT 3040M.  PLATY.
Drilling Exponent:	Gas: 9u @ 3040. (0.18%)  AT 3040M,  PLATY.  @ acture Pressure at TD:
Drilling Exponent:	Gas: 9u @ 3040. (0.18%)  NT 3040M,  PLNTY.  @ acture Pressure at TD:  TRIP WERK
Drilling Exponent:	Gas: 9u @ 3040.  (0.18%)  AT 3040M.  PLATY.  @ acture Pressure at TD:  TRIP WERE  FPLINTERY.
Drilling Exponent:	Gas: 9u @ 3040.  (0.18%)  AT 3040M,  PLATY.  @ acture Pressure at TD:  TRIP WERE  SPLINTERY.  OF POSSIBLE
Drilling Exponent:	Gas: 9u @ 3040.  (0.18%)  AT 3040M,  PLATY.  @ acture Pressure at TD:  TRIP WERE  SPLINTERY.  OF POSSIBLE  OUSRPRESSURE.
Drilling Exponent:	Gas: 9u @ 3040.  (0.18%)  AT 3040M.  PLATY.  @ acture Pressure at TD:  TRIP WERE  SPLINTERY.  OF POSSIBLE  OUSRPRESSURE.
Drilling Exponent:	Gas: 9u @ 3040.  (0.18%)  AT 3040M.  PLATY.  @ acture Pressure at TD:  TRIP WERE  SPLINTERY  OF POSSIBLE  DUER PRESSURE.  WERE VERY

ii. Weekly Geological-Engineering Reports

30th Mar - 4 APR 1990

GEOLOGICAL-ENGINEERING REPORT No.1

ESSO AUSTRALIA Ltd.

Spud - 1150 meters

erakihi No.1

EXLOG U244 M. Sale, D. Thornton

#### OPERATIONS SUMMARY

Terakihi No.1 was spudded on the 30th March 1990 at 06:30 hours by the semi-submersible drilling rig "Southern Cross". All depths unless otherwise stated are in metres along hole below the RKB. RKB to mean sealevel was 21m and RKB to seafloor was 424 metres (sea depth 401m).

26" Hole Section : Spud to 551 metres.

After ballasting the rig to drilling depth, the TGB was run to the seafloor, due to a considerable angle, it was pulled and a section of 13.375" casing welded to it to aid in stability. NB#1, a HTC R1 26" run with a 26" hole opener, was picked up and spudded Terakihi No.1 at 06:30 hrs on the 30th March 1990. This bit drilled to 551m, a distance of 127m in 3.3 hrs at an average rate of penetration of 38.5 m/hr. The drilling fluid was seawater with Hi Vis sweeps being circulated on each connection. At 551m the hole was swept with a 100 bbl Hi Visc pill, a survey dropped and the bit tripped to the seafloor. The bit was tripped back to bottom with no fill and a 250 bbl Hi Visc pill spotted, and the bit pulled to run casing.

10 joints of 20", X56, 94ppf casing were then run and the shoe set at 540m. The casing was cemented with 750 sx class "G" cement.

#### 17.5" Hole Section: 551 - 1141 meters

After running the marine riser and BOP stack the 17.5" BHA and NB#2, a HTC X3A was picked up and run in the hole to the top of cement at 533m. The cement and shoe were drilled to 551m and new hole drilled to 1141m with no problems. At 1141m bottoms up was circulated, and a survey dropped (dev = 0.25 deg at 1141m). A 100 bbl Hi Visc slug was pumped around the hole to sweep the riser, and a slug pumped prior to pulling out of the hole to the shoe, where the survey barrel was retrieved. The bit was then run back to bottom with no fill being recorded. Bottoms up was then circulated to condition the mud and a slug pumped prior to pulling out of the hole to run wireline logs. The 17.5" BHA was laid out and wireline logs were run (BHC-GR-Cal) with no problems. The bit made 590m in 11.1 hrs (on bottom rotating) with an average rate of penetration of 53.2 m/hr, and was graded T2 B2 G IN.

60 joints of K55, 54.5 lb/ft, 13.375" casing were then run with the shoe set at 1124m. The casing was cemented with 1000 sacks of class "G" cement.

#### 12.25" Hole Section: 1141 - 1150 meters

After testing the stack and picking up the 12.25" BHA, NB#3 a HYCALOG PDC DS40, was run in the hole and drilled cement and the shoe track from 1099m. New hole was drilled to 1144m where bottoms was circulated and a leak off test taken to a gauge pressure of 1300 psi to give a fracture pressure of 16.0 ppg EMW.

Current operation as at 00:00 hrs 4th April 1990 is drilling ahead with NB#2 from 1150m.

#### BOREHOLE CONDITION

No hole problems were seen whilst drilling either the 26" or 17.5" hole sections. No fill was noted on the wiper trip at 1141m. A slight overpull was recorded on all 15 stands pulled to the shoe at 1141m of a maximum of 50 Klb, suggesting an in gauge hole. Trip gas recorded during this wiper trip indicated however, the hole may be washed out in some places.

#### FORMATION PRESSURE

#### a) Pore Pressure.

As the 26" hole was drilled with returns to the seafloor and therefore no meaningful pressure analysis is possible for this section (424m - 551m).

Connection gas encountered from 551m - 700m whilst drilling with 8.7 ppg mud indicates an estimated pore pressure in the region of 8.6 - 8.7 ppg EQMD, which is within the region expected from a salt water pressure gradient. The origin of this gas is thought to be from a biogenic window within the Gippsland Limestone. By 700m mud weight increased to 9.3 ppg and no connection gas was encountered. Other indicators suggest that the pore pressure gradient remained normal in the 17.5" hole.

The 12.25" hole section to 1150m appears to be normally pressured. Dxc exhibited a normal trend with only minor variation due to slight lithological changes. Gas values were generally fairly low and no connection or high trip gasses were recorded. Cutting were generally blocky and cavings were small, blocky and of only minor quantity. Flowline temperature was damped and unresponsive due to heat loss in the riser and the frequent additions of new mud and water.

#### b) Fracture Pressure

A leak off test was run at 1144m and taken to a surface pressure of 1300 psi with a 9.2 ppg mud weight to give a formation fracture pressure of 16.0 ppg EMW.

4th APR - 11th APR 1990

GEOLOGICAL-ENGINEERING REPORT No.2

1150 - 2844 meters

ESSO AUSTRALIA Ltd.

erakihi No.1

EXLOG U244 M. Sale, D. New.

OPERATIONS SUMMARY

12.25" Hole Section: 1141 - 2844 meters

After testing the stack and picking up the 12.25" BHA, NB#3 a Hycalog PDC DS40, was run in the hole and drilled cement and the shoe track from 1100m. New hole was drilled to 1144m where bottoms were circulated and a leak off test taken to a gauge pressure of 1300 psi to give a fracture pressure of 16.0 ppg EMW.

Drilling continued with NB#3 from 1144m to 1214m where returns were circulated, a survey dropped (dev = 0.5 deg at 1214m) and the bit pulled due to low rate of penetration. No overpull was recorded during the trip out. NB#3 drilled from 1141m to 1214m, a distance of 73m, in 5.7 hrs at an average rate of penetration of 12.4 m/hr and was graded 10% worn. The lithology was limestone grading to calcareous claystone.

NB#4, a HTC ATJ1 12.25" was picked up and run in the hole with no problems and no fill and drilled at rates of penetration varying from 10 to 30 m/hr. At 1774m a survey was run (Dev = 2.75 deg S52W) and the bit pulled due to high bit hours and low rate of penetration. This bit drilled 560m in 33.9 hrs at an average rate of penetration of 16.5 m/hr and was graded as T3 B3 G0. The lithology was limestone occasionally grading to calcareous claystone. Tight hole was recorded on the trip out with up to 80 klb overpull being recorded from most stands to the shoe.

RRB#3, a Hycalog PDC DS40 12.25" bit was then picked up and run in the hole with no problems and drilled through the Gippsland Limestone to 2273m at rates of penetration ranging from 10 to 40 m/hr. At 2273m a Hi Vis pill was circulated, a survey dropped (misrun) and a 20 stand wiper trip made with no hole problems. Drilling then continued through the Gippsland Limestone at rate of penetration varying from 10 to 25 m/hr to 2475m where the rate of penetration increased to over 30 m/hr marking the top of the Lakes Entrance formation. At 2506m the Seawater-gel mud system was displaced with a KCl-Polymer mud system. Drilling continued through the calcareous claystones of the Lakes Entrance Formation at rates of penetration varying from 20 to 50 m/hr. At 2841m the rate of penetration increased to over 60 m/hr and a flow check made at 2844m with no flow. This drilling break marked the top of the Latrobe Group, the primary target, and bottoms up were circulated with a maximum gas of 16% (800 u) and C1-C5 being recorded. Based on this it was decided to cut a core and a survey was dropped (Dev = 2.75 deg S13E at 2844m). A wiper trip was then made to the shoe with overpull of up to 100 klb being recorded from the interval 2776m - 2498m on the trip out. The bit was run back to bottom with no problems and bottoms up circulated with a trip gas of 64u (1.28%). The bit was then pulled with no hole problems. RRB#3 drilled from 1774m - 2844m, a distance of 1070m in 41.2 hrs (on bottom) at rates of

penetration varying from 10 to 60 m/hr and averaging 26 m/hr.

NB#5, a Christensen RC 476 12.25" core bit, was picked up and run in to cut core No.1. Tight hole was noted on the last stand of the trip in, the kelly picked up and the interval 2830m - 2844m reamed. Bottoms up were then circulated prior to cutting core No.1 with a trip gas of 13u (0.26%) being recorded.

#### BOREHOLE CONDITION

No hole problems were seen while drilling, however tight hole was noted on the bit trip at 1774m with up to 80 klb overpull being noted on the trip out. The trip in was clean and it would appear that the tight hole was due to slight hydration and swelling of the Gippsland Limestone. No hole problems were noted on the wiper trip at 2273m.

Up to 100 klb overpull was recorded from the interval 2776m - 2498m on the wiper trip at 2844m. The tight hole was attributed to hydrating and swelling of clays in the Lakes Entrance Formation and one trip through this section was all that was required to stabilize the hole. The interval 2830m - 2844m had to be reamed on the trip in with the core barrel.

#### FORMATION PRESSURE

#### a) Pore Pressure.

Pore pressure through the 12.25" hole section appears to have remained normal at 8.5 ppg EMW. The most reliable pressure indicators through this section were gas, which was generally low, and cavings which were generally only minor. Hole problems were generally minor and no fill was recorded after trips. While trip gasses of up to 64u were recorded the peaks were fairly sharp and gas values quickly returned to normal after bottoms up.

he Dxc plot was of little value below 1774m due to the use of a PDC bit below this depth as the Dxc equation is not applicable to this type of bit.

Flowline temperature was damped and unresponsive due to heat loss in the riser and was of little value in pressure detection.

#### b) Fracture Pressure

A leak off test was run at 1144m and taken to a surface pressure of 1300 psi with a 9.2 ppg mud weight to give a formation fracture pressure of 16.0 ppg EMW. Fracture pressures while drilling remained above this to reach a maximum of 20.6 ppg EMW at 2840m and it was considered unlikely that any mud losses due to hydraulic fracturing would occur.

Current operation at 24:00 hrs 11/04/90 is circulate bottoms up prior to cutting core 1.

11th APR - 18th APR 1990 2844 - 3040 meters

GEOLOGICAL-ENGINEERING REPORT No.3

ESSO AUSTRALIA Ltd.

Terakihi No.1

EXLOG U244 D. Marburger, D. New.

OPERATIONS SUMMARY

12.25" Hole Section: 2844 - 3040 meters

After finishing circulating bottoms up core 1 was cut from 2844m to 2862.5m (18.5m) in 1.4 hrs at an average rate of penetration of 13.2 m/hr. Tight hole was noted from the first two stands of the trip out with a maximum overpull of 100 klb. It was not possible to pump a slug resulting in a wet trip. While breaking out the core barrel it was discovered that the top joint of the inner fiberglass sleeve had become jammed in the outer barrel and had broken off at both the top and bottom. Both sleeves were layed down and 12.6m (68%) of sandstone recovered. As there were indications of hydrocarbons in the bottom of the core it was decided to cut another core.

The core barrel and RRCB#1 were run in the hole to 2805m and the interval 2805m - 2862.5m reamed with tight hole being noted at 2839m. Bottoms up were circulated with a trip gas of 110 units (2.2%) and the ball dropped. When the ball seated the pump pressure surged to 2000+ psi before returning to normal. It is likely that the fiberglass sleeve was jammed against the outer barrel and that this pressure surge burst the sleeve. Core 2 was then cut from 2862.5m to 2881m, a distance of 18.5m, in 1.7 hrs at an average rate of penetration of 10.9 m/hr. Tight hole was again noted on the trip out and it was necessary to pick up the kelly and backream from 2881m - 2788m. This tight hole may have been due to cuttings packing off round the BHA as the annular velocities while coring were low. The core sleeves were layed down (the top sleeve was broken about 5m from the top) and 9.9m (53.5%) of sandstone recovered.

The BOP's were tested and NB#5, a Smith F27D, picked up and run in the hole to 2800m where the kelly was picked up and the interval 2800m -2881m reamed/washed to bottom. Drilling continued through the sandstones of the Latrobe Group at rates of penetration varying from 60 to 2 m/hr. The torque seen on this bit run was erratic and often very high and the bit had to be pulled up and worked back to bottom on many occasions. At 3040m TD was reached, bottoms up circulated, and a 10 stand wiper trip made with only minor overpull being noted on the trip out. Bottoms up were again circulated, a survey dropped and the bit pulled to run logs. NB#5 drilled 159m in 15.4 hrs (on bottom) at an average rate of penetration of 10.3 m/hr.

Wireline logs were then run as follows:

Run 1: DLL-MSFL-LDT-CNL-GR-Cal

Run 2: RFT (10 pressure points, 1 sample)

Run 3: RFT (Two samples)

Run 4: BHC-GR-Cal

Run 5: SHDT

Run 6: WST

Run 7: CST (Shot 30, recovered 27)

On the basis of core and log data it was decided to case and suspend the well and RRB#6 was picked up and run in the hole for a wiper The interval 2995m to 3040m was reamed/washed on the trip in and a 100 bbl Hi Vis pill circulated with common small blocky to platy cavings (from the Latrobe Group?) being noted on bottoms up. The kelly was rat holed and an attempt made to pull out of the hole. This was not possible due to the BHA packing off and the kelly picked up and a 200 bbl Hi Vis pill circulated. Common fresh platy cavings (also from the Latrobe Group) were noted on bottoms up. hole instability did not appear to be due to overpressuring as the cavings were fairly small and were not curved. It is possible that the Latrobe Group siltstones are microfractured as this would produce the type of cavings seen. A wiper trip was then made to 2450m with the kelly being used to pump out singles over the interval 3010m - 2995m on the trip out and the same interval being reamed on the trip in. A 90 bbl 15.3 ppg pill was circulated and the bit pulled with the interval 3010m - 2995m being worked on the trip out.

222 joints of 9.625" N80 47 lb/ft casing were then run and cemented with the shoe at 3001m. The wellhead was then secured and the rig released.

#### BOREHOLE CONDITION

On both trips out of the hole with the core barrel the BHA was initially packed off and up to 100 klb overpull was recorded. This was probably due to the low flow rates and annular velocities used while coring being insufficient to remove the cuttings and lost core from the hole.

Hole problems were also noted on the wiper trip after logging with the interval 2995m to 3040m was reamed/washed on the trip in. A 100 bbl Hi Vis pill was circulated at 3040m with common small blocky to platy cayings (from the Latrobe Group?) being noted on bottoms up. The kelly was rat holed and an attempt made to pull out of the hole. This was not possible due to the BHA packing off and the kelly picked up and a 200 bbl Hi Vis pill circulated. Common fresh platy cavings (also from the Latrobe Group) were noted on bottoms up. hole instability did not appear to be due to overpressuring as the cavings were fairly small and were not curved. It is possible that the Latrobe Group siltstones are microfractured as this would produce the type of cavings seen. A wiper trip was then made to 2450m with the kelly being used to pump out singles over the interval 3010m -2995m on the trip out and the same interval being reamed on the trip in. A 90 bbl 15.3 ppg pill was circulated and the bit pulled with the interval 3010m - 2995m being worked on the trip out.

From 2881m to 3040m very high, erratic, torque was recorded. frequently causing the rotary table to stall out necessatating the bit being pulled up and worked back to bottom. This tight hole may have been due to the stabilizer hanging up in in gauge hole however the nature of the cutting seen while circulating Hi Vis pills after logging indicates that the siltstones of the Latrobe may be microfractured. If this were the case then the high torque may have been produced by the action of the bit on the fractures rather than the stabilizer.

#### FORMATION PRESSURE

#### a) Pore Pressure.

Pore pressure through the 12.25" hole section appears to have remained normal at 8.5 ppg EMW. The most reliable pressure indicators through this section were gas, which was generally low, and cavings which were generally only minor. Hole problems were generally minor and no fill was recorded after trips. While trip gasses of up to 110u (2.2%) were recorded the peaks were fairly sharp and gas values quickly returned to normal after bottoms up.

The tight hole seen on trips and while drilling below 2844m was attributed cuttings packing off round the BHA and to the stabilizer hanging up in gauge hole and was not an indicator of increasing pore pressure.

Below 2881m a conventional insert bit was used and Dxc indicated a normal trend.

Flowline temperature was damped and unresponsive due to heat loss in the riser and pits and was of little value in pressure detection. A gradual warming trend was noted to 2880m where both temperature in and temperature out showed a trend reversal and from 2880m to 3040m temperatures decreased. However delta T remained constant and this trend reversal was attributed to a decreasing ambient temperature at this time.

RFT's were run through the Latrobe sands and indicated that the formation was normally pressured at 8.35 ppg EMW and indicated a maximum formation pressure of 4048 psi at 2868.5m to give an extrapolated bottom hole pressure of 4292.4 psi. The RFT data indicates a near freshwater gradient for this well and hence a lower than estimated normal formation pressure gradient.

#### b) Fracture Pressure

A leak off test was run at 1144m and taken to a surface pressure of 1300 psi with a 9.2 ppg mud weight to give a formation fracture pressure of 16.0 ppg EMW. Fracture pressures while drilling remained above this to reach a maximum of 21.5 ppg EMW at 2840m (base of the Lakes Entrance Formation) and it was considered unlikely that any mud losses due to hydraulic fracturing would occur.

iii. Hydraulics Printouts

ESSO AUSTRALIA: Terakihi No.1

Date: 31 Mar 90 Time: 01:03

#### HYDRAULICS CALCULATIONS

1.00 cP 2.00 lb/cft^2 PLASTIC VISCOSITY YIELD POINT .2318 POWER LAW k .4150 POWER LAW n 551.00 m 551.00 m DEPTH VERTICAL DEPTH DEPTH OF RETURNS 551.00 m CUTTINGS BULK DENSITY 2.50 spc grv 8.70 lb/gal MUD DENSITY 397 bbl ACTIVE SURFACE MUD VOLUME 950 gal/min FLOW RATE 0 gal/min BOOSTER FLOW 1000 psi PUMP PRESSURE 5.00 gal/stk PUMP CAPACITY 20, 20, 20 BIT NOZZLES

								+
•	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS
		424.00 490.10 527.80	17.24 66.10 37.70	26.000/ 6.500 26.000/ 8.000	35.8 36.7 36.7 38.0 40.1	61.8 63.3 63.3 64.9 67.0	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.0

MUD HYDROSTATIC	8.70	lb/gal
FLOW CONTRIBUTION	.00	lb/gal
CUTTINGS CONTRIBUTION	0.00	lb/gal
EQUIVALENT CIRCULATING DENSITY	8.70	lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS	<del>-</del>	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	331.2 ft/sec 472.1 hp 1416.7 lb 35
TOTAL CALC. PRESS LOSS	2438 psi		

					+
; VOLUMES:	gal	bbl.	Strokes	Minutes @ 190 s.p.m.	; ;
1) Pipe Capacity   2) Pipe Displacement   3) Total Annulus   4) Mud in active pits   Circulation (1) + (3)   Hole Volume (1)+(2)+(3)   Total Mud Circulation	1172 1279 47179 16670 48350 49629 65020	28 30 1123 397 1151 1182 1548	234 256 9436 3334 9670 9926 13004	1.2 1.3 49.7 <- LAG 17.5 50.9 52.2 68.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+					

ESSO AUSTRALIA: Terakihi No.1 Date: 2 Apr 90 Time: 02:22

# HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			3.00	cP
YIELD POINT			1.00	lb/cft^2
POWER LAW k			.0274	
POWER LAW n			.8074	
DEPTH	•		750.00	m
VERTICAL DEPTH			750.00	m
DEPTH OF RETURNS			725.00	m
CUTTINGS BULK DENS:	ITY		2.50	spc grv
MUD DENSITY			8.70	lb/gal
ACTIVE SURFACE MUD	VOLUM	E	508	bbl
FLOW RATE			939	gal/min
BOOSTER FLOW			0	gal/min
PUMP PRESSURE			2620	psi
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES	18,	18,	16	

FROM	TO 1	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW F	PRESS LOSS psi
2.50  424.00  540.00  550.94  633.49  726.73	540.00 550.94 633.49 726.73	10.94 82.55 93.24	19.124/ 5.000 17.500/ 5.000 17.500/ 5.000 17.500/ 8.000	81.8 95.0	20.4 20.0 21.8 21.8 26.6 30.7	TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT	[ .1 [ .0 [ .1 [ .2

MUD HYDROSTATIC	8.70	lb/gal
FLOW CONTRIBUTION	.01	lb/gal
CUTTINGS CONTRIBUTION	. 40	lb/gal
EQUIVALENT CIRCULATING DENSITY	9.11	lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS TOTAL CALC PRESS LOSS	1 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	434.3 ft/sec 802.2 hp 1835.3 lb 42
------------------------------------------------------------------------------------------------------------	-------	----------------------------------------------------------------------------------	---------------------------------------------

VOLUMES:	gal	bbl	Strokes	Minutes @ 188 s.p.m.	¦ +
1) Pipe Capacity  2) Pipe Displacement  3) Total Annulus  4) Mud in active pits  Circulation (1) + (3)  Hole Volume (1)+(2)+(3)  Total Mud Circulation	1572 1706 30842 21332 32414 34121 53746	37 41 734 508 772 812 1280	314 341 6168 4266 6483 6824 10749		

ESSO AUSTRALIA: Terakihi No.1

Date: 2 Apr 90 Time: 18:05

#### HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY	5.00	cР
YIELD POINT	5.00	lb/cft^2
POWER LAW k	.2706	
POWER LAW n	.5850	
DEPTH	1141.00	m
VERTICAL DEPTH	1141.00	m
DEPTH OF RETURNS	1141.00	m
CUTTINGS BULK DENSITY	2.60	spc grv
MUD DENSITY	9.45	lb/gal
ACTIVE SURFACE MUD VOLUME	555	bbl
FLOW RATE	930	gal/min
BOOSTER FLOW	0	gal/min
PUMP PRESSURE	3000	psi.
PUMP CAPACITY	5.00	gal/stk
BIT NOZZLES 18, 18,	16	

#### CALCULATED RESULTS:

	FROM m	TO 1	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
42 54 94	24.00 40.00 41.94 024.5	540.00 941.94 1024.5 1117.7	421.50 116.00 401.94 82.55 93.24 23.27	17.500/ 5.000 17.500/ 5.000 17.500/ 8.000	69.8 66.9 81.0 81.0 94.1 107.9	90.6 89.6 94.4 94.4 106.8 116.5	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.4 .1 .5 .1 .2 .1

MUD HYDROSTATIC 9.45 lb/gal FLOW CONTRIBUTION .01 lb/gal CUTTINGS CONTRIBUTION 0.00 lb/gal EQUIVALENT CIRCULATING DENSITY 9.46 lb/gal

PIPEBORE PRESSURE LOSS 777 psi ANNULAR PRESSURE LOSS 1 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	430.3 ft/sec 847.8 hp 1957.5 lb 66
------------------------------------------------------------	----------------------------------------------------------------------------------	---------------------------------------------

+	gal	bbl	Strokes	Minutes @ 186 s.p.m.	-+ -+
(1) Pipe Capacity	2529 2097	60 50	506 419	2.7	{ ! !
12) Pipe Displacement ) Total Annulus	45522	1084	9104	48.9 <- LAG	1
<pre> 4) Mud in active pits  Circulation (1) + (3)</pre>	23323 48051	555 1144	4665 9610	25.1 51.7	1
Hole Volume $(1)+(2)+(3)$	50148	1194	10030 14275	53.9 76.7	1
Total Mud Circulation	71374	1699 	14275	10.1	! <del> </del>

ESSO AUSTRALIA: Terakihi No.1 Date: 5 Apr 90 Time: 00:26

# HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			8.00	cР
YIELD POINT			40.00	lb/cft^2
POWER LAW k			12.1968	
POWER LAW n			.2224	
DEPTH			1150.00	
VERTICAL DEPTH			1150.00	m
DEPTH OF RETURNS			1144.00	m
CUTTINGS BULK DENSITY	?			spc grv
MUD DENSITY			9.20	lb/gal
ACTIVE SURFACE MUD VO	)LUME	<u>C</u>		bbl
FLOW RATE				gal/min
BOOSTER FLOW				gal/min
PUMP PRESSURE			1870	_
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES 1	l8.	18.	18	

FROM	TO 1	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
2.50  424.00  915.61  998.16  1124.0  1128.3	915.61 998.16 1124.0 1128.3	491.61 82.55 125.84 4.25	12.615/ 5.000 12.615/ 5.000 12.615/ 8.000 12.250/ 8.000	59.5 144.9 144.9 204.3 225.9 225.9	506.0 547.6 547.6 585.7 591.9 591.9	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	12.2

MUD HYDROSTATIC	9.20	lb/gal
FLOW CONTRIBUTION	. 26	lb/gal
CUTTINGS CONTRIBUTION	.05	lb/gal
EQUIVALENT CIRCULATING DENSITY	9.51	lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS TOTAL CALC. PRESS LOSS	51 psi 957 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	341.3 ft/sec 442.9 hp 1289.2 lb 64
TOTAL CALC. PRESS LOSS	1507 psi		

gal	bbl_	Strokes	Minutes @ 159 s.p.m.
2501	60	500	3.2
2240	53	<b>44</b> 8	2.8
30526	727	6105	38.5 <- LAG
21588	514	4318	27.2
33027	786	6605	41.6
35267	840	7053	44.5
54615	1300	10923	68.9
	2240 30526 21588 33027 35267	2240 53 30526 727 21588 514 33027 786 35267 840	2240     53     448       30526     727     6105       21588     514     4318       33027     786     6605       35267     840     7053

ESSO AUSTRALIA: Terakihi No.1

Date: 6 Apr 90 Time: 03:04

# HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			6.00	οP.
YIELD POINT				lb/cft^2
POWER LAW k			1.9365	
POWER LAW n			. 3785	
DEPTH			1349.00	m
VERTICAL DEPTH			1349.00	m
DEPTH OF RETURNS			1340.21	m
CUTTINGS BULK DENSI	TY			spc grv
MUD DENSITY			9.30	lb/gal
ACTIVE SURFACE MUD	VOLUM	Ε	542	bbl.
FLOW RATE			782	gal/min
BOOSTER FLOW			0	gal/min
PUMP PRESSURE			2750	psi
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES	16,	16,	16	

+	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
1.1	24.00 114.6 124.0 197.2	1114.6 1124.0 1197.2 1327.3	421.50 690.61 9.39 73.16 130.09 21.75	12.615/ 5.000 12.615/ 5.000	142.9 153.3 222.7	236.8 273.7 273.7 277.0 315.5 315.5	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	9.7 .1 1.1 4.8

MUD HYDROSTATIC	9.30	lb/gal
FLOW CONTRIBUTION	.08	lb/gal
CUTTINGS CONTRIBUTION	. 05	lb/gal
FOUTVALENT CIRCULATING DENSITY	9.43	lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS TOTAL CALC. PRESS LOSS	18 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	426.0 ft/sec 687.4 hp 1603.4 lb 54
-------------------------------------------------------------------------------------------------------------	--------	----------------------------------------------------------------------------------	---------------------------------------------

VOLUMES:	gal	bbl	Strokes	Minutes @ 156 s.p.m.	-+ -+ -+
1) Pipe Capacity	2988	71	598	3.8	: : : : : : : : : : : : : : : : : : :
2) Pipe Displacement	2439	58	488	3.1	
3) Total Annulus	33837	806	6767	43.3 <- LAG	
4) Mud in active pits	22756	542	4551	29.1	
Circulation (1) + (3)	36825	877	7365	47.1	
Cole Volume (1)+(2)+(3)	39264	935	7853	50.2	
Total Mud Circulation	59581	1419	11916	76.2	

ESSO AUSTRALIA: Terakihi No.1

Date: 7 Apr 90 Time: 03:38

#### HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			6.00	cР	
YIELD POINT			13.00	lb/cft^2	•
POWER LAW k			1.6521		•
POWER LAW n			. 3959		
DEPTH			1650.00	m	
VERTICAL DEPTH			1650.00	m	
DEPTH OF RETURNS			1641.20	m	
CUTTINGS BULK DENSI	TY			spc grv	
MUD DENSITY			9.43	lb/gal	
ACTIVE SURFACE MUD	VOLUM	E	522	bbl	
FLOW RATE			760	gal/min	,
BOOSTER FLOW			0	gal/min	
PUMP PRESSURE			2800	_	
PUMP CAPACITY			5.00	gal/stk	
BIT NOZZLES	16,	16,	16	•	

1	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
1	424.00 1124.0 1415.6 1498.2	1124.0 1415.6 1498.2 1628.3	0 421.50 0 700.00 3 291.61 2 82.55 3 130.09 0 21.75	12.615/ 5.000 12.250/ 5.000 12.250/ 5.000 12.250/ 8.000	138.9 148.9 148.9 216.4	214.9 256.3 259.5 259.5 297.7 297.7	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	8.8 4.0 1.1 4.4

MUD HYDROSTATIC	9.43 lb/gal
FLOW CONTRIBUTION	.07 lb/gal
CUTTINGS CONTRIBUTION	.04 lb/gal
FOUTVALENT CIRCULATING DENSITY	9.54 lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS	20 psi 1443 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	414.0 ft/sec 639.8 hp 1535.7 lb 52
TOTAL CALC. PRESS LOSS	2771 psi		•

VOLUMES:	gal	bbl	Strokes	Minutes @ 152 s.p.m.	+
(1) Pipe Capacity (2) Pipe Displacement (3) Total Annulus (4) Mud in active pits (Circulation (1) + (3) (Hole Volume (1)+(2)+(3) (Total Mud Circulation	3725 2739 41578 21907 45303 48042 67210	89 65 990 522 1079 1144 1600	745 548 8316 4381 9061 9608 13442	28.8 59.6 63.2	: : : : : : : : : : : : : : : : : : :

ESSO AUSTRALIA: Terakihi No.1 Date: 8 Apr 90 Time: 04:24

#### HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			6.00	) cP
YIELD POINT			18.00	) lb/cft^2
POWER LAW k			3.2961	•
POWER LAW n			.3219	)
DEPTH			1800.00	) m
VERTICAL DEPTH			1800.00	) m
DEPTH OF RETURNS			1789.10	) m
CUTTINGS BULK DENSI	ΓY		2.60	) spc grv
MUD DENSITY			9.45	lb/gal
ACTIVE SURFACE MUD	VOLUM	E	582	2 bbl
FLOW RATE			780	) gal/min
BOOSTER FLOW			(	gal/min
PUMP PRESSURE			2600	) psi
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES	15,	15,	15, 1	4

	TO LENGTH n m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
424.00 112 1124.0 156 1564.9 16	4.00 421.50 24.0 700.00 34.9 440.88 47.4 82.55 00.0 152.57	12.615/ 5.000 12.250/ 5.000 12.250/ 5.000	152.9	284.5 326.5 329.7 329.7 367.2	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	13.5 9.3 1.7

MUD HYDROSTATIC	9.45	lb/gal
FLOW CONTRIBUTION	.11	lb/gal
CUTTINGS CONTRIBUTION	.06	lb/gal
FOITVALENT CIRCULATING DENSITY	9.62	lb/gal

SURFACE PRESSURE LOSS	679 psi	NOZZLE VELOCITY	374.6 ft/sec
PIPEBORE PRESSURE LOSS	665 psi	HYDRAULIC POWER	538.8 hp
ANNULAR PRESSURE LOSS	34 psi	JET IMPACT FORCE	1429.2 lb
BIT PRESSURE LOSS	1184 psi	% OF PRESS LOSS AT BIT	46
TOTAL CALC. PRESS LOSS	2562 psi		

VOLUMES:	gal	bbl	Strokes	Minutes @ 156 s.p.m.	
1) Pipe Capacity  2) Pipe Displacement  3) Total Annulus   Mud in active pits  Circulation (1) + (3)  Hole Volume (1)+(2)+(3)  Total Mud Circulation	4091 2894 44070 24444 48161 51055 72605	97 69 1049 582 1147 1216 1729	818 579 8814 4889 9632 10211 14521	31.3	

ESSO AUSTRALIA: Terakihi No.1 Date: 9 Apr 90 Time: 03:41

# HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY	6.00	cP
YIELD POINT	17.00	lb/cft^2
POWER LAW k	2.9242	
POWER LAW n	.3344	
DEPTH	2235.00	m
VERTICAL DEPTH	2235.00	m
DEPTH OF RETURNS	2216.90	m
CUTTINGS BULK DENSITY	2.60	spc grv
MUD DENSITY	9.5	lb/gal
ACTIVE SURFACE MUD VOLUME	297	bbl
FLOW RATE	796	gal/min
BOOSTER FLOW	0	gal/min
PUMP PRESSURE	2900	_
PUMP CAPACITY	5.00	gal/stk
BIT NOZZLES 15, 15	, 15, 1	4

+ !!!	FROM	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL.	FLOW REGIME	PRESS LOSS;
1 1 1	424.00 1124.0 1999.9	1124.0 1999.9 2082.4	421.50 700.00 875.88 82.55 152.57	20.000/ 5.000 12.615/ 5.000 12.250/ 5.000 12.250/ 5.000 12.250/ 8.000	156.0 156.0	270.5 312.3 315.5 315.5 353.1	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	1.6

MUD HYDROSTATIC	9.5	lb/gal
FLOW CONTRIBUTION	.1	lb/gal
CUTTINGS CONTRIBUTION	.1	lb/gal
FOUTVALENT CIRCULATING DENSITY	9.7	lb/gal

VOLUMES:	gal	bbl	Strokes	Minutes @ 159 s.p.m.	! ! +
1) Pipe Capacity   2) Pipe Displacement   3) Total Annulus   4) Mud in active pits   Circulation (1) + (3)   Hole Volume (1)+(2)+(3)   Total Mud Circulation	5155 3328 51309 12474 56464 59792 68938	123 79 1222 297 1344 1424 1641	1031 666 10262 2495 11293 11958 13788	15.7 70.9 75.1	! ! ! ! ! !

ESSO AUSTRALIA: Terakihi No.1

Date: 10 Apr 90 Time: 04:01

# RAULICS CALCULATIONS

PLASTIC VISCOSITY YIELD POINT POWER LAW k POWER LAW n		•	6.00 17.00 2.9242 .3344	cP lb/cft^2
DEPTH			2506.00	m
VERTICAL DEPTH			2504.79	m
DEPTH OF RETURNS			2477.70	m
CUTTINGS BULK DENSI	TY	•	2.40	spc grv
MUD DENSITY			9.5	lb/gal
ACTIVE SURFACE MUD	VOLUM	Ξ	426	bbl.
FLOW RATE			780	gal/min
BOOSTER FLOW			. 0	gal/min
PUMP PRESSURE			2850	psi
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES	15,	15,	15, 1	4

+ ! !	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
111	24.00 24.0 270.9	1124.0 2270.9 2353.4	421.50 700.00 1146.9 82.55 152.57	12.615/ 5.000 12.250/ 5.000 12.250/ 5.000	51.0 142.5 152.9 152.9 222.1	270.5 312.3 315.5 315.5 353.1	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	22.5

MUD HYDROSTATIC	9.5 lb/gal
FLOW CONTRIBUTION	.1 lb/gal
CUTTINGS CONTRIBUTION	.1 lb/gal
FOUTVALENT CIRCULATING DENSITY	9.7 lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS	683 psi 854 psi 46 psi 1190 psi 2772 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	374.6 ft/sec 541.6 hp 1436.7 lb 43
TOTAL CALC. PRESS LOSS	2772 psi	76 OF THESE HOSE III DIT	1.0

					+
VOLUMES:	gal	bbl	Strokes	Minutes @ 156 s.p.m.	!
1) Pipe Capacity   2) Pipe Displacement   3) Total Annulus   4) Mud in active pits   Circulation (1) + (3)   Ole Volume (1)+(2)+(3)   Total Mud Circulation	5819 3599 55818 17896 61637 65236 79533	139 86 1329 426 1468 1553 1894	1164 720 11164 3579 12327 13047 15907	7.5 4.6 71.6 <- LAG 22.9 79.0 83.6 102.0	
1					

ESSO AUSTRALIA: Terakihi No.1 Date: 11 Apr 90 Time: 01:59

### HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			15.00	cP
YIELD POINT			20.00	lb/cft^2
POWER LAW k			1.4627	
POWER LAW n			5146	
DEPTH			2844.00	m
VERTICAL DEPTH			2842.27	m
DEPTH OF RETURNS			2827.54	
CUTTINGS BULK DENS	ITY			spc grv
MUD DENSITY			9.5	lb/gal
ACTIVE SURFACE MUD	VOLUM	E		bbl
FLOW RATE	*			gal/min
BOOSTER FLOW				gal/min
PUMP PRESSURE			2900	_
PUMP CAPACITY				gal/stk
BIT NOZZLES	15.	15,	15, 16	4

4	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL.	FLOW REGIME	PRESS LOSS;
1	424.00 1124.0 2608.9	1124.0 2608.9 2691.4	421.50 700.00 1484.9 82.55 152.57	12.615/ 5.000 12.250/ 5.000	156.8	247.6 316.3 321.9 321.9 389.7	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	1.5   12.3   29.2   1.6   8.0

MUD HYDROSTATIC	9.5	lb/gal
FLOW CONTRIBUTION	.1	lb/gal
CUTTINGS CONTRIBUTION	.1	lb/gal
EQUIVALENT CIRCULATING DENSITY	9.7	lb/gal

SURFACE PRESSURE LOSS	715 psi	NOZZLE VELOCITY	384.2 ft/sec
PIPEBORE PRESSURE LOSS	1536 psi	HYDRAULIC POWER	584.4 hp
ANNULAR PRESSURE LOSS			1511.4 lb
BIT PRESSURE LOSS		% OF PRESS LOSS AT BIT	35
TOTAL CALC. PRESS LOSS	3557 psi		

VOLUMES:	gal	bbl	Strokes	Minutes @ 160 s.p.m.	! 
1) Pipe Capacity   2) Pipe Displacement   3) Total Annulus   4) Mud in active pits   Circulation (1) + (3)   Hole Volume (1)+(2)+(3)   Total Mud Circulation	6646 3937 61442 22936 68088 72025 91024	158 94 1463 546 1621 1715 2167	1329 787 12288 4587 13618 14405 18205	90.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ESSO AUSTRALIA: Terakihi No.1 Date: 12 Apr 90 Time: 03:30

#### HYDRAULICS CALCULATIONS

16.00 cP 20.00 lb/cft^2 1.3635 .5305 2844.00 m 2844.00 m PLASTIC VISCOSITY YIELD POINT POWER LAW k POWER LAW n DEPTH VERTICAL DEPTH DEPTH OF RETURNS 2836.00 m CUTTINGS BULK DENSITY
MUD DENSITY 2.60 spc grv 9.5 lb/gal 478 bbl ACTIVE SURFACE MUD VOLUME 220 gal/min FLOW RATE 0 gal/min BOOSTER FLOW PUMP PRESSURE
PUMP CAPACITY 550 psi 5.00 gal/stk

21, 21, 21 BIT NOZZLES

#### CALCULATED RESULTS:

1					<del> </del>			
1	FROM m	TO 1	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
12	24.00 124.0 657.4 740.0	1124.0 2657.4 2740.0	421.50 700.00 1533.4 82.55 83.81 20.19	20.000/ 5.000 12.615/ 5.000 12.250/ 5.000 12.250/ 5.000 12.250/ 8.000 12.250/ 8.000	14.4 40.2 43.1 43.1 62.7 62.7	243.7 314.5 320.3 320.3 390.8 390.8	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.7 6.1 15.0 .8 2.2 .5

9.5 lb/gal MUD HYDROSTATIC FLOW CONTRIBUTION .1 lb/gal .0 lb/gal CUTTINGS CONTRIBUTION EQUIVALENT CIRCULATING DENSITY 9.6 lb/gal

1						
; VOLUMES:	gal		bbl	Strokes	Minutes @	44 s.p.m.
1) Pipe Capacity   2) Pipe Displacement   3) Total Annulus   1) Mud in active pits   Circulation (1) + (3)   Hole Volume (1)+(2)+(3)   Total Mud Circulation	6759 3565 61700 20076 68459 72025 88535	-	161 85 1469 478 1630 1715 2108	1352 713 12340 4015 13692 14405 17707	30.7 16.2 280.5 91.3 311.2 327.4 402.4	<- LAG

ESSO AUSTRALIA: Terakihi No.1

Date: 13 Apr 90 Time: 03:55

# HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			15.00	cР
YIELD POINT		•	20.00	lb/cft^2
POWER LAW k			1.4627	
POWER LAW n			.5146	
DEPTH			2862.50	m
VERTICAL DEPTH			2862.50	m
DEPTH OF RETURNS			2856.20	m
CUTTINGS BULK DENSI	TY			spc grv
MUD DENSITY		•	9.5	lb/gal
ACTIVE SURFACE MUD	VOLUM	E	480	bbl
FLOW RATE			208	gal/min
BOOSTER FLOW			0	gal/min
PUMP PRESSURE				psi
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES	21,	21,	21	

								+
1 1 1 1	FROM	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS; psi ;
! !	424.00 1124.0 2675.9 2758.5	1124.0 2675.9 2758.5 2842.3	421.50 700.00 1551.9 82.55 83.81 5 20.19	20.000/ 5.000 12.615/ 5.000 12.250/ 5.000 12.250/ 5.000 12.250/ 8.000 12.250/ 8.000	13.6 38.0 40.8 40.8 59.2 59.2	247.6 316.3 321.9 321.9 389.7 389.7	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	15.2 .8 2.2

MUD HYDROSTATIC	9.5	lb/gal
FLOW CONTRIBUTION	.1	lb/gal
CUTTINGS CONTRIBUTION	.0	lb/gal
EQUIVALENT CIRCULATING DENSITY	9.6	lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS TOTAL CALC. PRESS LOSS	58 psi	NOZZLE VELOCITY	66.7 ft/sec
	165 psi	HYDRAULIC POWER	4.6 hp
	26 psi	JET IMPACT FORCE	68.3 lb
	38 psi	% OF PRESS LOSS AT BIT	13

; VOLUMES:	gal	bbl	Strokes	Minutes @	42 s.p.m.
1) Pipe Capacity   2) Pipe Displacement	6805 3584	162 85	1361 717	32.7 17.2	
3) Total Annulus  4) Mud in active pits	62008 20160	1476 480	12402 4032	298.1 96.9	<- LAG
Circulation (1) + (3)	68813	1638	13763 14479	330.8 348.1	
Hole Volume (1)+(2)+(3)  Total Mud Circulation	72396 88973	1724 2118	17795	427.8	

ESSO AUSTRALIA: Terakihi No.1 Date: 14 Apr 90 Time: 03:24

# RAULICS CALCULATIONS

PLASTIC VISCOSITY		•	15.00	cР
YIELD POINT			19.00	lb/cft^2
POWER LAW k			1.3140	
POWER LAW n			.5272	
DEPTH			2881.00	
VERTICAL DEPTH			2881.00	m
DEPTH OF RETURNS			2868.00	m
CUTTINGS BULK DENSI	TY			spc grv
MUD DENSITY				lb/gal
ACTIVE SURFACE MUD	VOLUM	E	526	
FLOW RATE				gal/min
BOOSTER FLOW				gal/min
PUMP PRESSURE			2850	-
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES	16,	16,	14	

+-	FROM	TO	LENGTH	ANNULUS/PIPE	ANN VEL.	CRIT VEL.	FLOW	PRESS LOSS;
	m	m	m	in	ft/min	ft/min	REGIME	psi ;
11	24.00 .124.0 .618.2	1124. 2618. 2700.	0 421.50 0 700.00 2 1494.2 7 82.55 0 180.29	12.615/ 5.000 12.250/ 5.000 12.250/ 5.000		236.1 304.0 309.6 309.6 377.2	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	10.6 25.4 1.4

MUD HYDROSTATIC	9.5	lb/gal
FLOW CONTRIBUTION	.1	lb/gal
CUTTINGS CONTRIBUTION	.1	lb/gal
EQUIVALENT CIRCULATING DENSITY	9.6	lb/gal

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS TOTAL CALC PRESS LOSS	532 psi 1261 psi 47 psi 1377 psi 3216 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	402.9 ft/sec 547.7 hp 1350.9 lb 43
------------------------------------------------------------------------------------------------------------	-------------------------------------------------------	----------------------------------------------------------------------------------	---------------------------------------------

VOLUMES:	gal	bbl	Strokes	Minutes @ 136 s.p.m.	+
1) Pipe Capacity   2) Pipe Displacement   3) Total Annulus   4) Mud in active pits   Circulation (1) + (3)   Cole Volume (1)+(2)+(3)   Total Mud Circulation	6698 4153 61917 22092 68615 72768 90707	159 99 1474 526 1634 1733 2160	1340 831 12383 4418 13723 14554 18141		

ESSO AUSTRALIA: Terakihi No.1 Date: 15 Apr 90 Time: 03:48

# HYDRAULICS CALCULATIONS

			45 00	<b>T</b>
PLASTIC VISCOSITY			15.00	
YIELD POINT			20.00	lb/cft^2
POWER LAW k			1.4627	
POWER LAW n			.5146	
DEPTH			3040.00	m
VERTICAL DEPTH			3038.40	m
DEPTH OF RETURNS			3034.60	m
CUTTINGS BULK DENSI	TY		2.60	spc grv
MUD DENSITY			9.5	lb/gal
ACTIVE SURFACE MUD	VOLUM	E	444	bbl
FLOW RATE			675	gal/min
BOOSTER FLOW			. 0	gal/min
PUMP PRESSURE			2900	psi
PUMP CAPACITY			5.00	gal/stk
BIT NOZZLES	16,	16,	14	

								+
7	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VEL. ft/min	CRIT VEL. ft/min	FLOW REGIME	PRESS LOSS;
	424.00 1124.0 2777.2	1124.0 2777.2 2859.7	700.00 2 1653.2 7 82.55	20.000/ 5.000 12.615/ 5.000 12.250/ 5.000 12.250/ 5.000 12.250/ 8.000	44.1 123.3 132.3 132.3 192.2	247.6 316.3 321.9 321.9 389.7	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	11.3 29.8 1.5

MUD HYDROSTATIC	9.5	lb/gal
FLOW CONTRIBUTION	.1	lb/gal
CUTTINGS CONTRIBUTION	.0	lb/gal
EQUIVALENT CIRCULATING DENSITY	9.6	lb/gal

SURFACE PRESSURE LOSS	522 psi	NOZZLE VELOCITY	398.8 ft/sec
PIPEBORE PRESSURE LOSS	1278 psi	HYDRAULIC POWER	531.3 hp
ANNULAR PRESSURE LOSS	53 psi	JET IMPACT FORCE	1323.7 lb
BIT PRESSURE LOSS	1349 psi	% OF PRESS LOSS AT BIT	42
TOTAL CALC PRESS LOSS	3201 psi		

VOLUMES:	gal	bbl	Strokes	Minutes @ 135 s.p.m.	
1) Pipe Capacity	7087	169	1417	10.5	
2) Pipe Displacement	4312	103	862	6.4	
3) Total Annulus	64563	1537	12913	95.6 <- LAG	
4) Mud in active pits	18665	444	3733	27.7	
Circulation (1) + (3)	71650	1706	14330	106.1	
Hole Volume (1)+(2)+(3)	75961	1809	15192	112.5	
Total Mud Circulation	90314	2150	18063	133.8	

D. CORE DESCRIPTIONS

#### CORE DESCRIPTIONS

CORE No.1: 2844m - 2862.5m

CUT: 18.5m

REC: 12.6m (68%)

Note: The core was cut using a fiberglass sleeve and descriptions are based on chip samples only.

SANDSTONE: off white to light grey, clear to ligh grey grains, fine and very coarse (bimodal), very poorly sorted, rounded to subabgular, trace siliceous cement, very rare argillaceous and arenaceous matrix, trace lithics, very rare pyrite, good visual porosity. The sandstone has 60 - 70% moderately bright yellow - white solid to patchy fluorescence with a moderately fast streaming, moderately bright yellow/white cut fluorescence and a bright yellow/white crush cut fluorescence. Thin bright yellow ring residual. The sample had a strong hydrocarbon odour.

2845.0m SANDSTONE: off white, clear to off white, fine to very coarse, very poorly sorted, subangular to well rounded, no cement or matrix, trace carbonaceous flecks and lithic grains, very friable, excellent visual porosity. The sandstone has 50% moderately bright yellow/white patchey flourescence with a very fast to instant streaming cut and bright yellow thin ring residual. The sample had a hydrocarbon ordour.

SANDSTONE: off white to light grey, clear to medium grey (smokey) grains, medium to very coarse, poorly sorted, subangular to rounded, no cement or matrix, trace lithic grains, firm, very good to excellent visual porosity. The sandstone has 70% - 90% bright yellow/white solid to patchey flourescence with a moderately bright fast streaming yellow white cut flourescence and a bright yellow/white thin ring residual. The sample had a strong hydrocarbon ordour.

2847.2m SANDSTONE: as above with 70% - 80% bright yellow/white solid to patchey fluorescence and instant bright yellow / white cut fluorescence with a bright yellow/white thin ring residule.

2848.4m SANDSTONE: as above becoming medium to conglomeratic with trace glauconite and biotite. The fluorescence was 40% moderately bright yellow/white with an instant moderately bright yellow/white cut fluorescence and a moderately bright thin ring residual.

- SANDSTONE: as above, dominantly very coarse, excellent visual porosity. The sandstone has 30% to 40% dull to dominantly moderately bright patchy to spotty yellow green to yellow white fluorescence with an instant moderately bright yellow white cut and a moderately bright yellow white thin ring residule. This sample had a hydrocarbon ordour.
- SANDSTONE: white to very light grey, clear to light grey grains, medium to conglomerativ, dominantly very coarse, poorly sorted, subrounded to well rounded, no cement or matrix, trace to common lithics, trace biotite, loose to very friable, execellent visual porosity. The sandstone has 5% to 10% dull to moderately bright yellow white spotty fluorescence with an instant dull yellow white cut flourescence and dull yellow white thin ring residule. The sample had a slight hydrocarbon ordour.
- 2852.4m SANDSTONE: as above, dominantly very coarse to conglomeratic and moderately sorted. The sandstone had 5% to 10% fluorescence and cut as above.
- 2853.8m SANDSTONE: as above with trace to 5% fluorescence and cut as above.
- 2855.2m SANDSTONE: as above with trace lithics pyrite and mica. The sandstone has trace to 5% dull yellow white very spotty fluorescence with a dull yellow white, moderately fast, cut fluorescence and a dull yellow white very thin ring residule and trace to moderate hydrocarbon odour.
- SANDSTONE: off white medium grey, clear to medium grey grains, medium to conglomeratic, dominantly very coarse, moderately sorted, subrounded to rounded, rare dolomite cement, trace to common siliceous cement, very rare silty matrix, trace to moderate lithic grains, hard to very hard, moderate visual porosity. The sandstone has 30% to 40% patchy moderately bright yellow white fluorescence with a moderately bright fast streaming yellow white cut fluorescence and a moderate hydrocarbon odour.
- 2856.6m 2862.5m NO RECOVERY

CORE No.2: 2862.5m - 2881.0m

CUT: 18.5m

REC: 9.9m (53.5%)

off white to light grey, clear to medium grey SANDSTONE: 2862.5m grains, fine to conglomeratic, dominantly very coarse, very poorly sorted, subangular to well sounded, no cement or matrix, trace muscovite and lithic fragments, trace pyrite, friable, ececellent visual porosity. loose to has trace to 10% dull yellow white sandstone fluorescence with a dull yellow white very slow pluming cut fluorescence and a dull to moderately bright very thin ring residual. The sample has a slight hydrocarbon odour.

as above with trace to common lithics. The SANDSTONE: 2863.0m sandstone has a trace dull yellow green flourescence slow diffuse dull yellow green very fluorescence and a very dull crush cut fluorescence with a very dull thin ring residual.

SANDSTONE: as above with fluorescence and cut as above.

off white to medium grey, occasionaly brown SANDSTONE: grey, clear to dark grey grains, fine to conglomeratic. very poorly sorted, subangular to well rounded, trace calcareous and dolomitic cement, trace siliceous cement, rare quartz overgrowths, trace brown grey argillaceous matrix, common lithic grains, trace glauconite and pyrite. trace mica, friable to moderately hard, good to very good visual porosity. The sandstone has a trace dull yellow to milky spotty fluorescence with a very dull milky slow even fluorescence and a dull yellow white cruch cut fluorescence with a dull yellow white thin ring residual.

SANDSTONE: medium grey, clear to medium grey grains, fine to conglomeratic (bimodal), poorly sorted, subangular to subrounded, common to abundant dolomite cement, trace to common siliceous cement, trace calcareous cement, trace arenaceous and argillaceous matrix, trace carbonaceous flecks and mica, very hard, very poor visual porosity, trace dull orange mineral fluorescence with no cut or crush cut flourescence.

medium grey, clear to medium grey grains, SANDSTONE: grey, fine to medium light brown occasionaly conglomeratic (bimodal), moderately sorted, subangular to subrounded, trace dolomite and siliceous cement, grains, lithic common argillaceous matrix, carbonaceous flecks and mica, hard, poor to moderate visual The sandstone has a trace dull yellow green porosity. spotty fluorescence with no cut but a very weak dull yellow green crush cut and minor dull yellow green residual.

2865.5m

2866.8m

2868.3m

2869.7m

2871.1m

SANDSTONE, medium to light grey, clear to light grey grains, fine to medium and conglomeratic (bimodal), poorly to moderately sorted, subangular to subrounded, (rounded where conglomeratic), trace dolomite and siliceous cement, trace grey argillaceous matrix, trace to common lithic grains, trace muscovite and pyrite, hard, moderate to good visual porosity. The sandstone has a trace dull yellow green spotty fluorescence with a slow diffuse very faint yellow green cut fluorescence and a very dull yellow green crush cut fluorescence.

2872.4m

SANDSTONE: as above with trace glauconite and trace to 5% fluorescence and cut as above.

E. FORMATION EVALUATION LOG

#### PE602113

This is an enclosure indicator page. The enclosure PE602113 is enclosed within the container PE903385 at this location in this document.

The enclosure PE602113 has the following characteristics:

ITEM_BARCODE = PE602113
CONTAINER_BARCODE = PE903385

NAME = Formation Evaluation Log/Mud Log

BASIN = GIPPSLAND PERMIT = VIC/P24

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Formation Evaluation Log/Mud Log

(enclosure from Final Well
Report--attachment to WCR) for

Terakihi-1

REMARKS =

DATE_CREATED = 14/04/90 DATE_RECEIVED = 22/06/90

 $W_NO = W1025$ 

WELL_NAME = Terakihi-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Esso Australia Ltd

(Inserted by DNRE - Vic Govt Mines Dept)