

ATTACHMENT TO WCR FOR PALTER-1 (W751)

IES WELL REPORT PALMER NO 1 ESSO AUSTRALIA LTD

2 9 APR 1982

OIL and GAS DIVISION

CORE LABORATORIES AUSTRALIA (QLD.) LTD.

Petroleum Reservoir Engineering AUSTRALIA

BRISBANE OFFICE:

1173 KINGSFORD SMITH DRIVE MEEANDAH, Q. 4008. P.O. BOX 293 HAMILTON CENTRAL, Q. 4007. AUSTRALIA.

CABLE ADD: CORELAB BRISBANE TELEX NO: COREBN AA42513 TELEPHONE: 260 1722 260 1723

AD:JM

1st December, 1981

ATTN: K. Kuttan, Esso Australia Ltd., 127 Kent Street, SYDNEY, N.S.W. 2001

Dear Sir,

Core Laboratories Intermediate Extended Service Well Logging Unit F1802 was in use during the drilling of PALMER # 1 from surface to a total depth of 1723 metres.

Please find enclosed the IES well report, appended drilling parameter logs and the Corelab grapholog for your reference.

We appreciated being of assistance during the drilling operations and look forward to continuing our association on future wells.

If you require clarification of this report, please do not hesitate to contact us.

Yours very truly, CORE LABORATORIES INTERNATIONAL LTD.

A. DODSON

Unit Supervisor

INDEX

1 .	Introduction
2	Core Laboratories Equipment
3	Core Laboratories Monitoring Equipment
4	Intermediate Extended Service Introduction
5	Rig Information Sheet
6	Well Information Sheet
7	Well History
8	Progress Log
9	Bit Record sheet
10	Mud Data Sheets
11	Geological Summary
12	Overburden Gradient Calculations and Overburden Log
13	Sidewall Core Gas Analysis
14	Pore Pressure Summary and P.I.T./L.O.T. Data
15	Computer Data Listings: - (a) Bit Record
	(b) Hydraulic Analyses
	(c) Data List A
	(d) Data List B
	(e) Data List C
	(f) Qata List D

- Appended Logs: (a) Drill Data Plot
 - (b) Geoplot, 1:5000 & 1:2000
 - (c) Temperature Plot
 - (d) Pressure Plot
 - (e) Cost Analasis Plot
 - (f) Drilling Parameter Plot
 - (g) Grapholog

1 INTRODUCTION

PALMER # 1 was drilled by ESSO Australia Ltd, in the Bass Strait, Australia.

Well co-ordinates were:

Latitude : 38° 33' 49.536" Longtitude : 147° 19' 46.776"

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Intermediate Extended Service Field Laboratory 802.

PALMER # 1 was spudded on 30 September, 1981 and reached a total depth of 1723 metres on 7 October, 1981, a total drilling time of 11 days. The main objective of the well was to assess the hydrocarbon potential of reservoir sandstones within the Latrobe "Coarse Clastics" in a well defined, faulted anticlinal structure adjacent to the Perch oil accumulation. The secondary objective was to test for any intra-Latrobe seals that may have been produced by thin shales and coals. Elevations were:

- 21 m Kelly bushings to mean sea level
- 42 m Water depth
- 63 m Kelly bushings to mud line.

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of were as follows:

A. DODSON - UNIT SUPERVISOR

K. BREAKWELL - PRESSURE ENGINEER

N. DANKER - LOGGING CREW CHIEF

B. GIFTSON - WELL LOGGER

A. McCONVILLE - WELL LOGGER

J. LANG - WELL LOGGER

CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 802 monitoring equipment includes the following:

A. MUD LOGGING

- 1.T.H.M. total gas detector and recorder
- 2.Hot wire total gas detector and recorder
- 3.F.I.D. (Flame Ionization Detector) chromatograph and recorder
- 4.Gas trap and support equipment for the above
- 5.Rate of Penetration recorder and digital dislay
- 6.Pit volume totalizer, display and recorder
- 7.Digital depth counter
- 7. Two integrated pump stroke counters, with digital display
- 9.Ultra-violet fluoroscope
- 10.Binocular microscope

B. INTERMEDIATE EXTENDED SERVICE PACKAGE

- 1. Hewlett Packard 9825B desktop computer
- 2. Hewlett Packard 9872B plotter
- 3.Hewlett Packard 2631A printer
- 4.Two Hewlett Packard 2621P visual display units, (one located in the client's office)
- 5.Hookload/weight on bit transducer and recorder
- Rotary speed tachogenerator and recorder
- 7.Standpipe pump pressure transducer and recorder
- 8.Mud flow out sensor and recorder
- 9.Mud temperature sensors and recorder (in and out)
- 10.Mud conductivity sensors end recorder (in and out)
- 11.Rotary torque sensor and recorder
- 12. Shale density apperatus
- 13. Hydrogen sulphide gas detector
- 14. Carbon dioxide gas detector

CORE LABORATORIES MONITORING EQUIPMENT

DEPTH

DEpth registered every 0.2 metres and rate of penetration calculated each metre (or every 0.2 m while coring). ROP displayed on digital panel and chart.

WEIGHT ON BIT

A Tyco 0-1000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight on bit is calculated in the Rig Functions panel, and displayed (with hookload) on a digital meter and recorder chart

ROTARY SPEED

This is a DC generator for which 1 volt = 100 rpm, and which is belt driven from the rotary drive shaft. The value is displayed on digital meter and recorder chart.

PUMP PRESSURE

This is a Tyco 0-5000 psi transducer mounted on the standpipe manifold. The pressure is displayed on digital panel meter and recorder chart.

PIT VOLUME

Six individual pits can be displayed on the meter. The pit volume total is calculated in the PVT panel and displayed on a digital meter. The sensors are vertical floats driving potentiometers accurate to 4/-1 barrel. Each sensor is equiped with a wave compensating device. In addition a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The Pulse Data Box can monitor one or two pumps individually or integrate the total number of strokes from both pumps. The pump rate per minute is displayed on recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, calibrated 0-100 deg.C. Temperature in and out is displayed on recorder thank and digital meter.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor measures the current in a closed loop of solution coupling a pair of toroidal transformer coils.

The conductivity in and out is displayed on analog and digital meters, and recorder chart.

All the sensors are 5 to 24 v DC powered with the exception of the air driven gas trap.Along with monitoring and maintaining the above equipment ,Core Lab furnished and operated certain other items.

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals.Dry samples were washed,dried and boxed.Wet samples were washed sacked and boxed.Geochemical samples were canned and boxed.

GAS

1.Flame Ionization lotal Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.

2.Flame Ionization Detector chromatograph.
The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.

3.Hot wire gas detector(Wheatstone Bridge type) A back up system for total gas detection.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density column.

4 INTERMEDIATE EXTENDED SERVICE INTRODUCTION

The Core Laboratories Intermediate Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation; for the detection of abnormal formation pressure; and the optimization of drilling.

Presented graphically on Core Laboratories I.E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement and bit performance programmes for the wellsite drilling engineer.

Core Laboratories I.E.S. logs include the following :

I.E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is a conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, and formation breakdown tests.

CORELAB DRILL DATA PLOT

This plot,which is drawn while drilling is in progress,is the primary tool by which formation overpressure is detected.Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected 'd'exponent,which is presented on a logarithmic scale. The 'd'exponent was first developed by Jordan and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight on bit per inch of bit diameter.

The modified 'dc'exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard 'd'exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the 'dc' to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for 'dc' is therefore:

Deviations from the normal "dcs" trend may be interpretated as being due to a change in formation pore pressure. An equation derived by Haton is used in an attempt to evaluate pore pressure form deviations in the "dcs" plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which comlements the "dcs" plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air dried shale samples in an accurately calibrated density solution.

An interpreted lithology column is also includedon the log, as is a plot of mud density in,to assist in interpretation.All relavant information, such as casing points, bit runs, etc. are also included.

I.E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress.At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, breakeven analysis, formation pore pressure, mud density in and formation fracture pressure.

Two Geo-plots are included in this report, at scales of 1:2000 and 1:5000.

I.E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END TO END PLOTS

Flowline temperature and end to end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the I.E.S. drill log. Continous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm./cc) and neutron porosity (%), is made, using data supplied by Schlumberger. Two-cycle semilog paper is used, with a vertical scale of 1:10,000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

The wireline log plot was omitted from this report as no suitable lithologies were drilled on Palmer N $^{\rm O}$ 1.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight on bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling,routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 m.

GAS COMPOSITION ANALYSIS

For each significant gas show, the chromatograph results are analysed using two techniques:—

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

RAPHOLOG

This is plotted on the industry standard form on a vertical scale of :500. Rate of penetration is plotted in metres per hour, together with ud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relavant drilling data is included, as is bit and ud data.

HISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak off test data, and R.F.T. and well test data where appropriate.

	RIG INFORMATION SHEET
MAR COMP	ANY ESSO AUSTRALIA LTD.
WELL	PALMER # 1
NER	SOUTH SEAS DRILLING COMPANY
NAME AND NUMBER	SOUTHERN CROSS (Nº 107)
PE	SEMI-SURMERSTRIF , TWIN HULLED.
RRIGE, DRILL FLOOR	DERRICK: LEE L M. CRE, 152' HIGH X 40' AT BASE.
SUBSTRUCTURE	LOAD CARACITY OF 1 000 000 lbs
DEAWWORKS	DILULLE E-2003 JAIVEN BY 2 GE 752 ELECTRIC MOTORS.
_	
	A DARLEY COO CHORT TOUC
CROWN BLOCK	LEE C MOORE 27058 C. CAPACITY 500 SHORT TONS.
AVELING BLOCK	OILWELL A SOL
IVEL	OILWELL PC 425
ELEVATORS	BYRON JACKSON MODEL GG CAPACITY . 350 TON
LLY & KELLY SPINNER	DRILLED 54"x 50' HEX KELLY
TARY TABLE	OILWELL A 372 SINGLE ELECTRIC MOTOR
TOTARY SLIPS	VARCO DCS-L
MUD PUNES	TWO DILWELL (. FROUPT. RATED AT 1600HP
	FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL
-	TANK HAVING A CAPACITY OF 105 BBL.
_	TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100
DSYSTEM	HP ELECTRIC MOTORS.
·	DESANDER: 1 DEMCO 4 CONE 12" MODEL NO 124
	DESILTER : 1 DEMCO 4"-16H 16 CONE
	DEGASSER : 1 SECO MODEL NO 36
	SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT.
OW OUT PREVENTORS	THREE SHAFFER L.U.S. 184" - 10 000 psi
	TWO HYDRIL G.L. 18 ³ " - 5000 psi
	011 AC 000
_	FOUR VALCEON ACCUMULATORS. 2" - 10 000p
LL CONTROL EQUIP.	CHOKES: 2 C.I.V. ABJ H2 2 1/16" - 10 000 psi,1 SWACO SUPER CHOKE
EULAR DRILLING	DC : $6\frac{1}{4}$ " × 2 13/16" (4" IF TJ)
COTPINENT	8 " x 2 13/16" (6 5/8" H9D TJ)
	9 ³ " x 2" (7 5/8" H90 YJ)
	HWDP: 5" 501E/ft GRADE G ($6\frac{1}{2}$ " DD $4\frac{1}{2}$ " IF TJ)
	DP : 5" 19 1t/ft GRADE G&E(6 3/8" DD 42" IF TJ)
MENTING UNIT	HALLIBURTON HT-400 UNIT
MONITORING	MARTIN DECKER: MUD VOLUME TOTALIZER
EQUIPMENT	6 CHANNEL DRILLING RECORDER
	4 PRESSURE GAUGES
	FLOWSHOW INDICATOR
OWER SUPPLY	2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH
	1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP
ECTIONAL EQUIP.	The most desired that the second seco
PISER: REGAN FC-7.1	ER COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT) [ELESCOPIC 21" ID. PLUS FLOW D'IVERTOR.
SING POWER TONGS	S:ECKEL 13 3/8"(20 000 ft 1bs),20" (35 000 ft 1bs)
CMT BULK TANKS: 34	1570cu ft.RISER TENSIONER: 6WESTERN GEAR, 50'STROKE, 80 0001bs.
	1570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 16s,40'STR

6 WELL INFORMATION SHEET

							Wi	ELL INFOR	MATION	1 SHEE			
III III KA	AA COM	PANY ES	SO AUSTRA	LIA LTD	•				•				
		PA	LMER 1					She	et No	1			
WELL NAME	PALMER	1								_			
OPERATOR	ESSO EX	PLORAT I	ON										
PARTNERS	B.H.P.												
RIG	OWNER		SOUTH SEAS DRILLING COMPANY										
	NAME OR N	UMBER	SOUTHERN										
LOCATION	TYPE		SEMI-SUBMERSIBLE 38°33'49.536" LONGITUDE (Y) 147°19'46.776"										
LOCATION	FIELD	X)	GIPPSLAN			AREA	ITUDE (Y)	BASS STR					
	COUNTY		GIPPOLAN	NICHO U		STATE		חוב בכאם	HII				
	COUNTRY		AUSTRAL 1	Δ		STATE	<u> </u>						
	DESCRIPTION)N		AUSTRALIA EXPLORATION									
DATUM	Ground Eleva		EXTEGRAL	2011		BKBtc	Ground Leve						
POINTS	Mean Water D		42m				Water Level	22m					
DATES	DRILL20"	· 1	30-SEPT-	1981		 	L DEPTH	7-0CT-1	981				
HOLE	Depth From	Depth To	Bit Size	No. Of Bits	No.		rs Date From	Date To	Cased	Logg			
SIZES	64	203	26	1		0	12-8-8	ľ					
	203	786	172	1		_0	30-9-8						
	786	1723	121/4	4		0	2-10-8			*			
	100	1,123	124	7		<u> </u>	2-10-0	1 121000	- -				
		1							-				
				+									
				 						-+			
													
DRILLING	Depth From	Depth To	Weights	1	Туре				1				
FLUID	64	786		то 8.6	SEAWA	TER							
	786	974	8.6	то 8.7	SEAWA	TER G	EL						
	974	1723		то 10.5	1	WATER							
				TO					_				
				то	 								
				то									
				то						-			
		 		то				1					
WIRELINE	Depth From	Depth To	Hole Size		n Logs	Run							
LOGGING			175	1-10-81			GR-CAL-SF	5					
	1319	769	121	8-10-81				P/LDT-CNL-	GR-CAL/	HDT			
	1721	769	121	10-10-8				P/LDT-CNL-					
		-	12 =	10-10-8			/CSTx2	,					
		<u> </u>											
RISER,	Depth From	Depth To	OD "	ID **	Weight	Grade	Threads	Date Run	Cement S	tages Exc			
CASING &	0	64	23	21			- RISER						
LINER	64	188		19.124	92	X52	JV BOX	13-8-81	•N•	1 -			
	64	769		12.415	54.5	K55	BUTT	1-10-81	•N•	1 =			
							 						
													
		· · · · · · · · · · · · · · · · · · ·							 -				
													
		***************************************				-		-					
520-484 (CL 1	150)		l history				<u> </u>		<u> </u>				

7 WELL HISTORY

WELL HISTORY

- 11 Aug 1981 Towed to Palmer # 1 location and commenced anchoring.

 Completed anchoring and made up the B.H.A. to spud the hole.
- Spudded the well at 03.30 hrs. Drilled a 26" hole from 62.56m to 67.44m. Jumped divers to check that the well was spudded correctly; divers reported that the guide base was 2½0 off level. Drilled from 67 to 100m and ran a deviation survey which was a misrun. Drilled to 109m and ran another deviation survey. (109m, ½0). Drilled to 203m reaming each connection and spotting a 30 bbl. pill every second connection. Spotted a 150 bbl slug of hi-vis mud at 203m and took a deviation survey. (203m, ½0) Circulated out the high viscosity mud with seawater and made a wiper trip to 71m, found no drag and ran in to 203m.
- Displaced the 26" hole with seawater and P.O.O.H. Ran the 20" casing. (92 #/ft, x 52, 8 joints). Landing weight was 150 000 lbs. Cemented the casing with the shoe at 188m with 627 sx class "N" cement with 194 bbl. of prehydrated gel water. Slurry weight was 15.6 p.p.g. Displaced with 15 bbl. of water. The float equipment held.
- 16 Aug 1981 Pulled the anchors and moved to the Bream # 4 A Location.
- 27 Sept 1981 Completed pulling the anchors to move to Palmer # 1 location. Towed to Palmer # 1 location.
- 28 Sept 1981 W.O.W. to run anchors
- 29 Sept 1981 Ran the riser. Displaced the riser and tested the blind rams to 500 p.s.i. Moved the rig to retrieve the wear bushing.
- Unlatched the wear bushing and P.O.O.H. Made up the B.H.A. and tagged the cement at 178m. Installed and tested the divertor. Drilled cement from 178 to 191m. Checked the divertor and reamed the rathole from 191m to 203m. Drilled at 17½" hole from 203m to 728m spotting 30 bbl pills of hi-vis mud every third connection. Flushed the riser at 400, 500 and 600m. Stopped drilling for 1 hr due to a power failure and drilled from 728m to 776m. Maximum gas detected in the section from 203m to 776m was a trace of Cl only. (Less than 10 p.p.m.)
- Drilled from 776 to 785m, spotted a hi-vis pill and C.O. Circulated for 2 hors and ran a deviation survey. (785m, \(\frac{1}{2}O \) P.O.O.H. and strapped the pipe. (no change to tally) Ran wireline logs.

 Run # 1: ISF BHC GR. The hole took 69 bbl. while logging and out of hole. Ran in hole to 776m and washed to bottom. (no fill). Pumped a slug and P.O.O.H. Found no drag. Retrieved the wear bushing and ran the 13 3/8" casing. (54.5 # / ft, K55, 62 joints). Tested the cement lines and set the casing with the shoe at 769m.

2 Oct 1981

Tested the B.O.P., ran the wear bushing and broke down the 17½" B.H.A. Made up the 12½" bit and new B.H.A. and ran in the hole with NB # 3. Tagged the cement at 739m and drilled the cement to 785m. Drilled 6m and conducted a P.I.T. to 600 p.s.i. giving a P.I.T. of 13.5 + p.p.g. E.M.W. Conducted an S.P.L. check and drilled to 803m where the kelly hose split. Pulled back to the shoe and changed the kelly hose, tested it to 3000 p.s.i. and ran back in the hole. Maximum gas was a trace of Cl.

3 Oct 1981

Drilled ahead building the mud weight to 10.2 p.p.g. and flushing the riser every second connection. Had to flush the riser and work the pipe at 1163m due to the 'gumbo' packing the riser. Performed a S.P.L. check at 1192m. Ran a carbide lag check. Average R.O.P. was 23m/hr, though the R.O.P. was controlled to around 20m/hr to prevent packing-off problems. Average and maximum gas was a trace of Cl only.

4 Oct 1981

Drilled to 1204m where the hole was circulated out due to a drilling break at 1204m, no sand was found in the sample though and no gas or hydrocarbon shows were detected. Drilled to 1214m and circulated out, 80% sand was found but no gas or shows. Drilled to 1220m and C.O., 100% sand was found but no gas or shows. Drilled to 1265m and C.O., 100% sand was found but no gas or shows. Lost 30 bbl. of mud at 1309m and cut the circulation rate from 700 to 600 g.p.m. Drilled and circulated out at 1323 and 1358m but found no shows. Drilled on to 1362m, at this point the R.O.P. had fallen to around 4m/hr and had been on-bottom for 27.3 hrs and made 227 thousand turns. The bit was expected to be worn at this point and had been run so long because it was expected that a core would have been taken. It was decided to pull out of the hole for a bit change at 1362m. A deviation survey was run at this depth. $(1362m, 23/4^{\circ})$ Pumped a 30 bbl. 11.3 p.p.g. slug and started P.O.O.H. After 7 stands it was found that the hole was not taking the correct volume of mud, being 5 bbl. short. Ran in the hole with two stands, but the string was found to be displacing too much mud. Checked for flow and a slight flow was thought to be observed. Closing the top annular and hung the pipe on the upper rams. Measured the S.I.D.P.P. at 75 p.s.i. and the S.I.C.P. at 75 p.s.i. (It was later found that there gauges were inaccurate). Pit gain was 9 bbl. Mixed 200 bbl of mud to 10.4 p.p.g. and started to circulate the heavy mud at 20 S.P.M.; - no increase in the casing pressure was noted. Increased the pump rate to 30 and then 40 S.P.M. When the influx was due at the shakers Core Laboratories analysed the mud for chloride level changes and hydrocarbon gases but did not detect any change in either level. P.O.O.H. with the hole taking the correct volume of fluid. It was later thought that the hole fillup discrepency was due to a faulty trip tank pump, and the observed flow was due to the slug.

5 Oct 1981

Continued to P.O.O.H. and found 350000 lbs of drag at 900m; - worked the pipe, pumped a slug and continued to P.O.O.H. slowly. The bit was indeed found to be well worn and was graded at 8-8-3/4". Ran in the hole with NB # 4, H.T.C. x 1G, 12½". Found tight hole at 84lm and reamed from this depth to 86lm. Ran in to 1315m, found tight hole and reamed from 1315m to 1362m. Found 2m of fill and lu of trip gas. Drilled to 1450m, finding drilling breaks at 1379m, (8 to 50m/hr) 1417m (4 to 40 m/hr) and 1437m; (9 to 80 m/hr), no shows were found and the breaks were not circulated out. The average gas was 0.2u, the maximum gas was 0.5u at 1421m from coal. The lithology was alternating sandstone and coal seams. The coals were unusual in that they drilled slowly at around 5m/hr, when 100% coal was placed in a cuttings blender for one minute, only 12u gas was given off. The coal did give off hydrogen sulphide though. was not given off to the atmosphere though as the mud pH was 10.9. (Further caustic was added to the mud).

6 Oct 1981

Drilled from 1450m to 1485m. Background gas 0.2u but included Cl to C4. At this point the bit had been onbottom for 12.5 hrs and 100 thousand turns. The cumulative cost had also increased; - see data list B and the cost analysis plot. It was decided to change the bit. Circulated out and ran a deviation survey (1485m, $3\frac{1}{4}^{\circ}$) and P.O.O.H. The bit was graded at $7-4-\frac{1}{4}$ ". A JD4 was chosen for the next bit run, having more suitable teeth. R.I.H. with NB # 5, H.T.C., JD4, $12\frac{1}{4}$ ". Found 1.5m of hole fill and 0.7u T.G. from 1485m. Drilled to 1576m, performed an S.P.L. check at 1570m and found drilling breaks at 1490m, (4 to 40 m/hr; - sandstone), 1535m, (7 to 50 m/hr; - sandstone), 1557m, (5 to 80 m/hr) and 1563m (8 to 40 m/hr; - sandstone) Average gas was 0.2u and maximum gas was 0.5u from 1530m. The lithology was still interbedded sands and coals, but the sand was becoming more angular leading to increased tooth wear.

7 Oct 1981

Drilled to 1605m; at this point the R.O.P. had decreased to 2 m/hr, the cumulative cost less than the incremental cost, and the cumulative cost had started to increase at 1602m; - see data lists A and B and the cost analysis plot. was decided to pull the bit at this point. C.O. and ran a deviation survey, (1605m, 240) and P.O.O.H. the hole took 3 bbl. more than the calculated volume. The bit was graded at 7-8-1/16". Expected T.D. was 115m deeper and an insert tooth bit was chosen to ensure no further bit changes would be required. R.I.H. with NB # 6, H.T.C. J22 124". Found 1.5m of fill and 0.2u T.G. from 1605m. A drilling break was found at 1615m, the R.O.P. increasing from 7 to 60 m/hr. This high R.O.P. was maintained throughout most of the bit run due to the predominance of the sand. A flow check was made at 1626m, where the R.O.P. was 96 m/hr. The flow check was negative. This high R.O.P. gave the bit run a relatively low cumulative cost but this was due to the different lithology rather than the bit type. Drilled to 1723, (not 1721m as 2m of hole fill was expected) reaching T.D. at 03.45 hrs. C.O., ran a deviation survey, (1723m, 1¹₂) and made a wiper trip to the shoe. Ran back to bottom, found no fill and circulated out. P.O.O.H. and strapped out; - 1722.43m. Found a tight spot while pulling out at 1353m.

8 Oct 1981

Attempted to run wireline logs but could not get below 1319m. The coal here was found to be heavily overgauge being off the caliper scale. Weight was added to the tools and another run was attempted but again the tool would not go deeper than 1319m. The coal seam was approximately 20m in thickness, (see Grapholog) and it was later found that the hole deviation suddenly increased at this point from around 11 to 310. R.I.H. to ream this section, 'Reamed' (did not rotate the pipe) from 1317m to 1355m. At 1317m the bit took 30,000 lbs weight. Trip gas from 1350m was 1.0u. Flushed the riser and circulated at 1355m for 12 hrs. Pumped a 40 bbl. slug of high viscosity mud which resulted in a large volume of coal cavings going over the shakers. Ran in the hole to T.D. found 2½m of fill and reamed to 1723m. Flushed the riser and circulated out, trip gas was a trace only. Flushed the riser again; this resulted in an increase in the gas content to 0.2u due to the greater volume of cuttings going over the shakers. P.O.O.H. at 19.35 hrs and found 55,000 lbs drag from 1410m to 1329m.

9 Oct 1981

Completed P.O.O.H. the hole taking 11 bbl. of mud more than the calculated volume. No further drag was found. Rigged up Schlumberger and ran log # 3, H.D.T. but could not get deeper than 1314m. Ran in the hole and reamed from 1316m to 1340m, pumped a high viscosity slug resulting in a large volume of coal cavings over the shakers. Pumped a heavy weight slug (18 p.p.g.) and again got a large volume of coal cavings over the shakers; - the cavings were not as large as previously seen when circulating out. The pumps were stopped and tested the hole for weight. The bit again took 30 000 lbs. Pulled up 3 stands and went back in with the pumps only on 40 S.P.M. (to keep the nozzles clear) and attempted to break through. The bit still took weight at 1316m. Pumped a 40 bbl. heavy weight slug to the bit, waited 10 minutes and C.O. When the bottom of the slug was in the base of the riser, the riser was flushed. Very little coal was found to going over the shakers. Made a wiper trip to the shoe with very little drag (10 000 lbs on the first stand) Lost 1 bbl. of mud while making the wiper trip. Ran in the hole, found hole conditions good and P.O.O.H. Maximum gas while circulating was 1.5u.

10 Oct 1981

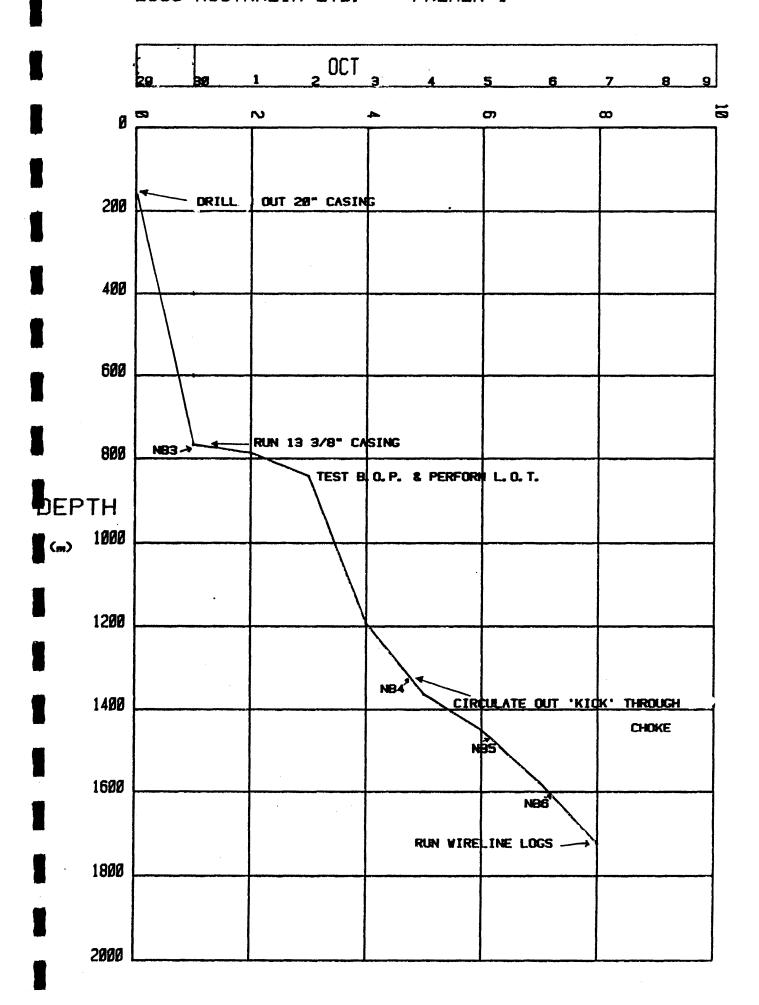
Continued to P.O.O.H.; - no drag over 6000 lbs was found. Rigged up Schlumberger and ran wireline logs: -

Run # 1: ISF - BCC - MSFL - GR

Run # 2: LDT - CNL - GR

Run # 3: HDT

While logging there was a hole fill of 36 bbl. survey was conducted and two CST runs made. Rigged down Schlumberger and ran in the hole with O.E.D.P.


11 Oct 1981 13 Oct 1981

to

Set cement plugs one to three, recovered the riser and B.O.P. and the P.G.B. The baseplate did not come free immediately but was retrieved with the "J" tool.

PROGRESS REPORT

8

9 BIT RECORD

BIT SIZE inches

BIT COST A dollars

JET SIZE Thirty seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME. Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . A dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . inches

			_	_	-		_
ВІ	T	R	E	C	O	R	C

LAB

COMPANY ESSO AUSTRALIA LTD.

WELL PALMER 1

Sheet No. _

IADC Drilling Hole On Bottom Average Average Condition Bit No. Make Type Cost Jets Size Depth in Depth Out Code Time Turns Made Hours ROP Cost/ TBG OSC 3AJ 111 26 4000 18/18/18 62 203 203 18.5 1 RR HTC 111 17층 20/20/20 582 15.0 77 2-2-I 2 RR HTC OSC 3AJ 2400 203 786 7.6 63 58 15/15/15 8-8-3 X3 A 121 1440 786 1362 37.2 27.3 228 21 178 577 HTC 114 $7-4-\frac{1}{4}$ 13/13/13 100 10 430 12= 1362 1485 123 15 .7 12.5 HTC X1G 135 1440 7-8-3 16 12表 1740 13/13/13 1485 1605 120 12.9 217 14.5 114 455 HTC JD4 17 Z-2-I J22 517 12분 5240 13/13/13 118 8.7 309 1605 1723 7.0 48 HTC

7520-486 (CL 1152)

5/N LJ 321

CC 556 LR 691

KZ 216

EB 016

823-NL

BIT RECORD

1	
	MMMM
ı	W 7/I \ \ I I I I I I I I I I I I I I I I I
4	H HINDINA A E
	MIMMITAD
ı	(AB

COMPANY ____ESSO AUSTRALIA LTD.

WELL PALMER 1

Sheet No. -

S/N LJ321 CC556 LR691

KZ216 EB016 B23-NL

Bit No.	Make	Туре	I A D C Code	Size	Jets	Depth In	Hote Made	Drilling Time	On Bottom Hours	Turns	Condition TBG	Hemarks	BIT COS
RR	HTC	OSC 3AJ		26	18/18/18	62	141	18.5	-	-	-	OUT FOR 20" CASING	4000
RR	HTS	OSC 3AJ	111	17호	20/20/20	203	582	15.0	7.6	63	242-I	OUT FOR 133"CASING	2400
3	HTC	X 3A	114	12½	15/15/15	786	577	37.2	27.3	228	8-8-3	OUT DUE TO LOW ROP & HIGH TORQ	1440
Į.	HTC	X 1G	135	12 1 /4	13/13/13	1362	123	15 .7	12.5	100	$7-4-\frac{1}{4}$	PULLED DUE TO LOW RO	_
5	HTC	JD4	217	12년	13/13/13	1485	1 20	14.5	12.9	114	7-8-3	PULLED DUE TO LOW RO	
5	HTC	J22	517	12½	13/13/13	1605	118	8.7	7.0	48	2-2-I	OUT FOR WIRELINE LOG	5240
******						1723 -	T.D.						
4-9													
						-							
				-									
				 						 			
				 									-
				 									-
			-										
										-			
					-								

10 MUD INFORMATION SHEETS

DEPTH Metres

MUD WEIGHT Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I. seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. Pounds/100 square feet

GEL : Initial/10 min . Pounds/100 square feet

FILTRATE A.P.I. cc

CAKE THICKNESS . . . Thirty seconds of an inch

SALINITY: Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

MUD INFORMATION SHEET ESSO AUSTRALIA LTD. COMPANY. PALMER 1 Sheet No. 1 WELL. DEPTH 784 1123 1240 1230 842 1368 1504 DATE 30-9-81 1 -10-81 2-10-81 3-10-81 4-10-81 5-10-81 6-10-81 TIME 12.30 23,50 14.4 07.30 14.30 15.00 WEIGHT 10.2+ 8.9 8.8 10.2 10.4 10.4 FUNNEL VISCOSITY 32 32 49 45 47 42 15/20 •51/1.42 PV/YP 17/17 .58/.89 17/17 .58/.89 17/17 •58/•89 4/12 5/14 N/K GEL: INITIAL/10 MIN 7/37 2/16 3/20 2/13 11.6 10.6 4.9/11.6 5.8/12.4 10.4 6.2/7.8 10.7 6.2/13.2 FILTRATE: API/API HTHP 1-3 1-3 1-3 1-3 CAKE Cl 5000 3500 2800 3000 SALINITY 11 SAND 2 10 11 SOLIDS 9 OIL 0 0 0 0 SALINITY Ca 140 100 80 60 ppb M.B.C. 17,5 15.0 15.0 15.0 ppm 0 5**5** 55 0 REMARKS: SEAWATER SEAWATER DRILL - - DRILL 12 3" HOLE - -GEL CEMENT

DEPTH		1652	1723			
DATE		7-1-81	7-1-81			
TIME		15.00	19.30			
WEIGHT		10.1	9.8			
FUNNEL VISCO	SITY	41	45			
PV/YP		14/14	15/15		•	
N/K		.58/.73	.58/.78			
GEL: INITIAL/1	0 MIN	2/10	2/10			
рH		10.8	10.8			
FILTRATE: API/	API HTHP	7.0/13.	6.0/13.0			
CAKE		1-3	1-3			
SALINITY	Cl	2800	2800			
SAND		TR	1			
SOLIDS		7	8			
OIL		0	0			
SALINITY	Ca	40	40			
M.B.C.	ррь	15.0	15.0			
N	p pm	70	50			

REMARKS:

DRILL 12 4" HOLE

11 GEOLOGICAL SUMMARY

PALMER No: 1

GEOLOGICAL PROFILE

The main objective of the well was to assess the hydrocarbon potential of reservoir sandstone within the Latrobe "Coarse Clastic" in a well defined faulted anticlinal structure, adjacent to the Perch oil accumulation. The secondary objective was to test for any intra-Labtrobe seals that may have been produced by thin shales and coals.

ALL DEPTHSMEASURED FROM KELLY BUSHING

GIPPSLAND LIMESTONE 64m - 1050m

As predicted in this zone, Limestone was the most predominant lithology encountered. The limestone being calcarenite, white, grey to dark gray, tan, bioclastic, fine to medium grained with abundant fossil and shell fragments. It graded to marl with traces of dolomite and glauconite. From 203m to 260m Sandstone was present, being grey, grey white, glauconite, carbonaceous, slightly calcareous in part. It was moderately to well sorted and sub angular to sub spherical.

There was also sandstone present from 465m to 880m it was clear, white, tan, coarse to medium grained, clean, loss and well rounded to sub angular. It graded to calcarenite which was silty and marly with traces of glauconite and pyrite.

LAKES ENTRANCE FORMATION 1050m - 1190m

The upper portion of this zone was found to be limestone which was very similar to those described above. Siltstone was first encountered as thin seams and gradually increased in thickness with depth. The siltstone was grey to medium grey and occasionally dark grey. It was friable to moderately hard, platy to blocky and carbonaceous, glauconite was abundant. The siltstone was sub-fissile, sandy in part, very fine grained and sub angular to sub rounded. Claystone was light grey, soft, sticky, carbonaceous, silty and in part gumbo.

GURNARD FORMATION 1190m - 1211m

As predicted siltstone was dominant in this section and was found to be quite similar to those described above. Siltstone was grey to medium grey, light brown to brown, platy to blocky, moderately hard to hard, fissile, carbonaceous. Glauconite was abundant. Traces of pyrite and foraminifera were present throughout this section. Claystone was light grey, soft, sticky, carbonaceous, and silty in part.

COARSE CLASTIC FORMATION 1211m - 1723m

This section was predominantly sandstone with thick beds of coal and thin beds of shale. The sandstone was clear, milky white, opaque, loose, medium to coarse grained. It was sub angular to sub rounded, with traces of pyrite and white mica. A few grains gave a dull orange fluorescence with a streaming cut and a pale yellow stain. The coal was dark brown, black, hard to very hard, platy to blocky, brittle, splintery and shiny. A thin stringer of shale at 1230m-1240m was brown to dark brown, mod hard to hard, platy to blocky, fissile, pyritic in part, carbonaceous and non calcareous. The maximum gas in this zone was 0.5 units Cl was present throughout this zone with traces of C2.

12 OVERBURDEN GRADIENT CALCULATIONS

DEPTH metres

OVERBURDEN PRESSURE INCREMENT .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/ft

OVERBURDEN EQUIVILANT DENSITY .Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONJC LOG FOR SECTIONS WHERE THE F.D.C.LOG IS NOT AVAILABLE.

OVERBURDEN GRADIENT CALCULATIONS

DEPTH from	DEPTH to	AVR.BULK DENSITY		O/BURDEN CUMM.	OZBURDEN GRAD.	O/BURDEN GRAD.
m	m	ġ m s∕cc	psi	psi	nsi/ft	paq
0	64	1.02	28.27	28.27	0.442	8.49
64	350	2.00	247.68	275.94	0.788	15.16
350	500	2,15	139.64	415,58	1738.0	15.98
500	6.0.0	2.17	93.96	509.55	0.849	16.33
600	700	2.19	94,83	604.37	0.863	16.60
700	770	2.23	67.59	671.96	0.873	16.78
770	790	2.25	19.49	691.45	0.875	16.83
790	825	2.30	34.86	726.31	0.880	16,93
825	860	2.25	34.10	760.40	0.884	17.00
860	875	2.35	15.26	775.67	0.886	17.05
875	900	2.30	24.90	800.57	0.890	17.11
900	1025	2.27	122.86	923.43	0.903	17.33
1025	1100	2.33	75.67	999,10	908,0	17.47
1100	1165	2.25	63,33	1062.42	0.912	17,54
1165	1180	2.22	14.42	1076.84	0.913	17,55
1180	1202	2.35	22.39	1099.23	0,914	17.59
1202	1209	2.26	6.85	1106.08	0.915	
1209	1220	2.43	11.57	1117.65	0.916	
1220	1248	2.20	26.67	1144.32	0.917	17.63
1248	1255	1.27	3.85	1148,17	0.915	17.59
1255	1270 1287	2.25	14.61	1162.79	0.916	17.61
1270 1287	1305	2,20 2,22	16.19	1178.98	0.916	17.62
1305	1320	1.22	17.30 8.25	1196.28	0.917 0.913	
1320	1345	2.25	24.36	1204,53 1228,89	0,700	17.55 17.57
1345	1353	2.20	2.62	1236.51	0.914	17.58
1353	1365	2.45	12.73	1249,24	0.915	17.50
1365	1387	2.30	21.91	1271.15	0.916	17.62
1387	1395	2.35	8.14	1279.29	0.917	17.64
1395	1401	1.27	3.30	1282.59	0.915	17.61
1401	1484	2.25	80.86	1363.45	0.919	17.67
1484	1488	2.50	4.33	1367.78	0.919	17.60
1488	1498	2.20	9.53	1377.31	0.919	17.68
1498	1532	2.35	34.60	1411,90	0.922	12.72
1532	1540	2.20	7.62	1419.53	0.922	17.73
1540	1592	D 7.0	51.79	1471.31	0.924	12.72
1592	1603	2.20	10.48	1481.79	0.924	17,78
1603	1614	2.45	11.67	1493.46	0.925	17.79
1614	1652	2.25	37,02	1530.48	0.526	17 82
1652	1654	2.40	2.08	1532.56	0.927	17.82
1654	1721	2.27	65.85	1598.42	0.929	17.86

DEPTH (in M) x 1000 ESSO AUSTRALIA LTD. PALMER # 1 OVERBURDEN GRADIENT PSI/FT.

13 SIDEWALL CORE GAS ANALYSIS

Chromatographic gas analysis was performed on the following sidewall core samples: ${\mathord{\text{ extbf{-}}}}$

						
DEPTH (m)	GAS CONC	CENTRATION C2	(p.p.m.) C3	C4	C5	<u> </u>
1257	tr	nil	nil	nil	nil	nil
1260	142	tr	nil	nil	nil	nil
1264.5	328	tr	nil	nil	nil	nil
1265	416	18	4	tr	nil	nil
1192	58	7	2	1	1	tr
1198	100	nil	nil	nil	nil	nil

14 PORE PRESSURE SUMMARY AND L.O.T./P.I.T. DATA

PALMER # 1, PORE PRESSURE AND L.O.T./P.I.T. SUMMARY

Palmer # 1 was drilled in the Gippsland Basin, it is thought that this basin is normally pressured and abnormal pressure was not expected. Core Laboratories unit F1802 monitored and calculated various parameters associated with pressure detection, the primary means of detection being the 'Drill Data Plot'. (see plots at end of this report)

The 'Drill Data Plot' shows the dc exponent trend. As can be seen from the plot a good trend does not develop until around 900m. A normal trend is followed to 1200m where the dc exponent points are completely scattered due to the widely varying lithology here; - sands and coals. A trend cannot be established in this section.

No interpretation can be made on the mud gas as the gas level exceeded lu (0.05%) only rarely; - on trip gas peaks only.

No shale density measurements were taken as no true shales were encountered. The temperature plot shows a change in gradient at 1200m and 1240m. These changes though are due to the change in lithology here. The geothermal gradient was 3.50C/100m.

As previously mentioned it was not possible to draw a 'Wireline Plot' as this log plots shale parameters and the few poor shales encountered in the well were insufficient to draw a plot from.

The 'Pressure Plot' is the conclusion log for the well. As can be seen it shows that the formations encountered in the drilling of Plamer # 1 are believed to be normally pressured throughout. The quantative data for this log is from the R.F.T. tests carried out in Bream # 4A, where the water saturated sands had a pressure gradient of 1445 p.s.i./m. This is equivilant to a pore pressure of 8.4 / 8.5 p.p.g. (from M.S.L.) It is believed that this pore pressure is representative of the formations above the Latrobe.

Overburden gradient calculations and a plot of the gradient are included in the report. It was not possible to derive a true fracture gradient as insufficient L.O.T. were taken. In fact only one P.I.T. was taken below the 13 3/8 " casing. There was no requirement to carry out L.O.T. as high mud weights were not anticipated. The P.I.T. that was carried out gave a value of 13.5 p.p.g. E.M.W. Based on this information the fracture gradient on the 'Pressure Plot' was drawn. The shape of the curve is based on data from wells in the U.S. Gulf Coast basin, and offset to match local data. A true fracture gradient for the Gippsland Basin cannot be drawn until further leak-off data is available.

15 COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the Drill program and is stored on the tape at 10,1,or 0.2 m intervals. This data is then available at a later date for use in other programs (for example, KICK, SURGE, COST, OPTBIT and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

The following data lists have been made for this well :

- a. Bit record
- b. Hydraulic analyses
- c. Data list A
- d. Data list B
- e. Data list C
- f. Data list D

COMPUTER PLOTS

Using the REPORT program, the following plots have been drawn for this well :

GEOPLOT - 1:5000 SCALE - 2m average

GEOPLOT 1:2000 SCALE - 2m average

DRILLING PARAMETER PLOT - 1:5000 SCALE - 2m average

COST ANALYSIS PLOT - 1:2000 SCALE - 2m average

Since all the data is stored on tape, further data lists or plots are available at any time on request.

BIT RECORD

BIT SIZE Inches

BIT COST A dollars

JET SIZE Thirty seconds of an inch

DEPTHS Metres

BIT RUN (HOLE MADE). . Metres

TOTAL HOURS, Hours (the time the bit was actually drilling)

AVERAGE ROP. Metres/hour

CUMULATIVE COST/METRE, A dollars

BIT CONDITION : Teeth

Bearings

Gauge . . . Inches

WELL: PALMER #1

	IADC CODE MAKE & TYPE	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT		TOTAL HOURS		TRIP TIME	CCOST		CONDITION T B G
	111 HTC OSC 3AJ												2 2 0.000
3	114 HTC X3A	12.250	1440.00	15 15 15	786.0	1362.0	576.0	27.35	21.1	3.6	192.51	227640	8 8 0.750
4	135 HTC XDG	12.250	1440.00	13 13 13	1362.0	1485.0	123.0	12.50	9.8	4.0	486.82	100438	7 4 0.250
5	217 HTC JD4	12.250	1740.00	13 13 13	1485.0	1605.6	120.6	12.88	9.4	4.6	527.94	113601	7 8 0.188
6	517 HTC J22	12.250	5240.00	13 13 13	1605.6	1723.0	117.4	6.95	16.9	4.6	393.06	48561	2 2 0.000

ET PERFORMANCE ANALYSIS

MATA FROM WELL: PALMER #1

BIT	BIT	HOLE	BIT	TRIP	AVERAGE	CCOST
NUMBER	COST	MADE	LIFE	TIME	ROP	
2 HTC OSC 3AJ 3 HTC X3A 4 HTC XDG 5 HDT JD4 6 HTC J22	2400.00	583.0	7.6	2.4	76.8	64.82
	1440.06	576.0	27.3	3.6	21.1	192.51
	1440.00	123.0	12.5	4.0	9.8	486.82
	1740.06	120.6	12.9	4.6	9.4	527.94
	5240.00	117.4	6.9	4.6	16.9	393.06
DTAL.	12260.00	1520.0	67.3	19.2	22.6	209.45

v

HYDRAULIC ANALYSIS

Data listed from data tape every 100m for each bit run.

DEPTH. Metres

FLOW RATE. Rate of mud flow into the well,

in gallons per minute

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which

the flow becomes turbulent

SLIP VELOCITY. . . . The rate of slip of cuttings in the

annulus under laminar flow

ASCEND VELOCITY, . . . The rate of ascent of cuttings in the

annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

HHP. Hydraulic horsepower at the bit

IMPACT FORCE The impact force at the bit,

in foot pound per second squared

JET VELOCITY The velocity of mud through the bit

nozzzles, in metres per second

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

water the second
--

SPM 1 118 SPM 2 122 FLOW RATE 1200

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
	1 1 F E.	1.7.81	VUL.	V I I	V E. L.	FL.OW	VEL.	VEL	DROP
	HWDC/OH	0.673	13	42	19	TURBULENT			0.1
	DC/OH	0.772	72	37	17	TURBULENT			0.2
	DC/CSG	0.961	3	30	15	TURBULENT			0.0
_	HWDP/CSG	1.085	30	26	13	TURBULENT			0.0
	DP/CSG	1.085	102	26	13	TURBULENT			0.1
J	DP/RIS	1.325	84	55	13	TURBULENT			0.0
l	TOTAL	_ VOLUME	303			TOTAL	PRESSU	RE DROP	0.4

LAG: 10.6 MINUTES 1253 STROKES #1 AND 1296 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1345.3 HHP 941 IMPACT FORCE 2233 % SURFACE PRESSURE 61.2 HHP/sqin 3.91 JET VELOCITY 127

PRESSURE BREAKDOWN:

SURFACE 110.3 STRING 711.7 BIT 1345.3 ANNULUS 0.4

TOTAL 2167.7 PUMP PRESSURE 2200.0 % DIFFERENCE 1.5

BOTTOM HOLE PRESSURES:

	UNITS	r	UNITS
NOT CIRCULATING: MUD	WEIGHT 8.60	HYDROSTATIC PRESSURE	440.2
CIRCULATING:	ECD 8.61	CIRCULATING PRESSURE	440.5
PULLING OUT: TRIP	MARGIN 0.02	ESTIMATED SWAB.	0.8
EFFECTIVE MUD	WEIGHT 8.58	BOTTOM HOLE PRESSURE	439.4

THEMOTIVE

россеное

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS	<u>CALCULATIO</u>	ONS AT	DEPTH	400.0	DINA	TVD	400.0

SPM 1 108 SPM 2 125 FLOW RATE 1165

ANNULAR HYDRAULICS:

	ANNULUS	VOLZ			CRIT	TYPE OF	SLIP ASCEND	
	TYPE	TINU	VOL	VEL	VEL	FLOW	VEL. VEL	. DROP
ı	HWDC/OH	0.673	13	41	19	TURBULENT		0.1
	DC/OH	0.772	74	36	17	TURBULENT		0.2
	HWDP/OH	0.896	25	31	14	TURBULENT		0.0
	DP/OH	0.896	62	31	14	TURBULENT		0.1
	DP/CSG	1.085	135	26	13	TURBULENT		0.1
	DP/RIS	1.325	84	21	13	TURBULENT		0.0
	TOTAL	. VOLUME	393			TOTAL F	PRESSURE DROP	0.5
				AND 1440 DAY AND 1 2 STOP AND			MA COL. 270. 4.2 DOM 201	

LAG: 14.2 MINUTES 1531 STROKES #1 AND 1772 STROKES #2

BIT HYDRAULICS:

ННР PRESSURE DROP 1268.0 861 IMPACT FORCE 2105 % SURFACE PRESSURE 57.6 HHP/sqin 3.58 JET VELOCITY 123

PRESSURE BREAKDOWN:

SURFACE 104.5 STRING 735.0 BIT 1268.0

ANNULUS 0.5 2108.0 TOTAL

PUMP PRESSURE 2200.0 % DIFFERENCE 4.2

	DENSI UNI		PRESSURE UNITS
NOT CIRCULATING: MUI CIRCULATING:		60 HYDROSTATIC 61 CIRCULATING	
PULLING OUT: TRIF EFFECTIVE MUI		01 ESTIMATED S 59 BOTTOM HOLE	

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS	CALCUL	ATIONS	AT	DEPTH	500.0	AND	TVD	500.0

SPM 1 110 SPM 2 124

FLOW RATE 1170

ANNULAR HYDRAULICS:

	ANNULUS	VOL./	1101	ANN	CRIT	TYPE OF		SCEND	PRESSURE
	TYPE	UNIT	VOL	VEL	VEL	FLOW	VEL.	VEL	DROP
_	HWDC/OH	0.673	13	41	19	TURBULENT			0.1
	DC/OH	0.772	74	36	17	TURBULENT			0.2
	HWDP/OH	0.896	25	31	14	TURBULENT			0.0
	DP/OH	0.896	152	31	14	TURBULENT			0.2
	DP/CSG	1.085	135	26	13	TURBULENT			0.1
	DP/RIS	1.325	84	21	13	TURBULENT			0.0
	TOTAL	VOLUME	483			TOTAL	PRESSURE	DROP	0.6

LAG: 17.3 MINUTES 1906 STROKES #1 AND 2149 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1278.9 HHP 873 IMPACT FORCE 2123 % SURFACE PRESSURE 53.3 HHP/sqin 3.63 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 105.3 STRING 801.4 BIT 1278.9 ANNULUS 0.6

TOTAL 2186.3 PUMP PRESSURE 2400.0 % DIFFERENCE 8.9

	DENSITY UNITS	q	RESSURE
CIRCULATING:	D WEIGHT 8.60	HYDROSTATIC PRESSURE	733.6
	ECD 8.61	CIRCULATING PRESSURE	734.2
	P MARGIN 0.01	ESTIMATED SWAB	1.2
	D WEIGHT 8.59	BOTTOM HOLE PRESSURE	732.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 1 110

SPM 2 124 FLOW RATE 1170

ANNULAR HYDRAULICS:

ANNULUS TYPE	UNIT UNIT	VOL	ANN VEL	ORIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH DC/OH HWDP/OH DP/OH DP/CSG DP/RIS	0.673 0.772 0.896 0.896 1.085	13 74 25 242 135 84	41 36 31 31 26 21	14 14 13	TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT		·	0.1 0.2 0.0 0.3 0.1 0.0
TOTA	L VOLUME	572			TOTAL.	PRESSU	RE DROP	0.7

LAG: 20.5 MINUTES 2260 STROKES #1 AND 2548 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1278.9 ннр 873 IMPACT FORCE 2123 HHP/sgin 3.63 % SURFACE PRESSURE 53.3 JET VELOCITY 124

PRESSURE BREAKDOWN:

105.3 SURFACE STRING 862.1 BIT 1278.9 ANNULUS 0.7

TOTAL 2247.1 PUMP PRESSURE 2400.0 % DIFFERENCE 6.4

BOTTOM HOLE PRESSURES:

•		TNI.	·	UNITS
	NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 8.0		
)	PULLING OUT: TRIP EFFECTIVE MUD	MARGIN 0.0 WEIGHT 8.		

NESSETTY

DECCHDE

HYDRAULICS ANALYSIS PROGRAM

SPM 1 124 SPM 2 110 FLOW RATE 1170

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FLOW	VEL	VEL	DROP
НШОС/ОН	0.673	13	41	19	TURBULENT			0.1
DC/OH	0.772	74	36	17	TURBULENT			0.2
HWDP/OH	0.896	25	31	14	TURBULENT			0.0
DP/OH	0.896	331	31	14	TURBULENT			0.4
DP/CSG	1.085	135	26	13	TURBULENT			0.1
DP/RIS	1.325	84	21	13	TURBULENT			0.0
TOTAL	VOLUME	662			TOTAL	PRESSUR	E DROP	0.8

LAG: 23.8 MINUTES 2947 STROKES #1 AND 2614 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1278.9 HHP 873 IMPACT FORCE 2123
% SURFACE PRESSURE 51.0 HHP/sqin 3.63 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 105.3 STRING 922.9 BIT 1278.9

ANNULUS 0.8

TOTAL 2307.9 PUMP PRESSURE 2510.0 % DIFFERENCE 8.1

	Œ	ENSITY		PRESSURE
<u></u>		UNITS		UNITS
NOT CIRCULATING: MUD	WEIGHT	8.60	HYDROSTATIC PRESSURE	1027.0
CIRCULATING:	ECD	8.61	CIRCULATING PRESSURE	1027.9
PULLING OUT: TRIP	MARGIN	0.01	ESTIMATED SWAB	1.7
EFFECTIVE MUD	WEIGHT	8.59	BOTTOM HOLE PRESSURE	1025.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS	<u>CALCULATIONS</u>	AT	DEPTH	800.0	CHA	CVT	800.0
------------	---------------------	----	-------	-------	-----	-----	-------

SPM 1 76 SPM 2 84 FLOW RATE 800

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL/	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
	DC/OH DC/CSG	0.274 0.287	8 41	69 66	133 132	LAMINAR LAMINAR	3 3	67 64	1.6 6.8
_	HWDP/CSG DP/CSG	0.411 0.411	34 198	46 46	124 124	LAMINAR LAMINAR	1 1	45 45	1.7 9.7
	DP/RIS	1.325	84	14	111	LAMINAR	0	14	0.3
	TOTAL	VOLUME	365			TOTAL	PRESSURE	DROP	20.0

LAG: 19.2 MINUTES 1459 STROKES #1 AND 1612 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1955.6 HHP 912 IMPACT FORCE 1826 % SURFACE PRESSURE 65.8 HHP/sqin 7.74 JET VELOCITY 151

PRESSURE BREAKDOWN:

SURFACE 61.4 STRING 808.9 BIT 1955.6 ANNULUS 20.0

TOTAL 2846.0 PUMP PRESSURE 2970.0 % DIFFERENCE 4.2

BOTTOM HOLE PRESSURES:

		UNITS		UNITS
CIRCULATING:	MUD WEIGH EC: RIP MARGI MUD WETCH	D 9.05 N 0.29	HYDROSTATIC PRESSURE CIRCULATING PRESSURE ESTIMATED SWAB BOTTOM HOLE PRESSURE	1214.7 1234.7 . 40.1

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALC	<u>ULATIONS A</u>	T DEPTH	900.0	AND	TVD	900.0

SPM 1 80 SPM 2 83 FLOW RATE 815

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
. DC/OH DC/CSG	0.274 0.287	36 12	71 68	140 139	LAMINAR LAMINAR	3 2	68 65	7.4 2.2
HWDP/CSG DP/CSG	0.411 0.411	34 239	47 47	128 128	LAMINAR LAMINAR	1	46 46	1.8 12.7
DP/RIS	1.325	84	15	114	LAMINAR	0	14	0.3
TOTA	L VOLUME	405			TOTAL	PRESSUR	E DROP	24.4

LAG: 20.9 MINUTES 1671 STROKES #1 AND 1734 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2020.5 HHP 960 IMPACT FORCE 1887 % SURFACE PRESSURE 65.4 HHP/sqin 8.15 JET VELOCITY 153

PRESSURE BREAKDOWN:

SURFACE 65.9 STRING 905.5 BIT 2020.5 ANNULUS 24.4

TOTAL 3016.3 PUMP PRESSURE 3090.0 % DIFFERENCE 2.4

	DENSITY	'	UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 8.86 ECD 9.02	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	** ***
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN 0.32 WEIGHT 8.54	ESTIMATED SWAR BOTTOM HOLE PRESSURE	48.7 1311.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS	CALCULATIONS	AT	DEPTH	1000.	CINA 0	TVD	1000.0

SPM 1 50 SPM 2 0 FLOW RATE 250

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH	0.274	47	22	107	LAMINAR	1	21	4.0
HWDP/OH	0.398	23	15	97	LAMINAR	0	14	0.5
HWDP/CSG	0.411	10	14	97	LAMINAR	0	14	0.2
DP/CSG	0.411	280	14	97	LAMINAR	0	14	6.0
DP/RIS	1.325	84	4	85	LAMINAR	0	4	0.1
TOTAL	VOLUME	445			TOTAL	PRESSURE	DROP	10.8

LAG: 74.8 MINUTES 3740 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 206.0 HHP 30 IMPACT FORCE 192 % SURFACE PRESSURE 60.6 HHP/sqin 0.25 JET VELOCITY 47

PRESSURE BREAKDOWN:

SURFACE 7.9
STRING 112.5
BIT 206.0
ANNULUS 10.8
TOTAL 337.2 PUMP PRESSURE 340.0 % DIFFERENCE 0.8

	a	ENSITY UNITS	F	RESSURE UNITS
CIRCULATING:	NUD WEIGHT ECD IP MARGIN NUD WEIGHT	9.60 9.66 0.13 9.47	HYDROSTATIC PRESSURE CIRCULATING PRESSURE ESTIMATED SWAB BOTTOM HOLE PRESSURE	1637.8 1648.6 21.7 1616.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 76 SPM 2 64 FLOW RATE 700

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	47	61	120	LAMINAR	2	59	8.2
HWDP/OH	0.398	33	42	105	LAMINAR	1	41	1.5
DP/OH	0.398	30	42	105	LAMINAR	1	41	1.3
DP/CSG	0.411	290	40	104	LAMINAR	1	40	11.7
DP/RIS	1.325	84	13	87	LAMINAR	0	12	0.2
TOTAL	VOLUME	485			TOTAL	PRESSURE	DROP	22.9

LAG: 29.1 MINUTES 2212 STROKES #1 AND 1863 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1716.0 HHP 701 IMPACT FORCE 1602 X SURFACE PRESSURE 61.3 HHP/sqin 5.94 JET VELOCITY 132

PRESSURE BREAKDOWN:

SURFACE 59.7 STRING 888.9 BIT 1716.0 ANNULUS 22.9

TOTAL 2687.4 PUMP PRESSURE 2800.0 % DIFFERENCE 4.0

	DENSIT UNIT		PRESSURE UNITS
CIRCULATING:	WEIGHT 10.2 ECD 10.3 MARGIN 0.2 WEIGHT 9.9	2 CIRCULATING PRESSUR 4 ESTIMATED SWAB	E 1937.0 45.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1200.0 AND TVD 1200.0

SPM 1 70 SPM 2 76 FLOW RATE 730

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF		SCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FLOW	VEL	VEL	DROP
DC/OH	0.274	47	63	120	LAMINAR	2	61	8.4
HWDP/OH	0.398	33	44	105	LAMINAR	1	43	1.5
DP/OH	0.398	70	44	105	LAMINAR	1	43	3.1
_ DP/CSG	0.411	290	42	104	LAMINAR	1	41	12.0
DP/RIS	1.325	84	13	87	LAMINAR	0	13	0.2
TOTAL	VOLUME	525			TOTAL	PRESSURE	DROP	25.2

LAG: 30.2 MINUTES 2114 STROKES #1 AND 2296 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1866.2 HHP 795 IMPACT FORCE 1743

| % SURFACE PRESSURE 63.9 HHP/sqin 6.74 JET VELOCITY 137

PRESSURE BREAKDOWN:

SURFACE 64.4 STRING 995.7 BIT 1866.2 ANNULUS 25.2

TOTAL 2951.5 PUMP PRESSURE 2920.0 % DIFFERENCE 1.1

BOTTOM HOLE PRESSURES:

UNITS UNITS HYDROSTATIC PRESSURE 2088.2 MUD WEIGHT 10.20 NOT CIRCULATING: CIRCULATING PRESSURE 2113.3 ECD 10.32 CIRCULATING: 0.25 ESTIMATED SWAB 50.4 TRIP MARGIN PULLING OUT: BOTTOM HOLE PRESSURE 2037.8 9.95 EFFECTIVE MUD WEIGHT

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 72 SPM 2 70 FLOW RATE 710

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH HWDP/OH	0.274 0.398	47 33	62 42	120 105	LAMINAR LAMINAR	2	59 41	8.3 1.5
DP/OH DP/CSG	0.398 0.411	110 290	42 41	105 104	LAMINAR LAMINAR	1 1	41 40	4.9 11.8
DP/RIS	1.325	84	13	87	LAMINAR	0	13	0.2
TOTAL	. VOLUME	565			TOTAL	PRESSURE	DROP	26.6

LAG: 33.4 MINUTES 2406 STROKES #1 AND 2339 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1765.4 HHP 731 IMPACT FORCE 1649 % SURFACE PRESSURE 60.9 HHP/sqin 6.20 JET VELOCITY 134

PRESSURE BREAKDOWN:

SURFACE 61.2 STRING 982.4 BIT 1765.4

ANNULUS 26.6

TOTAL 2835.6 PUMP PRESSURE 2900.0 % DIFFERENCE 2.2

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: 10.20 HYDROSTATIC PRESSURE 2262.2 MUD WEIGHT 10.32 CIRCULATING PRESSURE CIRCULATING: ECD 2288.8 PULLING OUT: TRIP MARGIN 0.24 ESTIMATED SWAB 53.2 EFFECTIVE MUD WEIGHT 9.96 BOTTOM HOLE PRESSURE 2209.0

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TVD 1400.0

SPM 1 65 SPM 2 62 FLOW RATE 635

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL.	VEL	DROP
DC/OH	0.274	47	55	114	LAMINAR	1	54	7.4
HWDP/OH	0.398	33	38	97	LAMINAR	0	38	1.2
DP/OH	0.398	150	38	97	LAMINAR	0	38	5.6
DP/CSG	0.411	290	37	96	LAMINAR	0	36	9,9
DP/RIS	1.325	84	11	75	LAMINAR	0	11	0.1
TOTAL	VOLUME	604			TOTAL	PRESSURE	DROP	24.4

LAG: 40.0 MINUTES 2600 STROKES #1 AND 2480 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2552.0 HHP 945 IMPACT FORCE 1790 |% SURFACE PRESSURE 85.1 HHP/sqin 8.02 JET VELOCITY 159

PRESSURE BREAKDOWN:

SURFACE 53.3 STRING 886.4

BIT 2552.0

ANNULUS 24.4

TOTAL 3516.1 PUMP PRESSURE 3000.0 % DIFFERENCE 17.2

BOTTOM HOLE PRESSURES:

UNITS	·	UNITS
	HYDROSTATIC PRESSURE	2484.0 2508.3
	ESTIMATED SWAR	48.7
	10.40	10.40 HYDROSTATIC PRESSURE 0 10.50 CIRCULATING PRESSURE

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1500.0

SPM 1 63 SPM 2 67 FLOW RATE 650

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH	0.274	47	56	106	LAMINAR	1	55	6.7
HWDP/OH	0.398	33	39	90	LAMINAR	0	38	1.1
DP/OH	0.398	190	39	90	LAMINAR	0	38	6.5
DP/CSG	0.411	290	38	90	LAMINAR	0	37	9.1
DP/RIS	1.325	84	12	71	LAMINAR	0	12	0.1
TOTAL	VOLUME	644			TOTAL	PRESSURE	DROP	23.6

LAG: 41.6 MINUTES 2624 STROKES #1 AND 2790 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2674.0 HHP 1014 IMPACT FORCE 1876 % SURFACE PRESSURE 89.1 HHP/sqin 8.60 JET VELOCITY 163

PRESSURE BREAKDOWN:

SURFACE 53.7 STRING 924.2 BIT 2674.0 ANNULUS 23.6

TOTAL 3675.6 PUMP PRESSURE 3000.0 % DIFFERENCE 22.5

BOTTOM HOLE PRESSURES:

		UNITS		ONTIB
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT ECD	10.40 10.49	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	2661.4 2685.0
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.18 10.22	ESTIMATED SWAB BOTTOM HOLE PRESSURE	47.2 2614.2

DENSITY

PRESSURE

1 15 1 7 77 75

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1600.0

SPM 1 65 SPM 2 65 FLOW RATE 650

ANNULAR HYDRAULICS:

ı	ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
	TYPE	UNIT	VOL	VEL	VEL	FLOW	VEI	VEL	DROP
,	DC/OH	0.274	47	56	108	LAMINAR	1	55	6.7
	HWDP/OH	0.398	33	39	92	LAMINAR	0	38	1.1
	DP/OH	0.398	229	39	92	LAMINAR	0	38	7.9
	DP/CSG	0.411	290	38	91	LAMINAR	0	37	9.1
	DP/RIS	1.325	84	12	72	L.AMINAR	0	12	0.1
j	TOTAL	_ VOLUME	684			TOTAL	PRESSURE	DROP	25.0

LAG: 44.2 MINUTES 2875 STROKES #1 AND 2875 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2612.3 HHP 990 IMPACT FORCE 1832 % SURFACE PRESSURE 88.6 HHP/sqin 8.40 JET VELOCITY 163

PRESSURE BREAKDOWN:

SURFACE 52.7 STRING 937.5 BIT 2612.3 ANNULUS 25.0

TOTAL 3627.5 PUMP PRESSURE 2950.0 % DIFFERENCE 23.0

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.16 HYDROSTATIC PRESSURE 2773.3 CIRCULATING: 10.25 2798.3 ECD CIRCULATING PRESSURE **PULLING OUT:** TRIP MARGIN 0.18 ESTIMATED SWAB 49.9 EFFECTIVE MUD WEIGHT 9.98 BOTTOM HOLE PRESSURE 2723.4

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1700.0

SPM 1 62 SPM 2 63 FLOW RATE 625

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF		SCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FLOW	VEL	VEL	DROP
DC/OH	0.274	47	54	104	LAMINAR	1	53	6.2
HWDP/OH	0.398	33	37	88	LAMINAR	0	37	1.0
TP/OH	0.398	269	37	88	L.AMINAR	0	37	8.4
_ DP/CSG	0.411	290	36	87	LAMINAR	0	36	8,3
DP/RIS	1.325	84	11	68	LAMINAR	0	11	0.1
TOTAL	VOLUME	724			TOTAL	PRESSURE	DROP	24.0

LAG: 48.7 MINUTES 3018 STROKES #1 AND 3066 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2401.0 HHP 875 IMPACT FORCE 1684
% SURFACE PRESSURE 82.8 HHP/sqin 7.43 JET VELOCITY 157

PRESSURE BREAKDOWN:

SURFACE 48.9 STRING 897.6 BIT 2401.0 ANNULUS 24.0

TOTAL 3371.6 PUMP PRESSURE 2900.0 % DIFFERENCE 16.3

	DENSITY UNITS	P	RESSURE UNITS
CIRCULATING:	WEIGHT 10.10	HYDROSTATIC PRESSURE	2929.2
	ECD 10.18	CIRCULATING PRESSURE	2953.3
	MARGIN 0.17	ESTIMATED SWAB	48.1
	WEIGHT 9.93	BOTTOM HOLE PRESSURE	2881.1

COMPUTER DATA LISTING : LIST A

INTERVAL All depth records (data not averaged)
DEPTH Well depth, in metres
ROP Rate of penetration; in metres/hour
WOB Weight on bit, in thousands of pounds
RPM Rotary speed, in revoloutions per minute
MW Mud weight in, in pounds per gallon
"dc" Calculated "d" exponent,corrected for variations in mud weight in, using a correction factor of 10 ppg
HOURS Comulative bit hours. The number of hours that the bit has actually been "on bottom", recorded in decimal hours
TURNS Comulative bit turns.The number of turns made by the bit,while actually on bottom"
ICOST Incremental cost per metre, calculated from the rate of penetration, in A dollars
CCOST Cumulative cost per metre,calculated from the drilling time,in A dollars
PP Pore pressure gradient,in equivilant pounds per gallon.The pressure exerted by the fluid in the pore spaces of the formation
FG Fracture gradient, in equivilant pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL program using Eaton's equation
It is dependent on the pore pressure, the overburden gradient and the matrix stress. This value may be modified by leak-off

information

BIT NUMBER IADC CODE INTERVAL 203.0-786.0 111 SIZE 20 20 HTC OSC 3AJ 17.500 NOZZLES 202400.00 COST TRIP TIME 2.4 BIT RUN 583.0 7.59 TOTAL HOURS TOTAL TURNS 62594 CONDITION T2 B2 G0.000 DEPTH ROP WOB RPM "d"c HOURS TURNS TCOST CCOST PP FG MU 8.6 1.06 210.0 30.0 12.0 130 0.23 8.4 11.3 1820 118 1675 220.0 60.0 12.0 130 8.6 0.82 0.40 3120 59.03 724.56 8.4 11.3 230.0 150.0 10.0 130 8.6 0.64 0.47 3640 23.61 464.95 8.4 11.4 240.0 100.0 8.0 130 8.6 0.71 0.57 4420 35.42 348.86 8.4 11.4 250.0 105.0 8.0 130 8.6 0.70 0.66 5163 33,73 281,81 8,4 11,4 260.0 75.08.0 130 8.6 0.77 0.80 6203 47,23 240,66 8.4 11.5 0.90 265.0 50.0 6.0 130 8.6 0.82 6983 70.84 226.96 8,4 11.5 0.95 270.0 100.0 8.0 130 8.6 0.71 7373 35,42 212,67 8.4 11.5 75.0 8.6 0.77 275.0 8.0 130 1.01 7893 47.23 201.18 8,4 11.5 280.0 60.0 9.0 130 8.6 0.84 1.10 8543 59.03 191.95 8.4 11.5 285.0 82.0 8.0 127 8.6 0.75 1.16 9007 43.20 182.88 8.4 11.6 82.0 10.0 127 290.0 8.6 0.78 9472 1.22 43,20 174,85 8.4 11.6 1.36 295,0 36.0 10.0 125 8.6 0.97 98.39 170.70 8,4 11.6 10514 300.0 36.0 10.0 125 8.6 0.97 1.49 11555 98.39 166.97 8.4 11.6 305.0 72.0 10.0 140 8.6 0.83 1.56 12139 49.19 161.20 8.4 11.6 1.63 310.0 72.08.0 140 8.6 0.80 12722 49,19 155,96 8,4 11,6 110.0 315,0 8.0 140 8.6 0.70 1.68 13104 32,20 150,44 8,4 11.7 320.0 110.0 6.0 135 8.6 0.66 1.72 13472 32.20 145.38 8.4 11.7 325.0 1.76 136.0 8.0 135 13770 26.04 140.49 11.7 8.6 0.65 8.4 11.7 330.0 136.0 10.0 135 8.6 0.68 1.80 14068 26.04 135.99 8.4 335.0 151.0 11.0 140 8,6 0,67 1.83 14346 23,46 131,72 8.4 11.7 340.0 151.0 11.0 140 8.6 0.62 1.86 14624 23,46 127,77 8.4 11.8 1.90 345.0 141.0 8.0 135 8.6 0.64 14911 25.12 124.16 8,4 11,8 1.94 350.0 142.0 12.0 135 24,94 120,28 8.6 0.69 15196 8.4 11.8 1.97 355.0 153.0 12.0 130 8.6 0.66 15451 23.15 117.57 8.4 11.8 1.99 360.0 198.0 10.0 135 8.6 0.59 15656 17.89 114.40 8.4 11.8 365.0 198.0 10.0 135 8.6 0.59 2,02 15860 17,89 111,42 8,4 11,8 370.0 166.0 10.0 140 8.6 0.64 2.05 16113 21.34 108.22 8.4 11.9 375.0 2,08 166.0 10.0 140 8.6 0.64 16366 21.34 106.18 8.4 11.9 380.0 165.0 12.0 145 8.6 0.67 2.11 16630 21.47 103.79 8.4 11.9 385.0 165.0 12.0 1.45 8.6 0.67 2,14 16894 21.47 101,53 8.4 11.9 390.0 205.0 12.0 145 8.6 0.62 2.16 17106 17.28 99.27 8.4 11.9 395.0 200.0 15.0 140 8.6 0.65 2.19 17316 17.71 97.15 8.4 11.9 400.0 165.0 8.0 140 8.6 0.61 2.22 17570 21,47 95,23 8.4 12.0 405.0 160.0 10.0 142 8.6 0.65 2,25 17837 22,14 93.42 8.4 12.0 410.0 185.0 15.0 140 8.6 0.67 2.28 18064 19,15 91.63 8.4 12.0 415.0 185.0 14.0 140 8.6 0.66 2,30 18291 19.15 89,92 8.4 12.0 420.0 227.0 12.0 140 8.6 0.59 2,33 15.60 18476 88.20 8.4 12.0 220.0 10.0 140 425.0 2.35 8.6 0.57 18667 16.10 86,58 8.4 12.0 430.0 202.0 15.0 145 8.6 0.65 2.37 18882 17.53 85.06 8.4 12.1 435,0 202.0 16.0 145 8.6 0.66 2,40 19097 17.53 83.60 8.4 12.1 440.0 141.0 15.0 140 8.6 0.74 2.43 19395 25.12 8.4 12.1 82.37 445,0 144.0 10.0 140 2.47 8.6 0.67 19687 24,60 81.18 8.4 12.1

DEPTH	ROP	MOB	RPM	ММ	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
A 1000 At 100											
450.0	144.0				0.73	2.50	19983	24.60	80.03	8,4	12'. 1
455.0	128.0		140		0.77	2.54	20311	27.67	78,99	8.4	12.1
460.0	128.0		140	8.6	0.74	2.58	20639	27.67	77.99	8.4	12.2
465.0	161.0	14.0	140	8.6	0.69	2.61	20900	22.00	76.93		12.2
470.0	161.0	13.0	140	8.6	0.68	2.64	21161	22.00	75.90		12.2
475.0	130.0	15.0	140		0.76	2.68	21484	27.25	25.00		12.2
480.0	130.0		140		0.76	2.72	21807	27.25	74.14		12.2
485.0	114.0		142		0.83	2.76	22181	31,07	73.38		
490.0	114.0		142		0.83	2.81	22554				12.2
495.0		17.0	140		0.98	2.89		31.07	72,64		12.2
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4710	X -Y U	0.0	0.70	a.o7	23254	59.03	72.41	8.4	12.3
500.0	60.0	19.0	140	9 4	1.01	2.97	23954	erc no	mm 40	<i>~</i> ^	
505.0	143.0				0.76	3.01	24248	59,03	72.18		12.3
510.0	143.0		140		0.77	3.04		24.77	71.40		12.3
515.0	120.0		140		0.79		24542	24.77	70.64		12.3
520.0	120.0		140			3.09	24892	29.52	69,98		12.3
525.0	100.0				0.71	3.13	25242	29.52	69.34		12.3
					0.87	3.18	25662	35.42	68,81		12.4
530.0	152.0				0.74	3.21	25938	23.30	68.12		12.4
535.0	176.0				0.66	3.24	26177	20.13	67.39	8.4	12.4
540.0	141.0				0.73	3.27	26475	25.12	66.77	8.4	12.4
545.0	133.0	13.0	145	8.6	0.74	3.31	26802	26.63	66.18	8.4	12.4
550.0	123.0	4 "7" n	4 4 0	n /	0 505	*****	atta kerna at a sena	*** *** *** ***			
					0.75	3.35	27143	28.80	65.64		12.4
555.0	90.0				0.78	3.41	27610	39.36	65.27		12.4
560.0	190.0		140		0.61	3.44	27831	18.64	64.62	8.4	12.5
565.0	188.0		140		0.64	3.46	28054	18.84	63.98	8.4	12.5
570.0	170.0		140	8.6	0.67	3,49	28301	20.84	63,40	8.4	12.5
575.0	174.0		140	8.6	0.60	3.52	28543	20.36	62.82	8.4	12.5
580.0	184.0	10.0	140	8.6	0.61	3.55	28771	19.25	62.24		12.5
585.0	173.0	12.0	144	8.6	0.66	3.58	29021	20.47	61.69		12.5
590.0	163.0	12.0	144		0.67	3.61	29286	21.23	61.18		12.6
595.0	130.0	12.0	142		0.23	3.65	29613	27.25	60.74		12.6
											. 12 1 17
600.0		20.0		8.6		3.71	30173	47.23	60,57	8.4	12.6
605.0	98.0	21.0	140	8.6	0.89	3.76	30602	36.14	60.27	8.4	12.6
610.0	80.0	22.0	140	8.6	0.96 -	3.83	31127	44.28	60.07		12.6
615.0	75.0	22.0	140	8.6	0.98	3.89	31687	47.23	59,92		12.6
620.0	36.0	16.0	140	8.6		4.03	32854	98.39	60.33		12.6
625.0	35.0	18.0	140	8.6	1.14	4.17		101.20	60.86		12.7
630.0	42.0		140	8.6		4.29	35054	84.33	61.14		12.7
635.0	60.0		140	8.6		4.38	35754	59.03			
640.0	110.0			8.6		4.42			61,11		12.7
645.0	145.0			8.6			36135	32.20	60.28		12.7
	A 71.5 1 ()	x + O	X **Y ()	0.0	0.20	4,46	36425	24.43	60.37	(1,4	12.7
650.0	200.0	15.0	140	8.6	0.65	4.48	36635	17.71	59.89	D 4	12.7
655.0	105.0		140	8.6		4.53	37035				
660.0	64.0		140	8.6		4.61		33,73	59.60		12.7
665.0	48.0		140	8.6			37691	55.34	59.56		12.8
670.0	115.0		140			4.71	38566	73.79	59.71		12.8
675.0	36.0			8.6		4.75	38931	30.80	59.40		12.8
680.0			140	8.6		4.89	40098	98.39	59.81		12.8
	74.0		140	8.6		4.96	40666	47.86	59.69	8.4	12.8
685.0	32.0		140	8.6		5.12		110.69	60.22	8.4	12.8
690.0	41.0		140	8.6		5.24	43003	86.39	60.49		12.8
695.0	96.0	15.0	140	8.6 (1,83	5.29	43440	36,90	60.25	8.4	
											- • • •

DEPTH	ROP W	DB RPM	MW "d"c	HOURS	TURNS	TCOST	CCOST	Þр	FG
700.0 705.0 710.0 715.0 720.0 725.0 730.0 735.0	84.0 15 72.0 19 35.0 22 32.0 22 36.0 20 28.0 21 25.0 22 42.0 24	.0 140 .0 140 .0 140 .0 140 .0 140 .0 137 .0 136	8.6 0.87 8.6 0.96 8.6 1.19 8.6 1.21 8.6 1.16 8.6 1.24 8.6 1.28	5.35 5.42 5.56 5.72 5.86 6.04 6.24	43940 44523 45723 47036 48203 49703 51347 52318	42.17 49.19 101.20 110.69 98.39 126.50 141.68 84.33	60.07 59.26 60.36 60.36 61.22 61.84 62.60 62.31	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	12.9 12.9 12.9 12.9 12.9 12.9 12.9
740.0 745.0	45.0 26 38.0 25		8.6 1.17 8.6 1.20	$6.47 \\ 6.60$	53251 54357	78.71 93.21	62,95 63,23	8.4 8.4	13.0 13.0
750.0 755.0 760.0 765.0 770.0 775.0 780.0 786.0	33.0 23 55.0 26 62.0 26 36.0 24 43.0 24 43.0 24 50.0 26 55.0 26	.0 140 .0 138 .0 138 .0 139 .0 139 .0 142	8.6 1.22 8.6 1.11 8.6 1.07 8.7 1.19 8.7 1.14 8.7 1.13 8.7 1.06 8.7 1.09	6.84 6.92 7.06 7.18 7.29 7.39 7.47	55629 56393 57061 58211 59174 60143 60995 61663 61814	107.33 64.40 57.13 98.39 82.37 82.37 70.84 57.13 64.40	63.64 63.58 63.89 64.06 64.22 64.27 64.21	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.0 13.0 13.0 13.0 13.1 13.1 13.1

BIT NUMBER IADO CODE 286,0- 1362.0 114 INTERVAL 12.250 HTC X3A SIZE NOZZŁES 15 15 15 TRIP TIME 576.0 1440.00 BIT RUM COST 3.6 TO SO GO.750 TOTAL HOURS 27.35 TOTAL TURNS 227640 CONDITION DEPTH ROP WOB RPM MW "d"c HOURS TURNS TOOST CCOST PP FG 787.0 0.03 32.0 20.0 100 14125 8.8 1.17 188 111 8.4 13.1 288.0 23 38.0 20.0 105 8.8 1.13 0.06 353 2102 8.4 13.1 789.0 40.0 20.0 105 8.8 1.12 gg477.2 0.08 511 8.4 13.1 790.0 35.0 20.0 105 8.8 1.16 0.11 691 37,02 8.4 13.1 101 791.0 36.0 20.0 105 8.8 1.15 0.14 866 98 2901 8,4 13,1 792.0 35.0 22.0 120 8.9 1.21 0.171072 101 2435 8.4 13.1 793.0 27.0 22.0 120 8.9 1.29 $0\ , \ 2\ 0$ 2106 1338 131 8.4 13.1 794.0 46.0 15.0 120 8.9 1.03 0.23 1425 77 1852 8.4 13.1 26.0 15.0 120 8.9 1.18 0.26 795.0 1772 1361661 8,4 13,1 796.0 24.0 18.0 120 8.9 1.26 0.31 8.4 13.1 2072 148 1510 797.0 38.0 18.0 144 0.33 8.9 1.18 2299 93 1381 8.4 13.1 798.0 0.3576.0 18.0 144 8.9 0.992413 47 1270 8.4 13.1 799.0 31.0 18.0 144 8.9 1.24 0.38 2691 114 1181 8.4 13.1 300.0 56.0 18.0 144 8.9 1.07 0.40 8.4 13.1 2846 63 1101 0.42 801.0 40.0 18.0 144 8.9 1.17 3062 89 1034 8.4 13.1 802.0 45.0 17.0 145 8.9 1.12 0.44 3255 73.71 274.00 8.4 13.1 803.0 45.0 17.0 145 8.9 1.12 0.47 78.71 921.33 3448 8.4 13.1 804.0 45.0 22.0 145 8.9 1.12 0.49 3642 70.71 874.52 8.4 13.1 22.0 22.0 145 0.53 4037 805.0 8.9 1.40 161,00 836.97 8.4 13.1 45.0 18.0 144 78.71 799,05 8.4 13.1 806.0 8.9 1.13 0.56 4229 807.0 46.0 18.0 144 8.9 1.13 0.58 4417 77,00 764.67 8.4 13.1 808.0 63.0 13.0 144 8.2 1.04 0.59 4554 56.22 732.47 8.4 13.1 809.0 45.0 18.0 144 8.9 1.13 0.62 4746 78.71 704.04 8,4 13,2 810.0 63.0 20.0 144 8.9 1.07 0.63 4883 56.22 677.05 8.4 13.2 811.0 52.0 20.0 144 8.9 1.12 0.65 5049 68,12 652.69 8,4 13,2 812.0 32.0 20.0 144 8.9 1.26 5319 8.4 13.2 0.69110.69 631.85 813.0 10.0 20.0 144 0.78 354,20 621,56 8.4 13.2 8,9 1,59 6183 314.0 56.0 18.0 144 8.9 1.07 0.80 6338 63.25 601.62 8.4 13.2 78.0 18.0 145 815.0 8.9 0.98 0.81 6449 45,41 532,44 8.4 13.2 816.0 67.0 18.0 145 8.2 1.02 65798.4 13.2 0.8352.87 564,77 817.0 54,0 18,0 145 8,91,08 0.856740 65.59 548.69 8.4 13.2 818.0 67.0 13.0 145 8.2 1.62 0.36 6070 52.87 533.19 8,4 13,2 819.0 67.0 18.0 145 8.9 1.02 BB , \emptyset 2000 52,87 518,64 8,4 13,2 820.0 64.0 18.0 145 8.9 1.04 0.82 7136 55.34 505.01 8.4 13.2 821.0 85.0 20.0 145 8.9 0.98 0,50 7238 41.67 491.77 8.4 13.2 322.0 84.0 20.0 145 8.9 0.99 0:91 7342 42.17 479.28 8.4 13.2 823.0 78.0 20.0 145 8.9 1.01 0.93 7453 45.41 467.56 8.4 13.2 824.0 62.0 20.0 145 8.9 1.07 0.94 7524 57,13 456,76 8.4 13.2 825.0 114.0 20.0 145 8,9 0.90 0.95 7670 31.07 445.64 8.4 13.2 0.97826.0 73.0 20.0 145 8.9 1.01 7781 45.41 435.83 8.4 13.2 827.0 85.0 20.0 145 8,9 0.980.987884 41.67 426.22 8.4 13.2 828.0 82.0 20.0 145 39.80 417.02 8.9 0.97 0.927982 6.4 13.2

85,0 20,0 145

8.9 0.98

1,00

8084

41.67 400.29

8.4 13.2

829.0

DEPTH	ROP	иов	RPM	MW	"d"C	HOURS	TURNS	LCOST	00057	∋ p	E.C
830.0 831.0 832.0 833.0 834.0 835.0 835.0 836.0 837.0	82.0 15.0 85.0 91.0 91.0 101.0		145 145 142 142 142 142 142 142	8.9 8.9 8.9 8.9 8.9 8.9	1.03 1.02 1.52 1.00 0.28 0.23 0.25 1.00	1.01 1.03 1.09 1.10 1.11 1.13 1.14 1.15	8195 8302 8882 8982 9075 7169 9253 7338 9438 9565	35.07 41.67	392.1) 388.72 381.34 774.20	8.4 8.4 8.4 8.4 8.4 8.4	18.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2
840.0 841.0 842.0 843.0 844.0 845.0 845.0 847.0 848.0	85.0 42.0 67.0	25.0 25.0 25.0	142 142 142 142 142 142 142 142	8.9 8.9 8.9 8.9 8.9 8.9	1.03 1.00 1.24 1.10 1.10 0.90 0.97 0.93 1.02	1.19 1.20 1.22 1.24 1.25 1.26 1.27 1.28 1.29	9627 9777 9980 10108 10235 10319 10399 10470 10564 10630	84.33 52.87 52.87 35.07 33.42 29.52 38.92	331.83 327.46 322.65 317.99	8.4 8.4 8.4 8.4 8.4 8.4	17 7 13 2 13 2 13 2 13 2 13 2 13 3 13 3
850.0 851.0 852.0 853.0 854.0 855.0 856.0 857.0 859.0	76.0 73.0 139.0 91.0 89.0 96.0 78.0	25.0 25.0 25.0	142 142 142 142 142 142 142	8.9 8.9 8.9 8.9 8.9 8.9	0.93 1.02 1.02 1.08 0.89 1.02 1.02 1.00 1.06	1.31 1.32 1.33 1.35 1.35 1.36 1.37 1.39 1.40	10702 10814 10926 11043 11104 11129 11293 11382 11491 11615	46.61 46.61 48.52 25.48 38.92 39.80 36.20 45.41	291.22 287.45 283.80 280.29 276.54 223.10 269.77 266.49 263.42 260.51	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	13.3 13.3 13.3 13.3 13.3 13.3 13.3
860.0 861.0 862.0 863.0 864.0 865.0 866.0 867.0 868.0	72.0 28.0 56.0 59.0 69.0 52.0 52.0 38.5	25.0 25.0 25.0 23.0 23.0 23.0 23.0 28.0 28.0	142 140 140 140 140 140 140	8.9 8.9 8.9 8.9 8.9 8.9	1.09 1.02 1.37 1.13 1.12 1.02 1.15 1.24 1.32	1.43 1.44 1.48 1.49 1.51 1.53 1.54 1.57 1.60	11733 11851 12156 12306 12448 12570 12731 12947 13168 13392	49.19 126.50 63.25 60.03 51.33 60.12 90.62 92.00	257.66 254.88 253.19 250.72 240.28 245.78 243.56 241.68 239.85 238.00	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.3
870.0 871.0 872.0 873.0 874.0 875.0 875.0 876.0 877.0	16.0 20.0 16.0 16.0 15.6 41.0 25.0	28.0 18.0 18.0 18.0 19.0 19.0 20.0 20.0	142 142 142 142 142 142 142 142	8.9 8.9 8.8 8.8 8.8 8.8	1.32 1.42 1.42 1.42 1.43 1.46 1.18 1.34 1.33	1.65 1.71 1.76 1.82 1.69 1.95 1.97 2.01 2.05	14575 15107 15640 16186 16394 16735 17062	227.38 177.10 221.38 221.38 227.05 66.39 141.68 136.23	236.36 236.10 235.33 235.13 235.08 233.43 232.42 231.30 230.25	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.3 13.3 13.3

							·	
DEPTH	ROP WOR	RPM	MW "d"c	HOURS	TURNS	ICOST	ссоот	pp FG
880.0 881.0 882.0 883.0 884.0 885.0 885.0 887.0 887.0	20.0 21.0 22.0 21.0 20.0 26.0 30.0 26.0 30.0 27.0 21.0 27.0 22.0 27.0 22.0 27.0 7.8 24.0 10.4 24.0	142 142 142 142 142 142 142 150	8.8 1.42 8.8 1.40 8.8 1.51 8.9 1.32 8.9 1.38 8.9 1.49 6.2 1.43 8.9 1.43 8.9 1.43	2.14 2.18 2.23 2.27 2.30 2.35 2.39 2.44 2.57 2.66	17793 18180 18406 18890 19174 19580 19967 20354 21508 22373	177.10 161.00 177.10 113.07 113.07 160.67 161.00 161.00 454.10 340.58	229.69 228.42 227.28 226.17 225.59 224.74 224.31 226.56 227.67	8.4 13.3 8.4 13.3 8.4 13.3 8.4 13.3 8.4 13.3 8.4 13.3 8.4 13.3 8.4 13.4 8.4 13.4
890.0 891.0 892.0 893.0 894.0 895.0 896.0 897.0 898.0	12.4 24.0 18.0 24.0 12.0 23.0 24.0 24.0 39.0 22.0 39.0 22.0 34.0 22.0 31.0 22.0 43.0 25.0	150 150 150 150 155 155 155	8.9 1.48 8.9 1.51 8.9 1.42 8.9 1.43 8.9 1.26 8.9 1.26 8.9 1.30 8.9 1.32	2.72 2.77 2.82 2.87 2.91 2.93 2.96 2.99 3.02	22837 23337 23811 24186 24577 24816 25054 25328 25628 25844	90.82 104.18 114.26	227.24 226.95 226.56 225.83 225.16 223.93 222.72 221.65 220.69 219.47	8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4
900.0 901.0 902.0 903.0 904.0 905.0 906.0 907.0 908.0 909.0	48.0 23.0 42.0 23.0 48.0 18.0 27.0 18.0 59.0 19.0 42.0 19.0 43.0 19.0 45.0 19.0 45.0 19.0 35.0 24.0	145 140 140 140 140 140 140	8.9 1.21 8.9 1.23 8.9 1.11 8.9 1.27 8.9 1.07 8.9 1.16 8.9 1.16 8.9 1.14 8.9 1.14	3.07 3.09 3.11 3.15 3.16 3.19 3.21 3.23 3.26 3.28	26038 26245 26420 26731 26873 27073 27269 27455 27642 27882	84.33 73.79 131.19 60.03 84.33 82.37 78.71	218.19 217.03 215.79 215.07 213.75 212.67 211.58 210.48 209.40 208.52	8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4
910.0 911.0 912.0 913.0 914.0 915.0 916.0 917.0 918.0 919.0	34.0 24.0 40.0 25.0 43.0 26.0 44.0 26.0 54.0 26.0 36.0 26.0 38.0 26.0 38.0 25.0 40.0 25.0	140 140 140 140 140 140 140	8.9 1.30 8.9 1.27 8.9 1.22 8.9 1.25 8.9 1.19 8.9 1.22 8.9 1.31 8.9 1.29 8.9 1.25 6.9 1.23	3.31 3.34 3.36 3.38 3.40 3.42 3.45 3.45 3.50	28129 28339 28514 28705 28861 29036 29269 29490 29687 29687	88.55 73.79 80.50 65.59 73.79 98.39 93.21	207.68 206.73 205.67 204.69 203.60 202.59 201.77 200.96 200.15	8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4
920.0 921.0 922.0 923.0 924.0 925.0 926.0 927.0 928.0 929.0	50.0 26.0 61.0 26.0 43.0 26.0 48.0 26.0 21.0 20.0 25.0 20.0 32.0 20.0 32.0 20.0 13.0 21.0	125 125 126 126 126 126 126	8.9 1.18 8.9 1.11 8.9 1.22 8.9 1.19 8.9 1.35 8.9 1.30 8.9 1.23 8.9 1.23 8.9 1.23	3.55 3.56 3.59 3.61 3.66 3.70 3.73 3.76 3.81 3.83	30025 30148 30322 30479 30839 31141 31377 31613 32080 32233	58.07 82.37 73.79 168.67 141.68 110.69 110.69	194.79	8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4 8.4 13.4

e											
DEPTH	ROP	MOB	RPM	MiJ	"of "c:	HOURS	TURNS	ICOST	CCGST	ЬÞ	FG
930.0 931.0 932.0 933.0 934.0 935.0 936.0 937.0 938.0 939.0	30.0 38.0 41.0 35.0 33.0 27.0 18.0 44.0	21.0 20.0 20.0 20.0 20.0 20.0 22.0	140 140 140 140 141 141 141 141 140 140	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1.16 1.22 1.21 1.12 1.23 1.25 1.31 1.46 1.21	3.85 3.89 3.91 3.94 3.97 4.00 4.03 4.09 4.11 4.13	32412 32692 32913 33117 33359 33616 33929 34399 34590 34735	75.36 113.07 93.21 86.39 101.20 107.33 131.19 126.78 80.50 61.07	192.09 191.58 190.21 190.20 189.60 189.04 188.66 188.71 188.00	8.4 8.4 8.4 8.4 8.4 8.4	13.4 13.5 13.5 13.5 13.5 13.5 13.5 13.5
940.0 941.0 942.0 943.0 944.0 945.0 946.0 946.0 947.0 948.0	35.0 36.0 45.0 49.0 28.0 38.0 50.0	23.0 23.0 23.0 23.0 24.0 24.0 24.0	140 140 140 140 140 140 140 140 140	8.9 8.9 8.9 8.9 8.9 8.9	1.51 1.22 1.27 1.19 1.17 1.36 1.26 1.18 1.55	4.19 4.22 4.25 4.27 4.29 4.33 4.35 4.35 4.44	36608 36776	101.20 98.39 77.00 72.29 126.50 93.21 70.84 240.95	187.39 186.84 186.27 185.57 184.86 184.49 183.92 183.22 183.57	8.4 8.4 8.4 8.4 8.4 8.4	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
950.0 951.0 952.0 953.0 954.0 955.0 956.0 957.0 958.0 959.0	22.0 24.0 30.0 26.0 31.0 24.0 31.0 28.0	25.0 25.0 23.0 24.0 24.0 18.0	140 140 142 142 142 138 136 138	8.9 8.9 8.9 8.9 8.9 8.9	1.44 1.42 1.32 1.38 1.33 1.30 1.23 1.23	4.52 4.57 4.61 4.64 4.68 4.71 4.75 4.79 4.82 4.85	38029 38411 38761 39045 39373 39648 39993 40260 40555 40757	161.00 147.58 118.07 136.23 114.26 147.58 114.26 126.50	182.35 182.08 181.48 181.48 181.08	8,4 8,4 8,4 8,4 8,4 8,4	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
960.0 961.0 962.0 963.0 964.0 965.0 966.0 967.0 968.0 969.0	31.0 29.0 44.0 23.0 23.0 19.0 43.0	22.0 24.0 24.0 23.0 23.0 23.0 23.0 21.0 21.0	138 130 140 140 142 142 142 142 132	8.9 8.9 8.9 8.9 8.9 8.9	1.35 1.22 1.35 1.22 1.40 1.40 1.46 1.24 1.10	4.89 4.92 4.98 5.02 5.11 5.14 5.16 5.17	41089 41356 41645 41836 42207 42577 43026 43224 43370 43498	80.50 154.00 154.00 186.42 82.37 65.59		8.4 8.4 8.4 8.4 8.4 8.4	17.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
970.0 971.0 972.0 973.0 974.0 975.0 976.0 977.0 979.0	33.0	22.0 22.0 22.0 22.0 22.0 21.0 21.0 20.0	132 132 132 132 132 138 138 138	8.9 8.9 8.9 8.9 9.0 9.0	1.28 1.23 1.26 1.23 1.23 1.45 1.02 1.23 1.22 1.33	5.23 5.26 5.29 5.32 5.38 5.39 5.42 5.42 5.51	43974 44214 44434 44654 45119 45260 45503 45022	107.33 98.39 98.39 208.35 60.03 104.18	125.24 125.52 125.16 124.25 124.23 124.32 123.96 123.26	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.5 13.5 13.5 13.5 13.6 13.6 13.6 13.6

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	icost	ccost	РP	FG
980.0 981.0 982.0 983.0 984.0 985.0 986.0 987.0 988.0 989.0	33.0 32.0 19.0 22.0 23.0 16.0 28.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0	138 140 139 139 139 139 138 138	9.1 9.1 9.1 9.2 9.2 9.2 9.2	1.24 1.23 1.21 1.22 1.37 1.30 1.40 1.24 1.22	5.54 5.57 5.60 5.63 5.68 5.77 5.84 5.87 5.90	49222	110.69 186.42 161.00	173.05 172.71 172.40 172.47 172.41 172.32 172.56 172.34	8.4 8.4 8.4 8.4 8.4 8.4	13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
990.0 991.0 992.0 993.0 994.0 995.0 996.0 997.0 998.0	14.0 19.0 13.9 8.2 21.0 11.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0	136 136 136 136 136 136 128 128	9.3 9.4 9.4 9.4 9.5 9.5	1.23 1.22 1.42 1.32 1.35 1.28 1.43 1.35	5.94 5.99 6.06 6.11 6.16 6.28 6.33 6.42 6.49 6.54		253.00	171.77 172.17 172.24 172.31 173.55 173.53 174.23	8.4 8.4 8.4 8.4 8.4 8.4	13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
1000.0 1001.0 1002.0 1003.0 1004.0 1005.0 1006.0 1007.0 1008.0	8.0 11.0 8.9 16.0 30.0 47.0 31.0 26.0	26.0 27.0 27.0 27.0	128 139 139 139 139 139	9.7 9.7 9.8 9.8 9.8 9.8	1.53 1.53 1.44 1.50 1.41 1.25 1.12 1.24 1.35	6.66 6.79 6.88 6.99 7.05 7.05 7.11 7.14 7.18 7.21	55520 56480 57179 58042 58563 58641 59018 59287 59608 59861	442.75 322.00 397.98 221.36 118.07 75.36 114.26 136.23	175.76 177.67 178.69 178.89 178.61 178.14 177.65 177.66	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
1010.0 1011.0 1012.0 1013.0 1014.0 1015.0 1016.0 1017.0 1018.0	24.0 22.0 22.0 12.0 20.0 18.0 16.5 29.0	31.0 31.0 31.0 31.0 31.0 26.0 26.0 25.0	145	9.8 9.8 9.8 9.8 9.8 9.8 9.8	1.43	7.24 7.28 7.33 7.37 7.46 7.56 7.56 7.62 7.66	60476 60877 61278 62013 62454 62944 63478 63768	147,58 161,00 161,00 295,17	126.93 176.26 177.28 177.29 177.37 177.53	8.4 8.4 8.4 8.4 8.4 8.4	13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
1020.0 1021.0 1023.0 1024.0 1025.0 1026.0 1027.0 1028.0 1029.0	18.0 16.0 17.0 20.0 22.0 23.0 18.0 17.0	25.0 25.0 25.0 25.0 28.0 28.0 32.0 32.0 28.0	137 138 135 135 135 135 135	9,9 9,9 10,0 10,0 10,0 10,0	1.34	7.76 7.81 7.98 7.94 7.99 8.03 8.07 8.13 8.19	65074 65592 66068 66473 66842 67194 67644 68120	221.38 196.78 221.38 208.35 177.10 161.00 154.00 196.78 208.35 253.00	177.41 177.59 177.72 177.72 177.65 177.65	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7

			e e e e e e e e e e e e e e e e e e e				
DEPTH	ROP WOB	RPM MU"	d"c HOURS	TURNS	tcost	CCOST	. Pr. FG
1030.8 1031.0 1032.0 1033.0 1034.0 1035.0 1036.0 1037.0 1038.0 1039.0	13.0 25.0 29.0 34.0 32.0 34.0 34.0 28.0 24.0 28.0 27.0 28.0 23.0 23.0	133 10.1 1 133 10.1 1 133 10.1 1	.32 8.37 .30 8.40 .27 8.43 .18 8.46 .22 8.50 .24 8.54 .23 8.58 .30 8.62	69863 70118 70353 70685 70981 71266 1	196.78 122.14 110.62 104.18 142.58 131.19 126.50	128.18 122.95 122.68 122.36 122.26 122.86 125.88 126.88	8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7
1040.0 1041.0 1042.0 1043.0 1044.0 1045.0 1046.0 1047.0 1048.0 1049.0	10.0 23.6 36.0 26.0 33.0 26.0 34.0 26.0 33.0 26.0 30.0 28.0 28.0 28.0 23.0 28.0		.50 8.83 .13 8.86 .15 8.89 .15 8.95 .15 8.95 .20 8.98 .22 9.02 .28 9.06	72480 1 73278 - 73503 73748 1 73988 1 74235 1 74507 1 74799 1 75154 1	554.20 98.39 107.33 104.18 107.33 118.07 126.50 154.00	177.61 177.30 177.02 176.24 176.47 176.45 176.06 175.97	8,4 13,7 8,4 13,7 8,4 13,7 8,4 13,7 8,4 13,7 8,4 13,7 8,4 13,7 8,4 13,7 8,4 13,7
1050.0 1051.0 1052.0 1053.0 1054.0 1055.0 1056.0 1057.0 1058.0 1059.0	22.0 28.0 33.0 28.0 26.0 28.0 28.0 30.0 23.0 30.0 27.0 28.0 22.0 28.0 19.0 28.0	136 10.2 1 136 10.2 1 136 10.2 1 136 10.2 1 136 10.2 1 137 10.2 1 137 10.2 1 137 10.2 1 137 10.2 1	.27 9.20 .18 9.23 .24 9.27 .25 9.31 .25 9.34 .24 9.38 .22 9.42 .33 9.48	77154 1 77446 1 77750 1 78124 1 78556 1	61.00 .07.33 36.23 .26.50 .26.50 31.19 .62.00	175,86 175,60 175,46 175,27 175,09 174,93 174,98	8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7
1060.0 1061.0 1062.0 1063.0 1064.0 1065.0 1066.0 1067.0 1068.0 1069.0	37.0 30.0 35.0 30.0 31.0 30.0 38.0 31.0 34.0 31.0 37.0 33.0 44.0 33.0 46.0 32.0	136 10.2 1 136 10.2 1 135 10.2 1 135 10.2 1	.16 9.57 .17 9.68 .21 9.63 .17 9.66 .20 9.69 .20 9.72 .15 9.74 .13 9.76	79342 79566 1 79820 1 80035 80275 1 80494 80478	25.73 01.20 14.26 23.21 04.18 95.73 80.50 77.00	174.56 174.00 174.00 173.79 173.50 173.25 172.64 172.64 172.16	8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8
1070.0 1071.0 1072.0 1073.0 1074.0 1075.0 1076.0 1077.0	38.0 32.0 40.0 35.0 38.0 35.0 32.0 33.0 37.0 32.0 22.0 32.0 23.0 32.0 28.0 33.0	142 10.2 1. 142 10.2 1. 142 10.2 1. 142 10.2 1. 139 10.2 1.	.17 9.85 .21 9.88 .23 9.90 .26 9.93 .20 9.96 .34 10.01 .33 10.05	81600 81813 82037 82304 1 82534 82913 1 83276 1 83567 1	93,21 88,55 93,21 10,69 95,73 61,00		8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8

DEPTH	ROP	WOB	RPM	MU	"d"c	HOURS	TURNS	ICOST	ccost	рp	FG
1080.0 1081.0 1082.0 1083.0 1084.0 1085.0 1086.0 1087.0 1088.0	39.0 36.0 30.0 41.0 41.0 33.0 40.0	31.0 31.0 31.0 30.0 30.0 30.0 31.0	150 150 150 148 148 148 148	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.19 1.22 1.27 1.16 1.16 1.22 1.17	10.14 10.17 10.20 10.23 10.26 10.28 10.31 10.34 10.36 10.38	84067 84298 84548 84848 85064 85281 85550 85772 85979 86180	90.82 98.39 118.07 66.39 86.39 107.33 88.55 82.37	169.88 169.61 169.37 169.20 168.92 168.65 168.44 168.18 167.89	8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8
1090.0 1091.0 1092.0 1093.0 1094.0 1095.0 1096.0 1097.0 1098.0	38.0 36.0 45.0 35.0 36.0 32.0 35.0 32.0	29.0 31.0 31.0 30.0 30.0 32.0 32.0 34.0	142 142 140 140 142 142 142	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.16 1.20 1.14 1.17 1.19 1.24 1.22	10.42 10.45 10.47 10.50 10.52 10.55 10.58 10.61 10.64 10.68	87632 87898 88141 88408	93.21 98.39 78.71 101.20 98.39 110.69	166.31 166.13 165.92 165.75	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8
1100.0 1101.0 1102.0 1103.0 1104.0 1105.0 1106.0 1107.0 1108.0 1109.0	36.0 45.0 45.0 43.0 40.0 37.0 38.0	29.0 33.0 33.0 30.0 30.0 30.0 31.0	142 140 140 140 142 142 142	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.18 1.15 1.15 1.14 1.16 1.16 1.18	10.71 10.74 10.76 10.78 10.81 10.83 10.86 10.88 10.91	88996 89233 89419 89606 89801 90011 90224 90454 90679 90843	98.39 78.71 78.71 82.37 88.55 88.55 95.73 93.21	165.47 165.26 164.71 164.45 164.21 163.98 163.76 163.54 163.25	8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8
1110.0 1111.0 1112.0 1113.0 1114.0 1115.0 1115.0 1116.0 1117.0 1118.0	41.0 40.0 38.0 44.0 34.0 34.0 36.0	25.0 25.0 25.0 28.0 28.0 30.0 30.0	145 145 145 145 145 145 145	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.10 1.11 1.12 1.12 1.19 1.21 1.14	10.96 10.98 11.00 11.03 11.05 11.08 11.11 11.14 11.16	91060 91272 91490 91719 91916 92172 92428 92626 92868 93091	86.39 88.55 93.21 80.50 104.18 104.18 80.50 98.39	162.34 162.09 161.92 161.24 161.50	8.4 8.4 8.4 8.4 8.4 8.4	
1120.0 1121.0 1122.0 1123.0 1124.0 1125.0 1126.0 1127.0 1128.0	29.0 18.0 21.5 28.0 25.0 18.3 22.0	30.0 31.0 31.0 31.0 31.0 31.0 31.0	145 145 145 145 145 145 145	10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.13 1.25 1.39 1.34 1.26 1.30 1.38	11.22 11.24 11.27 11.33 11.38 11.41 11.45 11.51	94718 95029 95377 95852 96239	80.50 122.14 196.78 164.74 126.50	160.66 160.67 160.57 160.52 160.61 160.61	8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9

рертн	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	icost	00003	44	F G
1130.0 1131.0 1132.0 1133.0 1134.0 1135.0 1136.0 1137.0 1138.0 1139.0	32.0 33.0 24.0 24.6 25.0 17.6 17.7	32.0 32.0 32.0 32.0 32.0	145 145 145 145 145 145 145	10.3 10.3 10.3 10.3 10.3	1.31 1.24 1.23 1.32 1.31 1.31 1.31	11.61 11.65 11.68 11.72 11.76 11.80 11.84 11.89 11.95	97121 97393 97656 98019 98373 98721 99215 99706	107.33 147.58 143.28 141.68 201.25	159.95 160.07	8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
1140.0 1141.0 1142.0 1143.0 1144.0 1145.0 1146.0 1147.0 1148.0 1149.0	22.0 15.0 17.0 19.0 12.0 12.0 10.6 7.1		145 145 145 145 145 150 150	10.3 10.3 10.3 10.3	1.20 1.29 1.26 1.23 1.10 1.16 1.11	12.10 12.15 12.21 12.27 12.32 12.41 12.49 12.58 12.73 12.70	101401 101981 102493 102951 103676 104426 105275 106543	161.00 236.13 208.35 186.42 295.17 295.17 334.15	160.66 160.65 160.87 161.00 161.07 161.45 161.82 162.30 163.23 164.52	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
1150.0 1151.0 1152.0 1153.0 1154.0 1155.0 1156.0 1157.0 1158.0 1159.0	12.0 11.8 11.0 7.8 8.2 8.2 3.3 8.5	10.0 10.0 9.0 11.0 10.0 12.0 13.0 14.0	152 152 154 154 152 145 150	10.3 10.3 10.3 10.3 10.3 10.3	1.14 1.12 1.19 1.24 1.23 1.22 1.49	13.02 13.10 13.18 13.28 13.40 13.53 13.65 13.95 14.07	109913 110686 111515 112700 113827 114939 117575	295.17 300.17 322.00 454.10 431.95 431.95 1073 416.71	165.16 165.52 165.88 166.31 167.09 167.81 168.52 171 171.62 172.11	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
1160.0 1161.0 1162.0 1163.0 1164.0 1165.0 1166.0 1167.0 1168.0 1169.0	9.1 10.0 10.0 8.5 13.3 20.3 12.3	15.0 15.0 15.0 15.0 15.0 17.0	145 145 145 145 145 122 122	10.3 10.3 10.3 10.3	1.28 1.28 1.32 1.22 1.08 1.25	14.28 14.39 14.49 14.59 14.71 14.78 14.03 14.01 15.09	121468 122338 123208 124231 124885 125246 125246 125841 126998	354.20 416.71 266.32 174.48 287.97	173.29 173.77 174.25 174.89 175.14 175.13 175.43	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 14.0 14.0 14.0 14.0 14.0 14.0
1170.0 1171.0 1173.0 1174.0 1175.0 1176.0 1177.0 1178.0 1179.0 1180.0	14.5 13.2 12.7	9.0	108 145 145 145 145 146 140	10.2 10.1 10:1	1.06 1.18 1.12 1.43 1.20 1.26 1.34 1.23	15.27 15.34 15.49 15.57 15.79 15.88 15.99 16.12 16.26 16.41	132551 133276 134232 135432 136599	281.11 244.23 268.33 278.90 805.00 295.17 389.23 485.21 491.94 513.33	177.31 177.48 177.95 178.21 179.82 180.12 180.65 181.43 182.22 183.04	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.6 14.6 14.6 14.0 14.0

•

.

								÷			
DEPTH	ROP	WOB	RPM	ми	"d i c	HOURS	TURNS	ICOST	CCOST	pр	FG
1181.0 1182.0 1183.0 1184.0 1185.0 1186.0 1187.0 1188.0 1189.0	8.9 8.2 12.5 9.1 12.1 6.9 7.8	10.0 10.0 10.0 10.0 9.0 9.0 10.0	140 140 140 140 140 140 140	10.2 10.2 10.2 10.2	1.12 1.20 1.22 1.13 1.14 1.11 1.25 1.23	16.52 16.59 16.71 16.83 16.91 17.02 17.10 17.25 17.37 17.48	140334 141359 142031 142954 143648 144865 145942	431.95 283.36	183.58 183.81 184.55 184.98 185.22 185.23 186.00 186.81 187.48 187.93	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
1191.0 1192.0 1193.0 1194.0 1195.0 1196.0 1197.0 1198.0 1199.0	4.7 2.4 3.4 16.8 10.6	8.0 8.0 10.0 10.0 24.0 24.0 24.0	135 135 135 135 135 130 130	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.10 1.36 1.25 1.33 1.47 1.71 1.29	17.58 17.68 18.01 18.16 18.37 18.79 19.08 19.14 19.23	147661 148432 151132 152306 154030 157405 159699 160163 160899	368.96 337.33 1181 513.33 753.62 1476 1042 210.83 334.15 520.88	188.74 191.97 191.34 196 199 198.55 198.88	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
1201.0 1202.0 1203.0 1204.0 1205.0 1206.0 1207.0 1208.0 1209.0	6.4 22.0 25.1 22.0 30.3 18.8 13.6 14.0 17.6	24.0 24.0 24.0 24.0 23.0 25.0 25.0 25.0	136 136 138 138 138 138 138	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.24 1.20 1.24 1.16 1.27 1.38 1.37	19.54 19.58 19.62 19.67 19.70 19.75 19.83 19.90 19.96 20.01	163745 164070 164441 164714 165755 165763 166355	553.44 161.00 141.12 161.00 116.90 188.40 260.44 253.00 201.25 208.35	200.42 200.28 200.18 199.98 199.96 200.10 200.22 200.23	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
1211.0 1212.0 1213.0 1214.0 1215.0 1216.0 1217.0 1218.0 1219.0	17.0 22.0 33.0 23.5 15.0 12.1 13.9 12.4 41.0 51.2	25.0 24.0 24.0 24.0 25.0 25.0 25.0	137 137 137 137 136 136 136	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.25 1.13 1.22 1.34 1.39 1.37 1.40	20.07 20.12 20.15 20.19 20.26 20.34 20.41 20.49 20.52	168173 168422 168772 169320 169999 170586		200.17 199.96 199.84 199.92 200.14 200.27	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
1221.0 1222.0 1223.0 1224.0 1225.0 1226.0 1227.0 1228.0 1229.0	20.0 21.7 25.0 27.3 33.0 27.0 27.0 31.7 31.0 31.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	140 140 140 140 140 140 140	10.2 10.2 10.2 10.2 10.2 10.2	1.20 1.17 1.15 1.10 1.15 1.15 1.11	20.59 20.63 20.67 20.71 20.74 20.78 20.81 20.85 20.88	172410 172746 173054 173308 173619 173930 174195 174466	177.10 163.23 141.68 129.74 107.33 131.19 131.19 111.74 114.26	199.76 199.63 199.47 199.26 199.11 198.25 198.75	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	TCOST	CCOST	PP	FG
1231.0 1232.0 1233.0 1234.0 1235.0 1236.0 1237.0 1238.0 1239.0 1240.0	23.0 27.0 26.3 20.0 22.6 11.8 17.0 18.0	22.0 22.0 22.0 22.0 26.0 26.0	140 140 140 140 140 140 140 140	10.2 10.2 10.2 10.2 10.2 10.2	1.20 1.16 1.17 1.24 1.21 1.37 1.34	20.96 21.00 21.04 21.07 21.12 21.12 21.25 21.31 21.37 21.43	176115 176535 176907 177618 178113	154.00 131.19 134.68 177.10 156.73	197.90 197.85 197.76 197.99 198.01	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
1241.0 1242.0 1243.0 1244.0 1245.0 1245.0 1247.0 1247.0 1248.0 1249.0 1250.0	22.0 22.0 20.0 10.0 25.0 12.0 51.0	22.0 22.0 22.0 22.0	140 140 140 140 140 140 140	10.2 10.2 10.2 10.2 10.2 10.2	1.22 1.24 1.42 1.13 1.37 1.00	21.48 21.53 21.57 21.62 21.72 21.76 21.85 21.87 21.89 21.92	179221 180303 180723 181563 181899	161.00 177.10 354.20 141.68 295.17 69.45 82.37	197.75 197.87 197.82 198.16 198.04	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
1251.0 1252.0 1253.0 1254.0 1255.0 1256.0 1257.0 1258.0 1259.0 1260.0	41.0 61.0 67.0 32.0 42.0 25.0 25.0 28.0	22.0 22.0 20.0 20.0 20.0 20.0 20.0 20.0	140 140 140 140 140 140 140	10.2 10.2 10.2 10.2 10.2	1.06 0.95 0.91 1.09 1.02 1.15 1.15	21.94 21.96 21.99 21.99 22.03 22.05 22.09 22.13 22.17 22.18	183379 183584 183721 183847 184109 184309 184645 184981 185281 185401	58.07 52.87 110.69 84.33 141.68 141.66	197.25 197.01 196.72 196.41 196.23 195.99 195.87 195.76 195.31	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
1261.0 1262.0 1263.0 1264.0 1265.0 1265.0 1267.0 1267.0 1269.0 1270.0	52.0 .67.0 64.0 100.0 85.0 51.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0	140 140 140 140 140 140 140 140	10.2 10.2 10.2 10.2 10.2 10.2 10.2	0.98 0.85 0.85 0.98 0.26	22.20 22.23 22.25 22.25 22.27 22.27 22.31 22.33 22.34	185566 185728 185853 185984 186068 186167 186332 186487 186692	68.12 52.87 55.34 35.42 41.67 69.45 65.59 86.39	195.04 194.77 194.48 194.19 193.85 193.54 193.20 193.01 192.79	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.2 14.2 14.2 14.2 14.2 14.2
1271.0 1272.0 1273.0 1274.0 1275.0 1276.0 1277.0 1278.0 1279.0 1280.0	82,0 45.0 47.0 38.0 17.0 13.3 20.4	22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	140 140 140 140 140 140 140	10.2 10.2 10.2 10.2 10.2 10.2	0.84 0.88 1.03 1.02 1.08	22.35 22.37 22.37 22.49 22.44 22.50 22.58 22.63 22.64	188734	36.90 43.20 78.71 75.36 93.21 203.35 266.32 173.63	191,02	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2

DEPTH	ROP	мов	RPM	MW	"d"c	HOURS	TURNS	TCOST	CCOST	РР	FG
1281.0	22.0	22.0	140	10.2	1.22	22,69	189655	161.00	190.64	Ω Ω	14.2
1282.0		22.0	140	10.2		22.72	187978	136,23	190.53		14.2
1283.0		22.0		10.2		22.75	190205	95.73	190.34		14.2
1284.0		22.0	140	10.2		22.78		110.69			14.2
1285.0		22.0	140	10.2		22.83	190833		190.11		14.2
1286.0		20.0		10.2		22.91	191533	295.17			14.2
1287.0		20.0		10.2		22.99	192233		190.53		14.2
1288.0		24.0				23.04	192653	177.10	190.50		14.2
1289.0		24.0				23.07	192863		190.30		14.2
1290.0		24.0				23.08	192965		190.01		14.2
1291.0		24.0				23.16		295,17			14.2
1292.0		26.0				23.21	194020	154.00			14.2
1293.0		26.0				23.25	194409	168.67			14.2
1294.0		28.0				23.30			190.08		14.2
1295.0	100.0					23.31	194898		189.77		14.2
1296.0		28.0				23.33	194994		189.48		14.2
1297.0		28.0				23.36			189,32		14.7
1298.0		26.0				23.37	195330		189.93		14.2
1299.0 1300.0		26.0				23.38 23.40	195426 195559	57,41	188,74 188,49		14.7
						ac oo ⊾ ^4 U	120002	07,41	100.47	0.4	14.2
1301.0		26.0				23.41	195704		188.24		14.2
1302.0		20.0		10.2		23.51	196524	350.62			14.2
1303.0		20.0		10.2		23.54	196717		188.35		14,2
1304.0		20.0			1.33	23.62	197407		108.56		14.2
1305.0		20.0		10.2		23.63	197482	31.91	188.76		14.2
1306.0		20.0		10.2		23.68		196.73			14.2
1307.0	63.0	20.0	138	10.2		23.20	198074		188.07		14,2
1308.0		20.0	138	10.2		23.74	198405	141.68			14.2
1309.0	24.3	20.0	138	10.2		23.28	198745		187.85 187.74		14.7
1310.0						23.82	199052				14.2
1311.0		20.0				23.83	199172		187,48		14.2
1312.0		20.0				23.84	199258		187.20		14.2
1313.0				10.2		23.85	199349		186.91		14.2
1314.0	40.0			10.2		23.88	199552		186,73		14.2
1315.0	22.0			10.2		23.91	199831				14.2
1316.0		22.0		10.2		24.01	200641		186.92		14.2
1317.0				10.2		24.14		431.95			14.2
1318.0				10.2		24.25		397.93			14.2
1319.0 1320.0		$\frac{18.0}{18.0}$				24,35		368,96 196,78			14.3
		•				24.41	77.0 (3 (2) (2) (2)	7.50.150	100.14	₩ 1 **9	1 *7 1 53
1321.0	103.0					24.42	203911		187,85	8.4	14.3
1322.0	227.0					24.42	203947		187.53		14.3
1323.0	200.0					24.43	203938		187.21		14.3
1324.0	114.0	7.0				24.44	204059		186.92		14.5
1325.0		13.0				24.45	204146		186.64		14.3
1326.0		13.0				24.46	204286		186.40		14.3
1327.0		13.0				24.48	204411		186.16		14.3
1328.0		20.0				24.54		228.52			14.3
1329.0	136.0					24.55	205014		185.94		14.3
1330.0	185.0	20 · 0	140	10.0	0.07	24.55	205060	19.15	185.63	는 , 4	14.3

DEPTH	909	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	ÞР	FG
1331.0	102.0	20.0	140	10.0	0.82	24,56	205142	34,73	185.36	8.4	14.3
1332.0	85.0	20.0			0.87	24.58	205241	41.67	185.09		14.3
1333.0	85.0	20.0		10.0		24.59	205340	41.67	184.83		14.3
1334.0	85.0	20.0		10.0	0.87	24.60	205439	41.67	184.57		14.3
1335.0	52.0	15.0		10.0	0.92	24.62	205600	68.12	184.36		14.3
1336.0	51.0	15.0		10.0	0.93	24.64	205765	69,45	134.15		14.3
1337.0	125.0	18.0		10.0	0.25	24.65	205832	28.34	183.87		14.3
1338.0	77.0	18.0	140	10.0	0.87	24.66	205941	46.00	183.62		14.3
1339.0		22.0		10.0	1.31	24.72	206435	208.35			14.3
1340.0				10.0	1,45	24.82	207292	368.96	184.00		14.3
						*** * * ***	I (7 7 II 7 II	0.000130	X () 1 1 (()	(,,,,,	2
1341.0	12.0	22.0	137	10.0	1.39	24.91	207977	295.17	184.20	8.4	14.3
1342.0	16.0	23.0	135	10.0	1.33	24.97	208483	221.38	184.26	8.4	14.3
1343.0	56.0	23.0	135	10.0	1.00	24.99	208628	63.25	184.05	8.4	14.3
1344.0	106.0	23.0	135	10.0	0.83	25.00	208704	33.42	183.78	8.4	14,3
1345.0	30.0	24.0	135	10.0	1.18	25.03	208974	118.07	183.66	8.4	14.3
1346.0	78.0	24.0	135	10.0	0.92	25.04	209078	45.41	183.41	8.4	14.3
1347.0	104.0	24.0	135	10.0	0.04	25.05	209156	34.06	183.15	8.4	14.3
1348.0	77.0			10.0	0.09	25.06	209259	46.00	182.90	8.4	14.3
1349.0		21.0			0.82	25.08	209363	46.00	182.66	8.4	14.3
1350.0	84.0	20.0	133	10.0	0.06	25.09	209458	42.17	182.41	8.4	14.3
1351.0	12.1	23.0	133	10.0	1.40	25.17	210117	292.73	182.61	8.4	14.3
1352.0	13.7	23.0	133	10.0	1.37	25.24	210700	258.54	182,74	8.4	14.3
1353.0	4.5	23.0	133	10.0	1.66	25.47	212473	787.11	183.81	8,4	14.3
1354.0	9.6	23.0	134	10.0	1,46	25.57	213311	368.96	184.13	8.4	14.3
1355.0	73.0	23.0	134	9.9	0.94	25.58	213421	48.52	183.82	8.4	14.3
1356.0	3.4	23.0	133	9,9	1.75	25,88	215768	1042	185	8.4	14.3
1357.0	3.6	23.0	133	9.9	1.74	26.16	217985	283.89	186.30	8.4	14.3
1358.0	4.4	16.0	132	9.9	1.53	26.38	219785	805.00	187.88	8.4	14.3
1359.0	4.0	18.0	136	9.9	1.61	26.63	221825	885.50	189.09	8.4	14.3
1360.0	4.4	24,0	136	9.8	1.72	26.86	223679	805.00	190.17	8.4	14.3
1361.0	4.3	26.0	135	9.8	1.76	27.09	225563	823.72	191.27	8.4	14.3
1362.0		26.0			1.76	27.33		843.33			14.3

1362.0- 1485.0 BIT NUMBER JADC CODE 135 INTERVAL 12.250 13 13 13 SIZE NOZZLES HTC XDG 123.01440.00 TRIP TIME 4.0 BIT RUM COST T7 D4 G0,250 TOTAL HOURS CONDITION 12.50 TOTAL TURNS 100438 pр FG MW "d"c. HOURS TURNS TOOST CCOST DEPTH ROP WOB RPM 843 16451 8,4 14,3 4,2 18,0 140 10,5 1,51 0.24 2000 1363.0 28 8275 2222 8.4 14.3 1364.0 36.0 27.0 133 10.5 1.10 0.22 8.4 14.3 31.0 28.0 133 10.5 1.16 0.30 2479 114 1365.0 77 4185 8.4 14.3 2653 46.0 30.0 133 10.5 1.07 0.321366.0 0.4 14.5 3468 5.9 28.0 133 10.5 1.59 0.49 4005 600 1367.0 8.4 14.3 3025 6499 1107 3.2 34.0 133 10.5 1.86 0.80 1368.0 2784 8,4 14,3 8846 1042 3.4 40.0 133 10.4 1.95 1.10 1369.0 1,45 2.8 30.0 133 10.4 1.84 2594 8.4 14.3 11696 1265 1370.0 2365 8.4 14.3 529 6.7 29.0 133 10.4 1.59 1.60 12887 1371.0 8.4 14.3 2145 169 21.0 30.0 133 10.4 1.30 1.65 13267 1372.0 1972 8.4 14.3 1.72 13818 241 1373.0 14.7 24.0 135 10.4 1.31 8.4 14.4 1344 14806 432 1374.0 8.2 25.0 135 10.4 1.48 1.84 8.4 14.4 1734 8.5 23.0 135 10.4 1.44 1.96 15759 417 1375.0 8.4 14.4 7.2 20.0 135 10.4 1.43 2.10 16884 492 1645 1376.0 633 1578 8.4 14.4 5.6 20.0 135 10.4 1.49 2.28 18330 1377.0 1486 8.4 14.4 104 34.0 30.0 135 10.4 1.17 2.30 18568 1378.0 2.32 18730 71 1402 8.4 14.4 1379.0 50.1 35.0 135 10.4 1.11 21 1320 8.4 14.4 50.0 35.0 135 10.4 1.11 13892 2.34 1380.0 17.1 34.0 135 10.4 1.41 207 1269 8,4 14,4 2.40 19366 1381.0 8.4 14.4 30.0 34.0 135 10.4 1.25 118 1212 2.44 19636 1382.0 8.4 14.4 50.0 34.0 135 10.4 1.10 2.46 19798 71 1158 1383.0 8.4 14.4 142 1111 1384.0 25.0 38.0 135 10.4 1.34 2.50 20122 2.52 93 1067 8.4 14.4 1385.0 38.0 14.0 135 10.4 0.94 20335 23 1027 8.4 14.4 38.0 14.0 135 10.4 0.24 2,55 20548 1386.0 2.72 600 1009 8,4 14,4 5.9 25.0 135 10.4 1.56 21921 1387.0 8.4 14.4 4.3 28.0 135 10.4 1.70 2.95 23805 824 1002 1388.0 8.4 14.4 25425 708.40 991.43 5.0 28.0 135 10.4 1.66 3.15 1389.0 25944 227.05 964.13 8.4 14.4 1390.0 15.6 28.0 135 10.4 1.35 3.22 8.4 14.4 27118 513.33 948,59 1391.0 6.9 28.0 135 10.4 1.57 3.36 8.4 14.4 3.62 29249 932.11 948.04 1392.0 3.8 23.0 135 10.4 1.73 933.11 8.4 14.4 7.3 28.0 135 10.4 1.56 3.76 30359 485,21 1393.0 32159 787.11 928,55 8,4 14,4 3.98 1394.0 4.5 23.0 135 10.4 1.62 8,4 14,4 4.05 32714 242,60 907,26 1395.0 14,6 32,0 135 10,4 1,42 8.4 14.4 33500 343,86 891.17 10.3 32.0 135 10.4 1.52 4.15 1396.0 34390 397.98 877.08 8.4 14.4 8.9 32.0 132 10.4 1.56 4.26 1397.0 11.1 32.0 132 10.4 1.42 35104 319,10 861,58 8.4 14.4 1398.0 4.35 8,4 14,4 1399.0 13.2 32.0 132 10.4 1.45 4.4% 35704 268.33 845.55 8.4 14.4 13.2 32.0 132 10.4 1.45 36304 268,33 830.36 1400.0 4,50 8.4 14.4 13.0 35.0 132 10.4 1.49 4.58 36913 272.46 816.06 1401.0 5.4 35.0 132 10.4 1.74 38379 655.93 812.05 8.4 14.4 4.76 1402.0 621 8.4 14.4 1403.0 3.0 35.0 132 10.4 1.91 5.10 41019 1181 1405.0 3.7 35.0 132 10.4 1.85 5,64 45301 957.30 827.30 8.4 14.4 2.7 36.0 132 10.4 1.95 1312 830 8,4 14,4 48234 1406.0 6.01

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURMS	TCOST	CCOST	F P	FG
1407.0 1408.0 1409.0 1410.0 1411.0 1412.0 1413.0 1414.0 1415.0 1416.0	49.0 36.0 41.9 17.0 3.2 8.2 3.2 4.6	28.0 28.0	132 135 135 135 145 140 140	10.4 10.4 10.4 10.4 10.4	1.04 1.12 1.13 1.38 1.53 1.58	6.11 6.13 6.15 6.18 6.24 6.36 6.48 6.79 7.01 7.31	49164 49384 49528 50054 51046 52102 54702	98.39 84.53 208.35 433.54	810,29 795,82 781,01 752,57 762,57 756,57	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
1417.0 1418.0 1419.0 1420.0 1421.0 1422.0 1423.0 1424.0 1425.0 1426.0	44.0 54.0 12.0 50.0 24.0 19.0 28.4 40.2	30.0 30.0 30.0 30.0	140 140 140 140 140 140 140	10.4 10.4 10.4 10.4 10.4	1.11 1.05 1.49 1.09 1.27 1.34 1.23	7,34 7,36 7,38 7,46 7,48 7,52 7,58 7,61 7,64 7,66	59303 59494 59650 60350 60518 60868 61310 61606 61814 62054	80.50 65.59 295.17 70.84 147.58 186.42 124.72	677,07	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
1427.0 1428.0 1429.0 1430.0 1431.0 1432.0 1433.0 1434.0 1435.0	48.0 51.0 34.0 8.9 8.9 4.4 5.4	30.0 30.0 30.0 30.0 30.0 30.0 28.0 28.0	140 140 140 140 140 140 140	10.4 10.4 10.4 10.4 10.4 10.4	1.08 1.07 1.18 1.54 1.54 1.74 1.65	7.69 7.71 7.73 7.76 7.87 7.99 8.21 8.40 8.47	68215	73,79 69,45 104,18 397,98 397,98 805,00 655,93 249,44	629.55 629.55	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.5 14.5 14.5 14.5
1437.0 1438.0 1439.0 1440.0 1441.0 1442.0 1443.0 1444.0 1445.0 1446.0	82.0 69.0 141.0 33.0 56.0 48.0 40.0	28.0 24.0 24.0 24.0 24.0 24.0	140 130 130 130 135 135 135	10.4 10.4 10.4 10.4 10.4 10.4	0.91 0.72 1.10 0.96 1.01 1.07	8.50 8.51 8.52 8.53 8.56 8.58 8.60 8.62 8.63	69034 69136 69249 69305 69541 69680 69849 70052 70254 70440	43.20 51.33 25.12 107.33 63.25 73.79 88.55 88.55	609.33 601.88 594.73 587.43 581.35 574.37 568.69 562.83 557.12 551.46	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1447.0 1448.0 1449.0 1450.0 1451.0 1452.0 1453.0 1454.0 1455.0	30.0 14.7 2.9 6.9 58.6 30.0 29.1 48.0	26.0 27.0 36.0 36.0 36.0	135 135 136 130 130 130 130	10.4 10.4 10.4 10.4 10.4	1.16 1.36 1.94 1.68 1.06 1.26 1.27	8.70 8.74 8.81 9.15 9.30 9.31 9.35 9.36 9.40	70980 71531 74324 75455 75588	1221 513.33 60.44 118.07 121.72 73.79	541.38 537.92 546 545.33 539.24 535.30	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5

	DEPTH	ROP	MOB	RPM	Мы	"d"c	HOURS	TURNS	TCOST	$\int_{0}^{\infty} U^{*}(x) dx$	PΡ	r n
	1457.0	37.6	30.0	130	10.4	1.13	9.45	76619	24,20	516.00	8,4	14.5
	1458.0	34.0	32.0	130	10.4	1.18	9.47	76840	104.18	512,50	8.4	14
	1459.0	14.5	32.0	130	10.4	1.42	9,54	77 386	244,23	502.32	8.4	14.0
	1460.0	42.7	32.0	130	10.4	1.12	9.57	77569	82,95	505,04	3.4	14,5
	1461.0	27.7	32.0	130	10.4	1.24	9.60	77851	127.37	501,23	8.4	14.5
	1462.0	29.5	32.0	130	10.4	1.22	9.64	78115	120.07	497,47	8.4	14.5
_	1463.0	32.6	32.0	130	10.4	1.12	9.67	78354	108.65	473.57	8.4	14.5
_	1464.0	20.9	32.0	130	10.4	1.31	9.72	78728	169.47	490.39	8,4	14.5
	1465.0	47.0	32.0	130	10.4	1.03	9.74	78887	72.29	486.34	3.4	14.5
	1466.0	28.0	32.0	130	10.4	1.23	9.77	79165	126.50	482,88	8.4	14.5
1	1467.0	22.0	32.0	130	10.4	1.30	9.82	79520	161.00	479.81	8.4	14.5
	1468.0	24.0	32.0	130	10.4	1.28	9.86	79845	147.58	476,68	8,4	14,5
	1469.0	2.6	33.0	130	10.4	1.91	10.24	82845	1362	$A_{H_{i}}$	8.4	14.5
	1470.0	2.6	34.0	130	10.4	1.93	10.63	85845	1362	450	8,4	12 5
	1471.0	21.0	34.0	130	10.4	1.34	10.68	86216	168.67	490.10	8.4	14.5
-	1472.0	56.0	29.0	130	10.4	1.01	10.69	86354	63.25	486,22	8.4	14,5
_	1473.0	27.0	29.0	130	10.4	1.21	10.23	85544	131.19	483.02	8.4	14.5
	1474.0	32.0	29.0	130	10.4	1.16	10.76	86888	110.63	479.70	(), A	14,55
	1475.0	33.0	28.0	130	10.4	1.14	16.22	82125	107.33	476.40	$8 \cdot 4$	14.
_	1476.0	49.0	28.0	130	10.4	1.04	10,81	87284	72.29	472,05	(i , 4)	34,5
	1477.0	38.0	28.0	130	10.4	1.11	10.34	87489	93.21	469.56	8.4	14.5
	1478.0	2.6	34.0	130	10.4	1,93	11.22	90489	1362	477	8.4	14.5
_	1479.0	3.4	34.0	130	10.4	1.85	11.52	92783	1042	482	8.4	14.5
	1480.0	5.6	33.0	130	10.4	1.70	11.70	94176	632.50	483.35	8.4	14.5
	1481.0	2.2	34.0	130	10.4	1.97	12.15	97721	1610	493	8.4	14.5
	1482.0	20.3	34.0	130	10.4	1.35	12.20	98106	174,48		8.4	14,5
	1483.0	22.0	8.0	130	10.4	0.93	12.25	28460	161.06	487,45	8.4	14.5
	1484.0		12.0	130	10.4		12.27	98677	98.39	484.26		14.5
	1485.0	4.4	32.0	130	10.4	1.75	12.50	100438	799.55	486,82	8.4	14.5

BIT NUMBER IADC CODE 217 INTERVAL 1485.0- 1605.6 HTC JD4 SIZE 12,250 NOZZLES 13 13 120.6 13 COST 1740.00 TRIP TIME 4.6 BIT RUN TOTAL HOURS 12.88 TOTAL TURNS 113601 CONDITION T7 B8 G0.188 DEPTH ROP MW "d"c WOB RPM TURNS pp HOURS FC ICOST CCOST 1486.0 6.0 19.0 100 10.4 1.38 8.4 14.5 0.17 1000 단단인 18624 1487.0 4.2 24.0 100 10.4 1.56 0.40 24:9 843 9733 8.4 14,5 1488.0 4.2 26.0 130 10.4 1.66 0.64 6770 4286 843 8.4 14.5 1489.0 5.9 28.0 130 10.4 1.60 0.81 5608 600 5228 8.4 14.5 1490.0 34.0 28.0 130 10.4 1.14 4243 0.84 5837 104 8.4 14.5 0.86 1491.0 **52.0 28.0 130 10.4 1.02** 5907 3314 8.4 14.5 68 1492.0 9.6 32.0 130 10.4 1.53 0.97 6800 369 3065 8.4 14.5 142 1.01 1493.0 25.0 32.0 150 10.4 1.30 2699 8.4 14.6 7160 1.03 46.0 32.0 150 10.4 1.14 8.4 14.6 1494.0 7355 77 2408 52.0 32.0 150 10.4 1.10 1495.0 1.05 8.4 14.6 7528 68 2174 82.0 32.0 150 10.4 0.97 1.06 1496.0 7638 43 1980 8.4 14.6 61.0 30.0 150 10.4 1.04 1497.0 1.07 7786 58 1820 8.4 14.6 1498.0 35.0 30.0 150 10.4 1.19 1.10 8043 1688 8.4 14.6 101 1499.0 40.0 30.0 150 10.4 1.15 1.13 8268 89 1574 8.4 14.6 1500.0 20.0 32.0 150 10.4 1.37 1,18 8718 177 1480 8.4 14.6 8.4 14.6 1501.0 5.9 33.0 150 10.4 1.72 1.35 10243 600 1425 1.44 8.4 14.6 10.5 33.0 150 10.4 1.56 1502.0 11100 337 1361 1.53 1503.0 11.5 39.0 150 10.4 1.61 11883 308 1303 8.4 14.6 8.4 14.6 16.0 36.0 150 10.4 1.48 1.59 221 1246 1504.0 12446 8.4 14.6 59.0 35.0 150 10.4 1.09 12598 1187 1505.0 1.61 60 1506.0 7.3 36.0 150 10.4 1.70 1.75 13831 485 1153 8.4 14.6 1507.0 17.0 39.0 150 10.4 1.50 1.81 208 1110 8.4 14.6 14360 15812 8.4 14.6 1508.0 6.2 36.0 150 10.4 1.75 1.97 571 1087 590 1509.0 6.0 38.0 150 10.4 1.79 17312 1066 8,4 14.6 2.13 1510.0 5.9 40.0 150 10.4 1.82 2.30 18837 600 1048 8.4 14.6 221 1511.0 16.0 41.0 150 10.4 1.54 2.37 19400 1016 8.4 14.6 20423 402.50 993.08 1512.0 8.8 41.0 150 10.4 1.72 2.48 8.4 14.6 44.0 38.0 150 10.4 1.21 2.50 80.50 960.49 8.4 14.6 1513.0 20627 1514.0 20.0 39.0 150 10.4 1.45 2.55 21077 177,10 933,47 8.4 14.6 1515.0 29.5 34.0 150 10.4 1.28 2.59 21382 120.07 906.36 8.4 14.6 8.5 35.0 150 10.4 1.65 2.70 22441 416,71 890,57 8.4 14.6 1516.0 8.9 35.0 150 10.4 1.63 23452 397.98 875.17 8.4 14.6 1517.0 2.82 2,99 1518.0 5,6 36,0 150 10,4 1,78 25059 632.50 867.82 8,4 14.6 1519.0 4.6 40.0 150 10.4 1.90 3.21 27012 768,33 864,89 8.4 14.6 28071 416.71 852.09 8.4 14.6 1520.0 8.5 39.0 150 10.4 1.20 3.33 1521.0 5.9 41.0 150 10.4 1.84 3.50 **29596 600.34** 845.09 8.4 14.6 1522.0 7.8 40.0 148 10.4 1.74 30734 454,10 834.53 8.4 14.6 3.63 1523.0 7.3 41.0 148 10.4 1.77 3.76 31951 485.21 825.33 8.4 14.6 1524.0 25.4 41.0 148 10.4 1.40 3.80 32300 139.45 807.75 8.4 14.6 1525.0 14.9 41.0 148 10.4 1.56 3.87 32896 237.72 793.50 8.4 14.6 1526.0 24.0 41.0 148 10.4 1.41 3.91 33266 147.58 777.74 8.4 14.6 1527.0 36.0 41.0 148 10.4 1.29 3.94 98.39 761.57 33513 8.4 14.6 55.34 745.14 1528.0 64.0 41.0 148 10.4 1.12 3.95 33652 8.4 14.6

95 pm ps mm t t	nan Hay	nnsa sara	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FC
DEPTH 1529.0 1530.0 1531.0 1532.0 1533.0 1534.0 1535.0 1536.0 1537.0	10.0 41.0 5.6 42.0 8.5 42.0	148 10.4 148 10.4 148 10.4 148 10.4 148 10.4 148 10.4 148 10.4 148 10.4	1.68 1.86 1.74 1.73 1.24 1.12 1.14	4.05 4.23 4.35 4.48 4.51 4.52 4.54 4.56 4.57 4.59	34540 36126	354.20 632.50 416.71 460.00 92.00 60.03 60.03 52.87 57.13	736.26 733.95 727.06	8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14	1.6 1.6 1.6 1.6 1.6
1539.0 1540.0 1541.0 1542.0 1543.0 1544.0 1545.0 1546.0 1547.0 1548.0	5.0 40.0 5.4 39.0 5.6 41.0 5.9 39.0	148 10.4 148 10.4 148 10.3 148 10.3 148 10.3 148 10.3 148 10.3	1.22 1.24 1.62 1.89 1.85 1.87 1.82	4.61 4.63 4.66 4.74 4.94 5.13 5.31 5.47 5.55	42413 44057 45643 47148 47782	80.50	612.68 613.42 613.74 613.52 607.70	8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14	1.6 1.6 1.6 1.6 1.6 1.6
1549.0 1550.0 1551.0 1552.0 1553.0 1554.0 1555.0 1556.0 1557.0	5.6 40.0 7.3 40.0 11.9 43.0 9.1 43.0 4.9 50.0 4.8 50.0 5.1 50.0 7.3 42.0		1.87 1.79 1.68 1.76 2.06 2.06 2.04 1.82	5.89 6.07 6.20 6.29 6.40 6.60 6.81 7.01 7.14 7.15	52396 53613 54359 53335 57171 59046 60811	722.86 737.92 694. 51 485.21	607.97 606.11 601.50 598.30 600.19 602.15 603.45	8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14	1.6 1.6 1.6 1.7 1.7
1559.0 1560.0 1561.0 1562.0 1563.0 1564.0 1565.0 1566.0 1567.0	8.2 48.0 8.2 48.0 11.2 48.0 56.0 47.0 41.0 50.0 8.0 49.0 20.0 49.0 62.0 47.0	150 10.2 150 10.2 150 10.2 150 10.2 150 10.2 150 10.2	1.86 1.86 1.76 1.24 1.37 1.88 1.59	7.18 7.30 7.42 7.51 7.53 7.55 7.68 7.74 7.77	64552 65356 65517 65736 66861 67311 67456	431.95 431.95 316.25 63.25 86.39 442.75 177.10	579.40 573.94 566.86 565.33 560.53 554.40	8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14	4.4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
1569.0 1570.0 1571.0 1572.0 1573.0 1574.0 1575.0 1576.0 1577.0	72.0 47.0 8.2 41.0 5.2 42.0 4.7 43.0 7.8 42.0 9.1 42.0 2.9 43.0 4.4 36.0	150 10.2 150 10.2 150 10.2 150 10.2 150 10.3	1.16 1.77 1.93 1.97 1.80 1.74 2.10	7.79 7.80 7.92 8.12 8.33 8.46 8.57 8.91 9.14 9.19	70801 72716 73870 74858 77961 80030	49.19 431.95 681.15 753.62 454.10	537,66 540,12 539,15 537,46 545 547,92	8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14 8.4 14	4.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1579.0 1580.0 1581.0 1582.0 1583.0 1584.0 1585.0 1586.0 1587.0	45.0 47.0 76.5 78.0 5.0 5.3 49.0 34.0 16.9 6.2	30.0 35.0 35.0 34.0 36.0 36.0 20.0 26.0	150 150 150 150 150 150 150 150	10.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.18 1.04 1.02 1.84 1.82 1.16 1.09	9.21 9.23 9.25 9.26 9.46 9.65 9.67 9.70 9.76	80680 80872 80989 81105 82905 84603 84786 85051 85584 87016	78.71 75.36 46.30 45.41 708.40 668.30 72.29 104.18 209.59 571.29	538.99 534.11 529.03 524.04 525.92 527.36 522.81 518.66 515.63 516.17	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7
1589.0 1590.0 1591.0 1592.0 1593.0 1594.0 1596.0 1596.0 1597.0	3.3 4.0 3.0 5.4 29.0 32.0 32.0 36.0 30.0	44.0 41.0 38.0 25.0 29.0 29.0 26.0 28.0 20.0	148 149 149 149 149 149 150 150	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	2.10 2.00 2.04 1.67 1.26 1.23 1.19 1.19 1.13	10.22 10.47 10.81 11.00 11.03 11.06 11.09 11.12 11.15	89707 91997 94952 96613 95921 97201 97400 98030 98614	1073 885.50 1201 655.93 122.14 110.69 110.69 98.39 118.07 230.00	522 525,39 575 532,54 528,73 524,90 521,13 517,33 513,76 511,25	8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
1599.0 1600.0 1601.0 1602.0 1603.0 1604.0 1605.0	5.9 43.0 32.0 20.0 27.0 1.9 2.0 2.0	34.0 32.0 32.0 30.0 32.0 32.0 32.0	150 150 150 150 150 150 150		1.78 1.18 1.27 1.37 1.31 2.07 2.05 2.05	11.39 11.41 11.44 11.49 11.53 12.07 12.57	100140 100349 100630 101080 101414 106252 110752	600.34 82.37 110.69 177.10 131.19 1904 1771	512.03 508.30 504.87 502.07 498.92 511 521 527	8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7

•

BIT NUMB HTC J22 COST TOTAL HO	524	6 40.00 6.95	{	TADC BIZE TRIP TOTAL		517 12.250 4.6 48561	NO2 RTT	TERVAL ZZLES F RUN NDITION			3 13 17,4
DEPTH	ROP	MUB	RPM	MU	"d "c	HOURS	TURNS	rcosi	CCOST	рþ	FG
1606.0	27.1	25.0	120	10.2	1.84	0.19	1371	1687	55520	8. A	14.7
1607.0					1.73	0.42	3046	824	16451		14.7
1608.0					1.80	0.70	5046	284	10006		14.7
1609.0	7.8	31.0	120	10.1	1.60	0.83	5969	454	7197	8.4	14.7
1610.0					1.69	1.01	7190	633	5705		14.7
1611.0					1.65	1.17	8276	562	4753		14.7
1612.0		34.0				1.30	9164	460	4082	8.4	14.7
1612.0 1613.0		34.0				1.43	10053	460	3592	8.4	14.7
1614.0	7.7	32.0	114	10.1	1.60	1.56	10941	460	3220	8.4	14.7
1615.0	69.0	32.0	114	10.1	0.97	1.57	11040	51	2883	8.4	14.7
1616.0	59.0	30,0	114	10.1	1.00	1.59	11156	6.0	2611	8.4	14.7
1617.0	34.0	29.0	114	10.1	1.14	1.62	11357	104	2321	8.4	14.7
1618.0	59.0	29.0	114	10.1	0.99	1.63	11473	60	2203	8.4	14.7
1619.0	62.0	30.0	114	10.1	0.98	1.65	11583	57	2043	8,4	14.7
1620.0					0.98	1.67	11692	56	1705		14.8
					1.48	1.26	12337	334	1863		14.8
1621.0					1.18	1,79	12556	114	1700	3.4	14.8
1623.0					0.98	1.81	12667	56	1600		14.8
- 1624.0					1.08	1.83	12812	75	1522	S. (3)	14.8
1625.0	76.0	22.0	114	10.1	0.92	1.84	12202	47	1446	8.4	14.8
1626.0	96.0	28.0	114	10.1	0.84	1.85	12973	37	1377	8.4	14,8
_ 1627.0	24.0	28.0	114	10.1	1.22	1.89	13258	7413	1320	8.4	14.8
1628.0	8.5	34.0	114	10.1	1.60	2.01	14063	417	1280	8.4	14,8
1629.0	8.2	34.0	114	10.1	1.61	2.13	14897	432	1243	8.4	14.8
1630.0					1.14	2.16	15068	89	1194	8.4	14.3
1631.0					1.16	2.19	15275	107	1110	8.4	14,8
1632.0	82.0	28.0	114	10.1	0,89	2.20	15359	4.3	1111	A.4	14,8
<u> </u>	52.0	28.0	114	10.1	1,01	2.22	15490	68	1.0 2.5	8.4	14.8
1634.0					98,0	2.23	15571	42		(i) , 43	14.0
1635.0					0.86	2.24	15648	40			14.8
1636.0					0.96	2.26	15756		971.64		144,8
1637.0 1638.0					0.94		15857		942,35		14.8
4 1638.0	76.0	28.0	114	10.1	0.91	2,29	15947	46.61	914.71	8,4	14.8
1639.0					1.00	2.31	16074	65.59	889.29	8.4	14.8
1639.0 1640.0					3.08	2.33	16245		866.01		14.8
1641.0					0,96	2.35	16355		843.16		14.8
1642.0					1.26	2,40		177,10			14.8
1643.0					1.22	2,44	17008	161.00			14.8
1644.0		25.0			1.12	2.48		114.26			14,8
1645.0					0.97	2.49	12355		770.70		14.8
1646.0					0.79	2.50	17420		752.46		14.0
1647.0					1.13			130.23			14.8
1648.0	WE W	atat , U	114	10.1	0.95	27 . Bee	TARIL	68, 12	721 79	₩, ₩	14 11

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	1008 (00007	PT.	FG
1649.0 1650.0 1651.0 1652.0 1653.0 1654.0 1655.0 1656.0 1658.0	12.0 40.0 20.0 4.6 6.6 16.0 56.0	22.0 21.0 21.0 21.0 28.0 32.0 29.0 27.0 27.0	114 114 118 118 118 118	10.1 10.1 10.1 10.1 10.1 10.1 10.1	0.97 1.12 1.00 1.13 1.69 1.65 1.36 0.99 0.99	2.58 2.63 2.66 2.71 2.93 3.08 3.14 3.16 3.18 3.21	17760 18320 18491 18833 20323 21445 21888 22014 22141 22410	186.42 80.55 122.16 220.00 556.82 221.35 63.25	681.00 670.20 673.00	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
1659.0 1660.0 1661.0 1662.0 1663.0 1664.0 1665.0 1666.0 1667.0	20.0 62.0 52.0 29.0 44.0 44.0 33.0 43.0	26.0 26.0 26.0 26.0 28.0 28.0 28.0	118 118 118 118 118 118	10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.29 1.26 0.95 1.00 1.16 1.07 1.07 1.07	3.27 3.32 3.35 3.35 3.41 3.43 3.46 3.46 3.51	22788 23142 23257 23393 23637 23798 23959 24173 24338 24492	57.13 68.12 122.14 80.50 80.50 107.33 62.37	620.04 611.39 601.88 592.42 584.22 525.60 567.26 559.65 551.82 544.26	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.6 14.6 14.6
1669.0 1670.0 1671.0 1672.0 1673.0 1674.0 1675.0 1676.0 1677.0	5.1 23.0 38.0 38.0 35.0 25.0 32.0 42.0	30.0 31.0 31.0 31.0 29.0 29.0 29.0 26.0 27.0	118 118 118 118 118 110 110	10.1 10.1 10.1 10.1 10.1 10.1	1.71 1.28 1.14 1.12 1.14 1.22 1.11	3.63 3.82 3.87 3.89 3.92 3.95 3.99 4.02 4.04 4.07		84.33	544.61 538.64 531.93 525.42 519.22	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
1679.0 1680.0 1681.0 1682.0 1683.0 1684.0 1685.0 1686.0 1687.0	28.0 24.0 38.0 15.6 13.4 53.6 11.0 7.8	27.0 27.0 29.0 26.0 28.0 28.0 32.0 32.0	110 110 110 110 110 110 110	10.1 10.1 10.1 10.1 10.1 10.1	1.17 1.23 1,07	4.09 4.13 4.17 4.20 4.26 4.34 4.36 4.45 4.57	29074 29248 29671 30163 30286 30886 31733	126.50 147.58 93.21 227.05 264.33 66.08 322.00 454.10	481.54	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
1689.0 1690.0 1691.0 1692.0 1693.0 1694.0 1695.0 1696.0 1697.0	13.3 8.2 5.9 14.0 49.0 49.0 59.0	31.0 31.0 29.0 33.0 34.0 33.0 33.0 33.0	118 118 118 118 118 118 118	10.1 10.1 10.1 10.1 10.1 10.1	1.15 1.44 1.55 1.70 1.47 1.09 1.09 1.10	4.70 4.27 4.89 5.13 5.16 5.16 5.20 5.21	33996 35196 35201 35846 35990 36141	431.95 600.34 253.00 72.29 72.29 75.36 60.95	457.66 455.39 455.19 456.80 454.47 450.14 445.22 441.02 437.64	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9

	DEPTH	ROP	мов	RPM	МЫ	"d"c	HOURS	TURNS	rcost	CCOST	PP	FG
_	1699.0	49.0	30.0	118	10.1	1.06	5.28	36707	72.29	430.66	8.4	14,9
	1700.0	28.0	30.0	118	10.1	1.22	5.31	36959	126.50	427,44	8.4	14.9
	1701.0	15.6	30.0	118	10.1	1.38	5.38	37413	227.05	425.34	8.4	14.9
	1702.0	43.0	33.0	118	10.1	1.13	5,40	37578	82.37	421,78	8.4	14.9
	1703.0	34.0	33.0	118	10.1	1.20	5.43	37786	104.18	418,52	8.4	124,5
	1704.0	69.0	30.0	118	10.1	0.97	5.44	37889	51.33	414.79	8.4	14.9
	1705.0	43.0	30.0	118	10.1	1.10	5.47	38053	82.37	411.44	8.4	14.5
	1706.0	35.0	30.0	118	10.1	1.16	5.50	38256	101.20	408,35	8.4	14.8
	1707.0	14.0	32.0	118	10.0	1.45	5.57	38761	253.00	406.82	8.4	12.5
	1708.0	23.0	26.0	118	10.0	1.24	5.61	39069	154.00	404.35	8.4	14.3
	1709.0	22.0	25.0	118	10.0	1.24	5,66	39391	161.00	402.00	8.4	14.9
	1710.0		25.0	118		1.06	5.68	39557		398,94		14.9
	1711.0		26.0	118		1.40	5.76	40093		397,70		14.5
	1712.0		29.0	118	10.0	1.74	5.98	41660	783.63			14.9
	1713.0	3.8	29.0	118		1.79	6.24	43523	932.11	406.27		14.7
_	1714.0	17.0	29.0	118		1.37	6.30	43939	208.35	404.44	8.4	14.9
_	1715.0	36.0	30.0	118	9.9	1.17	6.33	44136	98,39	401,65	8.4	14.9
	1716.0	46.0	30.0	118	9.9	1.10	6.35	44290	27.00	398.71	8.4	14.5
	1717.0	40.0	30.0	118	9,9	1.14	6.37	44467	88.55	395,92	8.4	14.9
_	1718.0	42.0	30.0	118	9.9	1.32	6.40	44635	84.33	393.15	8.4	14.9
	1719.0		26.0			0.99	6.41	44755		390.21	• •	14.9
	1720.0			118		1.37	6.48	45247		388,25		14.9
	1721.0		26.0	118		1.24	6.53	45551	152.02	386.90		14.9
	1722.0			118		1.60	6.64	46329	389.23	386.92		14.9
	1723.0	6.0	33.0	118	9.9	1.73	6.80	47509	590.33	388.65	8.4	14.9

COMPUTER DATA LISTING : LIST B

INTERVAL	10 m average
DEPTH	Well depth, in metres
ROP. , , ,	Rate of penetration, in metres per hour
BIT RUN	Depth interval drilled by the bit, in metres
HOURS	Cumulative bit hours. The number of hours that the bit has actually been "on bottom", recorded in decimal hours
TURNS	Cumulative bit turns. The number of turns made by the bit, while actually "on bottom"
TOTAL COST	Cumulative bit cost, in A dollars
ICOST	Incremental cost per metre, calculated from the drilling time, in A dollars
CCOST	Cumulative cost per metre, calculated from the drilling time, in A dollars
IC	ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, this should change from negative to positive

BIT NUMBER 2 TADC CODE 203.0° 786 111 INTERVAL HTC OSC 3AJ 17,500 20 20 2.0 SIZE NOZZLES 2400.00 583.0 COST TRIP TIME 2.4 BIT RUN TOTAL HOURS 7.59 62594 TOTAL TURNS CONDITION TR B2 G0,000 TOOST CCOST I-C DEPTH ROP BIT RUN HOURS TURNS TOTAL COST 7.0 0,23 210.0 30.0 1820 11727.27 1675 118 724.56 220.0 60.0 17.0 0.40 3120 12317.60 59.03 27.0 0.47 230.0 150.0 3640 12553.73 23.61 464,95 348.86 240.0 100.0 37.0 0.57 4420 12907.93 35,42 105.0 47.0 516333.73 281.81 250.0 0.66 13245,27 47.23 13717.53 240.66 25.0 57.0 0.80 6203 260.0 53.13 212.67 0,25 7373 14248.83 270.0 66.7 67.0 191.95 53.13 8543 14780.13 280.0 66.7 77.0 1.10 ... 43.20 174.85 82.0 87.0 1,22 9472 15212.08 290.0 166.97 ---1.49 11555 16195.97 98.39 36.0 97.0 300.0 16687.92 49.19 155,96 72.0 107.0 1.63 12722 310.0 32,20 145.38 17009,92 110.0 117.0 1.72 13472 320.0 135,99 26.04 127.0 1.80 14068 1727V.36 330.0 136.0 23.46 327.77 14624 17504,93 340.0 151.0 137.0 1.86 25.03 147.0 120.70 1.94 15196 17755.25 141.5 350.0 157.0 1,99 15656 17900.45 20.52 114.40 172.6 360.0 167.0 2.05 16113 18156,58 19.61 108.72 180.6 370.0 21.40 103,79 177.0 18370.60 2.11 16630 380.0 165.5 19.37 99.27 187.0 2.16 17106 18564.32 390.0 182.8 95,23 18760.20 19.59 17570 400.0 180.8 197.0 2.2220.60 91,63 18966,62 410.0 171.6 207.0 2.28 18064 17.37 88,20 19140.37 420.0 203.9 217.0 2.33 18476 16.02 05.06 19308.54 210.6 227.0 2.37 18882 430.0 32.37 2,43 19395 19521.82 21.33 237.0 440.0 166.1 80.03 19933 19767.79 24.60 2.50 450.0 144.0 247.0 77,99 27,67 257.0 128.0 2,58 20639 20044.51 460.0 22,00 75,90 20264.51 267.0 2,64 21161 470.0 161.0 74.14 27.25 277.0 2.72 21807 20536.97 480.0 130.0 287.0 2.81 22554 20847.67 31.02 72.64 114.0 490.0 59.03 72.13 21438.01 297.0 2.97 23954 500.0 60.0 24.77 307.0 3.04 24542 21685,70 70.64 510.0 143.0 29.52 69.34 120.0 317.0 3.13 25242 21980.86 520.0 3.21 29.36 120.6 327.0 25938 22274.48 68,12 530.0 66.77 3.27 22.62 26475 22500.71 540.0 156.6 337.0 27.71 65.64 22777.85 127.8 347.0 3.35 27143 550.0 357.0 27831 23067.84 29,00 64.62 560.0 122.1 3.44 19,84 63.40 570.0 178.5 367.0 3.49 28301 23266,21 178.9 377.0 3.55 28771 23464,25 19,80 62,24 580.0 29286 23675,27 21.10 61,18 167,9 387.0 3.61590.0 37,24 60.52 25.1 397.0 3.71 30173 24047.63 600.0 40.21 60.07 24449.72 610.0 88.1 407.0 3.83 31127 48.6 417.0 4.03 32854 25177.80 72.81 60.38 5. 620.0 38.2 427.0 4.29 35054 26105.46 92.77 1.1,14 630.0

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	COUST	1-0
640.0	77,6	437.0	4,42	36135	265/41.63	45,67	50,78	
650.0	168.1	447.0	4,48	36635	26772.32	11.07	09,82	***
660.0	79.5	457.0	4.61	37691	27217.20	44,54	99.56	
670.0	67.7	467.0	4.75	38931	27740.66	52.30	59.40	
680.0	48.4	477.0	4.96	40666	28471.93	73.13	59,69	
690.0	35.9	487.0	5.24	43003	29457,32	98 54	60.32	+
700.0	89.6	497.0	5.35	43940	29852.63	39.53	60.07	•
710.0	47.1	507.0	5.56	45723	30604.60	25,26	60.36	+
720.0	33.9	517.0	5,86	48203	31649,99	104.54	61.22	45
730.0	26.4	527.0	6.24	51347	32990.89	134.07	58.50	; -
740.0	43,4	537.0	6.47	53251	33905.11	81.57	<i>42.9</i> 5	•
750.0	35.3	547.0	6.25	55629	34803.83	100.22	63.64	4-
760.0	58.3	557.0	6.92	57061	35416.47	60.76	63.58	
770.0	39,2	567.0	7.18	59174	36320.28	90.38	64,06	- (-
780.0	46.2	577.0	7.39	60225	37086.34	26.61	64,27	+
286.0	60.7	593.0	7 49	A1814	77A7A 73	50 70	44 91	

BIT NUMBER 3 TADO CODE 114 INTERVAL 206,0-1362,0 HTC X3A SIZE 12.250 NOZZLES 15 15 15 COST 1440.00 TRIP TIME 3.6 BIT RUN 576.0 TOTAL HOURS 27,35 TOTAL TURNS 222640 CONDITION TG B8 G0.750 DEPTH ROP BIT RUN HOURS TURNS ICOST TOTAL COST CCOST I-C 790.0 36.0 4,0 0.11 691 14407.75 28 3602 800.0 35.1 14.0 0.40 2846 15416.66 101 1101 810.0 42,5 24.0 0.63 4883 16249,21 83.25 677.05 820.0 38,4 34.0 0.89 7136 17170.41 92.12 505,01 830.0 82.1 44,0 1,01 8195 17601.81 43,14 400.04 840,0 58.1 54.0 1.19 9677 18211,94 61.01 337,26 850.0 83.2 64.0 1.31 10702 18637,82 42.59 291.22 860.0 82.6 74.0 1,43 11733 19066,59 42.88 257,66 870.0 45.0 84.0 1.65 13616 19854,26 78.77 236,36 880.0 20.4 94.0 2.14 17793 21590,43 229,69 173.62 227.24 890.0 17.3 194.0 2.72 23632,59 22837 204,22 24873.61 900.0 28.5 114.0 3,07 26038 124,10 318,19 910.0 40.3 124.0 3,31 28129 25752,46 87,88 38, THE 920.0 42.9 134.0 3.55 30025 26570,89 RP.64 198,35 197.09 32.7 144.0 3.05 32412 27661.38 108.25 930.0 940.0 28858.48 29.6 119.71 187.39 154.0 4,19 35260 4,52 116.79 183,09 950.0 30.3164.0 38029 30026,36 27.4 960.0 174.0 4.89 41089 31319,91 129,36 180,00 970.0 31.3 184.0 5.21 43754 32450.58 113.07 176.36 980.0 30.0 194.0 5.54 46449 33630.13 117,96 173.35 990.0 24,9 204.0 5,94 49780 35052.47 142,23 171,83 175,76 1000.0 13.8 214.0 6.66 55520 37613.02 256,06 ٠٨. 1010.0 17.3 224.0 7.24 60114 39655,20 204.27 177.03 ₹. 1020.0 19.3 234.0 7,76 41494,19 183,85 177,33 64618 4 18.0 244.0 43457,35 196.32 178.10 1030.0 8.31 69128 ķ. 1040.0 24.0 254,0 8.73 72480 44935,21 147.79 176,91 175.92 1050.0 23.5 264.0 9.16 75931 46442.54 150.73 25.6 274.0 9.55 138.58 1060.0 79129 47828.38 174,56 1070.0 35.9 284.0 9,83 81382 48814.58 98.62 171.88 1080.0 31.3 294.0 10,14 84067 49944,94 113,04 169.88 1090.0 36.3 304.0 10.42 86508 97.50 50919,98 167.50 1100.0 34.2 314.0 10.71 88996 51957.02 103.70 165.47 324.0 1110.0 41.1 10.96 91060 52817.91 86.09 163.02 1120.0 38.3 334,0 11.22 92,51 93332 53743.01 160.91 1130.0 25.2 344.011.61 96773 55149.17 140,62 160.32 1140.0 20.6 354.0 12,10 101006 56872.61 172.34 160,66 109153 165.16 1150.0 10.9 364.0 13.02 60118.35 324.57 7.9 374.0 14.28 1160.0 64595.91 447.76 172.72 120512 1170.0 10.1 384.0 15.27 128124 68086.78 349,09 177.31 1180.0 8.8 394.0 16.41 137816 72126.50 403.97 183.06 9.3 75921.94 187.93 1190.0 404.0 17,48 146817 379,54 1200.0 5.3 414.0 19.38 162099 82659,32 623.24 199.66 1210.0 15,8 424.0 20.01 167312 84904.22 224,49 200.25

	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	$x \in C$
	1220.0	19.1	434.0	20.54	171603	86756.52	185,23	199.90	
	1230.0	26.8	444.0	20.91	174737	88078,23	132,17	198.37	••••
	1240.0	19.1	454.0	21,43	179139	89974.35	185,61	198,09	
	1250.0	20.7	464.0	21.92	183192	91643,37	170.90	107.51	
	1260.0	38.0	474.0	22.18	185401	92574.89	93.15	195.31	
	1270.0	62.4	484.0	22,34	186748	23142.80	56.79	192,24	
***	1280.0	33.3	494.0	22.64	189273	94207.56	100,48	190,70	
-	1290.0	22.8	504.0	23.08	192965	9 5764,38	155,68	120,01	
5	1300.0	31.7	514.0	23,40	195559	96881,33	111,69	138,49	
	1310.0	23.7	524.0	23.82	199052	98376.70	149.54	187.74	••••
	1320.0	17.0	534.0	24,41	203833	100464.41	208.77	188,14	4-
	1330.0	68.0	544.0	24.55	205060	100985.35	52.00	185,63	
	1340.0	37.3	554,0	24.82	207292	101934.30	94,90	184.00	
	1350.0	37.5	564.0	25,09	209458	102879.21	94,49	182,41	
	1360.0	5.6	574.0	26,86	223679	109156,22	627.70	190.17	:
_	1362.0	4.2	576.0	27.33	227491	110823.27	833.53	192.40	.(

BIT NUMBER HTC XDG COST TOTAL HOURS	1440.00 12.50	IADO CODE SIZE TRIP TIME TOTAL TUENS	135 12.250 4.0 100438	INTERVAL NOZZLES BIT RUN CONDITION	1362.0~ 1485 13 13 123 17 84 60.2	13
DEPTH	ROP BIT	RUN HOURS	TURNS T	OTAL COST	toost toost i	(
1370.0	5.5	8.0 1.45	11696	20754,96	(14) 25 94	
1380.0	11.2 1	8.0 2.34	18872	23912.05	316 1328	
1390.0		28.0 3.22	25744		08.37 984.13	ue :
1400.0	7.8 3	38.0 4.50	36304	31553.69 4	55,80 830,36	
1410.0		18.0 6.18	49578		93,46 781.01	
1420.0		68.0 7.46	60350		54,96 724,79	
1430.0		8.0 7.76	62862		05,95 633,79	
1440.0	13.0 2	8.6 8.53	69305		77.20 587,43	
1450.0	16.1 8	88.0 9.15	74324		20.73 545.69	
1460.0	24.0 9	9.57	77569	49494.18 1	47,34 505.04	
1470.0	9.4 10	10.63	85845	53252,23 3	25.80 493.08	
1480.0	9.4 11	8.0 11.70	94176	57035.42 3	78,32 483,35	
1485.0	6.2 12	23.0 12.50	100438	59378.34 5	68.68 486.82 ·	14

BIT NUMBER HTC JD4 COST TOTAL HOURS	5 1740.00 12.88	SIZE TRIF	•	217 12.250 4.6 113601	NOZZLES BIT RUN			
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1490.0	5.9	5.0	0.84	5837	21014.72	596	4203	
1500.0	29.7	15.0	1.18	8718	22206.70	119	1480	
1510.0	8.9	25.0	2.30	18837	26189.30	398	1048	
1520.0	9.7	35.0	3.33	28071	29823.06	363.38	852.09	
1530.0	11.1	45.0	4.23	36126	33027.89	320.48	733.95	
1540.0	25.0	55.0	4.63	39680	34445.77	141.79	626.29	
1550.0	7.0	65.0	6.07	52396	39517.83	507.21	607.97	
1560.0	8.1	75.0	7.30	63455	43805.61	436.78	585.14	
1570.0	19.9	85.0	7.80	67973	45663.69	177.81	537.22	
1580.0	7.0	95.0	9.23	80872	50740.13	507.64	534.11	
1590.0	8.1	105.0	10.47	91927	55124.71	438.46	525.00	
1600.0	10.6	115.0	11.41	100349	58453.99	332.93	508.30	
1605.6	8.8	120.6	12.87	113452	63610.87	920.87	527,45	-{

1									
	BIT NUMBER			ADC CODE	517	ZINTERVA	160	5.6- 177	27.0
	HTC J22		S	IZE	12,250	NOZZLES		13 13	3 13
	COST	5240,	. 0 0 T.	RIP TIME	4.6	BIT RUN			17.4
_	TOTAL HOURS	6.	, 95 T	OTAL TURNS	48561	CONDITI	T MO	2 B2 G0.	0.00
	}								
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1 - t:
									
	1610.0	4.4	4.4	1.01	7190	25102.08	811	5705	
	1620.0	15.2	14.4	1.67	11692	27433,23	233	1965	
	1630.0	20.3	24.4	2.16	15068	29181.51	175	1196	
	1640.0	58.1	34.4	2.33	16245	29790.69	60,92	866.01	
-	1650.0	33.0	44,4	2.63	18320	30865.63	107,49	695.12	***
	1660.0	14.6	54,4		23142	33287.01	242.14	611,89	
	1670.0	19.8	64.4	3.82	26713	35073.14	123.61	544.61	
	1680.0	32.6	74.4	4.13	28799	36160.66	108,25	486.03	***
	1690.0	15.6	84,4	4.77	33132	38435.18	227.45	455,39	
	1700.0	18.5	94.4		36959	40349,95	191,48	427.44	***
	1710.0	27.3	104.4	5.68	39557	41649.40	129.95	398,94	
	1720.0	12.4	114.4		45247	44496.10	284.67	788,95	****
_	1723.0	9.4	117.4		47509	45627,68	377.19	Z88.65	

COMPUTER DATA LISTING : LIST C

INTERVAL				10 m average
рертн	2 I			Well depth, in metres
FLOW RATE	2 I			Mud flow into the well, in gallons per minute
PSP	, ,			Pump pressure, in pounds per square inch
PRIT	•	•		Bit pressure drop, in pounds per square inch
% PSP		•	, ,	Percentage of surface pressure dropped at the bit
ННР		•	• •	Bit hydraulic horsepower
HHP/SQ IN .	, ,	•	• •	Bit hydraulic horsepower per square inch of bit diameter
IMPACT FORCE		•	å j	Bit impact force, in foot pound per second squared
JET VELOCITY		•		Mud velocity through the bit nozzles, in metres per second

BIT NUMBER 2 IADC CODE 111 INTERVAL 203.0-786.0 HTC OSC 3AJ 17.500 SIZE NOZZLES 20 20 20 2400.00 COST TRIP TIME 2.4 BIT RUN 583.0 TOTAL HOURS 7.59 TOTAL TURNS 62594 CONDITION T2 B2 G0.000 FLOW HHP/ IMPACT JET DEPTH PSP RATE PRIT %P SP HHP FORCE VELOCITY sgin 1200 78.2 210.0 1720.0 1345.3 941 3,91 2233 127 2233 220.0 1200 1720.0 1345.3 78.2 941 3.91 127 230.0 1200 1720.0 1345.3 78.2 941 2233 127 3.91 240.0 1200 1720.0 1345.3 78.2 941 3.91 2233 127 250.0 1190 2200.0 1323.0 60.1 918 3.82 2196 126 260.0 1190 2200.0 1323.0 60.1 918 3,82 2196 126 270.0 1200 2300.0 1345.3 58.5 941 3.91 2233 127280.0 1200 2200.0 1345.3 941 3.91 2233 127 61.2 3,91 290.0 1200 941 2200.0 1345.3 61.2 2233 127 3,91 300.0 1200 2200.0 1345.3 61.2 941 127 2233 310.0 3.45 1150 2200.0 1235.5 56.2 829 2051 122 320.0 1150 2200.0 1235.5 56.2 829 3,45 2051 122 330.0 1150 2200.0 1235.5 56.2 829 3.45 2051 122 340.0 1150 2200.0 1235.5 56.2 829 3.45 2051 122 350.0 1165 2200.0 57.6 3.58 1268.0 861 2105 123 360.0 1165 2200.0 1268.0 57.6 3,58 123 861 2105 370.0 1165 2200.0 1268.0 57.6 861 3,58 2105 123 380.0 1165 2200.0 57.6 3.58 123 1268.0 861 2105 390.0 1165 2200.0 1268.0 57.6 3.58 123 861 2105 400.0 57.6 1165 2200.0 123 1268.0 861 3.58 2105 410.0 1165 2200.0 1268.0 57.6 861 3.58 2105 123 420.0 1165 2200.0 1268.0 57.6 861 3.58 2105 123 430.0 2.85 1080 2200.0 1089.7 49.5 686 1809 114 440.0 1080 2200.0 1089.7 49.5 686 2.85 1809 114 450.0 1080 2200.0 1089.7 49.5 686 2.85 1809 114 460.0 1170 2350.0 1278.9 873 54.4 3.63 2123 124 470.0 1170 2350.0 1278.9 54.4 873 2123 124 3.63 3.63 480.0 1170 2350.0 1278.9 54.4 873 124 2123 490.0 1170 2400.0 1278.9 53.3 873 124 3,63 2123 1170 500.0 1278.9 873 2400.0 53.3 2123 124 3.63 510.0 1170 2400.0 1278.9 53.3 873 3.63 2123 124 520.0 1170 2400.0 1278.9 53.3 873 3.63 2123 124 530.0 1170 2400.0 1278.9 53.3 873 3.63 2123 124 540.0 1170 2400.0 1278.9 873 53.3 3.63 2123 124 550.0 1170 2410.0 1278.9 53.1 873 3.63 2123 124 560.0 1170 1278.9 2410.0 53.1 873 3.63 2123 124 1170 570.0 2410.0 1278.9 53.1873 3.63 2123 124 580.0 1170 2500.0 1278.9 51.2 873 3.63 2123 124 590.0 1170 2400.0 1278.9 53.3 873 3.63 2123 124 600.0 1170 2400.0 1278.9 53.3 873 3.63 2123 124 1278.9 610.0 1170 2450.0 3.63 52.2 873 2123 124 1278.9 620.0 1170 2450.0 52.2 873 3.63 2123 124 630.0 1170 2450.0 1278.9 52.2 873 3.63 2123 124

DEPTH	FLOW RATE	PSP	PBIT	%P SP	ннр	HHP/ sqin	IMPACT FORCE	JET VELOCITY
640.0 650.0 660.0 670.0 680.0 700.0 710.0 720.0 730.0	1170 1170 1170 1170 1170 1170 1170 1120 112	2400.0 2400.0 2400.0 2500.0 2500.0 2510.0 2500.0 2500.0	1278.9 1278.9 1278.9 1278.9 1278.9 1278.9 1278.9 1171.9	53.3 53.3 53.3 51.2 51.2 51.0 46.9 46.9	873 873 873 873 873 873 873 765 765	3.63 3.63 3.63 3.63 3.63 3.63 3.18 3.18	2123 2123 2123 2123 2123 2123 2123 1946 1946	124 124 124 124 124 124 129 119
740.0 750.0 760.0 770.0 780.0 786.0	1170 1170 1170 1170 1135 1135	2400.0 2450.0 2500.0 2500.0 2500.0	1278.9 1278.9 1278.9 1293.8 1217.5	53.3 52.2 51.2 51.8 48.7 48.7	873 873 873 883 806 806	3.63 3.63 3.63 3.67 3.35	2123 2123 2123 2148 2021 2021	124

786.0- 1362.0 INTERVAL IT NUMBER IADC CODE 114 15 15 15 12,250 NOZZLES HTC X3A SIZE 576.0 BIT RUN 3.6 COST 1440.00 TRIP TIME T8 B8 G0.750 227640 CONDITION OTAL HOURS 27.35 TOTAL TURNS IMPACT JET HHP/ FLOW FORCE VELOCITY **XPSP** HHP sqin DEPTH RATE PSP PRIT 902 1806 151 7.65 800 2970.0 1933.7 65.1790.0 151 7.74 1826 912 2970.0 1955.6 65.8 800 800.0 7.74 1826 151 1955.6 65,8 912 2970.0 800 810.0 151 7.74 1826 912 2970.0 1955.6 65.8800 820.0 1942 155 8.49 1001 2980.0 2079.8 69.8 825 830.0 155 1942 8,49 2079.8 69.8 1001 2980.0 825 840.0 8.49 155 1942 2079.8 67.1 1001 3100.0 825 850.0 155 1942 8.49 2079.8 67.1 1001 3100.0 860.0 825 155 8,49 1942 67.1 1001 2079.8 3100.0 825 870.0 155 8.39 1920 989 66.3 3100.0 2056.4 825 880.0 155 8,49 1942 1001 67.1 825 3100.0 2079.8 890.0 153 8,15 1887 960 65.4 3090.0 2020.5 815 900.0 153 1887 960 8,15 3090.0 2020.5 65.4 815 910.0 153 8.15 1887 2020.5 66.9 960 3020.0 920.0 815 153 1887 8.15 66.9 960 2020.5 3020.0 930.0 815 1891 153 67.1 963 8.17 2025.1 3020.0 940.0 815 153 1891 963 8.17 68.0 2025.1 950.0 815 2980.0 153 1891 8.17 68.0 963 960.0 2980.0 2025.1 815 147 1732 7.16 844 67.7 2740.0 1854.9 780 970.0 132 5.24 1414 54.1 618 1514.1 700 2800.0 980.0 577 83 70.2 159 1.35 618.2 880.0 990.0 440 47 192 30 0.2560.6 206.0 1000.0 250 340.0 143 1815 7.31 861 1943.4 72.5 760 2680.0 1010.0 79 560 1.25 66.6 147 599.6 900.0 420 1020.0 132 1587 694 5,89 1699.2 65.6 1030.0 700 2590.0 132 5,94 1602 701 61.3 700 2800.0 1716.0 1040.0 132 5.94 1602 701 1716.0 61.3 700 2800.0 1050.0 132 5.94 1602 61.3 701 1716.0 2800,0 700 1060.0 132 1602 701 5,94 61.3 1716.0 1070.0 700 2800.0 132 5.94 1602 701 61.3 700 2800.0 1716.0 1080.0 1325.94 1602 701 700 2800.0 1716.0 61,3 1090.0 132 5,94 1602 701 61.3 2800.0 1716.0 1100.0 700 132 5.94 1602 701 61.3 1716.0 2800.0 700 1110.0 135 754 6.40 1688 64.6 1807.9 1120.0 715 2800.0 135 6.40 16881807.9 754 64.6 1130.0 715 2800.0 135 6.40 1688 754 2800.0 1807.9 64.6 715 1140.0 135 1688 754 6.40 1807.9 64.6 715 2800.0 1150.0 137 6.67 1736 64.1 786 2900.0 1858.8 725 1160.0 128 5.45 1512 1619.3 63.3 642 2560.0 1170.0 680 132 1587 694 5.89 1699.2 63.2 1180.0 700 2690.0 137 1719 778 6.50 65.7 1840.7 725 2800.0 1190.0 6,74 137 1743 795 63.9 2920.0 1866.2 730 1200.0 138 1767 6.88 66.4 811 2850.0 1891.9 735 1210.0

	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PBIT	%P SP	ННЬ	sqin	FORCE	VELOCITY
1220.0	735	2850.0	1891.9	66.4	811	6.88	1767	138
1230.0	735	2900.0	1891.9	65.2	811	6.88	1767	138
1240.0	735	2900.0	1891.9	65.2	811	6.88	1767	138
1250.0	710	2900.0	1765.4	60.9	731	6.20	1649	134
1260.0	710	2900.0	1765.4	60.9	731	6.20	1649	134
1270.0	710	2900.0	1765.4	60.9	731	6.20	1649	134
1280.0	710	2900.0	1765.4	60.9	731	6.20	1649	134
1290.0	710	2900.0	1765.4	60.9	731	6.20	1649	134
1300.0	710	2900.0	1765.4	60.9	731	6.20	1649	134
1310.0	710	2900.0	1765.4	60.9	731	6.20	1649	134
1320.0	600	2000.0	1260.7	63.0	441	3.74	1177	113
1330.0	725	2850.0	1804.6	63.3	763	6.47	1685	137
1340.0	725	2850.0	1804.6	63.3	763	6.47	1685	137
1350.0	725	2850.0	1804.6	63.3	763	6.47	1685	137
1360.0	725	2850.0	1775.8	62.3	751	6.37	1658	137
1362.0	725	2850.0	1779.4	62.4	752	6.38	1662	137

BIT NUMBER IADC CODE 1362.0- 1485.0 135 INTERVAL HTC XDG SIZE 12.250 NOZZLES 13 13 13 1440.00 123.0 COST TRIP TIME 4.0 BIT RUN TOTAL HOURS 12.50 TOTAL TURNS 100438 CONDITION T7 B4 G0.250 JET HHP/ IMPACT FLOW DEPTH RATE PSP PRIT **%PSP** HHP sgin FORCE VELOCITY 1734 157 901 7.65 2472.3 85.3 1370.0 625 2900.0 157 1734 625 2900.0 2472.3 85.3 901 7,65 1380.0 2472.3 901 7.65 1734 157 1390.0 625 2900.0 85.3 1790 159 945 8.02 1400.0 3000.0 2552.0 85.1 635 968 8,21 1818 1603050.0 2592.4 85.0 1410.0 640 1790 159 945 8.02 635 3000.0 2552.0 85.1 1420.0 1790 159 945 8.02 3000.0 2552.0 85.1 1430.0 635 8.40 1847 162 87.8 990 1440.0 645 3000.0 2633.1 8.40 1847 162 87.8 990 1450.0 645 3000.0 2633.1 8.40 162 990 1847 645 3000.0 2633.1 87.8 1460.0 162 990 8,40 1847 1470.0 645 3000.0 2633.1 87,8 8,40 1847 162 87.8 990 1480.0 645 3000.0 2633.1 1847 162 2633.1 87.8 990 8.40 3000.0 1485.0 645

BIT NUMBER HTC JD4 COST TOTAL HOUR	1740	.00	TADC CODE BIZE TRIP TIME TOTAL TURNS	217 12.250 4.6 113601	NOZ BIT	ERVAL ZLES RUN DITION		0- 1605.6 13 13 13 120.6 88 60.188
DEPTH	FLOW RATE	PSP	РВІТ	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
1490.0 1500.0 1510.0	625 650 650	3000.0 3000.0 3000.0	2472.3 2674.0 2674.0	82.4 89.1 89.1	901 1014 1014	7.65 8.60 8.60	1734 1876 1876	157 163 163
1520.0 1530.0 1540.0 1550.0	650 650 640 645	3000.0 3000.0 2900.0 3000.0	2674.0 2674.0 2592.4 2582.4	89.1 89.1 89.4 86.1	1014 1014 968 971	8.60 8.60 8.21 8.24	1876 1876 1818 1811	163 163 160 162
1560.0 1570.0 1580.0 1590.0 1600.0 1605.6	645 645 640 650 650	3000.0 3000.0 2950.0 2950.0 2950.0 2950.0	2582.4 2582.4 2552.5 2612.3 2612.3 2612.3	86.1 86.1 86.5 88.6 88.6 88.6	971 971 953 990 990 990	8.24 8.24 8.08 8.40 8.40 8.40	1811 1811 1790 1832 1832 1832	162 162 160 163 163

BIT NUMBER HTC J22 COST TOTAL HOURS	5240 3 6	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 12.250 4.6 48561	NOZ BIT	ERVAL ZLES RUN DITION	1605.6 T2 I	0- 1723.0 13 13 13 117.4 32 G0.000
DEPTH	FLOW RATE	PSP	PRIT	%PSP	ннр	HHP/ sqin	IMPACT FORCE	JET VELOCITY
1610.0	6 50	2950.0	2596.9	88.0	984	8.35	1821	163
1620.0	640	2980.0		84.8	943	8.00	1773	160
1630.0	640	3000.0		84.3	943	8.00	1773	160
1640.0	630	3000.0	2449.2	81.6	900	7.64	1718	158
1650.0	630	3000.0		81.6	900	7.64	1718	158
1660.0	630	3000.0	2449,2	81.6	900	7.64	1718	158
1670.0	630	3000.0	2449.2	81.6	900	7.64	1718	158
1680.0	635	2950.0	2478.4	84.0	918	7.79	1738	159
1690.0	635	2950.0	2478.4	84.0	918	7.79	1738	159
1700.0	625	2900.0	2401.0	82.8	875	7.43	1684	157
1710.0	625	2900.0	2367.7	81.6	863	7.32	1661	152
1720.0	640	2900.0	2477.7	85.4	925	7.85	1738	160
1723.0	550	2100.0	1829.9	87.1	587	4.98	1283	138

COMPUTER DATA LISTING : LIST D

DEPTH Well depth, in metres

SPM1 Stroke rate per minute, for pump No 1

.

SPM2 Stroke rate per minute, for pump No 2

FLOW RATE Mud flow rate into the well, in gallons per minute

ANNULAR VELOCITIES: (in metres per minute)

DC/OH - Between drill collars and the open hole

DC/CSG - Between drill collars and casing

HW/OH - Between heavyweight drill pipe and the open hole

HW/CSG - Between heavyweight drill pipe and casing

DP/OH - Between drill pipe and open hole

DP/CSG - Between drill pipe and casing

DP/RTS - Retween drill pipe and riser

BIT NUMBER HTC OSC 3AJ COST TOTAL HOURS	2400.00	IADC CODE SIZE TRIP TIME TOTAL TURN		111 7.500 2.4 62594	NOZZ BIT		203 T2	20 2	786.0 20 20 583.0
DEPTH	SPM1 SP M2	FLOW RATE	DC/ OH	CSC DC\	HWZ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
210.0 220.0 230.0	120 120 120 120 120 120	1200 1200 1200	37 37 37	30 30 30		26 26 26		26 26 26	22 22 22
240.0 250.0 260.0 270.0 280.0 290.0 300.0 310.0 320.0 330.0	120 120 120 118 120 118 120 118 118 122 118 122 118 122 118 122 110 120 110 120 110 120 110 120 110 120		37 37 37 37 37 37 35 35	30 29 29 30 30 30 30	31 31 31	26 26 26 26 26 26 27 27 27 27 27		26 26 26 26 26 26 25 25 25	22 21 22 22 22 22 21 21 21
340.0 350.0 360.0 370.0 380.0 390.0 400.0 410.0 420.0	110 120 108 125 108 125 108 125 108 125 108 125 108 125 108 125 108 125 108 125 100 116	1150 1165 1165 1165 1165 1165 1165 1165	35 36 36 36 36 36 36 36 36 36		31 31 31 31 31 31 31 31		31 31 31 31 31 31 31	25 26 26 26 26 26 26 26 24	21 21 21 21 21 21 21 21
440.0 450.0 460.0 470.0 480.0 490.0 500.0 510.0 520.0	100 116 100 116 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124	1080 1080 1170 1170 1170 1170 1170 1170	33 33 36 36 36 36 36 36 36		29 31 31 31 31 31 31 31		29 31 31 31 31 31 31 31	24 24 26 26 26 26 26 26 26 26 26 26 26 26 26	19 19 21 21 21 21 21 21 21
540.0 550.0 560.0 570.0 580.0 590.0 610.0 620.0 630.0	110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124 110 124	1170 1170 1170 1170 1170 1170 1170 1170	36 36 36 36 36 36 36 36		31 31 31 31 31 31 31 31		31 31 31 31 31 31 31 31	26 26 26 26 26 26 26 26 26	21 21 21 21 21 21 21 21 21

			FLOW	DC/	DCZ	HW/	HW/	DP/	DP/	DPI
DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
640.0	110	124	1170	36		31		31	26	21
650.0	110	124	1170	36		31		31	26	21
660.0	110	124	1170	36		31		31	28	21
670.0	110	124	1170	36		31		31	26	21
680.0	110	124	1170	36		31		31	26	21
690.0	110	124	1170	36		31		31	26	21
700.0	124	110	1170	36		31		31	26	21
710.0	124	100	1120	35		30		30	25	20
720.0	124	100	1120	35		30		30	25	20
730.0	124	100	1120	35		30		30	25	20
740.0	124	110	1170	36		31		31	26	21
750.0	124	110	1170	36		31		31	26	21
760.0	124	110	1170	36		31		31	26	21
770.0	124	110	1170	36		31		31	26	21
780.0	105	122	1135	35		30		30	25	20
786.0	105	122	1135	35		30		3.0	25	20

	BIT NO HTC XX COST TOTAL	3A	1440. 3 27.		IADC CODE SIZE TRIP TIME TOTAL TUR	1 7	114 2.250 3.6 27640	NOZZ BIT				5 15 576.0
					FLOW	DC/	DC/	HW/	HW/	DP/	DP/	DP/
	DEF	HT	SPM1	SPM2	RATE	HO	CSG	OH	CSG	OH	CSG	RIS
	79	0.0	76	84	800	69	66		46		46	14
	800	0.0	76	84	800	69	66		46		46	14
_		0.0	76	84	800	69	66		46		46	14
	82	0.0	76	84	800	69	66		46		46	1.4
		0.0	82	83	825	72	68		48		48	1.5
_		0.0	82	83	825	72	68		48		48	1.5
		0.0	82	83	825	72	68		48		48	15
		0.0	82	83	825	72	68		48		48	1.5
		0.0	82	83	825	72	68		48		48	1.5
		0.0	82	83	825	72	68		48		48	15
			82	83	825	72	68		48		48	15
		0.0				71	68		47		47	15
_		0.0	80	83	815		68		47		47	15
	91	0.0	80	83	815	71	00		*4 /		~ /	1.0
		0.0	80	83	815	71	68		47		47	15
		0.0	80	83	815	71	68		47		47	15
	94	0.0	80	83	815	71	68		47		47	15
	95	0.0	80	83	815	71		49	47		47	15
	96	0.0	80	83	815	71		49	47		47	15
	97	0.0	76	8.0	780	68		47	45		45	14
		0.0	72	68	700	61		42	40		40	13
		0.0	88	0	440	38		26	25		25	
_	100		50	ő	250	22		15	14		1.4	4
	101		76	76	760	66		45	44		44	14
_			rs a		A (2) (2)	 y y		95	~ A		24	8
	102		84	0	420	36		25	24	A 75		13
E	103		76	64	700	61		42		42	40	
_	104		76	64	700	61		42		42	40	13
_	105	0.0	76	64	700	61		42		42	40	13
	106	0.0	76	64	700	61		42		42	40	13
	107	0.0	76	64	700	61		42		42	40	13
	108	0.0	76	64	700	61		42		42	4 ()	13
	109		76	64	700	61		42		42	40	13
	110		76	64	700	61		42		42	40	13
_	111		76	64	700	61		42		42	40	13
	112	n n	63	80	715	62		43		43	41	13
				80	715	62		43		43	41	13
	113		63					43		43	41	13
-	114		63	80	715	62						13
	115		63	80	715	62		43		43	41	
	116		65	80	725	63		43		43	42	13
	117		61	75	680	59		41		41	39	12
	118		140	0	700	61		42		42	40	13
	119	0.0	70	75	725	63		43		43	42	13
	120		70	76	730	63		44		44	42	13
_	121		72	75	735	64		44		44	43	13
	••••											

•

			FLOW	DC/	DC/	HWZ	HWZ	DP/	DP/	DP/
DEPTH	SPM1	SPM2	RATE	ОН	CSG	OH	CSG	OН	CSG	RIS
1220.0	72	75	735	64		44		44	43	13
1230.0	72	75	735	64		44		44	43	13
1240.0	72	75	735	64		44		44	43	13
1250.0	72	70	710	62		42		4,2	41	1.3
1260.0	72	70	710	62		42		42	41	13
1270.0	72	70	710	62		42		AB	41	1.3
1280.0	72	70	710	62		42		42	41	13
1290.0	72	70	710	62		42		42	41	1.3
1300.0	72	70	710	62		42		42	41	1.3
1310.0	72	70	710	62		42	•	42	41	13
1320.0	68	52	600	52		36		36	35	1 1
1330.0	70	75	725	63		43		43	42	13
1340.0	70	75	725	63		43		43	42	13
1350.0	70	75	725	63		43		43	42	1.3
1360.0	70	75	725	63		43		43	42	13
1362.0	70	75	725	63		43		43	42	13

	BIT NUMBER HTC XDG COST 14 TOTAL HOURS		4 . 00 . 50	IADC CODE SIZE TRIP TIME TOTAL TUE	1 2	135 2.250 4.0 00438	NOZ:	ERVAL ZLES RUN DITION	1 362 T2		13 13 123.0
	DEPTH	SPM1	SPM2	FLOW RATE	ДС/ ОН	DC/ CSG	HW/ OH	HW∕ CSG	DP/ OH	DP/ CSG	DP/ RIS
	1370.0	64	61	625	54		37		37	36	11
	1380.0	64	61	625	54		37		37	36	11
_	1390.0	64	61	625	54		37		37	36	11
	1400.0	65	62	635	55		38		38	37	11
	1410.0	61	67	640	56		38		38	37	11
-	1420.0	61	66	635	55		38		38	37	1.1
	1430.0	61	66	635	55		38		38	37	11
_	1440.0	62	67	645	56		39		39	37	12
_	1450.0	62	67	645	56		39		39	37	12
	1460.0	62	67	645	56		39		39	37	12
	1470.0	62	67	645	56		39		39	37	12
	1480.0	62	67	645	56		39		39	37	1.2
	1485.0	62	67	645	56		39		39	37	12

	BIT NUMBER 5 HTC JD4 COST 1740.00 TOTAL HOURS 12.88		TRIP TIME		217 INTERVAL 2.250 NOZZLES 4.6 BIT RUN 3601 CONDITION		1485.0- 1605.6 13 13 13 120.6 T7 B8 G0.188				
	DEPTH	SPM1	SPM2	FLOW RATE	NO HO	DC/ CSG	НW/ НО	CSG	DP/ OH	DP/ CSG	DP/ RIS
	1490.0	55	70	625	54		37		37	36	11
	1500.0	63	67	650	56		39		39	38	12
	1510.0	63	67	650	56		39		39	38	12
_	1520.0	63	67	650	56		39		39	38	12
	1530.0	63	67	650	56		39		39	38	12
-	1540.0	63	65	640	56		38		38	37	11
_	1550.0	62	67	645	56		39		39	37	12
	1560.0	62	67	645	56		39		39	37	12
	1570.0	62	67	645	56		39		39	37	12
	1580.0	62	66	640	56		38		38	37	11
	1590.0	65	65	650	56		39		39	38	12
	1600.0	65	65	659	56		39		39	38	12
	1605.6	65.	65	650	56		39		39	38	12

4. (a.*)

	BIT NUMBER 6 HTC J22 COST 5240.00 TOTAL HOURS 6.95		IADC CODE 517 SIZE 12.250 TRIP TIME 4.6 TOTAL TURNS 48561			INTERVAL NOZZLES BIT RUN CONDITION		1605.6- 1723.0 13 13 13 117.4 T2 B2 G0.000			
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	1610.0	65	65	650	56		39		39	38	12
	1620.0	63	65	640	56		38		38	37	11
-	1630.0	63	65	640	56		38		38	37	11
	1640.0	63	63	630	55		38		38	36	1 1
	1650.0	63	63	630	55		38		38	36	11
	1660.0	63	63	630	55		38		38	36	1 1
	1670.0	63	63	630	55		38		38	36	11
	1680.0	63	64	635	55		38		38	37	11
_	1690.0	63	64	635	55		38		38	37	1 1
	1700.0	62	63	625	54		37		37	36	11
	1710.0	62	63	625	54		37		37	36	1 1
_	1720.0	64	64	640	56		38		38	37	11
	1723.0	55	55	550	48		33		33	32	10

This is an enclosure indicator page.

The enclosure PE603574 is enclosed within the container PE906231 at this location in this document.

The enclosure PE603574 has the following characteristics:

ITEM_BARCODE = PE603574
CONTAINER_BARCODE = PE906231

NAME = Drill Data Log

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = MUD_LOG

'd' Exponent

REMARKS =

 $DATE_CREATED = 1/12/81$

DATE_RECEIVED = 29/04/82

 $W_NO = W751$

WELL_NAME = PALMER-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE603575 is enclosed within the container PE906231 at this location in this document.

The enclosure PE603575 has the following characteristics:

ITEM_BARCODE = PE603575

CONTAINER_BARCODE = PE906231

NAME = Geoplot Log

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Geoplot for Palmer-1 containing

incremental and cumulative cost and

pore pressure.

REMARKS =

 $DATE_CREATED = 1/12/81$

 $DATE_RECEIVED = 29/04/82$

 $W_NO = W751$

 $WELL_NAME = PALMER-1$

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

 ${\tt CLIENT_OP_CO} = {\tt ESSO} {\tt AUSTRALIA} {\tt LIMITED}$

This is an enclosure indicator page.

The enclosure PE603576 is enclosed within the container PE906231 at this location in this document.

The enclosure PE603576 has the following characteristics:

ITEM_BARCODE = PE603576

CONTAINER_BARCODE = PE906231

NAME = Temperature Log

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Log for Palmer-1

REMARKS =

DATE_CREATED = 1/12/81

DATE_RECEIVED = 29/04/82

 $W_NO = W751$

WELL_NAME = PALMER-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE603577 is enclosed within the container PE906231 at this location in this document.

The enclosure PE603577 has the following characteristics:

ITEM_BARCODE = PE603577

CONTAINER_BARCODE = PE906231

NAME = Pressure Log

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Log for Palmer-1

REMARKS =

 $DATE_CREATED = 1/12/81$

DATE_RECEIVED = 29/04/82

 $W_NO = W751$

WELL_NAME = PALMER-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE603578 is enclosed within the container PE906231 at this location in this document.

The enclosure PE603578 has the following characteristics:

ITEM_BARCODE = PE603578
CONTAINER_BARCODE = PE906231

NAME = Cost Analysis Log

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Cost Analysis Log for Palmer-1

REMARKS =

DATE_CREATED = 1/12/81

 $DATE_RECEIVED = 29/04/82$

 $W_NO = W751$

WELL_NAME = PALMER-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603579 is enclosed within the container PE906231 at this location in this document.

The enclosure PE603579 has the following characteristics: ITEM BARCODE = PE603579 CONTAINER_BARCODE = PE906231 NAME = Drilling Parameter Log BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELLSUBTYPE = WELL_LOG DESCRIPTION = Drilling Parameter Log for Palmer-1 REMARKS = $DATE_CREATED = 1/12/81$ DATE_RECEIVED = 29/04/82 $W_NO = W751$ WELL_NAME = PALMER-1 CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE603580 is enclosed within the container PE906231 at this location in this document.

The enclosure PE603580 has the following characteristics:

ITEM_BARCODE = PE603580
CONTAINER_BARCODE = PE906231

NAME = Grapholog (Mud Log)

BASIN = GIPPSLAND PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Grapholog Mud Log for Palmer-1

REMARKS =

DATE_CREATED = 1/12/81 DATE_RECEIVED = 29/04/82

 $W_NO = W751$

WELL_NAME = PALMER-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED