

WELL COMPLETION REPORT

HAPUKU - 1

GIPPSLAND BASIN, VICTORIA.

.

Esso Australia Ltd.

S. Benedek December, 1975.

CONTENTS

Ι.	Well Data Record
II.	Initial Production Test
II(a)	Formation Interval Tests
III.	Perforating Record
IV.	Casing-Liner-Tubing Record
V.	Cement Record
VI.	Subsurface Completion Equipment
VII.	Samples, Conventional Cores, Sidewall Cores
VIII.	Wireline Logs and Surveys
IX.	Stratigraphic Table
IX (a).	Description of Lithological Units
Х.	Prognosis
APPENDICES	
1.	Amdel Examination of Sandstones.
2.	Sample Descriptions
3.	Velocity Survey
4.	Palynological Analysis of Hapuku-1, Gippsland Basin. by A.D. Partridge
5	Foraminiferal Sequence - Hapuku-1 by David Taylor Pact Notice of Face
6.	Well Log Analysis Report - by R.B. King
7.	Sidewall Core Descriptions
8.	Formation Interval Tests Record

P

;

. .

۲, ۲

9. Core Descriptions

HAPUKU-1 WELL COMPLETION REPORT

ENCLOSURES

Structure Contour Map - Top Latrobe Group (Post Drill)

Geological Cross Section A-A'

Hapuku-1 Time-Depth Curve

Well Completion Log - Hapuku-1

ESSO STANDARD OIL (AUSTRALIA) LTD.

COMPLETION REPORT

I WELL DATA RECORD

Ĵ

Date November, 1975

LOCATION

WELL NAME	STATE	PERMIT or LICEN	CE	GEOLOGICAL BASIN FIELD	
НАРИКИ-1	VICTORIA	VIC.P-1		GIPPSLAND	
CO-ORDINATES			MAP	GEOGRAPHICAL	
Lat Surface ³⁸⁰ 33'20.06	Long. 31/5 148 ⁰ 32 ' 56	X Y 282''E	PROJECT		
		967mE 5,731,388ml	AMG Zo N 55	ne 11.5 miles SE of Mackerel-3.	
Bottom Hole	0.04,	507mL 5,751,500m		Mickerer 5.	
		ELEVATIONS	& DEPTHS	<u></u>	
ELEVATIONS	WATER DEF	TH	TOTAL D	DEPTH Avg.Angle	
Ground				,974' 3649.68 Straight Hol	1
KB 28' 8.53	12	60' 384-05	T.V.D.	,574 S649.65 Schulghe hor	Ĭ
RT	PLUG BACK	ЛЕРТН		FOR P.B.	
Braden Head			KINDONG	, ion i.b.	
	1355	ţ	ABA	NDONMENT	
Top Deck Platform					
		DATES			
MOVE IN	RIG	UP		SPUDDED	-
JUNE 16, 197	5	JULY 7, 1975		JULY 7, 1975	
RIG DOWN COMPLETE	RIG	RELEASED		PROD.UNIT - Start Rigging Up	-
AUGUST 11, 1975		SEPTEMBER 12, 19	75	_	
PROD.UNIT - Rig Dow			P. ESTAB	LISHED	
-			_		
				····	
		MISCELLA	NEOUS		
OPERATOR	PERMITTEE	or LICENCEE	ESSO	INTEREST OTHER INTEREST	
ESSO	HEMATI	TE PETROLEUM P/L	. ESSC	EARNING 50%	
CONTRACTOR	RIG	NAME		EQUIPMENT TYPE	-
ATWOOD OCEANICS	AUST.P/L '	REGIONAL ENDEAVO	UR''	FLOATING DRILLING VESSEL	
TOTAL RIG DAYS	DRILLING AFE	NO. COMPLI	ETION NO	TYPE COMPLETION	1
71	235-002				
LAHEE WELL	Before	Drilling WILDC	AT		
CLASSIFICATION	After	Drilling UNCOM	MERCIAL	OIL DISCOVERY	

II. INITIAL PRODUCTION TEST

Not Applicable

II(a) FORMATION INTERVAL TESTS

F.I.T. # 1 9334' MUD RUN

Rec. 4000 cc mud, sand and grit. Trace fluorescence in sand, pad damaged, flowline plugged, HP gauge did not work.

Hydrostatic initial	4979 psi
Flow pressure	42 psi
Hydrostatic final	4979 psi

F.I.T. # 2 9352'

Recovered 22,000 cc water with rainbow.

Open tool for main chamber for 20 min., segregator for 5 min. Recovered 22,000 cc of water, .2 cuft. of gas, chamber pressure 2500 psi, 10,000 ppm Cl R .42 A 70°F, water has emulsified hydrocarbon bright yellow white fluorescence. Steam still sample.

 C_1 10,000, C_2 6,000, C_3 5,000, I.but. 600, n.but. 1,200, C_5 100.Single Amerada pressure:Hydrostatic initial4984 psiFlow initial4043 psiFlow final4048 psiShut in main chamber4079 psiHydrostatic final4963 psi

F.I.T. # 3 9259' MUD RUN

Recovered full chamber of mud and sand.

Hydrostatic initial	4921 psi
Flow pressure	4919 psi

F.I.T. # 4 9296' MUD RUN

Recovered full chamber, 10,500 cc of mud, sand. Trace oil and gas slowly breaking out. Quartz, pyrite, glauconite, Steam Still:

C1 600, C2 1,100, C3 4,500, I.but 1,800, n.but. 2,800, C5 900. Mud weight 10.1 1b, C1 6200 ppm, R .68 a 70° HP pressures. Hydrostatic initial 4950 psi

When opening the tool apparently lost seal, pressure fluctuated 2000-4900 indicating plugging, after 3-4 min. pressure settled to 3979 psi and decreased to 3927 psi opened segregator, lost seal 4949 psi.

F.I.T. # 5 9306'

4 x.020"choke 22,000 cc chamber, monel segregator No. 2909, reverse fired. Rec. 53.7 cu/ft. of gas, 8800 cc of oil-filtrate emulsion, honey yellow coloured with bright bluish white fluorescence on recovery, settled out to approx. 60% oil dark brown coloured, 51°API 47° pourpoint and 40% filtrate. The fluid was very waxy and foaming. 2800 cc mud, filtrate and wax.

Gas: C₁ 120M, C₂ 120M, C₃ 28M, C₄ 12M, C₅ 1300.

The tool was set in 27 sec. Chamber filled in 15 min. Open segregator after 20 min. Sealed segregator 4.5 min. Pressures: Surface pressure on chamber 1875 psi.

ΗP	initial hydrostatic		4972 psi	
	initial flow		3731 psi	
	final flow		3642 psi	
	shut in		4072 psi	
	segregator		4073 psi	
	final hydrostatic		7967	
		• 1-		

The pressure built up rapidly.

HAPUKU-1

II(a) FORMATION INTERVAL TEST cont'd

F.I.T. # 6 9258'

4 x-020 choke reverse fired, HP gauge did not operate. Rec. 63.2 cu/ft. of gas 9250 cc of oil-filtrate emulsion 2000 cc of mud-filtrate-wax emulsion Physical description and properties are similar to the oil recovered from FIT-5. Oil is 53.6° API at 60°F pourpoint 48°F Water: Cl 5200 ppm, R. 55 A at 75°F. The fluid appeared to settle out to 60% oil 40% filtrate. Gas: Cl 140-160M C2 55-120M C7 16500-32500 C: 54

Gas: C₁ 140-160M, C₂ 55-120M, C₃ 16500-32500, C₄ 5400-12000, C₅ 600-1300. Pressures: Chamber pressure on surface 1725 psi.

Amerada:	Hydrostatic initial	4937 psi
	Flow	3489-3614 psi
	Shut in chamber	4043
	Shut`in segregator	1185-1226 psi

Hydrostatic final

F.I.T. # 7 9332' MUD RUN

The formation appeared to be tight and lost seal after 3 min.

4927 psi

Hydrostatic initial	4974 psi
Flow pressure	255 psi
Hydrostatic final	4963 psi

F.I.T. # 8 9322'

Reverse fired:HP gauge did not work. Recovered 4.7 cu/ft. of gas, 19000 cc of water with thick foaming waxy oil scum on the surface. 200 cc of settled out oil still foaming. Cl 5300 ppm R .6 h of 74°F indicate filtrate.

Pressures: Chamber pressure 700 psi

Amerada:	Initial hydrostatic	4979 psi
	Initial flow	3719 psi
	Final flow	3714 psi
	Shut in chamber	3954 psi
	Shut in segregator	3985 psi
	Final hydrostatic	4958 psi

F.I.T. # 9 11,550'

21,500 cc of water and 50-80cc of waxy oil emulsion. Water had good yellow fluorescence, the oil had light blue fluorescence. Water is mud filtrate based on the 168 ppm NO3 content.

Set tool	2039 hrs.	Initial hydrostatic	6090 psi
Open tool	2044 hrs.	Initial flow	4937 psi
-		Final flow	5112 psi
Open segretator		Segregator flow	5112 psi
Shut segretator	2103 hrs.		
Off the Wall	2104 hrs.	Final hydrostatic	6080 psi
Pressures on Hew?	lett Packard	gauge: Choke 4 x .0	20''.

F.I.T. # 10 11,506'

Recovered 6 cf. of gas, 19,750 cc of water, 10 cc of waxy oil eumulsion. Water had very strong light yellow fluorescence, the oil had strong blue white fluorescence. Nitrate 181 ppm.

		Initial hydrostatic	6080 psi
Open tool	0225 hrs.	Initial flow	5089 psi
Shot shape charge	e 0240 hrs.	Final flow	5101 psi
Open segretator	0247 hurs		
Closed segretator	r 0251 hrs.		
Off the wall	0252 hrs.	Final hydrostatic	6067 psi

Well Completion Report

HAPUKU-1

III. PERFORATING RECORD (Prod. test, Completion, DST,)

INTERVAL	HPF	TOTAL SHOTS	SERVICE COM.
3840 - 3842	4	8	SCHLUMBERGER for squeeze cement plug.

S. BENEDEK

Geologist

HAPUKU-1

Well Completion Report

IV			CAS	ING - LINER	. - TU	BING RE	CORD		
Туре	Size	Weig	sht	Grade	Т	hread	No. Joints	Amount	Depth
]	KB Elevation	n Above	Cas	ing Head.					1277.00
	24''			PILE JOIN	<u>г</u>			35.95	1312.95
	20''	129#		x52	Л	//CC	1	35.37	1348.3
· · · · · · · · · · · · · · · · · · ·	20''	94#		x52	Л	T	8	293.83	1642.1
	20''	129#		x52	Л	T	1 + Float Shoe	39.60	1681.7
ł	B Elevation	n Above	Hang	ger					1282.0
	13-3/8''	54.5	#	J-55	But	ct.	Pupjoint+Hanger	6.45	1288.4
	13-3/8''	54.5	#	K-55	But	ct.	41	1599.39	2887.8
	13-3/8''	68#		J-55	But	ct.	2	75.50	2963.3
	13-3/8''	68#		N-80	But	ct.	32	1243.50	4206.8
	13-3/8''						Float Collar	1.60	4208.5
	13-3/8''	54.5	#	Butt.			1+Float Shoe	42.60	4251.1
k	KB Elevation Above		Hang	+ ger	•		. [1280.0
	9-5/8''						Pupjoint+Hanger	5.60	1285.6
	9-5/8''	47#		N-80	But	t.	226	8729.21	10014.
	9-5/8''	47#		N-80	But	t.	Float Collar + Jnt.+Float Shoe	42.03	10056.
V		····		CEMENT	RECOR	D			
String		Aratia <u>- 1997</u>		20''			13-3/8''	9-	5/8''
Type of	f Cement		1100	sks., <u>A</u> ust.	N.	710 sk 250 sk	S. AUST.N.+1%Ca	800 sks Aus 0.4% HR-4.	st.N +
Number	of FT ³			1298	÷		<u> </u>	944	
	e weight of	slurry		15.6 ppg			15.6 ppg	. 15.6	ppg
Cement	Тор		Sea	. Floor		Temp. Surve	28501	Temp. Survey	8450'
Casing	Tested with	 1	30	0 psi			y 1500 psi	<u>3000</u>	psi
Number	of Central	izers		7			10	39	
Number	of Scratche	ers		-			-	_	
Stage (Collar etc.						_		
Remarks	S	···				Tested 13.5 p	formation to pg mud	Tested form 12.7 ppg mu equivalent.	ation to d

VI. SUBSURFACE COMPLETION EQUIPMENT

Not applicable

-

۰.

Engineer

Well Completion Report

	·		CONAL CORES, SW CO	-1	
INTERVAL	TYPE	RECOVERED	INTERVAL	TYPE	RECOVERED
1740 - 3390	5 sets of	30' intervals	9245 - 9288	Core	43' 100%
3390 - 4300	washed and	20' ''	9288 - 9325		37' 100%
4300 - 4420	dried and	30'''	9325 - 9369		44' 100%
4420 - 7560	one set of	20' ''			
7560 - 8120	unwashed	10' ''			
8120 - 8530	cutting	20' ''	It was attempt cores detailed	ed to shoot i list and des	120 sidewall
8530 - 8820	samples	10'	attached.		
8820 - 9000		20'			
9000 - 11,974		10'		-	
1740 11 074	One set of				
1740 - 11,974	One set of composite				
	canned				
	cuttings sealed at				
	100' interv	als.			
			•		
Type & Scale		From To	Type & S	cale	From To
	······				
ISF-Sonic 2" &	5''=100'	4291 - 1682			44 Yugʻi Anna dalabi katalari ya katal
FDC (Gamma-Gamm		4291 - 1682 4296 - 1682			******
FDC(Gamma-Gamm 2''& Temperature Lo	a) 5''=100'	4296 - 1682			******
FDC(Gamma-Gamm 2''& Temperature Lo 2'' =	a) 5''=100' g 100'	4296 - 1682 2090 - 4 <u>10</u> 0		· · ·	8. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
FDC(Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5	a) 5''=100' g 100'	4296 - 1682 2090 - 4 <u>1</u> 00 10076 - 4252			******
FDC(Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5 FDC-CNL 2''&5''	a) 5''=100' g 100'	4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252			******
FDC(Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5 FDC-CNL 2''&5'' HDT	a) 5''=100' g 100'	4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252 10080 - 9100			
FDC(Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5 FDC-CNL 2''&5'' HDT HDT	a) 5''=100' g 100' ''=100'	4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252			
FDC(Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5 FDC-CNL 2''&5'' HDT HDT	a) 5''=100' g 100' ''=100'	4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252 10080 - 9100			
FDC (Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5 FDC-CNL 2''&5'' HDT HDT HDT Temperature Lo 2''=1	a) 5''=100' g 100' ''=100'	4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252 10080 - 9100 9300 - 4252			_
FDC (Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5' FDC-CNL 2''&5'' HDT HDT Temperature Lo 2''=1 ISF-Sonic 2''&5'	a) 5''=100' g 100' ''=100' g 00'	<pre>4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252 10080 - 9100 9300 - 4252</pre>			
FDC (Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''& FDC-CNL 2''& HDT HDT Temperature Lo 2''=1 ISF-Sonic 2''& FDC-CNL 2''&	a) 5''=100' g 100' ''=100' g 00'	 4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252 10080 - 9100 9300 - 4252 7500 - 9950 11957 - 10025 			-
FDC (Gamma-Gamm 2'' Temperature Lo 2'' = ISF Sonic 2'' 5 FDC-CNL 2'' 5 FDC-CNL 2'' 1 SF-Sonic 2'' 5 FDC-CNL 2'' 5 FDC-CNL 2'' 5 FDC-CNL 2'' 5	a) 5''=100' g 100' ''=100' 100'	4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252 10080 - 9100 9300 - 4252 7500 - 9950 11957 - 10025 11963 - 10025	Levels		
FDC (Gamma-Gamm 2'' Temperature Lo 2'' = ISF Sonic 2'' 5 FDC-CNL 2'' 5 FDC-CNL 2'' 1 SF-Sonic 2'' 5 FDC-CNL 2'' 5 FDC-CNL 2'' 5 FDC-CNL 2'' 5	a) 5''=100' g 100' ''=100' 100'	4296 - 1682 2090 - 4100 10076 - 4252 10081 - 4252 10080 - 9100 9300 - 4252 7500 - 9950 11957 - 10025 11963 - 10025			
FDC (Gamma-Gamm 2''& Temperature Lo 2'' = ISF Sonic 2''&5 FDC-CNL 2''&5'' HDT HDT HDT	a) 5''=100' g 100' ''=100' 100'	4296-16822090-410010076-425210081-425210080-91009300-42527500-995011957-1002511963-1002511962-100254450-10115			-

S. BENEDEK

Geologist

Well Completion Report

HAPUKU-1

IX.

STRATIGRAPHIC TABLE

AGE	FORMATION	DRILL DEPTH	SUBSEA DEPTH
	Seafloor	1288'	1260'
RECENT-PLEISTOCENE PLIOCENE	Gippsland Limestone	394-58 1288 - 1995' 1995 - 7450'	1260 - 1967' 2 1967 - 7422'
LATE MIOCENE		7450 - 7858'	7422 - 7830'
MID MIOCENE	Base of high velocity	7858' - 761-09 7858 - 9060'	7830' 7830 - 9032'
EARLY MIOCENE	Mid Miocene Marker	8290' 1797' 3 9060 - 9177' 5	8262' 9032 - 9149'
EOCENE	Lakes Entrance Fm.	9177 - 9222 4 364 30	9149 - 9194'
EOCENE-LATE CRETACEOUS EOCENE	Latrobe Group	9222 - 11,974' 9222 - 9231'	9194 - 11946' 9194 - 9203'
PALEOCENE	Upper <u>L.balmei</u> Zone Lower L.balmei Zone	9231 - 9287' 2866-30 9287 - 9406'	9203 - 9259' 9259 - 9378'
PALEOCENE?	Undifferentiated	9406 -9708 30108	9239 - 9378 9378 - 9680'
LATE CRETACEOUS	<u>T. longus</u> Zone T. lilliei Zone	9708 - 9878' 9878 - 11,974'	9680 - 9850' 9850 - 11,946'
·		1	

	OI	L	
PAY ZONE	Gross	Net	
9222 - 9310	80	26	
9310 - 9350	40	26	Transition Zone

S. BENEDEK

Geologist

HAPUKU-1

DESCRIPTION OF LITHOLOGICAL UNITS

Well Completion Report

IX(a)

HAPUKU - 1

- 1288 1740 No samples were collected, gamma ray log indicated limestones.
- 1740 2140 <u>Calcarenite</u>, light green-grey, firm, fine to medium with silty matrix.
- 2140 2670 <u>Marl</u>, light grey, very soft, fossiliferous, interbedded and grading to calcarenite in parts.
- 2670 3960 Marl, light green-grey, soft to slightly firm, very slightly silty, fossiliferous in parts.
- 3960 4820 <u>Marl</u>, light grey, soft to slightly firm, silty. With thin bands of calcarenite, green-grey, firm to hard, moderately calcareous, poorly sorted, very fine to fine, to some medium, fossiliferous in places, grading into limestone, light olive green to grey, hard massive, fossiliferous, becoming glauconitic.
- 4820 5570 <u>Marl</u>, light grey, slightly firm to soft, silty, fossiliferous, with grain size increase grading to calcarenite calcisiltite light grey, firm, fossiliferous.
- 5570 7150 <u>Marl to calcisiltite</u> calcarenite, light grey, soft to hard fossiliferous, glauconitic. Interbed ded with dolomitic limestone, olive grey, hard, massive.
- 7150 7858 <u>Calcilutite</u> to <u>Marl</u>, light to medium grey, subfissile to fissile, fossiliferous, glauconitic, compacts into limestone in places.
- 7858 8290 Marl, light grey, soft fossiliferous, glauconitic.
- 8290 9177 <u>Shale</u>, calcareous claystone, grading to siltstone towards base, light olive grey, soft to slightly firm, subfissile micaceous, pyritic, fossiliferous.
- 9177 9222 <u>Sandstone</u>, very fine to silt size, and loose medium to coarse grains. Olive grey to buff, non calcareous, glauconitic, quartz grains are clear and well rounded.
- 9222 9231 Sand mainly quartz, glauconitic, fine to very coarse mainly fine to medium, subrounded to subangular, common pyrite cement.
- 9231 9708 Sandstone, dark olive grey, friable to hard, cemented, fine to pebbly predominantly fine, moderate to well sorted, with floating grains of coarse material, micaceous, glaucontic, pyritic, varing clay matrix. Irreguarly cemented by calcite, siderite and/or dolomite, cement material concentrated in randomly dispersed nodules.
- 9708 9878 <u>Sand</u>, clear to white, some slightly frosted, quartz, loose coarse to very coarse, moderately sorted, subangular to subrounded, glauconitic, pyritic. Interbeds of sandstone with clay matrix and glauconite concentrations.
- 9878 10,290 Sandstone, very light grey, fine to 2 mm size, very poorly sorted, coarse grains tend to float in fine grained matrix of very fine grained silicious material with glauconite and trace pyrite. Quartz grains are clear to slightly milky and subrounded.

Interbedded calcareous shale to siltstone, medium dark grey, firm to moderately hard, glauconitic, with a trace of pyrite, carbonaceous, micaceous.

10,290-10,515 Siltstone, dark grey, firm to friable, sandy. Composed of quartz, with mica, glauconite, carbonaceous material,

IX (a) <u>Description of Lithological units</u> _____ cont'd

HAL UNU-I

and pyrite. Well rounded, very coarse to granule size quartz grains, are dispersed through the siltstone. Interbedded - interlaminated quartz sand, unconsolidated coarse to granule size, well rounded, pyritic. Some sand beds are dolomite cemented and very hard.

10,515-11,500 Siltstone to shale, dark grey, carbonaceous, alternating with sandstone, medium to granule, frequently dolomite cemented. Interbedded coal, black, vitreous to dull, hard, brittle and fissile.

11,500-11,974 <u>Sandstone</u>, medium grey, fine-medium to coarse grained, poorly sorted, angular. Composed of quartz and lithic fragments, pyritic, and in parts dolomite cement.

HAPUKU-1

X. GEOLOGICAL ANALYSIS

(Pre-drill Prognosis vs. Actual results)

PRE-DRILL PROGNOSIS

The pre-drill concept of the Hapuku structure was that of a large northeast-southwest trending anticline at the primary objective horizon, the top of Latrobe unconformity. A deeper unconformity, interpreted to be <u>M.diversus</u> (lower Eocene) in age was interpreted as an erosional surface cutting into both Paleocene and Upper Cretaceous sediments. Structure of the Upper Cretaceous section was difficult to map, as the resolution of deep seismic data deteriorates rapidly to the north and east of the Hapuku area. However, northwest-southeast reversal was evident on all lines crossing the feature and both northeast and southwest dip segments could be mapped with confidence on key lines over the prospect. Several tensional growth faults were interpreted to cut the structure at right angles, extending upwards to the <u>M.diversus</u> unconformity.

The Hapuku-1 well was drilled to test three objectives:

- 1) The sands at the top of Latrobe, the unconformity being sealed by overlying Miocene shales.
- 2) The sands immediately below the <u>M.diversus</u> unconformity, sealed by possible overlying Eocene shales.
- 3) Interbedded sands in the Upper Cretaceous sequence bounded by faults.

The predicted structural tops were:

		SUBSEA
Eocene	Latrobe Group	9290'
Early Eocene	M. diversus unconformity	9830'
Late Cretaceous	<u>T. lilliei</u> zone	9830'

RESULTS

Structure

Post-drill evaluation of the well data confirmed the structural interpretation for both the Top of Latrobe (87' high to prediction) and the top of the T.1illiei (20' low to prediction). However the horizon previously interpreted to be the M.diversus unconformity is currently interpreted as a depositional paleoslope.

Stratigraphy

The major discrepancy between predicted stratigraphy and that penetrated by the well, concerns the sequence above the <u>T.lilliei</u> horizon, where instead of the predicted <u>M.diversus</u> predominantly fine-grained sediments, the well encountered a Paleocene section consisting essentially of both good and poor quality sandstones with minor siltstone.

The Paleocene section penetrated in the well is extremely thin, but is considered to be a complete and continuous section, and thus a result of sediment starvation rather than erosion of a much thicker sequence. The lack of sediments of Eocene, Oligocene and Early Miocene ages at Hapuku-1 is also thought to represent sediment starvation rather than structural growth and erosion.

X. GEOLOGICAL ANALYSIS cont'd

Hydrocarbon Occurrence

Hydrocarbons were encountered within generally poor quality sandstones immediately below the Top of Latrobe unconformity, with an interpreted 26' of net oil sand occurring between 9222' and 9310' where an interpreted sharp increase in water saturation occurs. The zone between 9310' and 9350', referred to as a transition zone also contains 26' of net oil sand with very high water saturations, and thus it probably could not be considered to be recoverable oil. This horizon was the primary objective of the well.

The secondary objective, predicted to occur below the interpreted <u>M. diversus</u> unconformity, was not present due to the sequences encountered (see Stratigraphy).

The tertiary objective, interbedded Upper Cretaceous sands, was tested below a silty-coaly cap rock sequence. Traces of oil were recovered from formation interval tests but no economical significance could be established. Absence of significant accumulations in this section was probably due to the lack of thick shales, necessary for sealing at the faults.

WELL COMPLETION REPORT HAPUKU-1

APPENDIX 1

AMDEL EXAMINATION OF SANDSTONES

٢

amdel The Australian Mineral Development Laboratories

Flemington Street, Frewville, South Australia 5063 Phone Adelaide 79 1662, telex AA82520 Please address all correspondence to Frewville, In reply quote: MP3/178/0

16 October, 1975

Esso Australia Ltd., 127 Kent Street, SYDNEY, 2000.

Attention: Mr. S. Benedek.

REPORT MP 933/76 - Hapuku-1

YOUR REFERENCE:

MATERIAL:

IDENTIFICATION:

DATE RECEIVED:

WORK REQUIRED:

TITLE:

S 173 – S 179

Letter dated SB/September 19, 1975.

24 September, 1975

Petrography

7 Rocks

Examination of Sandstones

Investigation and Report by:

Dr. B.G. Steveson

Officer in Charge, Mineralogy/Petrology Section: Dr. K.J. Henley,

يو ا

K.J. Henley

for F.R. Hartley, Director.

aps.

Pilot Plant: Osman Place, Thebarton, South Australia, phone Adelaide 438053 Branch Offices: Perth and Sydney

Sample: S 173; (TS C14900) Core #1 9300'

Rock Name:

Calcareous sandstone

Hand Specimen:

A grey friable sandstone which has a fine-grained clastic texture. The hand specimen has a somewhat mottled appearance due to the presence of relatively large crystals of calcite.

Thin Section:

An optical estimate of the constituents gives the following:

	%
Calcite	45-50
Quartz	45
Feldspar	5
Glauconite	1-2
Kaolinite	1
Opaques .	< 1
Muscovite	< 1
Tourmaline	trace

The rock consists principally of detrital grains of quartz and feldspar embedded in large irregular crystals of calcite which commonly include several of the detrital grains.

Quartz and feldspar form equant grains which range in size from approximately 0.05 mm to 0.25 mm with an average grainsize of about 0.1 mm. The grains are commonly subangular but this is likely to be the result of partial corrosion by calcite rather than a feature of the original detrital sediment. One or two quartz grains have skeletal appearance and such delicate grains would not have been transported; also some of the feldspar grains have a deep penetration of calcite and again such irregular grains would not have survived transport. From the textural data and from the owerall abundance of calcite it is concluded that some of the original detrital has been replaced by the calcite. The feldspar in the rock consists of both plagioclase and untwinned potassium feldspar and both minerals are fairly fresh.

Muscovite, glauconite, tourmaline and opaques are all accessory to minor components of the detrital fraction of the rock and in general, these minerals occur as grains less than 0.1 mm in size. The muscovite forms fairly welldefined flakes some of which are somewhat corroded whereas the glauconite and tourmaline form equant, compact grains which have rather smooth outlines. One glauconite grain is about three times longer than it is wide but this is rather exceptional and most of the glauconite grains have a rather pelletal appearance.

2.

Apart from one or two patches of relatively coarse-grained kaolinite (which is interpreted as a partly replaced, early authigenic mineral) the rock is cemented solely by calcite; this mineral occurs as irregular equant crystals most of which are between 0.6 mm and 1.5 mm in size. The calcite is fairly clear and unaltered and, as mentioned above, there is evidence that the calcite has replaced not only any original cement but also some of the original detrital material also.

Because of the partial destruction of the original detrital texture of the rock it is not possible to comment usefully on the environment of deposition of the sample except to indicate that the rock contains some feldspar but otherwise appears to have considerable chemical The rock contains trace amounts of coarse-grained, and hence maturity. authigenic, kaolinite and it is likely that this mineral developed during early diagenesis of the rock but was subsequently almost completely replaced by calcite. Extensive calcite cement which occurs in this rock may be interpreted either as being derived from percolating pore waters (derived from an external source) or have been the result of recrystallisation of nearby detrital carbonate grains. Unless there are thick limestone deposits associated with this sample it appears somewhat more likely that the carbonate in this rock was derived from percolating pore waters in which dissolved carbonate ions were present to an unusually great extent.

Sample: S 174; TS C14901. Core #3 9329'

Rock Name:

Glauconitic sandstone

Hand Specimen:

A massive friable rock which consists of relatively coarse-grained fragments of quartz and glauconite, poorly cemented together by dark material. Examination of the sample under a binocular microscope reveals the presence of some very fine-grained (?authigenic) pyrite.

Thin Section:

An optical estimate of the constituents gives the following:

	%
Quartz	65-70
Glauconite	15
Clay	5-10
Feldspar	5-7
Biotite	trace - 1
Pyrite	trace – 1
Tourmaline	trace
Zircon	trace

The sample is an ill-sorted glauconitic sandstone which consists largely of detrital grains with only a little argillaceous matrix; glauconite is present as relatively large aggregates which probably grew and were deposited in the (marine) environment of deposition.

The largest detrital grains intersected in the thin section are more than 2 mm in size and there is a complete gradation from these large grains down to numerous fragments of quartz which are of silt grade. As a result, therefore, the rock is notably ill-sorted and there is a completely random arrangement of grains of different size and the rock shows no evidence of, for example, graded bedding. The quartz and feldspar grains are angular and subangular and some feldspar grains, particularly, have a distinctly elongate shape. Much of the feldspar in the rock is untwinned and hence is most likely to be a potassic. variety. The quartz shows little or no undulose extinction and is the common "plutonic" variety. Together the quartz and feldspar grains comprise approximately three-quarters of the volume of the rock; other detrital minerals observed in the thin section are tourmaline, zircon The last-named mineral forms small flakes several of and biotite. which have been distorted by compaction of adjacent quartz grains.

Glauconite is present as equant but commonly somewhat irregular patches which are as much as 0.8 mm in diameter. It appears most likely that the glauconite has developed in the environment in which the majority of the grains were deposited and has suffered a little corrosion and fragmentation during final deposition stages alongside the quartz and feldspar grains. The glauconite patches are neither as smoothly round as would be expected if they had grown after deposition but on the other hand they are not so fragmented and reduced in size as would be expected if they had been transported any considerable distance. The glauconite in the rock was identified by X-ray diffraction techniques and the mineral provides a reliable indicator of a shallow marine environment of deposition.

The remainder of the material in the rock consists of intergranular clay which is poorly defined in thin section. Much of the material has a turbid grey to brown colour and is dark between crossed nicols.

The rock contains a moderate amount of opaque material, some of which occurs as very fine irregular granules but some also shows square or nearly square outlines and this material is interpreted as being pyritic. In one place in the thin section an aggregate of dusty opaques is associated with abundant glauconite and it is likely that this feature represents a relatively large patch of pyrite which has been partially replaced. The idiomorphic to sub-idiomorphic shape of some of the pyrite crystals indicates that this mineral is authigenic and this, in turn, suggests a reducing environment during the diagenesis of the rock.

In summary, therefore, the rock is an ill-sorted sandstone which contains a moderate amount of feldspar; the detrital grains are generally angular to subangular. The sample contains glauconite and authigenic pyrite. These together indicate that the environment of deposition was probably shallow marine and (possibly subsequently) of a reducing nature. The sample is probably not a turbidite since it contains only a small proportion of clay matrix.

3.

Ì

Sample: S 175; TS C14902 SWC #50 9221'

Rock Name:

Sideritic, glauconitic, sandstone.

Hand Specimen:

A dark brown, rather friable sandstone which contains spots and patches of a dark green colour.

Thin Section:

An optical estimate of the constituents gives the following:

• • • • • • • • • • • • • • • • • • •	%
Quartz	35-40
Siderite	20– 25
Clay	20- 25
Glauconite	10-15
Feldspar	2-5
Lithic fragments	< 2
Iron oxides/hydroxides	1
Biotite	< 1

Siderite, glauconite and clay are abundant intergranular components of this rock and together they are more abundant than the detrital components which consist principally of quartz, feldspar and biotite. It is likely that the sediment as originally deposited contained abundant clay and that some of this material has been replaced by authigenic siderite.

The quartz and feldspar grains are notably ill-sorted and range in size up to about 1.5 mm. The largest grains of quartz are sub-round to round but quartz grains less than 0.3 mm in size are commonly subround to sub-angular. The average grainsize of the quartz and feldspar grains is probably about 0.3 mm. The most abundant grain type is single crystals of quartz which show little or no undulose extinction. For the most part quartz grains have sharply defined boundaries against the clay matrix and the authigenic minerals and there is no direct evidence of post-depositional replacement of the quartz. Much of the feldspar in the rock is slightly turbid untwinned material which is probably orthoclase or microcline. Generally the feldspar crystals are less than 0.3 mm in size and most are subangular to subround. Plagioclase grains are subordinate in abundance to grains of potassium feldspar. Together the quartz and feldspar comprise less than 50% of the total volume of the rock and hence these grains do not provide an efficient framework for the rock and it is concluded either that the original sediment contained abundant detrital clay (this hypothesis is preferred) or, that a relatively large proportion of the quartz and feldspar has been replaced during diagenesis.

Glauconite comprises 10-15% of the sample and occurs as bright green patches which range in size from about 0.1 mm to 0.5 mm. Much of the glauconite occurs as relatively equant sub-round to sub-angular patches which have a very fine-grained granular texture. Variation in the shades of green within some of these glauconite patches give them somewhat lobate appearance such as characterises glauconite formed authigenically from (?)gelatinous material. Some grains show various intermediate stages in the alteration of biotite to glauconite and there can be no doubt that some, if not all of the glauconite in the rock has developed at the expense of detrital biotite. One grain, in particular, consists of about 80% of biotite with pale green glauconite developed along specific cleavage traces. The detrital nature of the biotite is shown by the kinking of the cleavage plane traces.

Siderite (identified by X-ray diffraction methods) is present in the rock as small equant xenomorphic crystals which are generally about 0.03 to 0.05 mm in size. These small crystals of siderite are widely and thickly scattered throughout the intergranular material of the rock. It is likely that the siderite has developed in the sample and has probably replaced some original detrital clay matrix. In one or two places in the rock the siderite is particularly concentrated in elongate patches but in general siderite is characterised by its even distribution throughout the thin section.

Original detrital clay is represented by a pale brown material which is dark between crossed nicols and which occurs between the minerals described above. The clay is particularly associated with siderite and these two minerals now form much of the matrix of the sample. One or two patches of similar clay material have rather well-defined outlines and it is suggested that these patches are derived from the alteration of fine-grained lithic fragments.

In summary, therefore, the rock is a notably immature and clayey sediment which has undergone extensive authigenesis with the development of glauconite (partly after biotite) and siderite. These two minerals together indicate that diagenesis occurred in a reducing marine environment of deposition.

Sample: S 176; TS C14903 SWC # 42 9638'

Rock Name:

Immature feldspathic sandstone

Hand Specimen:

An extremely friable grey sandstone in which no bedding can be seen. The largest fragment of the sample contains distinctive green spots and reflecting cleavage of colourless mica.

X-ray Diffraction Results:

The results of an X-ray diffraction study of a sample of this rock are as follows:

Quartz	dominant
Feldspar (orthoclase >> albite) subdominant
Mica	accessory
Chlorite	trace
Pyrite	trace

Thin Section:

An optical estimate of the constituents gives the following:

	%
Quartz	60-70
Feldspar	< 10
Chlorite	5-7
Glauconite	7–10
Muscovite	10
Biotite	2-5
Opaques	< 2

This is a fine-grained, rather immature sandstone which contains muscovite, chlorite (identified by bulk X-ray diffraction methods), biotite and glauconite (identified by X-ray diffraction powder photography).

Detrital quartz and feldspar occur as equant subangular to angular grains which have an average size of about 0.1 mm. The grains are fairly well compressed together in many parts of the rock although there are some patches of intergranular material which are as much as 0.2 mm in diameter. Many of the detrital grains have been fractured and a moderate proportion of the feldspar grains show some evidence of partial chemical alteration also. Even so, this alteration of the feldspar has resulted in only a faint turbidity and in many grains relics of the original feldspar twinning can still be seen.

Muscovite and biotite were components of the original detritus from which the rock was derived. Flakes of both minerals have been compressed during compaction of the rock but it can be seen that originally these minerals formed flakes which were up to 0.2 mm in length. Some flakes of biotite have deep brown shades and show a marked pleochroism and hence appear to be only slightly altered whereas other flakes of this mineral have a paler brown colour and show reduced pleochroism and it is inferred that these are partly altered flakes which have suffered degradation during diagenesis.

Glauconite forms distinctive pale green patches which have irregular shapes and appear to be distorted by compression between the more rigid quartz and feldspar grains. The largest patches of glauconite are 0.3 mm in diameter. There is no direct evidence in the thin section of the origin of the glauconite except in one or two places where green phyllosilicates occur in the cleavage traces of biotite. In these places the green mineral is rather speckled with opaque and semi-opaque material and it is not possible to distinguish whether or not this mineral is glauconite or chlorite; however, the rather lobate and irregular shapes of the glauconite patches are not inconsistent with an origin from the alteration of biotite nor with an origin depending on the aggregation of this mineral from (?) gels. The rather irregular shapes of some patches of glauconite (where the glauconite occurs in the intergranular spaces between several quartz grains) suggests that this mineral is not of detrital origin. Chlorite in the rock is generally associated with the alteration of detrital biotite.

In brief, therefore, the rock is a fine-grained feldspathic sandstone which contains authigenic chlorite and glauconite.

Sample: S 177; TS C14904. SEC #37 9875'

Rock Name:

Argillaceous sandstone

Hand Specimen:

An extremely friable dark grey sandstone which contains a few relatively large flakes of mica in an otherwise featureless material.

X-ray Diffraction Results:

The results of an X-ray diffraction examination of the sample is as follows:

Quartz	dominant
<pre>Feldspar(orthoclase >> albite)</pre>	subdominant
Mica	accessory
Chlorite	accessory
Pyrite	trace to accessory

Thin Section:

An optical estimate of the constituents gives the following:

	%
Muscovite) Chlorite	45
Quartz	40
Feldspar	10
Opaques	3-5
Biotite	2
Glauconite	< 1
Zircon	trace

This rock is an ill-sorted sandstone about half the volume of which consists of argillaceous matrix material. The detrital grains have a very wide size range and there is some evidence of a bimodal grainsize distribution.

The largest detrital grain intersected in the thin section is a quartz crystal more than 2 mm in length and there appears to be a population of grains which have an average grainsize of about 1 mm and a grainsize range of 0.8 to 2 mm. Most of the quartz and feldspar in the rock, however, are present as grains 0.1 to 0.4 mm in size. The large detrital grains are commonly subround and grains belonging to the finer-grained population are generally sub-angular. Feldspar grains show a moderate amount of alteration (probably more than in

S 176) and many of the feldspar grains are more or less brown in plane-polarised light due to the presence of fine-grained alteration products. Most of the feldspar in the rock is untwinned orthoclase.

Biotite is a minor component of the detrital fraction of the rock and occurs as somewhat altered and distorted flakes which are generally less than 0.3 mm in length. Although much of the biotite is partly altered there is no evidence of the association of chlorite with the biotite.

Glauconite is present in this rock only to a limited extent and the mineral comprises less than 1% of the total volume of the sample. Small pools of a fine-grained granular glauconite are widely dispersed through the samples and most of these have a compact and rounded appearance and provide no direct evidence of their mode of origin.

The most abundant intergranular material is brown in plane-polarised light and consists of muscovite, chlorite and opaque and semi-opaque Under crossed nicols flakes of muscovite up to about material. 0.05 mm in length can be seen but much of the material is very finegrained and is rather dark between crossed nicols. The relative proportions of muscovite and chlorite cannot be determined with any precision but both minerals probably are more abundant than the opaque and semi-opaque material which comprises less than 5% of the The matrix material is fairly homogeneous throughvolume of the rock. out the area of the thin section and it is likely that this material represents a primary argillaceous matrix which has been at least partly recrystallised during diagenesis. Most of the opaque material in the rock occurs as granular, dusty patches or as irregular blebs and it is likely that this material has been derived either from circulating waters or, more likely, from the degradation of ferruginous detrital material.

Zircon and rutile are trace detrital components of the rock.

This sandstone contains a rather poorly sorted detrital fraction and there is some evidence of bimodality in the grainsize distribution; furthermore, the grains have been only briefly transported and altered and feldspar and biotite have survived weathering, transport and deposition. The sediment contains an abundant primary argillaceous matrix which now consists of iron-stained muscovite and chlorite. A small amount of glauconite is present in the rock and this indicates that the sample was deposited in marine (probably shallow-marine) conditions. Diagenesis has probably been hampered by the abundance of argillaceous matrix (which inhibits the circulation of pore water).

Sample: S 178; TS C14905 SWC # 109 10,813'

Rock Name:

Argillaceous feldspathic sandstone.

Hand Specimen:

A pale grey fine-grained sandstone which is extremely friable.

X-ray Diffraction Results:

The results of an X-ray diffraction examination of a sample of this rock are as follows:

Quartz		dominant
Feldspar (orthoclase >>	albite)	subdominant
Mica		accessory
Kaolinite		accessory
Siderite	٠	accessory
Pyrite		trace

Siderite in the listing above refers to an unusual carbonate mineral which cannot be unambiguously identified by X-ray diffraction techniques; the main diffraction line is at 2.76Å. The material could be a magnesian siderite, a calcian magnesite or a calcium-iron magnesite.

Thin Section:

An optical estimate of the constituents gives the following:

	%
Quartz	65
Feldspar	5-10
Muscovite	10
Kaolinite	10
Carbonate	5
Opaques	2
Lithic fragments	< 5

9.

This rock has a well-defined clastic texture and it is a feldspathic sandstone which contains fairly abundant primary and argillaceous matrix and a little authigenic carbonate.

For the most part the detrital grains of quartz and feldspar are moderately well-sorted and range in size from about 0.05 mm to 0.3 mm; however, the thin section contains one grain which is about 1.2 $\ensuremath{\mathsf{mm}}$ In general, the average grainsize is about 0.15 to 0.2 mm. in length. The quartz and feldspar grains have equant shapes and most are subangular to sub-round. Fracturing of the grains is prevalent and most grains contain at least one irregular fracture. Much of the feldspar in the rock is untwinned orthoclase and only one or two grains in the whole thin section show polysynthetic twinning of plagioclase. A few patches of rather dusty dark material are 0.1 to 0.2 mm in size and have fairly well-defined outlines; these have been assumed to be partly altered lithic fragments derived from fine-grained, ferruginous rocks (either sedimentary or volcanic). These grains are only a minor component of the rock and do not exceed 5% in abundance.

The rock contains a moderate amount of a homogeneous fine-grained matrix. In plane-polarised light this matrix has a pervasive brown colour but between crossed nicols it appears that the matrix consists of a moderately birefringent phase (muscovite) and a phyllosilicate with a very low birefringence (kaolinite). The relative proportions of these two minerals are rather difficult to assess but they are probably present in subequal amounts. The muscovite in a few places forms fairly well-defined flakes up to about 0.1 mm in length but, for the most part, the matrix has a rather fine-grained texture. A few muscovite flakes which are particularly well-defined were probably part of the sand-grade detrital fraction of the rock but most of the muscovite in the rock is present as very fine-grained material.

The carbonate phase occurs as anhedral crystals between the grains of quartz and feldspar; the largest crystals intersected in the thin section are about 0.15 mm in size and most of the carbonate is fairly well-crystallised and is clear in plane-polarised light. There is evidence in the thin section that the carbonate has replaced some of the detrital quartz, in that carbonate has penetrated in irregular masses and has apparently isolated fragments of quartz which have a common extinction position. It is likely that the carbonate represents a relatively late phase in the diagenesis of the rock and presumably represents the occurrence of relatively alkaline conditions of diagenesis in which kaolinite and quartz were relatively unstable. The composition of the carbonate is discussed in the section dealing with the X-ray diffraction results.

With respect to the gamma radiation associated with samples S 176-S 178; all three samples contain dusty opaque material which could be carbonaceous (as opposed to ferruginous and may be uraniferous. No other features of the rocks suggest an origin for the radioactivity. Sample: S 179; TS C14906, Sample from junk basket, taken at 11,974' T.D.

Rock Name:

Dolomitic sandstone,

Hand Specimen:

A compact grey sandstone which has a fairly coarse clastic texture,

Thin Section:

An optical estimate of the constituents gives the following:

•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Quartz	60
Feldspar	5
Dolomite	35
Chert	. ⊲ 2

The identification of dolomite was checked by X-ray diffraction powder techniques.

This rock consists essentially of clastic grains of quartz and feldspar in a monomineralic dolomite cement.

The largest grain intersected in the thin section is 3 mm in length and belongs to a population of grains which have an average size of about 1 mm; these grains constitute about 20% of the rock. Ouartz and minor chert are present but feldsar is not represented among these grains. Most of these large grains are round to sub-angular and they are probably derived from a sedimentary source rock. Grains of the finer-grained population are 0.05 to 0.3 mm in size and are sub-round to sub-angular. Feldspar is present as slightly altered and turbid untwinned (?)orthoclase and polysynthetically twinned plagioclase (the former predominates) and many grains of feldspar are It is likely that the detrital grains have only sufsub-angular. fered minor replacement by authigenic dolomite. Some grains of feldspar have re-entrant angles and some serrate margins and, in a few places, dolomite occurs in fissures through grains, in general, however, only a small proportion of the detritus has been removed during cementation and the grain-size distribution and grain shapes are essentially those of the sediment.

Dolomite forms a random granular mosaic of clear, well-defined crystals which have a crystal size commonly of about 0.1 mm. No other cement or matrix is present in the rock and hence it is not possible to determine whether the dolomite replaced a pre-existing phase or was deposited directly from percolating pore-waters.

The sample is an immature, feldspathic sandstone (sub-arkosic) cemented wholly by authigenic dolomite. The presence of this mineral indicates that, at one stage in the deposition of the rock, the pore-waters were relatively enriched in carbonate.

11,

WELL COMPLETION REPORT

HAPUKU-1

APPENDIX 2

SAMPLE DESCRIPTIONS

.

HAPUKU #1 <u>SAMPLE DESCRIPTIONS</u>

···· ·

Bellis,

DEPTH	%	DESCRIPTION
		20" casing shoe at 1682 feet. Bit #2 3AJ + 17½ underreamer BOB 1725 hours. Reamed rat hole. Drilling with gel and seawater.
1740-1770	100	Cement cavings, 25 units gas on H/W
1770-1800	. 60	<u>Calcarenite</u> , light green-grey, firm, fine to medium, silty matrix, calcareous.
	40	<u>Cement cavings</u> Trace <u>shell fragments</u>
1800-1830	70 30	<u>Calcarenite</u> , as above, soft to firm <u>Cement cavings</u> Trace <u>shell fragments</u>
1830-1860	60 40	<u>Calcarenite</u> , as above <u>Cement cavings</u> Trace <u>shell fragments</u> , some <u>gastropods</u>
1860-1890	60 40	<u>Calcarenite</u> , as above <u>Cement caving</u> s, Trace <u>shell fragments</u> and <u>foraminifera</u>
1890–1920	70 30	<u>Calcarenite</u> , as above. <u>Cement cavings</u> Trace <u>shell fragments</u>
1920-1950	100	<u>Calcarenite,</u> as above Trace <u>cement cavings</u> Trace <u>shell fragments</u>
1950–1980	100	C <u>alcarenite</u> , as above Trace <u>cement cavings</u> Trace <u>shell fragments</u>
1980-2010	100	C <u>alcarenite</u> , as above Trace <u>cement cavings</u> Trace <u>shell fragments</u>
2010–2040	100	C <u>alcarenite,</u> as above Trace <u>cement cavings</u> Trace <u>shell fragments</u>
2040–2070	100	C <u>alcarenite</u> , light green-grey, moderately firm to firm, very fine to medium grain, fossiliferous in part, silty matrix, calcareous Trace <u>cement cavings</u> Trace <u>shell fragments</u> , and <u>fossil</u> s.
2070-2100	100	C <u>alcarenite</u> , as above Trace <u>cement cavings</u> Trace <u>shell fragments</u> and <u>fossils</u> .
2100-2130	100	C <u>alcarenite</u> , as above Trace <u>cement cavings</u> Trace <u>shell fragments</u> and <u>fossils</u>
2130-2160	100	Calcarenite, as above, good porosity, low permeability Trace <u>marl</u> , light grey, very soft, very calcareous Trace <u>cement cavings</u> Trace <u>shell fragments</u> and <u>fossils</u>
2160-2190	60 40	Marl, as above Calcarenite, as above Trace shell fragments and fossils

НАРИКИ #1

.

.

SAMPLE DESCRIPTIONS

BELLIS/KEMP

DEPTH	%	DESCRIPTION
2190-2220	40 60	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>shell fragment</u> s
2220-2250	70 30	<u>Calcarenite</u> , as above <u>Marl</u> , as above Trace <u>cement</u> Trace <u>shell fragments</u> and <u>fossils</u> ,
2250-2280	70 30	<u>Calcarenite,</u> as above <u>Marl,</u> as above Trace <u>cement cavings</u> Trace <u>shell fragments, fossils</u> including gastropods & foraminifera
2280-2310	80 20	<u>Calcarenite</u> , as above <u>Marl,</u> as above Trace <u>cement</u> Trace <u>shell fragments</u> and <u>fossils</u> , as above
2310-2340	70 30	<u>Calcarenite</u> , light green grey, moderate-firm, fine to medium, silty calcareous, fossiliferous in part <u>Marl</u> , light grey, very soft, calcareous Trace <u>cement cavings</u> ' Trace <u>shell fragments</u> and fossils, as above
2340-2370	50 50	<u>Calcarenite</u> , as above <u>Marl</u> , as above Trace <u>cement cavings</u> Trace <u>shell fragments</u> and <u>fossils</u> , as above
2370-2400	50 50	<u>Calcarenite</u> , as above <u>Marl</u> , as above Trace <u>cement cavings</u> Trace <u>shell fragments</u> and <u>fossils</u> , as above
2400-2430	50 50	<u>Calcarenite</u> , as above, but tends to hard <u>Marl</u> , as above Trace <u>cement cavings</u>
2430-2460	40 60	<u>Calcarenite</u> , as above <u>Marl</u> , as above Trace <u>cement cavings</u>
2460-2490	20 80 -	Calcarenite Marl, as above, but tending to light green-grey
2490-2520	20 80	Calcarenite, as above Marl, as above
2520-2580	10 90	<u>Calcarenite</u> , as above <u>Marl,</u> as above Trace <u>shell fragments</u> and <u>fossils</u>
2580-2610	10 90	<u>Calcarenite</u> , as above <u>Marl</u> , as above Trace <u>fossils</u>
2610-2640	10 90	<u>Calcarenite</u> , as above <u>Marl</u> , as above Trace <u>fossils</u>
2640-2670	80 20	<u>Marl</u> , light green grey, soft to slightly firm, very calcareous, <u>Calcarenite</u> , light green grey, hard tending to <u>backareous</u> silty, calcareous Trace <u>fossils</u> , as above

HAPUKU #1

.

.

1

SAMPLE DESCRIPTIONS

BELLIS/KEMP

.

DEPTH	%	DESCRIPTION
2670-2700	100	<u>Marl</u> , as above Trace <u>Calcarenite</u> , as above Trace <u>fossils</u>
2700-2730	100	<u>Marl</u> , as above Trace <u>Calcarenite</u> , as above Trace <u>fossils</u>
2730-2760	100	<u>Marl</u> , as above, fossiliferous in part Trace <u>Calcarenite</u> , as above Trace <u>fossils</u>
2760–2790	100	Marl, light green grey, soft-slightly firm, very slightly silty, very calcareous, fossiliferous in part
2790-2820	100	<u>Marl</u> , as above
● ^{2820–2850}	100	<u>Marl,</u> as above Trace <u>calcarenit</u> e
2850–2880 [.]	100	<u>Marl,</u> as above Trace <u>calcarenite</u> , as above
2880-2910	100	Marl, green to gr.grey, soft, sticky, very calcareous
2910-2940	100	<u>Marl</u> , as above
2940–2970	100	<u>Marl</u> , as above
2970-3000	100	<u>Marl</u> , as above Trace <u>Calcarenite</u> , as above
3000-3030	100	<u>Marl</u> , as above Trace <u>calcarenite</u> Trace <u>fossils</u> and <u>shell fragments</u>
3030-3060		<u>As above</u>
3060-3090	100	<u>Marl</u> , as above, slightly firm to soft Trace <u>fossils</u> and <u>shell fragments</u>
3090-3120		<u>As above</u>
3120-3150		<u>As above</u>
3150-3180	100	<u>Marl,</u> as above Trace <u>calcarenite</u> , as above Trace <u>shell fragments</u> and <u>fossils</u>
3180-3210	100	<u>Marl,</u> green grey, soft, some slightly firm, fossil inclusions, very calcareous Trace <u>calcarenite</u> , green grey, hard, firm to medium, poor sorting, moderately calcareous Trace <u>fossils</u>
3210-3240		As above
3240-3270	100	Marl, as above Trace fossils
3270-3300	100	Marl, as above, appears more silty Trace fossils
	{	

HAPUKU #1 SAMPLE DESCRIPTIONS

BELLIS/KEMP

•		
DEPTH	%	DESCRIPTION
3300-3330	100	Marl, as above, greenish greey, soft, very calcareous, silty, fossiliferous Trace <u>fossils</u>
3330-3360	100	Marl, as above Trace <u>calcarenite</u> , as above, small inclusions of glauconite Trace <u>fossils</u> including coral; glauconite
3360-3390		As above
3390-3420	90 10	Marl, as above, firming up slightly <u>Calcarenite</u> , as above Trace <u>fossils</u>
3420-3450	90 10	Marl, as above Calcarenite, as above Trace fossils, large percentage of forams
3450-3480	100	Marl, as above Trace <u>calcarenite</u> , as above Trace <u>fossils</u>
3480-3510	100	Marl, as above Trace calcarenite Trace <u>fossils</u>
3510-3540	90 • 10	Marl, as above, light grey Calcarenite, as above Trace fossils
3540-3570	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , glauconitic, as above Trace <u>fossils</u>
3570-3600	90 10	<u>Marl</u> , light grey, soft to slightly firm, very calcareous, some fossils included <u>Calcarenite</u> , light green-grey, poorly sorted, very fine to medium grained, calcareous, rare glauconite, minor silt, cement cavings moderately abundant
3600-3630	80 20	Marl, as above <u>Calcarenite</u> , as above
3630-3660	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above
3660-3690	100	<u>Marl</u> , as above Trace <u>calcarenite</u> , as above Trace <u>shell fragments</u> and <u>fossils</u> mainly foraminifera
3690-3720	90 10	Marl, as above Calcarenite, as above Trace shell fragements and fossils, as above
3720-3750		<u>As above</u>
3750-3780	100	Marl, as above
3780-3810		<u>As above</u>
3821		POH re-run #2 OSC-3AJ new 17½" UR. Trip gas 85 units. Trip CO ₂ 5M+

.

HAPUKU #1 SAMPLE DESCRIPTIONS

• > .

BELLIS/KEMP

DE	PTH	%	DESCRIPTION
	3810-3840	90 10	<u>Marl</u> , as above, green grey <u>Calcarenite</u> , green grey, very fine to fine, calcarenite, silty Trace <u>fossils</u>
	3840-3870	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u> , mainly forams
	3870-3900	100	<u>Marl</u> , as above Trace <u>calcarenite</u> , as above Trace <u>fossils</u> , mainly forams
	3900–3930	90 10	<u>Marl</u> , light grey, soft some slightly firm, silty <u>Calcarenite</u> , as above Trace <u>fossils</u>
	3930-3960	100	<u>Marl</u> , as above Trace <u>calcarenite</u> , as above Trace <u>fossils</u>
	3960-3990	90 10	<u>Marl</u> , light grey, soft to slightly firm, very calcareous, silty <u>Calcarenite</u> , green grey, firm to hard, moderately calcareous, poorly sorted, very fine to fine some medium, fossil inclusions Trace <u>fossils</u> , mainly forams Trace lignite
	3990-4020	20'samples	
	4020-4040	100	<u>Marl,</u> as above Trace <u>calcarenite</u> , as above Trace <u>fossils</u>
	4040-4060	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
	4060-4080		<u>As abov</u> e
	4080-4100	80 10 (10	<u>Marl,</u> as above <u>Calcarenite</u> , as above <u>Lignite</u> , black, dark brown streak, clayey - <u>additive to mud</u> but is coarse 1-3mm) Trace <u>fossils</u> , as above
	4100-4120	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u> , as above Minor <u>lignite</u> , as above
•	4120-4140 •	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u> , as above Minor <u>lignite</u> , as above
	4140-4160	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u> , as above Minor <u>lignite</u> , as above Trace <u>limestone</u> , light to dark green, hard

HAPUKU #1 SAMPLE DESCRIPTIONS

.....

BELLIS, KEMP

DEPTH	%	DESCRIPTION
4160-4180	80 10 10	Marl, as above <u>Calcarenite</u> , as above <u>Limestone</u> , light olive green to light olive grey, hard, massive but with minor inclusions and fossils
4180-4200	80 10 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above <u>Limestone</u> , as above Trace <u>fossils</u>
4200–4220	90 10	<u>Marl,</u> as above <u>Calcarenite</u> , as above Trace <u>Limestone</u> , as above Trace <u>fossils</u>
4220-4240	80 20	Marl, light grey, soft to slightly firm, very calcareous, slightly silty <u>Calcarenite</u> , light green grey, hard moderately calcareous, fossil inclusions, poorly sorted, very fine to medium grain. Trace <u>fossils</u> Trace <u>limestone</u> , light olive green, hard
4240-4260	80 10 10	Marl, as above Calcarenite, as above Limestone, as above
4260–4280	- 80 - 10 - 10	Marl, as above Calcarenite, as above Limestone, as above
4280-4300		<u>As above</u>
4300		¹ / ₂ hour circulating; dummy trip to casing; circulate out casing. Trip gas = 60 units; $14/7/75$ trip prior to setting casing. Trip gas = Log and set casing 13th to 18th. 13-3/8" casing shoe at 4246'. 18/7/75 R.I.H. with bit No. 4 X3A and drill out shoe at 0330 hours. No leak off on test to 13.5#/gal. equiv.
4300–4330	90 10	<u>Marl</u> , light grey, soft, very calcareous, slightly silty, fossils included, predominately foraminifera <u>Calcarenite</u> , medium light grey, moderately hard to firm, very fine to silty, poorly sorted, fossils included, trace glauconite, silty in places Abundant <u>cement cavings</u>
4330-4360	100	<u>Marl,</u> as above <u>T</u> race <u>calcarenite</u> , as above Minor <u>cement cavings</u>
4360-4390	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above Minor <u>cement cavings</u>
4390-4420	100	<u>Marl</u> , as above Trace <u>calcarenite</u> , as above Trace <u>cement cavings</u>
4420-4440	100	<u>Marl</u> , as above Trace <u>calcarenite</u> , as above Trace <u>cement</u>

HAPUKU #1

N.

SAMPLE DESCRIPTIONS

••••

BELLIS/KEMP

11-21/7/75.

DEPTH	%	DESCRIPTION
4440-4460	70 30	<u>Marl</u> , light grey, soft to slightly firm, very calcareous, fossils included - mainly foraminifera, slightly silty in part <u>Calcarenite</u> , medium light grey, moderately firm, very fine to fine poorly sorted, silty in part, fossils included, rare glauconite. Trace <u>cement caving</u> s
4460-4480	80 20	<u>Marl</u> , as above <u>Calcarenit</u> e, as above Trace <u>cement caving</u> s
4480-4500	· 80 20	<u>Marl,</u> as above <u>Calcarenite</u> , as aobve
4500-4520	80 20	<u>Marl,</u> as above <u>Calcarenite,</u> as above
4520-4540	50 50	<u>Marl,</u> as above <u>Calcarenite,</u> as above
4540 4560	40	at 4540 approximately 105 units H.W. chromatograph showed it to be all C_{1} (methane)
4540-4560	40 30 30	Marl, as above <u>Calcarenite</u> , as above, but increase silt content <u>Limestone</u> , light olive green, hard, fossiliferous, trace glauconite
4560-4580	- 60 30 10	Marl, as above <u>Calcarenite</u> , as above <u>Limestone</u> , as above
4580-4600	70 30	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
4600-4620	80 20	<u>Marl</u> , light grey, soft to slightly firm, very calcareous, fossils mainly foraminifera included, slightly silty <u>Calcarenite</u> , medium-light grey, moderately hard to firm, calcareous, silty in part, fossils mainly foraminifera included, trace <u>glauconit</u> e, very fine Trace <u>cement cavings</u>
4620-4640		<u>As above</u>
4640-4660	80 20	<u>Marl</u> , as above <u>Calcarenit</u> e, as above
4660–4680	90 10	<u>Marl,</u> as above <u>Calcarenite</u> , as above Trace <u>limestone</u> , light olive green, hard, massive, minor fossils
4680-4700	100	<u>Marl,</u> as above Trace <u>calcarenite</u> , as above Trace <u>limestone,</u> as above
4700-4720		As above
4720-4740		<u>As above</u>
4740-4760	100	<u>Marl,</u> as above Trace <u>calcarenite</u> , as above Trace fossils mainly forams
·

.

.

HAPUKU #1 SAMPLE DESCRIPTIONS

BELLIS/KEMP

.

DEPTH	%	DESCRIPTION
4760-4780		<u>As above</u>
4780-4800		As above
4800-4820		<u>As above</u>
4820-4840	100	Marl, light grey, slightly firm to soft, very calcareous, silty and up to medium grain size, fossil inclusions Trace <u>Calcarenite</u> , light grey, firm, very calcareous, very fine
		to silty, up to medium fossil inclusions, poorly sorted, possibly a calcisiltite with large inclusion - subtle difference!
		<u>NOTE</u> : <u>Marl and "Calcarenite"</u> appear very similar only difference really is induration (+ grain size?) Trace fossils, mainly forams some almost black giving the marl and calcarenite a speckled appearance.
4840-4860	100	<u>Marl</u> , light grey, very calcareous, soft to slightly firm, silty, up to medium fossil inclusion Trace <u>calcarenite</u> , light to light medium grey, very calcareous, very fine to silty, poorly sorted, up to medium fossil inclusion, firm to hard Trace fossils, mainly forams
4860-4880	100	Marl, as above Trace <u>Calcarenite</u> , as above Trace <u>fossils</u> , as above
4880–4900	100	<u>Marl</u> , as above Trace <u>Calcarenite</u> , as above, green-grey Trace <u>fossils</u>
4900-4920	90 10	<u>Marl,</u> as above <u>Calcarenite,</u> green grey, as above Trace <u>fossils</u>
4920-4940	100	<u>Marl</u> , as above Trace <u>Calcarenite</u> , as above Trace <u>fossils</u>
4940-4960		<u>As above</u>
4960-4980	90 10	<u>Mar</u> l, as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
4980–5000	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
5000-5020	100	<u>Marl</u> , green grey, as above Trace <u>calcarenite</u> , green grey, as above Trace <u>fossils</u>
5020-5040		<u>As above</u>
5040-5060		<u>As above</u>
5060-5080	100	<u>Marl</u> , as above Trace <u>calcarenite</u> , as above Trace <u>fossils</u>
		At 5121' POOH to change bit. Bit #4 drilled 821' in 12.1 hours i.e., 67'/hour over interval
	5. S.	

.

.

•

.

1

HAPUKU #1 SAMPLE DESCRIPTIONS

`••**•**`

BELLIS/KEMP

DEPTH	%	DESCRIPTION
		R.I.H. with bit No. 5 X3A. Trip gas 110 units
5080-5100		No sample (did not circulate out before tripping)
5100-5120	50 50	Marl, light grey, soft to slightly firm, very calcareous, fossils included, slightly silty in part <u>Calcarenite</u> , medium light grey, moderately hard to firm, calcareous, silty in part, fossils included, very fine grain, generally poorly sorted, rare glauconite
5120-5140	40 60	Marl, as above Calcarenite, as above
5140-5160	70 30	<u>Marl,</u> as above <u>Calcarenite</u> , as above Trace <u>cement cavings</u>
5160-5180	60 40	<u>Marl</u> , as above <u>Calcarenite</u> , fossils mainly foraminifera
5180-5200	60 40	<u>Marl,</u> as above <u>Calcarenite,</u> as above
5200-5220	70 30	<u>Marl</u> , as above <u>Calcarenite</u> , as above
5220-5240	- 70 - 30	<u>Marl,</u> as above <u>Calcarenite</u> , as above
5240-5260	60 40	<u>Marl</u> , as above <u>Calcarenite</u> , as above
5260-6280	60 40	<u>Marl</u> , light grey, slightly firm, very calcareous, fossils mainly foraminifera included (some dark in colour), slightly silty in part <u>Calcarenite</u> , medium light grey to light olive grey, moderately firm occasionally moderately hard, very calcareous, fossils mainly foraminifera included (some dark in colour), very fine grained, poorly to moderately sorted, <u>N.B.</u> only grain size, induration and colour vary between Marl and Calcarenite.
5280-5300	50 50	<u>Marl,</u> as above <u>Calcarenite</u> , as above
5300-5320	50 50	<u>Marl</u> , as above <u>Calcarenite</u> , as above
5320-5340	50 50 ·	<u>Marl</u> , as above <u>Calcarenite</u> , as above
5340-5360	70	Marl, light grey, some green grey, very calcareous, soft to firm, fossil included up to medium grain size.
	30	<u>Calcarenite</u> , green grey to light olive grey, firm to hard, very calcareous, very fine to silty with up to medium grain inclusions mainly forams Trace <u>fossils</u> , mainly forams
5360-5380	70 30	<u>Marl</u> , as above <u>Calcarenite</u> , as above
5380-5400	70 30	<u>Marl,</u> as above <u>Calcarenite,</u> as above

HAPUKU #1 SAMPLE DESCRIPTIONS

··....

BELLIS/KEMP

DEPTH	%	DESCRIPTION
5400-5420	60 40	<u>Marl,</u> as above <u>Calcarenite</u> , as above
5420-5440	70 30	Marl, light grey, as above <u>Calcarenite</u> , light grey to green grey, as above Trace <u>fossils</u> , forams
5440-5460	80 20	Marl, as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
5460-5480		<u>As above</u>
5480-5500	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
5500-5520	80 20	<u>Marl,</u> as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
.5520-5540	70 30	<u>Marl</u> , as above . <u>Calcarenite</u> , as above Trace <u>fossils</u>
5540-5560	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u>
5560-5580	60 30 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above <u>Dolomitic Limestone</u> , olive grey, hard, massive
5580-5600	90 10	Marl, light grey to green grey, soft to firm, very calcareous, fossil included, mainly forams <u>Calcarenite</u> , green grey, firm to hard, very fine, silty, very calcareous, fossil included mainly forams Trace <u>Dolomitic limestone</u> , olive grey, very hard, massive, slow fizz in cold acid Trace <u>fossils</u> , mainly forams
5600-5620	100	<u>Marl,</u> as above Trace <u>calcarenite</u> , as above Trace <u>fossils</u>
5620-5640	100	<u>Marl</u> , as above Trace <u>calcarenite</u> , as above Trace <u>fossils</u>
		At 5691' POOH for new bit. Bit #4 drilled 570' in 8.9 hours. Bit #5 X3A T.G. = 128. 18000ppm C ₁ .
5640-5660		<u>No returns</u>
5660-5680		No returns
5680-5700	80 20	<u>Marl,</u> as above <u>Calcarenite</u> , as above Trace <u>dolomitic limestone</u> , as above Trace <u>fossils</u>

HAPUKU #1

SAMPLE DESCRIPTIONS

·••

BELLIS/KEMP

DEPIH	%	DESCRIPTION
5700-5720	70 30	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>dolomitic limestone</u> , as above Trace <u>fossils</u>
5720-5740	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>fossils</u> Trace <u>dolomitic limestone</u> , as above
5740-5760	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>dolomitic limestone</u> , as above Trace <u>fossils</u>
5760-5780	70 30	Marl, as above <u>Calcarenite</u> , as above Trace <u>dolomitic limestone</u> , as above Trace <u>fossils</u>
5780-5800	90 10	<u>Marl</u> , light grey to green grey, soft to firm, very calcareous, fossils included mainly forams <u>Calcarenite</u> , green grey to light olive grey, firm to hard, very fine, silty, very calcareous, fossils included mainly forams <u>N.B.</u> often little difference between Marl and "Calcarenite" with a range of grain sizes between them.
5800-5820	90 10	Marl, as above <u>Calcarenite</u> , as above
5820-5840	90 10	Marl, as above <u>Calcarenite</u> , as above
5840-5860	90 10	Marl, as above <u>Calcarenite</u> , as above Trace <u>dolomitic limestone</u> , light olive green, very hard, massive
5860-5880	90 10	<u>Marl</u> , as above <u>Calcarenite,</u> as above Trace <u>dolomitic limestone</u> , as above
5880-5900	100	<u>Marl,</u> as above Trace <u>calcarenite,</u> as above
5900-5920	100	<u>Marl</u> , as above Trace <u>calcarenite,</u> as above Trace <u>dolomitic limestone</u> , as above
5920-5940	90 10	<u>Marl,</u> as above <u>Calcarenite,</u> as above Trace <u>dolomitic limestone</u> , as above
5940-5960	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , as above
5960-5980	90 10	<u>Marl</u> , as above <u>Calcarenite</u> , <u>N.B.</u> Considerable amount of cuttings described as "Marl" tend to a "calisiltite", and grain sizes from clay to fine grain are present in samples.

.

HAPUKU #1 SAMPLE DESCRIPTIONS

. . . .

Bellis, Kemp

DEPTH	%	DESCRIPTION
5980-6000	50	Marl, mostly light grey, some light olive grey, slightly to moderately firm, very calcareous, fossils mainly foraminfera included Calcisiltite, light olive green, moderately firm, some very firm,
	10	very calcareous, fossils mainly foraminifera included Calcarenite, light olive green, moderately firm, ver calcareous, fossils mainly foraminifera included, rare glauconite, very fine grained, moderately well sorted.
		N.B. Colour difference between the clay and silt size samples has allowed the separation into "Mlar" and "Calcisiltite". As before, a range of grain size from clay to fine grain is present.
6000–6020	50 50	Marl, as above <u>Calcisiltite</u> , as above Trace <u>calcarenite</u> , as above Trace <u>dolomitic limestone</u> , light olive green, hard, massive
6020-6040	50 50	<u>Marl</u> , as above <u>Calcisiltite</u> , as above Trace <u>calcarenite</u> , as above
6040-6060	60 40	<u>Marl,</u> as above . <u>Calcisiltite</u> , as above Trace <u>calcarenite</u> , as above
6060–6080	70 - 30	Marl, as above <u>Calcisiltite,</u> as above Trace <u>calcarenite</u> , as above
6080-6100	70 30	Marl, as above Calcisiltite, as above Trace <u>calcarenite</u> , as above
6100-6120	60 30 10	Marl, as above Calcisiltite, as above Calcarenite, as above
6120-6140	60 30 10	Marl, as above Calcisiltite, as above Calcarenite, as above
6140-6160	80 20	<u>Marl</u> , as above <u>Calcisiltite</u> , as above Trace <u>calcarenite</u> , as above
6160-6180	70 . 30	<u>Marl</u> , light grey-light olive grey, slightly firm, very calcareous, fossils mainly foraminifera included <u>Calcarenite</u> , light olive green, moderately firm, very calcareous, fossils mainly foraminifera included, fine-very fine grain, tends to Calcisiltite in part, moderately well sorted, rare glauconite.
6180-6200	70 <u>30</u>	<u>Marl</u> , as above <u>Calcarenite</u> , as above
		P.O.H. 1045 hours at 624 feet. Bit #5. drilled 557 feet in 8.1 hours T.G. = 85 units 10000 C ₁ 3/3/1-8. New Bit #6 X3A 3 x 18 jets
6200-6220	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above
6220-6240	90 10	<u>Marl,</u> as above <u>Calcarenite</u> , as above Trace <u>fossils</u> , mainly forams
	- 	

HAPUKU #1

• .

SAMPLE DESCRIPTIONS

···· ·

BELLIS/KEMP

DEPTH	%	DESCRIPTION
6240-6260	60 40	Marl, as above <u>Calcarenite</u> , as above, rare glauconite inclusions Trace dolomitic limestone, olive grey, very hard, slightly calcareous Trace fossils
6260-6280	70 30	Marl, as above Calcareous, as above Trace glauconite Trace fossils
6280-6300	80 20	<u>Marl</u> , as above <u>Calcarenite</u> , as above Trace <u>glauconite</u> Trace <u>fossils</u>
6300-6320	-	As above
6320-6340	80 20	Marl, as above <u>Calcarenite</u> , as above Trace <u>glauconite</u> included Trace <u>fossils</u> , mainly forams
6340-6360	60 40	Marl, as above Calcarenite, as above Trace fossils
6360–6380	- 70 30	Marl, as above Calcarenite, as above Trace fossils
6380-6400	80 20	Marl, as above Calcarenite, as above Trace fossils
6400-6420	80 20	Marl, light olive grey to light green grey, soft to firm, very calcareous, fossil included mainly forams <u>Calcarenite/Calcisiltite</u> , green grey, firm to hard, very calcareous, very fine to silty, fossil included, mainly forams poorly sorted, trace glauconite Trace fossils, mainly forams
6420-6440	70 30	Marl, as above Calcarenite/, as above Trace fossils
6440–6460	60 40 .	<u>Marl</u> , as above <u>Calcarenite</u> /, as above Trace <u>fossils</u>
6460–6480	70 30	<u>Marl</u> , as above <u>Calcarenite</u> /, as above Trace <u>fossils</u>
6480-6500		As above
6500–6520	70 30	Marl, as above Calcarenite/, as above Trace fossils
6520-6540	70 30	Marl, as above Calcarenite/, as above

. - -

HAPUKU #1 SAMPLE DESCRIPTIONS

BELLISĮKEMP

DEPIH	%	DESCRIPTION
540-6560	50 60	Marl, as above Calcarenite/, as above
6560-6580	40 60	Marl, as above $\overline{Calcarenite}$, as above, very hard in places
6580-6590		
(end of circ	ulation sam 60	Marl, as above
	40	Calcarenite/, as above
		P.O.H. 0345 hours at 6613 feet, Bit No. 6 drilled 365 feet in 6.7 hours. New bit No. 7 X3A. Trip gas 65 units
6590-6600	50 50	Marl, as above Calcarenite/, as above, olive grey to green grey Trace fossils
6600-6620	40 60	Marl, as above Calcarenite, as above Trace fossils
6620-6640	70	Calcarenite, olive grey to green grey, very calcareous, very fine to medium, poorly sorted, firm to hard, fossil included, mainly
	30	forams, trace glauconite Marl, light grey to green grey, soft to firm, very calcareous, slightly silty, fossil included, mainly forams Trace <u>fossil</u> s, mainly forams
6640-6660	70 30	Calcarenite, as above Marl, as above Trace fossils
6660–6680		As above
6680-6700		As above
6700-6720	80 20	Calcarenite, as above Marl, as above Trace fossils
6720 - 6740	60 40	Calcarenite, as above Marl, as above Trace fossils
6740-6760	70 30	Calcarenite, as above Marl, as above Trace fossils
6760-6780	60 40	Calcarenite, as above Marl, as above Trace fossils
6780-6800		As above
6800-6820	70 30	Calcarenite, as above Marl, as above Trace fossils
6820-6840	50 50	Calcarenite, as above Marl, as above Trace fossils
6840-6860	80 20	Calcarenite, as above <u>Marl</u> , as above Trace fossils
	1	

НАРИКИ ∦1

÷ .

.

퀑

SAMPLE DESCRIPTIONS

BELLIS, KEMP

DEPTH	%	DESCRIPTION
6860-6880	70 30	<u>Calcarenite</u> , as above <u>Marl</u> , as above Trace <u>fossils</u>
6897		P.O.O.H. for bit. Bit No. 7 drilled 284 feet in 9.4 hours New bit No. 8 XDG
· .		N.B. #8 T.G. = V 22/11/75
6880-6900	85	<u>Calcarenite</u> , olive grey, very calcareous, very fine-fine, moderately sorted, firm-hard, acid residue is light brown chitinous or siliceous skeletal matrix, trace glauconite
	15	Marl, light grey, soft, very calcareous, slightly slity fossiliferous, composition same as calcarenite.
6900-6920	60 40	$\frac{\text{Calcarenite, as above, firm to medium grained, more glauconite}}{\frac{\text{Marl, as above}}{\text{Trace fossils - large forams.}}$ Trace pink-white calcite.
6920-6940	60 40	<u>Calcarenite</u> , as above <u>Marl</u> , as above
6940-6960	80 20	<u>Calcarenite</u> , as above, some poorly sorted with abundant clay sized matrix. <u>Marl</u> , as above
6960-6980	50 50	Trace fossils.Calcarenite, as above, some poorly sorted and grading to Marl.Marl, as aboveMinor chips of white vein calcite.Trace fossil fragements.
6980-7000	60 40	$\frac{\text{Calcarenite}}{\text{Marl, as above}}$
7000-7020	70 30	Calcarenite, light to medium grey, very fine to fine grained, moderate sorting, firm to hard. Acid residue (approx.30%) light brown organic? remains. Trace gluaconite, fossiliferous. Marl, light grey, soft very calcareous, residue same as calcarenite, fossiliferous.
7020-7040	70 30	Calcarenite, as above, fossiliferous forams, pyrite growth within one foram shell. Marl, as above
7040-7060	60 40	Marl, light grey grading to calcisiltite Calcarenite, as above
7060-7080	60 20 20	<u>Calcarenite</u> , as above,grading <u>Calcisiltite</u> grading to <u>Marl as above</u> . Fossiliferous, trace white calcite layers.
• 7080-7100	50	<u>Calcarenite</u> , very fine to fine, firm to hard, grading to
	50	calcilutite. <u>Marl</u> , soft and waxy, containing small percentage of fine sand size fossil fragments.
7100-7120	75 25	<u>Calcilutite</u> - Marl, firm to hard, dark olive grey, sub-fissile fracture. More acid residue than above. Marl, as above.
7120-7140	40	Calcilutite/Marl, as above subfissile to fissile, fossile
	60	impressions on some bedding planes. Marl, soft, as above, some laminated.

SAMPLE DESCRIPTIONS

••••

BELLIS/KEMP

DEPTH	%	DESCRIPTION
7140-7160	70 30	Calcilutite, as above, firm to softer and less fissile than above, minor glauconite. Marl, soft as above. Minor calcarenite.
7160-7170	80 20	Calcilutite grading to calcarenite as above, slightly firmer, than previous sample Marl, as above
		POH to change bit.
7170-7180	70 30	<u>Calcilutite</u> , as above mainly silt size matrix, light to medium grey, firm to hard, fossils, trace glauconite. <u>Marl</u> , soft, light grey, fossils, trace glauconite. Trace red siltstone, quartzose, soft non calcareous.
7180-7200		Calcilutite/Marl as above. The firm calcilutite grades into the softer Marl above. Trace red siltstone, as above.
7200-7220	70 · 30	Calcilusite/ Marl, as above mainly firm hard subfissile calcilutite grading into smaller amounts of soft marl, trace very fine to fine hard calcarenite. Trace fossils.
7220-7240	50 50	Calcilutite, as above Marl, as above
7240-7260	50 50	Calcilutite/very fine calcarenite, as above Marl, as above Trace fossils.
7260-7280	60 40	Calcilutite/very fine calcarenite, as above Marl, as above Trace fossils
7280-7300	30 70	Calcilutite, as above Marl, as above
7300-7320	70 30	Marl, soft light grey, earthy fossils, trace glauconite. Calcilutite/very fine calcarenite, as above, mainly firm to hard, some softer, grading to Marl. Composition same as marl.
7320-7340	60 40	$\frac{Marl, as above}{Calcilutite}, as above$
7340-7360	70. 30	$\underline{Mar1}$, as above. <u>Calcilutite</u> , to very fine calcarenite, as above
7360-7380	60 40	Calcilutite-very fine calcarenite, as above, speckled, medium grey, firm to hard, subfissile, platy chips, fossils, trace glauconite. Marl, as above, light grey, soft, fossils, glauconite.
	40	P.O.H. New Bit
7380-7400	40 60	<u>Calcilutite</u> /calcarenite, as above <u>Marl</u> , as above

HAPUKU #1

SAMPLE DESCRIPTIONS

·

BELLIS/KEMP

. DEPTH	73	DESCRIPTION
7400-7420	40 30 30	Calcilutite/calcarenite, as above Marl, as above Shale, dark red-brown, non calcareous, large fissile platy samples show strong bedding plane lineations (probably flute casts). Smaller ships appear silty - similar to red brown siltstone encountered in small amounts after previous bit change (may be cavings. Some chips only have red coating and are grey inside. Still non-calcareous)
7420-7440	30 70	Calcilutite/calcarenite as above Marl, as above Trace red siltstone and red brown shale (cavings)
7440-7460	60 40	Calcilutite/calcarenite, as above Marl, as above
7460-7480	60 40	Calcilutite to very fine calcarenite, as above Marl, as above Trace calcite, red <u>siltstone</u> , as above. Gastropod? shell fragments.
7480-7500	70 30	<u>Calcilutite</u> to very fine calcarenite, as above <u>Marl</u> , as above.
7500-7520	70 20 10	Calcilutite to very fine calcarenite, medium grey, speckled, with dark roganic? flecks and trac glauconite grains, firm. Siltstone, red brown, quartz, firm to soft, very platy, non calcareous. Some grains only have red surface - otherwise grey. Marl, light grey, soft fossils, trace glauconite. Trace calcite, white, good crystals.
7520-7540	80 10 10	$\frac{\text{Calcilutite}}{\text{Siltstone, as above.}}$
7540-7560	85 10 5	$\frac{\text{Calcilutite}}{\text{Marl, as above}}$
7560-7570	70 20 10	$\frac{\text{Calcilutite}}{\text{Siltstone, red to brown, easily broken apart, as above}}_{\text{Marl, as above.}}$
7570-7580	75 20 5	Calcilutite to very fine calcarenite, as above Marl, as above Siltstone, as above Trace calcite, crystals, white.
7580-7590	80 20	<u>Calcilutite</u> to very fine calcarenite, as above <u>Marl, as above</u> <u>Minor siltstone</u> , as above, minor calcite as above
- 7590-7600	20 80	<u>Calcilutite</u> and very fine calcarenite, mid to dark olive grey. Platy subfissile fracture. Trace glauconite, fossils. Marl, light grey, soft, puggy.
7600-7610	60 40	<u>Calcilutite</u> to calcarenite, as above <u>Marl</u> , as above
7610-7620	70 30	<u>Calcilutite</u> to calcarenite, as above <u>Marl</u> , as above Fossils - globular forams and ?crinoid stems.
7620-7630	50 50	Calcilutite to calcarenite, very fine as above Marl, as above. Fossils as above

.

٠

BELLIS/KEMP

DEPTH	%	DESCRIPTION
7630-7640	30 70	<u>Calcilutite</u> to calcarenite, very fine, as above <u>Marl</u> , as above. Fossils, as above
7640-7650	50 50	<u>Calcilutite</u> to very fine calcarenite, as above. <u>Marl</u> , as above Fossils, as above
7650-7660	40	Calcilutite and minor very fine calcarenite, mid olive grey, firm to hard, platy, subfissile fracture. Globular forams,
•	60	traces of glauconite. <u>Marl</u> , light grey, mainly soft, rare firmer chips show subfissile fragments and ?crinoid fragments.
7660-7670	30 70	Calcilutite/Calcarenite, as above Marl, as above Fossils as above
7670-7680	20 70 10	Calcilutite-Calcarenite, as above <u>Marl</u> , as above <u>Siltstone</u> , red brown, fissile mainly silt sized grains. Current lineations on bedding surfaces ?flute casts.
		P.O.H. 7691 to change bit.
		New bit - X.D.G. by mistake
7680-7690	50 40 10	Calcilutite to very fine calcarenite, as above <u>Marl</u> , as above <u>Siltstone</u> , as above
7690-7700	60 40	<u>Marl</u> , light grey, soft occasionally firm, fossils, trace glauconite, fine laminations grades to <u>Calcilutite</u> to very fine calcarenite, light to medium grey, firm to hard, subfissile fracture, fossils. Trace glauconite. Trace shell fragments.
• 7700-7710	50 50	Calcilutite to very fine calcarenite, as above <u>Marl</u> , as above
7710-7720	65 35	$\frac{Marl, as above}{Calcilutite} to very fine calcarenite as above$
7720-7730	75 25	$\underline{\underline{Marl}}_{\underline{Calcilutite}}$ as above. $\underline{\underline{Calcilutite}}$ to very fine calcarenite, as above
7730-7740	75 25	Marl, light to medium grey, soft, firm, globular forams, trace glauconite and other dark grains - organic? Calcilutite to very fine calcarenite, medium grey, firm to hard, subfissile, platy chips, forams, trace glauconite, speckled appearance.
- 7740-7750	70 30	Marl, as above, acid residue appr.50% medium to dark grey to brown. Calcilutite to very fine calcarenite, as above Acid residue approx. 30% medium to dark grey to brown.
7750-7760	75 25	<u>Marl</u> , as above, fair <u>Calcilutite</u> to very fine calcarenite as above.
7760-7770	70 30	Marl, as above, grading to Calcilutite to very fine calcarenite.
7770-7780	60 40	Marl, as above Calcilutite to very fine calcarenite as above

HAPUKU #1 SAMPLE DESCRIPTIONS

BELLIS/KEMP

DEPTH	%	DESCRIPTION
7780-7790	60 40	Marl, as above Calcilutite to very fine calcarenite, as above
7790-7800	60	Calcilutite to very fine calcarenite, mid to dark olive grey, firm to hard, platy fracture, globular forams. Trace glauconite Marl, light grey, soft
7800-7810	30 70	<u>Calcilutite</u> to very fine calcarenite, as above <u>Marl</u> , as above Trace fossils.
7810-7820	25 75	Calcilutite to very fine calcarenite, as above Marl, as above Trace fossils.
- 7820-7830	25 75	Calcilutite to very fine calcarenite, as above Marl, as above Trace fossils.
• 7830-7840	40 60	<u>Calcilutite</u> to very fine calcarenite, as above <u>Marl</u> , as above Trace shell fossil fragemtns, globular forams.
7840-7850	50	Calcilutite to very fine calcarenite, mid to dark olive grey. firm (not as well cemented as similar samples higher in the hole) glauconite traces, globular forams. Trace shell fossil fragments.
7850-7860	50 50	Calcilutite, as above Marl, as above
7860-7870	50 50	<u>Calcilutite</u> to calcarenite, very fine, as above, some hard but mainly firm. <u>Marl</u> , as above Fossils, as above
7870-7880	40 60	$\frac{\text{Calcilutite}}{\text{Marl}}$ to very fine calcarenite as above
7880-7890	30 70	Calcilutite to very fine calcarenite, as above $Marl, as above$
7890-7900	30	<u>Calcilutite</u> to very fine calcarenite, medium grey, speckled firm to hard, abundant forams, trace glauconite, dark acid
	70	insolubles. Marl, soft, light grey, forams, trace glauconite, faint laminations
7900-7910	80 20.	$\frac{Marl}{Calcilutite}$ to very fine calcarenite, as above, generally not as hard as further up hole.
7910-7920	50 50	Calcilutite to very fine calcarenite, as above $Marl$, as above.
	50	$\frac{Calcilutite}{grey}$ to very fine calcareous, as above, light to medium
-	50	Marl, as above Up to 50% acid residue in both Marl and Calcilutite, medium to dark brown clays? orgainc material ?
7930-7940	60 40	<u>Marl</u> , as above <u>Calcilutite</u> to very fine calcarenite, some hard chips as before up hole.
7940-7950	60 40	Marl, as above $\overline{Calcilutite}$ to very fine calcarenite, as above
ł		

•

.

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

.

DEPIH	%	DESCRIPTION
7950-7960	80 20	Marl, as above <u>Calcilutite</u> to very fine calcarenite, as above
7960-7970	80 20	\underline{Marl} , as above $\underline{Calcilutite}$ to very fine calcarenite, as above, soft to firm.
7970-7980	90 10	$\frac{Mar1}{Calcilutite}$ to very fine calcarenite.
7980-7990	10	Calcilutite mid to dark olive grey, firm, platy fracture, globular forams.
•	90	Marl, soft, light grey, abundant clear globular forams.
7990-8000	15 80 5	$\frac{\text{Calcilutite, as above}}{\frac{\text{Marl, as above}}{\text{Shale, red brown to light grey, mainly silt sized grains? mostly quartz, minor carbonate, current lineations on bedding surfaces.}$
8000-8010	70 30	Calcilutite mid to dark olive grey, hard to firm. <u>Marl</u> , as above \bullet
8010-8020	30 70	Calcilutite, as above Marl, as above
8020-8030	30 70	<u>Calcilutite</u> , as above <u>Marl</u> , as above
8030-8040	40 60	<u>Calcilutite</u> , as above <u>Marl</u> , as above
8040-8050.	10 90	Calcilutite, as above Marl, as above
8050-8060	10 90	<u>Calcilutite</u> , mid to dark olive grey, firm to hard, subfissile fracture, trace glauconite, globular forams, rare shell fossil impressions (one definite sulcate brachiopod). <u>Marl</u> , light grey, soft, globular forams, rare shelly fossil impressions.
8060-8070	10 90	<u>Calcilutite</u> , as above <u>Marl</u> , as above
8070-8080	10 90	Calcilutite, as above Marl, as above
8080-8090	10 90	Calcilutite, as above Marl, as above
8090-8100	5 95	<u>Calcilutite</u> , as above <u>Marl</u> , as above
. 8100-8110	10 90	Calcilutite, as above
8115		Driller picked drilling break - increased rate.
8110-8120	15 85	Calcilutite,as above Marl, as above
8120-8140	5 95	Calcilutite, as above Marl, as above
8140-8160	5 95	<u>Calcilutite</u> , as above <u>Marl</u> , as above

· · ·

HAPUKU #1 <u>SAMPLE DESCRIPTIONS</u>

Davis/Brooks/Elliott

DEPTH Z DESCRIPTION 8100-8170 5 Calcilutie, as above Marl, as above 8170-8190 100 Marl, light gray, soft and tacky, abundant globperina, trace glauconite, muddy, verging on calcareous-claystone. Minor calcilutite, as above. 8100-8210 100 Marl, as above. Minor calcilutite, as above. 8100-8210 100 Marl, as above. Minor calcilutite, as above. 8210-8230 5 Marl to calcareous claystone, as above. Calcilutite, modulus gray, firm to hard, suffissile fracture, Torons. 8230-8250 95 Calcareous claystone, light grey, soft and tacky, as above Calcilutite, as above 8250-8270 95 Calcareous claystone to marl, slightly filmer, and less tacky, than above - less clay forams, trace glauconite. Calcilutite, modulus grey, soft form, platy, subfissile fracture, forams, trace glauconite. 8200-8310 70 Calcareous claystone to marl, as above Calcilutite, as above 8310-8350 50 Calcareous claystone, to mark, trace glauconite. Calcilutite, as above 8350-8370 65 Calcareous claystone, as above Calcilutite, as above 8350-8370 65 Calcareous claystone, as above Calcilutite, as above 8370-8390 60 Calcareous claystone, as above Salle, as above			
95 Mart, is as above 8170-8190 100 Hart, light grey, soft and tacky, abundant globgerina, Trace glauconite, moddy, verging on calcareous-claystone. Minor calcilutite, as above. 8190-8210 100 Mart, as above. Minor calcilutite, as above. 8210-8230 95 Mart to calcareous claystone, as above. 8210-8230 95 Calcareous claystone, very soft and muddy, fossils, trace glauconite, very calcareous. 8230-8250 95 Calcareous claystone, very soft and muddy, fossils, trace glauconite, very calcareous. 8250-8270 95 Calcareous claystone, as above. 8270-8290 95 Calcareous claystone, trace glauconite. 8280-8310 70 Calcareous claystone to marl, slightly firmer, and less tacky, than above - less clay forans, trace glauconite. 8310-8330 70 Calcareous claystone, as above 621Cilutite, medium grey, soft and tacky, very calcareous claystone, as above Calcareous claystone, as above 8330-8350 80 Calcareous claystone, as above 61 Calcareous claystone, a	DEPTH	Z	DESCRIPTION
trace glauconité, mudy, verging on calcarcous-claystone. Minor calcilutite, as above.8190-8210100Marl, as above. Minor calcilutite, as above.8210-823095SMarl to calcarcous claystone, as above. Calcilutite, medium grey, firm to hard, subfissile fracture, forams.8230-825095Calcarcous claystone, very soft and mudy, fossils, trace glauconite, very calcereous. Calcilutite, as above8250-827095Calcarcous claystone, light grey, soft and tacky, as above Calcilutite, as above8270-829095Calcarcous claystone, as above8290-831070Calcarcous claystone to marl, slightly firmer, and less tacky than above - less clay forams, trace glauconite. Calcilutite, medium grey, soft to firm, platy, subfissile fracture, forams, trace glauconite. Calcilutite, as above8310-833070Calcareous claystone to marl, as above8330-835080Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060Calcareous claystone, as above Shale, as above8410-843070Calcareous claystone, as above8410-843075Shale, as above8410-843075Shale, as above8430-845075Shale, as above8430-845075Shale, as above Calcareous cl	8160-8170		
8210-8230 95 Marl to calcareous claystone, as above. 6210-8230 95 Calcareous claystone, very soft and muddy, fossils, trace glauconite, very calcareous. 8230-8250 95 Calcareous claystone, very soft and muddy, fossils, trace glauconite, very calcareous. 8250-8270 95 Calcareous claystone, light grey, soft and tacky, as above Calcilutite, as above 8270-8290 95 Calcareous claystone, as above calcilutite, as above. 8290-8310 70 Calcareous claystone to marl, slightly firmer, and less tacky, than above less clay forams, trace glauconite. 30 Calcareous claystone to marl, slightly firmer, and less tacky. Then above less claystone, as above. 8310-8330 70 Calcareous claystone, as above calcilutite, as above. 8310-8330 70 Calcareous claystone, as above calcilutite, as above. 8330-8350 80 Calcareous claystone, as above calcilutite, to calcareous shale, medium grey to green, subfissile, firm. 8350-8370 65 Calcareous claystone, as above subjissile, firm., fossils, trace glauconite. 8370-8390 60 Calcareous claystone, as above subjissile, firm., fossils, trace glauconite. 8370-8390 60 Calcareous claystone, as above subjissile, firm., fossils, trace glauconite. 8370-8410 55	8170-8190	100	trace glauconite, muddy, verging on calcareous-claystone.
5 Calcilutite, medium grey, firm to hard, subfissile fracture, forams. 8230-8250 95 Calcarcous claystone, very soft and muddy, fossils, trace glauconite, very calcereous. 8250-8270 95 Calcarcous claystone, light grey, soft and tacky, as above Calcilutite, as above 8270-8290 95 Calcareous claystone, as above calcilutite, as above. 8270-8290 95 Calcareous claystone to marl, slightly firmer, and less tacky, than above - less clay forams, trace glauconite. 8290-8310 70 Calcareous claystone to marl, slightly firmer, and less tacky, than above - less clay forams, trace glauconite. 8310-8330 70 Calcareous claystone to marl, as above 8310-8330 70 Calcareous claystone, as above 8330-8350 80 Calcareous claystone, as above 8330-8350 80 Calcareous claystone, as above 8350-8370 65 Calcareous claystone, to marl, as above 8350-8370 65 Calcareous claystone, as above 8370-8390 60 Calcareous claystone, as above 8370-8390 60 Calcareous claystone, as above 8370-8410 55 Calcareous claystone, as above 8410-8430 70 Calcareous claystone, as above </td <td>8190-8210</td> <td>100</td> <td>Marl, as above. Minor calcilutite, as above</td>	8190-8210	100	Marl, as above. Minor calcilutite, as above
trace glauconite, very calcereous. Calcilutite, as above8250-827095Calcareous claystone, light grey, soft and tacky, as above8270-829095Calcareous claystone, as above8290-831070Calcareous claystone to marl, slightly firmer, and less tacky, than above - less clay forams, trace glauconite. Calcilutite, medium grey, soft to firm, platy, subfissile fracture, forams, trace glauconite.8310-833070Calcareous claystone to marl, as above Calcilutite, as above8310-833070Calcareous claystone to marl, as above Calcilutite, as above8310-833070Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-835080Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, as above Calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060Calcareous claystone, as above 	8210-8230		Calcilutite, medium grey, firm to hard, subfissile fracture,
5Calcilutite, as above8250-827095Calcareous claystone, light grey, soft and tacky, as above8270-829095Calcareous claystone, as above8290-831070Calcareous claystone to marl, slightly firmer, and less tacky, than above - less clay forans, trace glauconite. Calcilutite, medium grey, soft to firm, platy, subfissile fracture, forams, trace glauconite.8310-833070Calcareous claystone to marl, as above Calcilutite, as above8330-835080Calcareous claystone, as above Calcilutite, as above8350-837065Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, as above Calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some subfissile, firm, fossils, trace pyrite, as above8390-841055Calcareous claystone, as above Shale, as above8410-843070Calcareous claystone, as above, very calcareous grades to Marl Shale, as above8430-845075Shale, as above Calcareous claystone to marl, as above8450-847050Shale, as above Calcareous claystone to marl, as above Calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems. Marl, soft, light grey, globular forams. Trace crinoid stems.	. 8230-8250	95	Calcareous claystone, very soft and muddy, fossils,
SCalcilutite, as above8270-8290955Calcareous claystone, as above8290-83107070Calcareous claystone to marl, Slightly firmer, and less tacky, than above - less clay forams, trace glauconite. Calcilutite, medium grey, soft to firm, platy, subfissile fracture, forams, trace glauconite.8310-83307070Calcareous claystone to marl, as above Calcilutite, as above8310-83508070Calcareous claystone, as above Calcilutite, as above8330-83508070Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-83706570Calcareous claystone, light grey, soft and tacky, very calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-83906070Calcareous claystone, as above Shale, calcareous grey to green, as above Shale, calcareous grey to green, as above8400-84307070Calcareous claystone, as above Shale, as above8400-84507575Shale, as above Calcareous claystone to marl, as above8400-84705075Shale, as above Calcareous claystone to marl, as above8400-84705075Shale, as above Calcareous claystone Calcareous claystone to marl, as above8400-84705075Shale, as above Calcareous claystone Calcareous claystone Calcareous claystone to marl, as above8400-84505075 <td>•</td> <td>5</td> <td></td>	•	5	
5Calcifutite to very fine calcarenite, as above.8290-831070Calcareous claystone to marl, slightly firmer, and less tacky, than above - less clay forams, trace glauconite. Calcifutite, medium grey, soft to firm, platy, subfissile fracture, forams, trace glauconite.8310-833070Calcareous claystone to marl, as above Calcilutite, as above8330-835080Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, light grey, soft and tacky, very calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060Calcareous claystone, as above Shale, calcareous grey to green, as above8390-841055Calcareous claystone, as above Shale, as above8410-843070Calcareous claystone, as above, very calcareous grades to Marl Shale, as above8430-845075Shale, as above Calcareous claystone to marl, as above8440-845075Shale, as above Calcareous claystone to marl, as above8470-849060Shale, as above Calcareous claystone to marl, as above8470-849060Shale, as above Calcareous claystone to marl, as above8490-851050Shale, as above Calcareous claystone to marl, as above	8250-8270		
30tacky, than above - less clay forams, trace glauconite. Calcilutite, medium grey, soft to firm, platy, subfissile fracture, forams, trace glauconite.8310-833070Calcareous claystone to marl, as above Calcilutite, as above8330-835080Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, light grey, soft and tacky, very calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060Calcareous claystone, as above Shale, calcareous grey to green, as above Shale, as above8430-843070Calcareous claystone, as above Shale, as above8430-845075Shale, as above Calcareous claystone to marl, as above8430-845075Shale, as above Calcareous claystone to marl, as above Shale, as above8470-849060Shale, as above Calcareous claystone to marl, as above Shale, as above Calcareous claystone to marl, as above Shale, as above Shale, as above Shale, as above8490-851050Shale, as above Shale, as above	8270-8290		
30Calcilutite, medium grey, soft to firm, platy, subfissile fracture, forams, trace glauconite.8310-833070Calcareous claystone to marl, as above Calcilutite, as above8330-835080Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, light grey, soft and tacky, very calcareous, very fossiliferous, trace glauconite. Calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060Calcareous claystone, as above Shale, calcareous grey to green, as above Shale, as above8390-841055Calcareous claystone, as above Shale, as above8430-845075Shale, as above Calcareous claystone, as above, very calcareous grades to Marl Shale, as above8430-845075Shale, as above Calcareous claystone to marl, as above8470-849060Shale, as above Calcareous claystone to marl, as above Shale, as above Shale, as above8470-849060Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems.8490-851050Shale, as above	8290-8310	70	Calcareous claystone to marl, slightly firmer, and less
30Calcilutite, as above8330-835080Calcareous claystone, as above Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, light grey, soft and tacky, very calcareous, very fossiliferous, trace glauconite. Calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060Calcareous claystone, as above Shale, calcareous grey to green, as above8390-841055Calcareous claystone, as above Shale, calcareous grey to green, as above8410-843070Calcareous claystone, as above, very calcareous grades to Marl Shale, as above8430-845075Shale, as above Calcareous claystone to marl, as above8450-847050Shale, as above Calcareous claystone to marl, as above8470-849060Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems.8490-851050Shale, as above		30	Calcilutite, medium grey, soft to firm, platy,
20Calcilutite to calcareous shale, medium grey to green, subfissile, firm.8350-837065Calcareous claystone, light grey, soft and tacky, very calcareous, very fossiliferous, trace glauconite. Calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060Calcareous claystone, as above Shale, calcareous grey to green, as above8390-841055Calcareous claystone, as above Shale, as above8410-843070Calcareous claystone, as above, very calcareous grades to Marl Shale, as above8430-845075Shale, as above Calcareous claystone to marl, as above8450-847050Shale, as above Calcareous claystone to marl, as above8470-849060Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems.8490-851050Shale, as above	8310-8330		
Calcareous, very fossiliferous, trace glauconite. Calcareous shale, medium grey to green, subfissile, firm, fossils, trace pyrite, on some surfaces.8370-839060 40Calcareous claystone, as above Shale, calcareous grey to green, as above8390-841055 45Calcareous claystone, as above Shale, as above8410-843070 30Calcareous claystone, as above, very calcareous grades to Marl Shale, as above8430-845075 50Shale, as above Calcareous claystone to marl, as above8430-847050 50Shale, as above Calcareous claystone to marl, as above8470-849060 Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems.8490-851050Shale, as above	8330-8350		Calcilutite to calcareous shale, medium grey to green,
40Shale, calcareous grey to green, as above8390-841055Calcareous claystone, as above8410-843070Calcareous claystone, as above8410-843070Calcareous claystone, as above, very calcareous grades to Marl8430-845075Shale, as above8430-845075Shale, as abovecalcareous claystoneto marl, as above60Shale, as above8470-8490608490-8510508490-85105050Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems.	8350-8370		calcareous, very fossiliferous, trace glauconite. Calcareous shale, medium grey to green, subfissile, firm,
45Shale, as above8410-843070 30.Calcareous claystone, as above, very calcareous grades to Marl Shale, as above8430-845075 25Shale, as above 	8370-8390		
30.Shale, as above8430-845075Shale, as above25Calcareous claystone to marl, as above.8450-847050Shale, as above.8450-847050Shale, as above.8470-849060Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems8490-851050Shale, as above	8390-8410		
25Calcareous claystoneto marl, as above.8450-847050Shale, as above Calcareous claystone8450-847050Shale, as above Calcareous claystone8470-849060Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl, soft, light grey, globular forams. Trace crinoid stems8490-851050Shale, as above	8410-8430		
50Calcareous claystone to marl, as above8470-849060Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous.40Marl, soft, light grey, globular forams. Trace crinoid stems.8490-851050Shale, as above	8430-8450		
40 subfissile to subconcoidal fracture, calcareous. 40 <u>Marl</u> , soft, light grey, globular forams. Trace crinoid stems. 8490-8510 50 Shale, as above	-8450-8470		
8490-8510 50 Shale, as above	8470-8490		Shale, olive grey to blue grey, firm to hard and indurated subfissile to subconcoidal fracture, calcareous. Marl. soft, light grey, globular forams, Trace crinoid stems.
	8490-8510	50	Shale, as above

.

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

•

. <u> </u>		
DEPTH	%	DESCRIPTION
8510-8530	70 30	Shale, as above $Marl,$ as above
8530-8540	50 50	Shale, as above $Marl$, as above
8540-8550	60 40	Shale, as above $Marl,$ as above
8550-8560	40 60	$\frac{\text{Shale, as above}}{\text{Marl, as above}}$
8560-8570	70 30	$\frac{\text{Shale}}{\text{Marl}}$, as above
8570-8580	50 50	Shale, olive grey to blue grey, firm to hard, some indurated subfissile to splinery, calcareous. Marl, light grey, soft, globular forams. Trace shelly fossils
8580-8590	30 30 70	Shale, as above Marl, as above
8590-8600	40 60	Shale, as above Marl, as above
8600-8610	40 60	<u>Shale</u> , as above <u>Marl</u> , as above
8610-8620	40 55 5	Shale, as above $\frac{Marl}{Calcilutite}$, mid grey, hard, subfissile, grades into the calcareous shale.
8620-8630	80 20	Shale, as above Marl, as above
8630-8640	80 20	Shale, as above $Marl$, as above
8640-8650	70 30	Shale, as above $Marl$, as above
8650-8660	80 20	Shale, as above $Mar1$, as above
8660-8670	70 30	Shale, as above \underline{Marl} , as above
8670-8680	60 · 40	<u>Shale</u> , as above <u>Marl</u> , as above
8680-8690	80	Shale, light to medium grey-green, moderately calcareous, firm platy subfissile fracture, pyrite in vugs.
	20	Marl, light grey, soft and tacky, forams acid residue approx. 50% i.e. grades to calcareous claystone.
8690-8700	85 15	Shale, as above Marl, as above. Trace pyrite.
8700-8710	70 30	Shale, as above, mostly medium olive grey, some green. Marl, mostly firmer than above - like a more clayey calcilutite.
8710-8720	80 10 10	Shale, as above <u>Marl</u> , soft, light grey, fossils, Calcilutite to very fine calcareous, light grey-brown, firm, friable, grades to shale. Trace pyrite.
10		

HAPUKŲ #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

	HAPI	UKU #1 SAMPLE DESCRIPTIONS
		11/7/75-1/9/75
DEPTH	%	DESCRIPTION
8720-8730	80 10 10	Shale, as above Marl, as above Calcilutite-very fine calcarenite. as above. Trace pyrite.
8730-8740	50 50	$\frac{\text{Shale, as above}}{\text{Marl, as above.}}$ Minor calcilutite as above
8740-8750	70 20 10	Shale, as above $\frac{Marl}{Calcilutite}$ to very fine calcarenite, as above
8750-8760	70 20 10	Shale, as above $\frac{Marl}{Calcilutite}$ to very fine calcarenite, as above, grades to shale. Trace pyrite.
8760-8770	60 25 15	Shale, medium olive grey, some green, firm subfissile, moderately calcareous, trace pyrite in holes. Calcilutite, light to medium grey, soft - friable, (easily crushable) grades in part to shale. Approx. 50% (+?) acid residue. Marl, soft, light grey, tacky forams.
8770-8780	70 20 10	Shale, as above Calcilutite to calcareous <u>mudstone</u> , as above <u>Marl</u> , as above
8780-8790	55 30 15	Shale, as above <u>Calcareous mudstone</u> , as above, grades to <u>shale</u> <u>Marl</u> , as above
8790-8800	70 20 10	Shale, as above <u>Calcareous Mudstone</u> , as above <u>Marl</u> , as above
8800-8809	75 20 5	<u>Shale</u> , as above <u>Calcarenous mudstone</u> , as above, gradational between <u>shale</u> & <u>marl</u> . <u>Marl</u> , as above Trace pyrite.
8809-8820	90 10	P.O.H. @ 8809', new bit XIG Shale, medium grey to grey-green, firm, subfissile, calcareous pyritic. <u>Calcareous Mudstone</u> , friable, light to medium grey, forams, grades to <u>shale</u> .
8820-8840	80 20	Shale, as above <u>Calcareous mudstone</u> , mainly silt size, fossils, firm to soft. <u>Trace large forams</u> , pyrite.
8840-8860	80 20	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above Trace pyrite.
8860-8880	80 20	<u>Shale,</u> as above <u>Calcareous Mudstone</u> , as above
8880-8900	90 10	Shale, as above, siltier and harder <u>Calcareous mudstone</u> , silt siltsize, as above. Trace pyrite.
8900-8920	90 10	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above Trace pyrite.

. .

•

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

DEPTH	%	DESCRIPTION
8920-8940	85 15	<u>Shale</u> , as above <u>Calcareous mudstone/marl</u> , as above
8940-8960	85 15	<u>Shale</u> , as above <u>Calcareous Mudstone</u> , as above
8960-898.	75	Shale, grey-green to blue grey, firm, subfissile to splintery, calcareous, trace forams
	25	Calcareous mudstone/marl, light grey, soft, globulur forams
8980-9000	60 40	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above
9000-9010	60 40	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above
9010-9020	60	Shale, olive grey-blue grey, firm to hard, subfissile to splintery, calcareous.
	40	<u>Calcareous Mudstone</u> , light grey, soft to firm, dull earthy fracture. Trace shelly fossils, including one pyritized crinoid stem.
9020-9030	70 30	Shale, as above <u>Calcareous mudstone</u> , as above
9030-9040	70 30	Shale, as above <u>Calcareous mudstone</u> , as above Trace shelly fossil impressions and forams
9040-9050	60 40	Shale, as above Calcareous mudstone, as above Trace fossils, as above
9050-9060	60 40	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above Trace fossils, as above.
9060-9070	70 30	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above Trace fossils, as above
9070-9080	60 40	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above Trace fossils, as above
9080-9090	70 30	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above
9090-9100	70 30	<u>Shale</u> , as above <u>Calcareous mudstone</u> , as above
9100-9110	70 30	Shale, as above Calcareous mudstone, as above
9110-9120	60	Shale, olive grey-dark grey, firm to hard, subfissile to splintery,
	40	calcareous. <u>Calcareous mudstone</u> , light grey to green grey, mainly silt grainsize, very calcareous, soft to firm. Trace shelly fossils and forams. Trace pyrite, commonly replacing fossils.
9120-9130	50 50	Shale, as above Calcareous mudstone, as above Trace fossils.
9130-9140	50 50	<u>Shale,</u> as above <u>Calcareous mudstone</u> , as above.

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

11/7/75-1/9/75

ž DESCRIPTION DEPTH 9140-9150 40 Shale, as above 60 Calcareous Mudstone, as above Trace Fossils, Trace quartz grains, fine to medium grained well rounded white to pink. 9150-9160 60 Shale, as above grades to 40 Calcareous mudstone, as above 9160-9170 60 Shale, as above Calcareous Mudstone, as above 40 Trace pyrite, trace glauconitic grains 9170-9180 70 Shale, as above Calcareous Mudstone, as above. 30 9180-9190 70 Shale, as above 30 Calcareous Mudstone, as above 9190-9200 75 Shale, as above <u>Calcareous mudstone</u>, as above Trace very fine <u>sandstone</u>, very glauconitic, quartz, very 25 calcareous, hard, trace pyrite. 92009-9210 70 Shale, medium grey to grey green, fine, calcareous, subfissile to splintery. 20 Calcareous mudstone, as above Sandstone, very fine, tight, buff, very glauconitic, non calcareous. hard, no fluorescence or cut. 5 5 Sand, loose, medium to coarse, well rounded, clear. One clear platy grain yellow-white fluorescence, no cut, non calcareous. 9210-9220 75 Shale, as above 10 Calcareous mudstone, as above Sand, loose fine to coarse, predominantly medium, well rounded 15 quartz and glauconite 9220-9230 75 Shale, as above Calcareous mudstone, as above 10 Disaggregated sand, mainly quartz, fine to very coarse, 15 mainly medium to coarse, subangular to subrounded, mainly subrounded, small grains and coatings of glauconite, traces of pyrite, cement and free cubes. Rare specks of fluoresence, not cut. DRILLING BREAK 9236' 9230-9240 85 Shale and calcareous mudstone, as above Sand grains, mainly quartz, fine to very coarse, mainly fine 15 to medium, subrounded to subangular, traces glauconite, common pyrite cement. Rare specks of fluoresence. Hot wire gas reading - 216 units 700 ppm, C5 Ni1. C4 9245-9288' CORE #1 CUT, Rec. 43' CORE #2 CUT, Rec. 37' 9288-9325' 9325-9369' Core #3 CUT, Rec. 44' Hydrocarbon/water contact at about 9352'. R.I.H. 1500 hrs. 1/8/75 with XDG

HAPUKU #1 SAMPLE DESCRIPTIONS

• •

Davis/Brooks/Elliott

•

11/7/75-1/9/75 ·-

,

DEPTH	%	DESCRIPTION
9370-9380	90 5-10 0-5	<u>Cavings, marl</u> and calcareous <u>siltstone</u> Quartz grains, 0.5 to 1 mm, subrounded, some broken, lightly frosted, no shows. <u>Sandstone</u> , Fine grained, verly light grey, quartzose, moderately hard, minor glauconite, moderately sorted, no shows.
9380-9390	90 10	Trace pyrite. Last sample prior to hanging off in casing. 90% <u>Cavings</u> , <u>marl</u> and <u>calcareous siltstone</u> <u>Quartz grains</u> , as above, no shows. Trace <u>Sandstone</u> , as above, no shows Trace <u>pyrite</u> .
9401 (9403 Toto	:0)	Generator failure due to overheating. Only enough power to pull back into casing. could not circulate B.U.
9380-9390 Firs sample up	95 5	<u>Cavings, marl</u> to calcareous <u>siltstone</u> Quartz grains, Trace Sandstone, as above, trace cement.
		Major drilling break at 9420' circulating up
9390-9400	95 5	<u>Cavings, marl</u> to <u>calcareous siltstone</u> Quartz grains. Trace sandstone as above, trace cement
9400-9410	95 5	Marl - calcareous siltstone, medium grey, calcareous, firm to hard, Sandstone, fine to medium grained, quartz, glauconite, pyrite, dolomite cement. Trace well rounded quartz grains, trace cement.
9410-9420	40 10 50	Marl to calcareous siltstone, as above Sandstone, as above Quartz sand, unconsolidated, well rounded, medium to well sorted, loose sand grains, very coarse - granulte, trace fluorescence from dolomitized sandstone, trace mineral fluorescence, no cut.
4 20-9430	40 60	Marl - calcareous siltstone, as above Trace sandstone as above Quart sand, as above, good reservoir type sand. Trace pyrite, trace glauconite, trace cement.
9430-9440	80 20	Quartz sandstone, as above <u>Calcareous siltstone</u> , as above pyrite, glauconite, trace dolomite <u>sandstone</u> , as above. trace cement.
9440-9450	40 60	Quartz sandstone, as above <u>Calcareous siltstone</u> , as above Trace pyrite, trace glauconite, trace dolomitic sandstone as above, trace cement.
9450-9460	50 50	Quartz sandstone, as above <u>Calcareous siltstone</u> , as above Trace pyrite, trace gluaconite, trace dolomitic sandstone, trace cement.
9460-9470	90	Quartz sandstone, unconsolidated, coars to pebble grained, moderate sorting, rounded to well rounded, trace glauconite,
	10	good reservoir. <u>Calcareous siltstone, medium grey, firm to hard,</u> <u>glauconite with pyrite.</u> <u>Trace dolomitic sandstone</u> - quartz, pryite, dolomite cement <u>subangular to rounded, hard, tight.</u>

· •

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

9470-9480 95 Quartz sandstone, inconsolidated, coarse to pebbly, moderately god reservoir. 9480-9490 95 Calcarcous silfstone, edun grey, firm to hard Less than 38 glauconite. WDT: pittings in sand are infilled with glauconite. WDT: pittings in sand are infilled with glauconite. 9480-9490 95 Quartz sand, as above trace glauconite. Trace pyrite, glauconite, trace grifte, trace constructions silfstone, as above trace pyrite, trace calcarcous silfstone, as above to status the trace glauconite, trace grifte, trace calcarcous silfstone, as above glauconite, trace grifte, trace calcarcous silfstone, as above to status the trace glauconite, trace grifte, trace calcarcous silfstone, as above to status the trace grifte. 9510-9520 100 Quartz sand as above to status the trace glauconite, trace grifte. 9520-9530 100 Quartz sand, as above trace distane, as above trace glauconite, trace grifte. 9520-9530 100 Quartz sand, as above trace glauconite, grifte trace glauconite, may grains trace grifte. 9540-9550 100 Quartz sand, as above trace glauconite, may grains broke, no calcarcous siltstone, as above trace grifte. 9540-9550 100 Quartz sand, as above to stightly fronted, many grains broke, no calcarcous siltstone, as above trace grifte, trace grifte granules. 9540-9550 100 Quartz sand, as above to stightly fronted, many grains broke, no calcarcous siltstone, as above trace grifte granules. 9540-9550 100 <	DEPTH	%	DESCRIPTION
5 Calcarcous siltstone, edium grey, firm to hard Loss than 35 galaxonice. NVIE: pittings in sand are infilled with glauconite. 9480-9490 95 Quartz sandstone, as above this is galaxonice, as above this is galaxonice, its toome, as above this is a solve, pittings in sand are infilled with glauconite, trace calcareous siltstone glauconite, trace calcareous siltstone, as above glauconite, trace pyrife, trace cement. 9500-9510 100 Quartz sand as above tess than 51 calcareous siltstone, as above glauconite, trace pyrife. 9510-9520 100 Quartz sand as above tess than 54 calcareous siltstone, as above glauconite, trace pyrife. 9520-9530 100 Quartz sand, as 'above tess than 54 calcareous siltstone, as above trace quartz sandstone, hand, thight, cemented glauconite, pyrite trace pyrite. 9530-9540 90 Quartz sand, as above. Calcareous siltstone, as above trace quartz sandstone, hand, thight, cemented glauconite, pyrite trace pyrito. 9540-9550 100 Quartz sand, as above. Calcareous siltstone, as above trace pyrito. 9540-9550 100 Quartz sand, as above carings, trace pyrite, trace calcareous siltstone and Mari guinomite and trace pyrite. Trace Calcareous siltstone and Mari guinomite and trace pyrite. 9560-9570 50 Quartz sand, as above trace pyritic granules. 9570-9580 50 Quartz sand, as above, tending to white Calcareous siltstone and Mari, cavings trace sandstone yrites there, fine grained, glauconite bright yellow f	9470-9480	95	sorted, rounded to well rounded, trace glauconite,
Icss than 5% calcareous siltstone, as above Trace pyrite, glauconite, trace cement. 9490-9500 100 Quartz Sand, as above, pittings in sand are infilled with plauconite, trace gyrite, trace cement. 9500-9510 100 Quartz Sand, as above Less than 5% Calcareous siltstone, as above glauconite, trace pyrite. 9510-9520 100 Quartz sand, as above Less than 5% Calcareous siltstone, as above Trace quartz sand, as above Less than 5% calcareous siltstone, as above Trace quartz sand, as above 9520-9530 100 Quartz sand, as above Trace quartz sand, as above Quartz sand, as above Trace pyrite. 9530-9540 90 Quartz sand, coarse to 2 mm, moderately sorted, moderately well rounded, nostly clear to slightly frosted, many grains broken, occasional glauconite infilling surface pits in grains, no shows. 9540-9550 100 Quartz sand, as above Calcareous siltstone, as above Trace sandstone, very light grey, fine grained, well sorted, glauconite and trace pyrite. 9550-9560 50 Quartz sand, as above Calcareous siltstone and Marl, cavings Trace sandstone, as above Trace some trace not signal shightly frosted, an obsection glauconite infilling surface puts in grains, slightly frosted, no shows. 9560-9570 50 9570-9580 50 9570-9580 50 958		5	Calcareous siltstone, edium grey, firm to hard Less than 5% glauconite.
glauconite, trace calcareous siltstone glauconite, trace pyrite, trace coment.9500-9510100Quartz sand as above Less than 5% Calcareous siltstone, as above glauconite, trace pyrite.9510-9520100Quartz sand, as 'above Less than 5% Calcareous siltstone, as above Trace quartz sand, as 'above Trace quartz sand, as 'above. Trace quartz sand, as above.9530-954090Quartz sand, as above. Calcareous siltstone, as above Trace quartz sand, as above. Trace pyrite.9540-9550100Quartz sand, coarse to 2 mm, moderately sorted, moderately well rounded, mostly clear to slightly frosted, moderately well rounded, mostly clear to slightly frosted, moderately well rounded, mostly clear to slightly frosted, moderately glauconite and trace pyrite. Trace Calcareous siltstone and Mar cavings, trace pyritic granules.9550-956050Quartz sand, coarse to 3 mm, moderately sorted, subrounded to (mostly clear) subangular, some broken, occasionally glauconite infilling surface pits in grains, no shows. Trace sandstone, as above Trace substone, as above. Trace siltstone and Marl, cavings Trace siltstone and marl, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted, no shows. Calcareous siltstone and marl, as above, cavings. Trace pyritic Trace pyritic Trace pyritic.9570-958050Quartz sand, as above, tending to white Calcareous siltstone and marl, cavings Trace pyrite.9580-959050Quartz sand, as above, no shows Calcareous siltstone and marl, cavings Trace Sandstone, ervy light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no s	9480-9490	95	Less than 5% calcareous siltstone, as above
Itest than 5% Calcareous siltstone, as above glauconite, trace pyrite.9510-9520100Quart sand as above Less than 5% Calcareous Siltstone, as above Trace quartz sand, as 'above Less than 5% Calcareous siltstone, as above Trace quartz sandstone, hard, tight, cemented glauconite, pyrite Trace pyrite.9540-9550100Quartz sand, coarse to 2 mm, moderately sorted, moderately well rounded, mostly clear to slightly frosted, many grains broken, occasional glauconite infilling surface pits in grains, no shows. Trace sandstone, very light grey, fine grained, well sorted, glauconite and trace pyritic granules.9560-957050Quartz sand, as above Trace sandstone, as above, trace quartz sand, as above trace pyritic granules.9560-957050Quartz sand, as above, trace broken, occasionally glauconite infilling surface pats in grains, slightly frosted, no shows. Calcareous siltstone and marl, cavings Trace pyritic granules.9570-958050Quartz sand, as above, tending to white Calcareous siltstone and marl, caving Trace pyritic.9580-959070Quartz sand, as above, no shows Calcareous siltstone and marl, cavings Trace pyrite.9580-950070Quartz sand, as above, no shows Calcareous siltstone and marl, cavings Trace pyrite.9580-950070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-9600	9490-9500	100	glauconite, trace calcareous siltstone
Itess than 5% Calcareous Siltstone, as above9520-9530100Quartz sand, as aboveLess than 5% Calcareous siltstone, as aboveTrace quartz sand, as above.9530-95409010Quartz sand, as above.Galcareous Siltstone, as aboveTrace quarts sand, as above.Galcareous Siltstone, as aboveTrace pyrite.9540-9550100Quartz sand, coarse to 2 mm, moderately sorted, moderately well rounded, mostly clear to slightly frosted, many grains broken, occasional glauconite infilling surface pits in grains, no shows. Trace sandstone, very light grey, fine grained, well sorted, glauconite and trace pyritic. Trace Calcareous siltstone and Mar cavings, trace pyritic granules.9560-95705050Quartz sand, coarse to 3mm, moderately sorted, subrounded to (mostly clear) subangular, some broken, occasionally glauconte infilling surface pats in grains, slightly frosted, no shows. Calcareous siltstone and marl, as above, cavings Trace pyritic granules.9560-95705050Quartz sand, as above, tending to white Calcareous siltstone and marl, caving Trace pyrite.9570-95805050Quartz sand, as above, no shows Calcareous siltstone and marl, caving Trace pyrite.9580-95907050Quartz sand, as above, no shows Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-96007070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine	9500-9510	100	Less than 5% Calcareous siltstone, as above
Jess than 5% calcareous siltstone, as above Trace quartz sandstone; hard, tight, cemented glauconite, pyrite Trace pyrite.9530-954090 10Quartz sand, as above. Calcareous siltstone, as above Trace pyrite.9540-9550100Quartz sand, coarse to 2 mm, moderately sorted, moderately well rounded, mostly clear to slightly frosted, many grains broken, occasional glauconite infilling surface pits in grains, no shows. Trace sandstone, very light grey, fine grained, well sorted, glauconite and trace pyrite. Trace Calcareous siltstone and Mar cavings, trace pyritic granules.9550-956050Quartz sand, as above Calcareous siltstone, as above Trace sandstone, as above Trace sandstone, as above Trace sandstone, as above to (mostly clear) subangular, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted, no shows.9560-957050Quartz sand, coarse to 3mm, moderately sorted, subrounded to (mostly clear) subangular, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted, no shows.9570-958050Quartz sand, as above, tending to white Calcareous siltstone and marl, cavings Trace pyritie.9580-959070Quartz sand, as above, no shows Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace sandstone, very li	9510-9520	100	
10Calcareous siltstone, as above Trace pyrite.9540-9550100Quartz sand, coarse to 2 mm, moderately sorted, moderately well rounded, mostly clear to slightly frosted, many grains broken, occasional glauconite infilling surface pits in grains, no shows. Trace sandstone, very light grey, fine grained, well sorted, glauconite and trace pyrite. Trace Calcareous siltstone and Man cavings, trace pyritic granules.9550-956050Quartz sand, as above Calcareous Siltstone, as above Trace sandstone, as above Trace sandstone, as above Trace siltstone and Man, cavings Trace sandstone, as above to (mostly clear) subangular, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted, no shows. 509560-957050Quartz sand, coarse to 3mm, moderately sorted, subrounded to (mostly clear) subangular, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted, no shows. 509570-958050Quartz sand, as above, tending to white Calcareous siltstone and Marl, caving Trace pyrite.9580-959070Quartz sand, as above, no shows Calcareous siltstone and marl, cavings Trace sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace sandstone, as above Trace partie.	9520-9530	100	Less than 5% calcareous siltstone, as above Trace quartz sandstone, hard, tight, cemented glauconite, pyrite
well rounded, mostly clear to slightly frosted, many grains broken, occasional glauconite infilling surface pits in grains, no shows. Trace sandstone, very light grey, fine grained, well sorted, 	9530-9540		Calcareous siltstone, as above
50Calcareous Siltstones and Marl, cavings Trace sandstone, as above Trace pyritic granules.9560-957050Quartz sand, coarse to 3mm, moderately sorted, subrounded to (mostly clear) subangular, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted, no shows. Calcareous silstone and marl, as above, cavings9570-958050Quartz sand, as above, tending to white Calcareous siltstone and Marl, caving9570-958050Quartz sand, as above, tending to white Calcareous siltstone and Marl, caving9580-959070Quartz sand, as above, no shows Calcareous siltstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace sandstone, as above	9540-9550	100	well rounded, mostly clear to slightly frosted, many grains broken, occasional glauconite infilling surface pits in grains, no shows. Trace sandstone, very light grey, fine grained, well sorted, glauconite and trace pyrite. Trace Calcareous siltstone and Man
to (mostly clear) subangular, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted, no shows.50Calcareous silstone and marl, as above, cavings Trace pyritic granules.9570-958050Quartz sand, as above, tending to white Calcareous siltstone and Marl, caving Trace pyrite.9580-959070Quartz sand, as above, no shows Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070Quartz sand, as above no shows Calcareous siltstone and marl, cavings 	9550-9560		Calcareous Siltstones and Marl, cavings Trace sandstone, as above
50Calcareous silstone and marl, as above, cavings Trace pyritic granules.9570-958050Quartz sand, as above, tending to white Calcareous siltstone and Marl, caving Trace pyrite.9580-959070Quartz sand, as above, no shows 	9560-9570	50	to (mostly clear) subangular, some broken, occasionally glauconte infilling surface puts in grains, slightly frosted,
50Calcareous siltstone Trace pyrite.and Mar1, caving Mar1, caving9580-959070 30Quartz sand, as above, no shows Calcareous siltstone and mar1, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070 30Quartz sand, as above no shows Calcareous siltstone and mar1, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070 30Quartz sand, as above no shows Calcareous siltstone and mar1, cavings Trace sandstone, as above		50 [°]	Calcareous silstone and marl, as above, cavings
30Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fine grained, glauconite bright yellow fluorescence, slow dull yellow cut.9590-960070 Quartz sand, as above no shows Calcareous siltstone and marl, cavings Trace sandstone, as above	9570-9580		Calcareous siltstone and Marl, caving
30 <u>Calcareous siltstone and marl</u> , cavings Trace <u>sandstone</u> , as above	9580-9590		Calcareous siltstone and marl, cavings Trace Sandstone, very light grey, fime grained, glauconite
9600-9610 50 Quartz sand, coarse ot 2 mm, subangular to subrounded, some	9590-9600		Calcareous siltstone and marl, cavings
	9600-9610	50	Quartz sand, coarse ot 2 mm, subangular to subrounded, some

.

.

.

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

DEPTH	%	DESCRIPTION
9600-9610 cont	'd 50	glauconite in pits on surface, mostly white, some clear some slightly frosted, no shows. <u>Calcareous siltstone and marl</u> , light grey to medium light grey, moderately firm, very calcareous, probably cavings, although hole is supposedly in good condition and returns have a large % of this material. However this material is interbedded with the sand. Trace <u>sandstone</u> very light grey, glauconitic in part, good yellow fluorescence, very slow dull yellow cut
9610-9620	60 40	Quartz sand, as above, no shows Calcareous siltstone and Marl, as above
9620-9630	40 60	Quartz sand, as above, no shows <u>Calcareous siltstone and marl</u> , as above Trace pyrite
9630-9640	40 60	Quartz sand, as above no shows Calcareous siltstone and marl, as above Trace <u>sandstone</u> , light grey, fine grained as above, no shows
9640-9650	30 70	Quartz sand, as above no shows <u>Calcareous siltstone and marl</u> as above Trace <u>sandstone</u> , as above, good yellow fluorescence, very slow weak cut.
9650-9660	40 60	Quartz sand, as above no show Calcareous siltstone and marl, as above Trace siltstone, as above, no shows
9660-9670	30 70	Quartz sand, loose, coars ^e to 2 mm, subangular to subrounded, some broken, rare glauconite in pits on surface, moderate sorting, no shows, mostly clear grains. Calcareous siltstone and Marl, light to medium light grey,
		<pre>moderately firm, very calcareous, ranges from marl' ie calcareous claystone to calcisiltite 70 calcareous siltstone. From 9550' on we have had major % of cutting being calcareous siltstone. It is possible that sand may be cavings from that point on. Trace sandstone, fine grained, very light grey, glauconite good yellow fluorescence, no cut.</pre>
9679-9680	80 20	<u>Quartz sand</u> , as above, no shows <u>Calcareous siltstone and marl</u> , as bove
9680-9690	80 20	Quartz sand, as above, mostly clear graines, no shows some white. Calcareous siltstone and marl, as above Trace <u>sandstone</u> , as above, but no shows.
9700-9710	80	Quartz sand, loose, coarse to 2 mm, subangular to subrounded, some broken, rare glauconite in surface puts on grains,
	20	moderately sorted, mostly clear grains, no shows. <u>Calcareous siltstone and Marl</u> , light to medium light grey, moderately firm, very calcareous, probably cavings. Trace <u>sandstone</u> , dark grey, heavily glauconitic, fine grained no shows.
9710-9720	100	Quartz sand, as above, no shows Trace_calcareous siltstone and marl, as above
9720-9730	100	Quartz sand, coarse to very coarse grained, fewer grains to 2mm, otherwise as above, no shows
9730-9740	90	Quartz sand, loose, subangular to subrounded, rare glauconite moderately sorted, mostly/ clear space white, some slightly frosted
	10	mostly coarse to very coarse grained, 10% to 2 mm. Calcareous siltstone to marl, light to medium light grey, medium

.

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

DEPTH	%	DESCRIPTION
9730-9740 cont'	d	firm, probably caving. Trace pyrite.
9740-9750	90 10	Quartz sand, as above Calcareous siltstone to marl, as above Trace pyrite.
9750-9769 ⁾	199	Quartz Sand, loose subangular to subrounded, some broken mostly clear, rare white grain and some slightly frosted, rare glauconite in pits on surface, coarse to very coarse, grained, 20% to 2 mm.
9760-9770	100	Trace <u>calcareous siltstone to marl</u> cavings <u>Quartz sands</u> , as above
9770-9790	100	Trace cavings as above Quartz sand, as above
9790-9800	100	Trace cavings, as above, trace pyrite. <u>Quartz sand</u> , loose, subrounded, broken, mostly clear, <u>some white grain</u> , coarse to very coarse, rare 2 mm grains no shows. Trace <u>calcareous siltstone to marl</u> cavings Trace <u>pyrite</u> .
9800-9810	100	Quartz Sand, as above Trace <u>sandstone</u> , very light grey to medium grey, quartzose glauconitic in part, trace pyrite.
9810-9820	100	Quartz sand, coarse to very coarse, rare 2mm grains, subrounded, some broken, generally clear some white grains, well sorted. Trace <u>Sandstone</u> , light to medium grey, glauconitic in part, trace <u>calcareous siltstone and marl</u> , medium grey, moderately firm, cavings.
9820-9830	80 20	Quartz sand, as above Trace <u>sandstone</u> , as above Calcareous siltstone and marl, cavings as above
830-9840	90 10	Quartz sand as above Calcareous siltstone and marl, cavings as above Trace <u>sandstone</u> , as above, trace pyrite and glauconite grains
9850-9860	90 10	Quartz sand, as above, rare glauconite on surface of grains. Calcareous siltstone and marl, as above Trace sandstone as above, trace yellow fluorescence, very slow weak, dull yellow cut. Trace pyrite and glauconite grains.
9860-9870	30 · 70	<u>Quartz Sand</u> , as above <u>Calcareous shale-siltstone</u> , cuttings are very splintery (overpressured?). Trace <u>sandstone</u> , as above. Trace glauconite
9870-9880	100	<u>Calcareous shale - siltstone</u> , dark grey, hard, trace glauconite trace pyrite, forams, splintery cuttings (overpressured) trace sandstone as above, dolomite cement 5% trace quartz sand Trace sandstone -siltstone, light grey, firm, glauconite quartz pyrite
9860-9876		Shale was encountered which had the appearance of an overpressured shale. Mud weight was raised accordingly to 10#/gas1.
9876-9880	80% 20	<u>Calcareous shale-siltstone</u> , medium grey to medium dark grey very calcareous. SAnd, quartz, loose, coarse to 2 mm, no show.
	<u> </u>	•

.

·

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

DEPTH	%	DESCRIPTION
9880-9890	100	Quartz sand, loose coarse to 2 mm, clear, some slightly frosted grains, subrounded, well sorted, rare glauconite, no shows. Trace (2 grains) <u>Sandstone</u> , light grey, fine to medium grained well sorted, trace glauconite, trace pyrite, dull fluorescence, very low weak cut. Trace <u>calcareous shale/siltstone</u> , as above
9890-9900	90	Quartz Sand, loose, coarse to 2 mm, clear some slightly frosted, subrounded, some broken, moderate sorting, rare glauconite trace pyrite, no shows.
•	10	<u>Calcareous shale/siltstone</u> , medium grey to medium dark grey, very calcareous, forams.
9900-9910	90 10	Quartz sand, as above, rare grains have matrix surrounding them. Matrix is a fine grained <u>sandstone</u> with a siliceous cement, very tight and very hard. No shows. Calcareous shale/sandstone as above
		Trace pyrite
9910-9920	70	Sandstone, very light grey, fine to 2 mm, very poorly sorted, tend to have coarse to 2 mm grains in fine grained matrix. Generally large grains isolated, occasionally have matrix attached. Large grains subrounded, clear to slightly milky, rare medium light grey grains. Matrix is fine grained, siliceous cement in part, very tight, trace glauconite, trace pyrite.
	30	Calcareous shale/calcareous siltstone, as above
9920-9930 - 	85	Sandstone, light grey, coarse to 2mm grain in fine grained matrix, siliceous and dolomitic cement in part, subrounded large grains, generally clear to slightly milky, rare medium grey large grains, trace glauconite, trace pyrite, poorly sorted, no shows Calcareous shale/calcareous siltstone, medium light grey, moderately firm, very calcareous, fossils mainly forams.
9930-9940	15 85	$\frac{\text{Sandstone,}}{\text{Calcareous shale/calcareous siltstone,}} \text{ meduum light grey to medium } $
9940-9950	20 80	Sandstone, as above, dolomitic cement in part. Calcareous shale/calcareous siltstone, medium light grey to medium grey, moderately firm, very calcareous, fossils mainly foram
9950-9960 ·	20 80 -	Sandstone, as above, dolomitic cement, in part Calcareous shale/calcareous siltstone as above
9960-9970	10 90	Sandstone, as above, ?cavings Calcareous shale/calcareous siltstone, as above
9970-9980	20 80	Sandstone, as above, no shows Calcareous shale/calcareous siltstone, as above. Trace pyrite trace glauconite. Trace white soft mineral, with minor black streaks, non calcareous, non dolomitic, tasteless?!
9980-9990	20 80	Sandstone, as above, no shows <u>Calcareous shale/calcareous siltstone</u> , as above. Trace pyrite, trace white softmineral as above.
9990-10,000	60 40	<u>Calcareous shale/calcareous siltstone</u> , medium grey, very calcareous trace fossils, tends to fine grained in part, glauconite. <u>Quartz Sand</u> , coarse to 2mm, subrounded, clear to some milky, fine grained <u>sandstone</u> , probably matrix present, this is glauconite, trace pyrite, no shows. Dolomitic cement for matrix in part. Trace white soft mineral, non calcareous, non dolomitic.
· · · · · · · · · · · · · · · · · · ·		

SAMPLE DESCRIPTIONS

Bellis/Kemp/Morton/ Davis/Brooks/Elliott

.

DEPTH	%	DESCRIPTION
10,000-10,005	50 50	LAST SAMPLE AFTER CIRC. B.U) <u>Calcareous shale/ calcareous siltstone</u> , as above <u>Quartz sand</u> , as above, no show Trace white soft mineral as above
		BIT #17. J-33 BIT #16 lasted 4.9 hours and drilled 129'.
10,005-10,010	95	<u>Calcareous shale/calcareous sandstone</u> , medium dark grey, calcareous, firm, trace glauconite, trace pyrite, forams.
	5	Quartz sand, unconsolidated, well rounded to rounded, medium to coarse. Trace <u>sandstone</u> , fine grained, medium dark grey, quartz, glauconite, pyrite, silty, poorly sorted, angular to subangular, calcareous. Trace dolomitic <u>sandstone</u> , cavings from above dull white fluorescence.
10,010-10,020	95	<u>Calcareous shale/siltstone</u> , as above
	5	Quartz sand, as above Trace <u>sandstone</u> , as above Trace glauconite, trace pyrite.
10,020-10,030	95 5	Calcareous shale/siltstone, as above Quartz sand, as above • Trace pyrite, trace glauconite
10,030-10,40	.95 * 5	<u>Calcareous shale/siltstone</u> , as above <u>Quartz sand</u> , as above Trace pyrite, trace glauconite, trace <u>sandstone</u> , as above
10,040-10,050	30 70	<u>Calcareous shale/siltstone, medium dark grey, firm to hard, calcareous, trace glauconite, trace pyrite.</u> <u>Quartz sand</u> , unconsolidated, coarse to pebbly, well rounded rounded, moderately well sorted. Trace pyrite, trace glauconite, trace <u>sandstone</u> , fine grained, silty, poorly sorted, quartz, glauconite, pyrite.
0,050-10,060	30 70	<u>Calcareous shale/siltston</u> e, as above Quartz sand, as above Trace pyrite, trace glauconite. Trace <u>sandstone</u> as above
10,060-10,070	20 80	<u>Calcareous</u> shale/calcareous siltstone, medium grey to medium dark grey, very calcareous, moderately firm, trace glauconite and trace pyrite, only visible in siltstone portion. <u>Quartz Sand</u> , unconsolidated, coarse to 3 mm, most grains in very coarse to 3 mm range, subrounded, moderately well sorted, trace pyrite and trace glauconite, on grain surface, 10% grey quartz grains. No shows.
10,070-10,080	100	Quartz sand, unconsolidated, coarse to very coarse, sand, rare granules, subangular to subrounded, mostly clear, some milky and rare medium light grey quartz.grains, moderately well sorted, rare glauconite and trace pyrite, no shows. Trace <u>calcareous shale/siltstone</u> as above
10,080-10,090	100	Quartz sand, as above, no shows Trace <u>calcareous shale/siltstone</u> , as above
10.090-10,100	100	Quartz sand, as above no shows Trace <u>calcareous shale/siltstone</u> , as above

.

. .

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

•

		•
DEPTH	z	DESCRIPTION
10,100-10,110	100	Quartz sand, unconsolidated, coarse to very coarse sand, rare granules, subangular to subrounded, mostly clear, some milky and rare medium light grey quartz grains, moderately well sorted, rare glauconite and trace pyrite, no shows. Trace <u>calcareous shale/siltstone, medium dark grey</u> , firm to moderately hard, very calcareous, trace glauconite, trace pyrite, probably cavings.
10,110-10,120	80 20	Last sample before logging Quartz sand, coarse to very coarse grained, rare granules, subangular to subrounded, mostly clear some milky grains, moderately well sorted, trace glauconite, trace pyrite. No shows. <u>Calcareous shale/calcareous siltstone</u> , medium dark grey, very calcareous, moderately hard in places.
,		P.O.H. 1035 hrs. Make 30 stand wiper trip, circulate out P.O.H. Rig up for logging
		Bit #19, J-7 lasted 3.2 hrs. drilled 40'.
10,115-10,120	80 20	Quartz'sand, coarse to granule, predominantly granules many are fractured. Well rounded, clear to milky. <u>Siltstone</u> , dark grey, sandy, very carbonaceous, micaceous pyritic, friable. Cement cavings
10,120-10,130	40 - 60	Quartz sand, coarse to granule, as above, trace pyrite <u>Siltstone</u> , dark grey, micaceous, pyrite, as above cement cavings.
÷		Bit # 20 . XDG lasted 3.1 hrs. drilled 13'
		Stopped circulating and pulled out of hole to change bit - no returns between 10,130-10,160.
		Bottoms up sample 20% Quartz sand as above 80% Siltstone as above. Cement cavings
٠		Ran reverse circulation trip with two junk baskets - no recovery Bit #21 XDV.
		Bottoms up sample. 95% Siltstone, dark grey, firm to hard, quartz, carbonaceous, micaceous, trace pyrite, sandy. 5% Ouart sand, coarse to granule, well
		5% Quart sand, coarse to granule, well rounded. Trace quartz sandstone, fine grained, subangular to subrounded, well sorted, pyritic cement in places.
10,167-10,170	90 10	Siltstone, as above Quartz sand, as above
10,170-10,180	95	Siltstone, dark grey, firm, quartz, micaceous, carbonaceous, material, pryite, trace glauconite/chlorite?
	5	Quartz sand, unconsolidated, coarse to granule, well rounded, fractured. Trace Quartz sandstone, light grey, fine grained subangular to subrounded, quartz, pyrite, carbonaceous material, glauconite/chlorite, moderately sorted.
10,180-10,190	70 30	Siltstone, as above Quartz sand, as above, few quartz grains, with pale blue fluorescence, dull yellow instant cut. NOTE: pipe dope did occur in sample, however this had yellow fluorescence and was different from above. Trace brown residue after cut. Quartz sandstone as above, pyrite, cement in part.
	1	

.

·

7

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

DEPTH	%	DESCRIPTION
10,190-10,200	50 50	Siltstone, as above
1-	50	Quartz sand, as above Trace quartz sandstone, as above
10,200-10,210	90 10	DRILLING BREAK CIRCULATED SAMPLE UP <u>Quartz sand</u> , as above, pryite, trace glauconite/chlorite? <u>Siltstone</u> , as above, Trace <u>quartz sandstone</u> , as above
10,210-10,220	90	Quartz sand, clear-milky, coarse to granule, moderately well rounded, fractured grains, trace pyrite, chlorite.
	10	<u>Siltstone</u> , dark grey, very carbonaceous, micaceous, pyrite, friable, firm, sandy, grades in part to very fine <u>sandstone</u> . Trace very fine <u>sandstone</u> , white, pryitic cement in places
		P.O.H. to change bit. Bit #21 on bottom. Drilled
10,218-10,230	70 30	Sand, as above Siltstone, as above, trace chlorite/glauconite Trace pyrite.
10,230-10,240	65 35	Sand, as above Siltstone, as above, rare quartz grain interbedded in siltstone. Lithology: thinly interbedded coarse sand and siltstone
10,240-10,250	50	Quartz sand, unconsolidated, coarse to granule, well rounded, many are fractured, clear to milky,
	∻ 50	<u>Siltstone</u> , dark grey, firm, soft, quartz, micaceous, pyrite, carbonaceous, glauconite/chlorite? Sandy in part.
10,250-10,260	60 40	Quartz sand, as above, trace pyrite cement <u>Siltstone</u> , as above, quartz grains interbedded in <u>siltstone</u> , <u>coarse grained</u> , well rounded. <u>Siltstone</u> sandy in part, fine grained. Trace <u>sandstone</u> , hard, fine grained, moderately sorted, quartz, pyrite cement inpart, silty in part, moderately well rounded.
10,260-10,270	60 40	Quartz sand, as above <u>Siltstone</u> , as above Trace <u>sandstone</u> , as above. Trace pyrite.
10,270-10,280	50	Quartz sand, as above Siltstone, as above Trace sandstone, as above
10,280-10,290	50 50	Quartz sand, as above Siltstone, as above Trace sandstone, as above. Trace pyrite
		Bit #22 XDV 7.1 hrs on bottom. Drilled 102'
		Sample lodged in bit 22 very coarse <u>sandstone</u> , hard, tight, abundant pyritic cement.
		Bit #23 J-33, 5 u.T.G.
10,290-10,300	70	Siltstone, dark grey, firm to friable, quartz, mica, carbonaceous, pyrite, coarse to granule quartz, grains dispersed, thru siltstone (well rounded) sandy in part (fine grained)
, ·	30	grains of glauconite/chlorite? Quartz sand, unconsolidated, coarse to granule, well rounded, many fractured, pyritic cement.
10,300-10,310	70 30	<u>Siltstone</u> , as above <u>Sand</u> , as above
		L

. , .

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

		11////5-1/9//5
DEPTH	%	DESCRIPTION
10,310-10,320	65 35	<u>Siltstone</u> , as above <u>Sand</u> , as above
		Formation is thinly interbedded <u>siltstone</u> and heavily pyritized very coarse quartz sandstone.
10,320-10,330	70 30	Siltstone, as above Sandstone, medium grained, well sorted, subrounded, trace dolomitic cement.
10,330-10,340	80 15 5	Siltstone, as above Quartz sand, as above Sandstone, fine to medium grained, white, hard, well sorted, subrounded to rounded, dolomitic and pyritic cement.
10,340-10,350	70	Siltstone, medium to dark grey, carbonaceous, micaceous, pyritic, friable, rare green grains - chlorite, rare very coarse quartz grains inbedded, sandy to bery sand - grades
	20 10	to very fine <u>sandstone</u> . <u>Sandstone</u> , white to light grey, friable to hard, well sorted <u>subrounded</u> to rounded, some dolomite cement, pyritic. <u>Quartz</u> grains, hoose coarse to granule, fractured, well <u>rounded</u> , predominantly granules. In situ probably hard, <u>sandstone</u> to very coarse to granule, well cemented with pyrite.
10,350-10,360	60 - 30 10	Loose quartz grains, as above <u>Sandstone</u> , fine grained, as above <u>Siltstone</u> , as above
10,360-10,370	50 40 10	Loose Quartz grains, as above <u>Sandstone</u> , fine grained, dolomitic, hard, as above <u>Siltstone</u> , as above
10,370-10,380	50 40 10	Sandstone, as above, mineral fluorescence Loose Quartz grains, as above Siltstone, as above
10,380-10,390	60	Sandstone, fine to medium grained, light grey, hard, moderately well sorted, subangular to well rounded, tight, dolomitic cement. Grades into
•	15 20	Sandstone, very fine, light to medium grey, hard, dolomitic pyrite, tight. Loose quartz grains, coarse to granule, fractured grains -
	5	originally moderate to well rounded. Siltstone, dark grey, firm to friable, carbonaceous, micaceous pyritic, non calcareous.
10,390-10,400	50 40 10	Sandstone, dolomite cement, as above, mineral fluorescence Quartz sand, as above Siltstone, as above
10,400-10,410	40 50 10	Sandstone, as above, mineral fluorescence Quartz sand, as above Siltstone, as above Trace pyrite.
10,410-10,420	30 50	Sandstone, hard, tight, medium to light grey, fine to coarse poor to moderately sorted, quartz, dolomitic cement (yellow fluorescence), well rounded, trace pyrite cement. Quartz sand, unconsolidated, coarse to granule, moderately sorted, well rounded, trace pyrite cement, many quartz grains
		have been fractured during drilling - fractures present prior to drilling are generally filled with pyrite (microcrystalline) quartz, milky to clear.

НАРИКИ ∦1

. . .

, ,

SAMPLE DESCRIPTIONS

.

Davis/Brooks/Elliott

.

DEPTH	%	DESCRIPTION
10,410-420 cont	'd 20	Siltstone, medium to dark grey, soft to firm, quartz, mica pyrite, glauconite/chlorite?, very carbonaceous, coarse to granule, well rounded quartz grains embedded in <u>siltstone</u> : <u>Siltstone</u> grades to very fine <u>sandstone</u> in part. Trace carbonaceous material (coal?)
10,420-10,430	35 35 30	Sandstone, as above Quartz sand, as above Siltstone, as above, trace carbonaceous material
10,430-10,440	40 50 10	Sandstone, as above Quartz sand, as above Siltstone, as above, trace carbonaceous material.
10,440-10,450	40 40 20	Sandstone, as above Quartz sand, as above Siltstone, as above, trace carbonaceous material
10,450-10,460	40 30 15 15	<pre>Sandstone, as above Quartz sand, as above, trace pyrite cement. Siltstone, as above Silty sandstone, light grey, fine to coarse, poorly sorted, firm quartz, mica, pyrite, carbonaceous material, glauconi te/ chlorite?, silty. Trace carbonaceous material(coal?)</pre>
10,460-10,470	. 15 40	Siltstone, dark grey, friable to firm, quartz, mica trace pyrite, very carbonaceous, sandy in part, Sandstone, light grey, hard, medium to coars-, moderately
	5	sorted, quartz, dolomite cement, well to moderately rounded, trace pyrite cement. <u>Silty sandstone</u> , firm, dark grey, fine to medium, silty quartz, mica, pyrite, carbonaceous, subangular to rounded
	40	poorly sorted. Quartz sand, unconsolidated, trace pyrite, cment, coarse to granule, well rounded, trace <u>coal</u> ?
10,470-10,480	15 50 30	Siltstone, as above Quartz sand, as above Trace silty sandstone, as above Sandstone, as above
	5	Coal, black, shiny, moderately hard. Trace pyrite.
10,480-10,490	20 25 40 15	Siltstone, as above Trace silty sandstone, as above Sandstone, as above Quartz sand, as above Coal, as above Trace pyrite.
10,490-10,500	35 10 15 30 10	Siltstone, as above Silty sandstone, as above Quartz sand, as above Sandstone, as above Coal, as above
10,500-10,510	20 10 20 30	<u>Coal</u> , black, firm to hard, shiny, <u>Quartz sand</u> , unconsolidated, coarse to granule, well rounded <u>Siltstone</u> , medium to dark grey, firm, quartz, mica, carbonaceous, pryite. <u>Sandstone</u> , light grey, hard, medium to coars, moderately sorted, subrounded to rounded, quartz, dolomite cement.
	20	Sandstone, medium grey, fine grained, silty hard, dolomitic cement.

НАРИКИ ∦1

.

•

.

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

.

DEPTH	%	DESCRIPTION
10,510-10,520	55 30 10 5	CUTTING GAS C1 500, C2 300, C3 100. <u>Siltstone</u> , as above <u>Sandstone</u> , fine grained, silty, hard, as above <u>Sandstone</u> , medium to occasionally coarse, as above <u>Quartz sand</u> , as above <u>Trace coal</u> .
10,520-10,530	95 5	CUTTING GAS C1 11,000, C2 2,000, C3 300. <u>Coal</u> , black, shiny, hard, bleeding gas Trace quartz grain, <u>sandstone</u> , medium to coarse, <u>sandstone</u> fine grained, <u>siltstone</u>
10,530-10,540	60 30 10	<u>Coal</u> , as above grading to <u>Siltstone</u> , as above, dark grey to brown, very carbonaceous <u>Minor sandstone</u> , medium to coarse grained, dolomitic, hard minor <u>sandstone</u> , fine grained, well sorted, subrounded less dolomitic than before, friable in part.
10,540-10,550	50 35 5 10	Siltstone, as above <u>Sandstone</u> , fine grained, well sorted, subrounded, light grey friable to hard, minor dolomitic cement. <u>Quartz</u> grains, as above <u>Coal</u> , as above.
10,550-10,560	30 30 20 20 20	<u>Siltstone</u> , as above <u>Sandstone</u> , as above <u>Coal</u> , as above <u>Quartz</u> grains, as above Trace pyrite.
10,560-10,570	30 30 20 20	<u>Siltstone</u> , as above <u>Coal</u> , <u>Sandstone</u> , as above <u>Quartz</u> grains, Trace pyrite
10,570-10,580	50 20	Siltstone, medium to dark grey to brown, firm, very carbonaceous micaceous, pyrite, non calcareous. Sandstone, fine graind, light grey, friable to hard, well sorted, subrounded to rounded, variable dolomitic cement. Trace pyrite.
	20 10	Quartz grains, very coarse, fractured grains, clear to milky, rounded to well rounded, trace pyrite on surfaces. <u>Coal</u> , black, shiny, firm to hard, bleeding gas <u>Minor sandstone</u> , medium to coarse grained, subangular to rounded, white, hard, dolomitic cement.
10,580-10,590	80 . 15 5	<u>Coal</u> , as above Quartz grains, as above <u>Sandstone</u> , fine grained, as above
10,590-10,600	30 30 10	CUTTING GAS. C1 2,500, C2 200. <u>Siltstone</u> , as above, some medium brown <u>Sandstone</u> , medium to coarse grained, as above, hard dolomitic. <u>Coal</u> , as above Trace pyrite.

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

DEPTH	%	DESCRIPTION
10,600-10,610	40	<u>Siltstone</u> , as above
	25	Sandstone, very fine to fine, as above, some clay matrix,
	25	as well as dolomite. Sandstone, very fine to coarse, predominantly medium grained, as above.
	5 5	<u>Coal</u> , as above Loose quartz grains, as above.
10,610-10,620	10 10	Coal, black, firm, lustrous, fissile, with pyrite. Quartz sand, unconsolidated, coarse to granule,
	35	well rounded, Sandstone, light grey, firm to hard, medium to coarse, moderately sorted, quartz, dolomite cement, tight, shapr contact between sandstone and coal seen in one sample, dull yellow mineral
•	45	fluorescence. Siltstone, medium to dark grey, firm to friable quartz, very carbonaceous, mica, sandy in part,
•		pyrite Trace <u>silty sandstone</u> , medium to dark grey, firm, fine to medium, poorly sorted, subrounded to rounded, silty, quartz, very carbonaceous, mica, pyrite. Trace pyrite.
10,620-10,640	10	Coal, as above
	20 30	Quartz sand, as above, loose sand grains Sandstone, as above
	- 40	<u>Siltstone</u> , as above, very carbonaceous, plant fragments, sandy in part.
10,630-10,640	5	Coal, as above, sharp contact with <u>sandstone</u> , with pyrite.
	20 60 15	Loose quartz grains, as above Sandstone, as above, with mica, pyrite, carbonaceous in part. Siltstone, as above
10,640-10,650	70	Coal, as above
	10 10	Siltstone, as above Sandstone, as above
۲	10	Loose Quartz sands, as above Trace pyrite.
10,650-10,660	40	Coal, black, lustrous, firm fissile.
	30	<u>Siltstone</u> , brown to dark grey, firm to friable, sandy in part, quartz, very carbonaceous, pyrite, mica,
	•	loose quartz sand, coarse to granule, well rounded
	30	Trace pyrite cement. Sandstone, light grey, fine to medium, moderately sorted to well sorted, subrounded to rounded, quartz, silty in part, tight, dolomite cement.
		Trace Loose quartz grains. White material soft, non calcareous, with trace carbonaceous material.
10,660-10,670	75	Sandstone, as above
	5 5	Coal, as above Loose quartz grains, as above
	15	<u>Siltstone</u> , as above Trace pyrite.
10,670-10,680	85	Sandstone, as above, with dull yellow dolomitic mineral fluorescence, no cut. Trace loose quart sand as above.
	5 10	<u>Coal</u> , as above <u>Siltstone</u> , as above
		1930 hours, P.O.H. to change bit.
		· ·

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

	HAPI	JKU #1 SAMPLE DESCRIPTIONS
· · · · · · · · · · · · · · · · · · ·		11/7/75-1/9/75
DEPTH	%	DESCRIPTION
10,680-10,690	70	Sandstone, very fine, light grey, hard, dolomitic cement,
	20	pyrite, micaceous, carbonaceous, tight, silty. Sandstone, fine to medium grained, white, hard, dolomitic cement, moderately sorted, subrounded, trace pyrite.
	10	Siltstone, dark grey to brown, very carbonaceous, micaceous, pyrite, friable.
		Desander sample contained a fair amount of <u>pyrrhotite</u> - black magnetic grains.
10,690-10,700	60 30	Siltstone, as above grading to
•	10	Sandstone, very fine, light to medium grey, as above Sandstone, fine to medium grained, as above Trace coal
10,700-10,710	50 40 10	Siltstone, as above, sandy grading to Sandstone, very fine as above, rarely heavily cemented with pyrite Sandstone, fine to medium grained
•		Cutting gas C1 100 C2 -
10,710-10,720	55 25	Sandstone, very fine, as above, silty, rarely friable Coal, brittle shiny bleeding gas
	10 10	Sandstone, fine to medium as above Siltstone, as above
10,720-10,730'	20 10	Coal, black, lustrous, shiny, brittle-fissile, bleeding gas Sandstone, medium grey, fine to medium moderately sorted,
	30	subrounded, quartz, dolomitic cement, hard tight. Silty sandstone, very fine to fine, medium to dark grey, poorly sorted, silty, quartz, carbonaceous, slightly dolomitic.
	40	Siltstone, dark grey, firm to firable, quartz mica, pyrite, very carbonaceous, sandy in part. Trace loose quartz grains coarse to granule, well rounded many are fractured.
10,730-10,740	20 20	<u>Coal</u> , as above Sandstone, as, above
	30	Silty Sandstone, as above Trace loose quartz grains
	30	Siltstone, brown to dark grey, as above
10,740-10,750	40 5	Coal, as above bleeding gas Sandstone, dolomitic as above
	20 40	Silty Sandstone, silty, dolomitic as above Siltstone, very carbonaceous, as above Trace loose quartz grains, as above
10,750-10,760	5 10	<u>Coal</u> , as above, bleeding gas Sandstone, as above, with pyrite cement in part
	75 10	Silty Sandstone, as above with pyrite. Siltstone, as above
10,760-10,770	20	Trace loose quartz grains as above, Trace pyrite. Coal, as above
	10 50 15 5	Sandstone, as above Silty Sandstone, as above Siltstone, as above Loose Quartz grains. Trace pyrite.
		Cutting Gas Analysis, C1 1100, C2 200.
10,770-10,780	5	Coal, black to brown, brittle to firm, fissile, shiny, bleeding gas.

1

SAMPLE DESCRIPTIONS

.....

11/7/75-1/9/75

My DIUGN / MILLOUL

.

DEPTH	%	DESCRIPTION
	85 10	Sandstone, medium to dark grey, fine to coarse, poorly sorted, subrounded to rounded, dolomitic cement, hard, tight, quartz, silty in part, trace pyrite cement, carbonaceous material, sand granule size in part with minor occurrences of sandstone, medium to light grey, fine to coarse, moderately sorted, subrounded to rounded, dolomitic cement. Siltstone, brown to dark grey, firm to soft, quartz, mica, pyrite very carbonaceous, sandy in part. Trace pyrite. Trace loose quartz grains, coarse to granule, well rounded, many are fractured.
10,780-10,790	90 10	Trace <u>coal</u> as above, with pyrite, no cut, <u>Sandstone</u> , as above <u>Siltstone</u> , as above Loose quartz grains, as above
10,790-10,800	80 5 15	Sandstone, as above with trace pyrite cement, dolomite cement with mineral fluorescence, dull, bright yellow, very carbonaceous in part. Siltstone, as above Loose quartz sand, as above. Trace coal as above
10,800-10,810	70 5 25	Sandstone, as above, with fluorescence (mineral) Siltstone, as above Loose Quartz sand as above Trace <u>Coal</u> , as above. TRace pyrite.
	•	Cutting gas analysis - zero
10,810-10,820	70 · 10 10 10	Sandstone, white to light grey, very fine to medium grained, rare coarse grains, generally moderately to well sorted, hard, tight dolomitic cement, pyrite. Siltstone, dark grey to brown, very carbonaceous, micaceous, pyrite, friable grading to Coal, black to very dark brown, brittle, bleeding gas. Loose quartz grains, coarse to granule, clear to milky,
10,820-10,830	80 10 10	subrounded to well rounded, trace pyrite on surfaces. <u>Sandstone</u> , as above, some friable <u>Siltstone</u> , as above dark brown <u>Loose quartz</u> as above. Trace pyrite.
10,830-10,840	80 10 10	Sandstone, as above, abundnat pyrite cement in some chips. Siltstone, as above Quartz grains as above Trace <u>coal</u> , pyrite.
		Cutting gas - 0
10,840-10,850	70 25 5	Sandstone, as above becoming siltier in the finer grained fraction <u>Siltstone</u> , medium grey, friable, pryite, trace carbonaceous, non calcareous, some medium to dark brown as before Quartz grains as above.
10,850-10,860	85 15	Sandstone, very fine, lignt grey, hard to friable, dolomitic cement, pyrite, carbonaceous, micaceous, silty. Siltstone, as above.
10,860-10,870	80 15 5	Sandstone, as above grading to Siltstone, as above Loose quartz grains. Trace pyrite.
10,870-10,880	80 20	Sandstone, as above Siltstone to shale, some bleeding gas. Trace pyrite
<u> </u>		Cutting gas C1 1200, C2 300 C3 -

HAPUKU #1 SAMPLE DESCREPTIONS

11/7/75-1/9/75

.

	· · · · · · · · · · · · · · · · · · ·	
DEPTH	Z	DESCRIPTION
10,880-10,890	85 15	<u>Sandstone</u> , as above Siltstone, medium brown to medium grey, as above Minor Quartz grains, as above
10,890-10,900	70	Sandstone, light to medium grey, very fine to fine grained, silty in part, generally moderately well sorted, subrounded to well rounded, hard where dolomitic cement, friable, where
	30	silty, pyrite, mica, trace carbonaceous grades to <u>Siltstone</u> , medium grey to medium brown, firm to firable, sandy, pyrite, carbonaceous, micaceous, the brown <u>siltstone</u> is muddier and contains dark carbonaceous cherts. Minor loose quartz grains white to clear, coarse to granule, well rounded.
10,900-10,910	60 40	Sandstone, as above grades to Siltstone, as above Trace loose quartz grains, trace pyrite, trace <u>coal</u> , black, shiny, brittle, fissile.
10,910-10,920	40 40 20	Sandstone, as above <u>Siltstone</u> , as above • <u>Coal</u> , as above, gas bleeding from coal Trace loose quartz grains as above, Trace pyrite.
		Cuttings gas analysis C1 600, C2 1300.
10,920-10,930	55 40 5	Sandstone, as above, mineral fluorescence Siltstone, as above Trace coal as above Loose quartz grains, as above Trace pyrite.
10,930-10,940	55 35 10	Sandstone, as above, with pyrite, and carbonaceous material <u>Siltstone</u> , as above, very carbonaceous <u>Coal</u> , as above, bleeding gas Trace loose quartz grains, as above
10,940-10.950	50	Sandstone, medium grey, hard, where cemented, firm - soft where silty, fine to medium grained, moderately sorted, quartz, mica, pyrite, carbonaceous in part, dolomite cement, silty in part, tight. Dolomite cement occurs in the clean sands only.
	45	<u>Siltstone</u> , brown to dark grey, soft to firm, sandy in part very carbonaceous, quartz, mica, trace pyrite, massive, Sharp contacts between sand and silt, bleeding gas in parts merging to <u>coal</u>
	5 ·	Coal, black, shiny, brittle, hard, bleeding coal, fissile Trace loose quartz sand, coarse to granule, well rounded, clear to milky, many are fractured.
10,950-10,960	55 45	Sandstone, as above with pyrite cement in part Siltstone, as above bleeding gas in part Trace coal, as above bleeding gas Trace loose quartz sand, as above
		Cutting gas analysis C1 500, C2 100
10,960-10,970	50 50	Sandstone, as above Siltstone, as above Trace Coal as above, Trace Ioose quartz sand as above - pebbly. Trace pyrite.
10,970-10,980	50 45 5	Sandstone, as above <u>Siltstone</u> , as above <u>Coal</u> , as above Trace loose quartz sand, as above
		· · · · · · · · · · · · · · · · · · ·

► P~

SAMPLE DESCRIPTIONS

11/7/75-1/9/75 ·-

シュートしてして

DEPTH	%	DESCRIPTION
10,980-10,990	15 15 40 30	Sandstone, as above Siltstone, as above Coal, as above Loose quartz sand, as above
10,990-11,000	10 30 50 10	Sandstone, medium to dark grey, fine to medium, hard, dolomitic cement in part, silty in part, quartz, poor to moderately sorted. Siltstone, brown to dark grey, firm, very carbonaceous, sandy in part, mica, pyrite. Coal, black, shiny, bleeding gas, brittle. Loose quartz sand, coarse to granule, well rounded.
11,000-11,010	20 . 10 . 30 . 20 . 20	 Sandstone, medium grey to medium light grey, fine grained hard, dolomitic cement in part, quartzose, moderate sorting, trace pyrite - heavily pyritic in part, no shows, tight. Siltstone, brown to dark grey, firm, very carbonaceous trace mica. Carbonaceous shale, medium to dark grey, moderately firm. Coal, black, vitreous lustre in part, conchoidal fracture, thin fragments burn readily ? cannel coal. Sand, unconsolidated coarst to 2 mm subangular with many grains broken, trace pyrite on surface of grains, no shows.
11,010-11,020	30 10 20 30 10	Sandstone, as above, dolomitic, tight <u>Siltstone</u> , as above <u>Sand</u> , unconsolidated as above <u>Shale</u> , medium to dark grey, firm, carbonaceous in part. <u>Coal</u> , as above, thinly interbedded in <u>Shale</u> in part
11,020-11,030	40 30 20 10	Sandstone, medium to light grey, fine grained, dolomitic cement, well sorted, hard, no shows, tight. Shale, medium to dark grey, firm, carbonaceous in part, coal thinly interbedded coal - bleeding <u>Coal</u> , thinly interbedded, conchoidal fracture, dull lustre in part, vitreous lustre in part ?cannel coal Siltstone, brown, firm thin coaly stringers included
11,030-11,040 -	30 20 50	Sandstone, as above <u>Shale</u> , brown, firm, silty in part, thin coaly stringers, included. <u>Coal</u> , and <u>carbonaceous shale</u> , black, conchoidal fracture, brittle, dull lustre in part ?cannel coal - bleeding gas.
11,040-11,050	80 10 10	<u>Coal</u> and carbonaceous shale, black, conchoidal fracture, brittle dull lustre in part ? cannel coal - bleeding gas. <u>Shale</u> , as above <u>Sandstone</u> , as above
11,050-11,060	60 30 10	Cutting gas 6,000 ppm C1 1800 C2 <u>Coal and Carbonaceous shale</u> , as above <u>Siltstone</u> , brown, very shaley in part, thin coaly stringers included. <u>Sandstone</u> , medium to light grey, fine grained, dolomitic cement., well sorted, hard, tight, no shows <u>Coal</u> , bleeding gas
11,060-11,070	45 50 5	Carbonaceous shale - medium grey to black grading to coal. brittlem fissile. Siltstone, grey brown, carbonaceous grading to shale Sandstone, medium to fine grained, dolomitic cement, white to light grey, moderate to well sorted, hard, clay choked at times. Trace quartz - rounded milky to grey pebbles.

SAMPLE DESCRIPTIONS

11/7/75-1/9/75

har toy DIOUNDY HILLOULL

DEPTH	%	DESCRIPTION
11,070-11,080	55 35 10	Carbonaceous Shale, as above Siltstone, as above Sandstone, as above Trace quartz, as above.
11,080-11,090	60 35 5	<u>Siltstone</u> , brown as above <u>Carbonaceous shale</u> , grading to <u>coal</u> <u>Sandstone</u> , as above. <u>Trace quartz as above</u> Trace <u>coal</u> - with pyrite or muscovite
11,090-11,100		Siltstone, light tan-brown, carbonaceous grades to shale, soft to very hard, brittle pyrite in palces. Shale,, carbonaceous grading to coal, dark grey to black bleeding gas at times, no cut. Sandstone, fine to medium white to grey, carbonaceous and shaley partings, moderate sorting, rare dolomitic cement, no cut, hard. Trace Quartz- rounded milky pebbly.
		Trace <u>coal</u> , fissile, black to dark brown, bleeding gas, no cut
	·	P.O.H. 11,107'
		• • • • • • • • • • • • • • • • • • •
	•	
		-دو ۱ - دو ۲
•		
		•

HAPUKU #1 SAMPLE DESCREPTIONS

Davis/Brouls/Elliott

DEPTH	%	DESCRIPTION
		P.O.H. at 11,107' @ 2220 hours (26/8), Bit 25 drilled 414' in 34.4 hours. New bit No. 25 J44. B.O.B. 0600 hours.
11,100 - 11,110	30	COAL, black, dull and vitreous lustre, good conchoidal fracture,
	30	? canned coal. SHALE, medium dark grey, very carbonaceous in part, moderately
	30	firm, trace mica. <u>SANDSTONE</u> , medium light grey to medium dark grey, finely grained, <u>dolomitic</u> cement, moderately hard, tends to siltstone in part, no shows, moderately well sorted.
	5-10	SAND, coarse to 3 mm, well rounded to subrounded and often broken, trace pyrite, unconsolidated.
11,100 - 11,120	60	SILTY SHALE, medium dark grey, very carbonaceous in part, very silty in part, firm, trace mica.
	20 15	COAL, as above. SANDSTONE, as above.
	5	$\frac{SANDSTONE}{SAND}$, as above.
11,120 - 11,130	50 40	SILTY SHALE, as above, very carbonaceous parts bleeding gas. SANDSTONE, medium light grey, finely grained, well sorted, dolomitic cement, hard, trace pyrite in part, trace carbonaceous
	5-10 5-10	stringers no shows. <u>COAL</u> , as above <u>SAND</u> , coarse to 2mm, unconsolidated, subrounded - broken, trace pyrite.
11,130 - 11,140	- 3 30 25	SHALE, as above, some pyrite. SILTSTONE - tan-brown, very carbonaceous, soft - hard.
	15	SANDSTONE - white to light grey, fine to medium grain, moderately well sorted, dolomite cement in part, soft to very hard, fair yellow to blue cut with acetone and CC14 (when crushed). COAL, black to brown, dull to vitreous lustre, conchoidal fracture. TRACE SAND, angular quartz.
11,140 - 11,150		SANDSTONE, scattered dull yellow fluorescence when ground. Dull yellow cut in CC4 when thoroughly ground, good light blue fluorescence with yellow veins in Acetone after 10 minutes.
	$\begin{array}{c} 30\\ 30\end{array}$.	SHALE, as above. SILTSTONE, as above.
•	30 10	SANDSTONE, as above. COAL, as above.
		TRACE QUARTZ, as above, some red grains also.
11,150 - 11,160	15	COAL, black, conchoidal fracture, dull to vitreous lustre, canned coal.
	30	SILTSTONE, brown to medium dark grey, firm, coaly stringers trace mica, very carbonaceous in part.
	25 25	SHALE, medium to dark grey, very carbonaceous in part. <u>SANDSTONE</u> , medium light grey, finely grained, well sorted, <u>dolomitic</u> , pyritic in part, carbonaceous in part, ? rare weathered feldspar, pyritic in part, no fluorescence, no cut in CC14 weak light blue fluorescence in acetone after 10 minutes.
11,160 - 11,170	40	SANDSTONE, as above, no fluorescence, no cut, very weak fluor-
	40	escence in acetone after 10 minutes. SHALE, as above.
	10 10	SILTSTONE, as above.
11,170 - 11,180	40 10	SHALE, medium dark grey, firm, carbonaceous in part. SILTSTONE, medium dark grey to brown, coaly stringers, firm,
	10 40	very micaceous COAL, as above. SANDSTONE, medium to light grey, finely grained, well sorted, slightly dolomitic, moderately firm, hard in places with more
8		
HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

	HAP	UKU #1 SAMPLE DESCRIPTIONS
		11/7/75-1/9/75
DEPTH	%	DESCRIPTION
· · · · · · · · · · · · · · · · · · ·		dolomite, clayey, tight, scattered good yellow fluorescence, very slow, weak dull yellow cut in CC14, good fluorescence of acetone washing sandstone after 2 - 3 minutes, light blue with yellow vein cuttings gas $C_1 $ 8,000 $C_2 $ 2,700 $C_3 $ 700 C_4
11,180 - 11,190	50	SHALE, medium dark grey, firm, rare silt grains, trace pyrite, trace mica, coaly stringers included - bleeding gas
	10 40	SILTSTONE, medium dark grey to brown, shaley, rare coaly stringers SANDSTONE, medium light grey, fine grained, trace dolomite, still very tight, well sorted, ?? siliceous cement in parts, hard to firm with clay. No fluorescence, no cut in tetrabromo ethane, dull blue cut in acetone after washing for 10 minutes.
11,190 - 11,200	50 10	SHALE, as above SILTSTONE,
	40%	SANDSTONE, as above, no shows TRACE COAL TRACE SAND, unconsolidated, coarse to 2mm.
200 - 11,210	50	SANDSTONE, as above, no fluorescence, no cut in $C_2H_2Br_4$, good
	30	blue cut in acetone after 5 minutes. COAL, tends to carbonaceous shale in places generally vitreous, conchoidal fracture.
	20	SILTY SHALE, medium dark grey, firm, tends to siltstone in part.
11,210 - 11, 220	60	COAL, dull to vitreous lustre, rare conchoidal fracture, thin fragments burn easily, ? cannel coal, bleeding gas
-	20	SANDSTONE, medium to light grey, finely grained, dolomitic, silty in parts, no fluorescence, no cut in $C_2H_2Br_4$.
·	20	SILTY SHALE, as above Cuttings Gas: C_1 22,000 C_2 7000 C_3 1700 C_4 400
11,220 - 11,230	70 20 5-10 5-10	COAL, as above <u>SANDSTONE</u> , as above <u>SHALE</u> , medium to dark grey, firm, carbonaceous in parts. <u>SILTSTONE</u> , medium to dark grey to brown, carbonaceous in parts, <u>firm</u> . Cuttings Gas: C ₁ 19,000 C ₂ 4500 C ₃ 900 C ₄ 100
11,230 - 11,240	50	SANDSTONE, medium to light grey, finely grained, trace pyrite, well sorted,
		SANDSTONE, has rare dull yellow fluorescence when ground, no cut visible in C ₂ H ₂ Br ₄ ; light blue to yellow fluorescence after washing for 2-3 minutes in acetone.
11,240 - 11,250	60 20 10 10	COAL, as above, some orange fluorescence $\frac{\text{SAND}\text{STONE}}{\text{SILTSTONE}}$, as above, cut in CCl ₄ and Acetone $\frac{\text{SILTSTONE}}{\text{SHALE}}$, as above
11,250 - 11,260	40 20	SANDSTONE, as above, cut in acetone ? silicified SHALE, as above
	20 20 20	SILTSTONE, as above <u>COAL</u> , as above <u>TRACE QUARTZ</u> , white to yellow rounded
11,270 - 11,280	40 25 10 10 5	SANDSTONE, as above SILTSTONE, as above SHALE, as above COAL, as above PYRITE, ? nodular some coal attached TRACE QUARTZ, as above

·

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

DEPTH	%	DESCRIPTION
11,280 - 11,290	40 30	$\frac{\text{QUARTZ}}{\text{grains}}$, subrounded to rounded, 5.2 mm white quartz all discrete $\frac{\text{SANDSTONE}}{\text{grains}}$, fine to medium grained, light grey, soft to firm, some yellow fluorescence - dolomitic cement some dull blue fluorescence, strong but in acetone (blue) tight as cut in CCl ₄
	10 10 10	SHALE, brown to dark grey, soft to firm, fissile, carbonaceous SILTSTONE, brown, carbonaceous, firm TRACE PYRITE, nodules probably from coal COAL, brown to black, dull to vitreous
11,290 - 11,300	50 30 10 5 5	QUARTZ, as above <u>SANDSTONE</u> , as above, no cut in acetone <u>SILTSTONE</u> , as above <u>SHALE</u> , as above <u>COAL</u> , as above
11,300 - 11,310	75 10 5 5 5	QUARTZ, as above <u>SANDSTONE</u> , as above, no cut in acetone <u>SHALE</u> , as above <u>SILTSTONE</u> , as above • <u>COAL</u> , as above
11,310 - 11,320	90 10	QUARTZ, as above SANDSTONE, as above, no cut in acetone TRACE SILTSTONE, as above TRACE SHALE, as above TRACE COAL, as above
11,320 - 11,330.	40 25 20 5 10	COAL, as above <u>SANDSTONE</u> , as above, no cut in acetone <u>QUARTZ</u> , as above <u>SHALE</u> , as above <u>SILTSTONE</u> , as above
11,330 - 11,340	40 15 15 15 15	COAL, as above <u>SHALE</u> , as above <u>SILTSTONE</u> , as above <u>SANDSTONE</u> , as above <u>QUARTZ</u> , as above
11,340 - 11,350	25% 25 20 20 10	SANDSTONE, as above, some pyrite COAL, as above SHALE, as above SILTSTONE, as above QUARTZ, as above
11,350 - 11,360	15 30 15 30 10	COAL, black, dull to vitreous lustre, rare good conchoidal fracture, ignites easily, bleeding gas SHALE, medium to dark grey, firm, trace mica, coaly stringers included, silty in parts SILTSTONE, medium to dark grey, firm, trace mica, trace pyrite, coaly stringers included, shaley in parts. SANDSTONE, medium light grey, finely grained, well sorted, trace to heavily pyritic, carbonaceous streaks in parts, well cemented in part, dolomite but in part ? siliceous (takes up to 10 mins before good reaction with acid), no fluorescence even when crushed, very slow (2 mins) dull yellow cut in CCl ₄ ; light blue to yellow with yellow rim cut after washing in acetone for 5 to 10 mins. SAND, coarse to 2 mm, unconsolidated broken to pyrite, no shows

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

	HAPU	JKU #1 DAVIS/Brooks/Elliott
		11/7/75-1/9/75
DEPTH	% ·	DESCRIPTION
11,360 - 11,370	35 25	SHALE, as above SILTSTONE, as above
	25	SANDSTONE, as above, no fluorescence, no cut in CCl ₄ ; no cut in acetone after 30 mins
	15	SAND, as above TRACE COAL
11,370 - 11,380	20	SAND, 0.5 to 2mm, unconsolidated, subrounded but most broken, most clear to slightly milky, dolomitic cement, trace pyrite,
	40	no shows <u>SANDSTONE</u> , medium to light grey, finely grained, well sorted, trace to heavily pyritic, carbonaceous flecks in places, no fluorescence, no cut in CCl_A
	30	SILTSTONE, medium to dark grey to brown, tends to shine in part,
	5-10	trace mica, carbonaceous flecks and stringers <u>COAL</u> , dull to lustreous, ignites easily, some conchoidal fracture
1200 hours		
11,380 - 11,390	30 20 15 15 20	QUARTZ, as above, SANDSTONE, as above SILTSTONE, as above SHALE, as above COAL, as above TRACE PYRITE
11,390 - 11,400	50 15 15 20	SILTSTONE, as above SHALE, as above COAL, as above SANDSTONE, as above TRACE QUARTZ, as above
11,400 - 11,410	10	SANDSTONE, light to medium grey, some dolomite cement, some glauconite, poor to zero porosity, fine to medium, mainly fine, poor to moderate sorting, some carbonaceous flabs and pyrite
	10 70 10	<u>COAL</u> , as above <u>SILTSTONE</u> , as above <u>SHALE</u> , dark tan to grey, carbonaceous to coaly in places, hard. <u>TRACE QUARTZ</u>
11,410 - 11,420	20 80	5,000 C ₁ 1400 C ₂ 500 C ₃ Cuttings Gas SANDSTONE, finely grained, medium light grey <u>SILTSTONE</u> , grey to buff tan, carbonaceous flecks at times
	10 10	SANDSTONE, light grey, some calcite and dolomite cement, soft to hard, no cut, fairly tight COAL, black to brown, very shaley TRACE QUARTZ TRACE PYRITE
11,430 - 11,440	30	SANDSTONE, medium light grey, finely grained, moderately well sorted, slightly to very dolomitic, trace pyrite, some carbonaceous laminae included, moderately firm to hard, rare, good fluorescence, no CCl ₄ cut, or acetone.
	30	SHALE, medium dark grey, slightly silty, carbonaceous, trace
	10	mica, trace pyrite COAL, black, tends to carbonaceous shale in part TRACE SAND, unconsolidated 0.5 - 2 mm, broken grains
11,440 - 11,450	30	SANDSTONE, as above, rare fluorescence dull to yellow, very slow, very dull cut in CCl ₄ very pale dull blue fluorescence after 5 mins washing in acetone, rare medium grained, poorer sorting in part.
<u> </u>		

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

DEPTH	%	DESCRIPTION
11,440 - 11,450	30 30 10	SHALE, as above SILTSTONE, as above COAL, as above TRACE SAND, as above
11,450 - 11,460	40	SANDSTONE, medium light grey, finely grained, well sorted, quartzose, rare buff grains, ? feldspar, trace pyrite, trace carbonaceous, dolomitic cement tight, moderately firm to hard, low to very low, visible porosity, no fluorescence, no cut in CCl ₄ , slow very dull blue yellow cut in acetone
	30	SHALE, medium dark grey, trace mica, carbonaceous, trace coal, moderately firm,
•	20 10	SILTSTONE, medium dark grey to brown, trace pyrite, trace carbonaceous SAND, unconsolidated, 0.5 - 2 mm, grains broken
11,460 - 11,470	40	SANDSTONE, as above, dolomitic, trace fluorescence, no cut in
	30 20 5-10 5-10	CC1 ₄ or acetone SHALE, as above SILTSTONE, as above SAND, as above COAL, as above
11,470 - 11,480	40 • 60	SANDSTONE, medium light grey, finely grained, well sorted, quartzose, very rare buff grains, ? feldspar, trace pyrite, trace carbonaceous, dolomitic cement, tight, moderately firm to hard, trace fluorescence, no cut SILTSTONE, medium dark grey, shaley, trace mica, pyrite, carb- onaceous in places TRACE COAL, TRACE SAND, as above
11,480 - 11,490	50 50	SANDSTONE, as above rare medium grained and rare poor sorting, no shows SILTSTONE, as above, coaly stringers included TRACE COAL, TRACE SAND, as above
11,490 - 11,500	50 40 10	SANDSTONE, as above, rare good yellow fluorescence, no cut in $\overline{\text{CCI}_4}$, or acetone SILTSTONE, as above, shaley in parts SAND, as above TRACE COAL
11,500 - 11,510	50 50	SANDSTONE, as above SILTSTONE, as above TRACE QUARTZ, as above TRACE COAL,
· 11,510 - 11,520	, 40 . 50	SANDSTONE, medium grey, poorly sorted, fine to medium, angular quartz some lithic fragments, firm poor to no porosity ? dolomitic cement, some pyritic cement some carbonaceous flecks SILTSTONE, dark tan to dark grey, slightly carbonaceous, firm to
	10	hard SHALE, dark grey, slightly carbonaceous TRACE QUARTZ TRACE COAL
11,520 - 11,530	50 20 30	QUARTZ/SANDSTONE, poorly sorted, medium to coarse cement, pyrite, milky quartz SANDSTONE, as above SILTSTONE, as above TRACE SHALE, as above TRACE COAL
11,530 - 11,540	60 20 10 10	QUARTZ, as above <u>COAL</u> , black, vitreous lustre <u>SANDSTONE</u> , as above <u>SILTSTONE</u> , as above

HAPUKU #1 SAMPLE DESCREPTIONS

Davis/Brooks/Elliott

11/7/75-1/9/75

DEPTH	%	DESCRIPTION
11,540 - 11,550	80 10 10	QUARTZ, pyrite cement, as above <u>SANDSTONE</u> , as above, some dolomitic cement, no cut <u>SILTSTONE</u> , as above <u>TRACE COAL</u> , as above <u>TRACE PYRITE</u> , possibly from pores in the quartz/sandstone
11,550 - 11,560	80 10 10	QUARTZ, as above SANDSTONE, as above SILTSTONE, as above TRACE COAL, as above TRACE PYRITE, as above
11,560 - 11,570	50 30 20	QUARTZ, as above SILTSTONE, as above SANDSTONE, as above TRACE COAL TRACE PYRITE
11,570 - 11,580	90 10	QUARTZ, as aboveNot much sample coming over shale shaker?SILTSTONE, as aboveover shale shaker?TRACE COAL, as aboveBlown away by windTRACE SANDSTONE, as aboveState over shale shaker?
11,580 - 11,590		No sample - washed from shaker
11,590 - 11,600	70	SAND, unconsolidated, coarse to 2 mm, subrounded to subangular, most grains broken, clear to slightly milky, trace pyrite on surface of grains, cement rarely seen - but it pyritic where present in sample, rare dull yellow fluorescence with slow dull yellow cut.
	15 5 10	SILTSTONE, medium dark grey, clayey - tends to shale in part, carbonaceous and coaly inclusions, trace mica, trace pyrite <u>COAL</u> , black dull to vitreous SANDSTONE, finely grained, medium light grey, dolomitic, trace
11,600 - 11,610	70 15 5 10	mica, trace carbonaceous SAND, as above, no shows <u>SILTSTONE</u> , as above <u>COAL</u> , as above SANDSTONE, as above
11,610 - 11,620	60 25 10	SAND, as above no shows <u>SILTSTONE</u> , as above <u>SANDSTONE</u> , as above, rare, good fluorescence, slow dull yellow <u>cut</u> .
	5	COAL
11,620 - 11,630	50	P.O.H. 0715 hrs, Bit No. 26 drilled ft. in ? 34.1 hours New bit, J33 No. 27, B.O.B. 1715 hours SAND, loose grains, 0.5 - 2 mm, subangular to subrounded, most broken, trace pyrite on grains, grains clear to slightly milky, shows contaminated by pipe dope
- -	30 20	SILTSTONE, medium dark grey to brown, clayey in part, carbonaceous fragment including micas part tends to silty shale, trace mica, trace to very carbonaceous SANDSTONE, medium light grey, finely grained, moderately sorting,
		trace carbonaceous, trace to heavily pyritic, dolomitic cement, moderately to very firm, shows contaminated by pipe dope
11,630 - 11,640	100	SILTSTONE, as above TRACE SANDSTONE, as above TRACE SILTSTONE, as above TRACE COAL, TRACE PYRITE
11,640 - 11,650	60 20 20	SILTSTONE, as above <u>SANDSTONE</u> , as above , rare dull yellow flour, no cut <u>SAND</u> , as above <u>TRACE PYRITE</u>

1

HAPUKU #1 SAMPLE DESCRIPTIONS

.

Davis/Brooks/Elliott

DEPTH	%	DESCRIPTION
11,650 - 11,660	85 15	SILTSTONE, as above <u>SANDSTONE</u> , as above <u>TRACE SAND</u> , as above <u>TRACE PYRITE</u>
11,660 - 11,670	70 30	SILTSTONE, as above, no cut SANDSTONE, as above, no cut TRACE QUARTZ, as above TRACE PYRITE, as above
11,670 - 11,680	60 20 20	SILTSTONE, as above <u>SANDSTONE</u> , as above <u>QUARTZ</u> , as above <u>TRACE PYRITE</u>
11,680 - 11,690	80	SANDSTONE, fine to medium grained, light to medium grey, angular, moderately to poor sorting, very dolomitic, tight, with porosity, no cut in $CC1_4$ or Acetone hard, strong dull to
	10 10	bright yellow fluorescence ⁴ SILTSTONE, tan, brown, light grey carbonaceous some mica, soft pyritized in part QUARTZ, 5 - 4 subrounded to rounded, clear to milky TRACE PYRITE
11,690 - 11,700	90	SANDSTONE, as above, strong dolomite fluorescence, some pyrite
	10	cement QUARTZ - as above, some pyrite cement TRACE PYRITE TRACE SILTSTONE, as above
11,700 - 11,710 -	80 10 10	SANDSTONE, as above, flour dolomite <u>QUARTZ</u> , as above <u>SILTSTONE</u> , as above <u>TRACE SILTSTONE</u> , greenish, some glauconite, 3 or 4 specimens of 3 <u>Globorotalia soft</u> <u>TRACE PYRITE</u> , as above
11,710 - 11,720	40 50 10	SANDSTONE, as above, yellow -flour - dolomite QUARTZ, as above, angular SILTSTONE, as above TRACE PYRITE, as above
11,720 - 11,730	60 30 10	SANDSTONE, medium light grey, finely grained, subangular to subrounded, moderate sorting, dolomite cement, tight, very low porosity, trace pyrite, moderate to very firm good yellow fluorescence, no cut in CCl ₄ , good light blue to yellow cut in acetone after 5 minutes. SAND, loose, 0.5 - 3 mm, subrounded to subangular, clear to milky, trace pyrite, no shows SILTSTONE, medium dark grey, clayey, carbonaceous flecks in
11,730 - 11,740	. 50	part, trace mica SANDSTONE, medium light grey, finely grained, moderate sorting, subangular to subrounded, dolomite, rare carbonaceous inclusions, trace pyrite, good yellow fluorescence, no cut, slightly cut in acetone mineral fluorescence
	30 20	SAND, loose grains, 0.5 - 2 mm, subangular, many broken, clear to slightly milky, trace pyrite SILTSTONE, medium dark grey to brown, very clayey, trace carb- onaceous TRACE COAL
11,740 - 11,750	45 35 20	SANDSTONE, as above, rare medium grained with poorer sorting SAND, as above SILTSTONE, as above TRACE COAL

НАРИКИ ∦1

SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

DEPTH	%	DESCRIPTION
11,750 - 11,760	80 10 10	SANDSTONE, as above, good mineral fluorescence SAND, as above SILTSTONE, as above TRACE COAL
11,760 - 11,770	85	SANDSTONE, as above, good mineral fluorescence - no fluorescence
	15	after thoroughly dissolving dolomite in acid SILTSTONE, as above TRACE SAND, as above TRACE COAL
11,770 - 11,780	80	SANDSTONE, medium light grey, finely grained, rare to medium grained moderate to poor sorting, dolomite, rare carbonaceous
	15	included, trace pyrite, very low porosity - shows contaminated <u>SILTSTONE</u> , medium to dark grey to brown, very clayey, trace carbonaceous, trace to heavily pyritic
	5	<u>COAL</u> - bleeding gas
11,787		5 units gas, sample taken - as above - good mineral fluorescence with no cut.
11,780 - 11,790	90 10	SANDSTONE, as above, good mineral fluorescence, no cut <u>SILTSTONE</u> , as above · <u>TRACE COAL</u>
11,790 - 11,800	80 - 20	SANDSTONE, as above, good mineral fluorescence, no cut SILTSTONE, as above TRACE SAND, as above TRACE COAL
11,800 - 11,810	90 10	SANDSTONE, light grey, finely grained, dolomitic, trace pyrite, trace carbonaceous, good mineral fluoresence SILTSTONE, dark grey, clayey, tends to shale in part, trace carbonaceous, trace mica
11,810 - 11,820	90 10	SANDSTONE, as above SILTSTONE, as above TRACE PYRITE
11,520 - 11,830	80 10 10	SANDSTONE, as above <u>SILTSTONE</u> , as above, coally layers <u>COAL</u> , black vitreous lustre <u>TRACE PYRITE</u>
11,830 -211,840	90	SANDSTONE - light grey dolomite good mineral fluorescence
	10 ·	medium grey ? calcite cement no flour No cut, finely grained, dull cut after 10 minutes SILTSTONE, as above TRACE COAL, as above
11,840 - 11,850	100	SANDSTONE, as above TRACE COAL TRACE SILTSTONE TRACE QUARTZ - milky pebbles
11,850 - 11,860	90 10	SANDSTONE, as above no cut SILTSTONE, as above TRACE QUARTZ TRACE COAL TRACE PYRITE
		· ·

.

7

HAPUKU #1 SAMPLE DESCREPTIONS

DAVIS/Brouns/Elliott

DEPTH	%	DESCRIPTION
11,860 - 11,870	90 10	SANDSTONE, as above, cut some dull blue fluorescence after 1 hour SILTSTONE, as above TRACE QUARTZ TRACE COAL TRACE PYRITE
11,870 - 11,880	100	SANDSTONE, fine to medium grained, light to medium grey, poorly sorted, dolomite cement, flourescence, yellow dull to strong, no porosity, pyritic rarely carbonaceous, no cut. TRACE SILTSTONE, tan to grey, carbonaceous, micaceous TRACE QUARTZ, pebbly, milky TRACE PYRITE
11,880 - 11,890	90 5 5	SANDSTONE, finely grained, rare medium grains, generally moderately well sorted, poorly sorted with medium grains, dolomite cement, trace pyrite rare carbonaceous, very low porosity, good yellow fluorescence, mineral no cut <u>SILTSTONE</u> , medium grey, carbonaceous in part, trace mica, trace pyrite COAL, <u>TRACE SAND</u> , loose, 0.5 to 2 mm, clear to milky, subrounded, broken
11,890 - 11,900	80 10 5 5 5	SANDSTONE, as above, trace to heavily pyritic, mineral fluorescence SAND, as above, probably has fine grained dolomite sandstone as matrix or these large grains scattered through sandstone in which case sorting is poor SILTSTONE, as above COAL
11,900 - 11,910	80 10 5 5	SANDSTONE, as above SAND, as above SILTSTONE, as above COAL, as above
11,910 - 11,920	80 15 5	SANDSTONE, medium light grey, predominantly finely grained with 10% coarse to 2mm grains, about 5% are loose grains, other 5% are cemented with dolomite and finely grained, poorly sorted, trace pyrite, rare carbonaceous flecks, subangular, good mineral fluorescence, no cut, fluorescence dissipates after dissolving in acid <u>SILTSTONE</u> , medium grey, carbonaceous in part, trace coaly stringers, trace mica, trace pyrite <u>COAL</u>
11,920 - 11,930	75 10 15	SANDSTONE, medium light grey, finely grained with 5% coarse to 2mm grained dolomitic, poorly sorted, some large grains loose, subangular to subrounded, -race pyrite, trace carbonaceous, good mineral fluorescence, no cut, hard, tight <u>SILTSTONE</u> , medium light grey to brown, firm, trace mica, very carbonaceous and coaly <u>COAL</u>
11,930 - 11,940	65 15 10 10	SANDSTONE, as above SAND, loose, 0.5 to 2mm, subangular to subrounded, broken trace pyrite SILTSTONE, as above COAL
11,940 - 11,950	40 40 15 5	SANDSTONE, as above SAND, as above SILTSTONE, as above COAL

HAPUKU #1 SAMPLE DESCRIPTIONS

Davis/Brooks/Elliott

. •

11/7/75-1/9/75

DEPTH	Z.	DESCRIPTION
11,950 - 11,960	60 15 15 10	SANDSTONE, good mineral fluorescence, no cut SAND, no shows SILTSTONE COAL
11,960 - 11,970	60 20 20	SANDSTONE, as above QUARTZ, as above SILTSTONE, as above TRACE COAL
11,974	60 10 15 15	SANDSTONE, as above QUARTZ, as above COAL, as above SILTSTONE, as above
		POH - 11,974' at 15.20 hours 1/9/75.
		•
		•
	\$	
		مرد ۹ مود ۹
•		

WELL COMPLETION REPORT

HAPUKU-1

APPENDIX 3

VELOCITY SURVEY

ľ	ĩ	LC	Сĩ	T	Y	SURVEY	

Well HAPUKU

Basin GIPPSLAND

INTRODUCTION

Esso personnel G. BLACKBURN, C. KRIEGEL

Contractor VELOCITY DATA PTY. LTD

Supplied (1) Instruments

(2) Personnel

Seismic Observer ...J. LARSEN Marine ShooterM. RAVELEIGH .. DynamiteNOT USED

· · · · · · · . . .

(3) Seismic Souce

(3) Licenced Shooting Boat

<u>Gas Gun</u>

Gas Pressures	2:.1 ratio
	90 p.s.i.
Propane	45 p.s.i.

	name
	date loaded
	date released
	Agent
	· · · · · · · · · · · · · · · · · · ·
•	amount of powder 1bs
	size of cans lbs
	number of cans
	number of caps
	number of boosters

Personnel and Instruments

assembled at SALE, VICTORIA date 5/8/75 boarded (rig) REGIONAL ENDEAVOUR date 5/8/75 date of survey 6/8/75 casing depth 4252 feet T.D. when shot 10083 feet FTD water depth 1260 feet

SURVEY PROCEDURE

Gas gun

1025

Weather: sea Strong westerly winds, moderate seas with swell
rig movementslight
· rig noiseslight
Hydrophones: number two
depth below sea level 1) 28ft. 2) 30 ft ft
position 1) five feet above spark gun
2).in moon pool
Shot Positioning and Charges: marker buoys (number not used (distance (direction
number of shots charge size Its. number of shotscharge size lbs. number of misfires
level. 2,3

amount	of	powder	dumped	•••••1bs
--------	----	--------	--------	----------

T-barNOT USED

number of depthsSIXTEEN.....

Well-phone positioning :

Time:

rig time ... 5 hours . 38 minutes

RESULTS

Quality of		(good (fair (poor (not use	· · · · · · ·	? .	••••	••••
with sonic	of Interval log /△/average		••••	• • • • • • • • • • •	micros	sec/foot

/Amax/2.....microsec/foot

CONCLUSION

Reliability of T-D curveGOOD ...

COMMENTS:

Good quality records combined with a low noise level has resulted in a very reliable T.D. curve.

··· •·· · · ·

Field record No. 1 was under-exposed during developing and consequently was not

NOTE : There is a 30 ft. difference between the depths of the millisecond pips and the depths shown on the sonic log between depths 4250ft.-10,100 ft. This difference has been taken into account in interpreting this log.

VELOCITY SURVEY ERROR CHECK

;						
Depth Rel.S.L.	Av.Vertical Travel Time (check shots)	Ti Check Shots (sec.)	Ti Sonic Log (sec.)	(Millisecs.)	Depth Interval (ft.)	Error (Microsed per ft.)
4422	.633					
4954	.680	.047	.046	+1	532	1.98
4954	.680					
5492	.727	.047	.045	+2	538	3.70
5492	.727					
		•		·		
6062	.775	.048	.048	0	570	0
6062	.775					
6536	.817	.042	.041	+1	474	2.10
6536	.817	•		•		
7044	.858	.041	.040	+1	508	2.00
7044	.858					
7502	.892	0.34	.036	-2	458	4.40
7502	. 892		-ر ۲			
7928	.928	.036	.035	+1	426	2.30
7928	.928					
[*] 8256	.961	.033	.032	. +1	328	3.00
8256	.961					
875 ⁰	1.016	.055	.055	0	494	0
8750	1.016				-	
9081	1.050	.034	.034	0	331	0
9081	1.050					
9192	1.060	.010	.011	- 1	111	9.00

.

÷.

1

VELOCITY SURVEY ENROR CHECK

Depth Rel.S.L.	Av.Vertical Travel Time (check shots)	Ti Check Shots (sec.)	Ti Sonic Log (sec.)	(Millisoçs.)	Depth Interval (ft.)	Error (Microse per ft.)
9192	1.060					
9261	1.068	.007	.006	+1	69	14.50
9261	1.068					
9382	1.076	.009	.010	-1	121	8.30
9382	1.076					
9861	1.118	.042	.042	0	479	0
			-			
				•		
			/			
. 1						
			۰			
					•	
		·				
					-	· · · · · · · · · · · · · · · · · · ·
•						

•	Company	
	COMPACT AND A MARKEN HAPUKU-1	28' 10083' 38°33'21.042"S Gippsland Basin, Victoria
$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} \left[$	1 1 12 1 Cor 1 YG2 Ard 2004	
2 0345 4450 35 007 028 .626 D 0	and the second s	Ted Tel Dg4 ADg4 ATel VI Va Vit Va Vit Va
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U OFFSET NOT STONIETCANT	
.024 .0/3 D 6	673	
31 0745 5520 U U OC8 .672 D C		.680 4954 532 .047 11319 7285
132 07/7 5520 02/ .719 D G		.727.5492 538 .047 11446
29 0735 6090 " 027 768 D C		
30 0737 6090 " " 027 768 D C		<u>.775 6062 570 .048 11875 7822</u> s
27 0720 6564 " " 028 .810 D G		
25 0705 5004 029 .809 D G		.817 6536 474 .042 11286 80.00
26 0707 7072 " 027 850 D G	.001	558 50/1 508 041 12390
23 0655 7530 " 027 8851 D C		82:10 Dem = Scophilas digita invasored from well observation
24 0657 7530 " " 029 885 D G		.892 7502 458 .034 13471 0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 0400 7956 " " .027 .921 D G		
4 10402 7956 " " .026 .920 D G		
21 0640 8284 " " 026 .921 D C	· · · · · · · · · · · · · · · · · · ·	328 033 0030 Il = Haritantel distance from well to shalpelint
22 0642 <u>8284</u> <u>11 11 027 954 D G</u>	.954	. 961 8256
19 0625 8778 " " 027 1.009 D G		494 .055 8982 F = Othersed that from the point to well purplime
20 062/ <u>8778 " " 027 1.009 D G</u>	1.009	1.016 8750
10 0612 p109 " 027 1.042 D G	1.043	
6 0/50 L 0/50 D G		11008649
7_{0452} 0452 9220 " " 0271 052 D R	1.053	
8 0454 9220 " 027 1.052 D F		
	1.060	$D_{ij} = D_{ij} + A_{ij}$
15 0605 2989 " " 028 1.060 D G 16 0607 9289 " " .027 1.060 D G 13 0555 9410 " " .027 1.060 D G		$1.0679261 121 .007 13444 8671 V_{1} = \text{Intervel statily} = \frac{2004}{1000}$
1, 027 1.069 D G	1.069	$V_3 = A_{17}c_{12} = D_{12}d_{12}$
11 0530 9889 " " 029 1 111 D G		4/9 042 114050719 CHURCH VELOCITY DATA
		August 5 1075
9 0510 10060 " " 027 1.123 D G		<u>171</u> .012 14250 ⁰⁰²⁰ Walthard Data
10 0512 10060 "027 1.122 DG	1.123	1.130 10032 8878
		Cosing Ricord
	•	4252 ft. K.B.

.

Pho Hoylop/s

•

Rec. No. 2 4450' K.B. T. 0345 hrs.

Rec. No. 32 5520' K.B. T. 0747 hrs.

			 	0.720		n	~~~~~~	in in it.	
		vivi-			wayn			innin	1'.m
		an in	in marine						
Muhnipun	inter and	nu verene	 monto	horin.	 mm	mm	min	mm	

HAPUKU - 1

(First Survey) WELL VELOCITY RECORD 5/8/75

0 626

Rec. No. 3 7956' K.B. T. 0400hrs.

Rec. No. 6 9220¹ K.B. T. 0450 hrs.

Rec. No. 10 10,060⁴ K.B. T.0512 hrs.

Dwa 1764/0P/

•

Ist Do

. An

~

DATE OF SURVEY 6 Th August 1975 CLIENT LSSO AUSTRALIA Ltd

HAPUKU Nº1

PO. Box 141, Kenmore, Queensland, 4069 Telephone (072) 78 4860(Office) (072) 93 1514(Field Operations)

OBSERVERS REPORT

IERGY SOUF	ACE GA	5 610	~	RECORDIN	ig instri	JMENTS_	RA -4	GW LOO	GGER SCHA	w maik 6	GR. S	UACO
EOPHONES:			00	REFEREN	CE/	11-3	S	EA FLOOR		REFRACTIO	DNNC	
FERENCE S			2 120/1	DEPTH	7				GLER DE ENDE	WW BHIP HEA	DING	
EATHER	OUGRCA	451		SEAS	500.	9 x L S						
<u></u>	RUCCRO			SH	от	AMPLIF	ERGAIN					
8 DEPTH	BEARING		SHOT DEPTH	LOCATION	OFFSET	AMP.	Arr	TIME		COMMENTS		
10	1	15	35			2.	-20	0400	Record	H, Will	errivols	roverse a
-50	2	15	35			2.	-20.	0405		·		
								, <u></u>				
751	3	15	35	1		2	- 5	0430				
	4	15	35	+		2	- 5	-0432				
756	5.	15	35			2	- 5	0434				
100				•		`						
720	6	20	35			2	-0	0450				
220	7	20	35			2	- 0	0452				
	8.	20	35			2	-0	0454		······································		
?20				+								
,060	9	20	35			2	-10	0510				
2060	10	30	35	+		2	-0.	0512				
/000				•	1				Welder des	sconnecte	0 0 4 4 4	n Suppl
889	11	20	35	1		-2	-5	0535.	Lost Ti			
889	12	20	35			2	-6	0537.	······································	Q	·····	
	~~~					*	•					
410	13	20	35	1		2	-5	0555				
410	14	15	35			2	-5	0557				
41 <u>·</u>				·								
<b>A</b> 7	15	15	35			2	-0	0605				
289	16.	15	35			2	-0	. 0607				
1		/ _¥										
109	17	15	35	•		2	-0	0612				
109	18	15	35			2	-0	0614				
~					1		· · · · ·	{			*************	
778	. 1.9_	15	35			÷.	-0	0625				
778	20	15	35			2	-0	0627			1	
			-									
284	21	10	35			2	-0	0640				
284	22	10	35			2	-0	A60.2				
530	23	15	35	•		j.	-5	0655				
530	20	10	35			2	-5	0657				
072	25	15	35			R	-10	0705				
272	26	10	35			2	-10	0707				
564	27	10	35			R	-15	0720				
564	28	15	35,				-15.	0042 0655 0657 0705 0707 0720 0725 0725 0735 0737				
0 90	29	10	35			2222	-25	0735				
090	30	15	35			2	-25	0737				
520	31	10	35	-		2	- 70	0745.				
272 564 564 090 090 520 520 520	32	15	35			য	-20	6747				
+982	33	10	35			रू २	-20	0500		· · · · · · · · · · · · · · · · · · ·		
+982	34	10	35			2	-20	0302				1
IUMBER OF			34		EXPLOS	IVES USE	D: CAPS_	A	PRIMERS	EXPL		

THA

### VELOCITY SURVEY

Well .... HAPUKU-1 .- Second Survey ...

Basin .... GIPPSLAND

### INTRODUCTION

Esso personnel . P. GRIFFITHS/H.C. KRIEGEL Contractor ..... VELOCITY DATA PTY. LTD.,

> Supplied (1) Instruments (2) Personnel

Seismic Observer	D. LAYSON
Marine Shooter	· · · · · · <del>· · · · ·</del> · · · · · · · ·
Dynamite	NOT.USED

name .....

(3) Seismic Souce

### (3) Licenced Shooting Boat

Gas Gun
Gas Pressures2.;.l.ṛạṭịọ
Oxygen
Propane

	dabe loaded
	date Released
	Agent
•	
	amount of powder 1bs
	size of cans lbs
	number of cans
	number of caps
	number of boosters

Personnel and Instruments

assembled at LONGFORD
boarded (rig)REGIONAL.ENDEAVOUR date2/9/75
date of survey.2/9/75
casing depth10059!.KB
T.D. when shot. 11964' KB FTD 11964' KB
water depth1260!

SURVEY PROCEDURE

Weather:	sea <u>CALM</u>
	rig movement MINIMAL
	rig noise MINIMAL
Hydrophone	es: number TWO
	depth below sea level .(1).35(2).30ft
,	position
	. (2). 5 feet above gas gun
Shot Posit	ioning and Charges:
•	marker buoys (number
	(distance
	charge depth
	number of shots charge size the
	number of shots

amount

of

powder

	amount of powder dumped
Well-pho	ne positioning :
•	T-bar
	number of depths16
Time:	first shot

rig time ..... 3 hours

.1bs.

. e e

· mi

Quality of	records ( good11 ( fair3 ( poor
Comparison with sonic	of Interval Times log /\average

CONCLUSION

RESULTS

### Reliability of T-D curve ......good....

COMMENTS:

		Shotholi	ntormation	n:-Ele	ration, l	Distance	<b>A</b> Directio	n from	Yh U	ESSO		y LORATIO A INC.	НΔ	₩•# PUKU-1				ation Tot Fisor	1936	38 ⁰ 33'2 48 ⁰ 32'5	linat <b>::</b> 21.042"	Sec SGI	LOCATION TOWNAL PPSLAN	ON hip, Range County Area or Field D BASIN, VICTORIA
rd 57:017	now T	ims of Shot	Dgm	D.	tu	tr	<u> </u>	T		- Dgs	ГАСТ	TAN I	1	T		0 rd				1		VI	M: MSL	Flamble Hell
		.220	10075	35			Reading	Pokori 1 D	Ity Grada				Cor I	Tgs 1.121	∆sd ⊃E		Tgd	Tod Average		∆ D g d	ΔTgd	laterval Velocity	Average Vilocity	Elamilina Shotha'a
<u> </u>		.225	10075	1 35			1.12							1.121	35	.007		1.128	10047	{			8907	De Oc Elevor in Sider Plane
+			10200	- 11			1.12		G				· · · ·	1.132				1 1 20	10170	- 125	p.011	11364	8930	Einstin Shall
		242	10200	11		11	1.13							1.132				1.139	10172				0930	
		250	10440				1.13 1.14							1.148				1 1 1	10410	240	0.016	15000	0015	
+	_		10440	- 11	11		1.14		G					11.148				1.155	10412	-			9015	
1			10440			н.		<u>/ D</u>	G					1.178	<u>├</u>		·	1 125	10777	- 365	0.030	12167	9095	S Com Dos
		the second s	10805	11	11	11	1.17		G					1 / 0				1.100	10///	-			3090	
			11267	11	11										- <u>`-</u>					462	0.040	11550		4
$\uparrow$	_		11267	1	11	.027	1.21				· ·			1.218				1,225	11239				9175	
	_		11267	11	11	"	1.21												1 1205	-			51/5	Dgm = Goophone depth measured from well elevation
	1	.320	11668	11	11	11	1.25								├ <b>─</b> ─┤				-	401	0.033	12152		Dgr =
	_	and the second	11668	11	11	.026	1.25					Z		1.251				1.258	11640	-1			9253	Dyd = 4 = 4 datum 4
	1	325	11668	н	н		1.25		_										1					Ds = Depth of shot
	1	330	11964	П	п	11	1.26							1.268				1.275	11936	- 296	0.017	17412	9362	De * Shathale elevation to datum plane
	1	332	11964						NU							.				1				H = Harlzontai distance from well to shatpoint
																			1	-				S = Straight line travel path from that to wail graph
			·											· · · · · · · · · · · · · · · · · · ·						·		i		tus = Uphole time at shorpoint
																								T = Observed time from shotpoint to well geophone.
<b> </b>																			1	7				tr = + + to reference gypchane.
					ļ															]		·		Δe = Difference in elevation between well & shotpoint. Δsd = . = . = . =
					.	_														]				∆sd = Ds-D •
		·····			<b> </b>	_			-											]		[		$Dgs = Dgn - Ds \pm \Delta e_i$ ton $i = \frac{H}{Dgn}$
	+				·												]					[		Uns Tas a cos i Ta Vert. Iravel time from anot elev to geophy
																						[		$T_{gd} = T_{gs} + \frac{\Delta_1 d}{V} = \pi + \pi + \pi datum pione + \pi$
					<b> </b>				<u> </u>											J		[		Dad * Dan - Amd
	-				<u> </u>															<u> </u>		[	]	V1 = Interval velocity = $\frac{\Delta D_{2d}}{\Delta T_{2d}}$
	+				<u> </u>				+										ļ	<u> </u>			1	Va * Average · D 14 T gd Surveyed by:VELOCITY DATA
	+																			<u> </u>				SULVER DATA
																			.					Doil. SEPTEMBER 2, 1975
						-	·····		- <u> </u>										1	1				Waathering Dola i
									+-+											.[]				and a strate for the state of t
	1			······					┼──-┞							·				<b>├───</b> ┤			]	
																				<u>├</u>				
	1					·	*		┼															Cating Record
	.L		1		1	11		<u> </u>		l	'	l								<u></u>			1	10059' KB Dwg 1107/07/3

•

-

### VELOCITY SURVEY ERROR CHECK

.

1						
Depth Rel.S.L.	Av.Vertical Travel Time (check shots)	Ti Check Shots (sec.)	Ti Sonic Log (sec.)	(Millisecs.)	Depth Interval (ft.)	Error (Microsec. per ft.)
10047	1.128	.011	.011	0	125	0
10172	1.139					
10172	1.139	.016	.017	-1	240	4.2
10412	1.155					1.2
10412	1.155	.030	.029	+1	365	2.7
10777	1.185	.030	;	T 1	505	2.1
10777	1.185	040			460	
11239	1.225	.040	.038	+2	462	4.3
11239	1.225	022	000	•	101	
11640	1.258	.033	.033	0	401	0
11640	1.258		010		00.5	
11936	1.274	. 017	.019	-2	296	6.8
			1 - 5-			
				i		
-						
					· · · · · · · · · · · · · · · · · · ·	
	· ·		,			
!				I	<u> </u>	

.

7

• •

•

.



Charles Street	DATE OF SURVEY	
	U.F.I SUPERMILE 19	Zs
	LSSC AUSCRILIA LEO	J
VELOCITY		
DATA PTY. LTD.	WELL	

PO Box 141, Kenmore, Queensland, 4069 Telephone (072) 78 4860(Office) (072) 93 1514(Field Operations)

۰,

(AMPiric ρ 1 2mil Survivy.

Å.

# OBSERVERS REPORT

IERGY SOUF	ICE _ (24 115	Given	l	RECORDIN	IG INSTRU	JMENTS_	Ki) -	44 m LO	OGGER SCHLUMBERGUR SUTIO			
FERENCE SENSOR OFFSET					CE	Nº 3	· 9					
					-32/	<u>/////////////////////////////////////</u>		DRILL SHIP _	Licito 1934 JUNE DUSHIP HEADING			
EATHER				SEAS	(Uni			T				
0.075-	Record		SHOT	SH	OT			TIME	COMMENTS			
3 DEPTH	ł	1		1	UFFSET	1117	Conv	TIME	COMMENTS			
075					• · · · ·	-5.	2	12 LU				
c15,		<u> </u>	35.	 		<u> </u>	<u> </u>	-ILLA				
200	3	ζü	35	-		-10	2	1240				
Rec	4-	<u></u>	- 35			-10		1242	·			
- i+4 0			) e			- 5		1250				
440	5	20	35		ŧ I	- 5	2	1252				
<u> </u>	<u>_</u>	<u>L</u>					~ · ·					
267	7	20	35			-10	-2	1365	Curry Restling in North 5			
267	5	20	35			- 5	-Z	13.0	1 1V-15y			
267	<u> </u>	20	35			-5	R	1312				
665	10	20	35		¥	-10	2	1320				
6.65	11	20	35				2	1322				
663	12	1	35.			· S	-2	13,25				
		2	-, -									
964-	13	30	<u>35</u> 35	1	1	-5	2	1436 1436				
964	14	30	رر	•	+			1435				
.805	.15	3.6.	35			ن - " ن _	_4	1445				
	16	30	35		· · · · · · · · · · · · · · · · · · ·	- c ^{,*}	2	1447	•			
₩.1		4										
···· ··· ··· ···						+		· · · · · · · · · · · · · · · · · · ·				
	-+	R	1	•   • •	1			10.12.17	Rent Contractor			
		1 / 1260			(x_x_x_y) 	1		The cel for	- Regional Cardo with			
								T				
					·	.		· · · · · · · · · · · · · · · · · · ·	IBRC-			
		1						- <u> </u>	INTR			
					+	+						
						+						
						· · · · · · · · · · · · · · · · · · ·						
					<u> </u>							
					<u> </u>							
· · · · · · · · · · · · · · · · · · ·				-+				+				
<i>!</i>						<u> </u>						
		1	·			+						
	<u>.</u>	1	, <b> </b>		4	<u> </u>						
UMBER OF						IVES USE			PRIMERS EXPLOSIVE			
EPART BRI	SBANE	•••••			_ RETURN	BRISBAN	۱E	•	OBSERVER OBSERVER			

### APPENDIX-4

# PALYNOLOGICAL ANALYSIS OF HAPUKU-1, GIPPSLAND BASIN.

by

### ALAN PARTRIDGE

Palaeontological Report: 1975/13

September 30, 1975

#### INTRODUCTION

The zones recognised in Hapuku-1 are summarized below. The determinations are based on the examination of 14 cutting samples and 44 core and sidewall core samples. At total depth (T.D.) the well was still within the Late Cretaceous  $\underline{T}$ . <u>lilliei</u> Zone.

As expected the section penetrated by Hapuku-1 contained some surprises. The section contained an exceptionally thick <u>T</u>. <u>lilliei</u> Zone overlain by condensed <u>T</u>. <u>longus</u> and <u>L</u>. <u>balmei</u> Zones. On top of this is 36 feet of glauconitic siltstone which can be divided into 10 to 15 feet of probable early Eocene at the base, overlain by 20-25 feet of Late Eocene to basal Oligocene Upper <u>N</u>. <u>asperus</u> Zone which represents the thickest and only unequivocal occurrence of this zone as yet found in any of the wells in the offshore portion of the Gippsland Basin.

All productive samples above the  $\underline{r.lilliei}$  Zone contain dinoflagellates and the Paleocene dinoflagellate zones contain the most diverse and abundant dinoflagellate assemblages of this age found in the basin. The basic frequency information on spore-pollen and dinoflagellates is summarized on the chart accompanying this report for the youngest part of the Latrobe Group. The high percentage of dinoflagellates and of gymnosperms relative to other spore-pollen illustrated suggests that the depositional enviornment is marine and well distant from the shoreline. Consideration of the sharpness of the dinoflagellate zone boundaries, depositional rates and lithology suggests the presence of a number of disconformities.

AGE	ZONES	DATA & RATING	(depth in feet)
·	(Spore-pollen&Dinoflagellates)	Highest	Lowest
Miocene	P. tuberculatus	9160 (3)	9182 (0)
	UNCONFORMITY		
Late Eocene – basal Oligocene	Upper <u>N.asperus</u>	9200 (0)	9221 (0)
	DISCONFORMITY		ten d ^{an t} ir versitet kondos ten den s
Eocene	Zone undifferentiated	9227 (2)	9227 (2)
	UNCONFORMITY		No. 20 9 - 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10.
Late Paleocene	Upper <u>L.balmei/</u> <u>W. homomorpha</u>	9236 (0)	9265 (0)
	DISCONFORMITY		
middle Paleocene	Lower <u>L.balmei</u> / <u>E.crassitabulata</u>	9290 (0)	9346 (0)
was been and a second	DISCONFORMITY		
Early Paleocene (Danian)	Lower <u>L.balmei</u> <u>T.evittii</u>	9358 (0)	9400 (0)
	? UNCONFORMITY	······································	/?

#### SUMMARY

Summary cont'd

AGE	ZONES (Spore-pollen&Dinoflagellates)	DATA & RATING Highest	(depth in feet) Lowest
Late Cretaceous (Maastrichtian)	<u>T.longus/D.druggii</u>	9700 (1)	9810 (1)
	DISCONFORMITY	·	
Late Cretaceous (Maastrichtian to Campanian)	<u>T. lilliei</u>	9875 (2)	11,930 (1)

#### ANALYSIS OF ZONES

-2-

<u>Tricolporites</u> <u>lilliei</u> Zone [Top 9875' (2) alternate 10,022' (1) to Base 11,930 (1)]. The consistant occurrence of the zone species <u>T.lilliei</u> plus <u>Triporopollenites</u> <u>sectilis</u> and sporadic occurrence of <u>Gephrapollenites</u> <u>wahooensis</u>, <u>Tricolpites</u> <u>waiparaensis</u>, <u>Gambierina</u> <u>rudata</u>, <u>G.</u> <u>edwardsii</u> and <u>Stereisporites</u> <u>regium</u> indicate that the section can be no older than the <u>T. lilliei</u> Zone. In general the spore-pollen are in low concentration with respect to other organic material in the preparations and as a consequence diversity is also low. The preservation in general is poor owing to pyrite pitting of the fossil exines.

Acritarchs, algae and dinoflagellates are present in samples at 9875; 10,022; 10,068 and 10,450 feet. However they are not well preserved and except for <u>Deflandrea pachyceros</u> at 9875 feet, and the algae <u>Palambages spp.</u> (9875 § 10,068 feet) and <u>Botryococcus sp.</u> (10,068 feet) they can only be identified as <u>Baltisphaeridium spp</u> (sensu lato). These occurrences are significant however as it is the first time possible marine indicators have been identified from the <u>T</u>. <u>lilliei</u> Zone in the Gippsland Basin. Nevertheless a fresh water lacustrine environment cannot be excluded for this limited assemblage.

<u>Tricolpites longus</u> Spore/Pollen Zone and <u>Deflandrea</u> <u>druggii</u> Dinoflagellate Zone [9700' (1) to 9810' (1)].

The three samples referred to these zones contain very limited assemblages, which is not unexpected considering the sandy lithologies of the sidewall cores. The age dating is based on fragmented speciments of the dinoflagellates  $\frac{Deflandrea}{res} \frac{druggii}{s}$  and  $\frac{D}{ricolporites} \frac{conorata}{lilliei}$  (at 9750 feet and 9810 feet). The pollen indicated that the section is no younger than the <u>T. longus</u> Zone.

Some difficulty is experienced in picking the <u>T.longus/T.lilliei</u> boundary in this well as one of the usual criteria has broken down. Normally there is a marked change in the ratios of <u>Nothofagidites</u> spp to <u>Gambierina</u> spp. across this boundary with high values of <u>Nothofagidites</u> spp. in the <u>T.lilliei</u> Zone but virtual absence from the <u>T.longus</u> where there is a corresponding increase in <u>Gambierina</u> spp. Applying this criteria (see frequency) distribution chart) the sample at 9750 feet is obviously in the <u>T.longus</u>

..../3

Zone while those at 10,022 and 10,068 feet belong to the <u>T</u>. <u>lilliei</u> Zone. The two intervening samples could be placed in either zone so the boundary is taken at the base of the occurrence of genuine marine dinoflagellates.

 $\frac{Lygistepollenites}{to 9400'} \frac{balmei}{(0)}$  Zone [Upper 9236' (0) to 9265' (0) Lower 9290' (0)

This zone is readily recognised on its spore-pollen content which also substantiates the separation between the Lower and Upper subzones. However, most assemblages are composed of over 50% dinoflagellates (see Palynological frequency chart). They are the richest dinoflagellate assemblages found so far in the Paleocene of the Gippsland Basin and allow further subdivision of the <u>L.balmei</u> Zone into three subzones which have been recognised elsewhere in the basin. Although most samples contained dinoflagellates which was suprising considering the coarse grained lithology not all productive samples containedenough material for confident zone identification or counting.

Dinoflagellate Zones in *L.balmei* Zone.

Wetzeliella homomorpha Zone [9236' (1) to 9265' (1)]

This zone containing the lowest dinoflagellate percentages and diversity is recognised on occurrence of the zone species <u>W. homomorpha</u>. Other dinoflagellates present include <u>Adnatosphaeridium</u> <u>retiintextum</u>, <u>Achomosphaera</u> <u>septatum</u>, <u>Svalbardella</u> <u>australina</u> and <u>Deflandrea</u> <u>medcalfi</u>.

Eisenackia crassitabulata Zone ['9290'(1) to 9346' (1) ]

This zone is characterised by abundant <u>Adnatosphaeridium retiintextum</u> and lesser abundances of <u>Eisenackia crassitabulata</u> and <u>E. sp cf. circumtabulata</u>. Other dinoflagellates present include <u>Cladopyxidium septatum</u>, <u>Cyclonephelium</u> <u>vitilare</u>, <u>Deflandrea bakeri</u>, <u>D. dilwynensis</u> and <u>Svalbardella australina</u>

Trithyrodinium evittii [9358' (1) to 9400 (1)]

In this zone <u>Palaeoperidinium pyrophorum</u> <u>Deflandrea spp</u> and <u>Adnatosphaeridium</u> <u>reiintextum</u> are the most dominent forms. Other species present are <u>Deflandrea</u> <u>speciosa</u>, <u>D.palaeocenicus</u> n.sp <u>D.bakeri</u>, <u>D.dilwynensis</u>, rare <u>Eisenackia</u> <u>crassitabulata</u>, <u>Hystrichokolpoma</u> <u>mentitum</u>, <u>Gonyaulacysta</u> sp., <u>Palaeostomocystis</u> <u>laevigata</u>, <u>Spinidinium</u> spp., <u>Svalbardella</u> australina and Trichodinium hirsutum.

The sidewall core at 9638 feet contains a high dinoflagellate percentage (see Palynological Frequency chart) and is thus most similar to samples from the overlying <u>L</u>. <u>balmei</u> zone. However the assemblage contains only long ranging spore-pollen and dinoflagellates, plus a few undescribed dinoflagellates which have not previously been recorded and therefore the sample cannot be confidently referred to either the underlying or overlying zones.

Eocene (Zone undifferentiated) [ 9227' (2)]

The probable presence of Early Eocene is suggested by the recovery of a very limited dinoflagellate assemblage from a single sidewall core. The few spore-pollen observed in the preparation were not of age significant. Cuttings from this level upon preparation were found to be dominated by

.../4

material caved from overlying Miocene, so it is unlikely that this determination can be improved on.

-4 -

The dinoflagellate assemblage consists of:

Achomosphaera septatum Adnatosphaeridium retiintextum Cordosphaeridium bipolare ? <u>Diphyes colligerum</u> Operculodinium centrocarpum Thalassiphora pelagica Wetzeliella homomorpha ? <u>W. hyperacantha</u>

The most likely age for this assemblage is certainly Lower <u>M. diversus</u> Zone but since none of the species are actually restricted to that zone and considering the possibility that there may be some reworking the assemblage is best left as undifferentiate Eocene. The maximum thickness for this unit can only be 15 feet.

#### Upper Nothofagidites asperus Zone [9200' (0) to 9221 (0)]

This zone was originally defined on negative evidence, being the interval following the extinction of many typical Eocene species and prior to the first appearance of the spore <u>Cyatheacidites annulatus</u> (Stover & Partridge, 1973).

It has not previously been confidently identified in the offshore portion of the Gippsland Basin. However the samples from Hapuku-1 placed in this zone conform to the original definition and although there is still not a single fossil known which is restricted to this zone the assemblages obtained were diverse and in terms of a combination of characters quite distinctive. The total assemblages show good agreement with others recorded from onshore.

Gippsland Basin and from the Bass Basin Important spore-pollen identified include:

Aglaoreidia qualumis	9200'
Foveotriletes palaeoquetrus	9200'
Kuylisporites waterbolkii	9200', 9221'
Nothofagidites falcatus	9200', 9209', 9218'
Proteacidites rectomarginis	9200', 9209'
P. stipplatus	9200 <b>'</b>
Tricolpites leuros	9209 <b>'</b>
Triporopollenites chnosus	9200 <b>'</b>

The dinoflagellate component of the assemblages is more diverse than other Upper *N.asperus* Zone samples examined and includes:

Cordosphaeridium inodes	9200', 9221'
Deflandrea heterophlycta	9218'
Homotryblium sp.cf. H.tasmaniense	9200', 9209', 9218'
Hystrichokolpoma rigandae	9200'
Hystrichosphaeridium capricornum	9218', 9221'
Nematosphaeropsis balcombiana	9200, 9209 <b>'</b>
Phthanoperidinium coreoides	9221 <b>'</b>
P. delicatum	9221 <b>'</b>
Systematophora placacantha	9200', 9221'

../5

### Proteacidites tuberculatus [9160' (3) to 9182' (0) ]

The presence of the spore <u>Cyatheacidites annulatus</u> in the sidewall core at 9182 feet indicates an age no older than the above zone. The foraminifera extracted from this sidewall core were indeterminate because of partial dissolution and or diagenesis however the spore-pollen and dinoflagellate assemblage obtained is not inconsistant with the Zone F (late Early Miocene) age obtained from the lowest sidewall core containing datable foraminifera at 9150 feet.

#### DISCUSSION OF UNCONFORMITIES

A number of unconformities and/or disconformities are postulated in the Latrobe Group section penetrated in this well. The higher ones between the <u>P.tuberculatus</u> Zone (Miocene) and the Upper <u>N. asperus</u> Zone (late Eocene - basal Oligocene) and between the Eocene and the <u>L. balmei</u> Zone (Paleocene) are obvious because of the marked age differences.

The other breaks are more subtle and correspond to section missing across zone boundaries. Thus a complete sequence of zones is still present.

The two lowest breaks between the <u>T.longus/T.lilliei</u> and <u>L.balmei/T.longus</u> Zones are partially inferred from seismic and electric log correlation. Because the breaks are at zone boundaries it is uncertain how much section or time is missing. On the basis of environments interpreted from the palynological examination however there are distinct increases in percentages of dinoflagellates across both boundaries concurrent with decreases in depositional rate (see Palynological Frequency chart).

Likewise the two ther disconformities postulated between the three dinoflagellate zones recognised by within the <u>L. balmei</u> Zone are characterised by distinct zone changes and overall slow depositional rates. For these zones, assuming that there was continuous deposition, would give depositional rates between 0.3 cm/1000 years and 2.5 cm/1000 years. And these are the maximum rates!

They are anomalous depositional rates because they are less than what is considered as average rates for pelagic sedimentation in the ocean determined from the Deep Sea Drilling Project (D.S.D.P) and which has a range of between 1 to 5 cm/1000 years.

Considering that the <u>T.longus</u> and <u>L.balmei</u> Zones are dominated by coarse to often pebbly sands it would be difficult to rationalize the slow depositional rates with the lithology without the recognition of disconformities.

In addition the presence of a disconformity between the <u>E</u>. <u>crassitabulata</u> and <u>W</u>. <u>homomorpha</u> Zones could be an explanation for the origin of the dolomite cementation of the sandstones in the <u>E</u>. <u>crassitabulata</u> Zone.

Understanding the environmental setting of these sands in the <u>T.longus</u> and <u>L.balmei</u>Zones is more difficult however. Any explanation must consider a) absense of foraminifera or other marine fossils aside from dinoflagellates; b) the presence of disconformities;c) the very coarse lithologies recorded; d) the lack of any obvious reworking of spore-pollen or dinoflagellates between zones.</u>

The high percentage of dinoflagellates to spore-pollen particularly in <u>T.evittii</u> and <u>E.crassitabulata</u> Zones as well as high ratio of gymnosperm pollen to angiosperm pollen and spores suggest an offshore environment a considerable distance from the shore line. These features are consistant with one of the few environmental trends recognised in studies of distribution of spore-pollen

.../6

and microplankton in present day marine sediments. (See Cross, et.al. 1966; Traverse & Ginsburg 1966). The trends are that the ratio of dinoflagellates to spore-pollen increase offshore and that among the spore-pollen, gymnosperm pollen increases preferentially with respect to the rest of the taxa because the gymnosperm pollen float more readily and longer as a consequence of their morphology and therefore can be transported further offshore.

Even though it appears to be an offshore marine environment the lack of any other marine fossils is difficult to explain. Especially the lack of foraminifera although their absence may be related to the coarse grained lithology which is + implying a high energy environment. However the latter interpretation is inconsistant with the presence in the sands of dinoflagellates and spore-pollen which would be expected to be winnowed out in a high energy environment.

The possibility that the sands were emplaced by turbidity currents or a grain flow or represent slump deposits is also considered unlikely as they lack the coarser derived terrestrial plant fragments and recycled palynomorphs which are typical of palynological preparations from such deposits. Further, such an explanation is not helped by the presence of a complete sequence of zones even though they may be separated by disconformities.

Overall the sequence in the Paleocene in Hapuku-1 shows more similarity with the wells on, as with Dart-1, or adjacent to, as with Moray-1 the stable north and south platforms rather than the closer wells to the north east such as Albacore-1 and Mackerel-1. This suggests that we may have a different provenance for these units in Hapuku-1 and related to this may be that the sands from these areas are only available as specific times.

#### REFERENCES

Cross, A.T., Thompson, G.G. & Zaitzeff, J.B., (1966). Sources and distribution of palynomorphs in bottom sediments, southern part of Gulf of California. Marine Geology vol. 4. pp 467-524.

Stover, L.E. & Partridge, A.D. (1973). Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. Proc. Roy. Soc. Vict. vol. 85 pt. 2: 237-286.

Traverse, A. & Ginsburg, R.N., (1966). Palynology of the surface sediments of Great Bahama Banks as related to water movement and sedimentation. Marine Geology 4 (6): 417-459

### SAMPLES ANALYSED

SAMPLE	DEPTH IN FEET	ZONE
Cuttings	9110 - 20	Barren, mineral charcoal only.
•Cuttings	9160 - 70	P.tuberculatus Zone
SWC 55	9182	P.tuberculatus Zone
SWC 53	9200, K,B.	Upper <u>N.asperus</u> Zone
SWC 52	9209	Upper <u>N.asperus</u> Zone
SWC 51	9218	Upper <u>N.asperus</u> Zone
SWC 50	9221 P,	Upper <u>N.asperus</u> Zone
Cuttings	9220 - 30	Indeterminate, dominated by material caved from <u>P.tuberculatus</u> Zone
SWC 49	9227	Eocene, undifferentiated but pre – Upper <u>N.asperus</u>
Cuttings	9230 - 40	Indeterminate, dominated by material caved from <u>P.tuberculatus</u> Zone.
SWC 48	9236	Upper <u>L.balmei/W.homomorpha</u> Zones
Core - 1	9250	Upper <u>L.balmei/W.homomorpha</u> Zones
Core - 1	9265	Upper <u>L.balmei/W.homomorpha</u> Zones
Core - 1	9274 ¹ 2	Indeterminate, very low yield.
Core - 2	9290	Lower <u>L.balmei/E.crassitabulata</u> Zones.
Core - 2	9309	Barren, mineral charcoal and woody material only.
Core - 2	9321	Lower <u>L.balmei/E.crassitabulata</u> Zones.
Core - 2	9329	Lower <u>L.balmei/E.crassitabulata</u> Zones
Core - 3	9346	Lower <u>L.balmei/E.crassitabulata</u> Zones
Core - 3	9358	Lower <u>L.balmei/T.evittii</u> Zones
Core - 3	9364 ¹ 2	Lower <u>L.balmei/T.evittii</u> Zones
Core - 3	9369	Lower <u>L.balmei/T.evittii</u> Zones
SWC 47	9400	Lower <u>L.balmei/T.evittii</u> Zones
SWC 46	9460	SWC contaminated.
SWC 45	9524	Barren
SWC 42	9638	Very low yield, zone indeterminate.

### Samples Analysed cont'd

•

SAMPLE	DEPIH IN FEET	ZONE
SWC 40	9700	T.longus/D.druggii Zones
SWC 39	9750	T.longus/D.druggii Zones
SWC 38	9810	T.longus/D.druggii Zones
Cuttings	9870 - 80	Indeterminate, preparation dominated by drilling mud contamination
SWC 37	9875	<i>T.lilliei</i> Zone
SWC 36	9918	Indeterminate, SWC contaminated.
SWC 34	9968	Barren
SWC 33	10,022	<i>T.lilliei</i> Zone
Cuttings	10,030 - 40	<i>T.lilliei</i> Zone
SWC 32	10,031	SWC contaminated with Oligocene-Miocene fossils.
SWC 31	10,068	<u>T.lilliei</u> Zone
Junk Basket return	from trip to 10,115	T.lilliei Zone
SWC 119	10,200	<u>T.lilliei</u> Zone
SWC 116	10,385	<u>T.lilliei</u> Zone
SWC 115	10,450	<u>T.lilliei</u> Zone
Coal Cuttings	10,520 - 30	<u>T.lilliei</u> Zone
SWC 112	10,643	<u>T.lilliei</u> Zone
SWC 110	10,766	<u>T.1illiei</u> Zone
Coal Cuttings	10,980 - 90	<u>T.lilliei</u> Zone
SWC 106	11,033	<u>T.lilliei</u> Zone
SWC 105	11,100	<u>T.lilliei</u> Zone
SWC 104	11,175	<u><i>T</i>.<i>lilliei</i></u> Zone
Coal Cuttings	11,320 - 30	<u>T.lilliei</u> Zone
SWC 102	11,334 P	<u>T.lilliei</u> Zone
SWC 101	11,400	<u>T.lilliei</u> Zone
Cuttings	11,500 - 10	<u><i>T</i>.<i>lilliei</i></u> Zone
SWC 97	11,648	Barren, mineral charcoal only.
Cuttings	11,660 - 70	<i>T.lilliei</i> Zone
SWC 95	11,743	T.lilliei Zone
Coal Cuttings	11,820 - 30	T.lilliei Zone
SWC 91	11,930	T.lilliei Zone
Cuttings	11,940 - 50	T.lilliei Zone
		· · · · · · · · · · · · · · · · · · ·

•

Samples analysed cont'd

SAMPLEDEPTH IN FEETZONECuttings11,970 - 74T.lillieiZone

Recycled spore-pollen are indicated by

K: Early Cretaceous

B: <u>L.balmei</u> Zone species

P: Permian

SIN		GIPPSLAN	D BASIN			DAT	E	Septembe	<u>r 25</u>	, 1975		
LL N	IAME	НАРИКИ-1					VATION	K.B. +28'				
			HIGHEST DATA					LOWEST DATA				
Œ		PALYNOLOGIC ZONES	Preferred Depth		Alternate Depth	Rtg.	2 way time	Preferred Depth		Alternate	Rtg.	2 way time
.0IM	<u>P</u> .	tuberculatus	9160	3	9182	0		9182	0			
Σ	U.	N. <u>asperus</u>	9200	0				9221	0			
E OCENE M	Μ.	N. <u>asperus</u>										
	L.	<u>N. asperus</u>										
	<u>P</u> .	asperopolus										
	υ.	M. <u>diversus</u>										
	Μ.	M. diversus							,			
	L.	<u>M. diversus</u>										
NE	υ.	L. <u>balmei</u>	9236	0				9265	0			
	L.	<u>L. balmei</u>	9290	0				9400	0			
CRETACEOUS	<u>T</u> .	longus	9700	1		·		9810	1			
	<u>T</u> .	<u>lilliei</u>	9875	1		. 	•	11,743	1	11,970	3	
		senectus						·				·
		trip./T.pach	• ·									
		distocarin.									7	
		pannosus										
EA	RLY	CRETACEOUS										
PR	E-CF	RETACEOUS		1								
		•				<u> </u>		3				
OMM	ENTS	S: Wetzelie	11a homomo	rpha	Dinoflage11	ate 2	Zones	······································	9236	' (1) to 9	······································	
Eisenackia crassitabulata Dino. Zone Trithyrodinium evittii Din. Zone Deflandrea druggii Dino. Zone								9290' (1) to 9346'(1)				
								9358' (1) to 9400'(1) 9700' (1) to 9810'(1)				
			and the second second	7		<u>a</u> wa			9700		010 (	<u></u>
ΥŢ	NGS	: 0; SWC or pollen 1; SWC or pollen 2; SWC or and/or 3; CUTTIN pollen 4; CUTTIN	CORE, <u>EXC</u> and micro CORE, <u>GOC</u> CORE, <u>POC</u> CORE, <u>POC</u> microplar GS, <u>FAIR</u> ( or microp	ELLEN plank D CON lankt OR CON kton. CONFID	ton. FIDENCE, as on. FIDENCE, as ENCE, asser on, or both	<u>CE</u> , a ssemb ssemb nblag	ssemblag lage wit lage wit e with :	ge with zone th zone spec th non-diagr zone species n-diagnostic	ies Nosti of	of spores c spores, either spo	and polle ore an	en 1d
OTE		If a sample o Also, if an e	entry is gi	ven a	3  or  4  con	nfide	nce rat:	ing, an alte	o ent ernat	ry should e depth wi	be ma Lth a	ade.
۰. س		better confid CORDED BY:	lence ratin ALAN PARTI		uld be ent	ered,	if posa DATE	sible. September	25,	1975		
		CORDED DI.					DATE					
		VISED BY: 315 12/72										

### WELL COMPLETION REPORT

### HAPUKU-1

APPENDIX 5

### FORAMINIFERAL SEQUENCE - HAPUKU-1

By David Taylor

#### PE900501

This is an enclosure indicator page. The enclosure PE900501 is enclosed within the container PE902283 at this location in this document.

The enclosure PE900501 has the following characteristics: ITEM_BARCODE = PE900501 CONTAINER_BARCODE = PE902283 NAME = Palynological Frequency Chart BASIN = GIPPSLAND PERMIT = VIC/P1 TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Palynological Frequency Chart(enclosure from WCR) for Hapuku-1 REMARKS = DATE_CREATED = DATE_RECEIVED =  $W_NO = W685$ WELL_NAME = HAPUKU-1 CONTRACTOR = CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)
### FORAMINIFERAL SEQUENCE

### НАРИКИ # 1

سو.∙¥

by DAVID TAYLOR

5

A.C.

Paleontology Report 1975/14

September 25, 1975.

#### SUMMARY

1.

· · · ·

847

1.

al a

貜

The HAPUKU # 1 well intersected a thick section of prograding Plio/Pleistocene carbonates (drilled thickness of + 5055'). This is the thickest section of Pliocene known in the Gippsland Basin; and for that matter, in southern Australia. The Plio/Pleistocene biostratigraphic sequence present in FLOUNDER # 5 (Taylor, 1975) was repeated in HAPUKU and the adopted zonation was found to be valid, though correlation with the European stratotype needs reconsideration with the availability of the detailed discussion of Stainforth et al (1975).

The Miocene section is severely abbreviated and the base of progradation between 7650 and 7900 is marked by the absence of Zone C and dramatic change in the benthonic components. In many other Gippsland sections the massive progradation took place during the mid Miocene in Zones C and/or D-1. The basal zones of the Miocene and most, if not all, of the Oligocene zones are absent in Hapuku.

AGE	Minimal Depth Zone	Multi Association Zones	Depth in H Top	Iapuku # 1 Base
PLEISTOCENE				
???		A-2	?	2110
	A	A-3	2150 t	o 3700
PLIOCENE		A-4	3800 t	o 6250
		B-1	6450 t	:0 7050
?? LATE MIOCENE	B	B-2	7450 t	:0 7650
		D-1	7900 t	o 8270
MID MIOCENE	D	D-2	8400 t	o 8800
	E	?	9030 t	:0 9060
EARLY MIOCENE	F		9150 t	:0 ?9182
? EARLY OLIGOCENE or ? LATE EOCENE	? J-2 or K		9200 t	:0 9209

The biostratigraphic sequence in HAPUKU # 1 is summarized below:-

#### INTRODUCTION

2.

------

Sixty-two side wall cores were examined between 1995 and 9875. Side wall cores at 9218, 9221, 9236 and 9875 were barren of fauna, as were samples from conventional cores # 1, # 2 and # 3 and a junk basket sample from 10115. Side wall cores from 9172, 9182, 9200 and 9209 contained non-diagnostic faunas. During drilling rotary cutting samples were examined but are not discussed in this report.

All depths cited in this report and listed on charts are in feet as labelled On samples submitted. The depths are below datum of + 28' M.S.L. and the water depth of 1260' is included in the measurement.

Three sheets of Distribution Charts accompany this report.

Sheet 1 shows the distribution of planktonic foraminifera with the basis of biostratigraphic breakdown.

Sheet 2 gives the distribution of benthonic species.

Sheet 3 summarizes the environmental analysis and presents an interpretative model.

Symbols on the charts are as follows:-

• =	1 -	20	specimens
-----	-----	----	-----------

I = over 20 specimens

D = dominant (over 40%)

[°] or [I] = reworked planktonics or reworked or misplaced benthonics

.....

? = dubious identification

cf

#### = similar but not identical

#### BIOSTRATIGRAPHY

LATE EOCENE to EARLY OLIGOCENE:- Side wall cores at 9200 and 9209 contained only arenaceous foraminifera without planktonics. The fauna and lithology are reminiscent of the LAKES ENTRANCE GREENSAND. If this inference is correct and synchronuity of the rock unit maintained seawards, then the samples represent the earlymost Oligocene (J-2) or the latest Eocene (K). OLIGOCENE to EARLY MIOCENE HIATUS:- Most, if not all, of the Oligocene and the base of the early Miocene are not represented in the biostratigraphic sequence, unless the poorly preserved planktonic faunas at 9172 and 9182 are older than Zone F.

EARLY MIOCENE - ? 9182 - 9150 - ? 9060:- Partial dissolution and/or diagensis have obliterated most taxonomic features on specimens from samples at 9182 and 9172. The side wall core at 9150 contains a slightly better preserved fauna and *Globigerinoides bisphericus* can be positively identified in association with *G. trilobus*. The association is characteristic of the minimal layer Zone F. Preservation is still poor at 9060, but moulds of *Praeorbulina glomerosa* were present without the ultimate *Orbulina* forms. Despite the inability to achieve identification of the *curvus* morphotype, a basal Zone E designation is applied and the early Miocene boundary is placed tentatively at 9060.

MID MIOCENE - ? 9030 - 8800 - 7900:- The side wall core at 9030 is zonally indeterminate, but probably represents the top of Zone E. The next side wall core at 8800 contains a characteristic Zone D-2 fauna with an association of *Orbulina universa* and *Globorotalia peripheroronda*.

The probable base of Zone D-1, at 8270, is faunally indistinct, but at 8100 there is an association of the various morphotypes of *G. mayeri* without *G. peripheroronda*. *G. lenguaensis* occurs at the top of the Zone with *G. mayeri* (S.L.).

As the fauna at 7900 is quite distinct from that in the next highest sample, at 7650, and as 7650 contains *G. acostaensis*, the side wall core at 7900 is regarded as representing the top of the mid Miocene in Hapuku, in accordance with the opinions of Stainforth et al (1975). Previously the mid and late Miocene have not been split in offshore Gippsland, because of lack of definition, but here it is both practical and convenient to distinguish between mid and late Miocene.

MISSING SECTION:- Zone C appears to be absent, as *G. mayeri mayeri* and *G. lenguaensis* are not present in association with *G. miotumida miotumida*. However, there is a 250 foot unsampled interval between the top of D and the base of B. But there is a dramatic change in benthonic components between 7900 and 7650, which suggests that the former represented a deepwater ooze, whilst the latter was at or near the base of a prograding sequence (see below).

3.

ດັ່.

н. Н. .

*

Therefore, the supposition of a disconformity is not inconsistent with the environmental interpretation based on benthonic foraminifera.

LATE MIOCENE - 7650 - 7450:- A fairly nondescript fauna, devoid of most globorotalids apart from *G. miotumida miotumida* and *G. miotumida conoidea*. This lack of faunal definition is, in fact, the characteristic of Zone B-2 which is a vague, transitional interval between the diverse Miocene and Pliocene faunas.

PLIOCENE - ? 7050 - 1995 - ? :- As in Flounder # 5, the base of the Pliocene is placed at the initial appearance of *G. miozea conmiozea* and not at the appearance of *G. puncticulata*. This placement is consistent with that related to the Italian stratotype by Stainforth et al (1975) but not with the "traditional New Zealand Pliocene" of Kennett & Watkins (1974).

Between 7050 and 6450 there is a globorotalid fauna dominated by *G. miozea* (S.L.) (including *G. miozea conomiozea*), without the evolutionary descendant forms *G. puncticulata* (S.L.) (Kennett & Watkins, 1974) or elements of the *G. crassaformis* lineage of Lamb & Beard (1972). The evolutionary positions of the sequences place this interval within Zone B-1.

Distinct G. puncticulata (S.L.) first appears at 6250 with rare forms reminiscent of G. aemiliana. G. crassaformis is apparent at and above 5850 with sporadic occurrences of a rather thick shelled form referred to as G. margaritae. These ranges are consistent with the definition of Zone A-4 in Flounder # 5 (Taylor, 1975).

Zone A-3 is between 3700 and 2150; the base being marked by the dominant occurrence of *G. inflata. G. acostaensis* is replaced by *Neogloboquadrina humerosa* within the zone. *Globorotalia margaritae* was not reported within the interval.

The fauna at 2110 is dominated by *G. inflata* and *Globigerina bulloides*, but contains *Neogloboquadrina dutertrei*, *N. humerosa* and *Globorotalia tosaensis tenuitheca* which indicates the base of Zone A-2 as in Flounder # 5. The highest Hapuku sample at 1995 is still within A-2, so that the Quaternary Zone A-1 was not sampled, though it is no doubt present, above the highest side wall core.

4.

m."

1

<u>қ</u>...-

n in e

#### ENVIRONMENT

邎

Data relating to this environmental interpretation is shown on Distribution Chart - Sheet 3, whilst benthonic foraminiferal distribution is given on Sheet 2.

The totally arenaceous fauna in the "greensand", of possible late Eocene and/or early Oligocene age, suggests an anaerobic, lagoonal environment with the probability of reduced salinity waters. Such assumptions are identical for the Onshore Lakes Entrance Greensand.

A definite environmental trend during the Mio/Pliocene is clearly shown by the pattern of benthonic foraminiferal distribution on the chart - Sheet 2. This trend, in ascending order, is:-

- 1) A concentration of deepwater species between 9182 and 7970. These species include Sigmoidopsis schlumbergi, Gyroidina broekiana, Discammina compressa and morphologically simple arenaceous forms. Specimen frequency fluctuates but is relatively high and planktonics always comprise over 98% of total fauna. The two deepest samples at 9182 and 9172 contain poorly preserved planktonic faunas which suggest that they had been subjected to partial or, for some species, total dissolution. Both of these samples contain Cibicides mundulus which, off Gippsland today, shows preference for depths approaching that of calcium carbonate compensation. Sedimentation evidently took place on the outer continental rise in the early Miocene and on the shallower inner continental rise during the mid Miocene.
- 2) The interval between 7050 and 3500 is dominated by the lens-shaped Cassidulina carinata in relatively poor and small specimen sized benthonic and planktonic faunas. The faunas give the impression that they were size and shape sorted by strong currents. A position on the lower continental slope is assumed.
- 3) From 3300 to 3196 the dominant species is *Epistominella exigua*, which is common on the present day continental slope.
- Virgulina rotundata and V. schrebersiana are usually the common forms between 3096 and 2110, although Bolivinita quadrilatera is abundant at 2996 and Euuvigerina bassensis and E. pigmea dominate at 2110 and 2203.

5.

6

.

.

Although all these species are present in the Jemmys Point Formation at Lakes Entrance (Parr, 1939 and Nicholls, 1968), they are by no means as abundant there as they are in Hapuku or on the modern Gippsland continental slope. Thus a slope position is indicated, which became shallower as is evident by the dominance of *Euuvigerina bassensis* and *E. pigmea* higher in the section.

The trend is from deepwater sedimentation in the early and mid Miocene to a prograded slope sequence in the Pliocene. The fact that Zone C is missing may be due to removal by high energy conditions which are evident at the base of the prograded sequence.

#### REFERENCES

KENNETT, J.P. & WATKINS, N.D., 1974 - Late Miocene - early Pliocene paleomagnetic stratigraphy, paleoclimatology and biostratigraphy in New Zealand. Geol. Soc. Amer., Bull. 85: 1385-98.

LAMB, J.L. & BEARD, J.H., 1972 - Late Neogene planktonic foraminifera in the Caribbean, Gulf of Mexico and Italian Stratotypes. Univ. Kans Paleontol. Contrib., Art. 57.

NICHOLLS, D.R., 1968 - Studies in Victorian foraminifera from above the Orbulina universa datum, unpublished Thesis, University of Melbourne.

PARR, W.J., 1939 - Foraminifera of the Pliocene of south-eastern Australia. Vict. Mining & Geol. J., 1 (4): 65-72.

STAINFORTH, R.M. et al, 1975 - Cenozoic planktonic foraminiferal zonation and characteristic index forms. Univ. Kans Paleontol.Contrib., Art. 62.

TAYLOR, D.J., 1975 - Foraminiferal sequence - Flounder # 5. Esso Paleontol. Rep. 1975/8. Р. 10-

ĸ.

a,

india....

-

in. 1

BASIN GIPPSLAND

ΒY

Form R 193 3/71

WELL NAME HAPUKU-1

DATE <u>Sept. 24,1</u>975 ELEV. <u>+28'</u>

Foram	Zonules

		Highest Data	Quality	2 Way Time	Lowest Data	Quality	2 Way Time
H.C.	A,			·		ļ	
PLEIST.	Alternate	1995	0		2110	0	
PL	A2 Alternate	1993		<u>}</u> }			
		2150	0		3700	0	
Щ	A3 Alternate			ļ	(0.7.0)		
PLIOCENE	A ₄ Alternate	3800	0	<u> </u>	6250	0	
Й	1	6450	0		7050	0	
μ	^B 1 Alternate	0430			7050	- <u> </u>	
	D	7450	0		7650	1	
	^B 2 Altèrnate			<b> </b>		ļ	
	C Alternate						
		7900	+1		8270	1	
	D ₁ Alternate	7970	0		0270	<u>}</u>	
		8400	0		8800	0	
E	D ₂ Alternate						
MIOCENE	E Alternation	9030	2		9060	0	ļ
Ŏ	^L Alternate	<u> </u>	0		9150	1	
R	F Alternate	5150		· ·		[⊥]	
	0						[]
	Alternate						
	H ₁ Alternate						
				┟{			
	^H 2 Alternate			} <u> </u>		****	
	1 m						
	¹ 1 Alternate						
E	I ₂ Alternate						
OLIGOCENE				}}			
00	J ₁ Alternate			┟────┤╢			
		*					
	J ₂ Alternate						

COMMENTS:

Zone C missing. SWC at 7650' above foot of progradation. SWC's at 9170', 9182' contain indeterminant planktonic faunas due to partial dissolution and or diagenesis.

Samples at and below 9200' contain no planktonic faunas.

Note: If highest or lowest data is a 3 or 4, then an alternate 0, 1, 2 highest or lowest data will be filled in if control is available.

If a sample cannot be interpreted to be one zonule, as apart from the other, no entry should be made.

0 SWC or Core	- Complete assemblage (very high confidence).
	- Almost complete assemblage (high confidence).
	- Close to zonule change but able to interpret (low confidence).
3 Cuttings	- Complete assemblage (low confidence).
4 Cuttings	- Incomplete assemblage, next to uninterpretable or SWC with
	depth suspicion (very low confidence).

Date Revised

SPECIES LIST. SHEET 1 of 3 SHEETS 7050 7550 7550 7900 88100 88600 9030 9030 9172 9182 9182 9182 9200 9223 9223 92235 92235 92235 1995 2110 2110 22150 22297 22203 22900 22900 22900 22900 22906 3196 3196 3196 3196 3100 3300 000

N N N N

# DEPTH of SIDE WALL CORES in feet

HAPUKU-I

•		FFFF FFFF
PLANKTONICS		
1. Globigerina bulloides		
2. G. decoraperta 3. Globorotalia obesa	II • • • • I · · · · · · · · · · · · · ·	
3. GIODOTOTAILA ODESA 4. G. inflata	, pppppppppppppppppppppppppppppppppppp	
5. Globigerinella aegualateralis	II °° I °° I II °°°	
6. Globorotalia miotumida conomiozea		
7. G. crassaformis	• • • • • • • • • • • • • • • • • • • •	
8. G. scitula		
9. G. tosaensis tenuitheca	•	
10. Neogloboquadrina dutertrei	•	
11. N. humerosa		1
12. Globigerinoides rubra 13. G. obliquus		
13. G. Obliquus 14. Orbulina universa	I I I I I I I I I I I I I I I I I I I	
15. Globigerina falconensis	II ° I ° ° ° I I	
16. Globorotalia miotumida conoidea	e d d d d d d d d o o IIIDD o o o DD o o o	1
17. G. cf scitula	•• I ,	
18. G. acostaensis	de o Iooo o o o	
19. G. puncticulata	IIIIDDIIIIDD ° ° ° DDDDIcf ?	
20. Globoquadrina altispira		
21. Globigerinoides trilobus trilobus		
22. G. trilobus sacculifera	(c)• ? • • •	
23. Globorotalia miotumida miotumida		
24. G. puncticulata sphericomiozea 25. Neogloboquadrina pachyderma	o	1.1
26. Globoquadrina dehiscens (S.S.)	• ? • D D	
27. Globorotalia margaritae	• • •	
28. G. siakensis	? *	
29. G. cf aemiliana	°°' h °°' I D	
30. G. premenardii		
31. G. miozea (S.S.)		
32. G. continuosa	• ? ?	1
33. Globigerina nepenthes	• 1 1	
34. G. venezuelana	I ••III	1
35. Globorotalia praescitula 36. G. conica	• • • IDI	
36. G. conica 37. G. mayeri barisanensis	?• • •	
38. G. lenguaensis	SYMBOLS: ? •	
39. G. mayeri mayeri	o = 1 - 20 specimens • •	
40. G. mayeri nympha	I = over 20 specimens	
41. Globigerina foliata	D = dominant (over 40%)	
42.G. woodi woodi	[0] or [I] = reworked planktonics or reworked or misplaced bethonics I I I I I	
43. Globigerinoides bisphericus	? = dubious identification • • •	1
44. Globorotalia peripheroronda	cf = similar but not identical °°	1
45. Globoquadrina larmeui		1
46. Globigerinoides trilobus (elongate form)		
47. Globoquadrina advena 48. Praeorbulina glomerosa (S.L.)	• • • • • • • • • • • • • • • • • • •	
49. Globigerina apertura	I I	
50. indeterminate globigerinids (poor preservation)		D D .
	6250 705 0 7650 8270 8800 9060 9150	9182
Depth in feet to base	2110 3700 6250 7050 7650 8270 8800 9000 913	no
of		planktonics
	A-2 A-3 A-4 B-1 B-2 D-1 D-2 E F	?
ZONE	A-2 A-3 A-4 A-4	

HAPUKU # 1

#### 

	я х	N 19 M
BENTHONICS		777
51. Sphaeroidina bulloides 52. Brizalina noblis	· · · · ·	
53. Euuvigerina bassensis	D D • I • • • • I •	1
54. E. pigmea 55. Lenticulina spp.		
56. Nodosaria spp.	• • • • • • • • • • • • • • •	
57. Wotorotalia clathrata	•	
58. Brizalina earlandi 59. Bolivinita pliozea	I	
60. Discorotalia aranea	7	
61. Globobulimina pacifica	• • •	
62. Melonis pompiliodes 63. Pyrgo sp. (large)	•••	
64. Textularia semicarinata		
65. Virgulina rotundata		
66. V. schrebersiana	I II.	
67. Brizalina pseudobeyrichi 68. Bolivinita quadrilatera		
69. Globobulimina ovata		
70. Martinottiella communis		i i
71. Cassidulinoides sp.	•	
72. Epistominella Mxigua 73. Karreriella bradyi	• • DDD • • • •	
74. 'Planulina' wullerstorfi		
75. Bolivina sp? (striate)	••	
76. Bulimina submarginata	• <u>I</u> • •	
77. Siphouvigerina proboscidae 78. Bolivina robusta	I · I · ·	
79. Glandulina sp.		
80. Hoeglundina elegans	I •	
81. Triloculina spp.	· I ·	
82. Osangularia bengalensis 83. Heronallenia cf. polita		
84. Anomalina tasmanica		
85. Cibicides opacus	• •	
86. Astronomion sp. carter		
87. Anomalina colligera 88. Fissurina sp.	· · · · ·	
89. Florilus cf. parri	I • •	
90. Cassidulina carinata	DDDDDDDDDDI + • • DDII • • I	1
91. Anomalina bassensis 92. Lagena spp.		1
93. Trifarina bradyi		
94. Cibicides subhaidingeri	• <b>r</b> •	
95. Buuvigerina miozea		-
96. Notorotalia cf. taranakia 97. Pullenia bulloides		1
98. Cassidulina subglobosa	•••	
99. Cibicidès thiarg.	· · · ·	
100. C. mediocris 101. Gyroidina soldani		
102. Buuvigerina mioschwageri		1
103. Sigmoidopsis schlumbergeri		
104. Eponides subhaidingeri	• 1 0	1 · · ·
105. Melonis sp? 106. Rosalina sp?		
107. Azmodiscus sp (smooth)	SYMBOLS:	
108. Bathysiphon sp B	• = 1 - 20 specimens	
109. Glomopira spp. 110. Gyroidina broekiana	I = over 20 specimens	
110. Gyroldina proeklana 111. Haplophragmoides cf paupera	D = dominant (over 40%)	
112. Anomalina macroglabra	[0] or [I] = reworked planktonics or reworked or misplaced bethonics	
113. Rhabdammina sp.	7 = dubious identification	
114. Discammina compressa 115. Spiroloculina pusillum	cf = similar but not identical	
116. Cibicides mundulus	NFT = no foraminiferal fauna I I	
117. Bathysiphon sp A		
118. Haplophragmoides cf incise 119. E. rotundate		a fan staar 🖡 amerik
119. B. Fotundata 120. Ammodiscus parri		

-,



### WELL COMPLETION REPORT

# HAPUKU-1

APPENDIX 6

.

# WELL LOG ANALYSIS REPORT

by R.B. King

ा:

Page 1

erator ESSO AUSTRA	LIA	well HAPUKU-1	DATE 7th August, 1975
		STATE VICIORIA	ELEV. 28' KB
DEPTH INTERVAL	POROSITY ESTIMATE	WATER SAT. ESTIMATE	REMARKS
9228 - 9243	-	_	Not effective
9244'- 9249 (6	20.87	45.8	Possibly effective
9250 - 9259 (10	22.88	29.9	Oil and/or gas productive
9260 - 9284	-	-	Not effective
9285 - 9309 (25	18.47	28.9	Oil and/or gas productive
9310 -			
9326 - 9335 (10	24.12	52.3 )	
9 [°] 348 - 9 [°] 352 (5 - 9352	24.62	64.6 )	The best porosities in the oil - water transition zone
9 <b>3</b> 53 - 9512		•	Water productive
ISF Measured Depths			
		1. 	

FORMATION:

COMMENTS:

This summary lists the pertinent results of well log analysis of this well from 9200 - 9700. Although the hydrocarbon type is indefinite there is a possible slight suggestion of the zone 9250 - 9259 carrying gas.

Note that depth values are inclusive.

R.B. KING Bγ

### WELL LOG ANALYSIS REPORT

OPERATOR

1.

то

ESSO AUSTRALIA LTD.

WELL

L HAPUKU #1

DATE 3 SEPTEMBER, 1975

VICTORIA 28' KB STATE FIFV POROSITY WATER SAT. DEPTH INTERVAL REMARKS ESTIMATE ESTIMATE 10747-54 (8 16-18 60-65 Probable show 10758-63 (6 16 - 1860-65 ... 11 10779-90 (12 10 - 1270-80 Possible show 10791-95 (5 8-10 70-90 11 11 10796-01 (6 11 11 15 - 1760-70 10832-35 (4 14 - 1560-65 Probable show 10836-39 (4 6-8 80-90 Possible show 10840-44 (5 17-18.5 55-60 Probable show 11 10944-47 (4 19-21 45-50 11 10953-58 (6 20-22 65-70 10966-67 (2 16 Indeterminate Too thin ** 11 11 10971-72 (2 13.5-14.5 Probable show 19-21 55-60 10973-77 (5 Possible show 10978-82 (5 11-14 75-90 50-60 16 - 18Probable show 11007-17 (11 Too thin 18-19.5 Indeterminate 11057-60 (4 . . . 11 11 17 - 1911063-66 (4 Probable show 55-60 13 - 1511114-25 (12 11 11 11150-57 (8 19-20 55-60 11 60-65 11 20-22 11180-83 (4 • • 21-23 65-70 11191-05 (15 .. 11 11238-41 (4 15-17 55-60 11 11242-50 (9 18-20 60-65 Possible show 75-90 11261-02 (42 20-23 ISF Measured depth\$, inclusive.

TESTS:

COMMENTS:

ORMATION: ISF-SCF, GR-FDC-CNL

The cleaner well developed sandstones in the gross section 10,025 - 11,950 appear water bearing. The section covered by this report 10,700 - 11,300 contains mainly shaley dirty sands. Many of these appear to carry hydrocarbon shows. No zone of commercial significance was observed. Water saturation estimates may be slightly optimistic due to the use of the Schlumberger shaley sand equation.

### WELL COMPLETION REPORT

1

### HAPUKU-1

# APPENDIX 7

# SIDEWALL CORE DESCRIPTIONS

				ROCK	MODIFIERS			INDUR	GRAIN			DISS			FLOL		E	CUT F	LUOR.	CUTR	ESIDUE		PROB	
NC 1 a	1	DEPTH 1	REC 2	TYPE 3	4	CAL 5	COLOR 6	DEG 7	SIZE	SRTG 9	RND	CLAY	STAIN	% RK	DISTR 14	INTEN 15	COLOR 16	INTEN 17	COLOR 18	QUAN 19	COLOR 20	SHOW 21	PROD	REMARKS - GAS
		4280			Slty, glauc	<u> </u>				mod										13		1		23 Strong gas odou
//75				areni- te																			-	Scrong gas out
14/7															,									
	_2	4200	<u>3/4'</u>	Mar1	minor slty	v	gn-gy	sl.fm	_	_														Moderate gas oc
DATE		4090	1"	11	e1 1.							-												
		4090			sl.slty	V	gn-gy	sl.fm																Mod <u>. ga</u> s_od <u>o</u>
	4	4005	1"	, 11	sl.slty	v	gn-gy	sl.fm	-	-														Mod. gas odo
N N N																								
SWC RUN NO	_5	3900	3/4		<u>slty,tr.</u> glauc.		gn-gy	mod.fm	_	-														Mod. gas odo
	6	3800	7 /9''		sl.slty	V	gn-gy	oʻl fm		_			-											Strong gas o
			//0		<u>,</u>		gu- gy	<u>2 T • T III</u>			•										-		-	Strong gas c
-	_7	3700	<u> </u>	11	mod.slty, gl.	V	gn-gy:	sl.fm	_	_:														Mod. gas odo
0N						 												, ,		· · · · · · · · · · · · · · · · · · ·				
RUN NO	_8	3590	14"	11	sl.slty	<u>v</u>	gn-gy	sl.fm	-	-						•								Strong gas o
ш Ш	9	3500	1 "	11	sl.slty	v	gn-gy	s1.fm	-	_														Strong gas o
							6																	
	10	3400	14"	11	<u>tr.glauc,</u> sl.slty		gn-gy	sl.fm																Strong gas o
KGER			- 1 . 11																				· · · ·	· · · · · · · · · · · · · · · · · · ·
MBE		3300	1 3		tr.glauc. sl.slty	V	gn-gy	<u>sl.fm</u>												<del></del>	-			Strong gas o
SCHLUMBERGER	12	3268	2 ¹ / ₂ "	11	sl.slty.tr glauc.	v	gn-gy	s <u>1.f</u> m	_															Strong gas o
					glauc.																			•
8 <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	13	3196	_1''		<u>sl.slty.tr</u> glauc.		gn – gy	s1.fm	_														 	Strong gas c
SERVICE		3096			sl.slty,		gn-gy:															·	 	Strong gas c

•

	;			ROCK	•	:	1		1		<u>;</u>	1	T	 				1		.,			1	
6 2.6	NO	. DEPTH	REC	TYPE	MODIFIERS		COLOR	INDUR DEG	GRAIN	SRTG	RND	DISS	1.			URESCENC			LUOR.				PROB	
/	1 a		2	3	4	5	6	7	8	.9	.10	11	12	% RK	DISTR 14	INTEN 15	COLOR 16	INTEN 17	COLOR 18	QUAN 19	COLOR 20	SHOW	PROD 22	REMARKS - GAS 23
DF.	0 1 5	5 2996	5 2"	Mar1	sl.sltv	v	gn-gy	     fm	hav f - f	mod				-				·						V.stronggas odou
	÷∣				<u>sl.slty,</u> fossils		gu-gy	البلية بليم		- mou.	•			-								·		
-	<u>}</u>	2900	2"	11	sl.sltv.	v	on-ov	sft.	_	_						-	1				1		-	11 11 11
ς,	-	2900			<u>sl.slty.</u> fossils		gn-gy	sī.fr	1			1		-							1			
PAGE ATT	17	2800	112"	1 11	sl.slty tr	V	on – ov	sft.	- ·	_	1													TT 11 TT
	5				sl.slty tr glauc.	<b>V</b>	54-57	sl.fr	n			1		-				1					-	
	18	2 <b>7</b> 00	2 ''	11	fossils,sl	. v	on – ov	sl.fm	n —	-											<u> </u>	1		mod. gas odour
-					slty		6																	U
	2 19	2600	2"	11	mod. slty	v	gn-gy	sl.fr	n –	-				-										Mod. gas odour
e st	2	2505			tr.fossils				_	_									•					Strong gas odour
					sl.slty			sl.fm	n															
CRIP CRIP	; 1	2400	2 1/2 "	11	sl.sltv.	v	gn-gy	sft-	_	_									1					Strong gas odour
RAL					sl.slty, fossils		007	sl.fm			•													
ESSO AUSTRALIA LTD. SIDEWALL CORE DESCRIPTIONS	22	2297	2"	11	sl.slty,	v	gn-gy	sft-	-															Strong gas odour
					fossils		6. 67	sl.fn	n														·	
SSO EWAL	2 2 3	2208	2"	11	sl.slty,	v	gn-gv	sft-		-														Mod. gas odour
					fossils		gn-gy	sl.fm	a															· ·
ц Ц	24	2150	2 1/4'	11	Fossils, mod.slty	v	gn-gy	sft-																Strong gas odour
					mod.slty			sl.fn	n															
Ω.	25	2110	24	Calc.	slty,foss. ils	v	gn-gy	sft.	f-vf	роот	r													Strong gas odour
КЕМР БРСБР	X II			enite	ils																			
/.KE	126	2000	N	R																				
IKU #1 ELLLS/ CHIIIME	27	1995	1 '	Marl	l <u>sl.slty,</u> fossils	V	gn-gy	sft.	<u> </u>	_														Strong gas odour
CU TLL			_		TOSSIIS																			
D B S	2.8	1900	N	R																				•
I A	<u>29</u>	1796	N	R																				
MELL HA	30	1700	N	R																				
GEOLO GEOLO	į																							
	FOI	RM R 257 3*	2		•																			

I :			•		<b>h</b>	<b>k</b>			·· · •	<b></b>				Ł		•				. <b>k</b> .			k.		
					ROCK	MODIFIERS			INDUR	GRAIN			DISS	-		FLOU	IRESCENC	E .	CUT F	LUOR.	CUT R	ESIDUE		PROB	
9	23	NO.	DEPTH 1	REC	TYPE 3	4	CAL 5	COLOR 6	DEG 7	SIZE 8	SRTG 9	RND.	CLAY 11	STAIN 12	% RK	DISTR 14	INTEN	COLOR	INTEN	COLOR	QUAN	COLOR	SHOW	PROD	REMARKS - GAS
.: ОЕ	REC.		10000									rd-	1	12	нк	14	15	16	17	18	19	20	21	22	23
	10	31	10068			Qtz.slty.mic			Uncons			rd-	20%												C1 200,C2.300
2	3/7:	32				Qtz			Uncons		<u> </u>	-sub	+15%	5											C ₁ 700. C ₂ 300
	30 5/8/7	33	10020	3/4	'Slst	<u>Qtz,mica,tr</u> . glauc.	• -	mdkgy	Firm	Slt	Mod		30%												Zero gas
н Ш	, ш					graue.										<u> </u>				ļ					
PAGE	ATT DAT	34	9968	1"	Ss	Qtz,mica,	··· -·	mltgy	uncons -firm	f-m	mod	sub	15%												Zero gas
						pyrite																			
	2	35	9936	NR							ļ		0.5.0												
		36	9918	1 <u>7</u> "	Sh	Qrz.mica	v	mdkgy	fm	Slt	mod		25% <b>-</b> 30%												Fragments only-
	ON N																								did not buy.
C	RUN RUN	37	9875	1'2"	Slţst	Qtz, mica	Sl	dkgy	sft	Slt	mod	-	25% <b>-</b> 30%												C1 200
11		38	9810	1"	Ss		sı	mgy	sft	f-m	mod	srn	20%												Zero gas
77	CRIT					tr.glauc.																			
144	SIDEWALL CORE DESCRIPTIONS	39	9750	14"	Ss	Qtz.tr.glau		mgy	sft	f-m	mod	rd-	15%	<u> </u>											Zero gas
151	ORE 2	40	9700	14'	Ss	Qtz.glauc.	-	ltgy	sft- uncons	f-c	mod	rd-	15%												C ₁ 300, C ₂ 150
41						mica.					· ·														
US:	SIDEWAL RUN NO	41	9685	NR																					
Ľ			9638		Ss	Qtz,glauc.	mod	lt gy	sft-	f-m	mod	rd-	20%				•	•							Zero gas
	IES	43	9605	NR					<u> </u> <b>▲</b> ₩L	m	1000		203												Dero gas
		44	9570	NR								1													
		45	9524	14'	Ss	Qtz,mica	-	lt gy	fm- sft	f-m	mod	sa-	20%												C ₁ 600, C ₂ 800
	Ц					glauc,pyrite	<u>∔</u> ≱		SIL			srn									·				
	N MBERGER	46	9460	1½'	Ss	Qtz,glauc.	Sl	d gy	soft	f-grn	1 P	sa-	20%												C- 200 Co 100
	ABE ABE					mica,pyr.slt	+					rnd						1							C ₁ 300, C ₂ 100
L L	NORTON	47	9400	1- /		Qtz.glauc.		7	soft-	f -		sa-	10%												· · · · · · · · · · · · · · · · · · ·
UKL	NOF			<u>-1/8</u>		mica,pyr.si	lty	d gy	fm	grn]	P	rnd	10%												Zero Gas
HAPUKU-1			0000		·							sa-	+20%							Dull					
	GIS' DE C		9236	_ <u>_</u> "	Ss	Qtz,glauc.		gn-gy	fm	f	mod	sr	20%	None	30원	Spotty	Weak	Yellov	weak	Yellow					_C ₁ 400
MELL	GEOLOGIST SERVICE CC					<u>mica, pyrite</u>	<u></u>								$\left  \right $										
ME	GE SEI	FORM	R 257 3 72		l																				

.

				*	1		1	1		<b>B</b> .	1	-1	- <b>T</b>	Ł.		· ·		•		Ba-			· <u>k</u>		
	<b>^</b>		DEPTH	DEC	ROCK	MODIFIERS			INDUR	GRAIN			DISS			FLOU	RESCENC	E	CUT F	LUOR.	CUTR	ESIDUE		PROB	
رد م	Ý	NO.	1	REC 2	TYPE 3	4	CAL 5	COLOR 6	DEG 7	SIZE	SRTG	RND		STAIN	1 1	DISTR	INTEN	COLOR	INTEN	COLOR	QUAN	COLOR	SHOW	PROD	REMARKS - GAS
ОF.	ныс 75.	49	9227	1"		Qtz,mica,			+	8	9	10	11	12	RK	14	15	16	17	18	19	20	21	22	23
	$\sim$		5221		5150	glauc. pyrit	e	ol.gy	IM	silt	mod		20%- 30%								L				C ₁ 300, C ₂ 200
4	5/8,	50	9221	11.1						f-															
30	2	50	9221	1-2		Qtz,glauc,		ol.gy	fm	grnl	P	sa- r	+20%												C ₁ 300, C ₂ 700,
ш	<u> </u>		0010			mica,pyr.slt				f-		_	250							-					C ₃ 200, C ₄ 800
PAGE	DATI	51	9218	14	1	Qtz,slt,glau	c s	lol gy	soft		P	sa- r	25%- 30%												
		50	0000			mica,pyrite			L																
		52	9209	14'		Qtz,Sft.glau	IC V	ol.gy	soft	f-m	Р	sa- r	25%- 30%												
	2	<b> </b>	 		·	mica,pyrite																			
	RUN NO	53	9200	4- 1- 1-5≠4	SltySs	Qtz,slt.glau	c V	ol.gy	fm.	f-m	P	sa- r	25%- 30%	· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·
O Z	E IN					mica							000												
11 11	SWC	54	9190	NR																					
ESSO AUSTRALIA LTD.		55	9182	1½"		Qtz,mica,		ol.gy	Fm.	slt	mod	-	25%- 30%												
RAI						glauc.pyrite							30%											·	
		56	9172	2"	Slst	Qtz,mica,	v	ol.gy	fm	Slt	mod	-	258 <b>-</b> 30%												
40						glauc.					•		-30%												
SSO FWA	N NO	57	9150	11/2"	Slst	Qtz,mica	V	ol.gy	fm	Slt	mod		25% <b>-</b> 30%												
				NR		~		01051					_30%												
	IES	59	9089	NR										·											
		60	9060	11/2"	Slst	Qtz. mica,	v	ol.gy	fm	Slt 1	mod		25%-												· · · · · · · · · · · · · · · · · · ·
						~ pyrite		01.91					25%- 30%												C ₁ 1700,C ₂ 300
	~														_+										
	<b>IBERGER</b>																								
	BEF																								
- NC																									
CU- NTTO	SCHLUN																								
WELL HAPUKU-1 GEOLOGIST MORTON	0																								
HA	со ш																		-						•
DLO DLO	SERVICE																								
GEOLO	SEF																						•		
		FURM	R 257 3 72								-					1		<u> </u>	<u>[</u>			<u>I</u> _			

C

•

1	ł   .			1		L				<b>b</b> te.				<u>k</u>	· ·						- <b>B</b> .			<b>. L</b>		
	26		'		ROCK	MODIFIERS	'		INDUR	GRAIN			DISS	s		1	FLO	URESCENCE	JE	СUТ	FLUOR.	CUT	RESIDUE		PROB	
9	7	NO.	DEPTH	REC 2	TYPE 3	4		·	DEG	SIZE	SRTG		D. CLAY			1 1	DISTR	INTEN	1	INTEN	COLOR			1	1	
ЪF	REC.	+					5	6	7	8	9	10		12	12 F	RK	14	15	16	17	18	19	20	. 21	22	23
5	5	61	1			Glauc.mica	non	lt.gy	sli.r	f	mod	mod	d			<u> </u>	' + '	'					_	no shb	wc	No gas reading
	5/8/	62					<u> </u> '		· '	· · · · · · · · · · · · · · · · · · ·							ا ۱ا					-				Tr.dol. cement
1	30	63	9030	1½™ 	Sh "	Calc.mica	V	Ol.gy Lt.gy	f	-	-						- · · · · · · · · · · · · · · · · · · ·	1	•							Cl 4,500
і ш	ш	64								'										1		1	+	-		
PAGE	АТТ DATE	65	8800	N.F	R Marl	Calc.	v	lt. ol gy	.soft	-	-	-				,	·+	,	†'				+			Cuttings did not buy
1	ч ц :		۱ ۱	^p	۳ ا					,,		1	-	+		,	, <del></del>		+'		'	+	+			Currings are not buy
I		66	8600	2"		Calc.Tr.glauc Tr. mica	.c.v.	. Ol.gy	y Sli.f	4	-	-	-	+		,	,	/	+'			+	+			
i i	m	67	8400	2"		Calc.mica	v	01.9	y sli f	f -	-					, <del>-  </del>	·	t'	+'		'					Cl 16,00 C5 +900
I	NO	68	8270			Calc.mica				-	-	-	_				]	t'	<u>+</u> '		'	· '			_	
1	z	· Ií ː				L Glauc.		lt.olgy		-	-		_				]	+ ¹	·'		'	·'				C2 100. C3 50,C4 200
ESSO AUSTRALIA LTD.	IONS C R	70	7970	-		Mica,sli slt							_				]	·	·'	ļ'	· · · · · · · · · · · · · · · · · · ·	ļ'				
	RIPTIO	1								·	+'							۱ ۱	- <u> </u> '	·'	<u> </u> '	<u> </u>				C5 +500
<u>ב</u> ר	SCR	71			1 1	Tr.mica, Tr.glauc.		ltolgy		f -	-	-	_					II				,				
I S	E DE	72	7850	N.R		Tr. glauc.	V	ol.gy	firm	-	-							1	1	,		,		-		Zero gas - did not buy
S	COR	73	7650	<u> 1"</u>	<u> Marl</u>	Tr. mica Tr. glauc.	v	ltolgy	<u>/ sli f</u>	f -	-	-						1	1	,		, 	[		-	Subfissile, tends to
Ч. С	0 11	74	7450	1_1	Marl	Tr.fossils Tr. glauc.	lv.	gn-gy	soft	-	_	-	1			-+		1	1+	· · · · · · · · · · · · · · · · · · ·	<u> </u>	J	<u> </u>		-	shale
SSC	N NO	75			2		1 +	1 1	1	1			+	+				1+	[		<u>├</u> ──		<u> </u>	'	'	
ម័ះ	-	76	70503	+	Ch	Tr.fossils Tr. glauc.	1 17	gn-gy		†	1			+				1	t	<u> </u>	ţļ	t'	+			
4	IES	77	6850	1,11	Inc.	Tr.glauc.					-		'	+				ı — — – – – – – – – – – – – – – – – – –	tl	t'	<u>+</u> J	t'	<del> </del>	'	'	
4	ľ			· - +	1	Tr. mica. sli.silty Tr.forams	<b>v</b> +	ltolgy	SOIL	-	-		<u> </u> '	+		+			+]	<u> </u>	<u>+</u> J	t'	<u> </u>	'	- <b> </b> '	
4	ľ			1211		Cli cil+v	<u>+</u>			<u> </u>	I	+'	'						+	اا	<u>                                     </u>	۱ ۱		r	, i	
	: ~	78 79	6650 6450	t	Mari	Tr. fossils Mica,fossils					-	-	<b></b> '		· .			اا	<u> </u>	<u> </u>	1	<u> </u>		۳ 	ſ	
	MP MBERGER	H					<u> </u>				-	Ļ_'	<u> </u>						L	II		1		ļ . l		
1	P		6250	2			V.	lt olgy	Firm	-	_	-	/ /							1		1	1	<b> </b>	ļ	C2 100,C3 100,C4 100
U-1 KEM	KEMP HLUMBI	╆──┿			]	Tr. glauc.				ı	 	۳ ا ۲	Í'	Ĺ				,	1	1	1	1		+	f	
Б	· 5					Mica,fossils	1		1 1		-	-						,	1 +	1	1	1+	′	<u></u> +−−−− <i>p</i>	f'	
HAF		82	5850	3/4	Sh C	Calc.mica Tr.pyrite Rare F.gr.qtz mica, fossils	v	ol.gy	M.firm	- 1 ₁	-	-		1		-		,+	,	,+	1	1+	'		<u> </u>	
	ST CO	83	5650	3/4	Marl	Rare F.gr.qt;	Z		~- Et	,	,+	ı <b></b> #	<b>↓</b> .			+		. — — — — — — — — — — — — — — — — — — —	·+	·+	·+		r [r	″	f'	
÷ ا	OGI ICE				Sh	Mica, <u>Jossius</u> Mica, glauc,	1 1	1		1 1			1	<del> </del>		+			·+	·+	r	]	t'	<b></b> "	<b>∦</b> ″	
MELL GEOLOGIST	ERVICE	85	5300	3/4	Sltst			<u>lt.olgyM</u> lt.olgyM			-	-	40%	<del> </del>			+icky	Dull Y	Vallow			t	" + "	ļ!	-	Subfissile
יט < ע	⊾ 5 و	FORM	R 257 3 72	<u> </u>	<u> </u>	fr. mica.		1				J		<b></b>								·	۳ ۱	<u> </u> /	()	No cut?mineral Fl.
																							-			

1			1	1	· •	r	1	[	lin.	[	1		• • •				•	1	. 6	1				· · ·
		0-0-11		ROCK	MODIFIERS			INDUR	GRAIN			DISS				JRESCENC		CUT F			ESIDUE		PROB	
	NO. 1 a	DEPTH 1	REC 2	TYPE 3	4	CAL 5	COLOR 6	DEG 7	SIZE 8	SRTG 9	ŖND. 10	CLAY	STAIN 12	% RK	DISTR 14	INTEN 15	COLOR 16	INTEN 17	COLOR 18	QUAN 19	COLOR 20	SHOW 21	PROD 22	REMARKS - GAS 23
	86	5100	+				1				-		12						10	13	20			23
	87	4900		Sh	cal.sli.sil silty Tr. glauc sli.silty	uy v																		
5/8/75	88	4700		Sh	sli silty	V	t.ol.g	rv.firn sli.f	n — —		-												_	Subfissile
5/3		4500			sli.silty		gn-gy		-	_	-		ļ			<u> </u>								C4 100, C5 300
ш																								
DATE	90	4350	171	Sh	silty,trace		E.ol.g	/M.fin	n –	-	-			_										
																	-							
6				÷															·					
SWC RUN NO											ļ			_										
IJŊ			ļ								-							-						
SWC																				,				
						•																		
7																								
										•														
IES RUN NO											-													
RU BU																								
Ш																								
														-										
Я																								
IBERGER		······																			+		-	
<b>ABE</b>																						1		· · · · · · · · · · · · · · · · · · ·
D II																								
SCE																								
0										<u> </u>														
СО Ш																						· ·	<u> </u>	•
SERVICE CO SCHLUM																· · · · · · · · · · · · · · · · · · ·	-						<u> </u>	
Ш		R 257 3 72																						

	÷i	,		•		- •	1	· · · · ·	•.	<b>B</b>	1	1	, A	<b>b.</b> 20		· .			· · · · · · · · · · · · · · · · · · ·		T * ***		5		1
2				050	ROCK	MODIFIERS			INDUR	GRAIN			DISS			FLO	URESCENC	ЭE	СИТІ	-LUOR.	CUT F	RESIDUE		PROB	
		NO. 1 a	DEPTH 1	REC 2	TYPE 3	4	CAL 5	COLOR 6	DEG 7	SIZE 8	SRTG 9	RND	CLAY	STAIN 12	% RK	DISTR 14	INTEN 15	COLOR 16	INTEN 17	COLOR 18	QUAN 19	COLOR 20	SHOW	PROD 22	REMARKS - GAS 23
DF.		91 1	1930	1/8'	'SST &	Carb.pv		b1k-	hard	m-c	poor	sa	-		0		·   ·			-					v.low rec;2 lithol
	/75				SH FRAGS	Carb.py feldspathic		gry			Poor	Ju													V.10w Iec,2 11thol
Н	3/9/	92 1	188 <b>6</b>	1''	-																				mudcake
ш	ш																								
РАGЕ АТТ	DATE	93 1	1844	PO																					
	-	04 1	1706	7/41	COT	r.11. 1		1	1																
	4	94 1	1/80 .	5/4	551	Feld.pyr.do	<b>I</b>	wh	britt	le mc	poor	sa			0										
	NO	95 1	17/3	3/11	T22	Carb.mica		la are	y hard	£													-		
. 0	RUN	55 1	1775	5/ 4				Ig.gre		V.1.	pr.	sa			0							-			
	SWC F	96 1	1710	3/8'	SST-	Mi,py,claye	y :	m.lt.g	y firm	f.	poor	-												+	
CRIP																	-						· · · · ·	-	
RAL DES	: 14	97 1	1648	3/4'	SST	Clayey,mica	-	white It.gy	soft	f.	good	şr			0										
US7 cori	3																								r
ESSO AUSTRALIA LTD. SIDEWALL CORE DESCRIPTIONS	07	98 1	1600	2"	-														ļ						mudcake
ESS	RUN NO	00 1	1550	1	0.075										<u> </u> .			4							
- 01	IES F	99 1	1550	4"	SST	Mi, py	- 1	m.lt.g	v soft	f.c.	poor	_													
	-	1001	1403	1,11	сст	Mi ny comh		74			1														
:		1001	1435	2		<u>Mi, py,carb</u>	- 1	<u>n. 1t. g</u>	<u>v tirm</u>	<u>V.</u> I.	good	sr.													
N.	er	1011	1400	1/11	SST	Carb,pyr.	- T	wh-gry	soft	v.f.	pr.	sr.			0							1			
ξ Ρ.V.K.	Schlumberger										<b>*</b>										· · · · · · · · · · · · · · · · · · ·				
	quin	1021	1334	1 ₂ ''	CLYST	Tr,mi,tr.ca	b -1	ndkgry	firm	-	-	-													
<u>-1</u> . .D.	ch1					Vclavev																			
Ě.	÷	1031	1256	1 ₂ ''	SLTST	V.clayey, Tr.mi,Tr.py.	-	lt.gy	firm	-		-		<i>m</i>											
HAPUKU-1 Delst A.D.P.	СО Ш	10/1	1175 3	3/11	CIVST	Fr.mica,py.		ndleann	fimm																•
well HAD	SERVICE	1041.		<i>y</i> 4		<u> </u>		ndkgry		-	-	-													
S WE	ΫL	FORM R	257 3 72	1															<u> </u>	L <u></u>					
																					•				
	,																(								
																		*				•			

.

	;	1		• • •	1	. <b>k</b>			···· · · ·	<b>MA</b>			n	<u>k</u>	-	° n ' ' '		•	,	. L		-	. <b>K</b>		
2					ROCK	MODIFIERS			INDUR	GRAIN			DISS			FLOU	JRESCENCE	E	CUT F	LUOR.	CUTR	ESIDUE		PROB	
2		NO. 1 a	DEPTH 1	REC 2	TYPE 3	4	CAL 5	COLOR 6	DEG 7	SIZE 8	SRTG 9	RND	CLAY	STAIN 12	% RK	DISTR 14	INTEN 15	COLOR 16	INTEN 17	COLOR 18	QUAN 19	COLOR 20	SHOW 21	PROD 22	REMARKS - GAS
OF.	5	105	11100	3/4'	SLTST	Clayey,trmi	-	mltgy	firm	-	_	-												22	23
	9/7	,				Silty, trmi																· · · · · · · · · · · · · · · · · · ·			
2 30	3/	106	11033	¹ ₂ ''	CLYST	Silty, trmi	-	mdkgy	firm	-	-	-													
111	ш																								
PAGE ATT	DATE	107	10961	3/8'	SH	Trmi, carb	-	mdkgy	firm	-	-	-													
		108	10881	NR																					
	04											shar	σ												
	RUN NO	109	10813	<u> </u>	<u>SST</u>	Trclay& mi		mltgy	firm	f.	mod.	sbra	^e mnr						•						
G. I. IONS	SWC RI	110	10766	1''	SST	V.clay,mi,py	v -	mgy	soft	vf.f.	poor	sbar	g _{mn} r		-			·							
ESSO AUSTRALIA LTD. SIDEWALL CORE DESCRIPTIONS	SN					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					<u></u>	5010	- 11811												
RALI DESC		111	10716	NR																					
<i>ISTH</i> ore	3						1					•													
LL C	0	112	10643	$1\frac{1}{8}$ '	' Shale	coally.trmi	-	dkgry	firm	-	÷	-													
SSO DEWA	RUN NO																4								-
	IES RL	113	10586	1 ₂ ''	SH	tr, mi	-	mltgy	soft	-	-	-					•								
	1	114		MF																					
		114		1.11							······································														
K.		115	10450	1,11	Shale	Tr mi,tr py	-	orv	firm																·
₿ ₽.V.K.	berger.		10.00					5-7	m						++						•				
д Б	ther	116	10385	11/5'	' Shale	Carb.v.mi	-	dkgrv	firm	-				· ·											·
APUKU-1 A.D.P.	Schlum				•			87																	
PUKI	Scł	117	10300	MF																					
ST H	8	1									·														
-061	/ICE		10224 10200			Pyr. Chlor.	No	olive grey	soft	f.	mod	s.a.													Rec'd mudcake
well	SERVICE		10,13	) MF	SST		1																		
- 0		FORM	R 257 3 72																			·			

(

e

Peter Kemp 22/8/75

ŕ.

SIDEWALL CORE No.	DEPTH	DESCRIPTION
31	10,068 R 7/8"	SANDSTONE, medium-dark grey, predominantly medium grey in silty matrix, quartzose, larger grains comprise only 20% of sample, subangular some broken and angular poorly sorted, moderately calcareous, trace mica, minor rust brown iron staining, slightly firm, very low visible porosity. C1 200 ppm, C2 300 ppm, no shows.
32	10,031 R 3/4"	SANDSTONE, medium to light grey, very fine to 3 mm grain size, 10% of 2-3 mm grains which are subangular to subrounded, quartzose, very poorly sorted, slightly firm, non calcareous, low visible porosity. C1 700 ppm, C2 300 ppm, no shows.
33	10,022 R 3/4"	SILTSTONE, medium grey, silty to very fine grained, quartzose, well sorted, moderately firm, non calcareous, Trace mica mostly muscovite but rare biotite, Trace glauconite and very rare pyrite, no gas.
34	9,968 R 1"	SANDSTONE, light grey, medium grained, quartzose, subangular, well sorted, clean, slightly firm, trace mica, trace nodular gluaconite, good visible porosity and permeability, no gas and no shows.
35	9,936 N.R.	
36	9,918 N.R.	Calcareous shale cuttings only - did not purchase
37	9,875 R 1½"	SILTSTONE, dark grey, silt grain size, with high clay content, rare quartz grains 1 - 3 mm, subrounded, rare very fine grained glauconite, rare extremely fine nodular pyrite, trace mica - soft - slightly firm, slightly calcareous, C1 200 ppm.
38	9,810 R 1"	SANDSTONE, medium to light grey, very rare 2 mm quartz grains, generally well sorted, moderate clay content, slightly calcareous, soft, trace mica, rare nodular glauconite, fair to poor visible porosity, no gas and no shows.
39	9,750 R 1 ¹ 4''	SANDSTONE, medium grey, fine grained in silty matrix with rare 1 to 2 mm well rounded, clear to milky quartz grains, poorly sorted, minor clay, rare glauconite, non calcareous, poor visible porosity, no gas and no shows.
40	9,700 R 1¼"	SANDSTONE, light grey, very fine to fine grained, quartzose generally subangular, silty in part, poorly sorted, soft-unconsolidated, chloritic in part, trace biotite mica, dark copper in colour and ? chloritised, trace muscovite mica, poor visible porosity, no shows. Cl 300 ppm, C2 150 ppm.
41	9685 N.R.	
42	9638 R 1¼''	SANDSTONE, light grey, fine to very fine grained, rare very coarse sand graine, quartzose,

•

Peter Kemp 22/8/75

SIDEWALL CORE No.	DEPTH	DESCRIPTION
42 cont'd	. 9638	generally well sorted, minor silt, ?chloritic in part (mineral is soft and neither nodular or platy), trace biotite mica, dark copper in colour, soft, non calcareous, no shows, zero gas, poor visible porosity.
43	9,605 N.R.	
44	9,570 N.R.	
45	9,524 R 1½''	SANDSTONE, light grey, fine to very fine grained, silty with minor clay, quartzose, trace mica-both muscovite and coppery biotite, minor ?chlorite, very rare pyrite, soft, non calcareous, no shows poor visible porosity, C1 600 ppm, C2 800 ppm.
. 46	9,460 R 1½"	SANDSTONE, olive grey, generally medium grained with 20% 2-3mm granules, fine to silty matrix with a high clay content, large grains are well rounded to subrounded, trace glauconite, trace pyrite, very poorly sorted, soft, poor visible porosity, slightly calcareous, no shows C1 300 ppm, C2 100 ppm.
47	9,400 R 1-1/8"	SANDSTONE, olive grey, fine grained with 10% grains to 2 mm large grains are subangular, quartzose, silty, and minor clay matrix, trace nodular glauconite, rare pyrite, low visible porosity, poorly sorted, no shows, zero gas.
48	9,236 R. 1"	SANDSTONE, dark green-grey, very fine grained, quartzose high clay content, slightly calcareous, trace glauconite trace muscovite mica, moderate sorting, moderately firm, spotty weak yellow fluorescence, weak dull yellow cut, C4 400 ppm.
49	9,227 R. 1"	SILTSTONE, olive grey, very clayey, slightly firm, moderate sorting, slightly calcareous, trace nodular glauconite, trace mica, no shows, C1 300 ppm, C2 200 ppm.
50	9221 R. 1½"	SILTSTONE, dark grey, silt grain size, with scattered very coarse grains to 1 mm (10% of sample) subrounded, poorly sorted, trace nodular glauconite, trace platy chlorite and chloritised zones, trace mica, no shows. C1 300, C2 700, C3 200, C4 800.
51	9218' R. 1¼''	SANDSTONE, olive grey, fine grained, 10% grains 1 mm, very clayey, poorly sorted, glauconitic, rare mica, and rare pyrite, slightly firm, no shows, slightly calcareous very low porosity.
52	9209' R. 1 ¹ 4''	SANDSTONE, olive grey, fine grained, rare grains to 1 mm, very clayey, poorly sorted, nodular glauconite, trace mica, tends to silty claystone in part, very calcareous, soft, very low porosity, no shows.
53	9200' R. 2-3/4''	SILTY CLAYSTONE, olive grey, minor fine grains, very calcareous minor glauconite, trace mica, trace chlorite, fine grained quartz tends to be angular, poorly sorted.
	•	

•

Peter Kemp 22/8/75

SIDEWALL CORE No.	DEPTH	DESCRIPTION
54	9190' • N.R. •	
55	9182' R. 1½''	CLAYSTONE, olive grey, very calcareous, slightly silty, very rare glauconite and mica, moderately firm, non-fissile, - marine sediment of "deepish" water.
56	9172	<u>CLAYSTONE</u> , olive grey, very calcareous, slightly silty, very rare mica and nodule glauconite, moderately firm, non-fissile, marine sediment.
57	9150' R. 1½''	CLAYSTONE, olive grey, very calcareous, trace silt, rare mica - mainly muscovite, some coppor odour biotite, non-fissile, moderately firm, marine sediment.
58	9120' N.R.	
59	9084' N.R.	•
60	9060'	CLAYSTONE, olive grey, trace silt, trace extremely fine, nodular pyrite, trace mica - muscovite, non-fissile, moderately firm. C1 1700ppm, C2 300 ppm.
61	9600 R. 1''	SANDSTONE, light grey, predominantly fine grained, 20% coarse grains, moderate sorting, grains subangular, trace glauconite, trace mica, moderately firm, low visible porosity, no shows, no gas, non calcareous.
62	9605' N:R.	Y 2-
63	9030' R 1½''	SHALE, olive grey, very calcareous, trace mica, trace pyrite, moderately firm, sub-fissile, C1 4,500.
64	9000' P.O	
65	8800' N.R.	Marl cuttings - did not purchase.
. 66	8600' R. 2''	SHALE, dark grey with speckled white clay throughout, rare mica, very calcareous, subfissile, moderately firm. C1 1600, C5+ 900.
67	8400' R 2''	SHALE, olive grey, trace mica, trace fossils mainly forams, very calcareous, subfissile, moderately firm.
68	8270' R 1指''	SHALE, olive grey, trace mica, very calcareous - subfissile, moderately firm.
69	8100' R. 3-4''	
70	7970'	CALCAREOUS CLAYSTONE, light olive grey, very calcareous, trace mica, trace silt, soft, non fissile.
	-	

.

•

Peter Kemp 22/8/75

SIDEWALL CORE No.	DEPTH	DESCRIPTION
71	7900' R. 1''	SHALE, light, olive grey, very calcareous, trace mica, very rare glauconite, rare medium grained, well rounded quartz grains, subfissile tends to claystone, slightly firm.
72	7750' N.R.	CALCAREOUS SHALE, did not purchase
73	7650' R. 1''	Grey, brown calcareous <u>shale</u> , with angular quartz.
. 74	7450'	Grey, brown calcareous <u>shale</u> , limonite, angular quartz accessories.
75	7250' N.R.	
76	7050' R. 3/4''	CALCAREOUS CLAYSTONE, light olive grey, very calcareous, soft, non-fissile, trace glauconitic, trace mica.
77	6850' R 날''	Grey micritic limestone, rare angular quartz.
78	6650 R 3/4''	<u>CALCAREOUS CLAYSTONE</u> , light olive grey, very calcareous, soft, non-fissile, trace silt, trace very fine glauconite and mica.
79	6450 R 3/4''	CALCAREOUS CLAYSTONE, olive grey, very calcareous, moderately firm, non-fissile, slightly silty, trace mica, trace fossils.
80.	6250'	SHALE, olive grey, very calcareous, slightly silty, trace glauconite, very rare mica, moderately firm, sub-fissile.
81	6050 R 3/4''	CALCAREOUS CLAYSTONE, light olive grey, trace silt, very calcareous, soft, non-fissile, trace fossils, trace mica.
82	5850 R 3/4''	SILTSTONE, light olive grey, very clayey, very calcareous, trace glauconite, trace fossils, trace mica, moderately firm.
83	5650 R. 3/4''	<u>CALCAREOUS CLAYSTONE</u> , light olive grey, very calcareous trace mica, rare fine grained well rounded quartz grains, soft, non-fissile.
84	5530 R 3/4''	SHALE, light olive grey, very calcareous, silty in part, fossils - mainly forams, trace mica, slightly firm, sub-fissile.
85	5300 R 3/4''	SILTSTONE, light olive grey, very clayey, very calcareous, trace mica, moderately firm, streaky dull yellow fluourescence with no cut - probably mineral fluorescence.
86	5100 R 3/4''	SILTSTONE, light olive grey, very calcareous, very clayey, (tends to shale) moderately firm, trace mica.
87	4900 R 3/4''	SILTSTONE, light olive grey, very calcareous, very clayey (tends to shale) trace mica, trace fossils, very firm.

•

.

Peter Kemp 22/8/75

SIDEWALL CORE No.	DEPTH	DESCRIPTION
88	4700 R 3/4''	<u>CLAYSTONE</u> , light olive grey, very calcareous, very silty, (tends to clayey siltstone), trace fossils, moderately firm, non fissile.
89.	4500 R 3/4''	<u>CLAYSTONE</u> , light olive grey, very calcareous, very silty, (tends to clayey siltstone) trace fossils, moderately firm, non-fissile.
90	4350 R 1¼''	CLAYSTONE, light olive grey, very calcareous, very silty, trace mica, moderately firm, non-fissile, trace glauconite.
		•
		ــو ۹
		r

Attempted 30.Recovered 20.Peter Kemp7.11.1.0.11/10/75

SIDEWALL CORE No.	DEPTH	DESCRIPTION
91	11,930' N.R.	Cuttings only - did not purchase
92	11,886 N.R	-
93	11,844' P.O	
94	11,786' R 3/4"	dolomite <u>SANDSTONE</u> , light grey,/ fine to medium grained, minor coarse grained, moderately hard, poorly sorted, subangular quartzose grains, most slightly milky, trace to heavily pyritic, trace ? feldspar, no shows.
• ⁹⁵	11,743' R. 3/4"	SANDSTONE, medium grey, very fine grained, clayey and silty, moderately sorted, trace carbonaceous, trace mica, trace pyrite, moderately hard, no shows overbank or interdistributory continental dep. environment.
96	11,710 R. 3/8"	SANDSTONE, medium to light grey, fine grained, silty and clayey, poorly sorted, trace micaceous, trace pyrite, moderately firm, continental interdistributary, depositional environment.
97.	11,648' R. 3/4"	SANDSTONE, medium light grey, fine grained, clayey, trace silt, moderate to well sorted, subrounded, slightly firm, trace dolomite, trace muscovite mica, trace copper colour biotite mica, no shows, low visible porosity.
98	11,600 N.R.	
99	11,550 R. ¼''	SANDSTONE, medium to light grey, minor coarse grained, loose or poorly consolidated, trace mica, trace pyrite, sample contaminated with mud cake, soft and friable, poorly sorted, point bar or braided stream depositional environment.
100	11,493 R. ½''	SANDSTONE, medium to light grey, very fine grained, silty, minor clay, trace mica, trace pyrite, trace carbonaceous, moderately well sorted, grains generally subrounded, moderately • firm, interdistributory or overbank depositional environment.
101	11,400	SILTSTONE, Medium grey, very clayey in part, minor very fine grained sand fraction, very poorly sorted, trace mica, trace to moderately carbonaceous, very rare feldspathic grains, interdistributary continental depositional environment.
102	11,334' R. ½''	CLAYSTONE, medium to dark grey, trace mica - muscovite and copper colour biotite, trace carbonaceous, subfissile, and tends to shale, non calcareous, moderately firm, overbank continental depositional environment.
103	11,256' R. ½"	SILTSTONE, light grey, very clayey, and tends to silty claystone, trace mica, minor pyrite, minor fine grained sand, poorly sorted, slightly firm, overbank continental depositional environment.
104	11,175	CLAYSTONE, medium dark grey, trace mica-muscovite and copper colour biotite, trace pyrite, subfissile and tends

Attempted 30. Recovered 20.

6 N.R. 3 M.F. 1 P.O.

Peter Kemp 11/10/75

SIDEWALL CORE No.	DED.IH	DESCRIPTION
104 cont'd	11,175' R 3/4''	to shale, non calcareous, moderately firm, overbank continental depositional environment.
105	11,100 R. 3/4"	SILTSTONE, clayey, trace mica, moderately firm, noncalcareous, overbank continental depositional environment.
106	11,033 R ½"	CLAYSTONE, medium to dark grey, slightly silty, rare medium grained quartz grain, trace mica, non fissile, moderately firm.
107	10,961 R 3/8"	SHALE, medium to dark grey, trace mica, slightly carbonaceous, fissile, moderately form.
108	10.881 N.R.	•
• 109	10,813 R. 1"	SANDSTONE, medium to light grey, fine grained, minor clay, trace mica, moderate sorting, subangular to subrounded, moderately firm, low visible porosity, crevasse splay or upper point bar depositional environment.
110	10,766 R. 1"	SANDSTONE, medium grey, very fine to fine grained, very clayey, minor carbonaceous matter, trace mica, trace pyrite, poorly sorted, subangular to subrounded, soft, very low visible porosity, crevasse splay or upper point bar depositional environment.
111	10,716' N.R.	
112	10,643 R 1-1/8"	SHALE, medium to dark grey, moderately carbonaceous with coal laminae throughout, fissile, moderately firm, trace mica, interdistributary marsh depositional environment.
113	10,586 R. ½"	SHALE, medium to light grey bands up to 2 mm thick, alternating with medium to dark grey carbonaceous laminae less than 1mm thick, trace mica, subfissile and tends to claystone, slightly firm, interdistributary or overbank continental depositional environment.
114	10,507 M.F.	
115	10,450 R. ½''	SHALE, medium to dark grey, subfissile, trace mica, trace pyrite, moderately firm, overbank continental depositional environment
116	10,385 R. 1½''	SHALE, medium to dark grey, fissile, very micaceous, moderately firm, trace pyrite, trace carbonaceous.
117	10,300 M.F.	
118	10,224' N.R.	
119	10,200 R. ½''	SANDSTONE, olive grey, fine grained, rare medium to coarse grained, moderate to poorly sorted, subangular to subrounded, clayey, heavily chloritic, moderately pyritic, moderate to very firm, trace mica, crevasse splay or upper point bar
120	10,130 N.R.	depositional environment.

# WELL COMPLETION REPORT

HAPUKU-1

APPENDIX 8.

# FORMATION INTERVAL TEST RECORDS.

F.I.T. RECORD	WELL: HAPUKU-1
	GEOLOGIST: MCKAY/MORTON/KEMP
	DATE: 6/8/75
F.I.T. No. 1 @ 9334 FEET (IES LOG DEPTH)	
MUD DATA:	
Rmf_0.549 @ 72 °F, Equiv. C1 11,00	0ppm (Resistivity)
C1 ⁻ 7000 ppm NO ₃ 138	ppm (Titration)
SAMPLE TAKEN AT END OF LAST CIRCULATION.	
RECOVERY (MAIN CHAMBER):	
(22500 cc) cft. GAS	SURFACE PRESSURE 0
cc OIL	Sand in chamber flowline chamber piston stuck - had to lay down to empty.
CC WATER	
4000 cc ( MUD	
( + 	
PROPERTIES:	
	C ₅ H ₂ S
GAS $C_1$ $C_2$ $C_3$ $C_4$ <u>M M M</u>	C ₅ H ₂ S
OIL OAPI @ OF	
Pour PointOF	
G.O.R.	
	ppm (Resistivity)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ppm (Titration) M.W. 10.1
PRESSURES: Gauge 23796 Agn	
Schlumberger Amerada Sampling (psi) 42-53	Amerada Hewlett Packard * DID
Final Shut-in (psi)	NOT
Hydrostatic (psi) 4979	WORK
Sampling Time (Min.) 2 ¹ / ₂ LOST SEAL	· · ·
Shut-in Time (Min)	
*Corrected for Atmospher	ic pressure.
TEMPERATURES: (max.recorded) 148 °F, 148	
MAX. DEPTH TOOL REACHED: 9334 Ft.	
TIME SINCE CIRCULATION: <u>12</u> Hrs.	
REMARKS: Segregator 24 dumped. UNSUCCESSFUL TEST-Hew seal after 2½ minspad badly damaged/was	
(possible flowline plugging in part).	

1

. . . . . . . . . .

.....

WELL: HA	НАРИКИ-1		
GEOLOGIST:	McKAY/MORTON/KEMP		
DATE:	6/8/75		

F.I.T. No. 2 @ 9352 FEET ( GR LOG DEPTH)

MID DATA:

 Rmf_0.549
 @______72
 OF,
 Equiv. XMXXNaCl
 11,000
 ppm (Resistivity)

 C1
 7000
 ppm
 NO3
 138
 ppm (Titration)

SAMPLE TAKEN AT END OF LAST CIRCULATION.

RECOVERY (MAIN CHAMBER):

0.2	cft	GAS SURFACE PRESSURE 250 psi with condensate emulsion
	_ cc	OIL / Thamber piston stuck when opened gas breaking out of solution
22,000	cc	WATER <
	cc	MUD
·	cc	SAND
		•

**PROPERTIES:** C₂ C₃ 6 5 <u>18 M 30 M</u> i ^C4 n 600 1200 GAS °C₁ C_{5 +} H₂S 1. 10 2. <u>12</u> M Initially б __<u>18__</u>М 100 no gas 30**M___3**5M 24M readings 3. 9 45M 70M 24 80 27M OAPI @ OF OIL ΟF Pour Point G.O.R. Rmf 0.42 @ 70 °F, Equiv. XXNaC1 14500ppm (Resistivity) WATER Cl⁻ 10,000 ppm NO₃ _____ppm (Titration)

#### PRESSURES:

			Agno	ЭW		
Schlu	mberger	Amer		Amerada	Hewlett	t Packard *
Sampling (psi)		<u>4045-4</u>	23796 048		Di	<u>d</u>
Final Shut-in (psi)		4079			no	)t
Hydrostatic (psi)		4984			Rur	n H.P.
Sampling Time (Min.)	<u>    20</u> op	en,				•
Shut-in Time (Min)						
	*Correcte	ed for At	mospher	ic pressure	•	
TEMPERATURES: (max.record	ed) <u>150</u>	^o F,	151	oF		
MAX. DEPTH TOOL REACHED:	9352	Ft.				
TIME SINCE CIRCULATION:	15	Hrs.				
REMARKS: SEGREGATOR 27						
SUCCESSFUL TEST	, very perme	able for	mation.	Recovered fl	Luid contains	tr.emulsi-
fied_condensate				- <del>Dreaking-Ol</del>	<del>it or solutic</del>	J <del>11</del>

WELL: HAPUKU-1 GEOLOGIST: McKAY/KEMP/MORTON DATE: 6/8/75

F.I.T. No. <u>3</u> @ <u>9259</u> FEET (GR LOG DEPTH)

MUD DATA:

 Rmf_0.549
 0_72
 OF, Equiv. XXX
 NaCl 11,000
 ppm (Resistivity)

 C1⁻_7000
 ppm
 NO₃
 138
 ppm (Titration)

SAMPLE TAKEN AT END OF LAST CIRCULATION.

RECOVERY (MAIN CHAMBER):

seals MUD RUN

	22,	cft.G cc 0I cc WA 000 cc (MU ( + x@ex(SA	MUD L Pist TER empt D	on stuck -	had to lay down to
PROPERTIES:	•		•		
GAS	C ₁ M	C ₂ C ₃ M	С ₄ м	C ₅	H ₂ S
OILPo	OAPI @ . our Point	o _F			
G	.O.R	Ŧ`3.			
WAXER R	nf @	^o F,	Equiv.C1	p	pm (Resistivity)
MUD CI	<u>    6300                               </u>	ppm	NO3	ppm (Ti	tration) M.W. 10.1
PRESSURES: Sampling (psi)	Schlumber	ger	Agner Amerada	v Amerada	Hewlett Packard * 4919*
Final Shut-in (p	psi)				
Hydrostatic (psi	i)				4921
Sampling Time (Mi Shut-in Time (Mir	n)				*variations indicate possible plugging
TEMPERATURES: (max MAX. DEPTH TOOL I TIME SINCE CIRCUI REMARKS: Segreg	x.recorded) REACHED: LATION:	154 ^O F 9259 Ft 19 Hr	· .	o _F	- did not attain pad

F.	I	Т	•	RECORD
-		 		

WELL: HAPUKU-1 GEOLOGIST: <u>McKAY/MORTON/KEMP</u> DATE: <u>6/8/75</u>

F.I.T.	No.	4	Q	9296	FEET	(GR [·]	LOG	DEPIH)
				Construction of Construction o		-		-

MUD DATA:

Rmf_0.549 @ 72	^o F, Equiv.	XXX NaC1	11,000	_ppm (Resistivity)
C1 ⁻ 7000 ppm	NO3	138	ppm	(Titration)

SAMPLE TAKEN AT END OF LAST CIRCULATION.

RECOVERY (MAIN CHAMBER):

10500 66		cft	C. GAS		
(Large chamber had been sticking)		_ cc	OIL		SURFACE PRESSURE 400 psi
		сс	WATER		with trace oil, with gas slowly breaking out.
· · · · ·	10,500	- (	(MUD (´+ (SAND	X	

.

PROPERTIES:

GAS	$C_1 C_2 C_3$	$i C_4 n C_{5+} H_2S$
	600 M 1.1 M 4.5 M	1800 2800 900 Steam Still
OIL	o _{API} @o _F	
	Pour PointOF	
	G.O.R.	
XXXXXXXX	Rmf <u>.68</u> @ <u>70</u> ^O F,	Equiv.XX NaCl 9500 ppm (Resistivity)
MUD	C1- 6200 ppm	$NO_{\overline{3}}$ ppm (Titration) MW 10.1

PRESSURES:

		Agne	ew	
	Schlumberger	Amerada	Amerada	Hewlett Packard *
Sampling (p	osi)			*
Final Shut-	in (psi)			
Hydrostatic	(psi)			4950
Sampling Tim	ne (Min.) 15 min.			· · · · · · · · · · · · · · · · · · ·
Shut-in Time	e (Min)			*Extremely variable early
	*Correcte	d for Atmospher	ic pressure.	
TEMPERATURES	S:(max.recorded)	^o F ,	oF	•
MAX. DEPTH T	OOL REACHED:	Ft.		
TIME SINCE C	CIRCULATION: 23	Hrs.		
	ppeared to lose seal ear			
	ue to flowline plugging.			
	hut in time. Sand throu I-P 4949 psi, Lost seal o	0	0 0	JI WU. 2300 NUNCI

WELL: HAPUKU-1 GEOLOGIST: KEMP/McKAY DATE: 7/8/75

F.I.T. No. 5 @ 9306 FEET ( GR LOG DEPTH)

MUD DATA:

 Rmf0.549
 @ 72 °F, Equiv. Cl Nacl 11,000 ppm (Resistivity)

 Cl 7000 ppm
 NO3 138 ppm (Titration)

SAMPLE TAKEN AT END OF LAST CIRCULATION. REVERSE FIRE  $4 \ge 0.020$ '' choke

RECOVERY (MAIN CHAMBER):

PROPERTIES:

GAS	$C_1 C_2 C_3$ 120- 50- 22-	C ₄ C ₅ H ₂ S 9500- 400-
	<u>160 M 120 M 31 M</u>	9500- 400- <u>16000 140</u> 0
OIL	50.4 OAPI @ 60 OF	
	Pour Point 47 ^O F	
	G.O.R. <u>831</u>	
WATER	Rmf .65 @ 74 °F,	Equiv. XXXNaC1 8800 ppm (Resistivity)
	C1 ⁻ 4300 ppm	NO ₃ ppm (Titration)

PRESSU	JRES:
--------	-------

	Agnew		
Schlumberger	Amerada	Amerada	Hewlett Packard *
Sampling (psi)	3635-3646		3731-3642
Final Shut-in (psi)	4058		4072
Hydrostatic (psi)	4958		4972
Sampling Time (Min.) <u>20 min.</u>	open (full after i	15 mins).	
Shut-in Time (Min)5			• •
*Corr	rected for Atmospher	ric pressure.	
TEMPERATURES: (max.recorded)	144 ^o F, <u>146</u>	o _F	•
MAX. DEPTH TOOL REACHED: 9306	Ft.		
TIME SINCE CIRCULATION:	12 Hrs.		
REMARKS: SUCCESSFUL OIL TEST -O: o <del>il/filtrate and wax</del>	il very waxy, very	Foamy recovery	. Emulsified
· bright bluish white fly			
Final shut-in - 4059ps (full_almost_immediate	i, Hydrostatic 4937	psi, sampling	time - 5mins.
#### F.I.T. RECORD

WELL: HAP	UKU-1
GEOLOGIST:	KEMP/McKAY
DATE:	7-8/8/75

RE-RUN

F.I.T. No. 6 @ 9258 FEET (GR LOG DEPTH)

MUD DATA:

Rmf_0.549 @	72 ^o F,	Equiv.	Nacl 11,000		_ppm (Resistivity)
C1 ⁻ 7000	ppm	NO ₃	138	_ppm	(Titration)

SAMPLE TAKEN AT END OF LAST CIRCULATION.

REVERSE FIRE  $4 \times .020$ '' choke

RECOVERY (MAIN CHAMBER):

 63.2
 cft. GAS
 SURFACE PRESSURE 1725 psi

 9250
 cc OIL/FILTRATE/WAX (60% Oil, 40% Water)

 cc (WATER

 2000
 cc (MUD + WAX

 cc (SAND

PROPERTIES:

GAS	$\begin{array}{ccc} C_1 & C_2 & C_3 \\ 140- & 55- & 16.5- \end{array}$	C ₄ C ₅ 5400- 600-	H ₂ S
	140- 55- 16.5- <u>160 M 120 M 32.5 M</u>		-
	. · ·		
OIL	53.6 °API @ 60 °F		,
	Pour Point48 o _F		
	G.O.R. Approx. 1,500	· · ·	·
WATER	Rmf 0F,	Equiv.C1 ⁻	ppm (Resistivity)
	C1- 5300 ppm	NO ₃ ppn	(Titration)

PRESSURES:	
------------	--

			Agn	ew	
Sampling (psi)	Schlumberger 3800		Amerada 3489-3614	Amerada	Hewlett Packard *
Final Shut-in (ps	i) 4050	-	4043		NOT
Hydrostatic (psi)	4950		4937		WORK
Sampling Time (Min	.)22		(full after	· 16 mins).	
Shut-in Time (Min)	6 *Corr	ected i	for Atmospher	ic pressure.	
TEMPERATURES:(max. MAX. DEPTH TOOL RE TIME SINCE CIRCULA	ACHED:		^D F, <u>148</u> Ft. Hrs.	0F	
DEMARKS. SUCCESSE	JL OIL TEST - ν	very wa	xy oil, simil	ar to previous d not operate ( ne Sampling 700	test. Segregator <del>short in cable).</del> -1300psi,time 11min.

Agnew 1185-1226psi, Hydrostatic 4927 psi. did not fill.

			<u>F.I</u>	.T. RECORD		,
					WELL: HAPUH GEOLOGIST: McH	
					DATE:	
F.I.T.	No.	7	FEET	(IES LOG DEPTH)	•	
MUD DA	TA:					
	Rmf	@	• _F ,	Equiv. C1 ⁻	ppr	n (Resistivity)
	C1 ⁻	7000 ppm		NO ₃	ppm (Ti	itration)
RECOVE	REVERSI	TAKEN AT END E FIRE. 4 x CHAMBER):		T CIRCULATION. hoke		
MUD I				cft. GAS		
				cc OIL		· · · · · ·
				cc WATER		
				cc MUD		
				cc SAND		
				•		
PROPER	TIES:					
	GAS	· C ₁	с ₂	C ₃ C ₄	С ₅ Н2	₂ S
		M	M	M		al la generation de la constante d
	OIL	oAbI	@	oF		
		Pour Point		o _F	κ.	
		G.O.R.				
	WATER	Rmf		oF, Equiv.Cl	ppm	(Resistivity)
				NO ₃	ppm (Titra	ation)
				0		
PRESSU	RES:			Agr	ıew	
0 1			-	Amerada		Hewlett Packard *
-	ing (psi			255-334	an y	DID NOT
		(psi)				ţ
·		psi) <u>5000</u>		4974		WORK
		(Min.)	3	LOST PAD SEAL A	AFTER 3 MINS.	· · · · · · · · · · · · · · · · · · ·
Shut-i	n Time (	Min)	*Corre	cted for Atmospher	ric pressure.	
TEMPER	ATURES: (	max.recorded	.) 152	^o F, 154	o _F .	
		L REACHED:		Ft.		
TIMES	INCE CIR	CULATION:	2	1 Hrs.		
REMARK						adly damaged, port t work, tool damaged

Segregator No.16 did not open during test (empty).

	<u>F.</u>	I.T. RECORD	WELL: HAPUH	, 711-1
•			GEOLOGIST: MC	······································
			DATE:	
F.I.T. No. 8	@ 9322 FEF	ET (IES LOG DEPTH)		· · ·
MUD DATA:				
Rmf	eoF,	Equiv. Cl ⁻	рр	m (Resistivity)
C1 ⁻ 7(	000 ppm	NO3	ppm (T	itration)
	FAKEN AT END OF LA FIRE : $4 \times 0.020$ ''			
RECOVERY (MAIN	CHAMBER):			
	4.7	cft. GAS	SURFACE PRESSURE	700 psi
	200	cc OIL	• • • • • • •	an a
	19000	_ cc WATER	including mud fr	om reverse fire.
		cc MUD		
		cc SAND		
		•		
PROPERTIES:				
GAS	C ₁ C ₂	C ₃ C ₄	С ₅ Н	2S
	MM	MM		
OIL	oAbi @	oF		
	Pour Point			
	G.O.R.			
WATER	Rmf 0.6 @ 74	4OF, Equiv.&	XX <u>NaC1 9200 pp</u> m	(Resistivity)
	C1 ⁻ 5300 ppm	NO ₃	ppm (Titr	ation)
				•
PRESSURES:			gnew	
Sampling (psi)	Schlumberger	Amerada 3719-3714	Amerada	Hewlett Packard DID
	(psi)			NOT
Hydrostatic (I		4979		RUN
-	(Min.) 19	- OPEN		· · · · · · · · · · · · · · · · · · ·
Shut-in Time (N		- rected for Atmosph	eric pressure.	
TEMPERATURES: (1	max.recorded)_156	^o F, <u>157</u>	o _F	
MAX. DEPTH TOOL		Ft.		
TIME SINCE CIRC	CULATION: 24 ¹	a Hrs.		
REMARKS: SUC	CESSFUL TEST - wat	er with scum of w	axy oil similar	to previous tests.

SUCCESSFUL TEST - water with scum of waxy oil similar to previous tests. Pressures not fully built up. Segregator #16 Not opened (kept). Agnew Final Shutin 3985 psi, Hydrostatic 4958 psi Sampling Time 3 min open.

.

F.	I	.Т	•	RECORD

WELL:	Hapuku	- 1		
GEOLOG	IST:	Ρ.	Кетр	
DATE:	3/8/75		•	

F.I.T. No. 9 @ 11,550 FEET (IES LOG DEPTH)

į .

MUD DATA:

 Rmf_____0
 _____0F, Equiv. C1⁻_____ppm (Resistivity)

 C1⁻_____ppm
 NO₃⁻_____ppm (Titration)

SAMPLE TAKEN AT END OF LAST CIRCULATION.

RECOVERY (MAIN CHAMBER):

		cft. GAS	· .	· · · ·
		cc OIL		
	21,500	cc WATER		
• •		- cc MUD		
		cc SAND		
	·····			
PROPERTIES:				
GAS	C ₁ C ₂	C ₃ C ₄	C ₅ H	I ₂ S
	MM	M		
OIL	OADI 6	oF		
012	Pour Point	oF		
	G.O.R.	·		
ህለተዋንጋ			1 000 ppm	(Docictivity)
WATER		^o F, Equiv.C1 ⁻		
	C1 ⁻ <u>4,000</u> ppm	$NU_3 - 16$	8ppm (Titr	ration)
PRESSURES:				
	Schlumberger	Agne Amerada	ew Amerada	Hewlett Packard *
Sampling (ps:	i)			4,937
Final Shut-in	n (psi)			5,112
Hydrostatic	(psi)			6,080
Sampling Time	(Min.) 174			
Shut-in Time	(Min) 2			
		ected for Atmospher	ic pressure.	
TEMPERATURES:	(max.recorded)	^o F ,	oF	• • *
MAX. DEPTH TO		Ft.		
TIME SINCE CI	RCULATION:	Ilrs.		
REMARKS:				

	•			<u>F.I.T.</u>	RECORD	-	WELL: H	lapuku-1		
							GEOLOGIST	: <u>McKay</u>	/ Kemp	
							DATE:	8/9/75		
F.I.T.	No1	0@	11,506	FEET (IF	S LOG	DEPTH)				•
MUD DA	TA:									
	Rmf	6	(	^o F, Eq	uiv. C	1 ⁻		ppm (	Resistiv	vity)
	C1 ⁻	pp	om	NC	3		ppn	n (Titr	ation)	
	SAMPLE	TAKEN AT	END OF	LAST CI	RCULAT	'ION.				
			)).							
RECUVE	RY (MAIN	N CHAMBER	0.6	cft	CAS					
			10			WAXY O	IL EMULSION	1		
			9,750		wxx WATER					
^`			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		MUD					
,				cc	SAND					
				(c	ONUND					
PROPER	TIES:									
	GAS	$C_1$	C	2	C ₃	C ₄	C ₅	H ₂ S		
		<u></u>	_M	M	M				-	
	OIL	C	PAPI @	С	ΡF					
		Pour Po	oint	oF	2					
		G.O.R.								
	WATER	Rrf		C	ΥF, E	quiv.C1	<u>-</u>	_ppm (R	esistiv	ity)
		C1-	p	pm	Ň	10-31	81 ppm (	Titrati	on)	`.
PRESSU	IDEC .									
PRESSU	KEO.	Col	lumberge	or	Ame	Ag	new Amerada		Howlett	Packard
Samp1	ing (psi		11 under ge	<b>C1</b>	Anc	Taua	Amerada		5,089	rackaru
Final	Shut-ir	n (psi)							5,101	
Hydro	static (	(psi)						-	6,067	
Samp1i	ng Time	(Min.)	26							
Shut-i	n Time	(Min)	1							
			*Co	orrected	l for A	tmosphe	ric pressur	re.		
		(max.reco					oF			
		OL REACHE RCULATION			Ft. Hrs.					
REMARK										

F

۳

7

P

p.

### AGNEW-GO-WESTERN PTY. LTD. P. 0. BOX 380 SALE, VICTORIA 3850

ESSO AUSTRALIA LIMITED

#### WILDCAT

HAPUKU No. 1 September 2-3, 1975

PURPOSE:

•

Obtain subsurface pressures with Amerada gauge and Quartz Pressure Gauge run in tandem with Schlumberger Formation Interval Tester.

TOOLS USED:

AMERADA 0-10,300 PSI ELEMENT SERIAL No. 9403 12 HOUR CLOCK QUARTZ PRESSURE GAUGE No. 1410A00109

#### OPERATION SCHEDULE

### HOURS

SEPTEMBER	2, 1975
1430 1545 1600 1920 2039 2041 2100 2103 2104	DEPART LONGFORD ARRIVE REGIONAL ENDEAVOR RIG UP FOR F.I.T. NO. 9 RUN IN HOLE SET TOOL @ 11,550' OPEN TOOL SEAL CHAMBER AND OPEN SEGREGATOR SEAL SEGREGATOR. STYLUS ON AMERADA GAUGE BENT WHEN TOOL SET. UNSEAT PACKER
2105	COME OUT OF HOLE .
2200	OUT OF HOLE - RIG DOWN
September	•
0001 0115 0233 0253 0303 0307 0309 0310 0400 2400	RIG UP FOR F.I.T. NO. 10 RUN IN HOLE SET TOOL @ 11,506' OPEN TOOL FIRE SHAPE CHARGE SEAL CHAMBER AND OPEN SEGREGATOR SEAL SEGREGATOR UNSEAT PACKER COME OUT OF HOLE OUT OF HOLE - RIG DOWN STANDBY - BAD WEATHER
September	4, 1975
0001 2400 September 0830 0900	Standby – bad weather 5, 1975 Depart Regional Endeavor Arrive Halibut Platform

### AGNEW-GO-WESTERN PTY. LTD. P. O. BOX 380 SALE, VICTORIA 3850

ESSO AUSTRALIA LIMITED

WILDCAT

HAPUKU No. 1 September 2-3, 1975

Purpose: Obtain subsurface pressures with Amerada gauge and Quartz Pressure Gauge run in tandem with Schlumberger Formation Interval Tester.

TOOLS USED: AMERADA 0-10,300 PSI ELEMENT SERIAL NO. 9403 12 HOUR CLOCK QUARTZ PRESSURE GAUGE NO. 1410A00109

#### F.I.T. No. 9 @ 11,550'

HOURS	PSIG	REMARKS
1920 2037	6082	Run in hole Initital hydrostatic Stylus bent when tool set - no further results.
		MAXIMUM TEMPERATURE: 214°F @ 11,550'

### F.I.T. No. 10 @ 11,506'

<u>HOURS</u> 03/09/75	PSIG	REMARKS
0115 0230 0235 0235 0237 0239 0241 0243 0245 0247 0249 0251 0255 0257 0257 0257 0257 0257 0257 0259 0301 0303 0305 0307	6042 5082 5082 5082 5082 5082 5082 5082 508	RUN IN HOLE INITIAL HYDROSTATIC Set tool Open tool Fire shape charge Seal chamber and open segregator Seal segregator
0309	6062	COME OUT OF HOLE . Final hydrostatic

MAXIMUM TEMPERATURE: 215°F @ 11,506'

### WELL COMPLETION REPORT

HAPUKU-1

### APPENDIX 9

### CORE DESCRIPTIONS

# CORE DESCRIPTION

CORE DESCRIPTION         Low No.	2 (# :	•	E	SSO STANDARD OIL (	AUSTRALIA) LTD.
WELL       HAPUKU-1.         ferval Cored       9245-9288 fr, Cu       43       fr, Recovered       43       fr, (100 %) Fm, Gurnard-Latrobe         Type       C22       Bit Size       8-15/52" im, Desc. by MEXION/EROOKS       Date       30/7/75         Deprise (min/A)       Grephic (min/A)       Grephic (f*=5)       Showe       Interval (ft)       Descriptive Unbelogy         B       16				CORE DESC	RIPTION
<ul> <li>Ferval Cored 9245-9288 ft, Cut 43 ft, Recovered 43 ft, (100 %) Fm. Gurnard-Latrobe</li> <li>type C22 , Bit Size 8-15/32" in, Dec. by MXRIN/JBROOKS Date 30/7/75</li> <li>Depth 4. Coring Kate (17-5)</li> <li>Show interval (ft) Descriptive Lithology (min./h)</li> <li>8 16</li></ul>	· · · · · · · · · · · · · · · · · · ·			Core No1	Page 1 of 2
type       C22       bit Size       8-15/32"       in, Dect. by MDRION/ERCONS       Dete       30/7/75         Depth & Coring Rate (ins./ft)       Graphic (ins./ft)       Descriptive Lithelegy         ins./ft)       Bescriptive Lithelegy         ins./ft)       Bescriptive Lithelegy         ins./ft)       Descriptive Lithelegy         ins./ft)       Bescriptive Lithelegy         ins./ft)       SAUDSTONE, dark olive grey, friable to firm, commonly hard         fine to granular, predominantly fine grained, moderate to well       sorted, subangular to rounded, floating with rounded granules.         Abundant glauconitic and pyritic cement - pyrite in well       formed cubes. Slightly calcareous at top micaceous. Burrowed         throughout.       Massive bedding.         White fluorescence throughout - strong in cleaner sands         infilling burrows. Has blotchy appearance overall. Good         fast white cut. Good odour throughout.         r			ana ang ang ang ang ang ang ang ang ang	and the second second second second second	WELL: HAPUKU-1.
type       C22       bit Size       8-15/32"       in, Dect. by MDRION/ERCONS       Dete       30/7/75         Depth & Coring Rate (ins./ft)       Graphic (ins./ft)       Descriptive Lithelegy         ins./ft)       Bescriptive Lithelegy         ins./ft)       Bescriptive Lithelegy         ins./ft)       Descriptive Lithelegy         ins./ft)       Bescriptive Lithelegy         ins./ft)       SAUDSTONE, dark olive grey, friable to firm, commonly hard         fine to granular, predominantly fine grained, moderate to well       sorted, subangular to rounded, floating with rounded granules.         Abundant glauconitic and pyritic cement - pyrite in well       formed cubes. Slightly calcareous at top micaceous. Burrowed         throughout.       Massive bedding.         White fluorescence throughout - strong in cleaner sands         infilling burrows. Has blotchy appearance overall. Good         fast white cut. Good odour throughout.         r	iterval Cored	9245-92		Cut 43 ft., Recove	ered 43 ft., ( 100 %) Fm. Gurnard-Latrobe
Deprint & Coring Rate (N=./A).       Graphic (Y=-5)       Shows       Interval (ft.)       Descriptive Lithology         8       16					
Coring Rate (min, f,h)       Descriptive Lithology         8       16         9       6         9       7         1       5         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1	<del>.</del>		I		· · · · · · · · · · · · · · · · · · ·
8       16         SANDSTONE, dark olive grey, friable to firm, commonly hard fine to granular, predominantly fine grained, moderate to well. sorted, subangular to rounded, floating with rounded granules. Abundant glauconitic and pyritic cement - pyrite in woll formed cubes. Slightly calcateous at top micacous. Burrowed throughout. Massive bedding.         White fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Good fast white cut. Good odour throughout.         White fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Good fast white cut. Good odour throughout.         White fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Good fast white cut. Good odour throughout.         White fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Good fast white cut. Good odour throughout.         White fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Good fast white cut. Good odour throughout.         White fluorescence throughout - strong in cleaner sands         White fluorescence throughout - strong white fluorescence and         White fluorescence and	Coring Rate	Graphic (1" = 5')	Shows	Interval (ft.)	Descriptive Lithology
fine to granular, predominantly fine grained, moderate to well         sorted, subangular to rounded, floating with rounded granules.         Abundant glauconitic and pyritic cement - pyrite in well         formed cubes.       Slightly calcareous at top micaceous.         White fluorescence throughout - strong in cleaner sands         infilling burrows.       Has blotchy appearance overall.         Kood       fast white cut.         Good       Good         V       More pebbly towards base.         V       More pebbly towards base.         VHEDIS:       Friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Y       Glauconite         Fair visible porosity       Formed cubers.		* • •			and the second
fine to granular, predominantly fine grained, moderate to well         sorted, subangular to rounded, floating with rounded granules.         Abundant glauconitic and pyritic cement - pyrite in well         formed cubes.       Slightly calcareous at top micaceous.         White fluorescence throughout - strong in cleaner sands         infilling burrows.       Has blotchy appearance overall.         Kood       fast white cut.         Good       Good         V       More pebbly towards base.         V       More pebbly towards base.         VHEDIS:       Friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Y       Glauconite         Fair visible porosity       Formed cubers.		• •		SANDSTONE, dark oliv	e grev, friable to firm commonly hard
sorted, subangular to rounded, floating with rounded granules.         Abundant glauconitic and pyritic cement - pyrite in well         formed cubes.       Slightly calcaceous at top nicaceous.         b       b         b       b         b       b         b       b         b       b         c       c         c       c         c       c         c       c         c       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c         d       c </td <td></td> <td>. • . • .  </td> <td></td> <td></td> <td></td>		. • . • .			
Abundant glauconitic and pyritic cement - pyrite in well         formed cubes.       Slightly calcareous at top micaceous, Burrowed, throughout.         Maite fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Good fast white cut. Good edour throughout.         Nore       Point         Nore       Pebbly towards base.         Prite       Good odour, strong white fluorescence and		• • •	ľ		
			Ī		
W       throughout. Massive bedding.         White fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Good fast white cut. Good odour throughout.         W       fast white cut. Good odour, strong white fluorescence and	╺┼╌┠╌┠	]		, <b>i</b>	
White fluorescence throughout - strong in cleaner sands infilling burrows. Has blotchy appearance overall. Cood fast white cut. Good odour throughout.         1       1         1       1         2       1         2       1         3       1         3       1         4       1         5       1         4       1         5       1         5       1         6       1         5       1         6       1         6       1         6       1         7       1         6       1         7       1         7       1         7       1         7       1         7       1         7       1         8       1         92834' - 9288' SANDSTONE to conglomerate, buff, massive,         92834' - 9288' SANDSTONE to conglomerate, buff, ma	╺╂╾┼╌┨	`v `			
infilling burrows. Has blotchy appearance overall. Good         fast white cut. Good odour throughout.         infilling burrows.         infiling burrows. <t< td=""><td></td><td></td><td>14 F 97</td><td></td><td></td></t<>			14 F 97		
infilling burrows. Has blotchy appearance overall. Good         fast white cut. Good odour throughout.         infilling burrows.         <	┍╴┼┼┼─┤	••••			
fast white cut. Good odour throughout.         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td>╶┼╼╌┼╉┼╼╌┼╌┨</td><td></td><td>[</td><td>White fluorescence t</td><td>hroughout - strong in cleaner sands</td></t<>	╶┼╼╌┼╉┼╼╌┼╌┨		[	White fluorescence t	hroughout - strong in cleaner sands
Image: Solution of the second seco		· v. '.	· · ·	infilling burrows.	Has blotchy appearance overall. Good
Image: Solution of the second seco		• •		fast white cut. Good	d odour throughout.
Image: Solution of the second seco	╶┼╌╌╢	·			
Image: Solution of the second seco		••••			put to start any age
Image: Solution of the second seco		• • •			
Image: Solution of the second seco	+	v .	-		· · ·
WBOLS:       More pebbly towards base.         Mica       9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Mica       friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Glauconite       Fair visible porosity         Pyrite       Good odour, strong white fluorescence and		••••			<b>₽</b> •
WBOLS:       More pebbly towards base.         Mica       9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Mica       friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Glauconite       Fair visible porosity         Pyrite       Good odour, strong white fluorescence and		• • •			
WBOLS:       More pebbly towards base.         Mica       9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Mica       friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Glauconite       Fair visible porosity         Pyrite       Good odour, strong white fluorescence and	+	• • • •		·	······································
WIBOLS:       More pebbly towards base.         Mica       9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Mica       friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Glauconite       Fair visible porosity         Pyrite       Good odour, strong white fluorescence and	┽╋╌┼╌┦	• v • •			
WBOLS:       More pebbly towards base.         Mica       9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Mica       friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Glauconite       Fair visible porosity         Pyrite       Good odour, strong white fluorescence and					
WIBOLS:       More pebbly towards base.         Mica       9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Mica       friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Glauconite       Fair visible porosity         Pyrite       Good odour, strong white fluorescence and		· · ·			· · · · · · · · · · · · · · · · · · ·
When the period       When the period		• • • •			
When the period       When the period		- 25			
WIBOLS:       More pebbly towards base.         Mica       9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Mica       friable to unconsolidated, very pebbly         Mica       poorly sorted, glauconitic, pyritic, clay matrix.         Glauconite       Fair visible porosity         Pyrite       Good odour, strong white fluorescence and		• •			
When the period of the peri	┼╂╌╎╌╿	• • •			and the second
When the period of the peri		• • •	ŀ		
Image: Sandard Stress         9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Image: Sandard Stress         Image: Sandard Stres         Image: Sandard Stress		· [¬] · · [/] .			·
Image: Sandard Stress         9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         9283 ¹ / ₂ ' - 9288' SANDSTONE to conglomerate, buff, massive,         Image: Sandard Stress         Image: Sandard Stres         Image: Sandard Stress		·			
YMBOLS:       friable to unconsolidated, very pebbly         Image: Non-structure       Mica         Image: Non-structure       Mica         Image: Non-structure       Fair visible porosity         Image: Non-structure       Glauconite         Image: Non-structure       Fair visible porosity         Image: Non-structure       Good odour, strong white fluorescence and	┼╌┠╌┼╌┨	· ·		More pebbly towards l	base.
YMBOLS:       friable to unconsolidated, very pebbly         7       Mica       poorly sorted, glauconitic, pyritic, clay matrix.         ✓       Glauconite       Fair visible porosity         ♦       Pyrite       Good odour, strong white fluorescence and		?		· •. ·	and the second
¬       Mica       poorly sorted, glauconitic, pyritic, clay matrix.         ✓       Glauconite       Fair visible porosity         ♦       Pyrite       Good odour, strong white fluorescence and		• • . • . • <i>f</i>			
✓     Glauconite     Fair visible porosity       ♦     Pyrite     Good odour, strong white fluorescence and	YMBOLS:	· · · · · · · · · · · · · · · · · · ·		friabi	le to unconsolidated, very pebbly
Pyrite     Good odour, strong white fluorescence and	<u>Т</u> м	lica		poorly	v sorted, glauconitic, pyritic, clay matrix.
Pyrite Good odour, strong white fluorescence and	<u>л</u> б	lauconite		Fair	visible porosity
	♦ P	yrite			• •
	<b>v</b> -	Surrows			
		-			

1

# ESSO STANDARD OIL (AUSTRALIA) LTD. **CORE DESCRIPTION**

		•		0245 0200		Cor	DESCRIP		WELL:	- HAPUKU-		
· ·	Тур	)e				Cut 43 ze 8-15/32 '						
	De Corir (mi)		ate	Graphic (1" = 5')	Shows	Interval (ft.)			Descriptive	E Lithology		ابور
) 5-T	.8		16		<u> </u>		·····			· · · · · · · · · · · · · · · · · · ·	•	- Y
						SANDSTONE, as	above, pebble	s and coa	rser grain	is well ro	unded.	
		CA)		••75		burrows infill	ed with glauc	onite.		·····		
		5					· · · · · · · · · · · · · · · · · · ·					
<b>)</b> ¦∤			-	-								<del></del>
								·	•			
<b>F</b>		<u>.                                    </u>						<del></del>	at 16 45 (24 × 62	· · · · · · · · · · · · · · · · · · ·	of a state of the	<b>KANA</b>
Ċ	┣┤	_				Palynology - 6	samples take	n . , ,	•••	• • • • •	and the second se	a trickly
Ī					ļ					•		
-				-		CORE ANALYSIS	•	·				
╉	-+		+				9246.5'	9265	9279	9288	· · · · · · · · · · · · · · · · · · ·	
				n se se processo a		Ø	14.8	17.1	22.1	<u>19.6</u> 39		
_						Sw	64		41			
+	_	_		-		Perm. (md)	500	7	22	436		: 
	~					NC <u>3</u> (ppm)	168	160	140	176		
_		_				GAS ANALYSIS (	ົກກໜີ				11.1	
+	-								- ·	~		
							C ₁	C2	C3	C4		
-				_		9246.5'	200	100	100			
Ć						9265'	700	100	200			
						9279'	500	3500	1600	5600	1100	i
_			-			9288'	1100	400	1000	500	800	
╉											·····	
1				· •				· · · · · ·		• •	are a min a five	dana
Ţ						$(NO_{\overline{3}})$ is dri	lling was 110	ppn thus	Core 1 in	waded.		
+										· · · · · · · · · · · · · · · · · · ·		· · ·
+										-	· · · · · · · · · · · · · · · · · · ·	
Ţ												
+				ngt a					41-01-00-00-00-00-00-00-00-00-00-00-00-00			ې، د نابلو وهنده
1								۰ ^۰	·	• الشربية ( 14 ^{- 1} 2)		9-9-3 
						· · · · · · · · · · · · · · · · · · ·					۰۰ ۲ . <del>۰۵۳</del> է۹ <u>۴</u>	
Y№	/BÓ	LŚ		·····								
•	٦			Mi <b>c</b> a								<del></del>
	<u> </u>			Glauconit	te							
	<b>♦</b>			Pyrite								
	v			Burrows					<b></b>			
				•								

# CORE DESCRIPTION

		E	SSO STANDARD OIL (A	•	
			Core No2	WELL: HAPUKU-1	
				ed <u>37</u> ft., ( <u>100</u> %) Fm. Latrobe	
š		, BIT 312	e	. by BROOKS/MORTON Date 30/7/75	
Depth & Coring Rate (min./ft.)	Graphic (1" = 5')	Shows	Interval (ft.)	Descriptive Lithology	
0 16 32			SANDSTONE, fine to med	dium grained, floating granules, calcareou	<b>-</b>
290'	т. Г.		and dolomitic in part	(see adjacent log) non cemented sandstone sorted, subangular to rounded, very	
			glauconitic and/or chi	loritic, but less than previous core,	 
	2			vritic, sand firm to friable, Good	· · · · · · · · · · · · · · · · · · ·
95	• • 7 •	•		Cemented part: as above with calcium ic cement, very hard and tight.	
	.v ·		2 X 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t thus cemented before hydrocarbons trapped	d.
	· · <i>"</i> .		Sandstone as whole is	massive, burrowed. Large dolomite nodules	
300	28		show on surface of con	re as resistant knobs.	
	•••		Non cemented sand appe	ears to have good visible porosity and	
	. v		permeability. Fine la		and the stand of the
05'	・⁄ う ・ ・			ang - tra,	**************************************
	· v· · ·				•••• ••• •••
	• • • •	-16- -	······		
10'	· . · · ·		Dolomite nodules small	er than in rest of core.	
	· · · ·				
			·		
15					
	• • • •				
			11	۵۵ دی. مرکز میروند میروند از میروند میروند از میروند از میروند میروند از میروند از میروند میروند از میروند از میروند م میروند میروند می	
<b>→</b>	<u> </u>		Band more friable, lit	tle dolomitic comont	
	· v · · · ·		build more inidole, iii		
					<b></b>
	. v.			· · · · · · · · · · · · · · · · · · ·	-
25 <mark>'                                      </mark>	· · ·	4 <b>4</b> .		and a second	
			REMARKS: Variable fl	uorescence and cut thoughout in friable	
SYMBOLS:				e. Grades from extremely strong white-	
7	Mica			eak white. Cut fast to moderately white-	
	Glauconite	e	pale yellow to white of were taken for Palyno.	cut. Strong odour. About a dozen samples	میں اور
• 7r	Pyrite Burrows		were canen iwr Palyno.	1087.	-
<u> </u>			······································	·····	
	•		· · · · · · · · · · · · · · · · · · ·		
	<b>NY JET 1</b> Manual and the second		\$		- 4119 - 1 5

# **CORE DESCRIPTION**

9289'         9293'         9311'         9319'           Ø         7         13         29         20           Perm. (md)         11         165         184         15           Sw         60         64         24         47           NO3_ (ppm)         175         212         231         200   These figures may not be representative because sample in homogeneous mud (NO3) was 243 ppm thus Core 2 invaded.	San and a															
Core No.         2           Interval Cored         9288-9325 ft, Cut         37         ft, Recovered         37         ft, (	A non-transferred and and	時代の人気である						E					LTD.			
WELL         IMPUU-1           interval         9288-9325         R., Cut         37         ft., Recovered         37         ft., (100,s), pm. Lattrobe           int         Type         C22         Bit Size         8-15/32"         in, Desc. by. BROKS/MCRTON         Descriptive Lithology           Coring Size         Oraphi & (17-9)         Showe         Interval (ft.)         Descriptive Lithology           0         C1         C2         C3         C4         C5*         II_2S           -37         G1         C2         C3         C4         C5*         II_2S           -3287         300         700         100         200         Cst         -           -3287         300         700         11         165         184         15           -384         60         64         24         47         -         -         -         -         - <t< th=""><th>¥.</th><th>¢.</th><th></th><th>•</th><th></th><th></th><th></th><th></th><th>Core</th><th>No. 2</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	¥.	¢.		•					Core	No. 2						
Threvel Cored         9288-9325 fr, Cut         37         ft, Racovered         37         ft, (100_s) Em_Latrobe           Str Typa         C22         Bit Size         8-15/32"         in, Decc. by_ENOCKS/MORTON         Date 30/7/75           Corespita         Craphic         Craphic         Shows         Interval (ft.)         Descriptive linkology           Corespita         Craphic         Craphic         Shows         Interval (ft.)         Descriptive linkology           Corespita         Craphic         C1         C2         C4         C5         H/25           Size         Size         Size         Size         Size         Size         Size         Size         Size           CAS         AMINSIS         C1         C2         C3         C4         C5         H/25           Size			- 	, 1	•	•	• • • • • • • • • •	a t			•		Ŵ	EI1.	HAPUKU-1	
Bit Type       C22       Bit Size       8-15/32"       in., Desc. byBROXS/MDRION       Date 30/7/75         Depth & Commercial Rate       Graphic (r'= 5)       Shows       Interval (h.)       Descriptive Lithology         O       C1       C2       C3       C4       C5       Hg2         O       C1       C2       C3       C4       C5       Hg2         0       C1       C2       C3       C4       C5       Hg2         0       C1       C2       C3       C4       C5       Hg2         0       C280       300       100       200       Cst       -         0       7       15       29       20       -       -       -         0       7       15       29       20       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - </td <td></td> <td>an nan et privategy of second</td>																an nan et privategy of second
Depih A Control Rive (min / Rive (min / Rive)         Showe         Interval (fi.)         Descriptive Lithology           0         C1         C2         C3         C4         C5+         H2S           93241         300         1500         600         2600         800         -           93241         300         1500         600         2600         800         -           932891         92891         92931         93111         93191         93191           9         7         15         29         20         -           9         7         15         29         20         -           9         7         15         29         20         -           9         7         15         29         20         -           9         7         15         29         20         -           903         (pm)         175         212         231         200           1         These figures may not be representative because sample in homogeneous mad (2003) was 243 ppm thus Core 2 invaded.         -         -           1         Mica         -         -         -         -           1         - <td></td> <td>•</td>																•
Conting Rate (min./f.)         Descriptive Lithology           0	日本で	BIT	יי 	ре. 		·····	<u> </u>	., Bit Siz	e 0-13/32	in., Des	<b>c. by</b> <u>D</u>	001071	VORTON	Date	30/1/13	
CAS_AVAIXSIS:       C1       C2       C3       C4       C5       H2S         9324'       300       1500       600       2600       800       -       -         9289'       300       700       100       200       Cst       -       -         0       7       15       29       20       -       -       -       -         0       7       15       29       20       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <		- <u>-</u> -	Cor	ing	Ra	te	Graphic (1" = 5')	Shows	Interval (ft.)				Desci	riptive Li	ithology	
9324'         300         1500         600         2600         800         -           9289'         300         700         100         200         Cst         -           00RE ANALYSIS:         9283'         9293'         9311'         9319''         Ø           00RE ANALYSIS:         9283'         9203'         9311'         9319''         Ø           00RE ANALYSIS:         9283'         9203'         9311'         9319''         Ø           00RE ANALYSIS:         929''         20         Perm. (md)         11         165         184         15           Sw         60         64         24         47         NO3_(ppm)         175         212         231         200           These figures may not be representative because sample in homogeneous mad '(NO3) was 243 ppm thus Core 2 invaded.         -         -         -           0         -         -         -         -         -         -         -           0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		0	1	T	<b>T</b>	Т	•		GAS ANALYSIS:							
ODE         AUX_ISIS:           9288'         9293'         9311'         9319'           Ø         7         15         20         20           Perm. (md)         11         165         184         15           Sw         60         64         24         47           NO3_ (ppm)         175         212         231         200           These figures may not be representative because sample in homogeneous mad (NO3) was 243 ppm thus Core 2 invaded.         1         1           No3_ (pbm)         175         212         231         200           These figures may not be representative because sample in homogeneous mad (NO3) was 243 ppm thus Core 2 invaded.         1         1           NO3_ (pbm)         175         212         2         1           Mica         1         1         1         1         1           Mica         1         1         1         1         1         1           SYMBOLS:         1         1         1         1         1         1         1           Y         1         1         1         1         1         1         1         1           SYMBOLS:         1         1										C_1	C	C	C			
ODE         AUX_ISIS:           9288'         9293'         9311'         9319'           Ø         7         15         20         20           Perm. (md)         11         165         184         15           Sw         60         64         24         47           NO3_ (ppm)         175         212         231         200           These figures may not be representative because sample in homogeneous mad (NO3) was 243 ppm thus Core 2 invaded.         1         1           No3_ (pbm)         175         212         231         200           These figures may not be representative because sample in homogeneous mad (NO3) was 243 ppm thus Core 2 invaded.         1         1           NO3_ (pbm)         175         212         2         1           Mica         1         1         1         1         1           Mica         1         1         1         1         1         1           SYMBOLS:         1         1         1         1         1         1         1           Y         1         1         1         1         1         1         1         1           SYMBOLS:         1         1	言語を	ł.		-	-					····						
ODE         AUX_ISIS:           9288'         9293'         9311'         9319'           Ø         7         15         20         20           Perm. (md)         11         165         184         15           Sw         60         64         24         47           NO3_ (ppm)         175         212         231         200           These figures may not be representative because sample in homogeneous mad (NO3) was 243 ppm thus Core 2 invaded.         1         1           No3_ (pbm)         175         212         231         200           These figures may not be representative because sample in homogeneous mad (NO3) was 243 ppm thus Core 2 invaded.         1         1           NO3_ (pbm)         175         212         2         1           Mica         1         1         1         1         1           Mica         1         1         1         1         1         1           SYMBOLS:         1         1         1         1         1         1         1           Y         1         1         1         1         1         1         1         1           SYMBOLS:         1         1		-														
9289'         9293'         9311'         9319'           Ø         7         15         29         20           Perm. (md)         11         165         184         15           Sw         60         64         24         47           NO3_ (ppm)         175         212         231         200           These figures may not be representative because sample in homogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1           Nogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1         1           Simeous         1         1         1         1         1           Nogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1         1         1           Simeous         1         1         1         1         1         1           Nogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1         1         1         1           Nogeneous mud (N03)         1         1         1         1         1         1         1           Nogeneous mud (N03)         1         1         1         1         1         1         1         1         1         1         1         1<	8								9289'		700	100		Cst	••• 1	
9289'         9293'         9311'         9319'           Ø         7         15         29         20           Perm. (md)         11         165         184         15           Sw         60         64         24         47           NO3_ (ppm)         175         212         231         200           These figures may not be representative because sample in homogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1           Nogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1         1           Simeous         1         1         1         1         1           Nogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1         1         1           Simeous         1         1         1         1         1         1           Nogeneous mud (N03) was 243 ppm thus Core 2 invaded.         1         1         1         1         1           Nogeneous mud (N03)         1         1         1         1         1         1         1           Nogeneous mud (N03)         1         1         1         1         1         1         1         1         1         1         1         1<					·		al -	, r	CORE ANALYSIS	•				hand an is		
Ø       7       13       29       20         Perm. (md)       11       165       184       15         Sw       60       64       24       47         NO3 (ppm)       175       212       231       200         These figures may not be representative because sample in homogeneous med (NO3) was       243 ppm thus Core 2 invaded.       1         No       Symbol       1       1       1       1         SymbolS:       1       Mica       -       -         YmbolS:       1       Mica       -       -         Prrite       2       Burrows       -       -	2	Ase.							COLL ANILISIS		9				state of the state	
Perm. (md)         11         165         184         15           Sw         60         64         24         47           NO3 (ppm)         175         212         231         200   These figures may not be representative because sample in homogeneous mod (N03) was 243 ppm thus Core 2 invaded.              Simple	125			ļ		-	· ·		Ø			•.				
Sw         60         64         24         47           NO3 (ppm)         175         212         231         200           These figures may not be representative because sample in homogeneous mud (NO3) was 243 ppm thus Core 2 invaded.         Invaded.         Invaded.           Image: Street in the second street in th	States -								Perm. (md)	11	•	165	184		15	
These figures may not be representative because sample in homogeneous mad (N05) was 243 ppm thus Core 2 invaded.         Image:	2. S. S. C.			<b> </b>					Sw	60		64	24		47	
These figures may not be representative because sample in         homogeneous mud :(NO3) was 243 ppm thus Core 2 invaded.					-				NO ₃ (ppm)	175		212	231		200 .	: 24 B-1,
These figures may not be representative because sample in         homogeneous mud :(NO3) was 243 ppm thus Core 2 invaded.													* 1 1 1 m m			
SYMBOLS:	a.ee.a	Ϋ́.			-											not the second s
SYMBOLS:	186. S								homogeneous m	and (NO3	;) was	243 pj	om thus	Core	2 invaded.	
SYMBOLS:	1991 - AN						- 1				q		4		*****	
SYMBOLS:	愛し	· .	┝─													
SYMBOLS:	and the second															
SYMBOLS:	<b>新闻的</b>			ļ	-	$\left  - \right $										
SYMBOLS:						-	- - -									
SYMBOLS:															~	
SYMBOLS:	A STATES					$\left  - \right $										
SYMBOLS:							• • • • •							n		er son strike differen.
SYMBOLS:	190 190	285°	ļ	. 	$\downarrow$						- 	••• . •••••	۰ پرد 			
SYMBOLS:   Nica   SYMBOLS:   Glauconite   Pyrite   Purite   Purite	調報											• •			<ul> <li>Contraction and approximately</li> </ul>	
SYMBOLS:   Image: Mica															-	
☐       Mica         ✓       Glauconite         ♦       Pyrite         𝔥       Burrows	and the second second															
☐       Mica         ✓       Glauconite         ♦       Pyrite         𝔥       Burrows	5 												·····		t 17 - 54	2
☐       Mica         ✓       Glauconite         ♦       Pyrite         𝔥       Burrows		•					X and			an tanàn amin'ny taona amin	 R.	**************************************	5		and the second	
☐       Mica         ✓       Glauconite         ♦       Pyrite         𝔥       Burrows	14.14.14.			· ·											ж. т. т. <b>у</b> ла	
☐       Mica         ✓       Glauconite         ♦       Pyrite         𝔥       Burrows	STATES A	SY	MB	OLS	└── 5:					14.9 <mark>6.994</mark>			· · · · · · · · · · · · · · · · · · ·			
Pyrite     Prite     Burrows	No. of Contraction	· · ·	٦			M	ica		<b>1</b> • <b>1</b> • <b>1</b> • <b>1</b>	·····						
v- Burrows	のない		5	•		G	lauconite									
			•			Р	vrite				=					
		r 	v	•		Bı	urrows									
· .	調整が														· · · · · · · · · · · · · · · · · · ·	معرف المحمد ا
	語に						•				• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·				

蕿

# CORE DESCRIPTION

		· .		
				ESCO STANDARD OU (AUSTRALIA) ITS
			I	ESSO STANDARD OIL (AUSTRALIA) LTD.
				CORE DESCRIPTION
1999 N				Core No. 3 Page 1 of 2
				WELL: HAPUKU #1
In	terval Cored	9325 - 9	9369 <b>ft.,</b>	Cut
Bi	t Type	2	., Bit Siz	ze8-15/72in., Desc. by MORTON/KEMPDate1/8/75
	Depth &		T	T
	Coring Rate (min./ft.)	Graphic (1" = 5')	Shows	Interval (ft.) Descriptive Lithology
9325	16 32			SANDSTONE, light olive grey - dark green grey, fine to medium
<b>F</b>	CA	· · Q ·	-	grained with up to 20% granules, subangular to rounded, poorly
		· · · •		sorted, quartz, glauconite, trace pyrite, good visible Ø
14		· · · · · ·		and permeability, staining throughout. Dolomite nodule
30		<u>, , , , , , , , , , , , , , , , , , , </u>		from 9325-26'.
$\left  \right $		••••	•	
7		••••		
35		·		DOLOMITIC QUARTZ SANDSTONE, medium to light grey, fine to
	CA) >	· · · · · · · · · · · · · · · · · · ·		medium grained, quartz, pyrite; glauconite (heavy cementation in
	┿┿┹╌╎╌╏	т.		burrows), dolomite cement, very hard, very tight.
40		•••••	• <u>•</u> • •	
		••••		SANDSTONE, light olive grey, medium to coarse grained, moderate to well sorted, dolomite cementation in part
		·; °·		(15-20%), quartz, glauconite, pyrite, subangular to subrounded,
	┼┲┿╍┽╍┽╍┫╷	· · · · ·		occasional well-rounded granules, moderate to good visible ø
45'		$\cdot$ $\cdot$ $\cdot$		and permeability, fluoresence found only in and around dolomite
		· · ·		nodules - evidence for flushing weak petroliferous odour.
		· · . ٦ .		
50		Q vr		SANDSTONE alive any fine to medium analysing
藩上		• • • •		SANDSTONE, olive grey, fine to medium grained, many floating granules, subangular to rounded (granules well rounded) poorly
		• • •		sorted, quartz, very glauconitic, very pyritic, partly calcareous
너				poor visible Ø and permeability.
55' <b>-</b>		0		
		v r		na na stani su stani s
		• • • •		
60' -		<u>, o</u>		REMARKS: O.W.C. at 9352'. Whole section is highly bioturbated
	· · · · ·	· · · ·		Below 9352' -more glauconitic, more clay prone matrix.
		v. 🕻		6 samples taken for palynological study.
65'-		J		
	SYMBOLS:	n Francisco - Na Brittin and American		
<b>-</b>	7 Mic			2
		uconite	· · ·	
		rows		
	- Bul	TOMP		
		•		· ·
		- ···		

## ESSO STANDARD OIL (AUSTRALIA) LTD. **CORE DESCRIPTION**

																, j
						I			d oil (AI DESCRI			TD.			•	
1		•											Þ	але ?	of 2	
<u>م</u> ب	. <b>4</b> .					*	ing and a				and a second s	-* * **		and the second		
					9325-9369											1 1
HT					22	, BIT 512	ze			by <u>MOR</u>		241P	Da	ite∔.⁄.	.0/./.2	
C	lori	epth ing	Rate	•	Graphic (1" = 5')	Shows	interval (	ft.)				Des	criptive	Lithola	gy	1 <b>8</b> 14 53 401 1 1 1 1
		in./	ft.) 32	_	(1 0)										<u></u>	
⁵ ק					· · · · · ·				above, fi					-		
-					· 2· • •		sorted,	quart	angular to z, very gl	auconi	ed (gr tic, \	ranulo /ery j	es wel Syriti	l rou c, pa	nded) po rtly cal	<del>orly</del> careous
		CA			. <i></i> .				Ø and perm						-	
)¦	<del>,</del>		·	_	• · · · •							<u>.</u>				and the second
	·.					1		······		·					4 4 4	
r		$\left  - \right $		_	we e			CORE	#3 ANAL	YSIS R	ESULTS		(前)时 代书(1950-195-1	terren and target at	1730 tale 199559 Krainskeralijk	and the second sec
								ø	Perm	C1	C2	C3 ⁻	C4	C5		
-			-	_			9325	13	2						·····	
							9328	21	492					· · · · · · · · · · · · · · · · · · ·		
+							9333	19	137	300	600	2800	4750	900		\$. V.
							9336	3	<1	600	500	800	400	500		· · · · · · · · · · · · · · · · · · ·
_							9341		256	·	•••		•		- · • • • • • • • • • •	
				_			9346	14	756	200	300	.450	100	100	1	
<u>}</u>			·		ŧ	r	<u>9349</u> 9357.5	<u>20</u> 19	<u>    130                                </u>	400	800	300		400	·····	
							9361	18	309							e fast de
-				_			9362	21	125							
							9365	20	478							
							9368	16	586						<u>`</u>	ېږي. ۱ لورۍ
┥	<u> </u>	┼╌┼											· · · · · · · · · · · · · · · · · · ·			
1												· · · · ·				n 199
+											<b></b>	ه زمین مشالی	<u> </u>		Later at	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-											· · · · · · · · · · · · · · · · · ·	rllator og kog	• · · · · · · · ·	કેન્દ્ર કે બન્દીન આવેલાં છે.	na), maraten aran dan dan dan dan dan dan dan dan dan d	
+																, 
1			_									•••••				
╉			_													
Ŧ						м ж.			an a	••••		S. 4	· · · · ·	· •	e contraction de la c	P-1847-55
+																
YI	MB	OLS	:								· · · ·					·
	٦			ica												
	<u> </u>	•			conité							•				
	•				te											· · ·
	v		DU	uΥ	OWS			<del></del>								
					•											
														•••••		

				•				
V. Tranges	-	CORE A		10			רם	
	WELL LOCGING SERVICE	COMPANY ESSO (A WELL HAPUKU	AUST) L NO.I	TD.			CO ST/	UNTY GIPPSLAND BAS ATE VICTORIA S.C-22 DIAMETER 4"
	DEPTH	LITHOLOGY	PERA md.			RATIONS RE SPACE WATER		REMARKS
	9246.5	FINE SAND	500	) 15	-	64	5	
	9265	FINE - MED SAND		7 17	_	55	8	
	9219	FINE - MED SAND	22	22	-	41	13	y
مينية المنتخب من المنتخب مريح المستنبة المنتخب	9288	PBLY. SAND	436	5 20	-	39	12	
6								
	9289	MED SAND		7	_	60	3	
	9293	MED SAND	165	5 13	-	64	5	
	9311	MED SAND		29	-	24	21	
	9319	MED SAND	15	5 20		47	11	
	9325	FINE - MED SAND	2	13		34	8	
	9328	FINE - MED SAND	492	21.	-	37	13	
	9333	FINE - MED SAND	137	19	-	43	11	
	9336	FINE-MED SAND, DOL.	<	3	_	49	1	
	5341	FINE - MED SAND	256	17	_	23	13	N. 1
	9346	MED-CRSE SAND	756	14	_	25	11	
	9349	MED-CRSE SAND	130	20	-	25	15	
<u> </u>	9362	MED-CRSE SAND	125	21	-	27	13	
	9357∙5	FINE - MED SAND	63	19	_	54	9	
	9361	FINE MED SAND	309	1	_	69	5.6	
	365	FINE - MED SAND	478	20	_	59	8	
Ś	368	FINE-MED SAND	586	16		73	4	the second s
<b>.</b>								eyê
								· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	1. A.					
-								
B.	R-1886	FRINTED IN USA						
			÷					• •

This is an enclosure indicator page. The enclosure PE902284 is enclosed within the container PE902283 at this location in this document.

The enclosure PE902284 has the following characteristics: ITEM_BARCODE = PE902284 CONTAINER_BARCODE = PE902283 NAME = Structure Contour Map Top of Latrobe BASIN = GIPPSLAND PERMIT = TYPE = SEISMIC SUBTYPE = HRZN_CONTR_MAP DESCRIPTION = Structure Contour Map Top of Latrobe, Post Drill, (enclosure from WCR) for Hapuku-1 REMARKS =  $DATE_CREATED = 31/10/1975$ DATE_RECEIVED =  $W_NO = W685$ WELL_NAME = Hapuku-1 CONTRACTOR = ESSOCLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902285 is enclosed within the container PE902283 at this location in this document.

The enclosure PE902285 has the following characteristics: ITEM_BARCODE = PE902285 CONTAINER_BARCODE = PE902283 NAME = Hapuku Prospect Structural Cross Section A-A' BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = CROSS_SECTION DESCRIPTION = Hapuku Prospect Structural Cross Section A-A' (enclosure from WCR) for Hapuku-1 REMARKS = DATE_CREATED = DATE_RECEIVED =  $W_NO = W685$ WELL_NAME = Hapuku-1 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$ 

This is an enclosure indicator page. The enclosure PE601427 is enclosed within the container PE902283 at this location in this document.

The enclosure PE601427 has the following characteristics: ITEM_BARCODE = PE601427 CONTAINER_BARCODE = PE902283 NAME = Well Completion Log BASIN = GIPPSLAND PERMIT =TYPE = WELLSUBTYPE = COMPLETION_LOG DESCRIPTION = Well Completion Log (enclosure from WCR) for Hapuku-1 REMARKS =  $DATE_CREATED = 07/07/1975$ DATE_RECEIVED =  $W_NO = W685$ WELL_NAME = Hapuku-1 CONTRACTOR = ESSOCLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE902286 is enclosed within the container PE902283 at this location in this document.

The enclosure PE902286 has the following characteristics: ITEM_BARCODE = PE902286 CONTAINER_BARCODE = PE902283 NAME = Time Depth Curve BASIN = GIPPSLAND PERMIT = TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Time Depth Curve (enclosure from WCR) for Hapuku-1 REMARKS =  $DATE_CREATED = 05/08/1975$  $DATE_RECEIVED = 12/04/1983$  $W_NO = W685$ WELL_NAME = Hapuku-1 CONTRACTOR = ESSOCLIENT_OP_CO = ESSO