

DOT REPORT PATRICIA - 1 (W963)

ATTACHMENT TO WCR

10 FEB 1988

PETROLEUM DIVISION

PATRICIA NO. 1 DST RESULTS

G.C. Hing LASMO Oil Company Australia Limited

January 1988

Report No. RN109 Copy No.: <u>4</u> 6

ST RESULTS.

al)

PATRICIA NO. 1 DST RESULTS

TABLE OF CONTENTS

Page No.

:

1.0	INTRODUCTION	1
2.0	CONCLUSIONS	2
3.0	RESULTS OF PATRICIA NO. 1 DRILL STEM TESTS	3
	3.1 DST No. 1 Results	3
	3.2 DST No. 2 Results	4
	3.3 DST No. 3 Results	6
	3.4 DST No. 3A Results	8
	3.5 Sampling	10
	,	
	TABLES	11

FIGURES

20

1. INTRODUCTION

Patricia No. 1 was drilled to total depth on 4 July 1987, and flow tested with the following objectives:

- 1) To determine the nature of gas and fluids in three potential reservoir zones.
- 2) To determine well deliverability and reservoir properties of the three zones.
- 3) To obtain representative gas samples for compositional and PVT analysis.

Four drill stem tests were run on this well. The first test was run in the small gas bearing sand in the Barracouta Formation to determine the deliverability of the sand. The second test was conducted on an interval of the Gurnard Formation, which logs indicated to be of poor quality, to determine whether the gas contained within this interval could be regarded as recoverable reserves. The third test was run to determine the deliverability of the entire gas bearing interval of the Gurnard Formation. However. during the test it became evident that flow restrictions were occurring in the test string, thereby masking the true productivity of the interval. The fourth and final test was conducted over the same interval as the third test, using a modified test string to overcome the flow restriction problems experienced in the previous A summary of the data gathered during the four tests is test. presented in Table 1.

This report presents the results of the analyses of the four drill stem tests, in particular the deliverabilities and reservoir properties of the three tested zones are presented.

- 1 MG A THIRD AL MARCH - 1 -

- 1 -

2. CONCLUSIONS

- 2.1 DST No. 1 tested the gas bearing sand within the Barracouta Formation over the interval 744-747m RT and flowed dry gas with up to 75 ppm hydrogen sulphide at a maximum rate of 2.593 MMSCFPD with a surface flowing pressure of 75 psia.
- 2.2 A malfunction of the downhole gauges during DST No. 1 resulted in insufficient pressure data being collected to be able to determine the reservoir properties of the gas bearing sand in the Barracouta Formation. However, based on the information available, it would appear that the average permeability of the interval is less than 10 md.
- 2.3 DST No. 2 was conducted over the interval 719 728m RT in the Gurnard Formation to determine whether this poor quality section of the reservoir is productive. However the results of the test analysis indicate that the test interval was not isolated from the sands above and below. This is further substantiated by the cement bond log which indicates a poor cement bond across the test interval.
- 2.4 DST No. 3 was conducted over the interval 703 738m RT to determine the productivity and reservoir properties of the total gas bearing Gurnard Formation. The interval flowed dry gas at a maximum rate of 13.24 MMSCFPD with a surface flowing pressure of 230 psia.
- 2.5 The results of the analysis of DST No. 3 indicate a total flow capacity of 2689 md.ft with an absolute open flow potential of 31.9 MMSCFPD. The average permeability of the test interval is about 25 md.
- 2.6 While conducting DST No. 3, it was noted that flow restrictions were occurring in the 3-1/2" tubing test string, thereby masking the true productivity of the interval.

- 2 -

- 2.7 In order to overcome the flow restriction problems experienced in DST No. 3, a second test, DST No. 3A, was conducted over the same interval with a modified test string comprising 5" drillpipe. With this test string configuration, a maximum rate of 24.11 MMSCFPD was achieved with a surface flowing pressure of 419 psia.
- 2.8 Results of the analysis of DST No. 3A indicate a total flow capacity of 2278 md.ft, with an absolute open flow potential of 32.8 MMSCFPD. The average permeability of the test interval is calculated to be 21 md.
- 2.9 There is no evidence from the pressure transient analyses of any reservoir heterogeneities within the radius of investigation of the tests.
- 2.10 After considering the RFT pressure data and the extrapolated reservoir pressures from the test, which show an excellent comparison, the original reservoir pressure has been defined as 1087 psia at 745.5m RT in the Barracouta Formation and in the Gurnard Formation, it is defined as 1090 psia at 720.5m RT.
- 3. RESULTS OF PATRICIA NO. 1 DRILL STEM TESTS

3.1 DST No. 1 Results

DST No. 1 was conducted over the interval 744 - 747m RT in the Barracouta Formation. The objective of the test was to determine the deliverability of the gas bearing sand in the Barracouta Formation. The interval flowed dry gas containing hydrogen sulphide (up to a maximum concentration of 75 ppm) at a maximum rate of 2.593 MMSCFPD. A Pressure vs Time plot of the test is presented in Figure 1 and shows that rapid pressure build-ups and drawdowns were obtained during the test. A malfunction in the rapid sampling downhole gauge resulted in insufficient pressure data being collected to be able to determine reservoir properties. Since no core was recovered from this interval, an estimate of reservoir properties from core analysis is not

possible. Several unsuccessful attempts were made to quantify the reservoir properties using the DST pressure data, the pressure drawdown data collected during RFT sampling, and the log analyses.

Details of the reservoir and fluid properties of the Barracouta Formation are presented in Table 2.

A Horner plot of the final build-up (the test period with the most data points) was produced with pseudo-pressure being plotted against log $(t+\Delta t)/\Delta t$ (refer Figure No. 2). Several possible straight lines were identified in the build-up plot with the results of their respective analyses summarized below.

Line No.	Slope (psi ² /cp.log cycle)	Permeability	Skin Factor
	(psi /cp.log cycle)	(md)	
	یک دی بی دی دی دی دی دی دی دن		
l	42.5 \times 10 ⁶	5	-0.8
2	30.4 × 10 ⁶	7	+0.1
3	21.3 x 10 ⁶	10	+1.4
4	4.8×10^6	44	+48.8
5	2.6 x 10 ⁶	83	+39.3

Previous experience with underbalanced perforation (as used on Patricia No. 1) has shown that skin factors resulting from formation damage created during perforating are close to zero. Given that the analysis of DST data from the Gurnard Formation formation indicated only minor near-wellbore damage success of the use of underbalanced (demonstrating the perforation in minimizing formation damage in Patricia No. 1), it would appear reasonable to assume that skin factors of a similar magnitude would be seen in the Barracouta Formation. Based upon this, the average permeability of the formation is less than 10 md.

Å

- 4 -

3.2 DST No. 2 Results

DST No. 2 was conducted over the interval 719 - 728m RT in the Gurnard Formation. The objective of DST No. 2 was to determine whether this section of the reservoir, which the logs indicated to be of poor quality, is productive which, in turn, would allow the gas volumes contained in this zone to be included in the overall recoverable reserves. A Pressure vs Time plot of the test is presented in Figure 3.

Both pressure squared and pseudo-pressure approaches were adopted to analyse the data using the superposition time function. Since the reservoir pressure is less than 2000 psia, the use of the pressure squared approach is a valid approximation of the more complex pseudo-pressure analysis. Results of the analyses of respective test periods show an excellent comparison between the pseudo-pressure and pressure squared approaches, and as such only the pressure squared analyses will be presented in detail.

Details of the reservoir and fluid properties of the Gurnard Formation are presented in Table 3. Results of the test analyses performed on all flow periods and build-ups are presented in Figures 4 to 8, and are summarized in Tables 4 and 5. The results of the analyses indicate that the interval has the following properties:

Flow Capacity kh = 2308 md.ft Skin S = +13.5Absolute Open Flow Capacity AOF = 9.3 MMSCFPD

Assuming that the test interval was isolated from the gas bearing sands both above and below, the formation has an average permeability of about 82 md. The calculated total flow capacity (kh) of the interval however, is similar to that derived from the results of DST No. 3 and DST No. 3A. This indicates that the test interval was not isolated from the other higher quality Gurnard sands situated both above and below the test interval. This is further substantiated by the cement bond logs which show

a poor cement bond around the test interval. The apparently high values of skin factors calculated for this test may be explained by partial completion effects in the total reservoir section, or by channeling behind the casing. Calculations have shown that the apparent skin factor caused by such a partial completion is in the region of ± 12.0 , which is similar to the calculated skin factor of ± 13.5 . This reduces the skin factor due to formation damage to approximately ± 1.5 , which appears reasonable given that underbalanced perforation was used.

The extrapolated shut-in pressures from the analyses are detailed in Table 5 and indicate an average extrapolated pressure of 1095.8 psia at the middle perforation depth (723.5m RT). This agrees favourably with the pressure results from the RFT survey (refer Figure 13).

Based on the results of the test, it was evident that both inertial and turbulent effects were significant. Α Flow-After-Flow analysis (refer Figures 9 and 10) was used to produce a Rate vs Skin plot (refer Figure 11) which yielded a rate-dependent skin coefficient (D) of 3.06 x 10^{-3} MSCFPD⁻¹ flow coefficient (F) non-Darcv of 1.06 and а psia²/cP/MSCFPD². These inertial and turbulent effects were used to derive a deliverability relationship (refer Figure 12) which indicates an absolute open flow capacity of 9.3 MMSCFPD.

There was no evidence from the pressure transient analysis of any reservoir heterogeneities within the radius of investigation of the test (i.e. to a calculated maximum radius of 399 ft).

3.3 DST No. 3 Results

DST No. 3 was conducted over the interval 703 - 738m RT in the Gurnard Formation. The objective of DST No. 3 was to determine the productivity and reservoir properties of the total gas bearing Gurnard Formation. A Pressure vs Time plot of the test is presented in Figure 14.

A THE REPORT OF A DESCRIPTION OF A DESCR

- 6 -

Both pressure-squared and pseudo-pressure approaches were adopted to analyse the data using the superposition time function. Since the reservoir pressure is less than 2000 psia, the use of a pressure-squared approach is a valid approximation of the more complex pseudo-pressure analysis. Results of the analyses of respective test periods show an excellent comparison between the pseudo-pressure and pressure squared approaches and as such only the pressure squared analyses will be presented in detail.

Details of the reservoir and fluid properties of the Gurnard Formation are presented in Table 3. The results of the test analyses performed on all flow periods and build-ups are presented in Figures 15 to 21, and are summarized in Tables 6 and 7. The results of the analyses indicate that the test interval has the following properties:

Flow Capacity kh = 2689 md.ft Skin S = +1.4 Absolute Open Flow Capacity AOF = 31.9 MMSCFPD

Assuming a net thickness of 109 ft, the average permeability of the test interval is about 25 md. During the test, it was noted that flow restrictions were occurring in the 3-1/2" tubing test string, thereby masking the true productivity of the interval. The flow restrictions occurred downstream of the pressure gauges and as such, a full modified isochronal analysis could still be undertaken.

The extrapolated shut-in pressures from the analyses are detailed in Table 7, and indicate an average extrapolated pressure of 1092.0 psia at the middle perforation depth (720.5m RT). This agrees favourably with the pressure results from the RFT survey (refer Figure 13).

Based on the results of the test, it was evident that both inertial and turbulent effects were significant. A modified isochronal test analysis (refer Figures 22 and 23) was used to produce a Rate vs Skin plot (refer Figure 24) which yielded a rate-dependent skin coefficient (D) of $1.00 \times 10^{-4} \text{ MSCFPD}^{-1}$ and a non-Darcy flow coefficient (F) of 0.028 psia²/cP/MSCFPD². These inertial and turbulent effects were used to derive a deliverability relationship (refer Figure 25) which indicated an absolute open flow capacity of 31.9 MMSCFPD.

There was no evidence from the pressure transient analysis of any reservoir heterogeneities within the radius of investigation of the test (i.e. to a calculated maximum radius of 142 ft).

3.4 DST No. 3A Results

DST No. 3A was conducted over the same interval of 703 - 738m RT in the Gurnard Formation as DST No. 3, with a modified test string using 5" drillpipe. The objective of DST No. 3A was to overcome the flow restriction problems experienced while testing the same interval in DST No. 3, by using the large diameter test string, and hence ascertain the true productivity of the total gas bearing Gurnard Formation. A Pressure vs Time plot of the test is presented in Figure 26.

Both pressure squared and pseudo-pressure approaches were adopted to analyse the data using the superposition time function. Since the reservoir pressure is less than 2000 psia, the use of a pressure squared approach is a valid approximation of the more complex pseudo-pressure analysis. Results of the analyses of respective test periods show an excellent comparison between the pseudo-pressure and pressure squared approaches, and as such only the pressure squared analyses will be presented in detail.

Details of the reservoir and fluid properties of the Gurnard Formation are presented in Table 3. The results of the test analyses performed on all flow periods and build-ups are presented in Figures 27 to 30, and are summarized in Tables 8 and 9. The results of the analyses indicate that the test interval has the following properties: Flow Capacity kh = 2278 md.ft Skin S = ± 1.2 Absolute Open Flow Capacity AOF = 32.8 MMSCFPD

Assuming a net thickness of 190 ft, the average permeability of the interval is about 21 md. This compares favourably with the average permeability of 25 md calculated from the results of DST No. 3. With the modified test string, a maximum gas rate of 24.11 MMSCFPD was achieved, with a surface flowing pressure of 419 psia. The measured productivity was significantly improved over the maximum rate of 13.24 MMSCFPD with a surface pressure of 230 psia achieved in DST No. 3, which indicates that the problem of flow restrictions in the test string had been overcome by the use of the larger diameter test string.

The extrapolated shut-in pressures from the analyses are detailed in Table 9, and indicate an average extrapolated pressure of 1090.3 psia at the middle perforation depth (720.5m RT). This agrees favourably with the pressure results from the RFT pressures survey (refer Figure 13).

Based on the results of DST No. 3, it appeared that both inertial and turbulent effects would also be significant in DST No. 3A. Since the same interval was tested in both DST No. 3 and DST No. 3A, the same coefficients of rate dependent skin and non-Darcy flow were used to derive a deliverability relationship (refer Figure 30), which indicated an absolute open flow capacity of 32.8 MMSCFPD. This agrees favourably with the estimate of 31.9 MMSCFPD derived from the results of DST No. 3.

There was no evidence from the pressure transient analysis of any reservoir heterogeneities within the radius of investigation of the test (i.e. to a calculated maximum radius of 108 ft).

3.5 Sampling

Gas samples were taken at the separator gas outlet during tests conducted on both the Barracouta and Gurnard Formations. The

- 9 -

samples were sent to two independent laboratories for analysis. A summary of the results of the gas analyses is presented in Table 10.

Upon completion of the testing operations, it was discovered that significant sand production had occurred during the flow testing of the Gurnard Formation. The very fine nature of the produced sand resulted in the sand production occurring undetected by the sand detection probe (SANDEC) installed in the surface test equipment. Sand samples taken from the core have been sent to various service companies for a sieve analysis and for their sand control recommendations.

à,

LIST OF TABLES

:

STATES STATES

:

-

Table l	Summary of DST Results
Table 2	Barracouta Formation - Reservoir and Fluid Properties
Table 3	Gurnard Formation - Reservoir and Fluid Properties
Table 4	DST No. – 2 Results
Table 5	DST No. 2 - Extrapolated Pressures
Table 6	DST No. 3 - Results
Table 7	DST No. 3 - Extrapolated Pressures
Table 8	DST No. 3A - Results
Table 9	DST No. 3A Extrapolated Pressures

Table 10 Summary of Gas Analysis Results

VIC/P11

PATRICIA NO. 1

SUMMARY OF DST RESULTS

	- DST NO.	OPERATION	CHOKE SIZE (inches)	DURATION (Min)	FINAL FLOWIN BOTTOMHOLE (psia)		GAS FLOWRATE (MMSCFPD)
	1	Clean-Up Flow	1	233	169	75	2,593
	ſ	Clean-Up Build-Up First Iso Flow	- 3/8	230 237	- 635	- 570	- 1.810
	{	First Iso Build-up Second Iso Flow	1/2	236 242	423	- 365	- 2.023
	(Second Iso Build-up Third Iso Flow	- 5/8	238 251	251	191	- 2.050
		Final Build-Up	-	30	-	-	- *
	2	Clean-Up Flow Clean-Up Build-Up	1	235 223	671	435	8.300
Ì		First Iso Flow First Iso Build-Up	5/8	241 242	895	- 575	5.150
	<i>C</i> .	Second Iso Flow Final Build-Up	1	169 8	833	282	- 6.123
Botte	U.	FINAL BUILD-OP	-	0	-	-	-
•	3	Clean-Up Flow #1	1 1/4+ 1 1/4	153	906	217	12.310
		Clean-Up Build-Up #1 Clean-Up Flow #2		3 83	- 890	_ 230	13.240
		Clean-Up Build-Up #2 First Iso Flow	- 3/8	235 180	1049	- 971	- 3.200
		First Iso Build-Up Second Iso Flow Second Iso Build-Up	1/2	180 181 178	1013	906	- 5.890
		Third Iso Flow Final Build-Up	5/8 -	178 188 107	980 -	826 -	8.354 -
		,		;			
	3A	Clean-Up Flow	1 1/4+ 1 1/4	126	765	374	22.830
		Clean-Up Build-Up Main Flow Period	- 1 1/4+ 1 1/4	108 240	- 774	- 419	_ 24.110
- 		Final Build-Up	1 1/4 -	254	-	-	-

PATRICIA NO. 1 BARRACOUTA FORMATION RESERVOIR AND FLUID PROPERTIES

Gas Composition

N2	1.27%
C02	1.00%
Cl	97.53%
C2	0.16%
C3	0.01%
iC4	0.01%
nC4	0.01%
iC5	0.01%
nC5	0.01%
C6+	0.03%

Gas Properties

Botton Aprile Jable

At

Top

Gas Gravity (Air = 1.0) = 0.571 Critical Pressure = 669.8 psia Critical Temperature = -115.5⁰F Initial Gas Compressibility Factor = 0.910 Initial Gas Viscosity = 0.013 cp

Reservoir Properties

Date

Interval = 744 - 747m RT Reservoir Pressure = 1087 psia Reservoir Temperature = 106⁰F Average Porosity = 25% Average Water Saturation = 0.35% Net to Gross Ratio = 0.90

PATRICIA NO. 1 GURNARD FORMATION RESERVOIR AND FLUID PROPERTIES

Gas Composition

N2	0.66%
C02	1.32%
Cl	97.70%
C2	0.28%
C3	0,005%
iC4	0.003%
nC4	0.000%
iC5	0.000%
nC5	0.003%
C6+	0.005%

Gas Properties

Gas Gravity (Air = 1.0) = 0.573 Critical Pressure = 672.5 psia Critical Temperature = -112.7^OF Initial Gas Compressibility Factor = 0.907 Initial Gas Viscosity = 0.013 cp

Reservoir Properties

Interval = 700 - 739m RT Reservoir Pressure = 1090 psia Reservoir Temperature = 106⁰F Average Porosity = 34% Average Water Saturation = 35% Net to Gross Ratio = 0.95

DST NO. 2 RESULTS

kh Id-ft)	k*	~									
	(md)	S	△ PSKIN (psi)	RINV (ft)	AOF (MMSCFPD)	kh (md-ft)	k* (md)	S	∆ PSKIN (psi)	RINV (ft)	AOF (MMSCFPD)
2323.1	82.7	-	-	<u></u>	9.4	2374.4	84.5		-		9.5
299.0	81.8	+15.8	329.2	309.5	-	2320.6	82.6	+16.7	331.4	310.9	-
2333.0	83.0	-	-	-	9.2	2315.0	82.4	-	-	-	9.3
2372.8	84.4	+12.7	137.3	399.1	-	2370.7	84.4	+13.1	138.6	399.0	-
274.7	81.0	-	-	-	9.3	2117.6	75.4	-	-	-	9,3
261.8	80.8	+13.1	183.8	271.8	_	2281.5	81.5	+13.8	186.3	273.0	
308.3	82.2	-	-	-	9.3	2281.1	81.3	-	_	_	9.4
	299.0 333.0 372.8 274.7 261.8 308.3	299.0 81.8 333.0 83.0 372.8 84.4 274.7 81.0 261.8 80.8 308.3 82.2	299.0 81.8 +15.8 333.0 83.0 - 372.8 84.4 +12.7 274.7 81.0 - 261.8 80.8 +13.1	299.0 81.8 $+15.8$ 329.2 333.0 83.0 $ 372.8$ 84.4 $+12.7$ 137.3 274.7 81.0 $ 261.8$ 80.8 $+13.1$ 183.8 308.3 82.2 $ -$	299.0 81.8 $+15.8$ 329.2 309.5 333.0 83.0 $ 372.8$ 84.4 $+12.7$ 137.3 399.1 274.7 81.0 $ 261.8$ 80.8 $+13.1$ 183.8 271.8 308.3 82.2 $ -$	299.0 81.8 $+15.8$ 329.2 309.5 $-$ 333.0 83.0 $ 9.2$ 372.8 84.4 $+12.7$ 137.3 399.1 $ 274.7$ 81.0 $ 9.3$ 261.8 80.8 $+13.1$ 183.8 271.8 $ 308.3$ 82.2 $ 9.3$	299.0 81.8 $+15.8$ 329.2 309.5 $ 2320.6$ 333.0 83.0 $ 9.2$ 2315.0 372.8 84.4 $+12.7$ 137.3 399.1 $ 2370.7$ 274.7 81.0 $ 9.3$ 2117.6 261.8 80.8 $+13.1$ 183.8 271.8 $ 2281.5$ 308.3 82.2 $ 9.3$ 2281.1	299.0 81.8 $+15.8$ 329.2 309.5 $ 2320.6$ 82.6 333.0 83.0 $ 9.2$ 2315.0 82.4 372.8 84.4 $+12.7$ 137.3 399.1 $ 2370.7$ 84.4 274.7 81.0 $ 9.3$ 2117.6 75.4 261.8 80.8 $+13.1$ 183.8 271.8 $ 2281.5$ 81.5 308.3 82.2 $ 9.3$ 2281.1 81.3	299.0 81.8 $+15.8$ 329.2 309.5 $ 2320.6$ 82.6 $+16.7$ 333.0 83.0 $ 9.2$ 2315.0 82.4 $ 372.8$ 84.4 $+12.7$ 137.3 399.1 $ 2370.7$ 84.4 $+13.1$ 274.7 81.0 $ 9.3$ 2117.6 75.4 $ 261.8$ 80.8 $+13.1$ 183.8 271.8 $ 2281.5$ 81.5 $+13.8$ 308.3 82.2 $ 9.3$ 2281.1 81.3 $-$	299.0 81.8 $+15.8$ 329.2 309.5 $ 2320.6$ 82.6 $+16.7$ 331.4 333.0 83.0 $ 9.2$ 2315.0 82.4 $ 372.8$ 84.4 $+12.7$ 137.3 399.1 $ 2370.7$ 84.4 $+13.1$ 138.6 274.7 81.0 $ 9.3$ 2117.6 75.4 $ 261.8$ 80.8 $+13.1$ 183.8 271.8 $ 2281.5$ 81.5 $+13.8$ 186.3 308.3 82.2 $ 9.3$ 2281.1 81.3 $ -$	299.0 81.8 $+15.8$ 329.2 309.5 $ 2320.6$ 82.6 $+16.7$ 331.4 310.9 333.0 83.0 $ 9.2$ 2315.0 82.4 $ 372.8$ 84.4 $+12.7$ 137.3 399.1 $ 2370.7$ 84.4 $+13.1$ 138.6 399.0 274.7 81.0 $ 9.3$ 2117.6 75.4 $ 261.8$ 80.8 $+13.1$ 183.8 271.8 $ 2281.5$ 81.5 $+13.8$ 186.3 273.0 308.3 82.2 $ 9.3$ 2281.1 81.3 $ -$

٠

* Calculated Assuming h = 28.10 ft.

0169I

4

errent turi

.

DST NO. 2 - EXTRAPOLATED PRESSURES

	PRESSURE SQUARE		PSEUDO-PRESSURE	ANALYSIS RESULTS
FLOW PERIOD/ TEST	PEXTRAP AT GAUGE DEPTH* (psia)	PEXTRAP AT MID POINT PERFORATION** (psia)	PEXTRAP AT GAUGE DEPTH (psia)	PEXTRAP AT MID POINT PERFORATION (psia)
CLEAN UP BUILD-UP VARIABLE RATE B/U	1095.6	1096.8	1094.9	1096.1
BUILD-UP # 1 VARIABLE RATE B/U	1094.6	1095.8	1094.7	1095.9
BUILD-UP # 2 VARIABLE RATE B/U	1093.6	1094.8	1093.9	1095.1
AVERAGE RESULTS	1094.6	1095.8	1094.5	1095.7

* GAUGE DEPTH = 707.64 m. RT ** MID POINT PERFORATION DEPTH = 723.5m. RT

i

DST NO. 3 RESULTS

,,

	PRESSURE SQUARED ANALYSIS RESULTS							PSEUDO-PRESSURE ANALYSIS RESULTS					
FLOW PERIOD/ TEST	kh (md-ft)	k* (md)	S	∆PSKIN (psi)	RINV (ft)	AOF (MMSCFPD)	kh (md-ft)	k* (md)	ſS	∆PSKIN (psi)	RINV (ft)	AOF (MMSCFPD)	
Isochronal Build-Up	2229.7	20.5	-	-	-	-	2102.8	19.3		_	-	-	
Isochronal Drawdown	2844.1	26.1	-	-	-	30.8	3364.1	30.9	-	-	-	31.6	
Clean-Up Build-Up Variable Rate B/U	2684.0	24.6	+19.3	749.4	130.3	-	2622.7	24.1	+19.8	750.3	128.8	-	
Iso Flow # 1 Variable Rate D/D	2295.8	21.1	-	-	-	32.9	2161.7	19.8	-	-		32.2	
Iso Build-Up # 1 Variable Rate B/U	2535.4	23.3	+11.6	68.7	142.4	-	2460.5	22.6	+11.4	68,5	140.3	-	
Iso Flow # 2 Variable Rate D/D	3048.8	28.0	-	-	-	31.4	3233.9	29.7	-	-	-	31.2	
Iso Build—Up # 2 Variable Rate B/U	2331.7	21.4	+3.7	44.9	136.4	-	2341.6	21.5	+3.9	46.3	136.7	-	
Iso Flow # 3 Variable Rate D/D	3751.1	34.4	-	-	-	32.5	3722.2	34.1	-	-	-	31.9	
Iso Build-Up # 3 Variable Rate B/U	2479.4	22.7	+1.3	22.0	108.6	_	2474.6	22.7	+1.5	23.6	106.9	-	
Average Results	2688.9	24.7	-	. –	129.4	31.9	2720.5	25.0	_		128.2	31.7	

* Calculated Assuming h = 109 ft.

0169I ;

war in a second se

.

DST NO. 3 - EXTRAPOLATED PRESSURES

	PRESSURE SQUARE	D ANALYSIS RESULTS	PSEUDO-PRESSURE	ANALYSIS RESULTS
FLOW PERIOD/ TEST	PEXTRAP AT	PEXTRAP AT MID	PEXTRAP AT	PEXTRAP AT MID
ILSI	GAUGE DEPTH* (psia)	POINT PERFORATION** (psia)	GAUGE DEPTH	POINT PERFORATION
	(1914)		(psia)	(psia)
BUILD-UPS ISOCHRONAL	1086.8	1089.0	1087.1	1089.3
CLEAN-UP BUILD-UP VARAIBLE RATE B/U	1090.2	1092.4	1090.1	1092.3
BUILD-UP #1	1090.7	1092.9	1090.8	1093.0
BUILD-UP # 2	1091.8	1093.0	1091.5	1093.7
BUILD-UP # 3	1091.7	1092.9	1091.3	1093.5
AVERAGE RESULTS	1090.2	1092.0	1090.2	1092.4

1 A. 1

.

* GAUGE DEPTH = 691.80m. RT ** MID POINT PERFORATION DEPTH = 720.5m. RT.

DST NO. 3A RESULTS

FLOW PERIOD/ TEST		PRESSURE SQUARED ANALYSIS RESULTS						PSEUDO-PRESSURE ANALYSIS RESULTS					
	kh (md-ft)	k* (md)	S	△PSKIN (psi)	RINV (ft)	AOF (MMSCFPD)	kh (md - ft)	k* (md)	S	∆PSKIN (psi)	RINV (ft)	AOF (MMSCFPD)	
Flow # 1 Variable Rate D/D	2183.7	20.0	-	-	-	26.3	2264.1	20.8		_		26.9	
Build–Up #l Variable Rate B/U	2276.8	20.9	+1.1	68.0	107.7	-	2313.0	21.2	+1.3	74.5	108.5	-	
Flow # 2 Variable Rate D/D	2308.8	21.2	-	-	-	32.8	2319.9	21.3	-	-	-	33.0	
Build-Up # 2 Variable Rate B/U	2341.1	21.5	+1.2	69.4	108.4	-	2307.7	21.2	+1.3	74.0	107.7	-	
Average Results	2277.6	20.9	-	-	108.1	29.6	2301.2	21.1	-		108.1	30.0	

+

* Calculated Assuming h = 109 ft.

I.

01691

DST NO. 3A - EXTRAPOLATED PRESSURES

	PRESSURE SQUARE	D ANALYSIS RESULTS	PSEUDO-PRESSURE	E ANALYSIS RESULTS
FLOW PERIOD/	PEXTRAP AT	PEXTRAP AT MID	PEXTRAP AT	PEXTRAP AT MID
TEST	GAUGE DEPTH*	POINT PERFORATION**	GAUGE DEPTH	POINT PERFORATION
	(psia)	(psia)	(psia)	(psia)
BUILD-UP # 1	1089.5	1090.8	1000.0	
	1007.7	1090.0	1089.0	1090.3
BUILD-UP # 2	1088.4	1089.7	1088.8	1090.1
AVERAGE	1089.0	1000 7	1000.0	
RESULTS	1007.0	1090.3	1088.9	1090.2
· · · · · · · ·				

...

5

1

* GAUGE DEPTH = 703.50m. RT. ** MID POINT PERFORATION DEPTH - 720.50m. RT.

PATRICIA NO. 1

SUMMARY OF GAS ANALYSIS RESULTS

	F	LOPETRO	L ANALY	SIS	GA	S AND FI	UEL ANAL	YSIS	AVER	AGE
DSTINO	····1···	<u> </u>	3		<u> </u>	1	··· <u>3</u> ·	3	<u> </u>	3
BOTTLE NO	54263	54284	54303	54275	54255	54237	54257	54281	-	-
N2	1.27	2.10	0.65	0.61	1.17	1.44	0.68	0.66	1.50	0.65
C02	1.00	1.05	1.24	1.25	0.92	0.96	1.32	1.32	0,98	1.28
Cl	97.53	96.56	97.69	97,59	97.8	97.4	97.7	97.7	97.3	97.67
C2	0.16	0.19	0.32	0.30	0.12	0.12	0.28	0.28	0.15	0.30
C3	0.01	0.03	0.01	0.03	0.004	0.004	0.005	0.005	0.012	0.01
iC4	0.01	0.01	0.01	0.01	0.00	0.00	0.003	0.003	0.00	0.004
nC4	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.000	0.00	0.00
iC5	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.000	0.00	0.00
nC5	0.01	0.01	0.01	0.02	0.004	0.006	0.003	0.003	0.003	0.007
C6+	0.03	0.05	0.08	0.06	0.006	0.015	0.005	0.005	0.025	0.04
HEATING VALUE	36.97	36.69	37.25	37.44	36.95	36.84	37.04	36.86	36.86	37.15
mJ/m ³										
GRAVITY	0.571	0.576	0.573	0.576	0.568	0.570	0.571	0.573	0.571	0.573

. ,

NOTE: THE ABOVE ANALYSES HAVE BEEN CORRECTED TO AN AIR FREE BASIS.

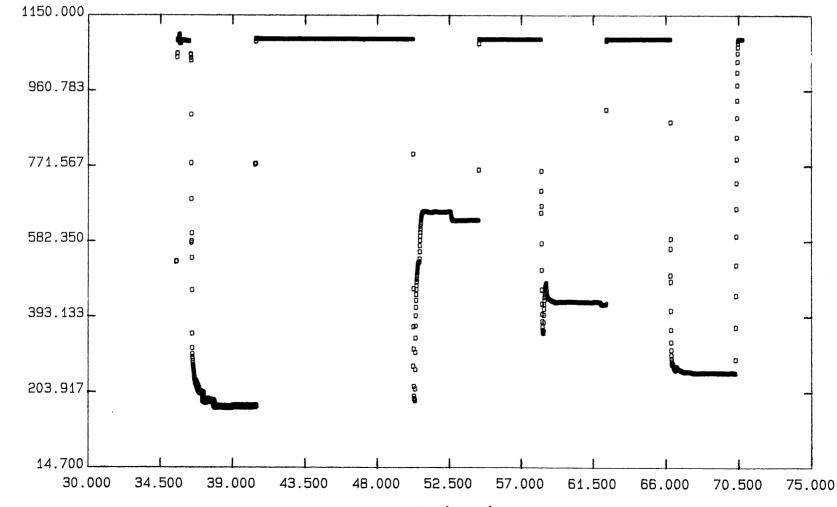
-

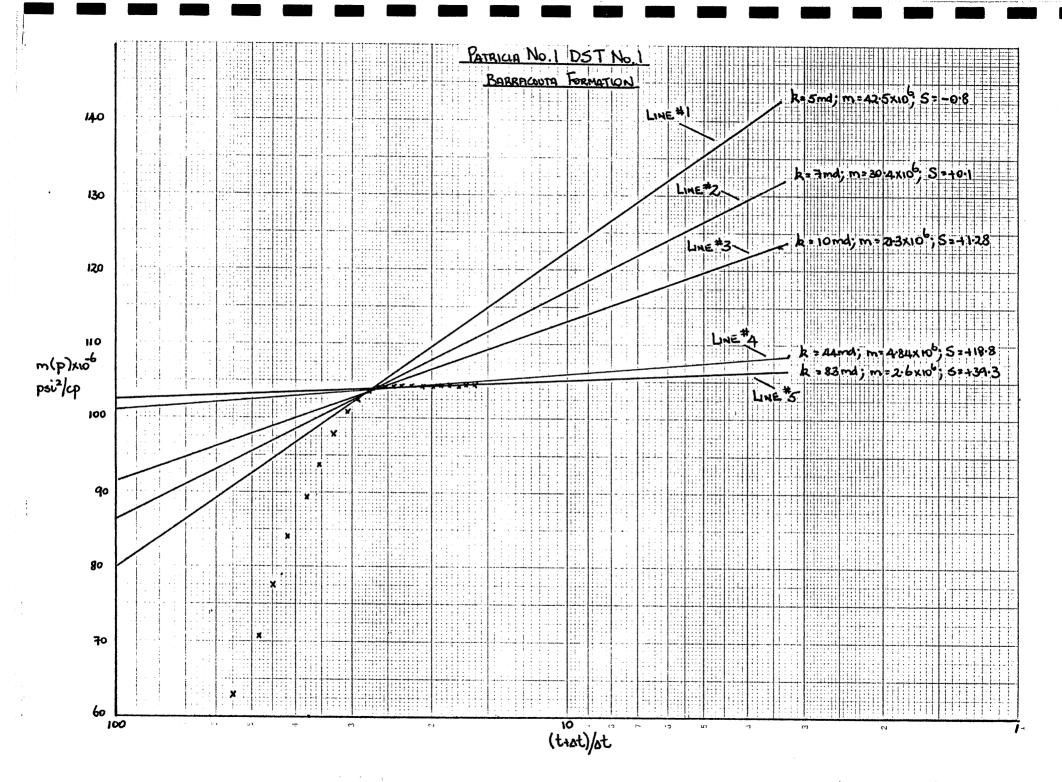
,

:

FIGURES

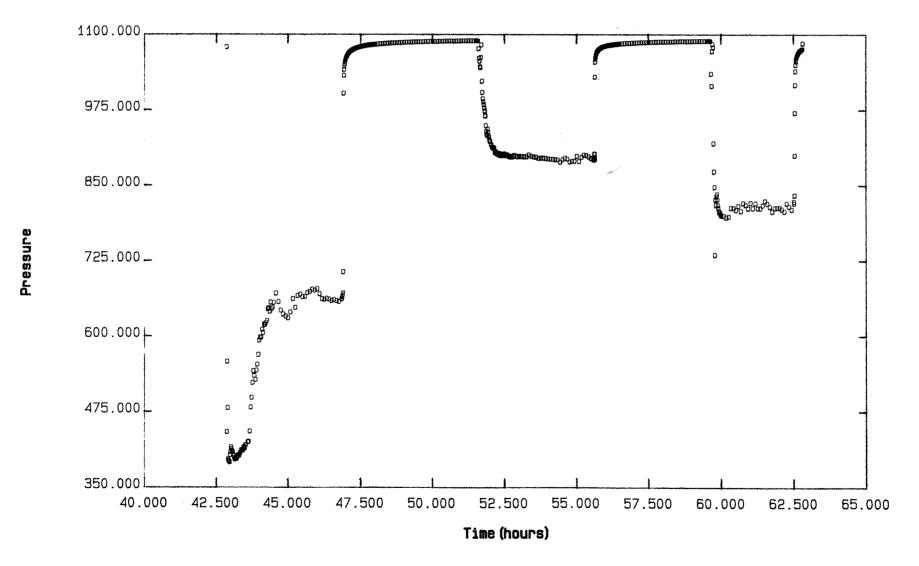
LIST OF FIGURES


Figure l	DST No. 1 - Pressure Vs Time Plot
Figure 2	DST No. l Final Build Period - Horner Plot
Figure 3	DST No. 2 - Pressure Vs Time Plot
Figure 4	DST No. 2 Clean-Up Build Period - Variable Rate Build-Up Plot
Figure 5	DST No. 2 Flow Period No. 1 - Variable Rate Drawdown Plot
Figure 6	DST No. 2 Build Period No. 1 - Variable Rate Build-Up Plot
Figure 7	DST No. 2 Flow Period No. 2 - Variable Rate Drawdown Plot
Figure 8	DST No. 2 Build Period No. 2 - Variable Rate Build-Up Plot
Figure 9	DST No. 2 - Flow After Flow Plot
Figure 10	DST No. 2 - Rate Dependant Skin Corrected Flow After Flow Plot
Figure ll	DST No. 2 - Skin Vs Flowrate Plot
Figure 12	DST No. 2 - Deliverability Plot
Figure 13	Pressure Vs Depth Plot
Figure 14	DST No. 3 - Pressure Vs Time Plot
Figure 15	DST No. 3 Clean-Up Build Period - Variable Rate Build-Up Plot
Figure 16	DST No. 3 Flow Period No. 1 - Variable Rate Drawdown Plot
Figure 17	DST No. 3 Build Period No. 1 - Variable Rate Build-Up Plot
Figure 18	DST No. 3 Flow Period No. 2 - Variable Rate Drawdown Plot
Figure 19	DST No. 3 Build Period No. 2 - Variable Rate Build-Up Plot
Figure 20	DST No. 3 Flow Period No. 3 - Variable Rate Drawdown Plot
Figure 21	DST No. 3 Build Period No. 3 - Variable Rate Build-Up Plot
Figure 22	DST No. 3 - Isochronal Drawdown Plot
Figure 23	DST No. 3 – Rate Dependant Skin Corrected Isochronal Drawdown
	Plot
Figure 24	DST No. 3 - Skin Vs Flowrate Plot
Figure 25	DST No. 3 - Deliverability Plot
Figure 26	DST No. 3A - Pressure Vs Flowrate Plot
Figure 27	DST No. 3A Flow Period No. 1 - Variable Rate Drawdown Plot
Figure 28	DST No. 3A Build Period No. 1 - Variable Rate Build-Up Plot
Figure 29	DST No. 3A Flow Period No. 2 – Variable Rate Drawdown Plot
Figure 30	DST No. 3A Build Period No. 2 - Variable Rate Build-Up Plot
Figure 31	DST No. 3A - Deliverability Plot


PANGAS (C) EPDS 1985, 86, 87.

Pressure

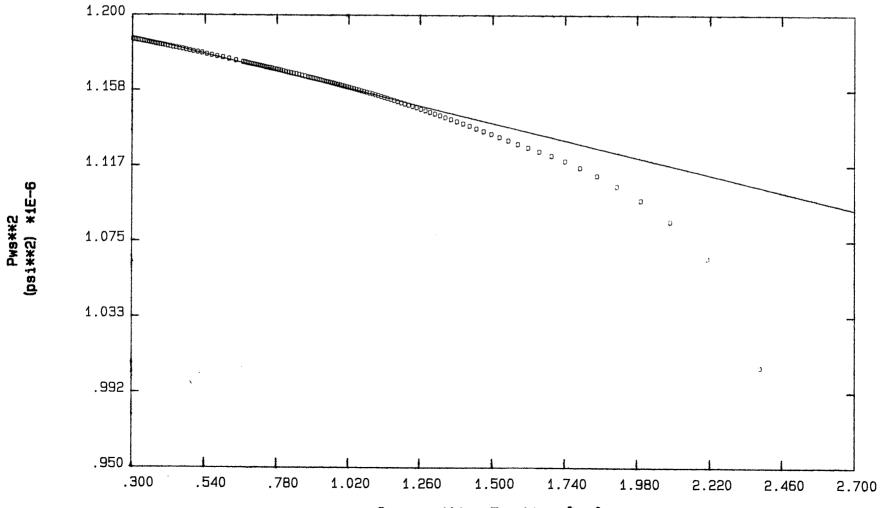
PRESSURE v TIME PLOT FOR DST NO. 1



Time (hours)

PANGAS (C) EPDS 1985, 86, 87.

PHESSURE V TIME PLOT FOR DST NO. 2

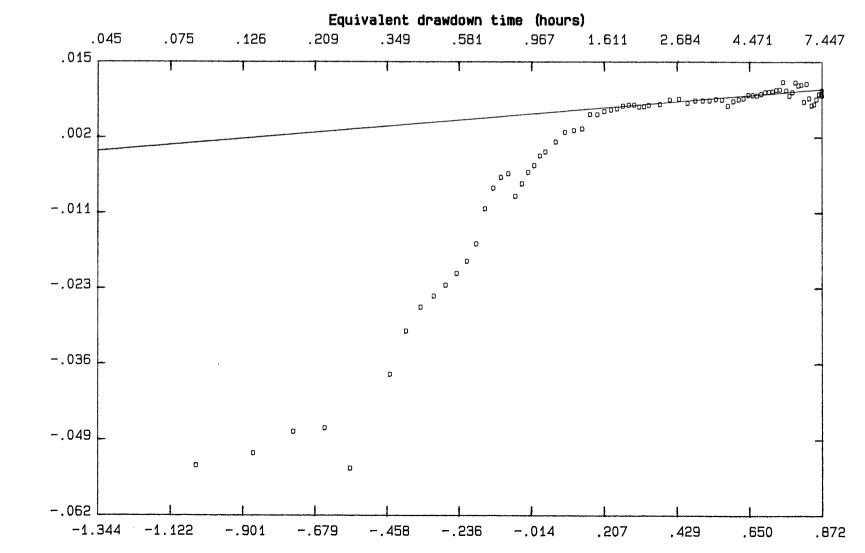


PANGAS (C) EPDS 1985, 86, 87.

VRB PLOT FOR DST NO. 2

File	DST2CUB
Analysż name	GARY HING
Company.	LASMO ENERGY AUSTRALIA
Well.	PATHICIA NO. 1

Dst No	2	Slope	-0.040
Date	SEPTEMBER 1987	Intercept	1.200
Analysis	VARIABLE RATE BUILD-UP (SUPERPOSITION	Permeability.	81.813
Test.	DST NO. 2 CLEAN UP BUILD PERTOD.	Sk in	15,833


Superposition Function Docl

VRD PLOT FOR DST NO. 2

PANGAS (C) EPDS 1985, 86, 87.

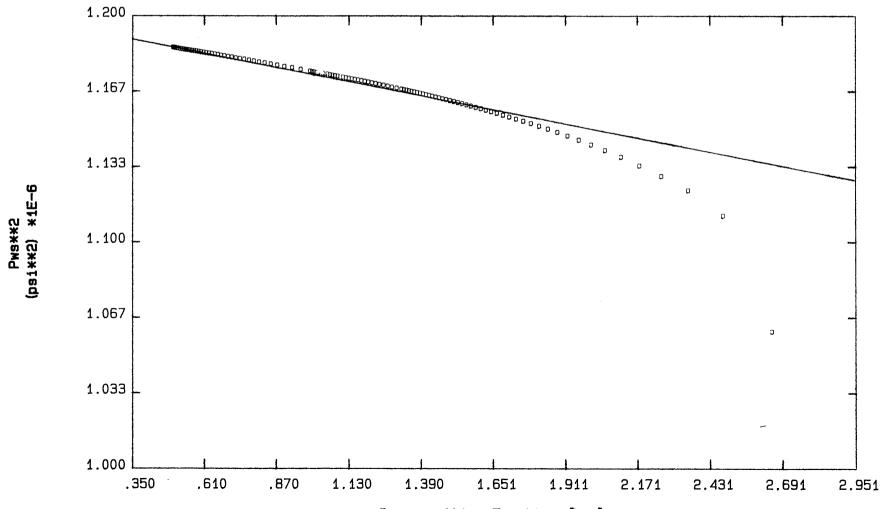
((Pi**2-Pwf**2) /0) -FQ

File DST2IF1	Dst No 2	Intercept	0.006
Analyst name GARY HING	Date SEPTEMBER 1987	Permeability.:	83.023
Company LASMO ENERGY AUSTRALIA	Analysis VARIABLE RATE DRAWDOWN (SUPERPOSITIO	N Skin	-4.052
Well PATHICIA NO. 1	Test DST NO. 2 FLOW PERIOD NO. 1	F	1.060

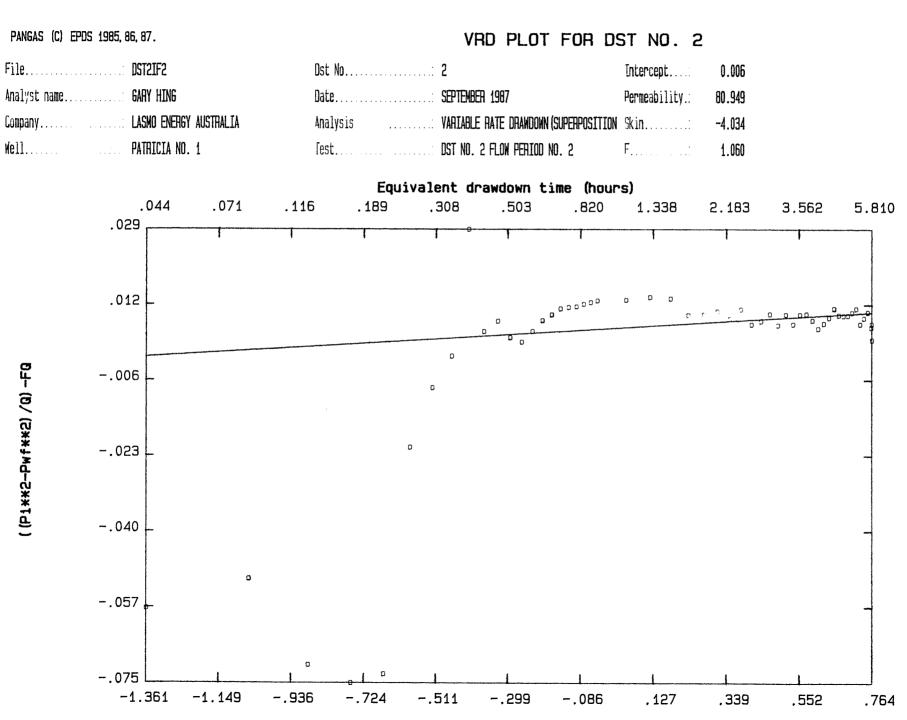
Superposition Function [Log]

PANGAS (C) EPDS 1985, 86, 87.

VRB PLOT FOR DST NO. 2

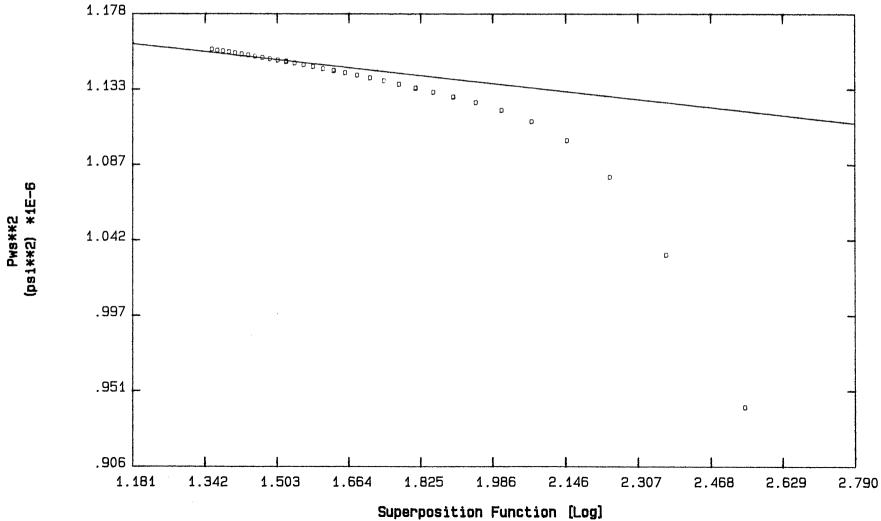

-0.024

1.198


84.441

12.671

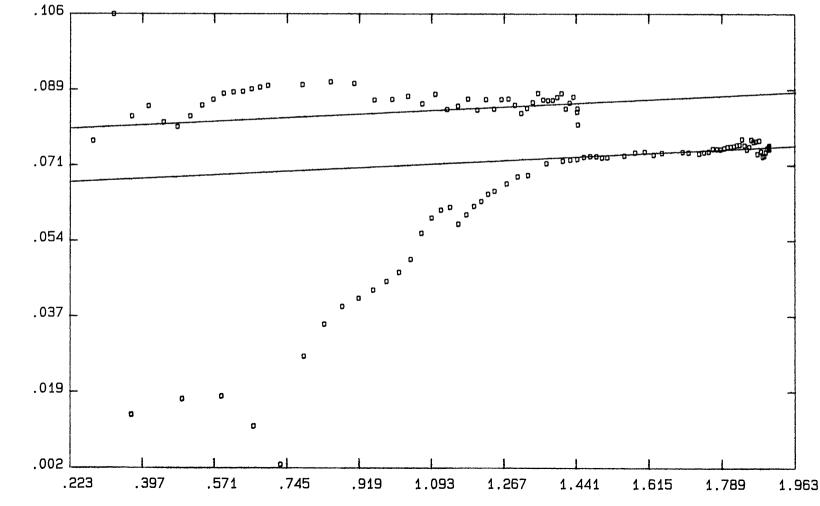
File	DST2IS1	Dst No.	2	Slope
Analyst name.	GARY HING	Date	SEPTEMBER 1987	Intercept:
Lompany	LASMO ENERGY AUSTRALIA	Analysis	VARIABLE RATE BUILD UP (SUPERPOSITION	Permeability.:
Well	PATRICIA NO. 1	fest.	DST NO. 2 BUILD PERIOD #1	Skin


Superposition Function [Log]

PANGAS (C) EPDS 1985, 86, 87.

VRB PLOT FOR DST NO. 2

File	DST2IS2	Dst No.	2	Slope.	-0.030
Analyst name	GARY HING	Date	SEPTEMBER 1987	Intercept	1.195
Company	LASMO ENERGY AUSTRALIA	Analysis	VARIABLE RATE BUILD UP (SUPERPOSITION	Permeability.:	80.775
W+1]	PATRICIA NO. 1	Test.	DST NO. 2 BUILD PERIOD #2	skin.	13.048

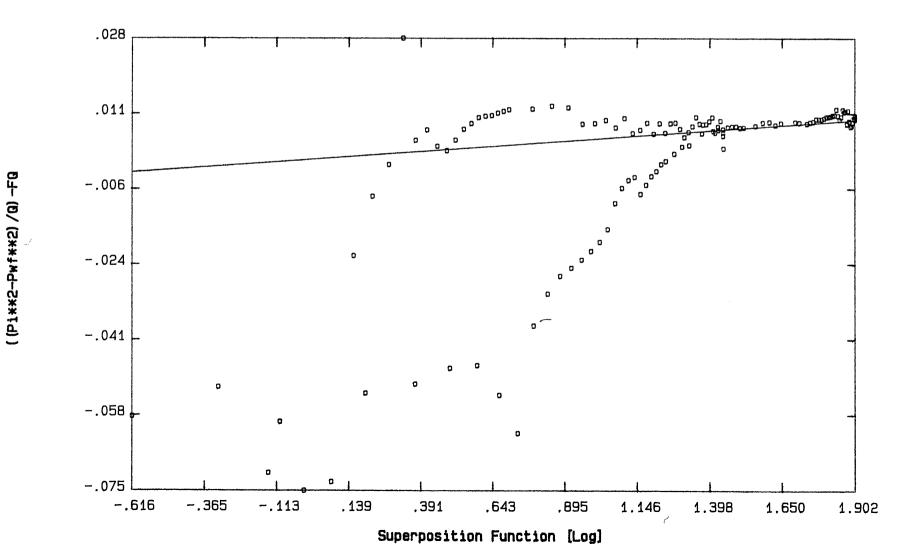

PANGAS (C)	EPDS	1985,	86,	87.
------------	------	-------	-----	-----

(P1**2-Pwf**2) /0

File.	DST2
Analyst name	GARY HING
Company	LASMO ENERGY AUSTRALIA
¥ell	PATRICIA NO. 1

	FAF PLUI
Dst No.	2
Date.	SEPTEMBER 1987
Analysis	FLOW AFTER FLOW
ſest.	DST NO. 2

FAF PLOT	FOR DST NO. 2	n_{ϵ} 1Line 2
	Slope	0.004 0.004
PTEMBER 1987	Intercept	0.066 0.078
DW AFTER FLOW	Flowrate	5.150 6.120
ſ NO. 2	Skin	10.465 13.434

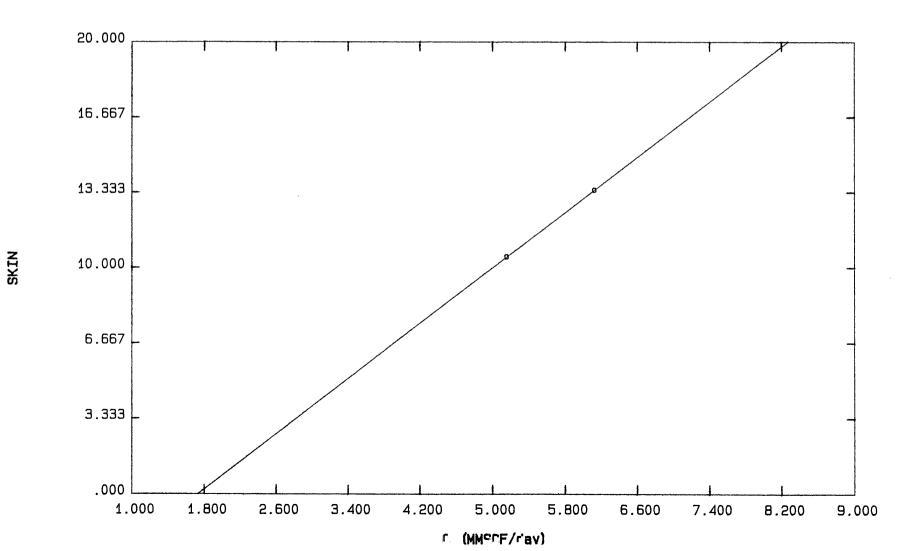


Superposition Function [Log]

FAF PLOT FOR DST NO. 2

File.	DST2
Analyst name	GARY HING
Company.	LASMO ENERGY AUSTRALIA
Well	PATRICIA NO. 1

Dst No 2	Intercept.	0.000
Date SEPTEMBER 1987	Permeability.	82.674
Analysis FLOW AFTER FLOW	Skin	-5.438
íest DST NO. 2	F	1.059

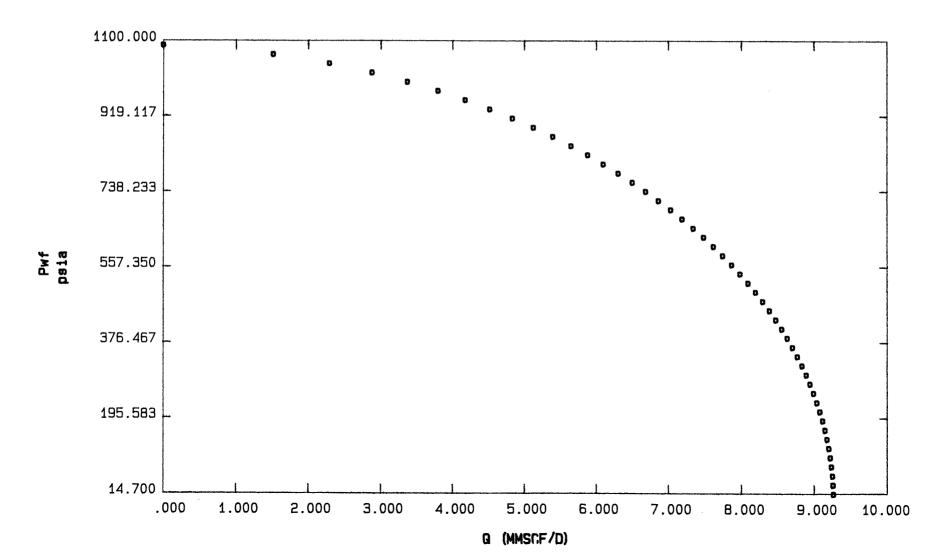


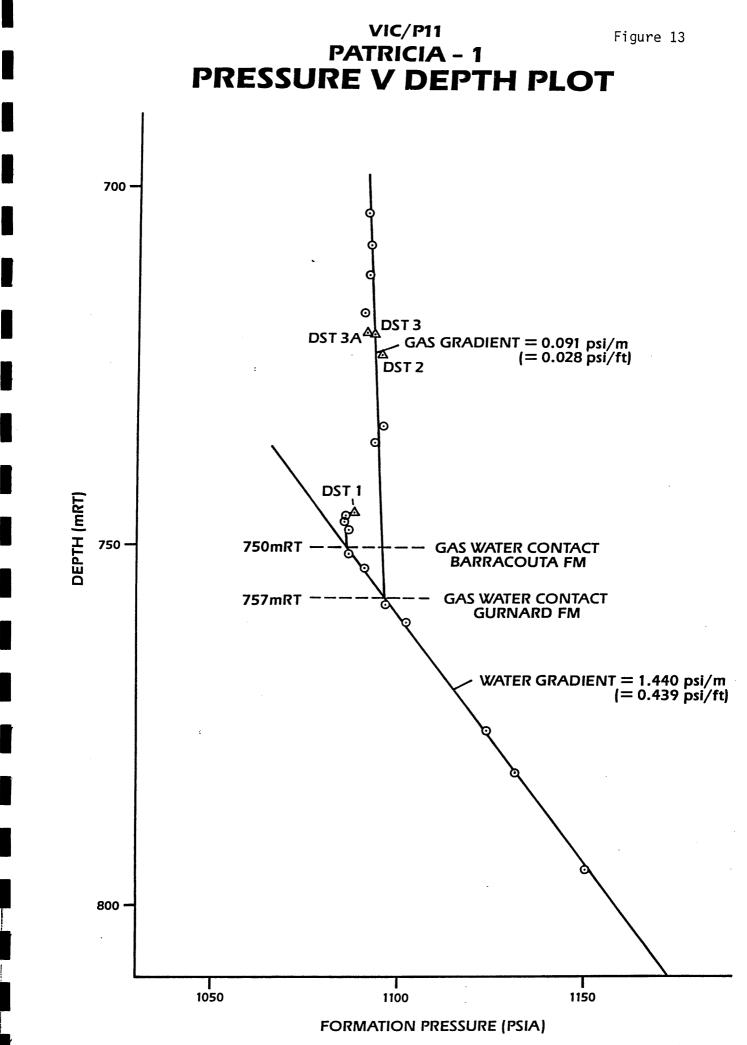
SKIN V FLOWRATE PLOT FOR DST NO. 2

File.	DST2
Analyst name	GARY HING
Company.	LASMO ENERGY AUSTRALIA
Well.	PATHICIA NO. 1

Dst No.	.: 2
Date.	SEPTEMBER 1987
Analysis	. FLOW AFTER FLOW
lest.	DST NO. 2

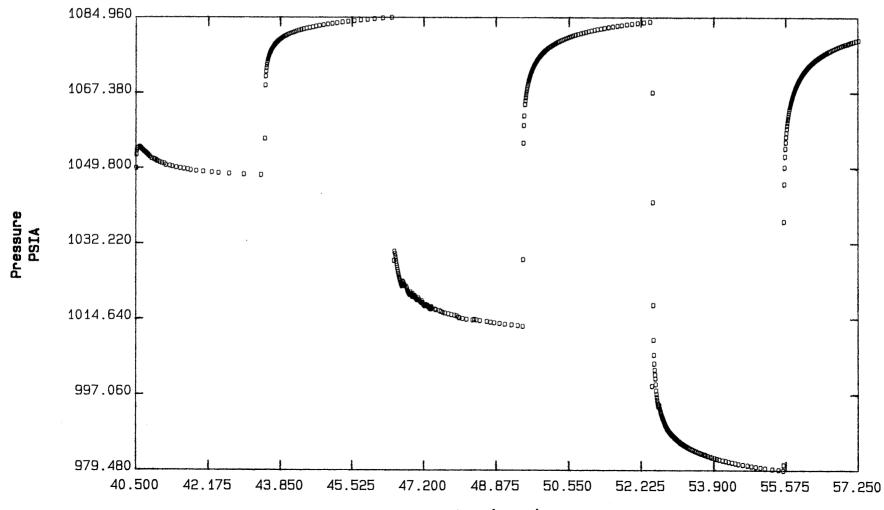
Darcy skin	-5.296
F ,:	1.059




DELIVERABILITY PLOT FOR DST NO. 2

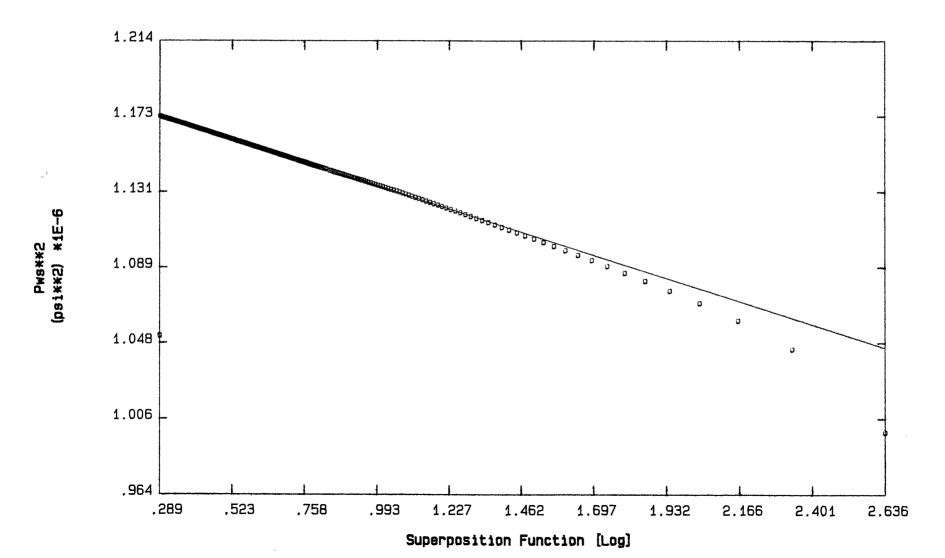
o o o Transient

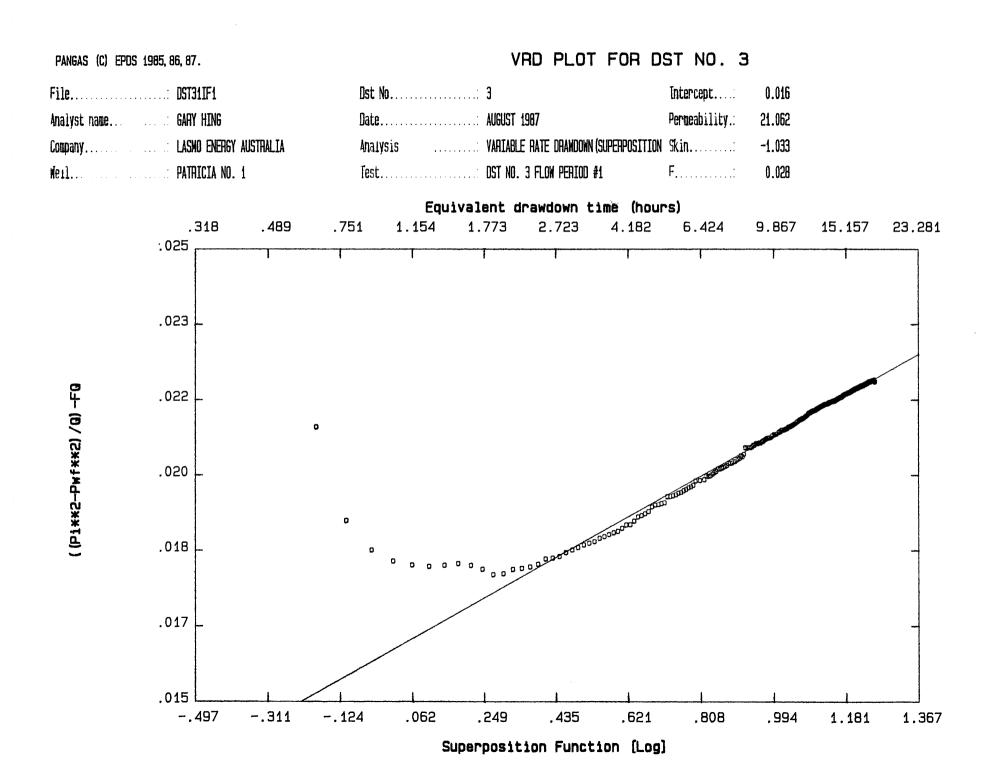
File.	DST2IF2	Dst No.
Analyst name.	GARY HING	Date.
Company.	LASMO ENERGY AUSTRALIA	Analysis
Well	PATRICIA NO. 1	ſest.


Dst No.	2	DST2IF2	TRAN
Date	SEPTEMBER 1987	Darcy Flow (B):	1053.192
Analysis	DELIVERABILTY - TRANSIENT ANALYSIS	Non Darcy (F)	1.060
lest.	DST NO. 2	AOF.	9,265

ENG-41

PRESSURE v TIME PLOT FOR DST NO. 3

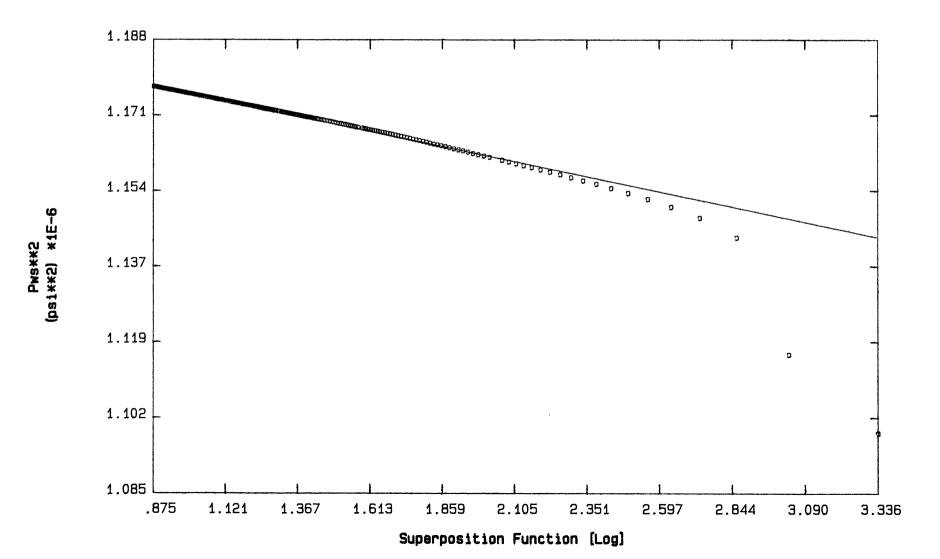


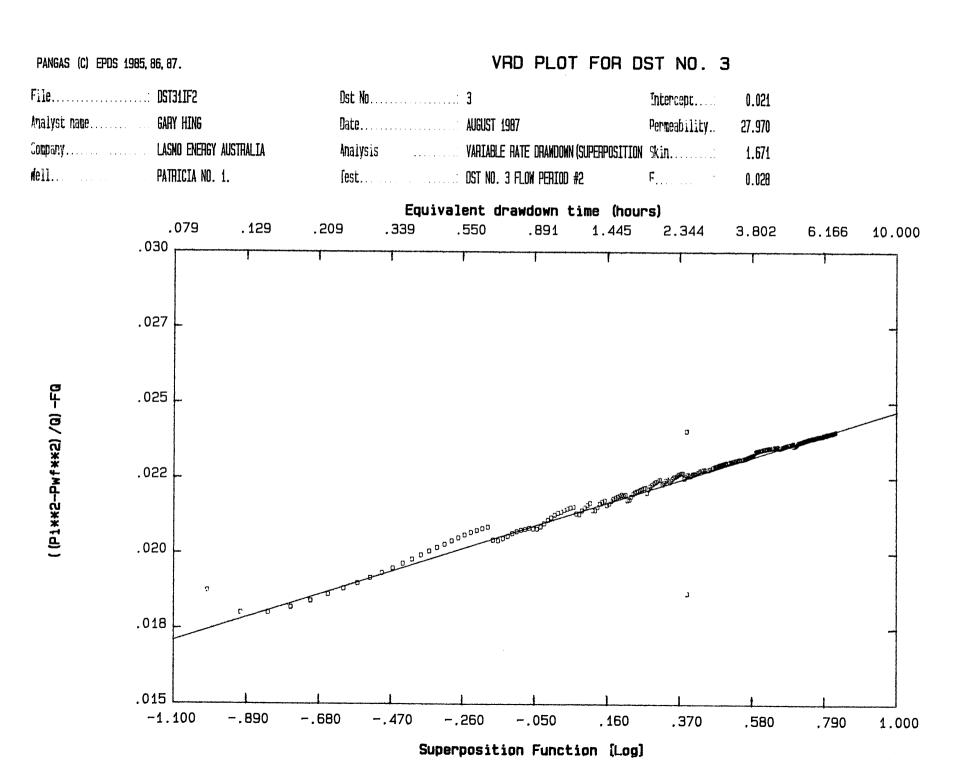

Time (hours)

VRB PLOT FOR DST NO. 3

File.	dst31cs2	נ
Analyst name.	GARY HING	פ
Company.	LASMO ENERGY AUSTRALIA	Ą
Well	PATHICIA NO. 1.	Г

Dst No.	VIC P/11	Slope.	-0.054
Date.	AUGUST 1987	Intercept	1.188
Analysis	DIAMOND 'N' EPOCH	Permeability.:	24.624
lest.	DST NO.3 CLEAN UP BUILD PERIOD	Skin.	19.249

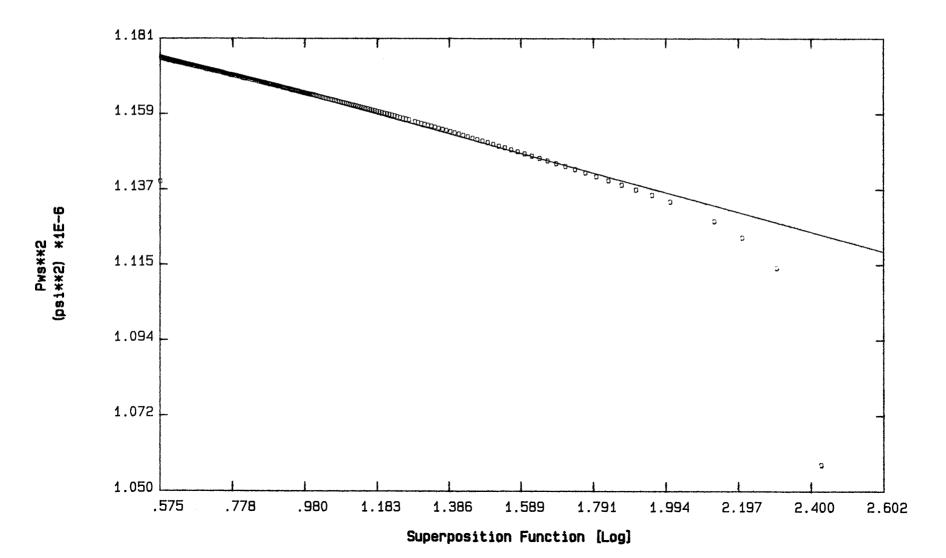


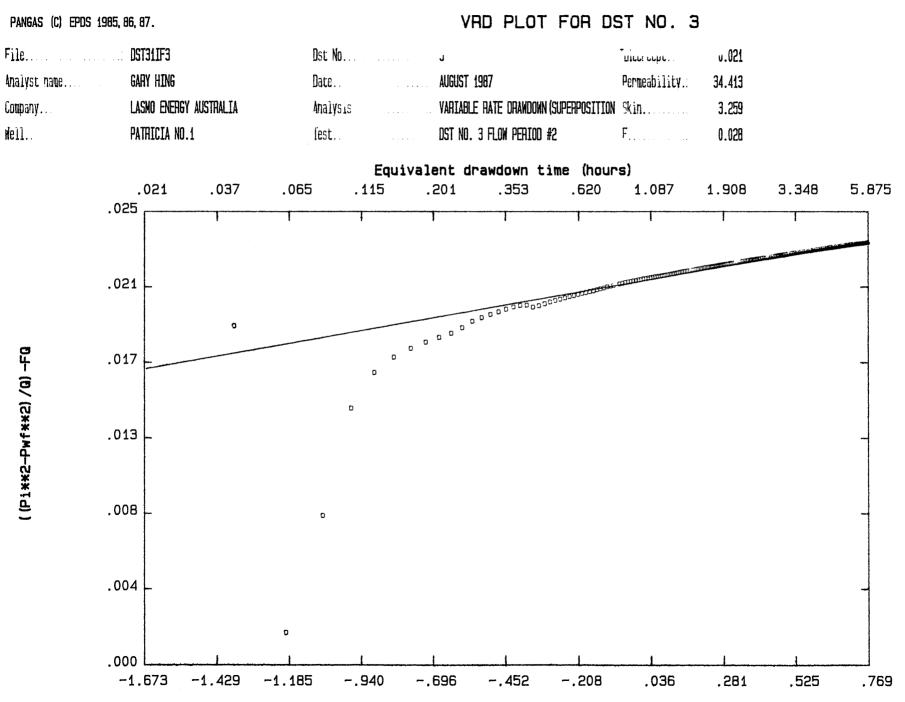

VRB PLOT FOR DST NO. 3

File.	DST31IS1
Analyst name	GARY HING
Company.	LASMO ENERGY AUSTRALIA
Hell.	PATRICIA NO. 1.

PANGAS (C) EPDS 1985, 86, 87.

	Dst No.	3	Slope	-0.014
	Date.	AUGUST 1987	Intercept:	1.189
Y AUSTRALIA	Analysis	VARIABLE RATE BUILD-UP (SUPERPOSITION	Perneability.:	23.260
. 1.	lest.	DST NO. 3 BUILD-UP PERIOD #1	Skin.	11.559




VRB PLOT FOR DST NO. 3

-0.028 1.191

21.392 3.707

PANGAS (C) EPDS 1985, E	36, 87.		VRB PLOT FOR D	ST NO. 3
File.	DST311S2	Dst No	3	Slope.
Analyst name.	GARY HING	Datc.	AUGUST 1987	Intercept
Company	LASMO ENERGY AUSTRALIA	Analysis	VARIABLE RATE BUILD-UP (SUPERPOSITION	Pormeability.:
Nell.	PATRICIA NO. 1.	lert.	DST NO. 3. BUILD-UP PERIOD #2 .	Skin.

Superposition Function [Log]

Figure 20

VRB PLOT FOR DST NO. 3

File	DST31IS3
Analyst name.	GARY HING
Lompany	LASMO ENERGY AUSTRALIA
Hull	PATHICIA NO. 1.

Dst No.	 B	51ope	-0.037
Datc.	 AUGUST 1987	Intercept	1.191
Analysis	 VARIABLE RATE BUILD-UP (SUPERPOSITION	Permeability	22.746
lest	DST NO. 3.BUILD-UP PERIOD #3.	Skin.	1.343

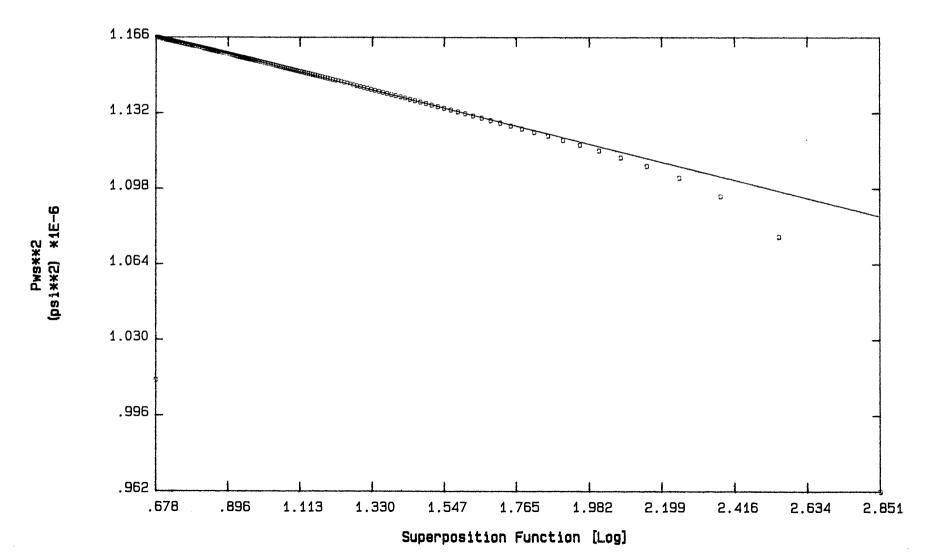


Figure 21

(Pi**2-Pwf**2) /0

PANGAS (C) EPDS 1985, 86, 87.

ISO-DD PLOT FOR DST NO. 3

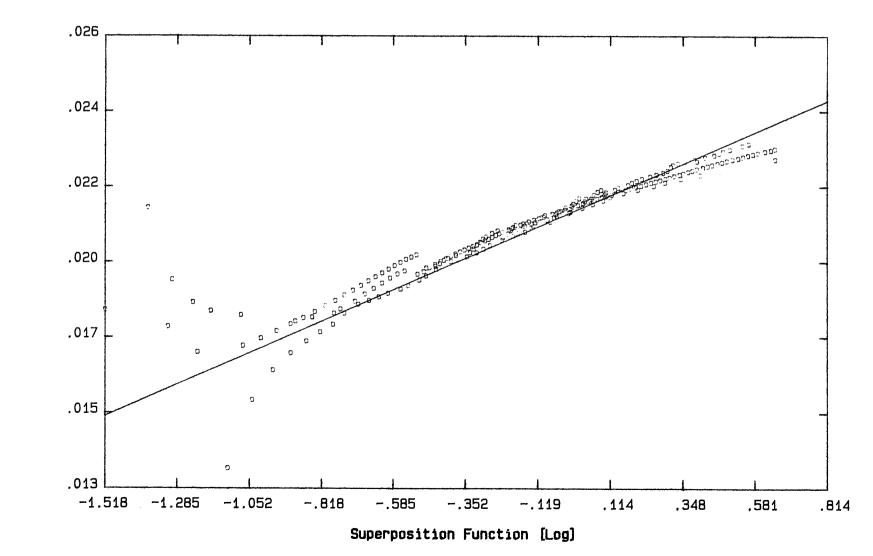
File.	DST31
Analyst name.	GARY HING
Company.	LASMO ENERGY AUSTRALIA
Well.	PATRICIA NO. 1

	Dst No.	t	S10DE.	U.003	E00.0
	Jate.	AUGUST 1987	Intercept.	0.022	0.023
STRALIA	Analysis	ISOCHRONAL (SUPERPOSITION)	Flowratc	3.200	5.890
	lest.	DST NO. 3. MODIFIED ISOCHRONAL	skin	1.543	1.843

Superposition Function [Log]

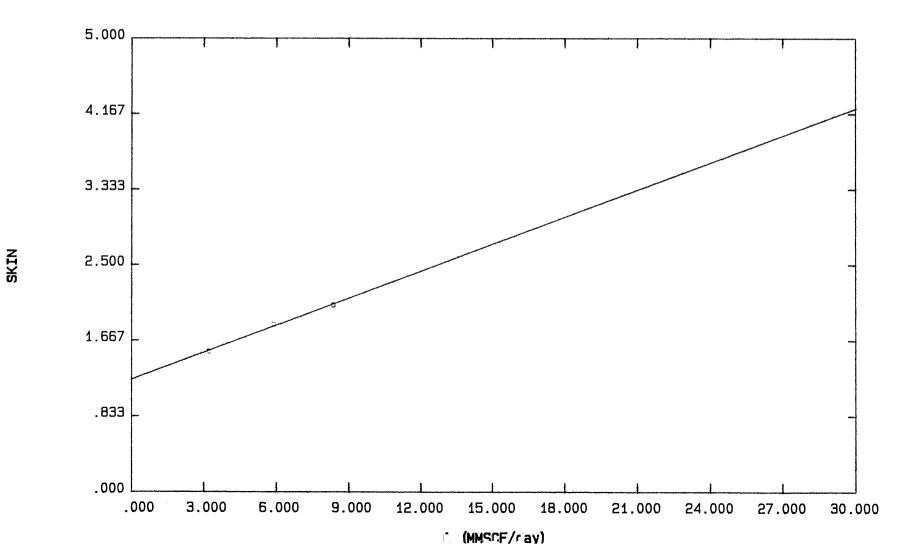
Figure 22

((P1**2-Pwf**2) /Q) -FQ


JODDANY

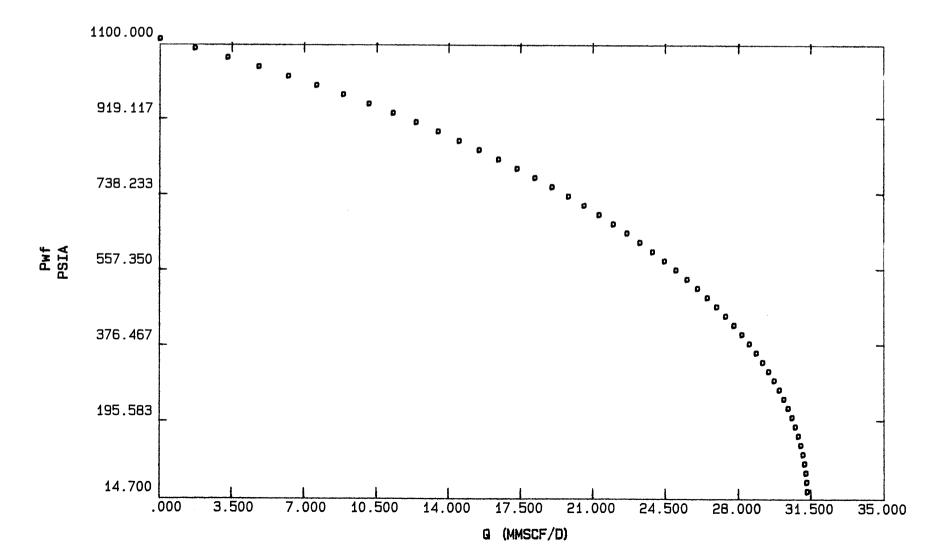
deil.

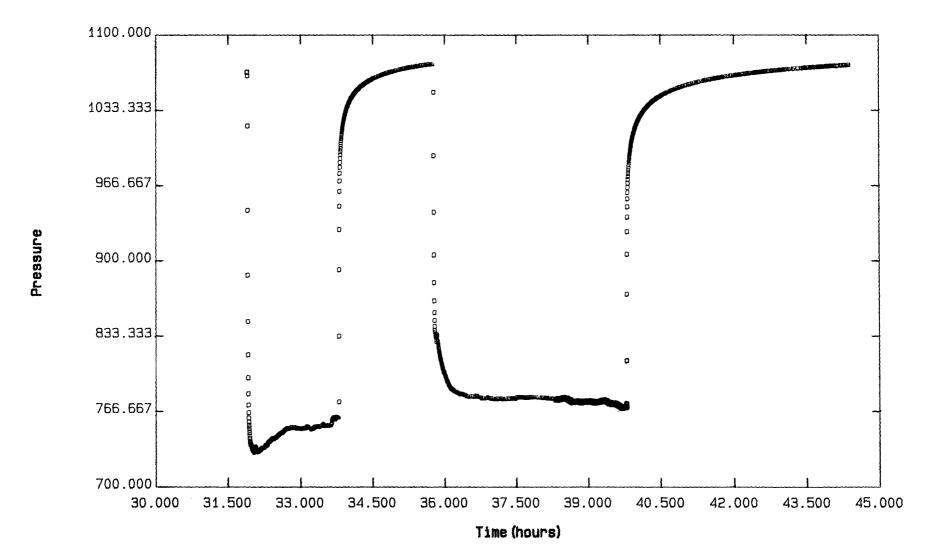
GARY HING	Date	AUGUST 1987	Permeability.	26.092
LASMO ENERGY AUSTRALIA	Analysis	ISOCHRONAL (SUPERPOSITION)	^c kin	1.222
PATRICIA NO. 1	lest	DST NO. 3. MODIFIED ISOCHRONAL	F	0.028


0.021

SKIN V FLOWRATE PLOT FOR DST NO. 3

File	DST31
Analyst name	GARY HING
Company	LASMO ENERGY AUSTRALIA
well	PATRICIA NO. 1

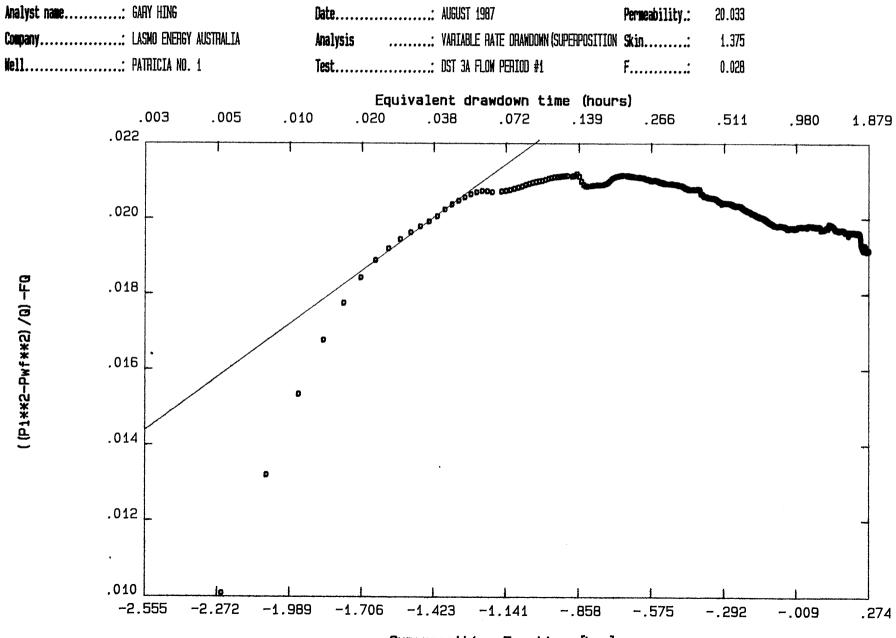

USL NO.	£	Janoy skin	1.234
Datc	AUGUST 1987	F	0.028
Analysis	ISOCHRONAL (SUPERPOSITION)		
lest.	DST NO. 3. MODIFIED ISOCHRONAL		


DELIVERABILITY PLOT - LINEAR FOR DST NO. 3

File	DST31IF2
Analyst name	GARY HING
Corpany.	LASMO ENERGY AUSTRALIA
le11.	PATHICIA NO. 1.

Dat No.	3		TRAN
Pate	AUGUST 1987	Daruy Flow (P):	2290.752
Analysic	VARIABLE RATE DRAWDOWN (SUPERPOSITION	Non Dar y (F)	0.028
le. L	DST NO. 3 ISOCHRONAL FLOW PERIOD #2	L℃F.	31.362

PRESSURE V TIME PLOT FOR DST 3A

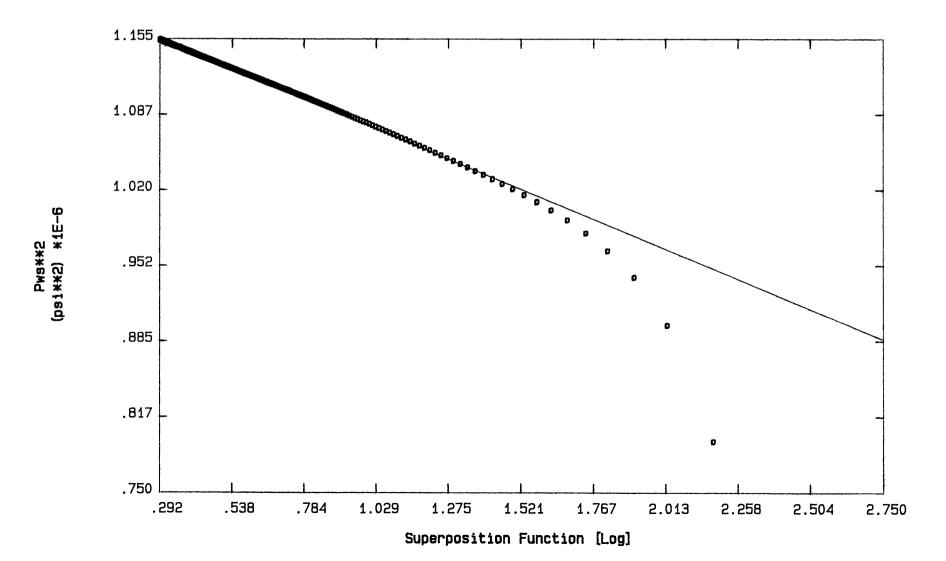

File..... DST3AF1

((P1**2-Pwf**2)/0)-FQ

VRD PLOT FOR DST NO. 3A

0.027

Intercept....:



Dst No..... JA

Superposition Function [Log]

VRB PLOT FOR DST NO. 3A

File DSTBASI	Dst. No 3A	Slope:	-0.109
Analyst name GARY HING	Date AUGUST 1987	Intercept:	1.186
Company LASMO ENERGY AUSTHALIA	Analysis: VARIABLE RATE BUILD-UP (SUPERPOSITION	Permeability.:	20.888
Nell PATRICIA NO. 1	Test DST3A BUILD PERIOD #2	Skin:	1.145

VRD PLOT FOR DST NO. 3A

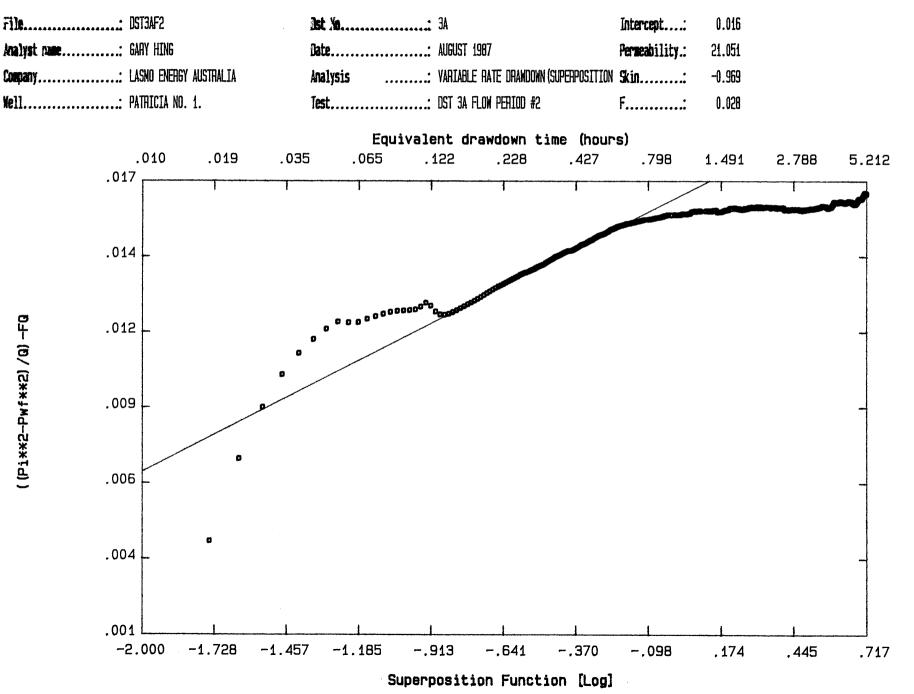


Figure 2

1

PANGAS	(C)	EPDS	1985,	86,	87	•	
--------	-----	------	-------	-----	----	---	--

File DST3AS2

Analyst name.....: GARY HING

¥el1.....: PATRICIA NO. 1

Company.....: LASMO ENERGY AUSTRALIA

VRB PLOT FOR DST NO. 3A Ost No.....: 3A Slope.....: -0.108 Date.....: AUGUST 1987 Intercept...: 1.184 Analysis VARIABLE RATE BUILD-UP (SUPERPOSITION Permeability.: 21.478 Test.....: DST 3A BUILD-UP PERIOD #2 Skin.....: 1.183

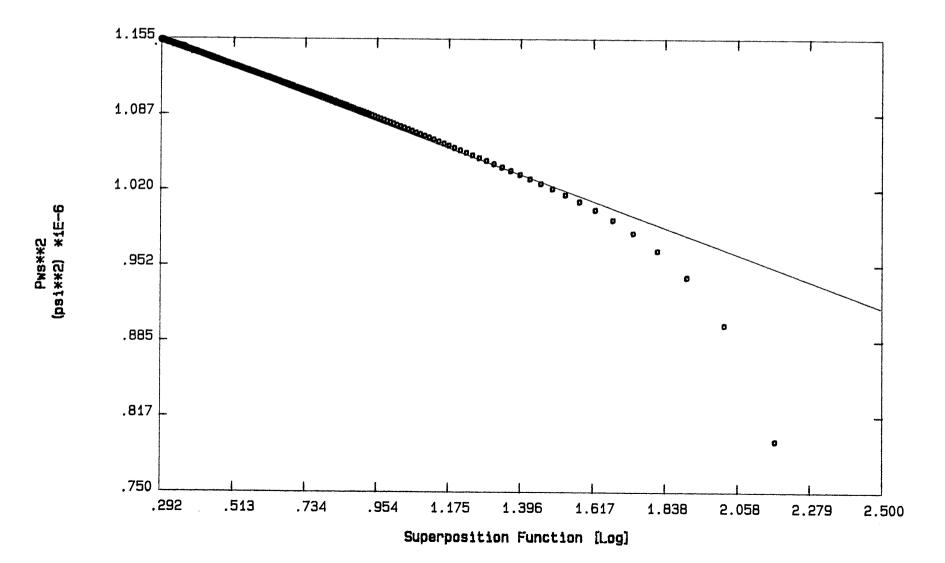
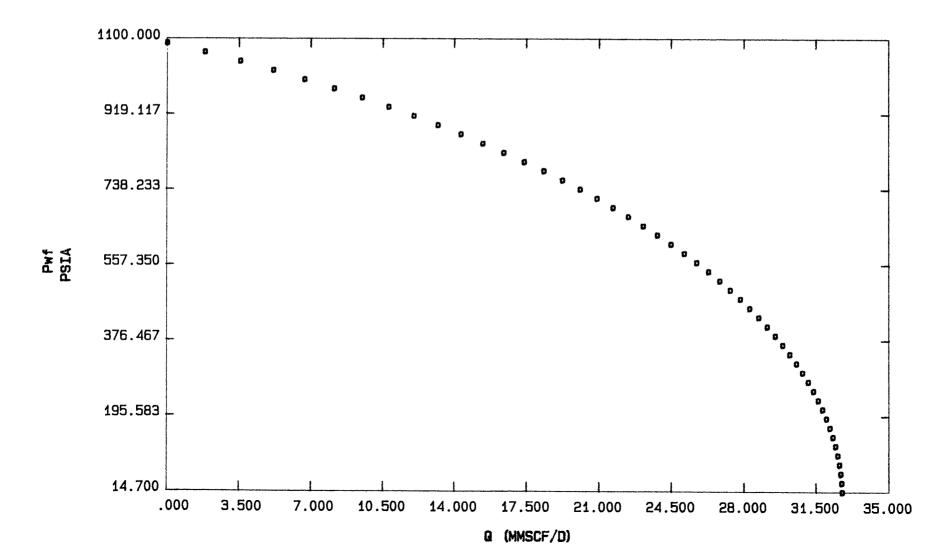



Figure 30

PANGAS (C) EPDS 1985, 86, 87.	DELIVERABILITY PLOT - LI	NEAR FOR DST NO. 3	A
File DST3AF2		TDAN	c c C Transient
Analyst name GARY HING	Date AUGUST 1987	Darcy Flow (1): 2113.176	
Company: LASNO ENERGY AUSTRALIA	Amalysis	N Hen Barcy (F) 0.028	
PATRICIA NO. 1.	Test DST 3A FLON PERIOD #2	HF 32.753	

