

ACS

LABORATORIES

PTY. LTD.

ATTACHMENT TO WCR TAILOR -1 (W563)

PETROLEUM DIVISION

SPECIAL CORE ANALYSIS FINAL REPORT

of

26 JUN 1993

COBIA A11, DRUMMER 1 and TAILOR 1

for

ESSO AUSTRALIA LTD

by

ACS LABORATORIES PTY LTD

18 June, 1996

Esso Australia Ltd Esso House 12 Riverside Quay SOUTHBANK VIC 3006

Attention:

Mike Gilbert

FINAL REPORT: 008-354

CLIENT REFERENCE:

Order No 2710080 RFS5

MATERIAL:

Core Cuttings and Core Plug Offcuts

LOCALITY:

Cobia A11, Drummer 1, Tailor 1

WORK REQUIRED:

Mercury Injection Capillary Pressure Analysis

Please direct technical enquiries regarding this work to the signatories below under whose supervision the work was carried out.

KEVIN H FLYNN

Manager

Special Core Analysis & Geological Services

ANTHONY M DRAKE

Laboratory Supervisor Special Core Analysis

ACS Laboratories Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall ACS Laboratories Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

CONTENTS

<u>CHA</u>	<u>APTERS</u>	PAGI
1.	INTRODUCTION	1
2.	TEST AND CALCULATION PROCEDURES	3
3.	TEST RESULTS	5
4.	SUMMARY OF RESULTS	46

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

This final report presents the results obtained, and details of the procedures employed from a Special Core Analysis study. Mercury injection capillary pressure analysis was performed on a suite of core plug offcuts.

Chapter 2 of this report details the test and calculation procedures; Chapter 3 presents the full tests results in tabular and graphical format.

The following samples were provided by Esso Australia:

Well	Depth (m)
Cobia A11	2616.01 m
	2616.38 m
	2617.56 m
	2618.72 m
Drummer 1	2485 - 2490 m
Tailor 1	7941' - 7941' 6"

It was requested that up to four pieces be utilised from cuttings supplied from Drummer 1. Unfortunately only two samples were able to be utilised.

Initial testing on two samples (A & B) from Tailor 1 indicated intrusion at very low pressures, usually due to fractures or surface irregularities. As porosity is normally utilised in the selection of penetrometers, and this value was unknown, it was recommended that these tests be performed again (samples C & D) to minimise this low pressure injection effect. This is done by increasing the initial pressure used in the penetrometer so that any surface irregularities and/or fractures in the samples are effectively discounted. In total four tests have been performed on Tailor 1, all results of which appear in this report.

CHAPTER 2

TEST AND CALCULATION PROCEDURES

2. TEST AND CALCULATION PROCEDURES

2.1 Mercury Injection Capillary Pressure

Samples of sufficient volume to fill the sample chamber (circa 2 cm³) were utilised for capillary pressure determinations by the mercury injection technique. The mercury injection apparatus used is a semi-automatic Micromeritics Autopore 9200 which can operate up to a pressure of 60,000 psia, and can measure intrusions as small as 0.0001 cm³ per gram of sample. This instrument was chosen for these analyses, as opposed to the standard mercury pump, because of its greater accuracy.

The Micromeritics Autopore records mercury intrusion by measuring the capacitance change between the capillary of mercury contained in the penetrometer and an outer metal sheath as mercury invades the samples. For pressures up to 24 psia, air pressure is used. Hydraulic oil is used to achieve the higher pressures. No volume corrections for pressure effects were made, since below 24 psia they are negligible, whilst for higher pressures the penetrometer experiences equal external and internal pressures, and mercury compression is offset by penetrometer compression.

All samples were dried in a humidity oven and placed into calibrated glass penetrometers. These consist of a sample chamber and attached precision bore capillary. Once the samples were placed into the penetrometer a vacuum was applied until less than 50 micrometres of mercury had been achieved. Mercury was then introduced into the penetrometer and the run commenced along pre-defined pressure points on a logarithmic scale. After equilibration at each pressure point a capacitance reading was taken which was then converted into an equivalent intrusion volume.

2.2 Breakthrough Pressure and Pore Throat Diameter

Pore throat diameter for intrusion pressure can be calculated as such:

where D = pore throat diameter (microns)

$$T$$
 = Interfacial tension (dynes/cm)

 θ = contact angle (degrees)

 P_C = capillary pressure (psi)

 C = conversion constant

= $145 < 10^{-3}$

Displacement or breakthrough pressure can be determined by two methods. From the capillary pressure curves where the saturation tends to plateau, a point on the pressure axis can be read as indicated on the plots provided. Similarly, from an intrusion plot, the diameter at which breakthrough occurs can be read off the x-axis also as indicated. These values have been summarised in chapter 4 of this report.

CHAPTER 3

TEST RESULTS

Company Well

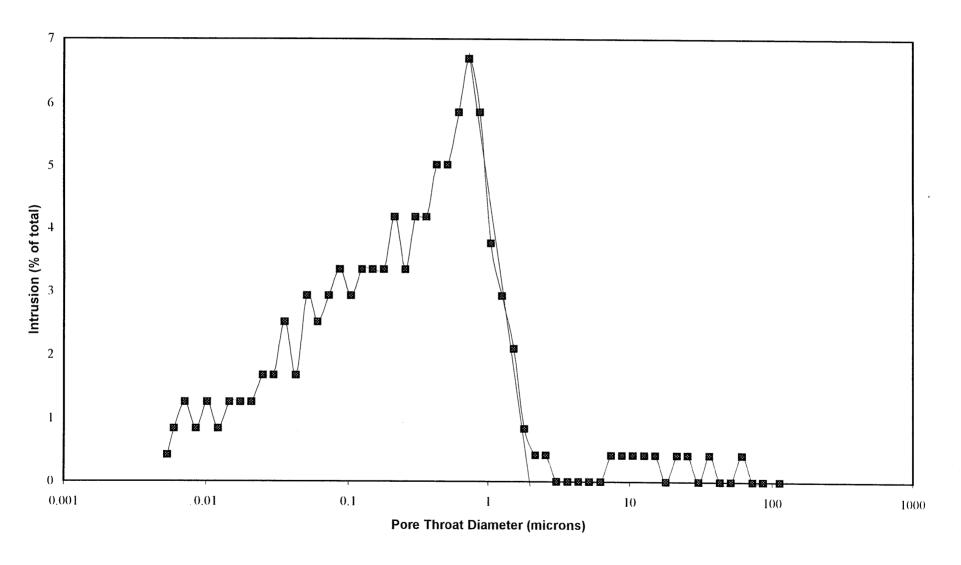
Esso Australia Ltd Cobia A11

Test Method

Air/Mercury Capillary Pressure

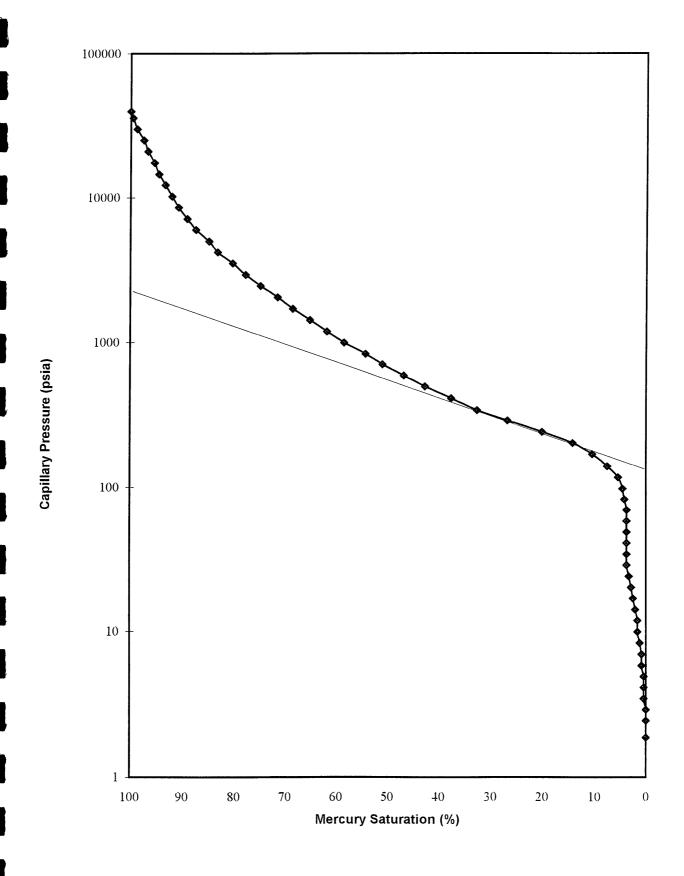
Sample Number

2616.01 m


Depth

D	Descripes Interviors	Saturation	Pore Diameter
Pressure	Intrusion		
(psia)	(percent)	(percent)	(μm)
1.88	0.0	0.0	113
2.46	0.0	0.0	86.2
2.92	0.0	0.0	72.6
3.47	0.4	0.4	61.1
4.14	0.0	0.4	51.2
4.93	0.0	0.4	43.0
5.85	0.4	0.8	36.2
6.98	0.0	0.8	30.4
8.33	0.4	1.3	25.5
9.92	0.4	1.7	21.4
11.9	0.0	1.7	17.9
14.1	0.4	2.1	15.0
16.9	0.4	2.5	12.6
20.1	0.4	2.9	10.5
24.1	0.4	3.3	8.81
28.7	0.4	3.8	7.38
34.1	0.0	3.8	6.21
41.0	0.0	3.8	5.18
48.8	0.0	3.8	4.34
58.4	0.0	3.8	3.63
69.8	0.0	3.8	3.04
82.9	0.4	4.2	2.56
98.5	0.4	4.6	2.15
118	0.8	5.4	1.79
141	2.1	7.5	1.51
171	2.9	10.5	1.24
204	3.8	14.2	1.04
243	5.9	20.1	0.871
291	6.7	26.8	0.729
343	5.9	32.6	0.618

Pressure	Intrusion	Saturation	Pore Diameter
(psia)	(percent)	(percent)	(μm)
413	5.0	37.7	0.513
497	5.0	42.7	0.426
591	4.2	46.9	0.359
708	4.2	51.0	0.300
835	3.3	54.4	0.254
998	4.2	58.6	0.212
1192	3.3	61.9	0.178
1427	3.3	65.3	0.149
1706	3.3	68.6	0.124
2045	2.9	71.5	0.104
2447	3.3	74.9	0.0866
2928	2.9	77.8	0.0724
3513	2.5	80.3	0.0603
4184	2.9	83.3	0.0507
4996	1.7	84.9	0.0424
6003	2.5	87.4	0.0353
7144	1.7	89.1	0.0297
8537	1.7	90.8	0.0248
10214	1.3	92.1	0.0208
12225	1.3	93.3	0.0173
14577	1.3	94.6	0.0145
17478	0.8	95.4	0.0121
20915	1.3	96.7	0.0101
24948	0.8	97.5	0.0085
29863	1.3	98.7	0.0071
35678	0.8	99.6	0.0059
39658	0.4	100.0	0.0053


Company: Esso Australia Ltd

Well: Cobia A11 Depth: 2616.01 m

Company: Esso Australia Ltd

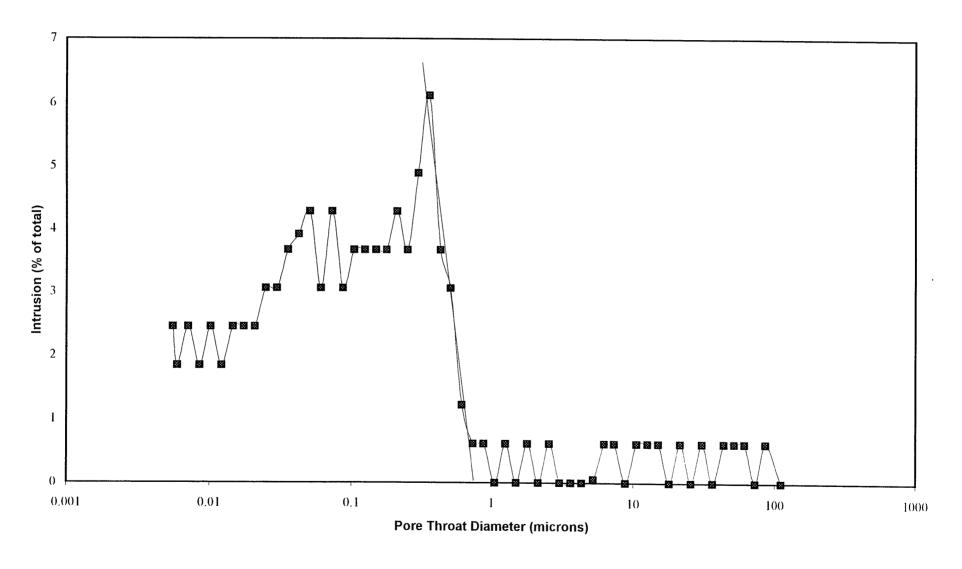
Well: Cobia A11 Depth: 2616.01 m

Company Well Esso Australia Ltd Cobia A11

Test Method Sample Number

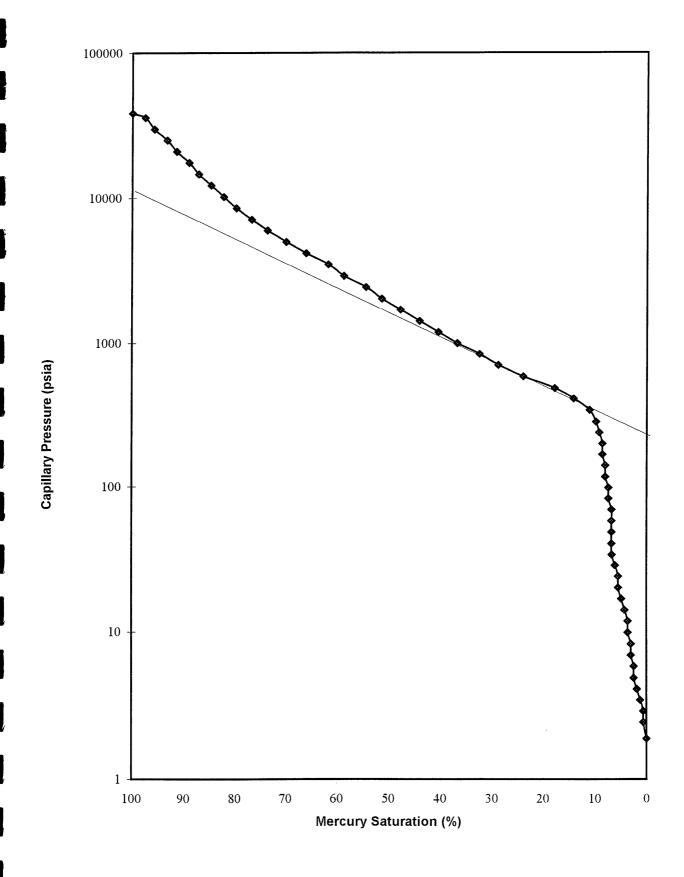
Air/Mercury Capillary Pressure

Sample Numbe Depth


2616.38 m

			Pore
Pressure	Intrusion	Saturation	Diameter
(psia)	(percent)	(percent)	(μm)
1.90	0.0	0.0	112
2.46	0.6	0.6	86.2
2.92	0.0	0.6	72.6
3.47	0.6	1.2	61.1
4.12	0.6	1.8	51.5
4.90	0.6	2.4	43.3
5.86	0.0	2.4	36.2
6.96	0.6	3.1	30.5
8.33	0.0	3.1	25.5
9.94	0.6	3.7	21.3
11.9	0.0	3.7	17.9
14.2	0.6	4.3	15.0
16.9	0.6	4.9	12.5
20.2	0.6	5.5	10.5
24.1	0.0	5.5	8.79
28.8	0.6	6.1	7.35
34.0	0.6	6.7	6.24
40.6	0.1	6.8	5.22
48.7	0.0	6.8	4.35
58.3	0.0	6.8	3.64
69.8	0.0	6.8	3.04
83.0	0.6	7.4	2.55
98.9	0.0	7.4	2.14
118	0.6	8.0	1.79
141	0.0	8.0	1.50
169	0.6	8.6	1.25
201	0.0	8.6	1.05
240	0.6	9.2	0.882
286	0.6	9.8	0.740
345	1.2	11.1	0.615

Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
414	3.1	14.1	0.512
489	3.7	17.8	0.434
588	6.1	23.9	0.360
707	4.9	28.8	0.300
844	3.7	32.5	0.251
844 1001	4.3	36.8	0.212
1195	3.7	40.4	0.177
1430	3.7	44.1	0.148
1710	3.7	47.8	0.124
2045	3.7	51.4	0.104
2449	3.1	54.5	0.0866
2926	4.3	58.8	0.0725
3512	3.1	61.8	0.0604
4183	4.3	66.1	0.0507
5006	3.9	70.0	0.0423
5993	3.7	73.7	0.0354
7144	3.1	76.8	0.0297
8545	3.1	79.8	0.0248
10216	2.4	82.3	0.0208
12224	2.4	84.7	0.0173
14630	2.4	87.2	0.0145
17509	1.8	89.0	0.0121
20936	2.4	91.4	0.0101
25013	1.8	93.3	0.0085
29898	2.4	95.7	0.0071
35763	1.8	97.6	0.0059
38288	2.4	100.0	0.0055


Company: Esso Australia Ltd

Well: Cobia A11 Depth: 2626.38 m

Company: Esso Australia Ltd

Well: Cobia A11 Depth: 2616.38 m

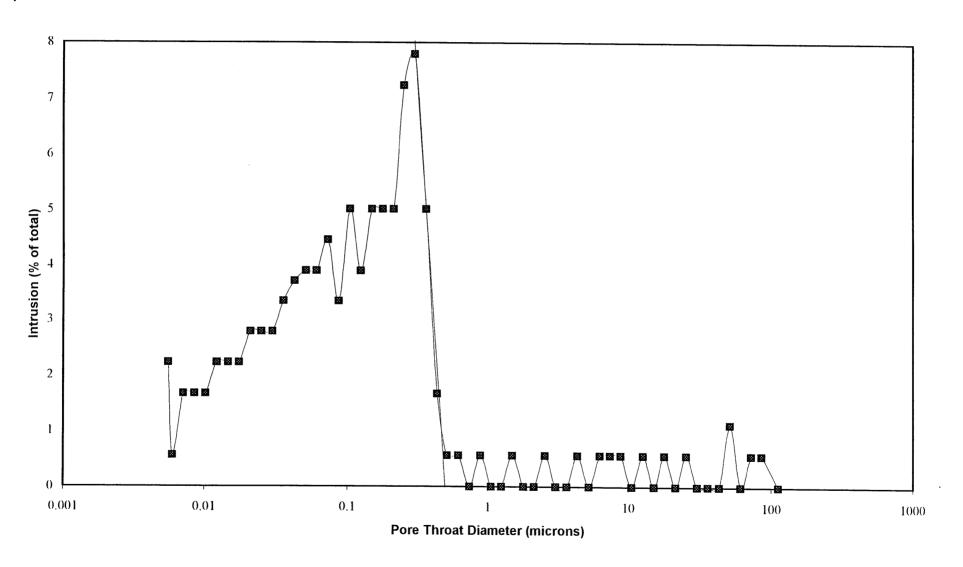
Company Well

Esso Australia Ltd

Cobia A11

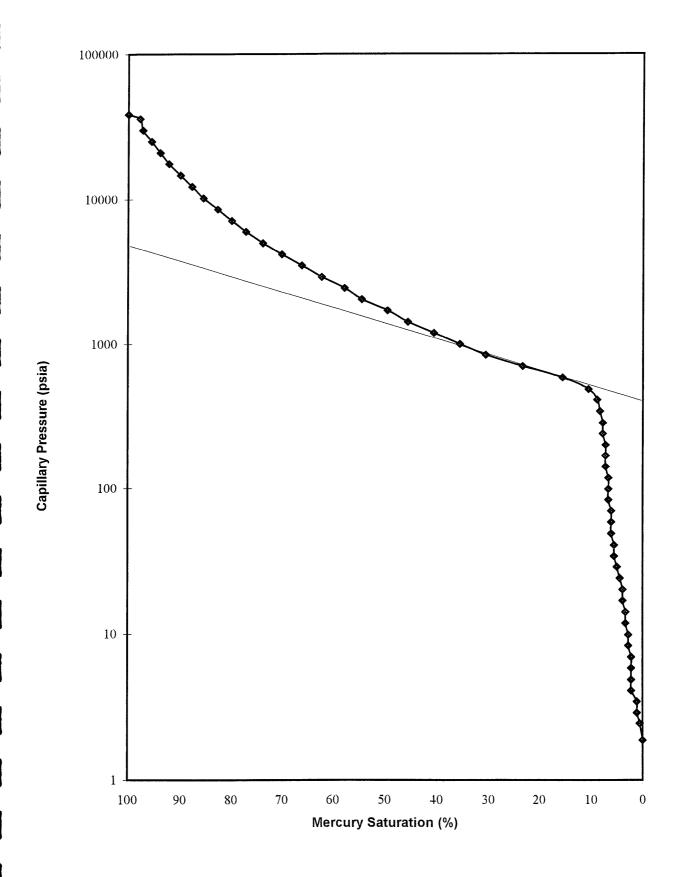
Test Method Sample Number Air/Mercury Capillary Pressure

Depth


2617.56 m

Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
1.89	0.0	0.0	112
2.47	0.6	0.6	85.8
2.92	0.6	1.1	72.6
3.47	0.0	1.1	61.1
4.13	1.1	2.2	51.3
4.90	0.0	2.2	43.3
5.87	0.0	2.2	36.1
6.99	0.0	2.2	30.3
8.34	0.6	2.8	25.4
9.90	0.0	2.8	21.4
11.9	0.6	3.3	17.9
14.1	0.0	3.3	15.0
16.9	0.6	3.9	12.6
20.2	0.0	3.9	10.5
24.1	0.6	4.5	8.81
28.7	0.6	5.0	7.38
34.0	0.6	5.6	6.24
40.6	0.0	5.6	5.22
48.7	0.6	6.1	4.35
58.3	0.0	6.1	3.64
69.8	0.0	6.1	3.04
83.0	0.6	6.7	2.55
98.9	0.0	6.7	2.14
118	0.0	6.7	1.79
141	0.6	7.2	1.50
169	0.0	7.2	1.25
201	0.0	7.2	1.05
240	0.6	7.8	0.882
286	0.0	7.8	0.740
345	0.6	8.3	0.615

,				Pore
	Pressure	Intrusion	Saturation	Diameter
	(psia)	(percent)	(percent)	(µm)
	414	0.6	8.9	0.512
_	489	1.7	10.6	0.434
	588	5.0	15.6	0.360
	707	7.8	23.4	0.300
_	844	7.2	30.6	0.251
	1001	5.0	35.6	0.212
	1195	5.0	40.6	0.177
	1430	5.0	45.6	0.148
	1710	3.9	49.5	0.124
_	2045	5.0	54.5	0.104
	2449	3.3	57.9	0.0866
-	2926	4.5	62.3	0.0725
	3512	3.9	66.2	0.0604
	4183	3.9	70.1	0.0507
_	5006	3.7	73.8	0.0423
	5993	3.3	77.2	0.0354
-	7144	2.8	80.0	0.0297
	8545	2.8	82.7	0.0248
	10216	2.8	85.5	0.0208
_	12224	2.2	87.8	0.0173
	14630	2.2	90.0	0.0145
	17509	2.2	92.2	0.0121
_	20936	1.7	93.9	0.0101
	25013	1.7	95.5	0.0085
	29898	1.7	97.2	0.0071
	35763	0.6	97.8	0.0059
	38288	2.2	100.0	0.0055


Company: Esso Australia Ltd

Well: Cobia A11 Depth: 2617.56 m

Company: Esso Australia Ltd

Well: Cobia A11 Depth: 2617.56 m

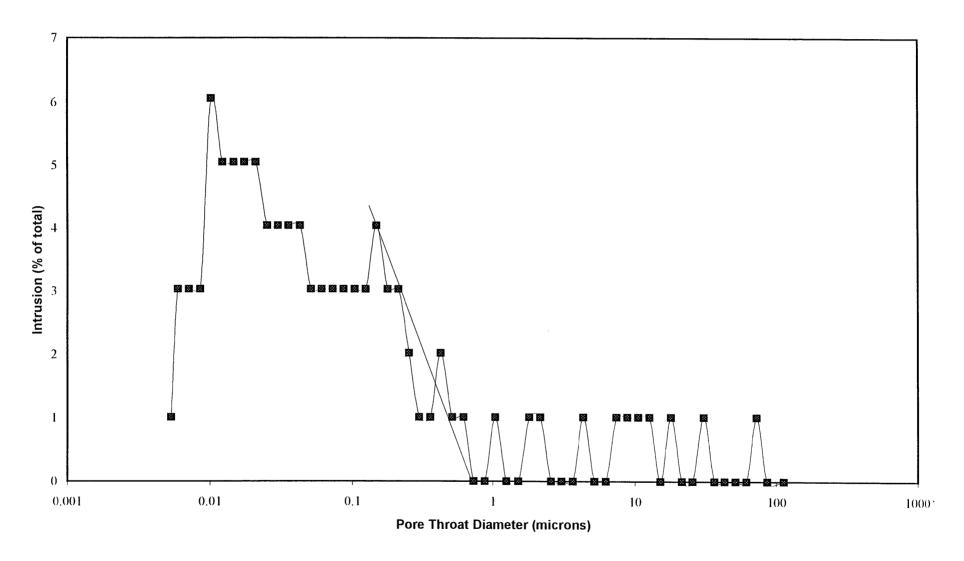
Company Well Esso Australia Ltd

Cobia A11

Test Method Sample Number

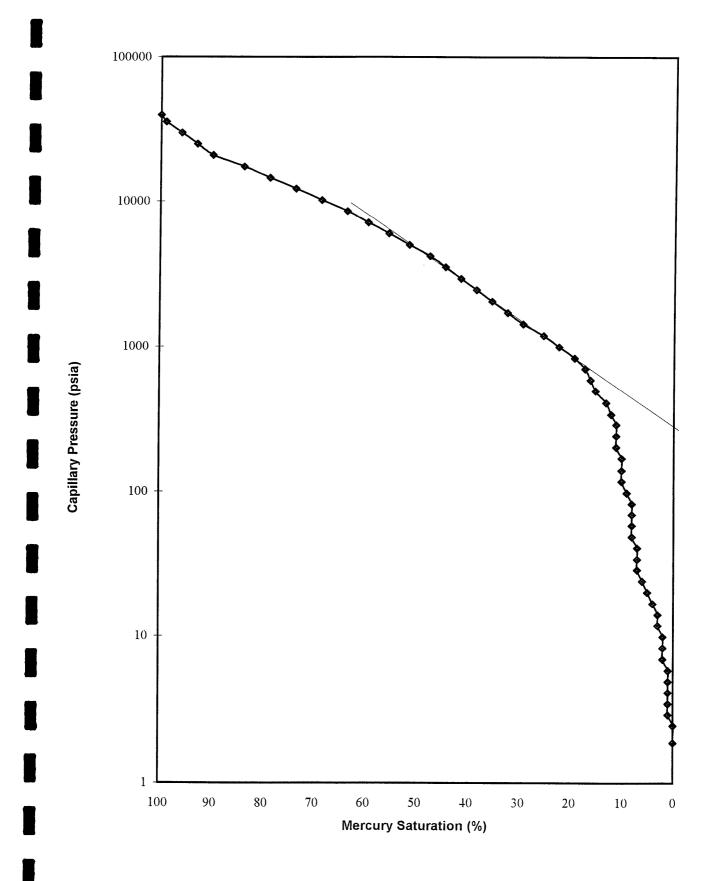
Air/Mercury Capillary Pressure

Depth


2618.72 m

Pressure	Intrusion	Saturation	Pore Diameter
(psia)	(percent)	(percent)	(µm)
1.88	0.0	0.0	113
2.46	0.0	0.0	86.2
2.92	1.0	1.0	72.6
3.47	0.0	1.0	61.1
4.14	0.0	1.0	51.2
4.93	0.0	1.0	43.0
5.85	0.0	1.0	36.2
6.98	1.0	2.0	30.4
8.33	0.0	2.0	25.5
9.92	0.0	2.0	21.4
11.9	1.0	3.0	17.9
14.1	0.0	3.0	15.0
16.9	1.0	4.0	12.6
20.1	1.0	5.1	10.5
24.1	1.0	6.1	8.81
28.7	1.0	7.1	7.38
34.1	0.0	7.1	6.21
41.0	0.0	7.1	5.18
48.8	1.0	8.1	4.34
58.4	0.0	8.1	3.63
69.8	0.0	8.1	3.04
82.9	0.0	8.1	2.56
98.5	1.0	9.1	2.15
118	1.0	10.1	1.79
141	0.0	10.1	1.51
171	0.0	10.1	1.24
204	1.0	11.1	1.04
243	0.0	11.1	0.87
291	0.0	11.1	0.729
343	1.0	12.1	0.618

Pressure	Intrusion	Saturation	Pore Diameter
(psia)	(percent)	(percent)	(μm)
413	1.0	13.1	0.513
497	2.0	15.2	0.426
591	1.0	16.2	0.359
708	1.0	17.2	0.300
835	2.0	19.2	0.254
998	3.0	22.2	0.212
1192	3.0	25.3	0.178
1427	4.0	29.3	0.149
1706	3.0	32.3	0.124
2045	3.0	35.4	0.104
2447	3.0	38.4	0.0866
2928	3.0	41.4	0.0724
3513	3.0	44.4	0.0603
4184	3.0	47.5	0.0507
4996	4.0	51.5	0.0424
6003	4.0	55.6	0.0353
7144	4.0	59.6	0.0297
8537	4.0	63.6	0.0248
10214	5.1	68.7	0.0208
12225	5.1	73.7	0.0173
14577	5.1	78.8	0.0145
17478	5.1	83.8	0.0121
20915	6.1	89.9	0.0101
24948	3.0	92.9	0.0085
29863	3.0	96.0	0.0071
35678	3.0	99.0	0.0059
39658	1.0	100.0	0.0053


Company: Esso Australia Ltd

Well: Cobia A11 Depth: 2618.72 m

Company: Esso Australia Ltd

Well: Cobia A11 Depth: 2618.72 m

Company Well Esso Australia Ltd

Drummer 1

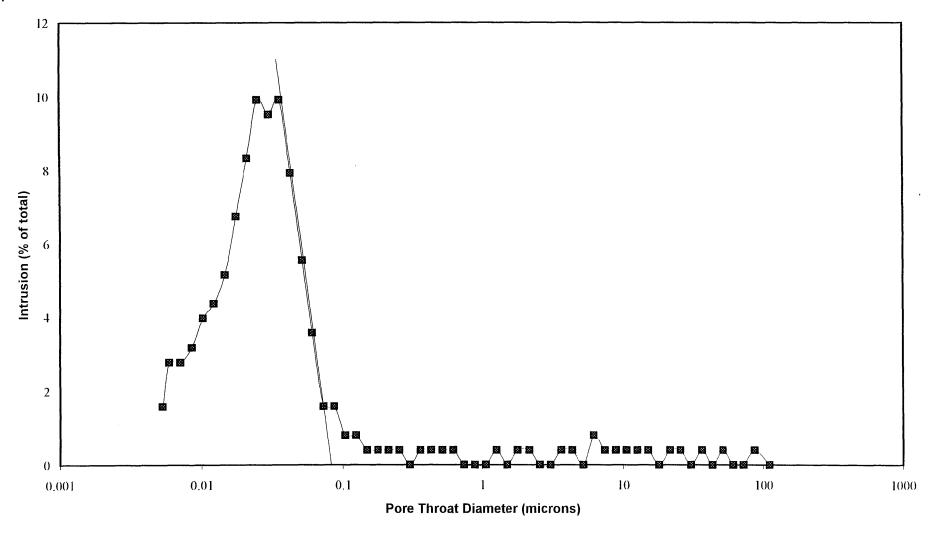
Test Method Sample Number Air/Mercury Capillary Pressure

a

Depth

2485 m - 2490 m

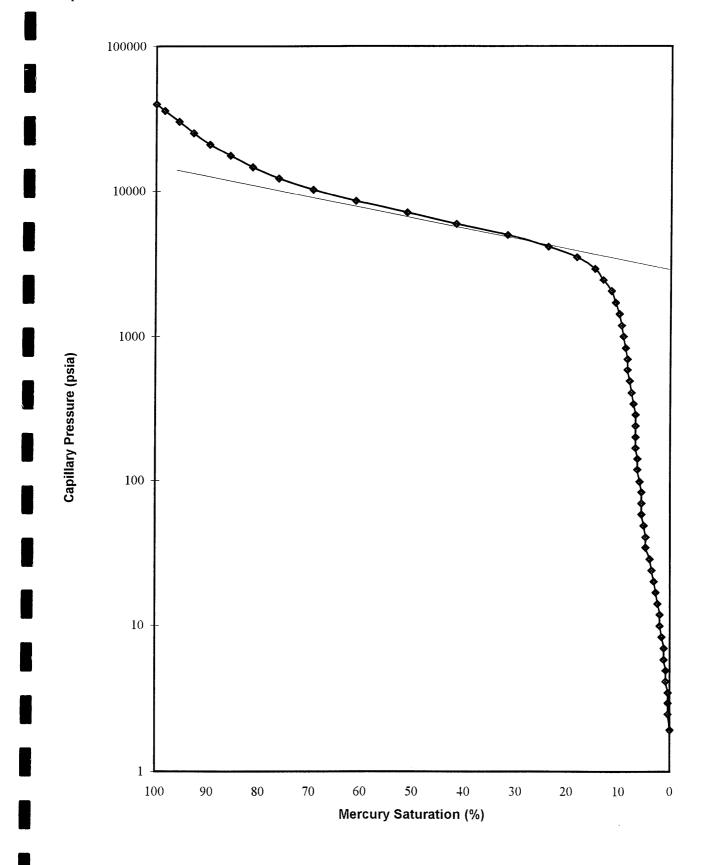
Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
1.92	0.0	0.0	110
2.46	0.4	0.4	86.2
2.94	0.0	0.4	72.1
3.47	0.0	0.4	61.1
4.14	0.4	0.8	51.2
4.91	0.0	0.8	43.2
5.84	0.4	1.2	36.3
6.98	0.0	1.2	30.4
8.32	0.4	1.6	25.5
9.92	0.4	2.0	21.4
11.9	0.0	2.0	17.9
14.1	0.4	2.4	15.0
16.9	0.4	2.8	12.6
20.2	0.4	3.2	10.5
24.0	0.4	3.6	8.82
28.7	0.4	4.0	7.38
34.4	0.8	4.8	6.16
40.8	0.0	4.8	5.20
48.9	0.4	5.2	4.34
58.4	0.4	5.6	3.63
69.5	0.0	5.6	3.05
83.0	0.0	5.6	2.55
98.6	0.4	6.0	2.15
119	0.4	6.3	1.78
141	0.0	6.3	1.50
169	0.4	6.7	1.25
201	0.0	6.7	1.06
240	0.0	6.7	0.884
287	0.0	6.7	0.740
342	0.4	7.1	0.620


Pressure	Intrusion	Saturation	Pore Diameter
(psia)	(percent)	(percent)	(µm)
409	0.4	7.5	0.518
493	0.4	7.9	0.430
589	0.4	8.3	0.360
698	0.0	8.3	0.304
835	0.4	8.7	0.254
1000	0.4	9.1	0.212
1193	0.4	9.5	û.178
1427	0.4	9.9	0.149
1709	0.8	10.7	0.124
2047	0.8	11.5	0.104
2447	1.6	13.1	0.0867
2925	1.6	14.7	0.0725
3510	3.6	18.3	0.0604
4151	5.6	23.8	0.0511
4995	7.9	31.7	0.0424
5967	9.9	41.7	0.0355
7113	9.5	51.2	0.0298
8554	9.9	61.1	0.0248
10194	8.3	69.4	0.0208
12202	6.7	76.2	0.0174
14583	5.2	81.3	0.0145
17484	4.4	85.7	0.0121
20875	4.0	89.7	0.0102
24973	3.2	92.9	0.0085
29973	2.8	95.6	0.0071
35673	2.8	98.4	0.0059
39790	1.6	100.0	0.0053

Company: Esso Australia Ltd

Well: Drummer 1

Sample: a


Depth: 2485 m - 2490 m

Company: Esso Australia Ltd

Well: Drummer 1 Sample: a

Depth: 2485 m - 2490 m

Company

Esso Australia Ltd

Well

Drummer 1

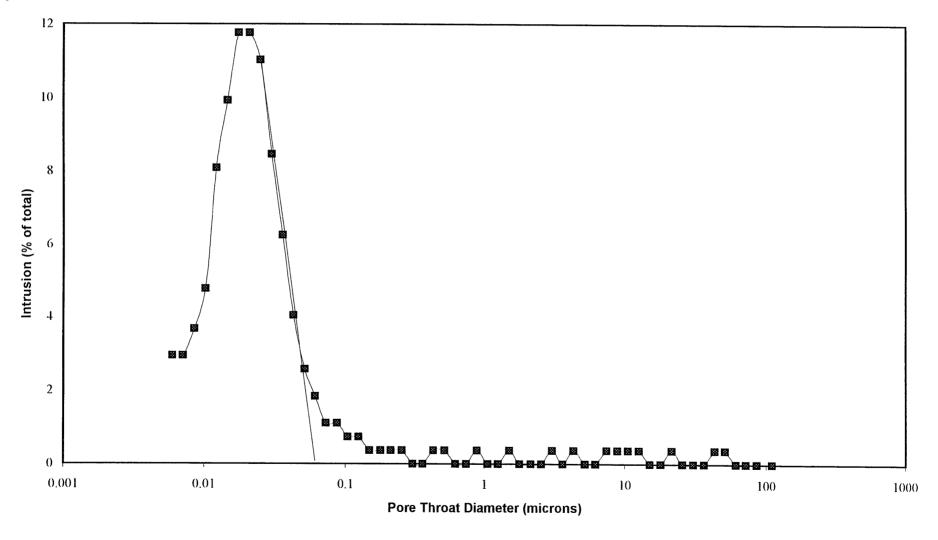
Test Method Sample Number Air/Mercury Capillary Pressure

b

Depth

2485 m - 2490 m

Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
2.46	0.0	0.0	86.2
2.94	0.0	0.0	72.1
3.47	0.0	0.0	61.1
4.14	0.4	0.4	51.2
4.91	0.4	0.7	43.2
5.84	0.0	0.7	36.3
6.98	0.0	0.7	30.4
8.32	0.0	0.7	25.5
9.92	0.4	1.1	21.4
11.9	0.0	1.1	17.9
14.1	0.0	1.1	15.0
16.9	0.4	1.5	12.6
20.2	0.4	1.8	10.5
24.0	0.4	2.2	8.82
28.7	0.4	2.6	7.38
34.4	0.0	2.6	6.16
40.8	0.0	2.6	5.20
48.9	0.4	2.9	4.34
58.4	0.0	2.9	3.63
69.5	0.4	3.3	3.05
83.0	0.0	3.3	2.55
98.6	0.0	3.3	2.15
119	0.0	3.3	1.78
141	0.4	3.7	1.50
169	0.0	3.7	1.25
201	0.0	3.7	1.06
240	0.4	4.0	0.884
287	0.0	4.0	0.740
342	0.0	4.0	0.620

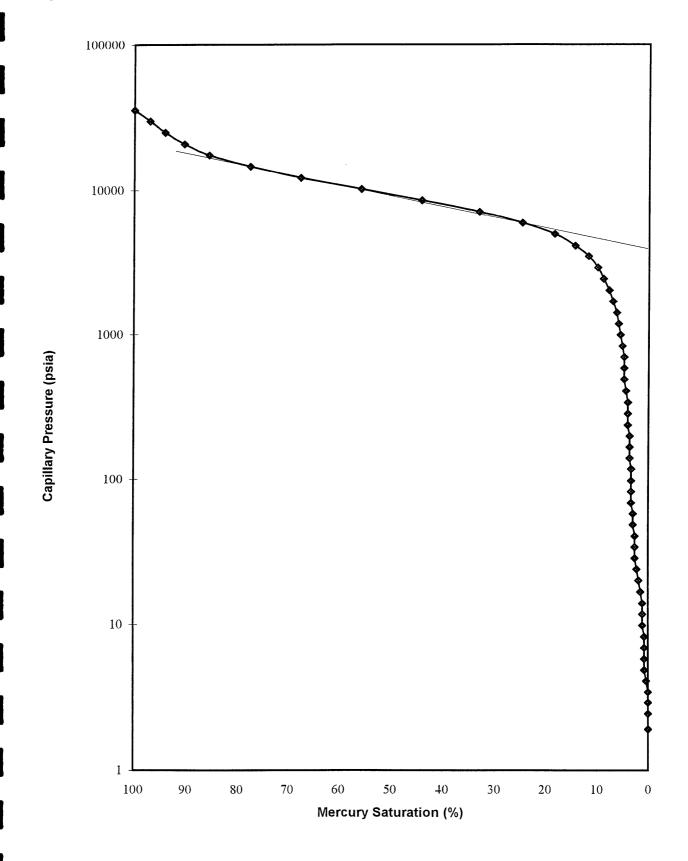

Pressure (psia)	Intrusion (percent)	Saturation (percent)	· Pore Diameter (µm)				
				409	0.4	4.4	0.518
				493	0.4	4.8	0.430
589	0.0	4.8	0.360				
698	0.0	4.8	0.304				
835	0.4	5.1	0.254				
1000	0.4	5.5	0.212				
1193	0.4	5.9	0.178				
1427	0.4	6.3	0.149				
1709	0.7	7.0	0.124				
2047	0.7	7.7	0.104				
2447	1.1	8.8	0.0867				
2925	1.1	9.9	0.0725				
3510	1.8	11.8	0.0604				
4151	2.6	14.3	0.0511				
4995	4.0	18.4	0.0424				
5967	6.3	24.6	0.0355				
7113	8.5	33.1	0.0298				
8554	11.0	44.1	0.0248				
10194	11.8	55.9	0.0208				
12202	11.8	67.6	0.0174				
14583	9.9	77.6	0.0145				
17484	8.1	85.7	0.0121				
20875	4.8	90.4	0.0102				
24973	3.7	94.1	0.0085				
29973	2.9	97.1	0.0071				
35673	2.9	100.0	0.0059				

Company: Esso Australia Ltd

Well: Drummer 1

Sample: b

Depth: 2485 m - 2490 m



Company: Esso Australia Ltd

Well: Drummer l

Sample: b

Depth: 2485 m - 2490 m

Company Well

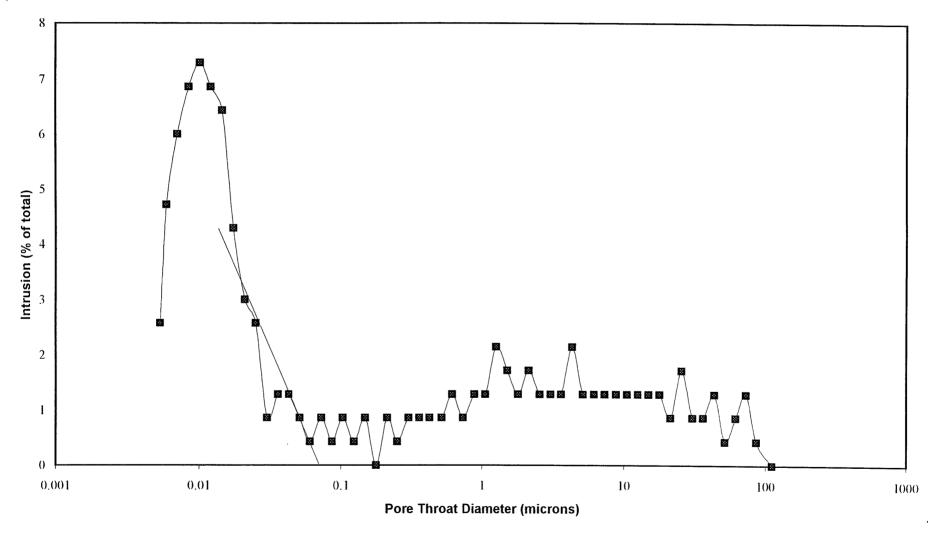
Esso Australia Ltd

Tailor 1

Test Method Sample Number Air/Mercury Capillary Pressure

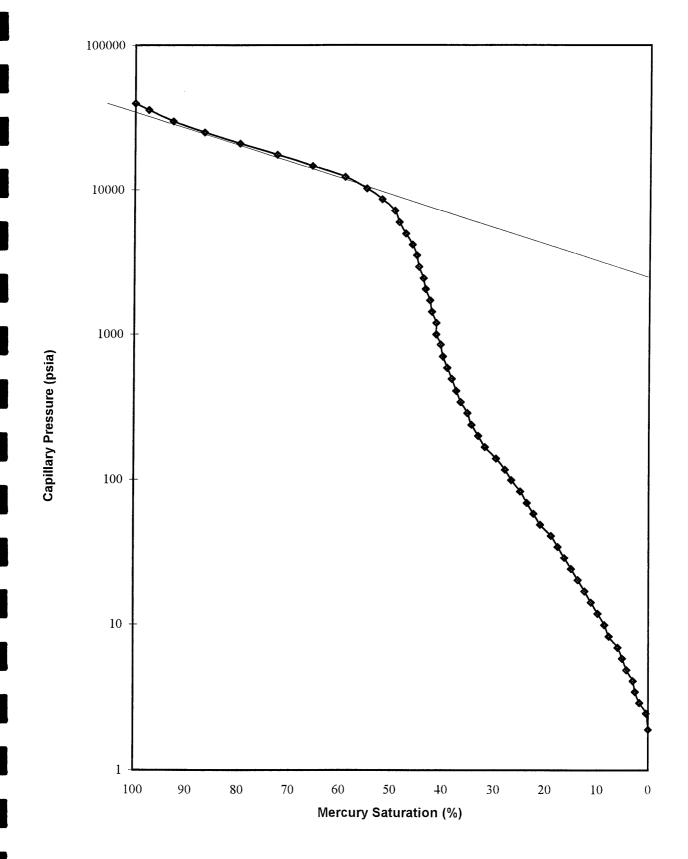
Depth

7941' - 7941' 6"


Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
2.46	0.4	0.4	86.2
2.91	1.3	1.7	72.9
3.45	0.9	2.6	61.4
4.12	0.4	3.0	51.5
4.89	1.3	4.3	43.4
5.87	0.9	5.2	36.1
6.98	0.9	6.0	30.4
8.31	1.7	7.7	25.5
9.95	0.9	8.6	21.3
11.9	1.3	9.9	17.9
14.2	1.3	11.2	15.0
16.9	1.3	12.4	12.6
20.2	1.3	13.7	10.5
24.1	1.3	15.0	8.80
28.8	1.3	16.3	7.35
34.3	1.3	17.6	6.18
41.0	1.3	18.9	5.17
48.9	2.1	21.0	4.34
58.5	1.3	22.3	3.62
69.4	1.3	23.6	3.06
83.1	1.3	24.9	2.55
99.1	1.7	26.6	2.14
117	1.3	27.9	1.81
140	1.7	29.6	1.51
168	2.1	31.8	1.26
200	1.3	33.0	1.06
240	1.3	34.3	0.884
288	0.9	35.2	0.736
344	1.3	36.5	0.617

Pressure	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
(psia)			
409	0.9	37.3	0.518
496	0.9	38.2	0.427
590	0.9	39.1	0.359
703	0.9	39.9	0.301
849	0.4	40.3	0.250
999	0.9	41.2	0.212
1194	0.0	41.2	0.178
1430	0.9	42.1	0.148
1710	0.4	42.5	0.124
2050	0.9	43.3	0.103
2445	0.4	43.8	0.0867
2929	0.9	44.6	0.0724
3515	0.4	45.1	0.0603
4165	0.9	45.9	0.0509
4981	1.3	47.2	0.0426
5981	1.3	48.5	0.0354
7150	0.9	49.4	0.0296
8575	2.6	51.9	0.0247
10220	3.0	54.9	0.0207
12241	4.3	59.2	0.0173
14613	6.4	65.7	0.0145
17494	6.9	72.5	0.0121
20888	7.3	79.8	0.0101
24972	6.9	86.7	0.0085
29883	6.0	92.7	0.0071
35719	4.7	97.4	0.0059
39744	2.6	100.0	0.0053

Company: Esso Australia Ltd


Well: Tailor 1 Sample: a

Depth: 7941' - 7941' 6"

Company: Esso Australia Ltd

Well: Tailor 1 Sample: a

CAPILLARY PRESSURE

Company

Esso Australia Ltd

Well

Tailor 1

Test Method

Air/Mercury Capillary Pressure

Sample Number

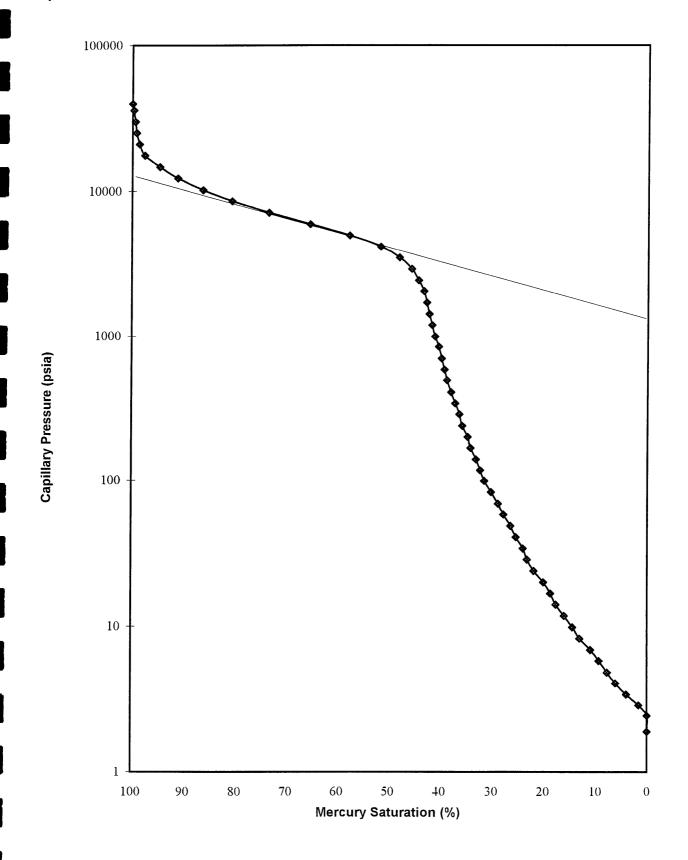
Depth

7941' - 7941' 6"

Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
1.90	0.0	0.0	112
2.46	0.0	0.0	86.2
2.91	1.6	1.6	72.9
3.45	2.4	4.0	61.4
4.12	2.1	6.1	51.5
4.89	1.6	7.7	43.4
5.87	1.6	9.3	36.1
6.98	1.6	10.9	30.4
8.31	2.1	13.1	25.5
9.95	1.3	14.4	21.3
11.9	1.6	16.0	17.9
14.2	1.6	17.6	15.0
16.9	1.1	18.7	12.6
20.2	1.3	20.0	10.5
24.1	1.9	21.9	8.80
28.8	1.3	23.2	7.35
34.3	0.8	24.0	6.18
41.0	1.3	25.3	5.17
48.9	1.1	26.4	4.34
58.5	1.3	27.7	3.62
69.4	1.1	28.8	3.06
83.1	1.3	30.1	2.55
99.1	1.3	31.5	2.14
117	0.8	32.3	1.81
140	0.8	33.1	1.51
168	1.1	34.1	1.26
200	0.5	34.7	1.06
240	1.1	35.7	0.884
288	0.5	36.3	0.736
344	0.8	37.1	0.617

Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (μm)
409	0.8	37.9	0.518
496	0.8	38.7	0.427
590	0.5	39.2	0.359
703	0.5	39.7	0.301
849	0.5	40.3	0.250
999	0.8	41.1	0.212
1194	0.5	41.6	0.178
1430	0.5	42.1	0.148
1710	0.5	42.7	0.124
2050	0.5	43.2	0.103
2445	1.1	44.3	0.0867
2929	1.3	45.6	0.0724
3515	2.4	48.0	0.0603
4165	3.7	51.7	0.0509
4981	6.1	57.9	0.0426
5981	7.7	65.6	0.0354
7150	8.0	73.6	0.0296
8575	7.2	80.8	0.0247
10220	5.6	86.4	0.0207
12241	4.8	91.2	0.0173
14613	3.5	94.7	0.0145
17494	2.9	97.6	0.0121
20888	1.1	98.7	0.0101
24972	0.5	99.2	0.0085
29883	0.3	99.5	0.0071
35719	0.3	99.7	0.0059
39744	0.3	100.0	0.0053

Incremental Intrusion Vs Pore Throat Diameter


Company: Esso Australia Ltd

Well: Tailor 1 Sample: b

Company: Esso Australia Ltd

Well: Tailor 1 Sample: b

CAPILLARY PRESSURE

Company Well

Esso Australia Ltd

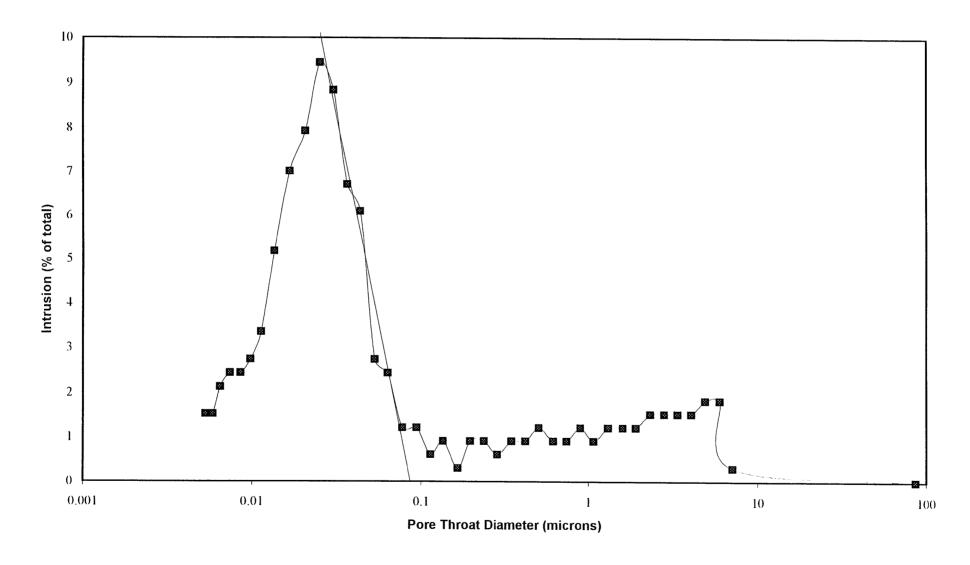
Tailor 1

Test Method Sample Number Air/Mercury Capillary Pressure

c

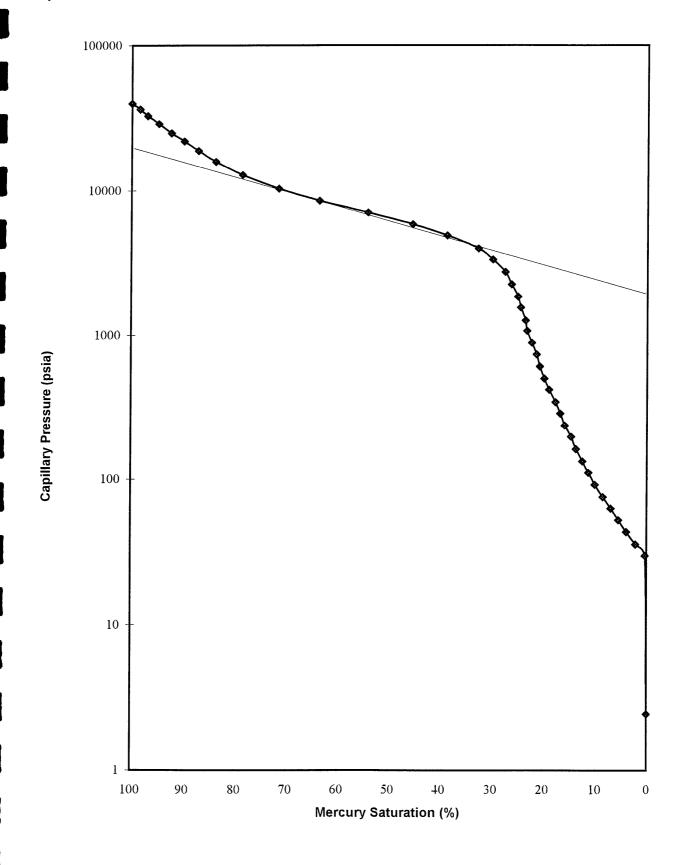
Depth

7941' - 7941'6"


Pressure (psia)	Intrusion (percent)	Saturation (percent)	Pore Diameter (µm)
2.45	0.0	0.0	0.7
2.45	0.0	0.0	87
29.9	0.3	0.3	7.1
35.7	1.8	2.1	5.9
43.4	1.8	4.0	4.9
52.3	1.5	5.5	4.1
63.0	1.5	7.0	3.4
75.6	1.5	8.5	2.8
91.8	1.5	10.1	2.3
111	1.2	11.3	1.9
133	1.2	12.5	1.6
163	1.2	13.7	1.3
197	0.9	14.6	1.1
237	1.2	15.9	0.90
287	0.9	16.8	0.74
344	0.9	17.7	0.62
420	1.2	18.9	0.50
504	0.9	19.8	0.42
611	0.9	20.7	0.35
740	0.6	21.3	0.29
890	0.9	22.3	0.24
1077	0.9	23.2	0.20
1273	0.3	23.5	0.17
1565	0.9	24.4	0.14
1865	0.6	25.0	0.11
2262	1.2	26.2	0.094
2754	1.2	27.4	0.077

Pressure	Intrusion	Saturation	Pore Diameter	
(psia)	(percent)	(percent)	(μm)	
3359	2.4	29.9	0.063	
4016	2.7	32.6	0.053	
4931	6.1	38.7	0.043	
5890	6.7	45.4	0.036	
7090	8.8	54.3	0.030	
8553	9.5	63.7	0.025	
10356	7.9	71.6	0.020	
12848	7.0	78.7	0.017	
15815	5.2	83.8	0.013	
18822	3.4	87.2	0.011	
21825	2.7	89.9	0.010	
24809	2.4	92.4	0.0085	
28789	2.4	94.8	0.0074	
32809	2.1	97.0	0.0065	
36280	1.5	98.5	0.0058	
39708	1.5	100.0	0.0053	

Incremental Intrusion Vs Pore Throat Diameter


Company: Esso Australia Ltd

Well: Tailor 1 Sample: c

Company: Esso Australia Ltd

Well: Tailor 1 Sample: c

CAPILLARY PRESSURE

Company Well Esso Australia Ltd

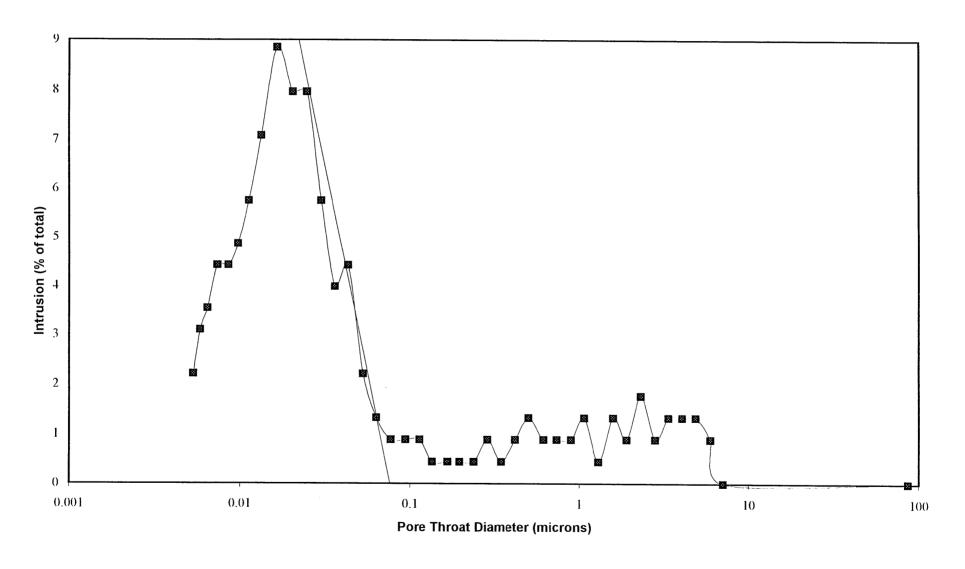
Tailor 1

Test Method Sample Number Air/Mercury Capillary Pressure

d

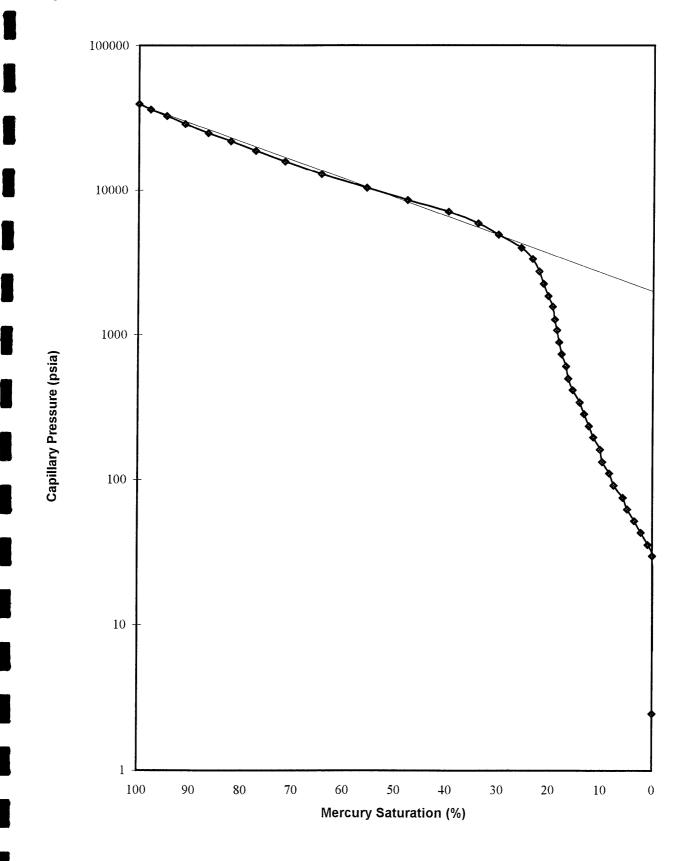
Sample Number Depth

7941' - 7941'6"


Pore Intrusion Saturation Pressure Diameter (psia) (percent) (percent) (µm) 2.45 0.0 0.0 87 29.9 0.0 0.0 7.1 35.7 0.9 0.9 5.9 43.4 1.3 2.2 4.9 52.3 1.3 3.5 4.1 63.0 1.3 4.9 3.4 75.6 0.9 5.8 2.8 91.8 1.8 7.5 2.3 111 0.9 8.4 1.9 133 1.3 9.7 1.6 163 0.4 10.2 1.3 197 1.3 11.5 1.1 237 0.9 12.4 0.90 287 0.9 13.3 0.74 344 0.9 14.2 0.62 420 1.3 15.5 0.50 504 0.9 16.4 0.42 611 0.4 16.8 0.35 740 0.9 17.7 0.29 890 0.4 18.1 0.24 1077 0.4 18.6 0.20 1273 0.4 19.0 0.17 0.4 1565 19.5 0.14 1865 0.9 20.4 0.11 2262 0.9 21.2 0.094 2754 0.9 22.1 0.077

Pressure	Intrusion	Saturation	Pore Diameter	
(psia)	(percent)	(percent)	(μm)	
3359	1.3	23.5	0.063	
4016	2.2	25.7	0.053	
4931	4.4	30.1	0.043	
5890	4.0	34.1	0.036	
7090	5.8	39.8	0.030	
8553	8.0	47.8	0.025	
10356	8.0	55.8	0.020	
12848	8.8	64.6	0.017	
15815	7.1	71.7	0.013	
18822	5.8	77.4	0.011	
21825	4.9	82.3	0.010	
24809	4.4	86.7	0.0085	
28789	4.4	91.2	0.0074	
32809	3.5	94.7	0.0065	
36280	3.1	97.8	0.0058	
39708	2.2	100.0	0.0053	

Incremental Intrusion Vs Pore Throat Diameter


Company: Esso Australia Ltd

Well: Tailor 1 Sample: d

Company: Esso Australia Ltd

Well: Tailor 1 Sample: d

CHAPTER 4

SUMMARY OF RESULTS

SUMMARY

Company Esso Australia Ltd

		Depth	Breakthrough Pressure (psi)	
Well	Sample Number		Capillary Pressure Derived	Pore Throat Derived
Cobia Al l		2616.01 m	140	110
		2616.38 m	220	29
		2617.56 m	400	400
		2618.72 m	300	300
Drummer 1	a	2485 - 2490	3000	2630
	b	2486 - 2490	4000	3500
Tailor 1	a	7941' - 7941' 6"	2500	2990
	b	7941' - 7941' 6"	1400	2630
	c*	7941' - 7941' 6"	2000	2350
	d*	7941' - 7941' 6"	2500	2350

^{*} Repeat Analyses

PE906375

This is an enclosure indicator page.

The enclosure PE906375 is enclosed within the container PE906374 at this location in this document.

The enclosure PE906375 has the following characteristics:

ITEM_BARCODE = PE906375
CONTAINER_BARCODE = PE906374

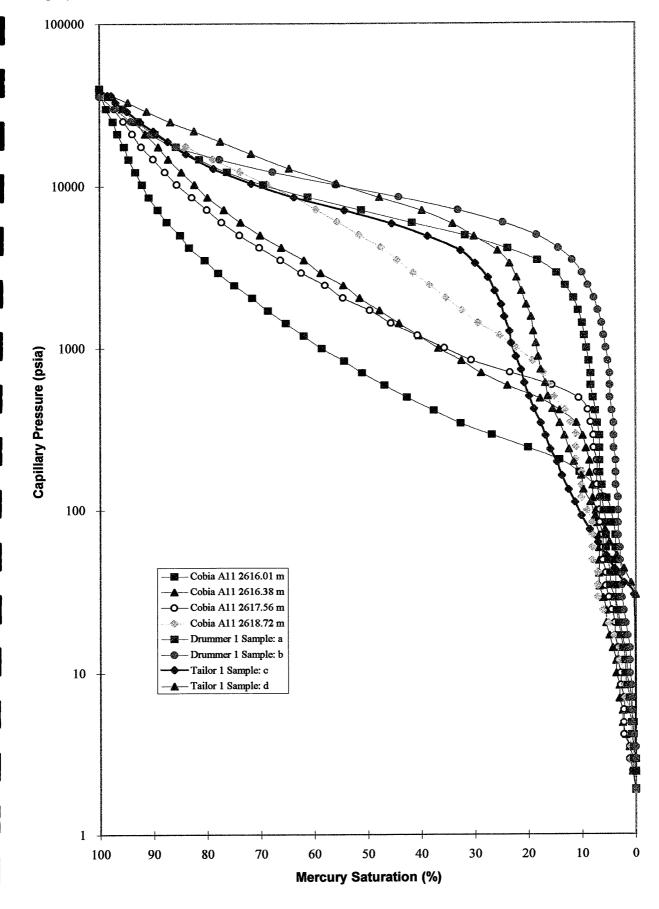
NAME = Capillary vs. Saturation Chart

BASIN = GIPPSLAND
PERMIT = VIC/L5
TYPE = WELL
SUBTYPE = DIAGRAM

REMARKS =

DATE_CREATED = 18/06/96 DATE_RECEIVED = 26/06/96

W_NO = W563
WELL_NAME = TAILOR-1


CONTRACTOR = ACS LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

DEPT. NAT. RES & ENV PE906375

Company: Esso Australia Ltd

