

ATTACHMENT TO WCR WHIPTAIL-1A (W915)

OIL and GAS DIVISION

FINAL WELL REPORT

ESSO AUSTRALIA LIMITE 3 DEC 1985

WHIPTAIL #1A

INDEX

- 1. INTRODUCTION
- 2. RIG SPECIFICATIONS
- 3. WELL INFORMATION, PROGRESS AND HISTORY
- 4. LITHOLOGY AND CORE-O-GRAPHS
- 5. EXTENDED SERVICE PACKAGE :
 - A. INTRODUCTION
 - B. EQUIPMENT
 - C. MONITORING EQUIPMENT
- 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS
- 7. B.H.T. ESTIMATION
- 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT
- 9. GAS ANALYSES :
 - A. COMPOSITION GRAPHICS
 - B. SIDEWALL CORES
- 10. SAMPLES COLLECTED
- 11. CORELAB DATA SHEETS :
 - A. BIT RECORDS
 - B. MUD DATA
 - C. R.F.T. DATA

COMPUTER DATA LISTINGS :

BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES DATA LIST A DATA LIST B

DATA LIST C

DATA LIST D

APPENDED PLOTS :

DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG TRITIUM PLOT

INTRODUCTION

WHIPTAIL #1A was drilled by ESSO AUSTRALIA LIMITED, in the Bass Strait, Australia.

Well co-ordinates were:

Latitude : 38°19' 30"S Longitude : 147°31' 10"E

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Extended Service Field Laboratory 2007.

WHIPTAIL #1A was spudded on 10th August 1985 and reached a total depth of 2821 metres on 26th August 1985, a total drilling time of 17 days. The main objectives of the well were to:

- 1. Test the hydrocarbon potential of a simple top of Latrobe "Coarse Clastics" anticlinal closure.
- 2. Test the hydrocarbon potential of faulted intra-Latrobe Group anticlinal closures.

Elevations were:

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of WHIPTAIL #A were as follows:

В	Paulet		Unit Supervisor
Ί	Wyeth	-	Pressure Engineer
В	Giftson	-	Logging Crew Chief
P	Gribben	-	Well Logger
P	Landry	-	Well Logger
D	Mackay	-	Well Logger
R	Poltorak	-	Tritium Operator
J	Van Tienen	-	Tritium Operator
A	Harwood	-	Tritium Operator
J	Gibb	-	Tritium Operator

2. RIG SPECIFICATIONS

RIG INFORMATION SHEET

COMPANY ESSO AUSTRALIA LIMITED

WELL WHIPTAIL #1A

NAME AND NUMBER

TYPE

DERRICK, DRILL FLOOR

& SUBSTRUCTURE

SWIVEL

ELEVATORS

KELLY & KELLY SPINNER

VARCO DCS-L TWO OILWELL A 1700PT. RATED AT 1600HP

DRILLCO 5½" x 50' HEX KELLY

SOUTH SEAS DRILLING COMPANY

SEMI-SUBMERSIBLE, TWIN HULLED

SOUTHERN CROSS (No 107)

OILWELL A 500 OILWELL PC 425

FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE

PILL TANK HAVING A CAPAICTY OF 105 BBL.

BYRON JACKSON MODEL GG CAPACITY 350 TON

OILWELL A 371/2 SINGLE ELECTRIC MOTOR

TWO MUD HOPPERS POWERED BY 2 MISSION 6 x 8" CENTRIFUGAL BY TWO

100HP ELECTRIC MOTORS.

DESANDER: 1 DEMCO 4 CONE 12" MODEL NO 124

DERRICK: LEE C MOORE, 152' HIGH X 40' AT BASE.

LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS

LOAD CAPICITY OF 1,000,000 1bs

OILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS

DESILTER: 1 DEMCO 4"-16H 16 CONE DEGASSER: 1 SWACO MODEL NO 36

SHALE SHAKERS: 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT

THREE SHAFFER L.W.S. 18 3/4" - 10,000 psi BLOW OUT PREVENTORS

TWO HYDRIL G.L. 18 3/4" - 5,000 psi

WELL CONTROL EQUIP.

FOUR VALV CON ACCUMULATORS

CHOKES: 2 C.I.W. ABJ H2 2 1/16" - 10,000 psi, 1 SWACO SUPER

CHOKE 2" - 10,000 psi

DC: 6½"
8" x 2 13/16" (4" IF TJ)

x 2 13/16" (6 5/8" H90 TJ) (7 5/8" H90 YJ)

9 3/4" x 3"

HWDP: 5" 501b/ft GRADE G ($6\frac{1}{2}$ ")) $4\frac{1}{2}$ " IF TJ) DP : 5" $19\frac{1}{2}$ 1b/ft GRADE G & E (6 3/8" 00 $4\frac{1}{2}$ " IF TJ)

HALLIBURTON HT-400 UNIT

MARTIN DECKER: MUD VOLUME TOTALIZER

6 CHANNEL DRILLING RECORDER

4 PRESSURE GAUGES

FLOWSHOW INDICATOR

2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH

1 EMD MD 13 DIESEL ENGINE RATED AT 1500 HP

DIRECTIONAL EQUIP.

MISCELLANEOUS (E.G. RISER, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT)

RISER: REGAN FC-7 TELESCOPIC 21" ID. PLUS FLOW DIVERTOR.

CASING POWER TONGS: ECKEL 13 3/8" (20,000 ft 1bs), 20" (35,000 ft 1bs)

CMT BULK TANKS: 3 x 1570cu ft. RISER TENSIONER: 6 WESTERN GEAR, 50' STROKE, 80,000 lbs.

MUD BULK TANKS: 3 x 1570 cu ft. GUIDE LINE TENSIONERS: 4 WESTERN GEAR 16,000 lbs,

40' STROKE

OWNER

DRAWWORKS

CROWN BLOCK

TRAVELING BLOCK

ROTARY TABLE ROTARY SLIPS

MUD PUMPS

MUD SYSTEM

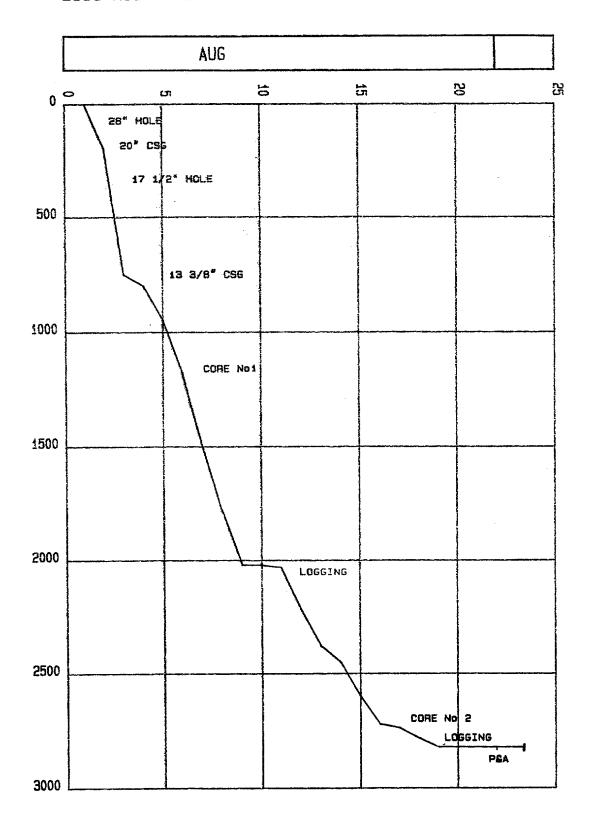
TUBULAR DRILLING

EQUIPMENT

CEMENTING UNIT MONITORING EQUIPMENT

POWER SUPPLY

3. WELL INFORMATION, PROGRESS AND HISTORY


Sheet No. 1

WELL NAME	Whipt	ail #lA										
OPERATOR PARTNERS		Australia etroleum	Limited									
RIG	OWNER NAME OR TYPE	NUMBER	Southern	eas Drillin Cross mersible	ng Cor	npany						
LOCATION	LATITUD FIELD COUNTY COUNTRY DESCRIP	, ,	38°19'30 Gippslar Australi Wildcat	d Basin	ARI	NGITUDE EA ATE		147°31 Bass S Victor	Strai			
DATUM	Mean Wa	ter Depth	n 39 m		RKI	B to Wa	iter Le	vel	21m			
DATES	SPUD		10th Aug	gust, 1985	TO	ral Dep	TH		2821	. m		
HOLE SIZES	Depth From	Depth To	Bit Size (Inches)		No. Rea	of mers	Date From		Date To	2	Cased	Logged
	61 197 797	197 797 2821	26 17½ 12¼	1 1 6		<u>-</u> -	10/8 11/8 13/8	/85	10/8 12/8 27/8	3/85	Y Y Y	N Y Y
DRILLING FLUIDS	Depth F	rom Depth	n To Weigh	nts	Тур	e						
110100	61	197	8.6	TO 8.9	Sea	water						
	197	797	8.9	TO 9.2	Sea	water-D	rill s	olids				
	797	2821	9.2	TO 10.3	Sea	water-F	Polymer	-Gel				
WIRELINE LOGGING	Depth F	rom Depth	n To Hole	Size Date	e Run	Logs	Run					
	796	60	17 ¹	ź" 12/8	8/85	BHCS/	'GR					
	2021	782	12 ¹		8/85		E/MSFL/	LDT-C	/CNT-	-H/GR/C	CAL	
	1210	78 2	121		8/85	BHC/G		_				
	-	1050	121				s No. 1		LOND	u lon la	we lan	
	2810	1950	12 <u>1</u> 12 <u>1</u>		8/85 8/85	BHC/C	E/MSFL/	LD1-C	/ CNI-	-H/GK/A	ms/sp	
	2815.5	1950 -	12 ¹		8/85		s No. 8	_ 9				
	_	-	12 ¹		8/85	WST-C		,				
RISER CASING &	Depth From	Depth To	OD (Ins)	ID W	eight	Grade	Thread	Date	Run	Cement	: Stage	es Exces
LINER	0	(0	2.2	2.1					Dd -			
	0 60	60 185	22 20	21 – 19.125	 94.4	 ¥52	JV Box			er "G"	1	
	60	782	13.375		54.5		Butt	12/8	•	"G"	1	_

WELL INFORMATION SHEET (SUPPLEMENTARY)

Esso Australia Limited Whiptail #1A COMPANY WELL

Sheet No. 2

WELL HISTORY WHIPTAIL #1 & #1A

5TH AUG -	Whinteil #1 was smudded and 2011 seeing mune on
9TH AUG 1985	Whiptail #1 was spudded and 20" casing run; on pressure testing the casing, it would not hold due to a missing '0' ring seal. Whiptail #1 was therefore abandoned, and the rig moved 50 feet for the spudding of Whiptail #1A.
10TH AUG 1985	The template was run to the seafloor and Whiptail $\#1A$ was spudded to 197 metres and the 20" casing run and cemented.
11TH AUG 1985	The B.O.P. stack was rigged up and landed on the seafloor. $17\frac{1}{2}$ " hole was then drilled to 749 metres.
12TH AUG 1985	$17\frac{1}{2}$ " hole was drilled to 797 metres and the hole conditioned for logging. The GR-Sonic log was run from 797 - 60 metres prior to running and cementing the 13 3/8" casing.
13TH AUG 1985	The B.O.P. was tested prior to drilling out the cement and a phase II pressure integrity test was carried out after drilling six metres of new hole (12.4 ppg E.M.W.). A new $12\frac{1}{4}$ " B.H.A. was made up and new hole drilled to 941 metres.
14TH AUG 1985	Drilled 12½" hole to 1165.4 metres where the hole was circulated clean and it was decided to cut core #1. On pulling out of the hole a phase III pressure integrity test was carried out giving 13.29 ppg E.M.W. at the shoe and 12.31 ppg at 1165.4 metres. The core was cut from 1164.5 - 1175.4 metres (Rec 7.8m 77%).
15TH AUG 1985	Drilled new 12½" hole to 1502 metres.
16TH AUG 1985	Drilled new $12\frac{1}{4}$ " hole to 1789 metres where the bit was pulled due to increasing torque.
17TH AUG 1985	Drilled $12\frac{1}{4}$ " hole to 2021 metres where the bit was pulled to run logs.
18TH AUG 1985	Logging.
	DLT/E/MSFL/LDT-C/CNT/H/GR/CAL 2021 - 782 metres. BHC/GR 1210 - 782 metres. RFT #1-4.
19TH AUG 1985	RFT #5-7. A B.O.P. test was then carried out prior to drilling new hole to 2032 metres.
20TH AUG 1985	Drilled 12½" hole to 2217 metres.

21ST AUG 1985	Drilled 12½" hole to 2378 metres.
22ND AUG 1985	Drilled ahead to 2397 metres. Pulled bit due to low R.O.P.'s and high torque. Trip gas from 2397 metres was 0.1-1-0.4 units. R.I.H. with new bit HTC J22 and drilled 12½" hole to 2436.1 metres; checked drilling break for flow and circulated bottoms up. Drilled ahead to 2450 metres.
23RD AUG 1985	Drilled 12½" hole to 2598 metres.
24TH AUG 1985	Drilled ahead to 2719 metres, pulled the bit due to high hours and low R.O.P.'s.
25TH AUG 1985	R.I.H. with NB8 HTC J22. Trip gas from 2719 metres was 4-42-16 units. Drilled ahead to 2737 metres and circulated out drill break. P.O.O.H. to cut core #2. Trip gas from 2737 metres was 2-8-2 units.
26TH AUG 1985	Cut core #2 from 2737 metres to 2755 metres, recovered 9.8 metre (54.4%). R.I.H. with RR8 HTC J22, reamed rathole and drilled ahead to 2781 metres. Trip gas from 2755 metres was 12-30-6 units.
27TH AUG 1985	Drilled ahead to 2821 metres (T.D.) circulated out and P.O.O.H. Schlumberger logged the hole.
28TH AUG 1985	Logged the hole.
29TH AUG 1985	Ran C.S.T.'s, R.I.H. and circulated out. B.U. gas was 1-295-23 units. Set cement plug 1600-1500 metres. P.O.O.H. R.I.H. and milled cement to 1500 metres; bottoms up gas was 2-27-2 units. P.O.O.H.
30TH AUG 1985	Ran and set 9 5/8" casing at 1485 metres.
31ST AUG 1985	Plugged and abandonned the hole.

4. LITHOLOGY AND CORE-O-GRAPHS

LITHOLOGY SUMMARY

The main objectives of Whiptail #lA were to test the hycrocarbon potentials of a simple top of Latrobe "Coarse Clastics" anticlinal closure, and faulted intra-Latrobe Group anticlinal closures.

All formation tops are open to speculation and are based entirely on the examination of cuttings. All depths are from RKB.

Gippsland Limestone (200 metres - 700 metres)

The Gippsland Limestone consisted of a white to light grey, fine to medium grained, sub rounded to well rounded, moderately sorted calcarenite together with light grey calculation. The calcarenite also contained shell fragments and fossilized bryozoa.

Lakes Entrance (700 metres - 1165 metres)

Between 700 and 800 metres, calcarenite and siltstone predominated.

The calcarentite was white to light grey, fine and moderately sorted with minor shell fragments. The siltstone was grey to brown in colour, soft to firm, argillaceous and contained minor pyrite.

The siltstone generally made up 20 to 40 percent of the cuttings.

Calcisiltite then predominated to 1165 metres... this was generally light to medium grey, soft to firm, argillaceous, fossiliferous, and contained minor carbonaceous material.

Minor amounts of calcilutite were also encountered.

Latrobe Group (1165 metres - 2821 metres T.D.)

The Latrobe Group consisted predominantly of sandstone with interbedded siltstone and minor coal bands.

From 1165 metres to 1370 metres the sandstone was interbedded with carbonaceous siltstone of varying thickness, the largest band extending between 1200 metres and 1230 metres and composing up to 70 percent of cuttings.

The siltstone was generally dark brown to black, moderately hard, and containing traces of pyrite. The sandstone consisted generally of white to clear loose quartz grains. These were medium to very coarse, sub angular to angular, and poor to moderately sorted. The sandstone exhibited no shows.

Bands of coal then occurred interbedded with the sandstone to 1455 metres. The amount of coal ranged between 10 and 50 percent, but was more consistant at the 20 percent level. The coal wasfound with 10 to 40 percent siltstone, which was dark brown to black, argillaceous, and contained traces of pyrite.

From 1500 metres to 2100 metres the sandstone was composed of clear to translucent quartz grains. These were angular to sub angular and moderately to well sorted and consistently contained traces of pyrite. No fluorescence was found.

Interbedded carbonaceous siltstone and sandstone then predominated to the total depth of 2821 metres. The bands had varying thicknesses; and may composed up to 80 percent of the cuttings, with the average approximately 40 percent.

The siltstone was generally pale brown, micaceous, argillaceous, carbonaceous, and moderate to firm.

The sandstone was consistent with that previously encountered. Generally no fluorescence was found, except from 2450 metres to T.D. where trace fluorescence was encountered at various depths.

GAS:

Total gas readings show a continuous rise from less than 0.5 units at 800 metres to approximately 50 units at 1100 metres.

From 1100 metres to 1445 metres the gas generally remained between 5 and 20 units. Peaks to 50 units were encountered in response to interbedded carbonaceous siltstone and coal, the majority of gas being made up of C_1 .

Between 1500 metres and 2050 metres total gas generally remained below 5 units.

From 2050 metres to a total depth of 2821 metres, the total gas remained between 5 and 50 units.

The gas rose wherever carbonaceous siltstone or coal occurred. However where siltstone was found the gas reading generally showed a decrease, though it fluctuated according to the percentage of siltstone encountered. The majority of the gas in this interval was C_1 to C_3 .

CORE-O-GRAPH

CLIENT:

WELL:

CORE NO .:

INTERVAL CORED FROM

CUT: 10.1m.

FORMATION:

BIT MAKE & TYPE:

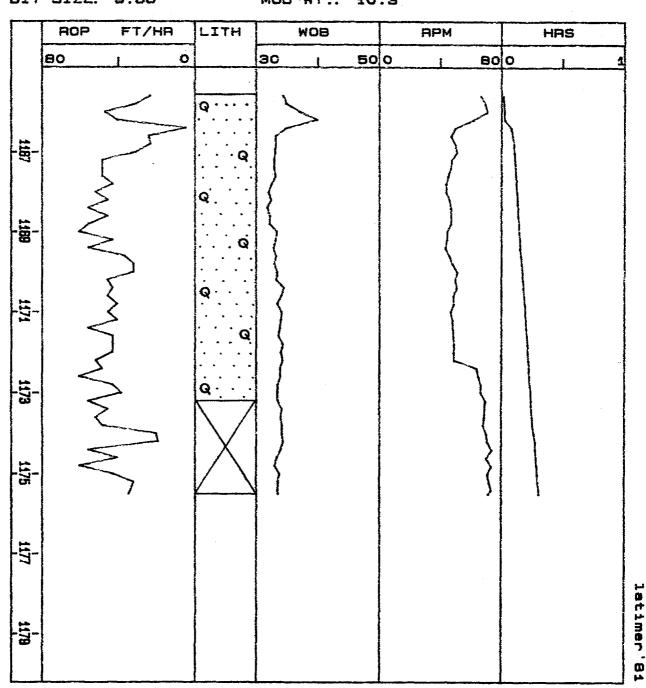
CORE BARREL SIZE:

BIT SIZE: 9.88

ESSO AUSTRALIA LTD.

WHIPTAIL NO.1A

1185.4m. TO 1175.5m.


RECOVERED: 7.8m. (77.2%)

LATROBE GROUP

CHRIST RC4

8.00in.x 4.75in.x 10.94m.

E.01 :. TW GUM

CORE-O-GRAPH

CLIENT:

WELL:

.

CORE NO .:

INTERVAL CORED FROM

CUT: 18.0 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

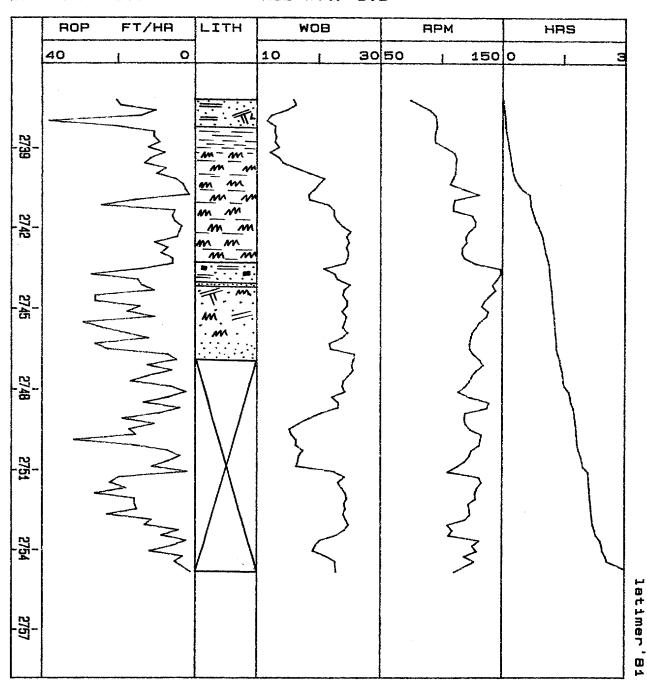
BIT SIZE: 9.88

ESSO AUSTRALIA LTD.

WHIPTAIL No.1A

2

2737.0m. TO 2755.0m.


RECOVERED: 9.8m. (54.4%)

LATROBE GROUP

CHRIS AC4

8.00in.x 5.25in.x 19.70m.

MUD WT .: 8.5

5. EXTENDED SERVICE PACKAGE

EXTENDED SERVICE INTRODUCTION

eren senge

The Core Laboratories Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Laboratories E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit hozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories E.S. logs include the following :

E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests.

CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The "d" exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter.

The modified "dc" exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc" to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore:

Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column.

An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), may be made using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows: rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 metres.

GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

GRAPHOLOG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak-off test data, R.F.T. and well test data where appropriate.

CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 2007 monitoring equipment includes the following:

A. MUD LOGGING

- 1. T.H.M. total gas detector and recorder.
- 2. F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- 3. Cuttings gas detector.
- 4. Gas trap and support equipment for the above.
- 5. Pit volume totalizer and recorder.
- 6. Digital depth counter.
- 7. Two integrated pump stroke counters.
- 8. Ultra-violet fluoroscope.
- 9. Binocular microscope.
- 10. Calcimeter.
- 11. Steam-still gas analyzer.

B. EXTENDED SERVICE PACKAGE

- 1. HEWLETT PACKARD 9825B desktop computer.
- 2. HEWLETT PACKARD 9872B plotter
- 3. HEWLETT PACKARD 2631A printer.
- 4. Two HEWLETT PACKARD 2621P visual display units, (one located in the client's office).
- 5. Hookload/weight-on-bit transducer and recorder.
- 6. Rotary speed sensor and recorder.
- 7. Stand-pipe pump pressure transducer and recorder.
- 8. Mud flow out sensor and recorder.
- 9. Mud temperature sensors and recorders (in and out).
- Mud conductivity sensors and recorders (in and out).
- 11. Mud density sensors (in and out) and recorders.
- 12. Rotary torque sensor and recorder.
- 13. Shale density apparatus.
- 14. Hydrogen sulphide gas detector.
- 15. Carbon dioxide gas detector.
- 16. DATALOGGER computer, monitor and impact printer.
- 17. DIGITAL remote paging display (located in the client's office).
- 18. Casing pressure transducer and recorder.

All the above sensors and gas detectors have displays on the DATALOGGER monitors except the Cuttings gas detector and steam-still.

CORE LABORATORIES MONITORING EQUIPMENT

DEPTH

Depth registered every 0.1 metres and rate of penetration calculated each metre (or every 0.2m while coring); ROP displayed on the computer monitor and chart.

WEIGHT-ON-BIT

A DeLaval 0-5000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Datalogger, and displayed (with bookload) on the computer monitor and recorder chart.

ROTARY SPEED

This is a proximity limit switch which pulses once for every revolution of the rotary drive shaft. The value is displayed on the computer monitor and a recorder chart.

PUMP PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the stand-pipe manifold. |The pressure is displayed on the computer monitor and recorder chart.

CASING PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the choke manifold. The signal is displayed on the computer monitor and on a recorder chart.

PIT VOLUME

Four individual pits are displayed on the monitor. The pit volume total is calculated by the Datalogger and displayed on the monitor. The sensors are vertical floats triggering magnetic switches accurate to +/-1 barrel.

In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The pump rates per minute are displayed on the monitor.

ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on the computer monitor and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, and an electronics module calibrated 0-100 deg.C. Temperature in and out is displayed on the monitor and recorder.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor contains two toroidally-wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondary coil, the amplitude of the current being directly proportional to the conductivity of the mud.

MUD DENSITY

Two density sensors (in and out) located in the possum belly and in the pit room, operate on a system of differential pressure. This function is displayed on both chart and monitor.

All the sensors are 12 to 36V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties...

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Samples were washed, dried, sacked and boxed where necessary. Geochemical samples were canned and boxed.

GAS

- 1.Flame Ionization Total Hydrocarbon gas detector.

 The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.

 The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Cuttings gas detector (Wheatstone Bridge type).
 An auxiliary system for total gas detection.
- 4.Hydrogen Sulphide detector.
 Two sensors are located at the shale-shakers and in the pit room, linked to a TAC 404B H2S monitor, to detect H2S emanating from the drilling fluid.
- 5.Carbon Dioxide detector.

 An Infra-red gas analyzer determines the percentage of CO2 present in gas samples broken out of the mud by the gas trap.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density liquid column.

6. ESP PLOT DISCUSSIONS AND CONCLUSIONS

ESP PLOT DISCUSSION AND CONCLUSIONS (with particular reference to Pore Pressure)

The main consideration during the drilling of Whiptail #1A was utilization of data collected by Core Laboratories DL2007 to provide an estimation of formation pressures. This is described in detail below.

The main pressure indicators that were used while drilling the well were those of Rates of Penetration, gas levels, 'd' c exponent, mud weight, flowline temperature and lithology.

The "Drill Data Plot" (see attached plots inside back cover), shows the rate of penetration, corrected 'd' exponent and mud density plotted against lithology. This plot indicates a normal pressure profile throughout the well with any irregularities in rate of penetration, corrected 'd' exponent and gas levels being due to lithology changes. No connection gas was detected. Shale densities were not performed during the drilling of the well as no large beds of shale were encountered.

The "Temperature Plot" displays the flowline temperature in and out and their differential plotted against depth. The temperature plot of Whiptail #lA shows a temperature gradient of 1.77°F/100 feet. It shows a normal trend with depth, only differing from the expected gradient at points where the mud system was being treated to maintain specifications. The bottom hole temperature was extrapolated to 94°C at 2821 metres, from wireline logging data.

The "Pressure Plot" is a summary of the pressures found in the drilling of Whiptail #1A. On this plot, estimated pore pressure is plotted along with mud weight and the fracture gradient. The pore pressure of the well was estimated to be 8.4 ppg (E.M.W.) throughout. The fracture gradient curve was based on information obtained from a pressure integrity test performed after drilling out the 13-3/8" casing shoe (782 metres, 13.2 ppg). As there is no available Overburden Gradient curve for the Gippsland Basin the shape of the curve is based on that of the U.S. Gulf Coast Basin curve and offset to match local data.

7. B.H.T. ESTIMATION

.

CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT

1/TIME ON A LINEAR SCALE AGAINST TEMP. ON A LINEAR SCALE

ENTERED DATA:

DATA SET #

1/TIME

TEMP.

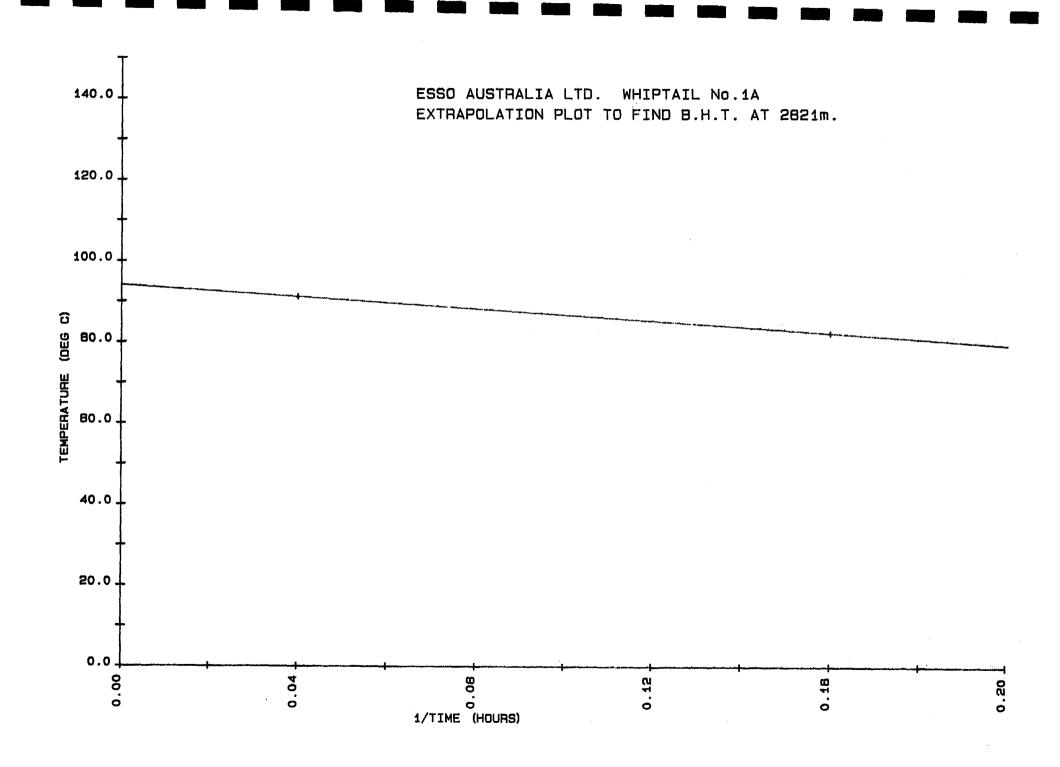
1

0.04

91.0 82.0

COEFFICIENT & CONSTANT:

Y = M.X + c where M = -7.5000000E 01 and C = -9.4000000E 01

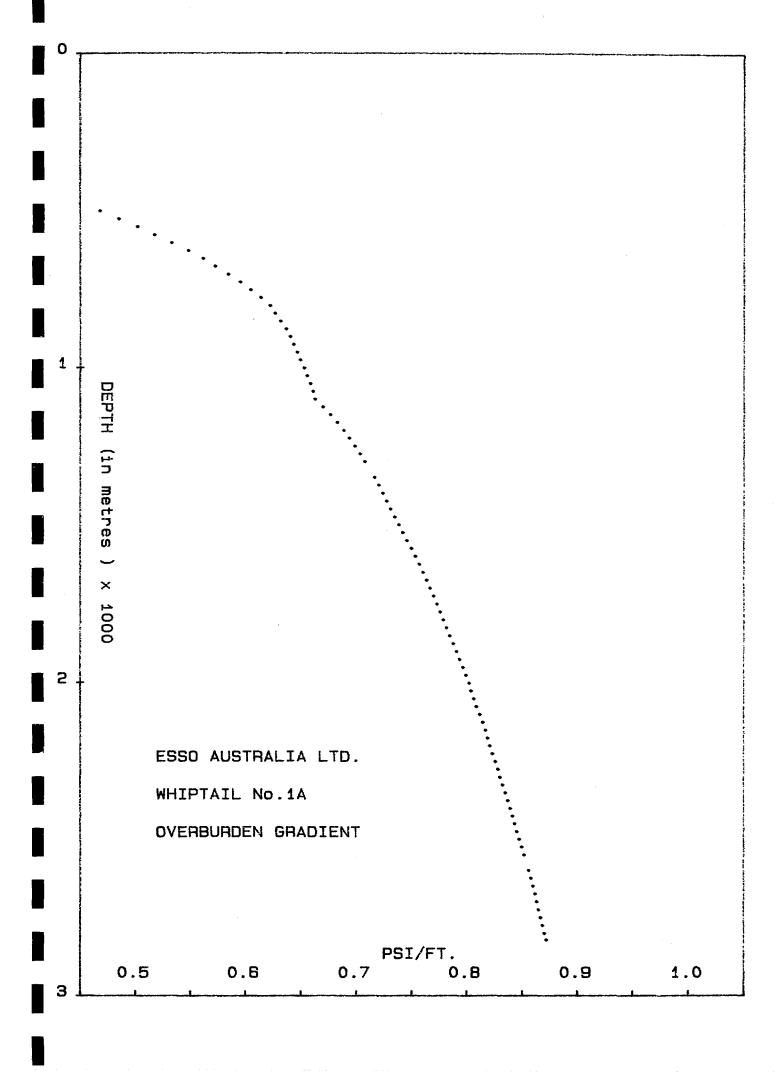

INTERPOLATED DATA:

1/TIME

TEMP.

0.00

94.0


8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

OVERBURDEN GRADIENT CALCULATIONS

DEPTH	DEPTH	AVR, BULK	O/BURDEN	OZBURDEN	O/BURDEN	O/BURDEN
from	to	DENSITY	INC.	CUMM.	GRAD.	GRAD.
metres	metres	gm/cc	psi	psi	psi/ft	bbō
200	225	1.66	50.95	58.95	0.080	1.54
225	250	1.69	60.02	118.98	0.145	2.79
250	275	7.73	61.44	180.42	0.200	3.85
275	300	1.71	60.73	241,15	0.245	4.71
300	325	1.75	62.15	303.30	0.284	5.47
325	350	1,86	66.06	369.36	0.322	6.19
350	375	1.79	83.52	432.93	0.352	6.77
375	4()()	1., 79	63.57	496.50	0.378	7.28
400	475	1.71	60.73	557.23	0,400	7.69
425	450	1.93	68. 54	625.77	0.424	8.15
450	475	1.99	70.6 7	696,45	0.447	8.59
475	500	1.99	70.67	767,12	0.468	8.99
500	525	1.90	67.48	834.60	0.485	9,32
525	550	1,99	70.67	905.28	0.502	9,65
550	575	1,97	69,96	975.24	0.517	9,94
578	600	2.06	73,16	1048.40	0.533	10.24
600	625	2.10	74.58	1122.98	0.548	10.53
625	650	2.06	73.16	1196,14	0.561	10.79
550	675	1.99	70.67	1266,82	0.572	11.00
67 5	700	2.08	73.87	1340.69	0.584	11.23
700	725	2.08	73.87	1414.56	0.595	11,44
725	750	2.04	72.45	1487.01	0.604	11.62
750	775	2.04	72.45	1559.46	0.613	11.79
775	800	2.03	72.10	1631.56	0.622	11.95
800	825	1.79	63,57	1695.13	0.626	12.04
825	850	1,82	64,64	1759,77	0.631	12.14
850	875	1,86	66.06	1825,83	0.636	12.23
875	900	1.79	63.57	1889.40	0.640	12.31
900	925	1.75	62.15	1951. 5 5	0.643	12.37
925	950	1.75	62.15	2013,70	0,646	12.42
950	975	1.75	62.15	2075.85	0.649	12.48
975	1000	1.79	63. 57	2139.42	0.652	12.54
1000	1025	1.79	63.57	2202,99	0.655	12.60
1025	1050	1.79	63.57	2266,57	0.658	12.65
1050	1075	1.75	62.15	2328.72	0.660	12.70
1075	1100	1.71	60.73	2389.45	0.662	12.73
1100	1125	2.25	79,91	2469.36	0.669	12.87
1125	1150	2,28	80.97	2550,33	0.676	13.00
1150	1175	2.26	80.26	2630.59	0.682	13.12
1175	1200	2.21	78.49	2709.08	0.688	13.23
1200	1225	2,15	76.36	2785.44	0.693	13.33
1225	1250	2.18	77.42	2862.86	0.698	13.42
1250	1275	2.15	76.36	2939.22	0,703	13.51
1275	1300	2.17	77.07	3016.29	0.707	13.60
1300	1325	2.15	76.36	3092.64	0.711	13.68

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INC.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.
metres	metres	gm/cc	psi	psi	psi/ft	bbā
from	to set	DENSITY	INC.	CUMM. p. 78 3176. 379 31742. 488 33374. 318. 889 3367871. 488 33773. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 312. 389 313. 389 3	GRAD. psi/ft 0.72270 0.772370 0.772370 0.77233481 0.772334459 0.77250 0.77277881 0.772781 0.77290 0.77290 0.77290 0.77290 0.77290 0.77290 0.800	GR P 741852963184173951628495162505050482728133.3344.444.444.44.555.5.6677888921333444.444.444.11111111111111111111111
	2275 2300 2325					
2350 2375 2400 2425 2450 2475 2500	2375 2400 2425 2450 2475 2500	2.42 2.38 2.39 2.43 2.39 2.43 2.43	85.95 84.53 84.88 86.30 84.88 86.30	6518.42 6602.95 6687.83 6774.13 6859.01 6945.31 7033.03	0.837 0.839 0.841 0.843 0.845 0.847	16.09 16.13 16.17 16.21 16.24 16.28 16.33
2525 2550	2550	2.46 2.46	87.37 87.37	7120.40 7207.77	0.851 0.853	16.37 16.41

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INC.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.	
metres	metres	gm/cc	psi	psi	psi/ft	ppq	
2575	2600	2.50	88.79	7296.55	0.855	16.45	
2600	2625	2.45	87.01	7383.57	0.857	16,49	
2625	2650	2,42	85.95	7469.51	0.859	16,52	
2650	2675	2.44	86.66	7556.17	0.861	16.56	
2675	2700	2.41	85,59	7641,76	0.863	16.59	
2700	2725	2.40	85.24	7727,00	0.864	16.62	
2725	2750	2.45	87,01	7814.01	0.866	16.66	
2750	2775	2.45	97.01	7901.02	0:868	16.69	
2775	2800	2,46	87,37	7988.39	0.870	16.72	
2800	2821	2.52	75.18	8063.56	0.871	16.75	

9. GAS ANALYSES

GAS COMPOSITION ANALYSIS

The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

LOG PLOT

The ratios of C1/C2, C1/C3, C1/C4, C1/C5, and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluated by the following criteria :

- Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65, gas. If the C1/C2 ratio is below about 2, or above about 65, the zone is probably non-productive.

The actual values of the gas/oil/water limits will vary from area to area.

- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- 5. The ratios may not be definitive for low permeability zones; however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT

The triangulation diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to C4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.

A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WHIPTAIL No.1A 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct 0.05 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980 NO.DEPTH C1 CZ СЭ 1C4 nC4 C CB % C1/C2 C1/C3 C1/C4 C1/C5 1 1380 0.530 0.048 0.008 0.040 0.008 0.008 0.004 0.825 11 13 32 93

CONCLUSION: PRODUCTIVE GAS/OIL ZONE

SIDEWALL CORE GAS ANALYSIS DATA SHEET

SHEET NO. 1

COMPANY Esso Australia Limited

WELL Whiptail #1A

LOGGING SUITE NO.

No.	DEPTH (M)	Cl	C2	C3	C4	C5	C 6	COMMENTS
		PPM	PPM	PPM	PPM	PPM	PPM	
4		1,133	36	16	Tr	-	-	
5		785	10	-	~			
6		1,918	35	10	Tr			
8		2,163	30	8	Tr	-	-	
12		2,420	3 3	8	Tr	_	-	
20		3,208	46	11	Tr	_		
22		2,371	31	8	Tr	_	-	
41		3,139	44	11	Tr	-	-	
42		2,232	39	11	\mathtt{Tr}	-	-	
45		2,098	39	8	Tr	_	-	
15		802	14	Tr	_	_		
25		786	11	~	_	_	_	
26		3,139	52	12	\mathtt{Tr}	_		
28		2,964	46	11	Tr	_	Name .	
29		2,092	30	8	Tr	_	_	
33		2,058	33	8	Tr	-	_	
23		1,918	35	8	Tr	_		
24		2,441	47	10	Tr	-	_	
19		Tr	-	_	_	-	_	
32		3,488	60	14	Tr	_	_	
16		2,232	33	8	Tr	_	_	

Total 21 samples

10. SAMPLES COLLECTED

SAMPLES COLLECTED ON WHIPTAIL #1A

Fission Track samples: 2 sets at 30 metre intervals from

1000 metres to 2821 metres.

Geochemical: 1 set at 15 metre intervals from 200

metres to 2821 metres.

Dry cuttings samples: 3 sets from 200 metres to 2821 metres.

1 for Esso 1 for BMR 1 for VDITR

Air dried cuttings: 1 set from 200 metres to 2821 metres

Core #1: 9 lengths of PVC core from cored

interval 1165.4 metres to 1175.5 metres.

Core #2: 11 boxes from cored interval 2737 metres

to 2755 metres.

R.F.T. Samples: Total of 19 containers of fluid samples.

11. CORELAR DATA SHEETS

BIT RECORD

COMPANY Esso Australia Limited WELL Whiptail #1A

Sheet No. 1

Ser No.	Bit No.	Make	Type	IADC Code	Size (Inches)	Jets	Depth In Metres	Hole Made (m)	Drill Time	On Bottom Hours Turns K	Condition T B G	Remarks
LJ321	RR1	HTC	OSC 31J + HO	111	26	20/20/20	61	136	6	3.87 23.4	1-1-1	Pulled to run 20" CSG
BC886	2	HTC	X3A	114	17 ¹ 2	20/20/20	197	600	18	12.7 114.3	1-1-I	Pulled to run 13 3/8" CSG
407XF	3	HTC	хза	114	121/2	18/18/18	797	368.4	15.5	10.54 72.7	3-3-I	Pulled to cut Core #1
1450678	3	CHRIS	RC4	4	9 7/8	15/15/16	1165.4	10.1	0.25	0.31 1.0	5% worn	Core #1
318DS	4	HTC	J22	517	12½	18/18/16	1175.5	613.5	41.75	33.91 139.6	4-6-3/16	Pulled due to high torque
633GM	5	HTC	J22	517	12½	16/16/18	1789	232	19.22	16.95 59.5	2-3-1/8	Pulled at T.D. (tentative)
178FS	6	HTC	J33	537	124	16/16/18	2021	376	53.08	48.06 154.1	5-5-1/4	Pulled due to high torque
796FM	7	HTC	J22	517	124	16/16/18	2397	322	58.50	53.62 162.1	6-6-1/4	Pulled due to low ROP's
656FM	8	HTC	J22	517	12½	16/16/18	2719	18	5.33	4.45 13.4	1-1-I	Pulled to cut Core #2
83B0332	8	CHRIS	RC4	4	9 7/8	15/15/16	2737	18	2.83	2.70 19.5	20%	Core #2
656FM	RRB	нтс	.122	517	124	16/16/18	2755	66	15.50	14.24 40.3	13 1/8	Pulled at T.D.

BIT RECORD

COMPANY Esso Australia Limited WELL Whiptail #1A

Sheet No. 1

Ser No.	Bit No.	Make	Туре	IADC Code	Size (Inches)	Cost A\$	Jets	Depth In (m)	Depth Out (m)	Hole Made m	Drill Time		ttom TurnsK	Avg ROP	Avg Cost/m	Condition T B G
LJ321	RR1	нтс	OSC 3AJ + HO	111	26	0	20/20/20	61	197	136	6	3.87	23.4	35.1	172.81	1-1-I
BC886	2	HTC	хза	114	17½	4978	20/20/20	197	797	600	18	12.7	114.3	47.2	97.8	1-1-1
407XF	3	HTC	ХЗА	114	12½	2445	18/18/18	797	1165.4	368.4	15.5	10.54	72.7	35.0	140.89	3-3-I
1450678	3	CHRIS	RC4	4	9 7/8	0	15/15/16	1165.4	1175.5	10.1	0.25	0.31	1.0	32.6	833.65	5%
318DS	4	нтс	J22	517	12½	8520	18/18/16	1175.5	1789	613.5	41.75	33.91	139.6	18.1	242.33	4-6-3/16
633GM	5	HTC	J22	517	124	8520	16/16/18	1789	2021	232	19.22	16.95	59.5	13.7	402.69	2-3-1/8
178FS	6	HTC	J33	537	124	8266	16/16/18	2021	2397	376	53.08	48.06	154.1	7.8	556.81	5-5- ¹ 4
796FM	7	нтс	J22	517	121/4	8520	16/16/18	2397	2719	322	58.50	53.62	162.1	6.0	715.11	6-6-14
656FM	8	HTC	J22	517	121/4	8520	16/16/18	2719	2737	18	5.33	4.45	13.4	4.0	2958	1-1-1
83 B0332	8	CHRIS	RC4	4	9 7/8	0	15/15/16	2737	2755	18	2.83	2.70	19.5	6.7	2167	20%
656PM	RR8	HTC	J22	517	124	0	16/16/18	2755	2821	66	15.50	14.24	40.3	3.5	1152	1-3-1/8

MUD INFORMATION SHEETS

DEPTH Metres

MUD WEIGHT Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I.seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square feet

FILTRATE A.P.I. c.c.

CAKE THICKNESS Thirty-seconds of an inch

SALINITY: Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

MUD INFORMATION SHEET

COMPANY Esso Australia Limited WELL Whiptail #1A

Sheet No. 1

					
197	689	764	849	1164	1366
10/8/85	11/8/85	12/8/85	13/8/85	14/8/85	15/8/85
	20:00	01:00	20:00	11:00	14:00
	8.9	9.0+	8.8	10.3	10.3
S	32	34	29	41	42
E	3/10	3/23	5/9	9/21	8/25
A	0.30/2.01	0.16/9.74	0.44/0.90	0.38/2.83	0.31/4.69
A	5/6	12/14	12/16	11/20	21/36
W	9.6	9.5	10.9	10.5	10.4
A	13.5/-	13.5/-	12/18	11/19	14/22
T	1	1	1	1	1
E	21,000	20,000	21,000	20,000	18,000
R	TR	TR	TR	TR	TR
	6	6	4	7	7
			_	-	•••
			3272	3164	3143
Spud +20" CSG	17½" Hole	Logging 13 3/8"CSG		.lled 12坫" l	ole
	10/8/85 S E A A W A T E R	10/8/85 11/8/85 20:00 8.9 S 32 E 3/10 A 0.30/2.01 A 5/6 W 9.6 A 13.5/- T 1 E 21,000 R TR 6	10/8/85	10/8/85	10/8/85

DEPTH	1731	2015	2021	2021	2154	2220
DATE	16/8/85	17/8/85	18/8/85	19/8/85	20/8/85	21/8/85
TIME	16:00	22:00	14:00	22:15	1 5: 15	01:00
WEIGHT	10.2+	9.8	9.8	10.0+	9.6	9.5
FUNNEL VISCOSITY	40	39	40	44	44	47
PV/YP	9/20	6/20	6/20	10/24	7/21	7/23
N/K	0.39/2.55	0.30/4.02	0.30/4.02	0.37/3.35	0.32/3.76	0.30/4.55
GEL: INITIAL/10 MIN	11/22	11/22	11/21	12/30	12/18	15/24
pН	10.5	10.9	10.5	10.2	10.6	10.6
FILTRATE: API/API HTHP	13/21	12/20	12/20	11/22	9.5/20	9/19
CAKE	1	1	1	1	1	1
SALINITY (PPM)	18,000	17,000	17,000	16,000	16,000	17,000
SAND	TR	TR	TR	TR	TR	0.1
SOLIDS	7	7	7	7	7	7
OIL	-	-	-	-	-	-
TRITIUM (DPM)	3125	3194	3112	2877	3226	3220
REMARKS:	12¾"	hole	Logg:	ing	Drilled 12 ¹	∡"hole

COMPANY Esso Australia Limited
WELL Whiptail #1A

Sheet No. 2

DEPTH	2413	2553	2669	2736	2751	2821
DATE	22/8/85	23/8/85	24/8/85	25/8/85	26/8/85	27/8/85
TIME	15:30	15:00	15:00	13:55	19:00	11:15
WEIGHT	9.5+	9.5	9.5	9.5	9.5+	9.5
FUNNEL VISCOSITY	53	38	38	41	42	37
PV/YP	7/23	6/21	6/28	6/29	7/27	6/26
N/K	0.30/4.55	0.29/4.44	0.23/7.89	0.23/8.44	0.27/6.32	0.25/6.82
GEL: INITIAL/10 MIN	15/25	13/22	15/25	18/27	16/25	18/24
pН	10.7	10.7	10.7	10.6	10.5	10.5
FILTRATE: API/API HTHP	7.5/17	7.8/16.5	7.6/17.5	8/18	8.8/20	8.5/8.5
CAKE	1	1	1	1	1	1
SALINITY (PPM)	17,000	18,000	18,500	19,000	19,000	19,000
SAND	TR	TR	TR	TR	TR	TR
SOLIDS	7	7	7	7	7	7
OIL	-	-	_	-	-	_
TRITIUM (DPM)	2998	3108	3204	3126	3171	3192
,						
REMARKS:		- Drilled 1:	2½" hole		Core #2	12¼" hole

DEPTH DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN PH FILTRATE:API/API HTHP CAKE SALINITY (PPM) SAND SOLIDS OIL	PIT 28/8/85 18:30 9.5 44 8/28 0.29/5.92 18/29 10.4 10/22 1 19,000 TR 7
TRITIUM (DPM)	_
REMARKS:	Logging at T.D.

R.F.T. DATA

R.F.T. SAMPLING DATA SHEET

DEPTH (metres) 1397.5 1397.5 1380.2 1380.2 1285.5 1285.5 RECOVERY VOLUMES GAS (Cu Ft) 0.71 None 0.2 Pre- None None OIL (cc) 22,000 9,600 16,300 served None None WATER/FILTRATE (cc) 30 None 5,250 21,500 9,700 OTHER (cc)						·····	
CHAMBER CAPACITY (L) 22.2 10.4 22.2 2.2 10.4 22.2 1380.2 1285.5 1	RUN-No.						3
DEPTH (metres) 1397.5 1397.5 1380.2 1380.2 1285.5 1285.5 RECOVERY VOLUMES GAS (Cu Ft) 0.71 None 0.2 Pre- None None OIL (cc) 22,000 9,600 16,300 served None None None WATER/FILTRATE (cc) 30 None 5,250 21,500 9,700 THER (cc)					2		3
GAS (Cu Ft) 0.71 None 0.2 Pre- None None OIL (cc) 22,000 9,600 16,300 served None None WATER PROPERTIES RECOVERY VOLUMES GAS (Cu Ft) 0.71 None 0.2 Pre- None None None WATER PROPERTIES RESISTIVITY (Ωm) .377 .364 Pre- 1.05 0.68 Pright wh Bright wh Bright wh Bright wh Bright wh Color (Prim (Prim) 12,500 14,000 7,000 9,000 TRITIUM (DPM) 2,876 - 3,091 1,467 855 PM COMMENTS DPM							10.4
GAS (Cu Ft) 0.71 None 0.2 Pre- None None OIL (cc) 22,000 9,600 16,300 served None None None WATER/FILTRATE (cc) 30 None 5,250 21,500 9,700 OTHER (cc)	DEPTH (metres)	1397.5	1397.5	1380.2	1380.2	1285.5	1285.5
OIL (cc)	RECOVERY VOLUMES						
WATER/FILTRATE (cc) 30 None 5,250 21,500 9,700 OTHER (cc) 575 600 GAS COMPOSITION C1 (PPM) 45,043 - Fre- 2,863 C3 (PPM) 4,420 - Fre- 2,863 Served 2,246 C4 (PPM) 11,997 - 873 Served 2,246 C4 (PPM) 110 - 190 C02 (%)	GAS (Cu Ft)	0.71	None	0.2	Pre-	None	None
OTHER (cc) SURFACE PRESSURE (PSI) 325 - 575 600 - GAS COMPOSITION C1 (PPM) 45,043 - 26,790 C2 (PPM) 4,220 - Pre- 2,863 C3 (PPM) 4,493 - served 2,246 C4 (PPM) 1,997 - 873 C5 (PPM) 441 - 307 C6 (PPM) 110 - 190 C02 (%)	OIL (cc)	22,000	9,600	16,300	served	None	None
SURFACE PRESSURE (PSI) 325 - 575 600 - GAS COMPOSITION C1 (PPM) 45,043 - 26,790 C2 (PPM) 4,220 - Pre- 2,863 Served 2,246 C4 (PPM) 1,997 - 873 C5 (PPM) 441 - 307 C6 (PPM) 110 - 190 C02 (%)	WATER/FILTRATE (cc)	30	None	5,250		21,500	9,700
C1 (PPM) 45,043 - 26,790 C2 (PPM) 4,220 - Pre-2,863 C3 (PPM) 4,493 - served 2,246 C4 (PPM) 1,997 - 873 C5 (PPM) 441 - 307 C6 (PPM) 110 - 190 C02 (%)	OTHER (cc)	-	-	Name .	-	_	-
C1 (PPM)	SURFACE PRESSURE (PSI)	325	-	575		600	-
C2 (PPM) 4,220 - Pre- 2,863 C3 (PPM) 4,493 - Served 2,246 C4 (PPM) 1,997 - 873 C5 (PPM) 441 - 307 C6 (PPM) 110 - 190 C02 (%)	GAS COMPOSITION						
C3 (PPM) 4,493 - served 2,246 C4 (PPM) 1,997 - 873 C5 (PPM) 441 - 307 C6 (PPM) 110 - 190 C02 (%)	Cl (PPM)	45,043	-			26,790	
C4 (PPM) 1,997 - 873 C5 (PPM) 441 - 307 C6 (PPM) 110 - 190 C02 (%)	C2 (PPM)	4,220	-		Pre-	2,863	
C5 (PPM)	C3 (PPM)	4,493	_		served	2,246	
C6 (PPM) 110 - 190 C02 (%)	C4 (PPM)	1,997	_			873	
CO2 (%)	C5 (PPM)	441	-			307	
H2S (PPM)	C6 (PPM)	110	_			190	
DENSITY (°API at 60°) 37.1 42.0 41.1 Pre— COLOUR Reddish Reddish Reddish served brown brown brown FLUORESCENCE Bright wh Bright wh Bright wh POUR POINT (°C) WATER PROPERTIES RESISTIVITY (Ωm) .377 .364 Pre— 1.05 0.68 @ 14°C @ 15°C served @ 17°C @ 19°C C1 (frm resis) (PPM) 21,000 23,000 6,800 10,000 C1 (frm titrat) (PPM) 12,500 14,000 7,000 9,000 TRITIUM (DPM) 2,876 - 3,091 1,467 855 PH COMMENTS DPM DPM DPM DPM DPM DPM DPM during during drilling	CO2 (%)	_	-			_	
DENSITY (°API at 60°) COLOUR Reddish Reddish Reddish served brown brown brown FLUORESCENCE Bright wh Bright wh Bright wh Pount (°C) WATER PROPERTIES RESISTIVITY (Ωm) C1 (frm resis) (PPM) C1 (frm titrat) (PPM) TRITIUM (DPM) PH COMMENTS COMMENTS DPM during during drilling drilling drilling drilling All.1 Pre- Reddish Reddish Reddish served Fre- Reddish Reddish Reddish Reddish Reddish served Fre- Redish Reddish Reddish Reddish Reddish served Fred Redish Reddish Reddish Reddish Served Fred Redish Reddish Reddish Reddish Served Fred Redish Reddish Reddish Reddish Reddish Reddish Fred Redish Served Fred Redish Reddish Reddish Reddish Reddish Reddish Fred Redish Fred	H2S (PPM)		-			-	
COLOUR Reddish Reddish Reddish served brown brown brown PUOR POINT (°C) WATER PROPERTIES RESISTIVITY (Ωm) .377 .364 Pre- 1.05 0.68 @ 14°C @ 15°C served @ 17°C @ 19°C C1 (frm resis) (PPM) 21,000 23,000 6,800 10,000 C1 (frm titrat) (PPM) 12,500 14,000 7,000 9,000 TRITIUM (DPM) 2,876 - 3,091 1,467 855 pH COMMENTS DPM DPM DPM DPM during during drilling	OIL PROPERTIES						
brown brown brown Bright wh Bright wh POUR POINT (°C) WATER PROPERTIES RESISTIVITY (\Omega_m) .377 .364 Pre- 1.05 0.68	DENSITY (°API at 60°)	37.1	42.0	41.1	Pre-		
POUR POINT (°C) WATER PROPERTIES RESISTIVITY (Ωm) .377 .364 Pre- 1.05 0.68 @ 14°C @ 15°C served @ 17°C @ 19°C C1 (frm resis) (PPM) 21,000 23,000 6,800 10,000 C1 (frm titrat) (PPM) 12,500 14,000 7,000 9,000 TRITIUM (DPM) 2,876 - 3,091 1,467 855 PH DPM DPM DPM DPM DPM DPM DPM during during during drilling drilling drilling drilling drilling	COLOUR				served		
RESISTIVITY (\Om) .377		Bright wh	Bright wh	Bright wh			·
## C1 (frm resis) (PPM) 21,000 23,000 6,800 10,000 C1 (frm titrat) (PPM) 12,500 14,000 7,000 9,000 TRITIUM (DPM) 2,876 - 3,091 1,467 855 pH ### COMMENTS DPM DPM DPM during during drilling dri	WATER PROPERTIES						
C1 (frm resis) (PPM) 21,000 23,000 6,800 10,000 C1 (frm titrat) (PPM) 12,500 14,000 7,000 9,000 TRITIUM (DPM) 2,876 - 3,091 1,467 855 pH COMMENTS DPM DPM DPM DPM during during during drilling drilling drilling drilling drilling	RESISTIVITY (Ω_{m})						
C1 (frm titrat) (PPM) 12,500 14,000 7,000 9,000 TRITIUM (DPM) 2,876 - 3,091 1,467 855 pH COMMENTS DPM DPM DPM DPM during during during drilling drilling drilling drilling drilling	Cl (frm resis) (DDM)				Perved	_	
TRITIUM (DPM) 2,876 - 3,091 1,467 855 pH COMMENTS DPM DPM DPM DPM during during during drilling drilling drilling drilling	· · · · · · · · · · · · · · · · · · ·			-			
COMMENTS DPM DPM DPM DPM during during during during drilling drilling drilling	TRITIUM (DPM)		_	•			855
during during during during during drilling drilling drilling drilling drilling	-						
drilling drilling drilling drilli	COMMENTS						

R.F.T. SAMPLING DATA SHEET

COMPANY Esso Australia I WELL Whiptail #1A	Limited				Shee	t No. 2
RUN No. SEAT No. CHAMBER CAPACITY (L) DEPTH (metres)	4 4 22.2 1295	4 4 10.4 1295	5 7 22.2 1158	5 7 10.4 1158	6 10 22.2 1497	6 10 10.4 1497
RECOVERY VOLUMES						
GAS (Cu Ft) OIL (cc) WATER/FILTRATE (cc) OTHER (cc)	None None 21,500	None None 9,750	None None 22,000	None None 10,200	None None 20,500	None None 9,000
SURFACE PRESSURE (PSI)	600	-	650	-	150	-
GAS COMPOSITION						
C1 (PPM) C2 (PPM) C3 (PPM) C4 (PPM) C5 (PPM) C6 (PPM) C02 (%) H2S (PPM)						
OIL PROPERTIES						
DENSITY (°API at 60°F) COLOUR FLUORESCENCE POUR POINT (°C) WATER PROPERTIES						
RESISTIVITY ($\Omega_{ m m}$)	1.66	2.71	1.3	2.35	0.613	1.7
Cl (frm resis) (PPM) Cl (frm titrat) (PPM) TRITIUM (DPM) pH			@ 19°C 5,000 5,500 616		@ 20°C 10,000 10,000 1,594	
COMMENTS	DPM during drilling 3202	DPM during drilling 3202	DPM during drilling 3098	DPM during drilling 3098	DPM during drilling 3130	DPM during drillin 3130

Augin Beginner 11 augustus

R.F.T. SAMPLING DATA SHEET

COMPANY Esso Australia L WELL Whiptail #1A	imited			Sheet	No. 3
RUN No. SEAT No. CHAMBER CAPACITY (L) DEPTH (metres)	7 24 22.2 1363.5	7 24 10.4 1363.5	8 32 44.8 2651	9 40 44.8 2664.5	9 40 10.4 2664.5
RECOVERY VOLUMES					
GAS (Cu Ft) OIL (cc) WATER/FILTRATE (cc) OTHER (cc)	None None 22,000	None None 10,000	0.8 None 20,000	0.6 Sn None 7,300	nl amount None 3,000
SURFACE PRESSURE (PSI)	450	-	0	0	0
GAS COMPOSITION					
C1 (PPM) C2 (PPM) C3 (PPM) C4 (PPM) C5 (PPM) C6 (PPM) C02 (%) H2S (PPM)				Insufficient Sample	147,333 6,028 691 249 80 30 Nil Nil
OIL PROPERTIES					
DENSITY (°API at 60°F) COLOUR FLUORESCENCE POUR POINT (°C) WATER PROPERTIES					
RESISTIVITY (Ωm)	0.455	0.710	0.23	0.265	0.268
Cl (frm resis) (PPM) Cl (frm titrat) (PPM) TRITIUM (DPM) pH	@ 20°C 14,000 160	@ 20°C 9,000 92	@ 16°C 30,000 18,000 3,020	@ 16.5°C 28,000 17,500 2,801	@ 16.5°C 27,000 18,000 2,692
COMMENTS	DPM during drilling 3139	DPM during drilling 3139	DPM during drilling 3260	DPM during drilling 3250	DPM during drilling 3250

PORE PRESSURE DATA SHEET

COMPANY: ESSO AUSTRALIA LTD. DATA FROM RFT'S

WELL : WHIPTATL No.1A

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESS	PORE PRESS GRADIENT E.M.W.(MSL)	PORE PRESS GRADIENT
METRES	TUD. METRES	PSIA	PPG	PSI/M
1331.0	1310.0	1872.10	8.377	1,429
1352.5	1331.5	1902.10	8.774	1.429
1369.0	1348.0	1924,50	8.368	1,428
1380.0	7359.0	1948.50	8,404	1,434
1385.5	1364.5	1954.20	8.395	1.432
1392.0	1371,0	1961.10	8.385	1.430
1397.5	1376.5	1967.30	8.377	1,429
1403.5	1302.5	1976.80	8.381	1.430
1407.0	1386.0	1981.30	8.379	1.430
1420.0	1399.0	1999,60	8.378	1.429
1436.0	1415.0	2023.60	8.383	1,430
1454.0	1433.0	2049,60	8.304	1.430
1467.0	1446.0	2067,20	8.380	1,430
1497.0	1476.0	2109.60	8,378	1.429
2648.5	2627.5	3735,30	8.333	1.422
2649,5	2628.5	3739.30	8,339	1,423
2651,0	2630.0	3739,30	8.334	1,422
2664.5	2643.5	3775.30	8.371	1,428
2665.0	2644.0	3769.30	8,356	1.426

APPENDICES

COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the DRILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTBIT, and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

the following data lists have been made for this well:

- (a). Bit record and bit initialization data
- (b). Hydraulic analyses
- (c). Data list A
- (d). Data list B
- (e). Data list C
- (f), Data list D

COMPUTER PLOTS

Using the REPORT program, hte following plots have been drawn for this well:

GEOPLOT - 1:5000 SCALE - 2m averages

Since all the data is stored on tape, further data lists or plots are available at any time on request.

(a). BIT RECORD AND BIT INITIALIZATION DATA

BIT SIZE Inches

BIT COST Australian dollars

JET SIZE Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME. Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

	IADC CODE I	MAKE & T	YPE	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT	BIT Run	TOTAL HOURS	AROP	TRIP TIME	CCOST	TOTAL TURNS	CONDITION T B G
-		HTC OSC3 HTC X3A		26.000 17.500		20 20 20 20 20 20	61.0 197.0	197.0 797.0	136.0 600.0	3.87 12.70			136.14 97.77		1 1 0.00 0 1 1 0.000
_		HTC X <mark>3A</mark> CHRIS RC		12.250 9.875		18 18 18 15 15 14	797.0 1165.4	1165.4 1175.5	368.4 10.1				140.86 1739.22	72677 1029	3 3 0.000 0 0 0.005
4	517	HTC J22 HTC J22		12.250	8520.00 8520.00	18 18 16	1175.5 1789.0	1789.0 2021.0	613.5	33.91	18.1	4.5	242.53 402.71	139627 59491	4 6 0.188
6	537 1	HTC J33		12.250	8266.00	16 16 18	2021.0	2397.0	376.0	48.06	7.8	7.0	556.77	154094	5 5 0.250

WELL: WHIPTAIL 1A BIT RECORD

	CODE MAKE & TYPE	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT		TOTAL HOURS	AROP	TRIP	CCOST		CONDITION T B G
7	517 HTC J22	12.250	8520.00	16 16 18	2397.0	2719.0	322.0	53.62	6.0	7.1	715.12	162095	6 6 0.25
8	517 HTC J22	12.250	8520.00	16 16 18	2719.0	2737.0	18.0	4,45	4.0	7.8	2958.72	13405	1 1 0.000
8	4 CHRIS RC4	9.875	0,00	15 15 16	2737.#	2755.0	18.0	2.71	6.6	7.8	2131.97	19526	0 0 0.020
9	517 HTC J22	12.250	0.00	16 16 18	2755.0	2821.0	66.0	14.24	6.7	7.8	958.22	40290	1 3 0.125

.

.

BIT NUMBER: 1 IADC CODE 111	HTC OSC3AJ	
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID	61.0 61.0 0.00 3652.00 1.2 26.000 20 18.96 9.750 0.00 0.000 32.00 5.000 0.00 0.000	20 2.813 0.000 3.125 4.276
PUMP VOLUMES 1 AND 2	0.119 0.119 1.20 8.4 0.00 0.00 10.0 3.0 1.20	
FINISHING DEPTH	197.0 3.9 23470 T 1 B 1	G 0.000
BIT NUMBER: 2 IADC CODE 114	HTC X3A	
STARTING DEPTH, TVD	197.0 197.0 4978.00 3652.00 2.0 17.500	
NOZZLES	20 20 20.90 9.750 94.30 8.000 55.20 5.000 5.000	20 2.813 2.813 3.125 4.276
CASING DEPTH, ID	182.00 19.124 61.00 21.000 0.119 0.119 1.20 8.4 0.00 0.00	
CUTTINGS DIAMETER, DENSITY	3.0 1.50	
FINISHING DEPTH	797.0 12.7 114343 T 1 B 1	G 0.000

BIT NUMBER:	3	IADC	CODE	114	HTC X3A		
STARTING DEPT	ъ т	1175			797.0	797.0	
BIT COST, RIG					2445.00	3652,00	
TRIP TIME,					3.0	COSETO	
BIT DIAMETER.					12,250		
NOZZLES				4 2 1 7 7 7	18	18	18
DRILL COLLAR					181.18	8.000	2.813
HW DRILL PIPE					82.95	5.000	3.125
DRILL PIPE OF					man aa	5.000	4.276
CASING DEPTH,					782,00	12.615	
RISER LENGTH, PUMP VOLUMES					60.00 0.119	21.000 0.119	
PORE PRESSURE					1,20	V - X X 2	
NORMAL PORE P					8.4		
OVERBURDEN GR					0.00		
STRESS RATIO					0.00		
"d" EXPONENT					10.0		
CUTTINGS DIAM	ETER	, DENS	SITY.,		1.8	2.00	
FINISHING DEP	TL				1165.4		
CUMULATIVE HO					10,5	72677	
BIT CONDITION					Т 3		6 0.000
BIT NUMBER:	3	IADE	CODE	4	CHRIS RC	44	
پهند مورد چې وردې دوره دورد لر ورده					ند سدو د اسک	ر دد ، د اد اد	
STARTING DEPT					1165.4	1165.3	
BIT COST, RIG TRIP TIME					0,00 4,5	3652.00	
BIT DIAMETER.					9.875		
NOZZLES					15	15	14
DRILL COLLAR					172.40	8.000	2.813
HW DRILL PIPE					82,95	5.000	3,125
DRILL PIPE OF						5.000	4.276
CASING DEPTH,	ID.		1 1 1 2		782.00	12.615	
RISER LENGTH,	ID.		: 1 1 t p	1 1 1 1 1 1	60.00	21.000	
PUMP VOLUMES PORE PRESSURE	I ON	D Z.,,, n even	ALETALT	1 1 1 2 1 1	0.119 1.20	0.119	
NORMAL PORE P					8.4		
OVERBURDEN GR					0.00		
STRESS RATIO					0.00		
"d" EXPONENT					10.0		
CUTTINGS DIAM					1.0	2.00	
FINISHING DEP	TIJ				1175.5		
CUMULATIVE HO					0.3	1029	
BIT CONDITION					Τ΄0	B 0	G 0.005

BIT NUMBER: 4 IADC CODE 517	HTC J22		
STARTING DEPTH, TVD. BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER "d" EXPONENT CORRECTION FACTOR	1175.5 8520.00 4.5 12.250 18 172.40 82.95 782.00 60.00 0.119 1.20 8.4 0.00 0.00 10.0	1175.4 3652.00 18 8.000 5.000 12.615 21.000 0.119	16 2.813 3.125 4.276
CUTTINGS DIAMETER, DENSITY	2.0	2.10	
FINISHING DEPTH	1789.0 33.9 T 4	139627 B 6	G 0.188
BIT NUMBER: 5 IADC CODE 517	HTC J22		
STARTING DEPTH, TVD	1789.0 8520.00 6.3 12.250	1788.8 3652.00	
NOZZLES	16 172.40 82.95	16 8.000 5.000 5.000	18 2.813 3.125 4.226
CASING DEPTH, ID	782.00 60.00 0.119 1.20	12.615 21.000 0.119	(I have a second
NORMAL PORE PRESSURE	8.4 0.00 0.00 10.0 2.0	2.20	
The second secon	en 1 tr	too I too W	
FINISHING DEPTH	2021.0 17.0 T 2	59491 B 3	G 0.125

...

BIT NUMBER: 6 IADC CODE 537	HTC J33		
STARTING DEPTH, TVD	2021.0	2020.8	
BIT COST, RIG COST/HOUR	8266.00	3652,00	
TRIP TIME,	7.0		
BIT DIAMETER	12.250		
NOZZLES	16	16	18
DRILL COLLAR LENGTH, OD, ID	172.40	8.000	2.813
HW DRILL PIPE LENGTH, OD, ID	82.95	5.000	3.125
DRILL PIPE OD, ID		5.000	4.276
CASING DEPTH, ID	782.00	12.615	
RISER LENGTH, ID	60.00	21,000	
PUMP VOLUMES 1 AND 2	0.119	0.119	
PORE PRESSURE CALC EXPONENT	1.20		
NORMAL PORE PRESSURE	8.4		
OVERBURDEN GRADIENT MODIFIER	0.00		
STRESS RATIO MODIFIER	0.00		
"d" EXPONENT CORRECTION FACTOR	10.0		
CUTTINGS DIAMETER, DENSITY	1.5	2.10	
FINISHING DEPTH	2397.0		
CUMULATIVE HOURS, TURNS		154094	
BIT CONDITION OUT	T 5	B 5	G 0.250

BIT NUMBER: 7 IADC CODE 517	нтс јаг		
STARTING DEPTH, TVD	2397.0 8520.00 7.1 12.250	2396.3 3652.00	
NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID	16 172.53 82.95	16 8.000 5.000	18 2.813 3.125
DRILL PIPE OD, ID	782.00 60.00 0.119	5.000 12.615 21.000 0.119	4.276
PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER	1.20 8.4 0.00 0.00		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0	2.10	
FINISHING DEPTH	2719.0 53.6 T 6	1620 9 5 B 6	G 0.250
BIT NUMBER: 8 IADC CODE 517	HTC J22		
STARTING DEPTH, TVD	2719.0 8520.00 7.8	2718.3 3652.00	
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID	2719.0 8520.00		18 2.813 3.125 4.276
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT	2719.0 8520.00 7.8 12.250 16 173.51 82.95 782.00 60.00 0.119 1.20	3652.00 16 8.000 5.000	2.813 3.125
STARTING DEPTH, TVD	2719.0 8520.00 7.8 12.250 16 173.51 82.95 782.00 60.00 0.119	3652.00 16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH, TVD	2719.0 8520.00 7.8 12.250 16 173.51 82.95 782.00 60.00 0.119 1.20 8.4 0.00 0.00 0.00	3652.00 16 8.000 5.000 5.000 12.615 21.000 0.119	2.813 3.125

--

ar esemble.

.

. 4

BIT NUMBER: 8 IADC CODE 4	CHRIS RC	4	
STARTING DEPTH, TVD	2737.0 0.00 7.8 9.875	2736.3 3652.00	
NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	15 162.11 82.95	15 8.000 5.000 5.000	16 2.813 3.125 4.276
RISER LENGTH, ID	782.00 60.00 0.119	12.615 21.000 0.119	7,570
PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER	1.20 8.4 0.00 0.00		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0	2.20	
FINISHING DEPTH	2755.0 2.7 T 0	19526 B O	G 0.020
BIT NUMBER: 9 IADO CODE 517	HTC J22		
STARTING DEPTH, TVD	2755.0 0.00 7.8	2754.0 3652.00	
PREVIOUS HOURS, TURNS	4.45 18.0 12.250	13405	4 75
NOZZLES	16 172.83 82. 9 5	16 8.000 5.000 5.000	18 2.813 3.125 4.276
CASING DEPTH, ID	782.00 60.00 0.119	12.615 21.000 0.119	
PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER	1,20 8,4 0,00 0,00	,	
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0	2.20	
FINISHING DEPTHCUMULATIVE HOURS, TURNS	2821.0 14.2 T 1	40290 B 3	G 0.125

(b), HYDRAULIC ANALYSIS

Data listed from the tape every 100m for each bit run.

DEPTH. Metres

FLOW RATE. Rate of mud flow into the well, in gallons per minute.

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which the flow becomes turbulent

SLIP VELOCITY, . . . The rate of slip of cuttings in the annulus under laminar flow

ASCENT VELOCITY. . . . The rate of ascent of cuttings in the annulus under laminar flow

PRESSURE UNITS Pounds per square inch

IMPACT FORCE The impact force at the bit, in foot-pounds per second squared.

H.H.P. Hydraulic horsepower at the bit

JET VELOCITY The velocity of mud through the bit nozzles, in metres per second.

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 100.0 AND TVD 100.0

SPM 1 60 SPM 2 67 FLOW RATE 635

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
HWDC/OH	1,851	35	8	64	LAMINAR	0	8	0.0
HWDP/OH	2.074	66	7	62	LAMINAR	0	7	0.0
DP/OH	2,074	102	7	62	LAMINAR	(I	7	0.0
TOTAL	. VOLUME	203			TOTAL	PRESSURE	DROP	t , 0

LAG: 13.4 MINUTES 807 STROKES #1 AND 901 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 376.7 HHP 140 IMPACT FORCE 625 % SURFACE PRESSURE 83.7 HHP/sqin 0.26 JET VELOCITY 67

PRESSURE BREAKDOWN:

SURFACE 31.7
STRING 61.1
BIT 376.7
ANNULUS 0.1

TOTAL 469.5 PUMP PRESSURE 450.0 % DIFFERENCE 4.3

BOTTOM HOLE PRESSURES:

		YSITY JNITS		व	RESSURE UNITS
CIRCULATING:	D WEIGHT ECD P MARGIN D WEIGHT	8.60 8.61 0.01 8.59	HYDROSTATIC CIRCULATING ESTIMATED SU BOTTOM HOLE	PRESSURE VAB	146.7 146.8 0,2 146.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 200.0 AND TVD 200.0

TSPM 1 99 SPM 2 98 FLOW RATE 985

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH HWDC/CSG	0.673 0.862	12 3	35 27	69 68	LAMINAR LAMINAR	0	35 27	0.1 0.0
DC/CSG	0.961	91	24	66	LAMINAR	0	24	匹, 0
HWDP/CSG HWDP/RIS	1.085 1.325	26 42	22 18	64 63	LAMINAR LAMINAR	0	22 18	0.1 0.1
DP/RIS	1.325	39	18	63	LAMINAR	0	1-8	0.1
TOTAL	. VOLUME	212			TOTAL	PRESSUR	E DROP	0.6

LAG: 9.0 MINUTES 895 STROKES #1 AND 886 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 917.0 HHP 527 IMPACT FORCE 1522 % SURFACE PRESSURE 61.1 HHP/sqin 2.19 JET VELOCITY 104

PRESSURE BREAKDOWN:

SURFACE 70.4 STRING 461.9 BIT 917.0 ANNULUS 0.6

TOTAL 1449.9 PUMP PRESSURE 1500.0 % DIFFERENCE 3.3

BOTTOM HOLE PRESSURES:

	DENSITY UNITS	PRESSURE UNITS
CIRCULATING:	WEIGHT 8.70 ECD 8.72 MARGIN 0.03 WEIGHT 8.67	HYDROSTATIC PRESSURE 296.8 CIRCULATING PRESSURE 297.4 ESTIMATED SWAB 1.2 BOTTOM HOLE PRESSURE 295.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 300,0 AND TVD 300,0

SPM 1 101

SPM 2 98

FLOW RATE 995

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW		SCEND VEL	PRESSURE DROF
HWDC/OH	0.673	14	35	69	LAMINAR	0	35	0.1
DC/OH	0.772	73	31	68	LAMINAR	0	30	0.4
HWDP/OH	0.896	3	26	65	LAMINAR	0	26	0.0
HWDP/CSG	1.085	57	22	64	LAMINAR	0	22	0.1
DP/CSG	1.085	74	22	64	LAMINAP	0	22	0.2
DP/RIS	1.325	81	18	63	LAMINAR	0	18	0.1
TOTAL	. VOLUME	302			TOTAL	PRESSURE	DROP	0.9

LAG: 12.7 MINUTES 1285 STROKES #1 AND 1248 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 935.7 HHP 543 IMPACT FORCE 1553 % SURFACE PRESSURE 50.7 HHP/sqin 2.26 JET VELOCITY 105

PRESSURE BREAKDOWN:

SURFACE 71.7 STRING 511.8 BIT 935.7 ANNULUS 0.9

TOTAL 1520.1 PUMP PRESSURE 1847.0 % DIFFFRENCE 17.7

BOTTOM HOLE PRESSURES:

		UNITS	1	UNITS
NOT CIRCULATING: MU	D WEIGHT	8.70	HYDROSTATIC PRESSURE	445.3
CIRCULATING:	ECO	8.72	CIRCULATING PRESSURE	446.2
PULLING OUT: TRI	P MARGIN	0.04	ESTIMATED SWAB	1.8
EFFECTIVE MU	D WEIGHT	8.66	BOTTOM HOLE PRESSURE	443.4

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 101

SPM 2 98

FLOW RATE

995

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH	0.673	1.4	35	69	LAMINAR	ņ	35	0.1
DC/OH	0.772	73	31	68	LAMINAR	0	30	0.4
HWDP/OH	0.896	49	26	65	LAMINAR	0	26	0.2
DP/OH	0.896	43	26	65	LAMINAR	0	26	0.1
DP/CSG	1,085	131	22	64	LAMINAR	0	22	0.3
DP/RIS	1.325	81	18	63	LAMINAR	0	8 t	0.1
TOTA	. VOLUME	391			TOTAL	PRÉSSUR	E DROP	1.2

BIT HYDRAULICS:

PRESSURE DROP 935.7 HHP 543 IMPACT FORCE 1553 Z SURFACE PRESSURE 49.8 HHP/sqin 2.26 JET VELOCITY 105

LAG: 16.5 MINUTES 1668 STROKES #1 AND 1619 STROKES #2

PRESSURE BREAKDOWN;

SURFACE 71.7 STRING 553.1 BIT 935.7 ANNULUS 1.2

TOTAL 1561.7 PUMP PRESSURE 1880.0 % DIFFERENCE 16.9

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 8.70 593.7 HYDROSTATIC PRESSURE 8.72 CIRCULATING: ECD CIRCULATING PRESSURE 594.9 PULLING OUT: TRIP MARGIN 0.04 ESTIMATED SWAB 2.4 591.3 EFFECTIVE MUD WEIGHT 8.66 BOTTOM HOLE PRESSURE

CORE LAB ::: ::: ::: ::: ::: ::: ::: ::: :::

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 100

SPM 2 98 FLOW RATE 991

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ TINU	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH	0.673	14	35	69	LAMINAR	0	35	0.1
DC/OH	0.772	73	31	67	LAMINAR	0	30	0.4
HWDP/OH	0.896	49	26	65	LAMINAR	0	26	0.2
DP/OH	0.896	132	26	65	LAMINAR	0	26	0.4
DP/CSG	1.085	131	22	6.4	LAMINAR	0	22	0.3
DP/RIS	1.325	81	10	63	LAMINAR	0	18	0.1
TOTAL	. VOLUME	481			TOTAL	PRESSURE	DROP	1.5

LAG: 20.4 MINUTES 2036 STROKES #1 AND 2003 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 950.9 HHP 550 IMPACT FORCE 1579 HHP/sqin 2.29 JET VELOCITY % SURFACE PRESSURE 45.4 105

PRESSURE BREAKDOWN:

SURFACE 72.6 8.108 STRING

950.9 BIT

ANNULUS 1.5 TOTAL

PUMP PRESSURE 2094.7 % DIFFERENCE 22.3 1626.8

BOTTOM HOLE PRESSURES:

	UNITS	·	UNITS
NOT CIRCULATING: MUD	WEIGHT 8.90	HYDROSTATIC PRESSURE	759.2
CIRCULATING:	ECD 8.92	CIRCULATING PRESSURE	760.7
PULLING OUT: TRIP	MARGIN 0.03	ESTIMATED SWAR	3.0
EFFECTIVE MUD	WEIGHT 8.87	BOTTOM HOLE PRESSURE	756.2

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 1 100 SPM 2 98 FLOW RATE 991

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
HWDCZOH	0.673	14	35	69	LAMINAR	0	35	0.1
DC/OH	0.772	73	31	67	LAMINAR	0	30	0 . 4
_ HWDP/OH	0.896	49	26	65	LAMINAR	0	26	0.2
DP/OH	0.896	222	26	65	LAMINAR	Ō	26	0.7
DP/CSG	1,085	131	22	64	LAMINAR	0	22	0.3
DP/RIS	1.325	81	18	63	LAMINAR	0	18	0.1
TOTAI	_ VOLUME	570			TOTAL.	PRESSUR	RE DROP	1.8

LAG: 24.2 MINUTES 2413 STROKES #1 AND 2379 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 950.1 HHP 549 IMPACT FORCE 1577 % SURFACE PRESSURE 47.8 HHP/sqin 2.28 JET VELOCITY 105

PRESSURE BREAKDOWN:

SURFACE 72.5 STRING 643.1 BIT 950.1 ANNULUS 1.8

TOTAL 1667.6 PUMP PRESSURE 1988.9 % DIFFERENCE 16.2

BOTTOM HOLE PRESSURES:

•	DENSITY UNITS	P	RESSURE UNITS
	WEIGHT 8.90	HYDROSTATIC PRESSURE	911.0
CIRCULATING:	ECD 8.92	CIRCULATING PRESSURE	912.8
PULLING OUT: TRIP	MARGIN 0.03	ESTIMATED SWAR	3.5
EFFECTIVE MUD	WEIGHT 8.87	BOTTOM HOLE PRESSURE	907.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0

SPM 1 99 SPM 2 98 FLOW RATE 988

ANNULAR MYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
HWDC/OH	0.673	14	XS	69	LAMINAR	. 0	35	0.1
DC/OH	0.772	73	30	67	LAMINAR	0	30	0.4
HWDP/OH	0.896	49	26	65	LAMINAR	0	26	0.2
DP/OH	0,896	311	26	65	LAMINAR	0	26	1.0
DP/CSG	1,085	131	22	64	LAMINAR	0	22	0.3
DP/RIS	1.325	81	18	63	LAMINAR	0	18	0.1
TOTAL	VOL.UMC	660			TOTAL	PRESSURE	DROP	2.0

LAG: 28.1 MINUTES 2784 STROKES #1 AND 2762 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 944.4 HMP 544 IMPACT FORCE 1568 % SURFACE PRESSURE 46.6 HMP/sqin 2.26 JET VELOCITY 105

PRESSURE BREAKDOWN:

SURFACE 72.2
STRING 681.2
BIT 944.4
ANNULUS 2.0
TOTAL 1699.9 PUMP PRESSURE 2028.4 % DIFFERENCE 16.2

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS MUD WEIGHT 8,90 HYDROSTATIC PRESSURE 1062.9 NOT CIRCULATING: 1064.9 CIRCULATING PRESSURE ECO 8.92 CIRCULATING: 4.1 TRIP MARGIN 0.03 ESTIMATED SWAB PULLING OUT: EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 1058.8 8.87

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TVD 800.0

SPM 1 90 SPM 2 90 FLOW RATE 901

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP ¢ VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	5	78	107	LAMINAR	0	78	0.6
DC/CSG	0.303	49	71	107	LAMINAR	0	70	4.7
HWDP/CSG	0.427	35	50	104	LAMINAR	0	50	1.2
DP/CSG	0.427	203	50	104	LAMINAR	0	50	6.7
DP/RIS	1.325	80	16	101	LAMINAR	0	1.6	0.2
TOTAL	_ VOLUME	373			TOTAL	PRESSURE	DROP	13,4

LAG: 17.4 MINUTES 1564 STROKES #1 AND 1568 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1196.7 HHP 629 IMPACT FORCE 1609 % SURFACE PRESSURE 54.4 HHP/sqin 5.34 JET VELOCITY 118

PRESSURE BREAKDOWN:

SURFACE 61.1 STRING 796.6 BIT 1196.7 ANNULUS 13.4

TOTAL 2067.7 PUMP PRESSURE 2198.9 % DIFFERENCE 6.0

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 8.90 HYDROSTATIC PRESSURE 1214.7 CIRCULATING: 9.00 ECD CIRCULATING PRESSURE 1228.1 PULLING OUT: TRIP MARGIN 0.20 ESTIMATED SWAR 26.8 EFFECTIVE MUD WEIGHT 8.70 BOTTOM HOLE PRESSURE 1187.9

CORE LAB To one per me me per per ton one

HYDRAULICS ANALYSIS PROGRAM .

HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 98

SPM 2 97 FLOW RATE

972

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FLOW	VEL.	VEI.	DROP
DC/OH	0.274	32	8.3	107	LAMINAR	0	84	4,(1
DC/CSG	0.303	19	76	107	LAMINAR	0	76	1,9
HWDP/CSG	0.427	35	54	104	LAMINAR	0	54	1.2
DP/CSG	0.427	246	54	104	LAMINAR	n	54	8,3
DP/RIS	1.325	8.0	17	101	LAMINAR	0	17	0.2
TOTAL	VOLUME	413			TOTAL	PRESSUR	E DEOP	15.5
			*** *** *** *** ***					

17.8 MINUTES 1744 STROKES #1 AND 1723 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1392.4 HHP 789 % SURFACE PRESSURE 54.3 Him/sgin 6.70

IMPACT FORCE

1872 JET VELOCITY 127

PRESSURE BREAKDOWN:

SURFACE 70.0

STRING 953,2

BIT 1392.4

ANNULUS 15.5 PUMP PRESSURE 2564.5 TOTAL 2431.1

% DIFFERENCE 5.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 8.90 HYDROSTATIC PRESSURE 1366.5 CIRCULATING: ECD 9.00 CIRCULATING PRESSURE 1382.0

PULLING OUT: TRIP MARGIN 0.20 ESTIMATED SWAR 31.0

EFFECTIVE MUD WEIGHT 8.70 BOTTOM HOLE PRESSURE 1335.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1000.0 AND TVD 1000.0

SPM 1 97 SPM 2 97 FLOW RATE 972

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	50	84	98	LAMINAR	0	84	6.0
HWDP/OH	0.398	15	58	90	LAMINAR	0	58	0.5
HWDP/CSG	0.427	20	54	89	LAMINAR	0	54	0.6
DP/CSG	0.427	289	54	89	LAMINAR	0	54	8.2
DP/RIS	1.325	80	17	8.0	LAMINAR	0	17	0.2
TOTAL	. VOLUME	452			TOTAL	PRESSURE	DROP	15.4

LAG: 19.5 MINUTES 1897 STROKES #1 AND 1904 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1406.4 HHP 797 IMPACT FORCE 1891 % SURFACE PRESSURE 50.0 HHP/sqin 6.77 JET VELOCITY 127

PRESSURE BREAKDOWN:

SURFACE 81.1 STRING 1150.6 BIT 1406.4 ANNULUS 15.4

TOTAL 2653.5 PUMP PRESSURE 2810.7 % DIFFERENCE 5.6

BOTTOM HOLE PRESSURES:

	DENSIT UNIT		PRESSURE UNITS
NOT CIRCULATING: MUD	WEIGHT 8.9	11 1 me + 1 40 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN 0.1 WEIGHT 8.8	8 ESTIMATED SWAB	30.9

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 88 SPM 2 94 FLOW RATE 909

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL / UNIT	VOL	ANN	CRIT VEL	TYPE OF FLOW	SLIP # VEL	ASCEND VEL	PRESSURE DROP
I рс/он	0.274	50	79	123	LAMINAR	0	79	9.8
HWDP/OH	0.398	33	54	115	LAMINAR	Õ	54	1.8
DP/OH	0.398	21	54	115	LAMINAR	0	54	1.2
DP/CSG	0.427	309	51	114	LAMINAR	Û	51	14.6
DP/RIS	1.325	80	1 (.	103	LAMINAR	0	16	0.3
TOTAL	. VOLUME	492			TOTAL	PRESSURE	DROP	27.7

LAG: 22.8 MINUTES 2007 STROKES #1 AND 2130 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1395.4 HHP 740 IMPACT FORCE 1876 % SURFACE PRESSURE 46.3 HHP/sqin 6.28 JET VELOCITY 119

PRESSURE BREAKDOWN:

SURFACE 86.2 STRING 1273.1

STRING 1273.1 BIT 1395.4

ANNULUS 27.7

TOTAL 2782.4 PUMP PRESSURF 3016.6 % DIFFERENCE 7.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE
UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 10.20 HYDROSTATIC PRESSURE 1914.1 CIRCULATING: ECD 10.35 CIRCULATING PRESSURE 1941.8

PULLING OUT: TRIP MARGIN 0.29 ESTIMATED SWAB 55.3

EFFECTIVE MUD WEIGHT 9.91 BOTTOM HOLE PRESSURE 1858.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1200.0 AND TVD 1199.9

SPM 1 85 SPM 2 84 FLOW RATE 848

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP /	ASCEND VEL	PRESSURE DROF
DC/OH	0.274	47	74	122	LAMINAR	0	73	9.0
HWDP/OH	0.398	33	51	112	LAMINAR	0	51	1.7
DP/OH	0.398	65	51	112	LAMINAR	0	51	3.4
DP/CSG	0.427	309	47	111	LAMINAR	0	47	13.8
DP/RIS	1.325	80	15	99	LAMINAR	0	15	0.3
TOTAL	_ VOLUME	533			TOTAL	PRESSURI	e prop	28.2

LAG: 26.4 MINUTES 2251 STROKES #1 AND 2229 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1420.5 HHP 703 IMPACT FORCF 1777 % SURFACE PRESSURE 50.3 HHP/sqin 5.97 JET VELOCITY 119

PRESSURE BREAKDOWN:

SURFACE 78.5 STRING 1178.0

BIT 1420.5 ANNULUS 28.2

TOTAL 2705.1 PUMP PRESSURE 2824.0 % DIFFERENCE 4.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE
UNITS UNITS

HYDROSTATIC PRESSURE MUD WEIGHT 10.30 2108.5 NOT CIRCULATING: 10.44 CIRCULATING PRESSURE 2136.7 ECD CIRCULATING: ESTIMATED SWAR 56.5 TRIP MARGIN 0.28 PULLING OUT: EFFECTIVE MUD WEIGHT 10.02 BOTTOM HOLE PRESSURE 2052.0

HYDRAULICS ANALYSIS PROGRAM

	HYDRAULICS	CALCULATIONS	AT DEPTH	1300.0	AND TVD 1299.	9
--	------------	--------------	----------	--------	---------------	---

SPM 1 109 SPM 2 0 FLOW RATE 547

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	VEL	ORIT VEL	TYPE OF FLOW	SLIP A	SCEND	PRESSURE DROP
рсион	0.274	47	47	122	LAMINAR	0	47	7.5
HWDP/OH	0.398	33	33	112	LAMINAR	0	33	1.5
DP/OH	0.398	105	7.7.	112	LAMINAR	0	33	4.6
l DP/CSG	0.427	309	30	112	LAMINAR	0	30	11.5
DP/RIS	1.325	80	1 ()	100	LAMINAR	0	1.0	0.2
TOTAL	. VOLUME	573			TOTAL	PRESSURE	DROP	25.3

LAG: 44.0 MINUTES 4815 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 584.1 HMP 186 IMPACT FORCE 730 % SURFACE PRESSURE 46.0 HMP/sqin 1.58 JET VELOCITY 77

PRESSURE BREAKDOWN:

SURFACE 35.3

STRING 550.2

BIT 584.1 ANNULUS 25.3

TOTAL 1194.9 PUMP PRESSURE 1270.3 % DIFFERENCE 5.9

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 10.20 HYDROSTATIC PRESSURE 2262.0 CIRCULATING: ECD 10.31 CIRCULATING PRESSURE 2287.3

PULLING OUT: TRIP MARGIN 0.23 ESTIMATED SWAR 50.6

EFFECTIVE MUD WEIGHT 9.97 BOTTOM HOLE PRESSURE 2211.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TVD 1399.9

SPM 1 111 SPM 2 0 FLOW RATE 554

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	47	48	122	LAMINAR	0	48	7.6
HWDP/OH	0.398	33	33	112	LAMINAR	0	33	1.5
DP/OH	0,398	144	33	112	LAMINAR	0	33	6.4
DP/CSG	0.427	309	31	112	LAMINAR	0	31	11.6
DP/RIS	1.325	80	1.0	100	LAMINAR	0	10	0.2
TOTAL	VOLUME	613			TOTAL	PRESSURE	DROP	27.2

LAG: 46.5 MINUTES 5150 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 599.9 HHP 194 IMPACT FORCE 750 X SURFACE PRESSURE 45.3 HHP/sqin 1.65 JET VELOCITY 78

PRESSURE BREAKDOWN:

SURFACE 36.2 STRING 584.5 BIT 599.9 ANNULUS 27.2

TOTAL 1247.8 PUMP PRESSURE 1325.2 % DIFFERENCE 5.8

BOTTOM HOLE PRESSURES:

NOT CIRCULATING: MUD WEIGHT 10.20 HYDROSTATIC PRESSURE 2436.0

DENSITY

PRESSURE

CIRCULATING: ECD 10.31 CIRCULATING PRESSURE 2463.2
PULLING OUT: TRIP MARGIN 0.23 ESTIMATED SWAB 54.4
EFFECTIVE MUD WEIGHT 9.97 BOTTOM HOLE PRESSURE 2381.6

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1499.9

SPM 1 84 SPM 2 89 FLOW RATE 864

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNTT	VOL	ANN VEL	DRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DCZOH	0.274	47	75	122	LAMINAR	n	75	9.1
HWDP/DH	0.398	33	52	112	LAMINAR	0	51	1.8
DP/OH	0.398	184	52	112	LAMINAR	0	51	9.8
DP/CSG	0.427	309	40	112	LAMINAR	0	48	13.9
DP/RIS	1.325	. 80	16	100	LAMINAR	Ü	16	Σ, θ
TOTAL	_ VOLUME	653			TOTAL	PRESSURE	DROP	34.8

LAG: 31.7 MINUTES 2667 STROKES #1 AND 2818 STROKES #2

BIT HYDRAULICS:

TPRESSURE DROP 1457.8 HHP 735 IMPACT FORCE 1823

Z SURFACE PRESSURE 49.2 HHP/sqin 6.23 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 80.4 STRING 1346.0 BIT 1457.8 ANNULUS 34.8

TOTAL 2919.0 PUMP PRESSURE 2961.9 % DIFFERENCE 1.4

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE
UNITS UNITS

10.20 HYDROSTATIC PRESSURE 2610.0 MUD WEIGHT NOT CIRCULATING: CIRCULATING PRESSURE 2644.8 ECD 10.34 CIRCULATING: 0.2769.7 TRIP MARGIN ESTIMATED SWAB PULLING OUT: BOTTOM HOLE PRESSURE 2540.3 EFFECTIVE MUD WEIGHT 9,93

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1599.8

SPM 1 89 SPM 2 84 FLOW RATE 864

ANNULAR HYDRAULICS:

IUMMA		VOLZ		ANN	CRIT	TYPE OF		SCEND	PRESSURE
T	YPE	UNIT	AOL	VEL.	VEL	FLOW	VEL.	VEL	DROP
DC.	/0H	0.274	47	75	142	LAMINAR	0	75	11.5
HWDP.	/0H	0.398	33	52	133	LAMINAR	0	52	2.3
DP.	/0H	0.398	224	52	133	LAMINAR	0	52	15.8
DP /1	CSG	0.427	309	48	133	LAMINAR	0	48	18.5
DP/I	RIS	1.325	80	1.6	122	LAMINAR	0	16	0 : 4
1	TOTAL	VOLUME	693			TOTAL.	PRESSURE	DROP	48.4

LAG: 33.6 MINUTES 2982 STROKES #1 AND 2838 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1445.7 HHP 729 IMPACT FORCE 1808 % SURFACE PRESSURE 48.7 HHP/sqin 6.19 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 79.9 STRING 1383.2 BIT 1445.7

ANNULUS 48.4

TOTAL 2957.2 PUMP PRESSURE 2967.4 % DIFFERENCE 0.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

HYDROSTATIC PRESSURE 2756.7 MUD WEIGHT 10.10 NOT CIRCULATING: CIRCULATING PRESSURE 2805.0 10.28 ECD CIRCULATING: 96.7 0.35 ESTIMATED SWAB PULLING OUT: TRIP MARGIN 2659.9 BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT 9.75

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1699.8

SPM 1 87 SPM 2 85 FLOW RATE 859

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
DC/OH HWDP/OH	0.274 0.398	47 33	75 51	142 134	LAMINAR LAMINAR	0	74 51	11.4
DP/OH	0.398 0.427	264 309	51 48	134	LAMINAR LAMINAR	0	51 48	18,5 18,4
DP/CSG DP/RIS	1.325	80	15	123	LAMINAR	0	15	0.4
TOTAL	VOLUME	732			TOTAL.	PRESSUR	RE DROP	51.0

LAG: 35.8 MINUTES 3124 STROKES #1 AND 3030 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1412.4 HHP 708 IMPACT FORCE 1766
% SURFACE PRESSURE 48.3 HHP/sqin 6.00 JET VELOCITY 121

PRESSURE BREAKDOWN:

SURFACE 78.3 STRING 1400.9 BIT 1412.4 -ANNULUS 51.0

TOTAL 2942.6 PUMP PRESSURE 2922.5 % DIFFERENCE 0.7

BOTTOM HOLE PRESSURES:

•		BTINU	•	UNITS
NOT CIRCULATING:	MUD WEIGHT		HYDROSTATIC PRESSURE	2899.9
CIRCULATING:	ECD	10.18	CIRCULATING PRESSURE	2951.0
PULLING OUT: T	RIP MARGIN	0.35	ESTIMATED SWAB	102.1
EFFECTIVE	MUD WEIGHT	9.65	BOTTOM HOLE PRESSURE	2797.9

DENSITY

PRESSURE

CORE LAR

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1800.0 AND TVD 1799.8

SPM 1 82 SPM 2 76 FLOW RATE 791

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A	SCEND VEL	PRESSURE DROP
DC/OH	0.274	47	69	122	LAMINAR	0	68	8.8
HWDP/OH	0,398	33	47	112	LAMINAR	. 0	47	1.7
DP/OH	0.398	304	47	112	LAMINAR	0	47	15.6
DP/CSG	0.427	309	44	111	LAMINAR	0	44	13.4
DP/RIS	1.325	80	14	99	LAMINAR	0	14	0.2
TOTAL	VOLUME	772			TOTAL	PRESSURE	DROP	39.7

LAG: 41.0 MINUTES 3372 STROKES #1 AND 3117 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1444.5 HHP 667 IMPACT FORCE 1671
% SURFACE PRESSURE 49.8 HHP/sgin 5.66 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 69.2 STRING 1278.1 BIT 1444.5 ANNULUS 39.7

TOTAL 2831.6 PUMP PRESSURE 2900.8 % DIFFERENCE 2.4

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.30 HYDROSTATIC PRESSURE 3162.6 ECD CIRCULATING PRESSURE CIRCULATING: 10.43 3202.4 TRIP MARGIN 0.26 79.4 PULLING OUT: ESTIMATED SWAB EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3083.2 10.04

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1899.8

SPM 1 0 SPM 2 110 FLOW RATE 550

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	47	48	124	LAMINAR	0	48	7.5
HWDP/OH	0.398	33	33	114	LAMINAR	0	33	1.5
_ HO\9Œ	0.398	344	33	114	NAMINA.	0	33	15.2
DP/CSG	0.427	309	31	113	LAMINAR	0	31	11.5
DP/RIS	1.325	80	1.0	101	LAMINAR	0	1.0	0.2
TOTAL	VOLUME	812			TOTAL	PRESSURE	DROP	35.9

LAG: 62.0 MINUTES 0 STROKES #1 AND 6824 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 677.1 HHP 217 IMPACT FORCE 783

% SURFACE PRESSURE 46.1 HHP/sgin 1.84 JET VELOCITY 84

PRESSURE BREAKDOWN:

SURFACE 35.1 STRING 668.4 BIT 677.1 ANNULUS 35.9

TOTAL 1416.5 PUMP PRESSURE 1470.0 % DIFFERENCE 3.6

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 10.00 HYDROSTATIC PRESSURE 3241.1 CIRCULATING: ECD 10.11 CIRCULATING PRESSURE 3277.0 PULLING OUT: TRIP MARGIN 0.22 ESTIMATED SWAB 71.8

EFFECTIVE MUD WEIGHT 9.78 BOTTOM HOLE PRESSURE 3169.3

CORE LAB ## ## ## ## ## ## ## ##

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 1999.8

SPM 1 82 -SPM 2 81 FLOW RATE 815

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		NNA	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL	VEL.	VEL	FLOW	VEL	VEL	DROF
DC/OH	0.274	47	71	124	LAMINAR	. 0	70	8,9
HWDP/OH	0.398	33	49	114	LAMINAR	0	49	1.7
DP/OH	0.398	384	49	114	LAMINAR	0	49	20.0
DP/CSG	0.427	309	45	113	LAMINAR	0	45	13.6
DP/RIS	1.325	80	15	101	LAMINAR	0	15	0.2
TOTAL	. VOLUME	852			TOTAL	PRESSUR	E DROP	44.4

43.9 MINUTES 3591 STROKES #1 AND 3568 STROKES #2 LAG:

BIT HYDRAULICS:

PRESSURE DROP 1480,1 HHP 704 IMPACT FORCE 1712 % SURFACE PRESSURE 51.1 HHP/sgin 5.97 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 71.0 STRING 1392.7 BIT 1480.1 ANNULUS 44,4

> TOTAL 2988.2 PUMP PRESSURE 2899,0

% DIFFERENCE 3.1

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: 9.95 MUD WEIGHT HYDROSTATIC PRESSURE 3394.6 CIRCULATING: ECD 10.08 CIRCULATING PRESSURE 3439.1 PULLING OUT: TRIP MARGIN 0.26 ESTIMATED SWAB 88.7

EFFECTIVE MUD WEIGHT 9.69 BOTTOM HOLE PRESSURE 3305.9

CORE LAB ----

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2100.0 AND TVD 2099.6

SPM 1 81 SPM 2 80 FLOW RATE 804

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL./ UNIT	YOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
1	DC/OH	0.274	47	7.0	136	LAMINAR	0	70	10.0
	HWDP/OH	0.398	33	48	131	LAMINAR	0	48	2.1
	DP/OH	0.398	423	48	131	LAMINAR	0	48	27.1
,	DP/CSG	0.427	309	45	130	LAMINAR	Ö	45	16.9
	DP/RIS	1.325	80	7.4	123	LAMINAR	0	14	0.4
	TOTAL	_ VOLUME	892			TOTAL	PRESSURE	DROP	56.4

46.6 MINUTES 3777 STROKES #1 AND 3717 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1426.5 HHP 669 IMPACT FORCE 1650 % SURFACE PRESSURE 48.8 HHP/sqin 5.68 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 64.0 1292.7 STRING BIT 1426.5

ANNULUS 56.4

TOTAL. 2839,6 PUMP PRESSURE 2923.4 % DIFFERENCE 2.9

BOTTOM HOLE PRESSURES:

PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.85 HYDROSTATIC PRESSURE 3528.3

DENSITY

CIRCULATING: ECD 10.01 CIRCULATING PRESSURE 3584.7 0.32 **PULLING OUT:** TRIP MARGIN 112.9 ESTIMATED SWAB EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3415.4 9.53

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2200.0 AND TVD 2199.4

SPM 1 82 SPM 2 81 FLOW RATE 814

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
DC/OH HWDP/OH DP/OH DP/CSG DP/RIS	0.274 0.398 0.398 0.427 1.325	47 33 463 309 80	71 49 49 45 15	135 129 129 128 121	LAMINAR LAMINAR LAMINAR LAMINAR	0 0 0 0	71 49 49 45 15	9.5 2.0 28.1 16.0 0.3
TOTAL	. VOLUME	932			TOTAL	PRESSURI	E DROP	55.9

LAG: 48.1 MINUTES 3937 STROKES #1 AND 3891 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1417.6 HHP 673 IMPACT FORCE 1640 % SURFACE PRESSURE 49.8 HHP/sqin 5.71 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 63,8 STRING 1326.2 BIT 1417.6 **ANNULUS** 55.9

> TOTAL PUMP PRESSURE 2847.5 2863,5 % DIFFERENCE 0.6

BOTTOM HOLE PRESSURES:

PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.55 HYDROSTATIC PRESSURE 3583.3 CIRCULATING: ECD 9.70 CIRCULATING PRESSURE 3639.3 PULLING OUT: TRIP MARGIN 0.30 ESTIMATED SWAR 111.8 EFFECTIVE MUD WEIGHT 9.25 BOTTOM HOLE PRESSURE 3471.5

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2299.3

SPM 1 82 SPM 2 81 FLOW RATE 816

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	NET.	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0,274 0,398	47 33	71 4 9	142 137	LAMINAR LAMINAR	0 0	71 49	10.5 2.2
HWDP/OH DP/OH	0.398	503	45	137	LAMINAR	0	49 4 5	34.2 18.0
DP/CSG DP/RIS	0.427 1.325	309 80	45) 15	137 130	LAMINAR LAMINAR	0	15	10.U (1,4
TOTA	L VOLUME	971			TOTAL	PRESSURE	DROP	65.3

LAG: 50.0 MINUTES 4116 STROKES #1 AND 4047 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1424.7 HHP 678 IMPACT FORCE 1648 % SURFACE PRESSURE 49.3 HHP/sqin 5.76 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 64.1 STRING 1369.1

BIT 1424.7 ANNULUS 65.3

TOTAL 2923.2 PUMP PRESSURF 2888.9 % DIFFERENCE 1.2

BOTTOM HOLE PRESSURES:

HYDROSTATIC PRESSURE 3746.2 MUD WEIGHT 9.55 NOT CIRCULATING: 3811.5 ECD 9.72 CIRCULATING PRESSURE CIRCULATING: 0.33 ESTIMATED SWAR 130.6 TRIP MARGIN PULLING OUT: 9.22 BOTTOM HOLE PRESSURE 3615.5 EFFECTIVE MUD WEIGHT

DENSITY

UNITS

PRESSURE

UNITS

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2399.3

SPM 1 79 SPM 2 80 FLOW RATE 791

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	47	69	135	LAMINAR	0	68	9.4
HWDP/OH	0.398	33	47	129	LAMINAR	Ö	47	2.0
DP/OH	0.398	543	47	129	LAMINAR	0	47	32.6
DP/CSG	0.427	309	44	129	LAMINAR	ō	44	15.8
DP/RIS	1.325	80	14	121	LAMINAR	Û	14	0.3
TOTAL	L VOLUME	1011			TOTAL	PRESSURE	DROP	6012

LAG: 53.7 MINUTES 4227 STROKES #1 AND 4271 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1331.8 HMP 615 IMPACT FORCE 1540 % SURFACE PRESSURE 45.4 HMP/sqin 5.22 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 60.4 STRING 1324.2 BIT 1331.8

ANNULUS 60,2

TOTAL 2776.6 PUMP PRESSURE 2935.1 % DIFFERENCE 5.4

BOTTOM HOLE PRESSURES:

	D	ENSITY UNITS		PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT ECD	9.50 9.65	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.29 9.21	ESTIMATED SWAB BOTTOM HOLE PRESSUR	120.4 E 3768.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2500,0 AND TVD 2499.3

SPM 1 80 SPM 2 80 FLOW RATE 799

ANNULAR HYDRAULICS:

ANNULUS	VOL.Z		ANN	CRIT	TYPE OF	SLIP A	ASCEND	PRESSURE
TYPE	UNIT	AOF	VEL	VEL	FLOW	VEL.	VEL	DROF
DC/OH	0:274	47	69	135	LAMINAR	n	69	9.5
HWDP/OH	0.398	33	417	129	LAMINAR	Ö	48	2.0
DP/OH	0.398	593	48	129	LAMINAR	0	48	35.1
DP/CSG	0.427	309	45	128	L.AMI NAR	0	44	15.9
DP/RIS	1.325	80	14	121	LAMINAR	0	14	0.3
TOTAL	L VOLUME	1051			TOTAL	PRESSURE	DROP	62.8

LAG: 55.2 MINUTES 4406 STROKES #1 AND 4426 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1367.4 GHP 638 IMPACT FORCE 1581 % SURFACE PRESSURE 47.4 GHP/sqin 5.41 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 61.8 STRING 1390.9 BIT 1367.4

ANNULUS 62.8

TOTAL 2882.9 PUMP PRESSURE 2886.3 % DIFFERENCE 0.1

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: 9.55 MUD WEIGHT HYDROSTATIC PRESSURE 4072.0 9.70 CIRCULATING: CIRCULATING PRESSURE 4134.8 PULLING OUT: TRIP MARGIN 0.29 ESTIMATED SWAB 125.6 EFFECTIVE MUD WEIGHT 9.26 BOTTOM HOLE PRESSURE 3946.4

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2599.3

SPM 1 79 SPM 2 78 FLOW RATE 787

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH	0.274	47	68	137	LAMINAR	0	68	9.8
HWDP/OH	0.398	33	47	130	LAMINAR	0	47	2.0
DP/OH	0.398	623	47	130	LAMINAR	0	47	38.2
DP/CSG	0.427	309	44	130	LAMINAR	0	44	16.1
DP/RIS	1.325	80	14	121	LAMINAR	0	14	0.3
TOTAL	L VOLUME	1091			TOTAL	PRESSURE	DROP	66.5

LAG: 58.2 MINUTES 4602 STROKES #1 AND 4565 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1325.9 HHP 609 IMPACT FORCE 1533 X SURFACE PRESSURE 45.9 HMP/sqin 5.17 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 61.7 STRING 1425.1 BIT 1325.9

ANNULUS

TOTAL 2879,2 PUMP PRESSURE 2887.6 % DIFFERENCE 0.3

BOTTOM HOLE PRESSURES:

66.5

UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE 4234.9 MUD WEIGHT 9.55 CIRCULATING PRESSURE 4301.5 ECD 9.70 CIRCULATING: 0.30 ESTIMATED SWAB 133.1 PULLING OUT: TRIP MARGIN 4101.9 EFFECTIVE MUD WEIGHT 9.25 BOTTOM HOLE PRESSURE

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2700.0 AND TVD 2699.3

SPM 1 80 SPM 2 79 FLOW RATE 792

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	40L	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
⊅С∕ОН	0.274	47	69	138	LAMINAR	0	68	9,9
HWDP/OH	0.398	33	47	133	LAMINAR	0	47	2.1
_ DP/OH	0.398	662	47	133	LAMINAR	0	47	42.2
DP/CSG	0.427	309	44	133	LAMINAR	0	44	16.8
DP/RIS	1.325	9.0	7 4	125	LAMINAR	0	14	0.4
TOTAL	_ VOLUME	1131			TOTAL	PRESSÜRE	DROP	71.4

LAG: 60.0 MINUTES 4784 STROKES #1 AND 4718 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1341.2 HBP 620 IMPACT FORCE 1551 X SURFACE PRESSURE 45.4 HBP/sqin 5.26 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 60.7 STRING 1437.0

BIT 1341.2 ANNULUS 71.4

TOTAL 2910.3 PUMP PRESSURE 2956.6 % DIFFERENCE 1.6

BOTTOM HOLE PRESSURES:

	DENSITY UNITS		PRESSURE UNITS
CIRCULATING:	WEIGHT 9.55	HYDROSTATIC PRESSURE	4397.9
	ECD 9.71	CIRCULATING PRESSURE	4469.3
	MARGIN 0.31	ESTIMATED SWAB	142.8
	WEIGHT 9.24	BOTTOM HOLE PRESSURE	4255.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2800.0 AND TVD 2799.0

SPM 1 78 SPM 2 77 FLOW RATE 772

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ TINU	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A	NSCEND VEL	PRESSURE DROP
DC/OH	0.274	47	67	167	LAMINAR	0	67	13.7
HWDP/OH	0.398	33	46	164	LAMINAR	0	46	3.1
DP/OH	0.398	702	46	164	LAMINAR	0	46	65.5
DP/CSG	0.427	309	43	164	LAMINAR	0	43	24.8
DP/RIS	1.325	80	14	160	LAMINAR	0	14	0.6
TOTAL	_ VOLUME	1171			TOTAL.	PRESSURE	DROP	107.7

LAG: 63.7 MINUTES 4956 STROKES #1 AND 4880 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1275.2 HHP 574 IMPACT FORCE 1475 % SURFACE PRESSURE 44.2 HHP/sqin 4.87 JET VELOCITY 117

PRESSURE BREAKDOWN:

SURFACE 58.0 STRING 3407.2 BIT 1275.2

ANNULUS 107.7

TOTAL 2848.1 PUMP PRESSURE 2885.4 % DIFFERENCE 1.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 9,55 NOT CIRCULATING: MUD WEIGHT HYDROSTATIC PRESSURE 4560.3 9.78 CIRCULATING PRESSURE 4668.0 CIRCULATING: 0.45 ESTIMATED SWAR 215.4 TRIP MARGIN PULLING OUT: EFFECTIVE MUD WEIGHT 9.10 BOTTOM HOLE PRESSURE 4344.9

(c). COMPUTER DATA LISTING : LIST A

INTERVAL	All depth records (data not averaged)
DEPTH. , , ,	Well depth, in metres
ROP	Rate of penetration, in metres/hour
WOB	Weight-on-bit, in thousands of pounds
RPM	Rotary speed, in revolutions per minute
MW	Mud weight in, in pounds per gallon
'dc' , , , , , , , , , , , , ,	Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg.
HOURS, , , , , , , , , ,	Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours.
TURNS.,,,,,,,,	Cumulative bit turns. The number of turns made by the bit, while actually on bottom
ICOST.,	Incremental cost per metre, calculated from the rate of penetration, in Australian dollars.
CCOST	Cumulative cost per metre, calculated from the drilling time, in A dollars.
PP , , , , , , , , , , , , , , , , , ,	Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation.
FG	Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL programusing Eaton's equation.
	It is dependent on the pore pressure, the overburden gradient and the matrix stress.

information.

this value may be modified by leak-off

BIT NUMBER 4 IADC CODE 111 INTERVAL 61.0-197.0 HTC OSC3AJ SIZE 26,000 NOZZLES 20 20 20 COST 0.00 TRIP TIME 1.2 BIT RUN 136.0 TOTAL HOURS 3.87 TOTAL TURNS 23470 CONDITION T1 B1 G0.000 DEPTH MW "d"c ROP WOB RPM HOURS TURNS TCOST CCOST pp FG 62.0 8.6 0.78 8,9 2.0 53 0.11 357 410 4793 8.4 10.7 64.0 14.6 5.0 53 8.6 0.80 0.25 793 250 1764 8.4 10.7 66.0 14.6 5.0 53 8.6 0.80 0.39 1229 250 1159 8.4 10.7 68.0 13.6 1.2 103 8.6 0.76 0.53 2137 268.53 904.33 8.4 10.7 70.0 24.0 0.7 110 8.6 0.64 0.62 2687 152.17 737.19 8.4 10.7 12.2 0.9 110 3769 299.34 657.58 72.0 8.6 0.76 0.78 8.4 10.7 74.0 1.4 110 20.1 8.6 0.73 0.88 4426 181.69 584.37 8.4 10.7 0.5 110 0.9776.0 22.0 8.6 0.63 5026 166.00 528.58 8.4 10.8 8.6 0.54 0.5 110 1.02 78.0 40.0 5356 91,30 477,14 8.4 10.8 0.7 110 1.13 80.0 19.0 8.6 0.67 6051 192,21 447.15 8.4 10.8 71.0 0.7 110 82.0 8.6 0.48 1.15 6237 51,44 409,46 8.4 10.8 1.0 110 8437 608.67 426.78 84.0 6.0 8,6 0,88 1.49 8.4 10.8 1.0 110 86.0 13.0 8.6 0.76 1.64 9452 280.92 415.11 8.4 10.8 88.0 68.0 1.0 100 8.6 0.50 1.67 9629 53.71 388.34 8.4 10.8 90.0 36.0 0.6 100 8.6 0.56 1.73 9962 101,44 368.56 8.4 10.8 1.9 100 1.85 92.0 16.0 8.6 0.78 10712 228.25 359.50 8.4 10.8 94.0 36.0 1.9 100 8.6 0.65 1,91 11045 101.44 343,86 8.4 10.8 1.94 96.0 56.0 0.3 100 8.6 0.46 11260 65,21 327.94 8.4 10.8 0.3 100 98.0 55,0 8.6 0.46 1.98 11478 66.40 8.4 10.8 313.80 0.2 100 100.0 27.0 8.6 0.53 2.05 11922 135.26 304.65 8.4 10.9 25 102.0 8.6 0.60 2.13 12361 296.64 8.4 10.9 26.00.6 140.46 104.0 3.1 95 2.16 12551 60.0 8.6 0.60 60.87 285.67 8.4 10.9 3.3 95 12729 106.0 64.0 8.6 0.59 2.19 57,06 275,51 8.4 10.9 49.0 3.4 96 108.0 8.6 0.64 2.24 12964 74.53 266.96 8.4 10.9 49.0 3.4 110.0 96 8.6 0.64 2.28 13199 74,53 259,11 8.4 10.9 112.0 70.0 3,4 96 8.6 0.58 2.31 13363 52.17 250.99 8.4 10.9 114.0 33.0 3.2 110 8.6 0.73 2,37 13763 110.67 245.70 8.4 10.9 116.0 65.0 3.5 110 8.6 0.62 2.40 13967 8.4 10.9 56.18 238.80 118.0 4.2 110 2.43 57.0 8.6 0.66 14198 64.07 232,67 8.4 10.9 120.0 58.0 4.4 110 8.6 0.67 2.47 14426 62,97 226,92 8.4 10.9 4.5 110 122.0 62.0 8.6 0.66 2.50 58.90 221.41 14639 8.4 10.9 8.6 0.71 124.0 49.0 5.0 110 2.54 14908 74.53 216.75 8.4 10.9 49.0 5.0 110 126.0 8.6 0.71 2.58 15177 74.53 212.37 8,4 11.0 45.0 4.6 108 8.6 0.71 2.62 15465 128.0 81.16 208.46 8.4 11.0 4,4 108 130.0 46.0 8.6 0.71 2.67 15747 79.39 204.71 8,4 11.0 2.70 62.0 3.0 108 8.6 0.61 15956 58.90 200.61 132.0 8.4 11.0 2.73 134.0 77.0 2.5 108 8.6 0.56 16124 47.43 196.41 8.4 11.0 2.75 136.0 81.0 2.3 96 8.6 0.52 16267 45.09 192.38 8.4 11.0 2.78 138.0 82.0 2.5 96 8.6 0.53 16407 44,54 188,54 8,4 11.0 140.0 56.0 2.8 107 8.7 0.62 2.81 16637 65.21 185.41 8.4 11.0 142.0 71.3 3.6 101 8.7 0.58 2,84 16807 51,23 182,10 8.4 11.0 98.6 4.2 113 8.7 0.56 144.0 2.86 16944 37.03 178.60 8.4 11.1 8.7 0.63 3.9 112 17150 55.79 175.71 8,4 11,0 146.0 65,5 2.89

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	p lə	FG
148.0 150.0 152.0 154.0 156.0 158.0 160.0 162.0 164.0 166.0	26.3 25.3 47.1 38.5 43.6 55.4 360.0 52.9 63.7 62.0	5.4 5.5 5.5 1.1 1.9		8.7 8.7 8.7 8.7 8.7 8.7	0.74 0.80 0.72 0.76 0.75 0.69 0.87 0.59 0.61	2.97 3.04 3.09 3.14 3.19 3.22 3.23 3.26 3.30 3.33	17597 18079 18362 18712 19038 19271 19312 19556 19754 19958	77,61 94,85 83,69 65,94 10,14 68,98 57,32	174.86 174.18 172.86 170.40 168.57 166.46 163.30 161.43 159.41	8.4 8.4 8.4 8.4 8.4 8.4	11.0
168.0 170.0 172.0 174.0 176.0 178.0 180.0 182.0 184.0	75,2 61,0 66,7 55,4 52,0 46,0 59,3 55,0	3.7 2.3 3.4 4.3 5.0 5.3 5.0 7.3	107 104 111 98 110 110 104 104 110	8.7 8.7 8.7 8.7 8.7 8.7	0.59 0.58 0.61 0.64 0.69 0.72 0.73 0.70 0.69	3.35 3.39 3.42 3.45 3.55 3.55 3.61 3.65 3.69	20129 20333 20533 20744 20998 21281 21552 21763 21992 22245	48.59 59.85 54.78 65.94 70.23 78.26 79.39 61.59 65.43 70.23	155.46 153.71 151.92 150.40 149.01 147.80 146.65 145.24 143.94 142.76	8.4 8.4 8.4 8.4 8.4 8.4	11.1 11.1 11.1 11.2 11.2 11.2 11.2
188.0 190.0 192.0 194.0 196.0 197.0	67.1 55.8 58.8 61.5 61.5 47.1	5.4 5.1 1.3 2.9 2.9 3.3	100 113 110 108	8.7 8.7 8.7 8.7	0.67 0.66 0.55 0.61 0.60 0.65	3.72 3.75 3.79 3.82 3.85 3.87	22456 22670 22901 23116 23327 23457	54,41 65,43 62,13 59,35 59,42 77,47	139.00 137.01	8.4 8.4 8.4 8.4	11.2 11.2 11.2 11.2 11.2
BIT NUMBE HTC X3A COST TOTAL HO	497	2 8.00 2.70	7	ADC TZE RIP TOTAL		114 17.500 2.0 114343	NO: BI	TERVAL ZZLES T RUN NDITION		20 2	797.0 20 20 500.0
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
178.0 200.0 202.0 204.0	205.0 126.0 184.0 162.0		150 150 150 150	8.7 8.7	0.51 0.64 0.63 0.59	0.00 0.02 0.03 0.04	44 187 285 396	29 20	12300 4119 2479 1778	8.4 8.4	11.2 11.2 11.3
206.0 208.0 210.0 212.0 214.0 216.0 218.0 220.0 222.0 224.0	185.0 61.0 192.0 171.0 176.0 231.0 108.0 115.0 128.0 159.0	12.0 12.0 9.0 11.0 15.0	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.59 0.74 0.61 0.68 0.66 0.59 0.73 0.75 0.75	0.05 0.09 0.10 0.11 0.12 0.13 0.15 0.15	493 788 882 987 1089 1167 1334 1490 1631 1744	19.02 21.36 20.75 15.81 33.81 31.76 28.53	1387 1146 972.29 845.50 748.47 671.35 610.63 560.30 517.75 481.10	8.4 8.4 8.4 8.4 8.4 8.4	11.3 11.3 11.3 11.3 11.3 11.3 11.3

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
226.0 228.0 230.0 232.0 234.0 236.0 238.0 240.0 242.0 244.0	132.0 148.0 102.0 146.0 156.0 225.0 401.0 408.0 452.0 265.0	6.0 5.0 7.0 12.0 16.0 16.0	150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.67 0.67 0.71 0.58 0.58 0.46 0.46 0.47	0.21 0.22 0.24 0.26 0.27 0.28 0.28 0.29 0.29	1881 2002 2179 2302 2417 2497 2542 2586 2626 2694	24.68 35.80 25.01 23.41 16.23 9.11 8.95 8.08	449.83 422.40 398.97 377.60 358.46 340.91 324.72 310.04 296.62 284.58	8.4 8.4 8.4 8.4 8.4 8.4	11.3 11.4 11.4 11.4 11.4 11.4 11.4
246.0 248.0 250.0 252.0 254.0 256.0 258.0 260.0 262.0	308.0 324.0 212.0 211.0 221.0 289.0 262.0 221.0 221.0 236.0	16.0 15.0 8.0 9.0 15.0 15.0	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7 8.7	0.52 0.54 0.64 0.57 0.57 0.59 0.63 0.63	0.31 0.31 0.32 0.33 0.34 0.35 0.35 0.36 0.37	2753 2808 2893 2978 3060 3122 3191 3272 3354 3430	11.27 17.23 17.31 16.52 12.64 13.94 16.52 16.52	273,45 263,17 253,89 245,28 237,26 229,64 222,57 216,03 209,89 204,09	8.4 8.4 8.4 8.4 8.4 8.4	11.4 11.4 11.4 11.4 11.5 11.5 11.5
266.0 268.0 270.0 272.0 274.0 276.0 280.0 282.0 284.0	300.0 320.0 233.0 155.0 336.0 256.0 247.0 184.0 238.0 271.0	14.0 13.0 13.0 13.0 14.0 14.0	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.54 8.53 0.60 0.70 0.51 0.60 0.60 0.50	0.39 0.39 0.40 0.42 0.42 0.43 0.44 0.45 0.46	3490 3546 3624 3740 3793 3864 3936 4034 4110 4176	11.41 15.67 23.56 10.87 14.27 14.79 19.85 15.34	198.52 193.25 188.39 183.99 179.50 175.31 171.35 167.70 164.11 160.65	8.4 8.4 8.4 8.4 8.4 8.4	11.5 11.5 11.5 11.5 11.5 11.5 11.5
286.0 288.0 290.0 292.0 294.0 296.0 298.0 300.0 302.0 304.0	224.0 231.0 209.0 192.0 178.0 228.0 143.0 108.0 114.0 179.0	17.0 17.0 11.0 9.0 13.0 14.0 14.0	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7 8.7	0.63 0.64 0.63 0.63 0.61 0.73 0.80 0.81	0.47 0.43 0.49 0.50 0.51 0.52 0.54 0.55 0.55	4257 4335 4421 4514 4616 4694 4820 4987 5145	15.81 17.47 19.02 20.52 16.02 25.54 33.81 32.04	157.41 154.30 151.35 148.57 145.93 145.93 146.97 138.89 136.85 134.68	8.4 8.4 8.4 8.4 8.4 8.4	11.6 11.6 11.6 11.6 11.6 11.6 11.6
306.0 308.0 310.0 312.0 314.0 316.0 320.0 322.0 324.0	156.0 126.0 144.0 102.0 94.0 147.0 184.0 156.0 115.0	6.0 8.0 12.0 6.0 8.0 7.0 10.0	150 150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.65 0.64 0.65 0.79 0.71 0.65 0.58 0.66 0.70	0.60 0.61 0.63 0.65 0.67 0.68 0.69 0.70 0.72	5361 5504 5629 5805 5997 6119 6217 6332 6489 6653	25.36 35.80 38.85 24.84 19.85 23.41 31.76	132.64 130.77 128.90 127.28 125.77 124.08 122.35 120.74 119.32	8.4 8.4 8.4 8.4 8.4 8.4	11.6 11.6 11.7 11.7 11.7 11.7 11.7

DEPTH	ROP	WOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pp	FG
326.0 328.0 330.0 332.0 334.0 336.0 340.0 342.0 344.0	155.0 182.0	10.0 10.0 10.0 8.0 7.0 10.0	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.67 0.66 0.62 0.59 0.62 0.63 0.61 0.63 0.73	0.75 0.76 0.78 0.78 0.80 0.81 0.82 0.83 0.85	6764 6880 6979 7064 7173 7290 7388 7475 7643 7820	23.56 19.96 17.23 22.27 23.56 20.07 17.56 34.13	116.49 115.07 113.64 112.21 110.90 109.64 108.37 107.10 106.09 105.14	8.4 8.4 8.4 8.4 8.4 8.4	11.7 11.7 11.7 11.7 11.7 11.7 11.8 11.8
346.0 348.0 350.0 352.0 354.0 356.0 360.0 362.0 364.0	98.0 76.0 125.0 113.0 122.0 126.0 106.0 123.0 144.0 134.0	7.0 11.0 10.0 12.0 11.0 8.0 8.0	150 150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7 8.7	0.74 0.77 0.73 0.74 0.75 0.72 0.72 0.72	0.87 0.92 0.93 0.95 0.97 0.98 1.00 1.02	8003 8240 8384 8544 8691 8834 9004 9150 9275 9409	48.05 29.22 32.32	104.23 103.48 102.51 101.60 100.69 99.79 98.98 98.13 97.25 96.41	8.4 8.4 8.4 8.4 8.4 8.4	11.8 11.8 11.8 11.8 11.8 11.8 11.8
366.0 368.0 370.0 372.0 374.0 376.0 380.0 382.0 384.0	136.0 195.0 231.0 562.0 385.0 462.0 594.0 286.0 210.0	10.0 6.0 3.0 5.0 6.0 7.0	150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.68 0.61 0.52 0.29 0.36 0.36 0.32 0.46	1.06 1.07 1.08 1.08 1.09 1.09 1.10 1.10	9542 9634 9712 9744 9791 9830 9860 9923 10009	26.85 18.73 15.81 6.50 9.49 7.90 6.15 12.77 17.39 21.48	95.58 94.69 93.77 92.78 91.84 90.90 89.96 89.12 88.34 87.63	8.4 8.4 8.4 8.4 8.4 8.4	11.8 11.9 11.9 11.9 11.9 11.9
386.0 388.0 390.0 392.0 394.0 396.0 400.0 402.0 404.0	201.0 136.0 155.0 206.0 274.0 291.0 428.0 461.0 325.0 219.0	3.0 3.0 3.0 3.0 3.0 8.0 6.0	150 150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.59 0.56 0.53 0.48 0.43 0.42 0.41 0.37 0.43	1.13 1.15 1.16 1.17 1.19 1.19 1.19 1.19	10204 10336 10453 10540 10668 10710 10749 10804 10886	18.17 26.85 23.56 17.73 13.33 12.55 8.53 7.92 11.24 16.68	86.89 86.26 85.61 84.92 84.19 83.47 82.72 81.99 81.30	8.4 8.4 8.4 8.4 8.4 8.4 8.4	11.9 11.9 11.9 11.9 11.9 12.0 12.0
406.0 408.0 410.0 412.0 414.0 416.0 417.0 418.0 419.0 420.0	251.0 352.0 168.0 363.0 446.0 418.0 208.4 180.0 200.0	4.0 4.0 6.0 6.0 7.2 6.1 7.0	150 150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.9 8.9	0.42 0.40 0.54 0.38 0.39 0.54 0.55 0.55	1.22 1.24 1.24 1.25 1.25 1.25 1.25	10958 11009 11116 11166 11206 11249 11292 11342 11387 11432	14.55 10.38 21.74 10.06 8.19 8.74 17.52 20.29 18.26	76.14	8.4 8.4 8.4 8.4 8.4 8.4 8.4	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0

....

	75 FT F5 TT 1 1	n an	1 1 7°3 7°4	F1 IN 14	Mil	H H	Limilmo	TUDAM	TOOOT			
	DEPTH	ROP	(i) (.) E	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	421.0	171.4	5.4		8.9	0.56	1.28	11485	21.30	75.64	8.4	12.0
	422.0	288.0		150		0.43	1.28	11516	12.68	7 5,36		12.0
	423.0	156.5			-8.9	0.58	1.29	11574	23.33	75.13		12.0
	424.0	163,6	6.5			0.58	1.29	11629	22.32	74.89		12.0
	425.0	138.5		150		0.60	1.30	11694	26.38	74.68		12.0
_	426.0	156.5	9.6	150		0.64	1.31	11751	23.33	74.46		12.0
_	427.0	171.4		150	8.9		1.31	11804	21.30	74.22		12.0
	428.0	171.4	12.3	150	8.9	0.65	1.32	11856	21.30	74.00		12.0
	429.0	138.5	9.6	150		0.67	1.32	11921	26.38	73.79		12.1
_	430.0	150.0	12.0	150	8,7	88,0	1.33	11981	24.35	73.58	8.4	12.1
I	431.0	180.0	11.8	150		0.64	1.34	12031	20.29	73.35		12.1
_	432.0	180.0				83.0	1.34	12081	20.29	73.12		12.1
	433.0	163.6		150			1.35	12136	22.32	72.91		12.1
	434.0	171.4		150	8.9		1.35	12189	21.30	72.69		12.1
	435.0	185.0		150	8.9		1.36	12237	19.74	72.47		12.1
_	436.0	196.4				0.65	1.36	12283	18.60	72.24		12.1
	437.0	171.4				0.71	1.37	12336	21.30	72.03		12.1
	438.0	171.4				0.70	1.38	12388	21.30	71.82		12.1
	439.0	133.3				0.76	1.38	12456	27.39	71.64 71.43		12.1
	440.0	180.0	16.7	3.79.0	8.7	0.69	1.39	12506	20.29	73,40	₩, 4	A AN O A
-	441.0	163.6	16.6	150	8.9	0.71	1.40	12561	22,32	71.22		12,1
	442.0	171.4				88.0	1,40	12613	21.30	71.02		12.1
	443.0	150.0				0.71	1.41	12673	24.35	70.83		12.1
	444.0	171.4				0.70	1.41	12726	21.30	70.63		12.1
	445.0	120.0		150		0.77	1,42	12801	30.43	70.47		12.1
	446.0	276.9				0.63	1.43	12833	13.19	70.24		12.1
		138.5				0.81	1,43	12898	26,38	70.06		12.1
	448.0	124.1				0.82	1.44	12971	29,42 25,36	69.90 69.72		12.1 12.1
	449.0 450.0	144.0 138.5				0.77	1,45 1,46	13033 13098	26.38	69.55		12.1
	400.0	100.0	17.1	1.434)	0.7	9.77	X 1 TO	10070	20.00	0/100		
	451.0	156.5	18.7	150	8.9	0.74	1.46	13156	23.33	69.37	8.4	12.1
	452.0	156.5	17.7	150	8.9	0.73	1.47	13213	23.33	69.19		12.1
	453.0	171.4	17.0	150	8.9	0.70	1.47	13266	21.30	69.00		12.1
	454.0	211.8				0.63	1.48	13308	17.25	68.80		12.1
	455.0	360.0				0.50	1.48	13333	10.14	68.57		12.1
	456.0	211.8				0.65	1.49	13376	17.25	68.38		12.1
	457.0	360.0				0.51	1.49	13401	10.14	68.15		12.1
	458.0	250.0				0.60	1.49	13437	14.61	67.95		12.1
	459.0	300.0				0.57	1.50	13467 13500	12.17 13.53	67.73 67.53		12.1 12.2
_	460.0	270.0	17.0	X + 3 U	(3 ₁ 7	0.59	1.50	19900	Larda	W/ FOO	U 1 "Y	A face t face
	461.0	240.0				0.61	1.50	13537	15.22	67.33		12.2
	462.0	270.0				0.59	1.51	13571	13.53	67.13		12.2
	463.0	257.1				0.61	1.51	13606	14,20	66.93		12.2
	464.0	130.0				0.75	1.52	13675	28.09	66.78		12.2
	465.0	160.0				0.69	1.53	13731	22.83	66.62 66. 4 2		12.2 12.2
	466.0	276.9				0.57	1,53 1,53	13764 13811	13.19 19.27	66.25		12.2
	467.0	189.5				0.63	1.54	13864	21.30	66.08		12.2
	468.0 469.0	171.4 211.8				0.65	1.55	13904	17.25	65.90		12.2
_	470.0	163.6				0.71	1.55	13961	22.32	65.74		12.2
	7/4/4	ล เม เม เ เม	a sar t "T	n tot V	ur 1 v		1 INC BAY			, -		

DEPTH	ROP	WOR	RPM	МИ	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
471.0 472.0 473.0 474.0 475.0 476.0 477.0 478.0 479.0 480.0	171.4 171.4 171.4 120.0 144.0 163.6 156.5 156.5	16.9 17.9 21.4 17.5 17.5 17.8 18.1	150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.70 0.71 0.83 0.75 0.72 0.73 0.73	1.56 1.56 1.57 1.58 1.58 1.59 1.60 1.60 1.61	14014 14066 14119 14194 14256 14311 14369 14426 14481 14554	21.30 21.30 21.30 30.43 25.36 22.32 23.33 23.33 22.32 29.42	65.58 65.42 65.26 65.13 64.99 64.69 64.59 64.39	8.4 8.4 8.4 8.4 8.4 8.4	12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2
481.0 482.0 483.0 484.0 485.0 486.0 487.0 488.0 489.0	133.3 120.0 138.5 130.9 128.6 163.6 163.6 150.0 144.0	16.8 17.7 16.3 16.9 17.2 16.7 17.0	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9 8.9	0.77 0.79 0.76 0.76 0.77 0.71 0.71 0.73 0.74	1.62 1.63 1.64 1.65 1.66 1.66 1.67 1.67	14621 14696 14761 14830 14900 14955 15010 15070 15133 15200	27.39 30.43 26.38 27.90 28.40 22.32 22.32 24.35 25.36 27.39	64.14 64.02 63.89 63.76 63.64 63.50 63.35 63.22 63.09 62.97	8.4 8.4 8.4 8.4 8.4	12.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2
491.0 492.0 493.0 494.0 495.0 496.0 497.0 498.0 499.0	144.0 144.0 156.5 38.7 156.5 171.4 189.6 128.6 116.1	15.7 16.8 15.2 15.2 15.1 15.7 15.3	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.78	1.70 1.70 1.71 1.74 1.75 1.75 1.76 1.77	15263 15325 15387 15615 15673 15725 15723 15643 15920 16000	25.36 25.36 23.33 94.34 23.33 21.30 19.27 28.40 31.45 32.46	62.84 62.71 62.58 62.69 62.56 62.42 62.27 62.16 62.06 61.96	8.4 8.4 8.4 8.4 8.4	12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3
501.0 502.0 503.0 504.0 505.0 506.0 507.0 508.0 509.0 510.0	120.0 144.0 128.6 130.0 157.5	14.5 15.5 18.0 17.6 17.6 17.4 18.9	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.75 0.77 0.75 0.75 0.78 0.78 0.72 0.72	1.79 1.79 1.80 1.81 1.82 1.82 1.83 1.84 1.84	16068 16145 16220 16283 16353 16422 16479 16529 16589 16664	27.39 31.45 30.43 25.36 28.40 28.09 23.19 20.29 24.35 30.43	61.85 61.75 61.65 61.53 61.42 61.31 61.19 61.06 60.84	8.4 8.4 8.4 8.4 8.4 8.4	12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.4
511.0 512.0 513.0 514.0 515.0 516.0 517.0 518.0 519.0 520.0	120.0 85.0	17.3 17.0 17.8 17.3 17.1 16.2 13.2	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.77 1.20 0.79 0.89 0.87 0.75 0.70 0.61 0.53	1.86 1.90 1.91 1.92 1.93 1.94 1.94 1.95	16732 17101 17176 17282 17382 17446 17501 17564 17609 17641	27.53 149.91 30.43 42.96 40.58 26.09 22.32 25.36 18.26 13.19	60.74 61.02 60.92 60.87 60.80 60.69 60.57 60.46 60.33 60.19	8.4 8.4 8.4 8.4 8.4 8.4	12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3

eri Ç

Į	HTTA	ROP	MOB	RPM	МЫ	"d"c	HOURS	TURNS	ICOST	CCOST	РP	FG
	521.0 522.0 523.0 524.0 525.0 526.0 527.0 528.0 529.0	189.5 171.4 216.0 280.0 360.0 171.4 128.6 98.0 60.0 112.5	13.8 12.5 14.0 16.1 15.1 18.0 18.0	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.64 0.67 0.60 0.63 0.51 0.68 0.78 0.85 0.96	1.97 1.98 1.98 1.98 1.99 2.00 2.01 2.02	17689 17741 17783 17828 17853 17906 17976 18067 18217	19.27 21.30 16.91 18.26 10.14 21.30 28.40 37.27 60.87 32.46	68.86 59.94 59.81 59.68 59.53 59.42 59.25 59.25	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	12.3 12.4 12.4 12.4 12.4 12.4 12.4 12.4
	531.0 532.0 533.0 534.0 535.0 537.0 537.0 539.0 540.0	102.9 81.8 105.9 87.8 102.9 92.3 360.0 116.1 83.7 128.6	16.3 16.5 15.6 15.6 15.6 13.9 11.8	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.83 0.88 0.82 0.85 0.81 0.50 0.76 0.76	2.04 2.05 2.06 2.08 2.09 2.10 2.10 2.11 2.12	18385 18495 18580 18682 18770 18867 18892 18970 19077	35.51 44.64 34.49 41.59 35.51 39.56 10.14 31.45 43.62 28.40	59.11 59.07 58.99 58.87 58.87 58.67 58.59 58.59	8.4 8.4 8.4 8.4 8.4 8.4	12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4
	541.0 542.0 543.0 544.0 545.0 546.0 547.0 549.0	83.7 76.6 257.1 225.0 138.5 109.1 97.3 102.9 92.3 360.0	14.2 16.0 17.4 16.6 14.9 18.3 16.9	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.90 0.87 0.59 0.63 0.75 0.79 0.86 0.83 0.88	2.14 2.15 2.16 2.16 2.17 2.18 2.19 2.20 2.21 2.21	19255 19372 19407 19447 19512 19595 19687 19775 19872	43.62 47.68 14.20 16.23 26.38 33.48 37.53 35.51 39.56 10.14	58.42 58.39 58.26 58.14 58.05 57.97 57.92 57.85 57.60	8.4 8.4 8.4 8.4 8.4 8.4	12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4
	351.0 352.0 353.0 354.0 355.0 356.0 357.0 358.0 359.0	110.0 112.5 105.9 76.6 83.7 92.3 64.3 73.5 52.9 116.1	17.4 19.2 17.1 18.2 19.4 19.2 20.8 28.7	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	0.81 0.81 0.84 0.90 0.89 0.98 0.97 0.96 1.13 0.93	2.22 2.23 2.25 2.25 2.27 2.29 2.33 2.33	19979 20059 20144 20262 20369 20467 20607 20729 20899	33.20 32.46 34.49 47.68 43.62 39.56 56.81 49.71 68.98 31.45	57.60 57.53 57.46 57.43 57.35 57.35 57.35 57.36	8.4 8.4 8.4 8.4 8.4	12.4 12.4 12.5 12.5 12.5 12.5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	661.0 662.0 663.0 664.0 65.0 667.0 668.0 69.0 70.0	78.3 92.3 66.7 70.6 48.6 60.0 83.7 80.0 69.2 50.7	29.7 29.9 30.3 29.8 32.0 31.5 30.2 29.5	150 150 150 150 150 150 150	8,9 8,9 8,9 8,9 8,9 8,9	1.03 0.98 1.07 1.06 1.16 1.12 1.02 1.02 1.06 1.15	2.34 2.35 2.37 2.38 2.40 2.42 2.45 2.45 2.46 2.48	21092 21189 21324 21452 21637 21787 21894 22007 22137 22314	46.66 39.56 54.78 51.74 75.07 60.87 43.62 45.65 52.75 72.03	57.25 57.21 57.20 57.23 57.23 57.21 57.17 57.16 57.20	8.4 8.4 8.4 8.4 8.4 8.4 8.4	12.5 12.5 12.5 12.5 12.5 12.5 12.5

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
571.0 572.0 573.0 574.0 575.0 576.0 577.0 579.0 580.0	102.9 225.0 112.5 69.2 48.0 70.6 78.3 48.0	29.7 28.8 29.8	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9		2.51 2.52 2.52 2.53 2.54 2.56 2.58 2.61 2.63	22559 22647 22687 22767 22897 23084 23212 23327 23514 23675	99.42 35.51 16.23 32.46 52.75 76.08 51.74 46.66 76.08 65.21	57.32 57.26 57.15 57.08 57.07 57.12 57.11 57.08 57.13	8.4 8.4 8.4 8.4 8.4 8.4	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
581.0 582.0 583.0 584.0 585.0 586.0 587.0 589.0 589.0	52.9 50.7 49.3 46.8 48.0 41.9 40.0 42.4	31.3 38.2 29.9 29.9 29.7 29.3 28.7 29.6 30.5	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.15 1.16 1.18 1.16	2.66 2.68 2.70 2.74 2.76 2.81 2.85	23915 24085 24262 24445 24637 24825 25040 25265 25477 25630	97.39 68.98 72.03 74.05 78.11 76.08 87.24 91.30 86.23 61.88	57,26 57,29 57,32 57,37 57,42 57,45 57,55 57,63 57,72	8.4 8.4 8.4 8.4 8.4 8.4	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
591.0 592.0 593.0 594.0 595.0 596.0 598.0 599.0 600.0	73.5 55.4 54.5 61.0 41.9 46.8 36.7 40.0	27.7 26.3 24.1 24.6 24.9 24.9 24.8 24.8	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.09 1.01 1.07 1.08 1.04 1.15 1.17 1.19	2.86 2.90 2.91 2.93 2.96 2.98 3.00 3.05	25783 25906 26068 26233 26381 26596 26788 27033 27258 27483	62.13 49.71 65.94 66.95 59.85 87.24 78.11 99.42 91.30	57.73 57.71 57.73 57.75 57.76 57.88 57.88 57.98 58.15	8.4 8.4 8.4 8.4 8.4 8.4 8.4	12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6
601.0 602.0 603.0 604.0 605.0 606.0 607.0 608.0 609.0	39.1 36.7 26.5 31.0 33.0 34.0 13.7	30.2 30.9 30.9 30.8 30.5 30.5 30.5 30.5	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.27 1.23 1.26 1.34 1.31 1.28 1.28 1.54 1.24	3.08 3.11 3.14 3.17 3.21 3.24 3.27 3.34 3.36 3.39	27973 28218 28558 28848 29121 29386 30041 30278	105.50 93.33 99.42 137.96 117.68 110.57 107.53 265.78 96.37 101.44	58.27 58.35 58.45 58.65 58.79 58.92 59.64 59.63 59.73	8.4 8.4 8.4 8.4 8.4 8.4	12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6
611.0 612.0 613.0 614.0 615.0 616.0 617.0 618.0 619.0	21.2 34.3 52.9 61.0 35.0 26.9 35.3	27.8 29.4 31.0 30.2 30.2 30.7 30.4 30.4	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.33 1.40 1.28 1.14 1.10 1.27 1.35 1.26 1.31	3,43 3,51 3,53 3,54 3,57 3,61 3,64 3,67	31311 31573 31743 31891 32148 32483 32738 33036	145.07 172.46 106.52 68.98 59.85 104.49 135.94 103.47 120.72	59.94 60.21 60.32 60.34 60.45 60.45 60.63 60.73 60.87 61.01	8.4 8.4 8.4 8.4 8.4 8.4	12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6

DEPTH	ROP	WOB	RPM	МЫ	"d"c	HOURS	TURNS	ICOST	ccost	pр	FG
621.0 622.0 623.0 624.0 625.0 626.0 627.0 628.0 630.0	37.1 32.7 33.3 33.3 29.3 39.6 48.6 55.4	30.7	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.27 1.25 1.29 1.22 1.23 1.32 1.18 1.13	3.73 3.76 3.79 3.82 3.85 3.88 3.91 3.93 3.95	33583 33826 34101 34371 34641 34948 35176 35361 35523 35768	100.43 98.40 111.59 109.56 109.56 124.78 92.31 75.07 65.94 99.42	61.11 61.19 61.31 61.43 61.54 61.69 61.76 61.79 61.80	8.4 8.4 8.4 8.4 8.4 8.4	12.6 12.6 12.7 12.7 12.7 12.7 12.7 12.7
631.0 632.0 633.0 634.0 635.0 636.0 637.0 638.0 640.0	45.0 38.3 27.1 28.8 23.1 20.8 37.1 25.7	29.0 28.2 29.4 29.4 29.4 28.3 27.8 28.8 28.1	150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.27 1.17 1.23 1.33 1.31 1.36 1.39 1.23 1.23	4.00 4.03 4.05 4.09 4.12 4.12 4.22 4.24 4.28	37121 37511 37943 38186 38536	110.57 81.16 95.36 134.92 126.81 158.25 175.50 98.40 142.02	62.00 62.04 62.12 62.28 62.43 62.65 62.91 62.99 63.16 63.29	8.4 8.4 8.4 8.4 8.4 8.4	12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7
641.0 642.0 643.0 644.0 645.0 646.0 647.0 648.0 649.0	23.1 18.5 20.9 20.1 21.2 22.1 24.3 23.2	28.8 29.5 29.4 30.1 29.7 30.3 31.0	150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.35 1.37 1.44 1.40 1.42 1.40 1.38 1.37	4.35 4.40 4.45 4.55 4.60 4.64 4.68 4.78	39583 40071 40501 40548 41373 41781 42151 42538	150.14 158.25 197.82 174.48 181.59 172.46 165.35 150.14 157.24	63.48 63.69 64.24 64.50 64.74 64.97 65.16 65.36	8.4 8.4 8.4 8.4 8.4 8.4	12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7
651.0 652.0 653.0 654.0 655.0 655.0 657.0 658.0 659.0 660.0	21.1 21.8 25.9 28.1 27.9 30.3 33.6 36.7		150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.48 1.40 1.40 1.35 1.33 1.33 1.28 1.24 1.32	4.84 4.89 4.97 5.04 5.11 5.13 5.17	43981 44393 44741 45061 45383 45681 45948 46193	227.24 173.47 167.38 141.01 129.85 130.86 120.72 108.55 99.42 130.86	65.98 66.22 66.44 66.60 66.74 66.88 67.00 67.09 67.16 67.29	8.4 8.4 8.4 8.4 8.4	12.7 12.7 12.7 12.7 12.7
661.0 662.0 663.0 664.0 665.0 666.0 667.0 669.0 670.0	31.3 27.5 35.3 32.7 33.0 27.7 27.2 26.7	30.4 30.0 30.1 31.6 31.4	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9	1.32	5.21 5.24 5.28 5.30 5.33 5.40 5.44 5.52	47153 47481 47736	103.47 111.59 110.57 131.88 134.41 136.95	67.45 67.56 67.70 67.87 67.87 68.10 68.24 68.38 68.59	8.4 8.4 8.4 8.4 8.4 8.4 8.4	12.8 12.8 12.8 12.8 12.8 12.8 12.8

....

	DEPTH	ROP	MOB	RPM	MU	"d"c	HOURS	TURNS	ICOST	ccost	pр	FG
	671.0 672.0 673.0 674.0 675.0 676.0 677.0 678.0	23.1 20.5 19.4 18.3 17.4 18.5 17.4 20.9	28.2 28.3 28.4 28.5 28.6 28.4 26.2 26.4	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.34 1.36 1.40 1.41 1.43 1.44 1.43	5.56 5.65 5.76 5.76 5.82 5.93 5.98	50429 50869 51334 51827 52344 52832 53349 53779	197.82 209.99 174.48	68.75 68.94 69.17 69.42 69.69 70.25 70.54 70.76	8.4 8.4 8.4 8.4 8.4 8.4 8.4	12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8
	680.0	21,2	27.3	150	8.9	1.37	6.02	54204	172.46	70,97	8.4	12.8
	681.0 682.0 683.0 684.0 685.0 686.0 687.0 689.0 699.0	21.2 20.9 11.3 19.9 23.5 26.7 24.7 27.3	18.8 28.0 26.9	750 750 750 150 150 150 150	8,9 8,9 8,9 8,9 8,9 8,9	1.41 1.37 1.30 1.40 1.34 1.32 1.32	6.08 6.17 6.17 6.26 6.31 6.35 6.43 6.47 6.50	55114 55544 56342 56794 57177 57514 57879 58209	196.80 172.46 174.48 323.61 183.61 155.21 136.95 148.11 133.91 129.85	71.23 71.44 71.65 72.16 72.39 72.69 72.69 72.97 73.09	8.4 8.4 8.4 8.4 8.4 8.4	12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8
-	691.0 692.0 693.0 694.0 695.0 696.0 697.0 698.0 699.0	20.2 18.5 17.2 18.3 22.5 25.0 27.2 21.2 24.7 22.2	27.1 26.3 27.4 27.0 26.2 27.1	150 150 150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1.42 1.42 1.36 1.32 1.29 1.37	6.55 6.61 6.66 6.72 6.76 6.80 6.89 6.87	59462 59984 60477 60877 61237 61568 61993	180.57 197.82 212.02 199.85 162.31 146.08 134.41 172.46 148.11 164.34	73.30 73.56 73.84 74.09 74.27 74.53 74.53 74.85	8.4 8.4 8.4 8.4 8.4 8.4	12.8 12.8 12.8 12.9 12.9 12.9 12.9
	701.0 702.0 703.0 704.0 705.0 705.0 707.0 708.0 709.0 710.0	25.7 26.5 29.3 19.0 26.1 21.4 16.1	25.6 26.4 26.4	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1,33 1,31 1,28 1,40 1,29 1,36 1,44	7.03 7.07 7.10 7.14 7.19 7.23 7.27 7.34 7.40 7.46	63926 64233 64206 65051	142.02 137.96 124.78 191.73 139.99 170.43 226.22	75.28 75.41 75.54 75.63 75.86 75.99 76.17 76.47 77.04	8.4 8.4 8.4 8.4	12.9 12.9 12.9 12.9
	711.0 712.0 713.0 714.0 715.0 715.0 717.0 718.0 719.0 720.0	17.7 14.8 18.5 19.4 30.7 19.1 23.7 15.8 17.3	29.6 29.3 29.7 27.3 27.1 26.3	150 150 150 150 150 150 150	8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9	1.50 1.44 1.42 1.30 1.38 1.40 1.33	7.52 7.58 7.64 7.69 7.72 7.82 7.86 7.93		246.51 197.82 188.69 120.72 176.51 190.72 154.20	77.29 77.62 77.65 78.07 78.15 78.34 78.55 78.70 78.99 79.24	8.4 8.4 8.4 8.4 8.4 8.4 8.4	12.9 12.9 12.9 12.9 12.9 12.9 12.9

•

	ምላ ም ^ለ ያለ ማስ ነ	ri m	1.175.75	mmir	262.1	11 1 11	6 1 2 ¹⁰ 1 1 2 ¹⁰ 2 ¹⁰	*** L 4 LAN	*** *** *** ***			
	DEPTH	ROP	WUR	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	721.0	19.4	25.8	150	8.9	1.38	8.04	72331	188.69	79.45	0 4	12.9
	722.0		25.8			1,34	8.08					
	723.0		25.9					72731	162,31	79.61		12.9
						1.36	8.13		174.48	79.79		12.9
_	724.0		26.2			1.35	8.18		169,41	79.96		12.9
	725.0					1.38	8.22		159.27	80.11	8.4	12.9
	726.0		27.7		8.9	1.46	8.28	74536	229.26	80.39	8.4	12.9
	727.0	18.7	29.3	150	8.9	1.44	8.34	75018	195,79	80.61	8.4	12.9
	728.0	16.6	28.8	150	8.9	1.46	8.40	75561	220.13	80,87	8.4	12.9
	729.0	14.6	28.2	150		1.49	8.46		250.57	81.19		12.9
	730.0		29.9			1,45	8.52		203.90	81.42		12.9
	energy of the		00.0	e tri ci	0.0	at Armai	es entes	ent pro des des des	21, par. 21, par. par.		 .	
	731.0		29.7			1.51	8.59		250.57	81.74		12.9
	732,0		29.0			1.50	8,66		246.51	82.05		13.0
_	733.0		29.8			1,56	8.74		292.16	82.44		13.0
	734.0		29.1			1.53	8.81		278,97	82.80		13.0
	735.0		28.3			1.57	8,90		327.67	83.26		13.0
	736.0	14.1	25.4	150	8.9	1.46	8.97	80761	259.70	83.59	8.4	0.5t
	737.0	17.1	26.7	150	8.9	1.43	9.03	81286	213.03	83.83	8.4	13.0
	738.0	16.2	32.6	150	8.9	1.52	9.09	81841	225.21	84.09	8.4	13.0
	739.0	24.3	33.9	150	8.9	1.41	9.13	82211	150.14	84.21	8.4	13.0
	740.0	19.7	34,2	150	8.9	1.48	9.19	82668	185.64	84.40		13.0
	741.0	10 7	34.9	150	g 0	1.49	9.24	97174	189.70	84.59	5 A	13.0
	742.0		34.9			1.46	9.28		169.41	84.74		13.0
	743.0		35.3			1,42	9.32		145.07			
	744.0		35.4			1.60	9.40			84.86		13.0
	745.0								266.80	85.19		13.0
			34,9			1.51	9.45		201.87	85.40		13.0
	746.0		31.8			1.44	9.50		179,56	85.57		13.0
	747.0		33.0			1.45	9.55		178.54	85.74		13.0
_	748.0		33.9			1.44	9.60		165.35	8 5.89		13.0
_	749.0		32.9			1.50	9.65		212.02	86.11		13.0
	750.0	20.2	34.1	150	8.9	1.47	9.70	87323	180.57	86.29	8.4	13.0
_	751.0	24.8	34.6	150	8.9	1.41	9.74	87686	147.09	86.40	8.4	13.0
_	752.0		33.8			1.28	9.77	87923	96.37	86.41		13.0
	753.0		35.0			1.50	9.82		195.79	86.61		13.0
	754.0		34.8			1.54	9.88		226.22	86.86		13.0
	755.0			150	8.9	1.46	9,93		174.48	87.02		13.0
	756.0			150		1.47	9.98		187.67	87.20		13.0
	757.0	27.5		150		1.37	10.02		132.89			
	758.0	23.4		150		1.41			156.22	87.28		13.0
	759.0		32.2			1,48	10.05			87.40		13.0
	760.0	20.3		150		1.44	10.12 10.17		200,86 179,56	-87.60 -87.77		13.0 13.0
_												
	761.0		34.3			1.43	10.21		155,21	87.89	8.4	
	762.0	28.8		150		1.37	10.24		126.81	87.96		13.0
_	763.0	43.4		150	8.9	1,25	10.27	92408	84,20	87,95	8.4	13.0
_	764.0	21.7	36.1	150	8.9	1.47	10.31	92823	168.40	88.09	8.4	13.0
	765.0	7.9	36.6	150	8.9	1.78	10.44	93958	460,56	88.75	8.4	13.0
	766.0		36.4	150	8.9	1.53	10.50		203.90	88,95	8.4	13.0
	767.0			150		1.74	10.60		393.60	89.48	8.4	
	768.0		37.1	150		1.73	10.71		380.42	89.99		13.0
	769.0		36.0			1.58	10.77		240.26	90.26	8.4	
	770.0		37.2			1.61	10.84		251.86	90.54	8.4	
	77010	. "T : ₩	nee tha	x (.) ()	ter to re-	a + 1.2 Å	4 37 1 WT	2 2 1212 B	entra a 1 tol hit	e v i tatiit	ser F	4

-

على دائرة ومويلا وللعاروة الأجار الأجرا

and the same agree accepts

DEPTH	ROP	WOB	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
771.0 772.0 773.0 774.0 775.0 776.0 777.0 778.0 779.0 780.0	13.2 15.6 12.3 12.8 16.8 15.2 14.2 15.4 16.5 14.5	37.5 37.4 37.5 37.5 37.5 37.4 37.2 37.1	150 150 150 150 150 150 150	8.9 1.63 8.9 1.59 8.9 1.65 8.9 1.56 8.9 1.56 8.9 1.59 8.9 1.59 8.9 1.56 8.9 1.56	10.92 10.98 11.06 11.14 11.20 11.27 11.34 11.46 11.46	98840 99571 100274 100810 101402 102036 102620 103166	285.31 212.38 240.26 252.18	90.86 91.11 91.47 91.80 92.02 92.28 92.56 92.81 93.03 93.30	8.4 8.4 8.4 8.4 8.4 8.4	13.1 13.1 13.1 13.1 13.1 13.1 13.1
781.0 782.0 783.0 784.0 785.0 785.0 787.0 788.0 789.0 790.0	18.4 13.2 13.2 16.2 12.2 12.2 15.2 14.2 16.4 12.5	37.1 37.5 37.2 37.2 37.4 37.5 37.5 37.5	150 150 150 150 150 150 150	8.9 1.54 8.9 1.63 8.9 1.68 8.9 1.66 8.9 1.66 8.9 1.67 8.9 1.61 8.9 1.61	11.59 11.66 11.74 11.80 11.88 11.95 12.03 12.10 12.16 12.24	104276 104958 105639 106195 106933 107525 108275 108907 109455 110177	276.67 276.67 225.43 299.34 240.26 304.33 256.65 222.16	93.48 93.80 94.11 94.33 94.68 95.28 95.56 95.77 96.10	8.4 8.4 8.4 8.4 8.4 8.4	13,1 13,1 13,1 13,1 13,1 13,1 13,1
791.0 792.0 793.0 794.0 795.0 796.0 797.0	19.5 12.8 13.0 18.4 12.5 14.8 18.4	33.4 33.5 33.8 33.8 32.9	150 150 150 150 150	8.9 1.48 8.9 1.50 8.9 1.59 8.9 1.49 8.9 1.61 8.9 1.55 8.9 1.49	12,29 12,37 12,45 12,50 12,58 12,65 12,70	110640 111345 112037 112526 113246 113854 114343	266.07 280.92 198.48 292.16 246.76	96.26 96.58 96.89 97.06 97.38 97.63 97.80	8.4 8.4 8.4 8.4	13.1 13.1 13.1 13.1 13.1
BIT NUMBE HTC X3A COST TOTAL HOU	244	5.00	S T	ADC CODE IZF RIP TIME OTAL TURNS	114 12.25(3.0 72677	NOZ D BIT	FRVAL ZLÉS RUN DITION			.8 18 368,4
DEPTH	ROP	MOR	RPM	MW "d"c	HOURS	TURNS	ICOST	CC0S7	рþ	FG
798.0 799.0 800.0	85,7 26,3 29,8	14.5	68 91 92	8.9 0.68 8.9 1.09 8.9 1.12	0.01 0.05 0.08	48 255 441	43 139 123	13444 6791 4 568	8.4	13.1 13.1 13.1
801.0 802.0 803.0 804.0 805.0 806.0 807.0 808.0 809.0	35.0 1 58.1 1 55.4 1 51.4 1 70.6 1 50.7 1 67.0 2 70.6 2	17.2 17.8 13.0 19.6 18.5 19.4 21.2	120 117 113 109	8.9 1.06 8.9 0.99 8.9 1.03 8.9 0.09 8.9 0.98 8.9 1.06 8.9 0.98 8.9 0.97 8.9 0.99 8.9 1.03	0.11 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.24 0.26	581 703 838 943 1047 1189 1292 1386 1479 1576	104 63 66 71 52 72 54 51 52 55	3452 2774 2323 2001 1758 1570 1419 1294 1191 1103	8.4 8.4 8.4	13.1 13.1 13.1 13.1 13.2

DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	icost	ccost	PP	FG
811.0 812.0 813.0 814.0 815.0 816.0 817.0 818.0 819.0 820.0	55.4 25. 72.0 26. 72.0 26. 64.3 26. 58.1 27. 45.0 26. 49.3 26. 67.9 26. 20.1 18.	6 132 6 137 3 138 5 143 2 140 6 139 9 137 6 134	8.9 1.01 8.9 1.08 8.9 1.09 8.9 1.13 8.9 1.18 8.9 1.25 8.9 1.21 8.9 1.21 8.9 1.10 8.9 1.15	0.28 0.29 0.30 0.32 0.34 0.36 0.40 0.41	1665 1775 1889 2018 2166 2353 2520 2687 2805 3007	50.72 56.81 62.90 81.16 73.04 74.05	1829 964.05 906.97 856.96 812.84 774.33 739.27 707.59 677.87 656.29	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2
821.0 822.0 823.0 824.0 825.0 825.0 827.0 828.0 829.0 830.0	47.4 28. 45.0 28. 40.4 27. 24.3 27. 55.4 28. 63.2 28. 66.7 27. 18.8 27. 51.4 27.	4 160 1 156 9 146 5 140 2 144 0 144 7 143 6 52	8.9 1.29 8.9 1.31 8.9 1.32 8.9 1.47 8.9 1.20 8.9 1.15 8.9 1.15 8.9 1.14 8.9 1.22 8.9 1.17	0.48 0.51 0.53 0.57 0.59 0.61 0.62 0.64 0.67	3206 3419 3651 4012 4163 4300 4430 4558 4723 4864	81.16 90.29 150.14 65.94 57.82 54.78 54.78	632.16 610.12 590.13 573.83 555.69 538.52 522.40 507.32 497.52 484.59	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2
831.0 832.0 833.0 834.0 835.0 836.0 837.0 838.0 839.0	55.4 26. 69.2 26. 63.2 26. 55.4 27. 67.9 27. 29.8 27. 52.9 28. 52.9 28. 52.9 26.	6 136 5 138 8 137 5 137 9 135 4 133 5 132	8.9 1.16 8.9 1.10 8.9 1.13 8.9 1.19 8.9 1.12 8.9 1.21 8.9 1.21 8.9 1.18	0.73 0.74 0.76 0.78 0.79 0.82 0.84 0.86 0.88	5003 5121 5252 5401 5522 5794 5947 6104 6254 6380	52.75 57.82 65.94 53.77 122.75 68.98 72.03 68.98	472.28 460.29 449.11 438.76 428.63 420.78 411.99 403.70 395.73 388.12	8.4 8.4 8.4 8.4 8.4 8.4	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2
841.0 842.0 843.0 844.0 845.0 845.0 847.0 848.0 849.0	75.0 29. 73.5 27. 72.0 27. 56.2 28. 76.6 27. 70.6 27. 64.3 28. 64.3 26. 47.4 28. 30.0 25.	5 139 8 141 0 141 9 142 7 143 1 143 7 144 3 145	8.9 1.11 8.9 1.10 8.9 1.12 8.9 1.28 8.9 1.10 8.9 1.15 8.9 1.15 8.9 1.26 8.9 1.33	0.91 0.93 0.94 0.96 0.97 0.99 1.00 1.02 1.04	6871 6782 7103 7237 7372 7556	49.71 50.72 64.92 47.68 51.74 56.81 56.81 77.10	380.40 373.05 366.05 359.64 353.14 346.99 341.19 335.61 330.64 326.70	8.4 8.4 8.4 8.4 8.4 8.4	13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.3
851.0 852.0 853.0 854.0 855.0 856.0 857.0 859.0 859.0	63.2 26. 64.3 26. 76.6 27. 75.0 28. 73.5 28. 59.0 25. 78.3 26. 72.0 27. 45.6 26.	9 135 0 143 0 152 5 156 3 162 8 166 6 177 4 191	8.9 1.13 8.9 1.13 8.9 1.11 8.9 1.11 8.9 1.14 8.9 1.16 8.9 1.20 8.9 1.21 8.9 1.21	1.09 1.10 1.12 1.13 1.15 1.16 1.18 1.19 1.20	7940 8066 8200 8319 8444 8576 8745 8881 9040 9237	56.81 47.68 48.69 49.71 61.88 46.66 50.72	321.72 316.90 312.26 307.61 303.15 298.85 294.90 290.84 286.96 283.68	8.4 8.4 8.4 8.4 8.4 8.4	13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3

DEPTH	ROP WOB	RPM	MW "d"c	HOURS	TURNS	icost	CCOST	рp	FG
861.0 862.0 863.0 864.0 865.0 866.0 867.0 868.0 869.0	67,9 26.8 63,2 27.1 64,3 28.3 65.5 28.1 59.0 28.4 59.0 27.4 43.4 29.4 42.9 29.3 49.7 30.0 40.0 29.7	184 170 136 136 136 136 136	8.9 1.28 8.9 1.23 8.9 1.22 8.9 1.14 8.9 1.17 8.9 1.16 8.9 1.28 8.9 1.29 8.9 0.96 8.9 0.96	1.24 1.25 1.27 1.29 1.30 1.32 1.37 1.39	9397 9572 9730 9855 9993 10131 10319 10509 10577	57.82 56.81 55.79 61.88 61.88 64.20 85.21 73.55	280.09 276.67 273.34 270.09 267.03 264.05 261.49 259.00 256.43 254.16	8.4 8.4 8.4 8.4 8.4 8.4	13.3 13.3 13.3 13.3 13.3 13.3 13.3
871.0 872.0 873.0 874.0 875.0 876.0 877.0 878.0 889.0	30.3 29.6 33.3 30.4 55.4 28.5 67.9 30.5 50.7 30.2 37.5 30.7 39.1 30.7 70.6 28.7 40.9 29.0 48.0 27.8	49 54 79 100 103 103 104 105 92	8.9 1.07 8.9 1.03 8.9 1.05 8.9 1.15 8.9 1.26 8.9 1.26 8.9 1.25 8.9 1.17	1.44 1.47 1.49 1.51 1.53 1.55 1.58 1.59 1.62	10740 10838 10945 11033 11154 11320 11480 11569 11701 11816	109.56 45.94 53.77 72.03 97.39 93.33 51.74 89.27	252.36 250.46 248.03 245.51 243.28 241.44 239.58 237.27 235.46 233.54	8.4 8.4 8.4 8.4 8.4 8.4	13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3
881.0 882.0 883.0 884.0 885.0 886.0 887.0 888.0 889.0	53.7 27.9 40.9 28.4 67.9 28.9 57.1 28.3 61.0 26.9 58.1 27.3 85.7 27.9 43.4 27.8 73.5 25.0 67.9 27.0	96 98 100 102 103 104 105 60 74	8.9 1.09 8.9 1.18 8.9 1.04 8.9 1.09 8.9 1.06 8.9 1.08 8.9 0.97 8.9 1.01 8.9 0.88 8.9 0.94	1.66 1.68 1.70 1.71 1.73 1.75 1.76 1.78 1.80	11923 12067 12155 12262 12364 12472 12545 12628 12628 12688	89.27 53.77 63.91 59.85 62.90 42.61 84.20 49.71	231.57 229.90 227.85 225.96 224.08 222.26 220.27 216.77 216.94 215.18	8.4 8.4 8.4 8.4 8.4 8.4	13.3 13.3 13.3 13.3 13.3 13.3 13.4 13.4
891.0 892.0 893.0 894.0 895.0 896.0 897.0 898.0 899.0	69.2 28.1 64.3 28.9 67.9 31.2 72.0 29.8 60.0 29.0 53.7 26.5 70.6 29.6 60.0 29.6 70.6 28.2 70.6 27.9	124 123 123	8.9 0.98 8.9 1.12 8.9 1.13 8.9 1.69 8.9 1.14 8.9 1.14 8.9 1.07 8.9 1.00 8.9 0.92 8.9 0.89	1.82 1.84 1.85 1.87 1.89 1.90 1.92 1.93	12833 12948 13058 13161 13283 13416 13510 13587 13650 13707	56.81 53.77 50.72 60.87 67.97 51.74 60.87 51.74	213.45 211.80 210.16 208.51 207.01 205.60 204.06 202.65 201.17 199.72	8.4	13,4 13,4 13,4 13,4 13,4 13,4
901.0 902.0 903.0 904.0 905.0 905.0 907.0 909.0 910.0	46.8 29.0 72.0 28.4 50.7 28.0	67 89 100 120 122 120 122 88 91 95	8.9 0.88 8.9 1.07 8.9 1.01 8.9 1.21 8.9 1.08 8.9 1.18 8.9 1.06 8.9 1.06 8.9 1.06	1.98 2.00 2.01 2.03 2.05 2.07 2.08 2.09 2.11 2.12	13764 13865 13953 14107 14209 14352 14447 14524 14618 14692	68.98 53.77 78.11 50.72 72.03 47.68 53.26 62.90	194.61 193.28 192.17 190.85	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.4 13.4 13.4 13.4 13.4 13.4

and the second of the second o

			s concern	m m sz	2411	11 at 11 a	11001100	TURNS	ICOST	CCOST	PP	FG
-	DEPTH	ROP	MOB	KPM	LI M	"d "c	HOURS					
	911.0	66.7		99		80, f	2.14 2.15	14781 14864		186.07 184.90		13.4 13.4
	912.0 913.0	72.0		100		1.02	2.17	14943		183.71		13.4
_	914.0	73.5		102		î.03	2.18	15027	49.71	182.57	8.4	13.4
1	915.0			103		1,17	2.20	15161		181.69 180.59		13.4 13.4
_	916.0 917.0	72.0 68.0	30.2	102 98		1.04	2.22	15245 15332		179.53		13.4
	918.0	67.9		95		1.01	2.24	15416	53.77	178.49	8.4	13.4
	919.0	55,4	27.5	95		1.07	2.26	15519		177.57		13.4 13.4
_	920.0	58.1	26.6	97	8.9	1.05	2.28	15619	02.7U	176.64	. C) + "P	1-0:4
	921.0		27.4	99		1,07	2.30	15723		175.73		13.4
	922.0		26.5			1.09	2.32 2.34	15836 15959		174.83 174.07		13.4
	923.0 924.0		26.9 26.8	105		1.12	2.35	16056		173.14		13,4
	925.0		26.9		8.9	1.06	2.37	16158		172.24		13.4
-	926.0		27.3			1.05	2.38 2.39	16255 16311		171.34 170.34		13.4 13.4
	927.0 928.0		24.1 24.1	-84 -91		0.85 0.98	2.41	16396	56.81	169.47		13.4
-	929.0		24.6			00.1	2.42	16487	53.77	168.59		13.4
	930.0		24.7		8.9	1,05	2.44	16595	56.81	167.75	8.4	13,4
	931.0		22.9		8.9	1.09	2.46	16727		166.98		13.4
-	932.0		. 23.9			1.08	2.47	168 4 8 16987	57.82 65.94	166.17 165.43		13.5 13.5
	933.0 934.0		24.0 22.5			1.12	2.49 2.51	17131		164.73		13.5
	737.0 935.0		22.3			î. î.3	2.53	17287	75.07	164.08		13 5
	936.0	53.7	24,2	125		1.13	2.55	17426		163.39 163.23		13.5 13.5
	937.0		19.6 21.8			1.27	2.59 2.61	17710 17844	68.98	162.57		13.5
_	938.0 939.0		20.5			1,05	2.63	17972	66.95	161.89	8.4	13.5
	940.0		19.7		8.9	1.07	2.65	18115	76.08	161.29	8.4	13.5
	941.0	41.9	20.4	112	8.9	1.12	2.67	18275		160.78		13.5
	942.0		19.0			1.16	2.70	18475		160.37 160.05		13.5 13.5
-	943.0 944.0		20.4 20.3			1.21	2.73 2.76			159.69		13.5
-	945.0		21.1			1,07	2.78	19043	67.38	159.06		13.5
	946.0	36.5	20.8	120		1.18	2.80			158.67 158.19		13.5 13.5
	947.0		20.5 21.1			1.14	2.83 2.85	19411 19586		157.73		13.5
	948.0 949.0		22.1			1.29	2.89	19854	135.76	157.58	- 8.4	13.5
	950.0		20.4		8.9	1.28	2.93	20136	143.22	157.49	8.4	13.5
	951.0	45,5	; 21.1	120	8.9	1.12	2.95	20295		156.99		13.5
	952.0	36.2	20.1	120		1,17	2.98	20493		156.63		13.5 13.5
_	953.0		21.2 20.1			1.08	3,00 3,03	20631 20852		156.07 155.79	8.4	13.5
	954.0 955.0	42.2	21.8			1.15	3.05	21023	86.54	155.35	8.4	13.5
-	956.0	47.7	20.5	120	8.9	1.10	3.07	21174		154.86 154.38		13.5 13.5
	957.0		20.4 5 21.4			1.11	3.09 3.11	21330 21475		153.88		13.5
	958.0 959.0		,			1.18	3.14	21672	100.05	153.55	8.4	13.5
	960.0		20.9			01.16	3.17	21855	92.46	153.18	8.4	13.5

DEPTH	ROP	MOB	RPM	ĦW	"d "c	HOURS	TURNS	ICOST	CCOST	pp	FG
961.0 962.0 963.0 964.0 965.0 966.0 967.0 968.0 969.0	45.5 50.0	19.7 25.3 24.4 23.8	120 120	8.9 8.9 8.9 8.9 8.9 8.9	1.18 1.12 1.08 1.11 1.16 1.13 0.84 0.91 0.97 1.08	3,19 3,22 3,24 3,26 3,28 3,31 3,32 3,35 3,35	22051 22354 22354 22508 22697 22922 22922 22989 23073 23216	80.26 73.04 74.39 93.33 107.53 43.62 47.68 56.81	152.85 152.41 151.93 151.47 151.17 150.86 150.23 149.63 149.09	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5
971.0 972.0 973.0 974.0 975.0 976.0 977.0 978.0 979.0 980.0	70.6 63.2 48.6 62.1 54.5 69.2 78.3 66.7	25.7 22.4 25.0 23.8 26.6	105 101 100 103 62 36 99	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1,01 1,03 1,07 1,03 0,90 0,96 0,96	3,39 3,41 3,42 3,46 3,49 3,52 3,52	23305 23394 23490 23414 23714 23781 23931 23931 24024 24135	51.74 57.82 75.07 58.84 66.95 52.75 46.66 54.78	148.22 147.67 147.16 146.75 146.26 145.81 145.30 144.75 144.26	8.4 8.4 8.4 8.4 8.4 8.4	13.5 13.5 13.5 13.6 13.6 13.6 13.6
981.0 982.0 983.0 984.0 985.0 986.0 987.0 989.0 989.0	54.5 51.4 53.7 45.0	26.7 26.2 26.3 25.2	126 122 120 121 124 129 124	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1.10 1.13 1.11 1.15 1.18 1.31 1.22	3.55 3.57 3.59 3.61 3.63 3.65 3.71 3.75	24258 24397 24539 24674 24985 25220 25408 25591 25724	66.95 71.01 67.97 81.16 74.05 110.57 92.31 92.31	143.32 142.90 142.52 142.12 141.79 141.44 141.22 141.02 140.76		13.6 13.6 13.6 13.6 13.6
991.0 992.0 993.0 994.0 995.0 996.0 997.0 998.0 999.0	51.4 41.4 43.9 40.0 50.7 52.2 59.1 57.4	26.2 25.3 26.4 23.7 23.1 21.2 24.3	112 113	8.9 1 8.9 1 8.9 1 8.9 1 8.9 1 8.9 1	1.20 1.17 1.22 1.00 1.01 1.01	3.77 3.79 3.82 3.84 3.86 3.90 3.92 3.93 3.95	25854 26016 26170 26343 26435 26530 26638 26732 26830 26952	88.26 83.18 91.30 72.03 64.92	138.90 138.53 138.19 137.81 137.44	8,4 8,4 8,4 8,4 8,4 8,4 8,4	13.6 13.6 13.6 13.6 13.6 13.6
1001.0 1002.0 1003.0 1004.0 1005.0 1006.0 1007.0 1008.0 1009.0	50.0 2 41.4 2 50.7 2 47.4 2 41.9 2 47.4 2 40.9 2 38.7 2 20.6 1	22.2 23.8 22.2 23.4 23.4 24.7 15.7	105 103 85 95 106 111	9.0 1	1.11 1.07 1.07 1.05 1.05 1.15 1.13	3.97 4.00 4.02 4.04 4.06 4.08 4.11 4.13 4.18 4.20	27072 27222 27347 27478 27600 27721 27876 28048 28376 28518	89,27 94,34 172,53	136.59 136.28 135.99 135.76 135.48 135.26	8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1	13.6 13.6 13.6 13.6 13.6 13.6

The second secon

and the second second

DEPTH	ROP	MDB	RPM	MW	"d "c:	HOURS	TURNS	ICOST	CCOST	PP	FG
1011.0 1012.0 1013.0 1014.0 1015.0 1016.0 1017.0 1018.0 1019.0	38.7 37.5 32.7 48.6 38.3 22.8 25.4 29.5	24.7 22.6 22.8 25.5 25.4 24.2 22.1 20.4 21.3 23.4	115 117 74 82 95 112 110	9.0 9.1 9.1 9.1 9.1 9.1 9.1	1.12 1.16 1.17 1.11 1.02 1.12 1.29 1.23 1.20 1.12	4.22 4.25 4.28 4.31 4.33 4.35 4.40 4.44 4.47	28658 28836 29023 29159 29260 29408 29702 29963 30184 30336	94.34 97.39 111.59 75.07 95.36 160.28 144.05	134.25 133.98 133.80 133.92 133.97	8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1	13.6 13.6 13.6 13.6 13.6 13.6
1021.0 1023.0 1024.0 1025.0 1025.0 1027.0 1028.0 1029.0 1030.0	41.9 41.9 45.0 39.1 32.1 49.7 36.0 14.8	24.9 22.3 24.3 23.1 21.2 17.9 26.5 23.8 17.8 20.5	125 124 125 86 87 95 95 97	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.13 1.15 1.18 1.03 1.05 1.06 1.07 1.13 1.30	4.51 4.56 4.56 4.66 4.66 4.69 4.78	31 368 31526	87.24 81.16 93.33 113.62 73.55 101.44 246.51	132.25	8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1	13.7 13.7 13.7 13.7 13.7 13.7
1031.0 1032.0 1033.0 1034.0 1035.0 1035.0 1037.0 1038.0 1039.0	35.0 33.0 48.6 33.3 28.8 34.3 28.8 35.3	18.4 20.0 18.1 21.2 21.7 19.3 19.3 17.9 19.0	100 101 95 102 101 106 124 125	9.1	1.05 1.11 1.10 1.01 1.15 1.15 1.12 1.19	4.80 4.83 4.86 4.88 4.91 4.95 4.98 5.01 5.07	32204 32375 32559 32676 32860 33071 33257 33514 33727 33948	104.34 110.57 75.07 109.56	131.68 131.66 131.55 131.53 131.42	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.7 13.7
1041.0 1042.0 1043.0 1044.0 1045.0 1046.0 1047.0 1048.0 1049.0	27.3 37.9 24.2 34.3 41.5 32.0 32.0	18.2 19.0 19.5 20.1 20.1 25.3 20.0 21.0 22.0	118 112 89 95 114 110 115	9.1 9.1 9.1 9.2 9.4 9.4	1.21 1.21 1.11 1.18 1.10 1.15 1.12 1.13	5.11 5.14 5.17 5.21 5.24 5.30 5.33 5.33	34481 34658 34878 35044 35209 35415 35631 35840	151.15 106.52 87.92 114.13 114.13	131,22 131,30 131,20 131,03 130,96 130,89	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.7 13.7
1051.0 1052.0 1053.0 1054.0 1055.0 1056.0 1057.0 1058.0 1059.0	5.5 24.3 8.6 24.8 6.6 14.0 7.1 6.3		122 98 119 122 113 106 100 126	9.9 9.9 9.9 9.9 10.0 10.0	1.16	5.42 5.64 5.76 5.80 5.95 6.02 6.16 6.47	37647 37889 38717 39013 40038 40492 41336 42544	425.05 147.09 551.86 261.22 512.29 584.32	132.81 132.88 134.01 134.06 135.68	8.4 8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.7 13.7

.

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	icost	CCOST	PP	FG
1061.0 1062.0 1063.0 1064.0 1065.0 1066.0 1067.0 1068.0 1069.0	10.0 45.6 37.1 46.2 42.4 47.4 35.0 37.5	14.6 13.0 27.3 25.3 27.5 27.6 27.6 26.0 24.8 25.9	119 108 114 115 115 117 117	0.01 2.01 2.01 10.2 10.2 10.2 10.2	1.23 1.02 1.07 1.04 1.05 1.03 1.10	6.57 6.67 6.72 6.74 6.76 6.78 6.81 6.87		98.40 79.13 86.23 77.10 104.49 97.39		8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.8 13.8 13.8 13.8
1071.0 1072.0 1073.0 1074.0 1075.0 1076.0 1077.0 1078.0	27,9 46,2 40,4 42,9 32,1 53,7 46,8 47,4	26.5	102 90 99 121 129 130 124	10.2 10.2 10.2 10.2 10.2	1.07 0.97 1.01 1.05 1.11 1.05 1.05	6.89 6.93 6.97 7.03 7.05 7.07 7.11	46850 46997 47166	130.86 79.13 90.29 85.21 113.62 67.97 78.11 77.10	140.48 140.30 140.10	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	13.8 13.8 13.8 13.8 13.8 13.8 13.8
1081.0 1082.0 1083.0 1084.0 1085.0 1086.0 1087.0 1089.0	32.7 47.4 46.8 47.4 48.6 28.6 34.0 50.7	26.0 26.6 24.3 22.9 24.4 24.1 21.0 19.9 24.0 30.8	60 96 115 135 130 125 121 115	10.2 10.2 10.2 10.2 10.2 10.2 10.2	0.95 0.98 1.04 1.02 1.11 1.04 0.97	7.14 7.17 7.19 7.21 7.25 7.25 7.32 7.34 7.36		78.11 77.10 75.07 127.82 107.53		8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8
1091.0 1092.0 1093.0 1094.0 1095.0 1096.0 1097.0 1098.0 1099.0	37.1 48.6 40.4 36.4 51.4 46.8 45.6 44.4	27.9 23.7 25.8 25.2 25.0 27.4 28.1 26.6 27.2	61 105 125 143 134 131 131	10.2 10.2 10.2 10.2 10.2 10.2	0.89 0.98 1.07 1.13 1.05 1.07	7.39 7.41 7.43 7.46 7.50 7.53 7.55 7.59	49893 49991 50121 50307 50542 50699 50866 51039 51211 51372	98.40 75.07 90.29 100.43 71.01 78.11 80.14 82.17	137,32 137,19 136,98 136,82 136,70 136,48 136,28 136,10 135,92 135,73	8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8
1101.0 1102.0 1103.0 1104.0 1105.0 1106.0 1107.0 1108.0 1109.0	25.0 29.8 31.9 26.5 18.4 13.4 29.3 28.1	23.7 19.1 21.9 21.8 22.4 22.8 21.9 23.6 23.9 25.2	110 113 119 118 122 100 86 105	10.3 10.3 10.3 10.3 10.3 10.3	1.07 1.07 1.12 1.22 1.22 1.24 1.03	7.62 7.66 7.70 7.73 7.77 7.82 7.90 7.93 7.96	51858 52087 52311 52580 52977 53426 53603	146.08 122.75 114.63 137.96 198.83 272.89 124.78 129.85	135.65 135.58 135.59 135.80 136.24 136.20		13.8 13.8 13.8 13.8 13.8

-	DEPTH	ROP	WOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
	111.0 1112.0 1113.0 1114.0 1115.0 1116.0 1117.0 1118.0 1119.0	35.6 33.3 29.0 34.3 27.7 24.7 28.1 25.2		95 120 131 127 123 129 132	10.3 10.3 10.3 10.3 10.3 10.3	1.02 1.08 1.13 1.10 1.16 1.16 1.16	8.02 8.05 8.08 8.11 8.14 8.18 8.22 8.25 8.25 8.33	54336 54552 54824 55046 55313 55628 55909 56220	101,44 102,46 109,56 125,79 106,52 131,88 148,11 129,85 145,07 144,05	135.83 135.74 135.71 135.62 135.61 135.65 135.63	8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.9 13.9 13.9 13.9 13.9 13.9
	1121.0 1122.0 1123.0 1124.0 1125.0 1125.0 1127.0 1128.0 1129.0	27.7 28.8 28.6 21.4 15.5 14.2 14.9	28.4 26.4 26.6 26.6 23.7 27.9 27.2 25.7	127 125 126 138 132 128 133	10.3 10.3 10.3 10.3 10.3 10.3	1.18 1.16 1.17 1.26 1.30 1.38 1.36	8.37 8.41 8.44 8.53 8.59 8.66 8.73 8.78 8.85	56985 57245 57510 57895 58406 58946 59481 59904	155.55 131.88 126.81 127.82 170.43 235.35 256.65 245.50 188.69 248.83	135.71 135.69 135.79 136.09 136.46 136.79	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
	1131.0 1132.0 1133.0 1134.0 1135.0 1135.0 1137.0 1139.0 1140.0	22.2 21.6 16.7 29.0 28.3 25.2 26.1 26.3	27.4 25.8 27.8 29.5 28.7 27.9 27.8 28.6 27.5	185 154 141 131 125 118 114 109	10.3 10.3 10.3 10.3 10.3 10.3	1.32 1.31 1.38 1.20 1.18 1.20 1.19	8.91 8.95 9.00 9.06 9.09 9.13 9.17 9.20 9.24 9.28	61374 61803 62309 62580 62844 63126 63389 63638	190.72 164.34 169.41 218.11 125.79 128.83 145.07 139.99 138.98	137.58 137.67 137.91 137.88 137.85 137.87 137.88	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
	1141.0 1142.0 1143.0 1144.0 1145.0 1146.0 1147.0 1149.0 1149.0	8.4 8.4 20.0 20.1 22.4 17.4 12.8 16.4		70 56 128 113 115 112 95 96	10.3 10.3 10.3 10.3 10.3 10.3	1.26 1.21 1.21 1.24 1.23	9.32 9.44 9.56 9.61 9.66 9.76 9.84 9.95	64695 65092 65477 65813 66123 66509 66954 67304	156.22 433.17 433.17 182.60 181.59 163.33 209.99 285.06 222.16 188.69	138.74 139.59 139.72 139.84 139.90 140.11 140.52	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9 13.9
	1151.0 1152.0 1153.0 1154.0 1155.0 1156.0 1157.0 1159.0	20.0 21.3 27.3 21.7 30.0 24.0 21.3 32.4	26.2 26.7 24.5 22.6 23.6 23.6 21.5	117 125 129 169 176 166 157	10.3 10.3 10.3 10.3 10.3 10.3	1.25 1.22 1.16 1.26 1.20 1.24 1.26 1.12	10.01 10.06 10.10 10.14 10.19 10.22 10.26 10.31 10.34 10.39	68390 68744 69027 69494 69847 70261 70704 70983	121.73 152.17 171.44	141.20 141.26 141.26 141.34 141.28 141.31 141.40	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9

Company and the company of the compa

DEPTH	ROP	MOB	RPM	Wil	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1161.0 1162.0 1163.0 1164.0 1165.0 1165.4	30.3 45.0 39.1 34.0	24.4 18.2 17.4 21.1	128 153 150 141	10.3 10.3 10.3 10.3 10.3	1.13 1.00 1.01 1.08	10.42 10.45 10.47 10.50 10.53 10.54		120.72 81.16		8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0
BIT NUM CHRIS RE COST TOTAL HE	C44	3 0.00 18.0	9	IADC (STZE TRIP T TOTAL		4 9.875 4.5 1029	BI. NO:	TERVAL ZZLES TRUN MOITION			5 14 10.1
DEPTH	ROP	MUB	RPM	MW	"d"c	HOURS	TURNS	icost	CCOST	PР	FG
1165.6 1165.8 1166.0 1166.2	30.0 46.5	34.5 35.0 37.2 40.0	70 71	10.3 10.3 10.3 10.3	1.15 1.64	0.01 0.02 0.02	36 64 82 101	162 122 79 91	82332 41227 27511 20656	8.4 8.4 8.4 8.4	14.0
1166.4 1166.8 1167.0 1167.2 1167.4 1167.6 1167.8 1168.0	23.2 22.5 30.0 48.0 48.0 48.0 42.4 51.4	35.1 33.2 33.2 33.0 33.0 33.7 32.5	470 51 477 44 44 44	10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.09 1.12 1.04 0.87 0.87 0.86 0.88	0.08 0.09 0.10 0.10 0.11 0.11 0.11 0.12 0.12	259 283 310 330 342 354 365 377 389 400	964 157 162 122 76 76 76 86 71 81	16718 13957 11987 10504 9345 8418 7660 7029 6493 6035	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0
1168.4 1168.6 1169.0 1169.2 1169.4 1169.6 1169.8 1170.0	45.0 55.0 60.0 42.4 55.4 36.0 31.3	31.9 32.4 32.3 33.4 33.2 32.9 33.3 33.5 33.5	47 44 44 43 46 48 51	10.3 10.3 10.3 10.3 10.3 10.3 10.3	0.89 0.82 0.79 0.89 0.80 0.95 1.01 1.03	0.13 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17	410 423 433 442 454 464 479 498 517	66 81 66 61 86 66 101 117 117	5637 5290 4983 4709 4466 4246 4849 3870 3707 3556	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0
1170.4 1170.8 1171.0 1171.2 1171.4 1171.6 1171.8 1172.0 1172.2	45.0 40.0 45.0 40.0 55.4 42.4 42.4	34.6 34.1 33.5 34.1 33.9 33.6 34.4 34.3	49 49 47 48 48 49 49	10.3 10.3 10.3 10.3 10.3 10.3 10.3	0.91 0.94 0.90 0.94 0.84 0.92 0.93	0.18 0.19 0.19 0.19 0.20 0.20 0.21 0.21	545 558 573 585 600 610 624 638 651 663	86 81 91 81 91 66 86 86 71	3417 3289 3170 3060 2958 2861 2772 2688 2609 2534	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0

and the control of th

and the second s

DEPTH	ROP	WOB	RPM	MW	"d"c	Hours	TURNS	ICOST	CCOST	pр	FG
1172.4 1172.6 1172.8 1173.0 1173.2 1173.4 1173.6 1173.8 1174.0 1174.2	48.0 60.0 42.4 37.9 55.4 45.0 51.4 48.0 19.5	34.0 33.6 33.6 34.2 34.1 34.3 34.2	66 67 67 70 70 69 69 71	10.3 10.3 10.3 10.3	0.91 1.02 1.05 0.95 1.02 0.98 1.00	0.22 0.23 0.24 0.24 0.24 0.25 0.25 0.25	679 692 711 732 748 766 782 799 843 889	76 61 86 96 66 81 71 76 188	2464 2397 2335 2276 2219 2166 2115 2066 2022 1981	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0
1174.4 1174.6 1174.8 1175.0 1175.2 1175.4 1175.5	55.4 40.0 60.0 42.4 31.3 33.0 34.0	33.4 33.8 33.8 33.6 33.5	71 74 71 73 74	10.3 10.3 10.3	1.05 0.94 1.04 1.14 1.13	0.28 0.29 0.29 0.29 0.30 0.30	906 927 942 962 990 1017 1029	66 91 61 86 117 111	1938 1898 1859 1822 1787 1754 1738	8.4 8.4	14.0
BIT NUMB HTC J22 COST TOTAL HO	852	4 20.00 33.91	ç	CADC (BIZE FRIP TOTAL		517 12,250 4,5 139627	NOZ. BIT	ERVAL ZLES RUN DITION			8 16 13.5
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	TCOST	CCOST	рp	FG
1176.0 1177.0 1179.0	25.3 21.3 30.6	9.2 10.7 13.9	55		0.76 0.82 0.71	0.02 0.07 0.13	66 220 369	145 171 119	50053 16798 7267	8.4	14.0
1180.0 1181.0 1182.0 1183.0 1184.0 1185.0 1186.0 1187.0 1189.0	54.5 20.6 51.4 45.6 45.6 50.0	22.7 20.6 21.8 34.9 44.4	47 46 48 47 51 48 40 52	10.3 10.3 10.3 10.3 10.3 10.3	0.69 0.62 0.61 0.72 0.75 0.75 0.72 0.69 0.83 0.72	0.17 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.31	449 500 539 595 657 724 781 818 845 901	122 67 52 71 80 73 56 49	5680 4659 3950 3433 3039 2727 2474 2264 2087 1936	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
1190.0 1191.0 1192.0 1193.0 1194.0 1195.0 1196.0 1197.0 1199.0	72.0 80.0 59.0 62.1 42.9 55.4 57.1	44.8 46.2 43.3 44.7 41.5	99 97 104 97 91 119 111 105	10.3 10.3 10.3 10.3 10.3 10.3	0.92 0.96 0.98 1.08 1.15 1.13 1.11 1.10	0.34 0.35 0.37 0.38 0.40 0.42 0.44 0.48 0.48	967 1050 1123 1228 1322 1449 1578 1695 1819	54 51 46 59 85 64 72 54	1807 1693 1593 1506 1428 1359 1296 1238 1187 1138	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0

- - -

.

•

DEPTH	ROP	МОВ	RPM	МЫ	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1200.0 1201.0 1202.0 1203.0 1204.0 1205.0 1206.0 1207.0 1208.0 1209.0	133.3 66.7 29.8 35.6 35.0 36.0 29.3 25.5	43.1 41.7 44.2 44.7 46.3 45.2 44.6 43.8	120 114 113 115 109 105 95	10.3 10.3 10.3 10.3 10.3 10.3 10.3	0.86 1.05 1.31 1.27 1.27 1.24 1.27	0.50 0.51 0.53 0.56 0.59 0.62 0.64 0.72	2572 2759 2934 3128	27 55 122.75 102.46 104.49 101.44 124.78 143.04	1052 1014 981.68 950.83 922.14 895.24 870.78	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	14.0 14.0 14.0 14.0 14.0 14.0 14.0
1210.0 1211.0 1212.0 1213.0 1214.0 1215.0 1216.0 1217.0 1218.0	23.1 40.9 48.0 10.8 4.9 11.6 10.7 13.5	45.3 44.4 38.6 39.1 43.4 41.5 40.5 37.1	101 89 89 92 113 155 136	10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.36 1.14 1.05 1.50 1.86 1.67 1.64	0.77 0.81 0.84 0.86 0.95 1.16 1.24 1.33 1.41	4133 4244 4755 6137 6939 7699 8160		786.69 767,59 749.15 738.49 738.57 728.09 718.76 708.22	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.1 14.1 14.1 14.1 14.1 14.1 14.1
1220.0 1221.0 1222.0 1223.0 1224.0 1225.0 1226.0 1227.0 1228.0	69.2 40.9 40.0 24.5 21.1 34.0 30.8 12.1	39.0 37.6 37.9 39.1 38.9 36.8 33.8 40.2	113 115 117 118 115 113 103	10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.01 1.16 1.17 1.33 1.37 1.20 1.17	1.55 1.57 1.59 1.62 1.66 1.73 1.77 1.85	9226 9395 9570 9858 10187 10387 10588 11180		674.15 661.57 649.56 639.25 629.84 619.49 609.77	8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1
1230.0 1231.0 1232.0 1233.0 1234.0 1235.0 1236.0 1237.0 1238.0	42.4 52.9 83.7 24.0 25.8 81.8 65.5 22.6	37.9 37.7 35.6 25.0 20.1 34.4 28.9 40.2	103 101 100 101 101 111 93 96	10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.12 1.04 0.89 0.84 0.79 0.92 0.92	1.94 1.97 1.99 2.00 2.01 2.02 2.04 2.05 2.10 2.13	11955 12070 12141 12223 12303 12385 12470 12726	68,98 43,62 49,35 48,19 44,64	579,07 570,04 560,89 552,15 543,68 535,43 527,63 521,77	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1
1240.0 1241.0 1242.0 1243.0 1244.0 1245.0 1246.0 1247.0 1248.0 1249.0	19.7	23.4 24.5 26.8 18.1 29.7 29.7 34.4	94 103 93 83 86 90 87 80	10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.15 1.24 0.63 0.84 1.02 1.17 1.17	2.18 2.23 2.29 2.30 2.35 2.35 2.43 2.47 2.50	13505 13892 13927 14035 14171 14402 14635 14812	182.60 185.64 228.25 22.83 79.13 96.37 155.55 163.33 133.91 100.43	505.27 501.11 494.02 482.96 482.33 477.69 473.30 468.62	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1

Mark the Control of t

D	EPTH	ROP	WOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	ÞР	FG
12 12 12 12 12 13 13	50.0 51.0 52.0 53.0 55.0 55.0 56.0 257.0	41,4 17,9 34,0 39,1 35,6 32,0 22,0 18,5	37.1 37.1 36.8 37.6 37.4 35.6 35.2	116 119 118 109 111 110 110	10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.15 1.41 1.21 1.16 1.19 1.20 1.30 1.34	2.52 2.55 2.60 2.63 2.66 2.72 2.76 2.88	15902 16069 16256 16462 16762 17102	88.26 203.90 107.53	441,51 437,24 433,23 429,95 427,13	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.1 14.1 14.1 14.1
	260.0 261.0 262.0 263.0 264.0 265.0 266.0 267.0 269.0	30.3 26.1 33.0 45.0 65.0 70.6 39.6 26.5	33.9 33.8	100 100 104 100 100 69 69		1.18 1.21 1.16 1.05 0.95 0.83 0.99	2.88 2.92 2.96 2.99 3.01 3.02 3.04 3.10 3.14	17703 17933 18122 18256 18348 18407 18512 18663	56.18 51.74	416.46 413.27 409.81 406.09 402.18 398.31 394.97 392.19	8.4 8.4 8.4 8.4 8.4 8.4	14.1 14.1 14.1 14.2 14.2 14.2 14.2
12 12 12 12 12 12 12	270.0 271.0 272.0 273.0 274.0 275.0 276.0 277.0 279.0	30.8 34.6 36.0 8.5 6.0 11.4 12.0 9.7	32.8 32.6 32.7 31.5 32.6 32.9 34.8 35.2 34.1	80 87 79 79 71 113 83	8.01 3.01 3.03 10.3 10.3 10.3 10.3	1.09 1.08 1.03 1.45 1.58 1.50 1.50	3.18 3.24 3.26 3.38 3.55 3.64 3.72 3.82 3.93	19159 19310 19441 20002 20714 21312 21729	101.44 432.15 609.68 320.56	383.97 381.08 378.21 376.76 381.08 380.48 379.73 379.69	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
12 12 12 12 12 12	280.0 281.0 282.0 283.0 284.0 285.0 286.0 287.0 288.0	6.5 15.3 21.4 17.8 20.5 24.3 21.4 21.7	33.1 33.1 31.5 30.4 29.1 28.0 29.7 31.5 31.5 29.8	83 80 84 83 75 79 76 79	10.3 10.3 10.3 10.3 10.3 10.3 10.3	1.55 1.27 1.18 1.21 1.14 1.12 1.17	4.04 4.19 4.26 4.30 4.36 4.45 4.50 4.58	24246 24559 24794 25073 25295 25491 25704 25922	170.43 204.92	381.64 380.31 378.35 376.76 374.94 372.91 371.09 369.29	8,4 8,4 8,4 8,4 8,4 8,4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
12 12 12 12 12 12 12	290.0 291.0 292.0 293.0 294.0 295.0 295.0 297.0	24.3 22.8 45.0 18.7 30.8 28.1 30.3 33.0	31.8 32.2 33.1 35.5 32.9 38.8 40.3 39.4 36.0	75 80 77 87 76 67 66 68	10.3 10.3 10.3 10.3 10.2 10.2 10.2	1.18 1.18 0.99 1.26 1.14 1.15 1.12	4.61 4.65 4.70 4.72 4.81 4.84 4.90 4.93	26450 26662 26764 27044 27192 27336 27466 27589	116.66 150.14 160.28 81.16 195.79 118.69 129.85 120.72 110.57 99.42	363.19 361.45 359.06 357.68 355.68 353.81 351.89	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	TCOST	ccost	PР	FG
1300.0 1301.0 1302.0 1303.0 1304.0 1305.0 1306.0 1307.0 1308.0 1309.0	40.9 39.1 32.7 20.0 27.7 20.6 23.5 32.1	35.0 32.6 40.4 38.6 41.8 43.5 43.4 46.4 45.2 43.3	69 65 67 55 44 65 69 64	10.2 10.2 10.2 10.2 10.2 10.2 10.2	0.97 1.04 1.08 1.20 1.05 1.26 1.26 1.13	4.96 4.98 5.01 5.09 5.12 5.17 5.21 5.28	28277 28371 28562 28738 28857	89.27	338,74 337,15 335,92 334,55 332,88	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
1310.0 1311.0 1312.0 1313.0 1314.0 1315.0 1316.0 1317.0 1318.0	22.9 31.0 25.5 39.6 37.1 25.5 27.3 30.8	43.6 42.7 37.7 35.9 40.4 42.8 43.4 43.5	66 60 71 78 96 63 61 65	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.23 1.06 1.17 1.05 1.17 1.18 1.14	5.32 5.36 5.43 5.46 5.52 5.56 5.59 5.63	29327 29443 29410 29729 29884 30031 30166 30293	143.04 133.91 118.69	328,62 327.07 325.74	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
1320.0 1321.0 1322.0 1323.0 1324.0 1325.0 1326.0 1327.0 1328.0	12.5 25.9 25.0 24.0 21.4 35.3 31.0	43.7 44.8 44.0 40.0 38.5 40.6 40.1 39.4 39.9	64 65 60 70 65 68	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.42 1.19 1.17 1.15 1.24 1.06 1.11	5.69 5.77 5.85 5.89 5.96 5.99 6.05	30964 31114 31270 31421 31616 31724 31851 31986	192.74 292.16 141.01 146.08 152.17 170.43 103.47 117.68 120.72 93.33	314.25 315.06 313.91 312.82 311.87 310.49 309.21 307.98	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3
1330.0 1331.0 1332.0 1333.0 1334.0 1335.0 1336.0 1337.0 1338.0 1339.0	26.7 26.7 34.3 32.1 31.0 32.7 38.7 29.8	39.7 39.0 38.3 34.7 36.5 36.5 34.6 35.4	65 76 76 73 75 75 72	10.2 10.2 10.2 10.2 10.2 10.2		6.09 6.12 6.16 6.19 6.22 6.25 6.29 6.31 6.34 6.38	32368 32519 32652 32791 32932 33069 33186 33331	136.95 136.95 106.52 113.62 117.68 111.59 94.34 122.75	303.24 301.99	8.4 8.4 8.4 9.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3
1340.0 1341.0 1342.0 1343.0 1344.0 1345.0 1346.0 1347.0 1348.0 1349.0	21.6 30.0 29.8 20.1 35.0 30.8 17.3 25.2	37.6 35.9 37.5 37.3 37.2 37.4 37.4	67 72 65 67 67 67 67	10.2 10.2 10.2 10.2 10.2 10.2	1.16 1.12 1.10 1.21 1.05 1.05 1.15	6.42 6.47 6.54 6.59 6.65 6.70 6.74	33841 33984 34117 34312 34427 34558 34790 34950	169.41 121.73 122.75 181.59 104.49 118.69 211.00 145.07	294.29 293.53 292.50 291.49 290.83 289.74 288.28 288.28 287.45 286.56	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3

and the second of the second o

DEPTH	ROP	MOB	RPM	WM	"d"c	HOURS	TURNS	icost	CCOST	PP	FG
1350.0 1351.0 1352.0 1353.0 1354.0 1355.0 1356.0 1357.0 1358.0	13.4 22.5 29.0 34.3 27.5 30.3 34.3	37.3 37.1 36.5 37.2	66 70 73 73 65 67 68 66	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.33 1.18 1.13 1.08 1.11 1.10 1.06 1.37	6.93 7.00 7.05 7.11 7.15 7.18 7.29 7.44	35990 36176 36326 36454 36596 36729 36848 37178	541.71 271.87 162.31 126.08 106.52 132.89 120.72 106.52 304.33 524.47	287.93 287.22 286.31 285.31 284.46 283.55 282.58 282.69	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3
1360.0 1361.0 1362.0 1363.0 1364.0 1365.0 1366.0 1367.0 1368.0	14.4 7.6 9.4 9.6 27.1 27.3 25.4	36.3 37.6 37.2 36.6 37.0 37.6 37.6 37.6 37.6	70 28 64 75 75 75 75	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.33 1.24 1.42 1.46 1.16 1.15	7.55 7.62 7.75 7.86 7.96 8.00 8.04 8.07 8.11	38493 38710 39121 39579 39745 39908 40065 40243	417.95 253.61 479.33 388.53 380.42 134.92 131.88 133.91 144.05 161.30	284.57 285.61 286.16 286.66 285.86 285.05 284.27 283.54	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
1370.0 1371.0 1372.0 1373.0 1374.0 1375.0 1376.0 1377.0	19.9 25.7 23.8 25.0 25.5 12.1 7.9 24.0	37.6 37.7 37.6 37.8 38.6 39.1 39.0 37.9 36.9	69 68 66 67 67 67 67 77	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.23 1.16 1.17 1.16 1.16 1.39 1.51	8.20 8.25 8.33 8.37 8.41 8.49 8.62 8.66 8.69	40798 40958 41125 41285 41444 41778 42283 42475	148.11 183.61 142.02 153.18 146.08 143.04 302.30 459.54 152.17 135.94	281.71 281.00 280.35 279.67 278.99 279.10 280.00 279.37	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.4 14.4 14.4
1380.0 1381.0 1382.0 1383.0 1384.0 1385.0 1386.0 1387.0 1388.0	16.8 26.1 10.4 12.1 8.7 25.7 25.0 24.5	37.5 39.1 37.3 37.6 38.5 37.7 37.0 37.0	59 69 68 68 70 66 70	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.25 1.14 1.42 1.37 1.48 1.16 1.15	8.75 8.81 8.85 8.94 9.02 9.14 9.18 9.22 9.26 9.30	43082 43238 43637 43973 44442 44604 44762 44934	217.09 139.99 351.00 302.30 422.01 142.02 146.08	277.29 277.64 277.76 278.45 277.80 277.18 276.58	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4
1390.0 1391.0 1392.0 1393.0 1394.0 1395.0 1396.0 1397.0 1398.0	27.3 31.6 22.1 27.9 6.4 11.8 23.8 25.2	37.2 36.8 35.6 35.6 33.2 33.0 32.1 32.2 31.5	65 81 62 71 63 63 61	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.12 1.15 1.15 1.48 1.30 1.10	9.33 9.36 9.40 9.44 9.48 9.63 9.72 9.76 9.80 9.84	45377 45531 45699 45852 46437 46753 46912 47058	115.65 165.35 130.86 562.07 308.39 153.18 145.07	274.49 273.76 273.26 272.61 273.95	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1400.0 1401.0 1402.0 1403.0 1404.0 1405.0 1406.0 1407.0 1408.0	8.9 12.7 26.9 28.1 27.7 26.1 20.8 18.6	34.0 33.0	69 66 67 64 74 76 74	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.43 1.31 1.08 1.08 1.07 1.13 1.19	9.89 10.00 10.08 10.12 10.15 10.23 10.27 10.33 10.38	47850 48161 48302 48444 48583 48753 48971 49209	287.09 135.94 129.95 131.88 139.99	272.68 272.68 272.08 271.46 270.85 270.28 269.87 269.56	8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
1410.0 1411.0 1412.0 1413.0 1414.0 1415.0 1416.0 1417.0 1418.0 1419.0	17.9 15.1 21.3 16.1 14.0 16.9 15.6 13.6	34.7 35.2 33.9 33.9 34.1 34.4 30.3 31.4 35.4	67 63 63 63 62 62 59 72	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.22 1.26 1.14 1.23 1.26 1.21 1.24 1.21	10.43 10.50 10.54 10.61 10.68 10.74 10.80 10.87 10.92	49660 49910 50084 50318 50587 50809 51048 51302	203.90 242.45 171.44 226.22 261.73 216.08 234.34 268.83 169.41	268.86 268.75 268.34 268.16 268.14 267.92 267.78 267.78 267.38	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
1420.0 1421.0 1422.0 1423.0 1424.0 1425.0 1426.0 1427.0 1428.0	9.7 13.3 17.9 17.1 16.0 19.3 17.6	32.3 34.2 35.4 34.4 34.3 35.0 34.8 34.8	68 66 67 65 65 67	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.40 1.32 1.22 1.24 1.25 1.20 1.23	11,11 11,21 11,29 11,34 11,40 11,47 11,52 11,57 11,63	52646 52945 53168 53403 53651 53854 54081 54296	351.00 377.37 274.91 203.90 213.03 228.25 189.70 206.95 193.76 240.09	268.45 268.48 268.22 268.00 267.84 267.53 267.28 266.99	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
1430.0 1431.0 1432.0 1433.0 1434.0 1435.0 1436.0 1437.0 1438.0	7.4 7.8 6.5 10.6 9.6 24.3 18.8 21.8	34.8 35.3 34.5 34.3 33.8 34.8 34.8 34.8	67 61 50 55 65 65 65	10.2	1.49 1.47 1.43 1.29 1.35 1.15	11.80 11.94 12.07 12.22 12.31 12.42 12.46 12.51 12.56 12.60	55487 55993 56458 56740 57101 57264 57439 57617	398.68 493.02 469.69 557.94 345.93 381.43 150.14 193.76 167.38 166.00	268.29 269.07 270.20 270.49 270.92 270.45 270.16 269.77	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.5 14.5 14.5 14.5 14.5 14.5
1440.0 1441.0 1442.0 1443.0 1444.0 1445.0 1446.0 1447.0 1448.0 1449.0	11.3 13.5 18.9 23.5 8.1 6.8 8.4 23.5	31.0 35.4 32.7 31.9 31.5 35.3 34.1 38.0 27.9	62 62 62 65 58 64	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.34 1.26 1.16 1.09 1.46 1.49 1.44	12:64 12:73 12:81 12:86 12:86 12:90 13:02 13:17 13:29 13:38	58280 58558 58753 58910 59398 59970 60388 60552	149.12 322.59 269.84 192.74 155.21 449.40 538.67 437.23 155.21 180.57	269.12 269.12 268.84 268.42 269.09 270.08 270.70 270.28	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5

in the second second

DEPTH	ROP	MOR	RPM	MW	"d"c	HOURS	TURNS	lCOST	CCOST	PP	FG
1450.0 1451.0 1452.0 1453.0 1454.0 1455.0 1456.0 1457.0 1458.0 1459.0	28.6 23.2 13.0 22.4 37.9 97.3 10.3 23.7	33.5 34.5 34.5 32.9 32.8	57 57 53 54 51 51 50	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.03 1.10 1.23 1.10 0.95 0.65 1.31 1.05	13.44 13.47 13.52 13.59 13.64 13.68 13.88 13.88	61043 61197 61439 61584 61672 61704 62005 62132	205.93 127.82 157.24 281.00 163.33 96.37 37.53 353.03 154.20 99.42	269.20 268.79 268.84 268.46 267.84 267.02 267.33 266.93	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1460.0 1461.0 1462.0 1463.0 1464.0 1465.0 1466.0 1467.0 1468.0	63.2 27.7 25.5 34.0 36.7 35.6 35.6	32.5 32.2 32.3 26.9 32.8 31.2 33.6 33.6	53 54 54 54 57 51 60	10.2 2.01 2.02 10.2 10.2 10.2 10.2 10.2	0.77 1.02 0.91 1.01 0.93 0.97 0.94	13.87 13.88 13.92 13.96 13.99 14.02 14.05 14.07 14.10	62570 62683 62772 62876 62962 63065		264.11 263.57 263.00 262.48 261.93 261.39	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1470.0 1471.0 1472.0 1473.0 1474.0 1475.0 1476.0 1477.0 1478.0	49.3 23.8 29.8 30.8 26.3 45.0 67.9	32.3 32.7 29.4 28.6 31.9 31.6 31.4 25.2	54 37 61 61 52 55 61 53	10.2 10.2 10.2 10.2	0.85 0.93 0.99 1.01 1.01 0.87	14.16 14.18 14.22 14.25 14.28 14.32 14.34 14.36 14.45	63312 63406 63529 63648 63765 63839 63893 64188	74.05 153.18 122.75 118.69 138.98 81.16 53.77 335.78	259.28 258.82 258.35 257.95	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1480.0 1481.0 1482.0 1483.0 1484.0 1485.0 1486.0 1488.0 1489.0	24.5 27.5 28.3 20.2 43.4 31.6 6.8	30.2 29.6 20.2 24.9 27.9 16.9 14.4 14.7 25.3	39 25 41 41 45 161 84 49	10.2 10.2 10.2	0.73 0.88 0.89 0.91 0.86 0.90	14.76 14.80 14.84 14.88 14.92 14.97 14.99 15.02 15.17	65139 65200 65291 65378 65511 65651 65810 66243	488.96 156.22 149.12 132.89 128.83 180.57 84.20 115.65 534.61 759.82	258.64 258.29 257.88 257.46 257.21 256.65 256.20 257.09	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1490.0 1491.0 1492.0 1493.0 1494.0 1495.0 1496.0 1497.0 1499.0	8.8 12.6 10.4 16.5 5.7 25.4 30.3 32.4	34.4 34.5 34.0 35.4 36.2 38.3 28.3 28.3 28.7	60 57 56 54 73 86 79	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.40 1.27 1.34 1.20 1.55 1.12 1.11	15.54 15.66 15.74 15.83 15.89 16.07 16.11 16.14	67911 68180 68504 68701 69465 69663 69854 70001	618.81 415.92 289.12 351.00 221.15 639.10 144.05 120.72 112.60 73.04	260.33 260.71 260.71 260.59 261.77 261.40 260.97 260.51	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.6 14.6 14.6 14.6

· . . .

Here the second

	DEPTH	ROP	WOR	RPM	MW	"d"ċ	HOURS	TURNS	ICOST	CCOST	pр	FG
-	1500.0 1501.0 1502.0 1503.0 1504.0 1505.0 1506.0 1507.0 1508.0	32,1 9,8 6,7 26,7 25,5 31,3 30,3	27.3 25.5 35.0 44.1 41.5 40.3 40.0 37.4 38.0 37.4	67 60 38 38 40 47 49	10.2 10.2 10.2 10.2 10.2 10.2 10.2	0.97 1.37 1.45 1.01 1.03 1.01 1.01	16.21 16.25 16.35 16.50 16.53 16.57 16.61 16.64 16.67	70.635 70.973 71.060 71.155 71.245 71.342 71.412	83.18 113.62 373.32 545.77 136.95 143.04 116.66 120.72 107.53 122.75	259.29 260.16 259.78 259.43 259.00 258.58 258.13	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
	1510.0 1511.0 1512.0 1513.0 1514.0 1515.0 1516.0 1517.0 1518.0	29.0 8.4 6.5 8.4 11.5 8.0 14.8 25.5	42.5 42.7 32.9	40 40 40 41 38 52 63	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	0.96 1.39 1.47 1.39 1.29 1.38 1.20	16.74 16.77 16.89 17.05 17.16 17.25 17.38 17.44 17.48	71664 71960 72333 72621 72832 73116 73328	127.82 125.79 436.21 565.05 434.18 317.52 458.53 246.51 143.04 85.21	256.94 257.47 258.38 258.90 259.08 259.66 259.62	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6
	1520.0 1521.0 1522.0 1523.0 1524.0 1525.0 1526.0 1527.0 1528.0	23.7 35.3 16.5 5.4	22.0 28.3 28.3 27.7 27.6 28.6	70 71 66 62 67 72 66 97	10.2 10.2 10.2 10.2 10.2 10.2 10.2	0.93 0.88 1.00 1.11 1.08 1.00 1.17	17.53 17.56 17.58 17.61 17.66 17.70 17.73 17.79 17.97	73845 73969 74158 74328 74450 74689 75763	104.49	257.25 256.84 256.63 256.34 255.90 255.80 256.99	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6
	1530.0 1531.0 1532.0 1533.0 1534.0 1535.0 1536.0 1537.0 1539.0	4.5 5.6	27.9 24.6 26.7 23.9	80 80 80 80 80 80	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.61 1.53 1.39 1.45 1.36 1.18 1.12	18.30 18.52 18.70 18.81 18.94 19.03 19.09 19.14 19.20	78395 79252 79771 80392 80859 81140 81346 81668	574.18 818.66 652.29 394.62 472.73 355.06 214.05 156.22 245.50 149.12	260.45 261.55 261.93 262.51 262.77 262.64 262.34 262.30	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6
	1540.0 1541.0 1542.0 1543.0 1544.0 1545.0 1546.0 1547.0 1547.0	34.6 34.3 30.8 26.1 27.7 24.2 27.7 26.3 29.8 36.0	29.1 28.3 27.5 28.7 29.0 28.0 32.7 30.8	80 80 80 80 80 80	10.2 10.2 10.2 10.2 10.2 10.2 10.2	1.04 1.06 1.10 1.09 1.13 1.09 1.15	19.27 19.30 19.33 19.37 19.41 19.45 19.56 19.56	82143 82299 82483 82656 82855 83028 83211 83372	105.50 106.52 118.69 139.99 131.88 151.15 131.88 138.98 122.75 101.44	261.13 260.74 260.41 260.06 259.77 259.42 259.10 258.73	8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6

e egg k

The street was all the supplemental the second street and the seco

DEPTH	ROP	wor	RPM	Mul	"d"c	HOURS	TURNS	1COST	ccost	PP	FG
1550.0 1551.0 1552.0 1553.0 1554.0 1555.0 1556.0 1557.0 1558.0 1559.0	28.1 24.5 25.4 24.0 24.2 21.2	30.7 31.2 28.7	80 80 80 80 80 80	10.2 10.2 10.2 10.2 10.2 10.1 10.1	1.13 1.16 1.15 1.17 1.17 1.19	19.62 19.66 19.70 19.74 19.78 19.82 19.87 19.90	84226 84426 84624 84851 85016 85258		257.03 256.75 256.47 256.25 255.91 255.72	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.7 14.7 14.7
1560.0 1561.0 1562.0 1563.0 1564.0 1565.0 1566.0 1567.0 1568.0	25.4 46.8 34.0 15.3	32.4 30.1 29.5 26.4 23.4 29.1 31.6	80	10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.28 1.18 1.03 1.08	20.07 20.11 20.13 20.16 20.22 20.27 20.31 20.34 20.37 20.39	86103 86244 86559 86811 86975 87136	308.39 144.05 78.11 107.53 239.41 191.73 124.78 122.75 105.50 84.20	255.20 254.74 254.36 254.32 254.16 253.83 253.49	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
1570,0 1571,0 1572,0 1573,0 1574,0 1575,0 1576,0 1577,0 1579,0	43.4 25.9 10.3 37.9 37.5 45.0 32.4 29.0 30.5	32.0 34.3 35.2 35.6 19.0 35.0 35.7 34.2	80 73 60 60 60 60 60	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.15 1.48 0.99 1.00 0.79 1.03	20.42 20.46 20.55 20.58 20.61 20.63 20.66 20.69 20.73 20.75	88104 88201 88297 88377 88488 88612 88730	141.01 355.06 96.37 97.39	257.24 251.85 251.46 251.03 250.69 250.37 250.05	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
1580.0 1581.0 1582.0 1583.0 1584.0 1585.0 1586.0 1587.0 1588.0	30.0 22.0 46.8 41.4 27.7 60.0 34.3 33.0 34.3	32.5 29.1 34.0 28.8 27.9 38.6 39.3 37.6	60 60 60 60 60 60	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.12 0.88 0.95 1.02 0.80 1.05 1.07	20.79 20.83 20.85 20.88 20.91 20.93 20.96 20.99 21.05	88949 89113 89190 89277 89407 89467 89572 89681 89786 89880	88.26 131.88 60.87 106.52 110.57 106.52	249.16 248.74 248.34 248.06 247.60 247.26 246.93	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
1590.0 1591.0 1592.0 1593.0 1594.0 1595.0 1596.0 1597.0 1598.0	17.1 19.0 21.2 23.5 24.7 37.1 36.7 21.6 19.1	37.4 38.9 37.8 37.5 40.9 41.0 39.0 34.0	60 60 60 60 60 60 60	10.1 10.1 10.1	1.21 1.20 1.15 1.14 1.04 1.05 1.01	21.10 21.16 21.20 21.25 21.29 21.31 21.34 21.37 21.41 21.47	90279 90449 90602 90748 90845 90943 91036 91203	98.40 99.42	246.01 245.83 245.62 245.38 245.03 244.69 244.33 244.15	8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7

•

•												
	DEPTH	ROP	MOB	RPM	MW	"d"C	HOURS	TURNS	ICOST	CCOST	PP	FG
	1600.0	30.8	40.2	60	10.1	1.09	21.50	91508	118.69	243.73	8 4	14.7
	1601.0		41.6		10.1		21.55		186.66			14.7
	1602.0		41.2		10.1		21.59		133.91			14.7
	1603.0		39.2		10.1		21.62		144.05			14.7
	1604.0	8.3			10.1		21.75		440.27			14.7
	1605.0		39.0		10,1		21.91		593,45			14.7
	1606.0		37.1		10.1		21.97		225.21			14.7
			39.9		10.1		22.06	93534		244.54		14.7
	1608.0		40.2		10.1		22.11		197.82			14,7
	1609.0		41.1		10.1		22.19		275.93			14.7
_	_	V. N.F I Gas		V V	A 4	0 1 10 11	5t + A T	, , , , , ,		L. FTTOO	O1-4	Y 1 Y
	1610.0	19.5	39.4	60	10.1	1.23	22.24	94186	187.67	244,37	8.4	14.7
	1611.0		40.8		10.1		22.27		100.43			14.7
	. 1612.0		41.6		10.1		22,30		111,59			14.7
	1613.0		39.8		10.1		22.33		112.60			14.7
	1614.0	39.1			10.1		22.36	94598		243.10		14.7
	1615.0	25.9			10.1		22.39		141.01			14.7
		32.7			10.1		22.43	94847		242.57		14.7
	1617.0	31.6			10.1		22.46	94961		242,28		14.7
-	1618.0	22.1			10.1		22.50		165.35			14.7
_	1619.0	21.4			10.1		22.55		170.43			1477
	A 12 A 7 FW		2	4.5 4.5	2012	2107	I II. 1 W W.	7 (2 ti. 2 ti.	**********	E. 77777	(3,77	7 7
_	1620.0	57.1	39.5	60	10.1	0.90	22.57	95355	63.91	241.54	8.4	14.8
	1621.0	40,4			10.1		22.59	95444		241.20		14.8
		53.7			10.1		22.61	95511	•	240.82		14.8
	1623.0	9.2			10.1		22.72	95901	395.63			14.8
	1624.0	36.4			10.1		22.75		100.43			14.8
_	1625.0	48.0			10.1		22.77	96075		240,48		14.8
	1626.0	36.0			10.1		22.79		101.44			14.8
1	1627.0	33.3			10.1		22.82		109.56			14.8
	1628.0	38.7			10.1		22.85	96376		239,56		14.8
	1629.0	34.3			10.1		22.88		106.52			14.8
	102.270	NAME OF	7117	00	10.1	1 1 W 7	200 Por 1 1 1 1 1 1 2 2	2 (3 *** (3)	X O OF LUEL	407.67	O . **	1.4 1 (3)
	1630.0	39.1	41.9	60	10.1	1.03	22.90	96573	93.33	238.95	8.4	14.8
	1631.0	40.9			10.1		22.93	96661		238,62		14.8
	1632.0	35.0			10.1		22.96		104.34			14.8
	1633.0	12.9			10.1		23.04		284.04		8.4	
	1634.0	25.7			10.1	1.12	23.07		142.02		8.4	
	1635.0	26.5			10.1		23.11		137.96		8.4	
-	1636.0	22.6			10.1		23,16		161.30		8.4	
	1637.0		37.7		10.1		23.28		445.34		8.4	
	1638.0	21.8			10.1		23.32		167,38		8.4	
	1639.0	14.8			10.1		23.39		246.51		8.4	
	1640.0	19.5	41.8	60	10.1	1.25	23.44	98541	187.67	238.04	8.4	14.8
	1641.0	26.1			10.1		23.48		139.99		8.4	
	1642.0	26.9		75	10.1	1.20	23.52		135.94		8.4	14.8
_	1643.0	37.5			10.1		23.55	99085		237,31	8.4	
	1644.0				10.1	1.18	23.57	99269		237.00	8.4	
	1645.0					1.18	23,60	99444		236.69	8.4	
	1646.0	34.6				1.21	23.62		105.50		8.4	
	1647.0	13.9			10.1		23.70		262,74		8.4	
	1648.0	19.3			10.1		23.75	100153			8.4	
	1649.0	27.1			10.1		23.79	100290			8.4	14.8

Land har har find the selections.

DEPTH	ROP	MUB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1650.0 1651.0 1652.0 1653.0 1654.0 1655.0 1656.0 1657.0 1658.0 1659.0	15.5 102.9 22.1 19.1 21.8 18.3 15.7	38.0 38.1 21.7 34.0 37.8 37.8 38.2 35.8 38.2 35.8	61 62 62 63 61 62 63	10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.29 0.62 1.14 1.18 1.19 1.24 1.27	23.84 23.90 23.91 23.96 24.01 24.11 24.18 24.27 24.31	100727 100763 100931 101124 101298 101500 101739 102083	165.35 190.72	236.07 235.65 235.50 235.41 235.26 235.19 235.19 235.39	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8
1660.0 1661.0 1662.0 1663.0 1664.0 1665.0 1666.0 1668.0 1669.0	14.2 8.0 13.8 16.9 14.9 12.8 9.5	34.3 36.0 37.6 35.1 33.2 37.1 34.8 30.8 31.8	69 37 55 65 65 65 65	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.34 1.50 1.28 1.25 1.32 1.34 1.38	24.43 24.50 24.63 24.70 24.76 24.80 25.01 25.10 25.19	102991 103463 103708 103942 104236 104511 104925 105225	439.25 257.67 455.49 263.76 216.08 244.48 285.06 385.49 323.61 358.10	235.70 236.15 236.21 236.17 236.19 236.29 236.59 236.77	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
1670.0 1671.0 1672.0 1673.0 1674.0 1675.0 1676.0 1677.0 1678.0	12.6 7.8 16.4 19.3 16.4 9.4 18.3 9.0	29.7 30.8 26.2 33.7 34.7 36.0 37.0 35.0	57 57 65 74 74 78 65 65	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.26 1.34 1.26 1.26 1.33 1.50 1.26 1.44	25.30 25.38 25.50 25.62 25.62 25.68 25.99 25.99 25.95	106178 106615 106653 107083 107426 107920 108133 108564		237.40 237.86 237.83 237.73 237.70 239.00 237.93 238.26	8,4 8,4 8,4 8,4 8,4 8,4	14.8 14.8 14.8 14.8 14.8 14.8 14.8
1680.0 1681.0 1682.0 1683.0 1684.0 1685.0 1685.0 1687.0 1689.0	19.0 5.7 8.6 22.9 29.8 19.4 7.8 25.2	34.5 38.0 30.1 36.0 35.9 35.9 35.9 36.5	56 53 61 68 66 65 65	10.0 10.0	1.21 1.46 1.46 1.17	26.85 26.10 26.27 26.39 26.43 26.47 26.52 26.65 26.69 26.74	109089 109641 110072 110235 110368 110569 111072	157.24 191.73 640.11 427.08 159.27 122.75 188.69 470.70 145.07 173.90	237.91 238.71 239.08 238.92 238.70 238.60 239.05 238.87	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.9 14.9
1690.0 1691.0 1692.0 1693.0 1694.0 1695.0 1696.0 1697.0 1698.0	20.6 21.4 20.8 20.2 18.6 20.0 18.4	38.2 38.1 37.7 36.9 37.2 37.9 38.1 38.3	65 66 65 66 66 66	10.0 10.0 10.0 10.0 10.0 10.0	1.25 1.24 1.22 1.23 1.23 1.27 1.24 1.27	26.79 26.83 26.88 26.93 26.98 27.03 27.08 27.14 27.20 27.31	111804 111989 112178 112373 112585 112780 112994 113254	175.50 180.57 196.80 182.60 198.83	238.51 238.26 238.26 238.15 238.07 237.96 237.89 237.89	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9

	DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
! !	1700.0 1701.0 1702.0 1703.0 1704.0 1705.0 1706.0 1707.0 1708.0	6.3 14.3 15.8 13.7	36.8 36.4 37.7 38.2 37.6 36.6 37.4 38.6	65 61 65 65 65 65 65	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.31 1.55 1.34 1.31 1.35 1.33 1.28 1.33	27.41 27.47 27.63 27.70 27.77 27.84 27.91 27.97 28.03 28.09	114340 114914 115187 115431 115716 115990 116220 116477	236.37 576.20 255.64 231.29 265.78 258.68 214.05 240.42	239.08 239.13	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
	1710.0 1711.0 1712.0 1713.0 1714.0 1715.0 1715.0 1716.0 1717.0	15.7 16.3 20.7 17.4 18.0 16.0 15.7 16.0	38.0 38.5 39.1 38.4 38.0 39.6 38.8 38.5	66 66 65 66 66 66 66	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.31 1.24 1.30 1.28 1.31 1.34 1.32	28.15 28.21 28.32 28.32 28.38 28.44 28.50 28.56 28.63 28.69	117184 117377 117602 117821 118067 118319 118566 118823	232.31 224.19 176.51 209.99 202.89 228.25 232.31 228.25 237.38 228.25	239,02 238,90 238,85 238,76 238,75 238,73 238,73	8,4 8,4 8,4 8,4 8,4 8,4	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9
	1720.0 1721.0 1722.0 1723.0 1724.0 1725.0 1726.0 1727.0 1728.0 1729.0	19.0 16.2 15.7 14.7 15.2 14.4 14.5 14.0	37.5 39.0 38.4 38.2 38.5 37.6 38.5 38.5	66 66 66 65 65 66	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.30 1.33 1.34 1.32 1.36 1.36	28.74 28.81 28.87 28.94 29.00 29.07 29.15 29.22 29.35	119521 119773 120044 120297 120577 120869 121137 121418	191.73 225.21 233.32 248.54 233.32 256.65 271.87 252.60 260.71 243.47	238.60 238.59 238.60 238.63 238.63 238.71 238.71	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
	1730.0 1731.0 1732.0 1733.0 1734.0 1735.0 1736.0 1737.0 1738.0	15.4	36.6 37.1 37.3 37.5 37.4 37.5 36.7	63 66 66 66 66 67 65	10.1 10.1 10.1 10.1	1.30 1.27 1.26 1.30 1.38 1.32 1.32	29.41 29.48 29.53 29.59 29.65 29.80 29.88 29.96 30.04	122142 122371 122596 122847 123171 123443 123756 124068	206.95 237.38 212.02 206.95 231.29 300.28 248.54 284.04 293.17 269.84	238.70 238.65 238.60 238.58 238.69 238.71 238.79 238.89	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
	1740.0 1741.0 1742.0 1743.0 1744.0 1745.0 1746.0 1746.0 1748.0	11.8 14.6 14.5 17.1 17.2 15.9 15.9	37.3 37.4 38.7 36.3 37.9 37.7 36.4 36.0	68 70 68 68 68 68	10.1 10.1 10.1 10.1	1.34 1.27 1.27 1.29 1.31 1.30	30.12 30.19 30.26 30.31 30.37 30.43 30.49 30.55 30.62 30.69	125000 125283 125505 125745 125983 126242 126499 126771	308.39 250.57 252.60 192.74 214.05 212.02 230.28 229.26 243.47 244.48	239.09 239.11 239.03 238.99 238.94 238.92 238.91 238.91	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9

Ŷ.,..

DEPT	H ROP	MOB	RPM	МП	"d "c	HOURS	TURNS	icost	CCOST	PP	FG
1750 1751 1752 1753 1755 1755 1756 1757 1758	0 15.1 0 18.0 0 20.6 0 15.8 0 15.7 0 14.6 0 14.5 0 13.2	36.4 37.7 38.0 37.5 39.5 39.5 38.5 38.5	65 64 65 65 65 65 65	10.1 10.1 10.1 10.1 10.1 10.1 10.1	1,31 1,26 1,21 1,30 1,30 1,32 1,32 1,34	30.75 30.82 30.87 30.92 30.98 31.05 31.12 31.18 31.26 31.35	127542 127755 127944 128193 128443 128712 128981 129276		238.91 238.85 238.74 238.73 238.72 238.74 238.76 238.83	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 15.0
1760 1761 1762 1763 1764 1765 1766 1766 1768	0 11.9 0 16.7 0 12.0 0 11.6 0 15.4 0 11.9 0 10.1 0 14.8	38.8 38.6 37.6 37.9 38.5 38.6 39.3	66 65 66 66 67 66 67		1.40 1.43 1.38 1.46 1.40 1.45	31.44 31.52 31.62 31.70 31.79 31.85 31.94 32.03 32.10	130309 130677 131006 131346	246.85	239.24 239.42 239.53 239.66 239.65	8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0 15.0
1770 1771 1772 1773 1774 1775 1776 1777 1778	0 14.6 0 16.7 0 16.5 0 10.3 0 12.1 0 12.1 0 14.3 0 11.4	37.9 37.3 40.2 40.3 39.2 37.7 37.4 37.4 38.3	65 65 66 66 66 65 64	10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.32 1.31 1.45 1.38 1.38 1.32	32.26 32.32 32.38 32.44 32.54 32.62 32.71 32.78 32.78 32.96	133196 133463 133698 133936 134322 134647 134973 135246 135584 135947	219.12 221.15 356.07 301.29 361.29 255.64 319.55	240.13 240.16 240.07 240.26 240.36 240.46 240.49	8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0 15.0
1780 1781 1782 1783 1784 1785 1786 1787 1788	0 10.5 0 14.0 0 11.3 0 12.1 0 9.3 0 10.7 0 10.0 0 8.2	36.1 35.8 36.1 37.2 37.4 37.8 37.8 37.8 37.8	65 65 66 64 65 66 66	10.1 10.1 10.1 10.1 10.1 10.1 10.1	1.40 1.32 1.40 1.37 1.46 1.42 1.43	33.04 33.14 33.21 33.30 33.38 33.49 33.58 33.68 33.80 33.88	136457 136937 137287 137602 138023 138389 138785 139265	316.51 346.94 261.73 324.62 301.29 392.59 339.84 365.20 444.33 264.77	241.08 241.12 241.25 241.35 241.60 241.76 241.96 242.29	8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0 15.0

· - .

, e.e.

.

•

BIT NUMBER HTC J22 COST 8520. TOTAL HOURS 16.		517 INTERVAL 12.250 NOZZLES 6.3 BIT RUN 59491 CONDITION	1789.0- 2021.0 16 16 18 232.0 T2 B3 G0.125
DEPTH ROP W	B RPM MW "d"c	HOURS TURNS ICOST	CCOST PP FG
1790.0 16.1 16 1791.0 12.6 26 1792.0 15.5 30	2 65 10.3 1.20	0.06 251 227 0.14 559 289 0.21 808 236	31754 8.4 15.0 16022 8.4 15.0 10760 8.4 15.0
1793.0 15.8 30 1794.0 15.2 32 1795.0 15.8 35 1796.0 15.0 35 1797.0 11.9 37 1798.0 15.1 39 1799.0 14.5 39 1800.0 11.4 37 1801.0 17.1 39	2 64 10.3 1.22 5 64 10.3 1.25 5 64 10.3 1.26 2 59 10.3 1.32 9 63 10.3 1.30 4 62 10.3 1.30 5 63 10.3 1.36 0 63 10.3 1.25	0.27 1053 231 0.34 1307 240 0.40 1552 231 0.47 1809 243 0.55 2108 306 0.62 2356 241 0.68 2614 252 0.77 2946 320 0.83 3169 214 0.91 3452 274	8128 8.4 15.0 6550 8.4 15.0 5497 8.4 15.0 4747 8.4 15.0 4192 8.4 15.0 3753 8.4 15.0 3403 8.4 15.0 3122 8.4 15.0 2880 8.4 15.0
1802.0 13.3 37 1803.0 14.9 39 1804.0 14.6 39 1805.0 13.4 38 1806.0 13.4 38 1807.0 17.4 38 1808.0 18.5 38 1809.0 17.3 39 1810.0 10.5 40 1811.0 4.2 42 1812.0 5.5 35	3 63 10.3 1.29 1 64 10.3 1.30 3 64 10.3 1.32 1 64 10.3 1.32 5 66 10.3 1.26 7 66 10.3 1.24 0 66 10.3 1.26 9 66 10.3 1.43 4 65 10.3 1.72	0.77 3402 274 0.97 3705 244 1.04 3967 251 1.12 4253 273 1.19 4539 273 1.25 4766 210 1.30 4981 198 1.36 5210 211 1.46 5589 349 1.69 6502 861 1.87 7281 666	2506 8.4 15.0 2355 8.4 15.0 2225 8.4 15.0 2110 8.4 15.0 2005 8.4 15.0 1910 8.4 15.0 1825 8.4 15.0 1754 8.4 15.0 1714 8.4 15.0 1668 8.4 15.0
1813.0 13.1 38 1814.0 12.4 40 1815.0 14.0 38 1816.0 16.5 38 1817.0 15.7 39 1818.0 15.4 40 1819.0 16.1 40 1820.0 15.3 40 1821.0 13.2 39 1822.0 11.9 37	3 64 10.3 1.36 0 64 10.3 1.31 3 67 10.3 1.28 1 68 10.3 1.30 1 69 10.3 1.32 9 69 10.3 1.32 8 69 10.3 1.33 8 69 10.3 1.33	1.95 7579 279 2.03 7887 295 2.10 8161 261 2.16 8406 221 2.23 8666 232 2.29 8933 237 2.35 9189 227 2.42 9460 239 2.49 9770 276 2.58 10117 307	1610 8.4 15.0 1558 8.4 15.0 1508 8.4 15.0 1460 8.4 15.0 1416 8.4 15.0 1376 8.4 15.0 1337 8.4 15.0 1302 8.4 15.0 1270 8.4 15.0
1823.0 17.0 37 1824.0 17.4 38 1825.0 16.2 37 1826.0 14.9 41 1827.0 15.7 37 1828.0 21.1 42 1829.0 19.5 42 1830.0 18.2 42 1831.0 16.3 41 1832.0 16.4 41	3 69 10.3 1.27 5 69 10.3 1.28 6 74 10.3 1.37 1 82 10.3 1.34 4 83 10.3 1.33 9 82 10.3 1.33 7 83 10.3 1.35 6 83 10.3 1.38	2.64 10361 215 2.70 10599 210 2.76 10854 225 2.82 11152 244 2.89 11466 233 2.94 11702 173 2.99 11955 188 3.04 12230 201 3.10 12536 224 3.16 12843 222	1211 8.4 15.0 1182 8.4 15.0 1155 8.4 15.0 1131 8.4 15.0 1107 8.4 15.0 1083 8.4 15.0 1061 8.4 15.1 1040 8.4 15.1 1020 8.4 15.1

Accounting one property of

	,											
	DEPTH	ROP	MUB	RPM	МЫ	"d"c	HOURS	TURNS	ICOST	CCOST	ÞР	FG
	1833.0	18.8	42.4	83	10.3	1.34	3.22	13107	193.76	983.54	Ο Λ	15.1
	1834.0		43.7		10.3		3.30		295.20	968 24		15.1
•	1835.0		41.8		10.3		3,38	13788				15.1
	1836.0		39.0			1.17	3.43	13957		937.64		15.1
_]	1837.0		38.6	52	10.3	1.19	3.49	14136		922.48		15.1
" !	1838.0		40.2	52		1.18	3.55	14305	198.83			15.1
	1839.0		41.6			1.28	3,62		260.71			15.1
	1840.0		41.4	52		1.18	3.67		190.72			15.1
	1841.0		43.3		10.3		3.72		194.77			15.1
•	1842.0		41.5		10.3		3.78		221.15			15.1
_	•							4 10 10 10		000107	Q; ···	1411
	1843.0	18.6	42.0	5D	10.3	1.20	3.84	15017	196.80	947 77	Ω A	15.1
	1844.0		42.4		10.3		3.93	15528	355.06			15.1
	1845.0		41.7		10.3		3.99	15710	211.34			15.1
	1846.0		41.7		10.3		4.07		265,45			15.1
	1847.0		44.5		10.3		4.12		216.08			15.1
	1848.0		43.7		10.3		4.18		219.12			15.1
	1849.0		43.0		10.3		4.24	16507				15.1
	1850.0		42.2		10.3		4.32		248.83			15.1
	1851.0		41.0		10.3		4.38		226.22			15.1
_	1852.0		42.0		10.3		4.43		194.77			15.1
	X COURT O	2 (- 1 (,)	Tab. 1 32		* * 1 **	2 1 7 V	.,,	27220	7.774.77	7.57 17.7	(3 ; "7	\$ \-9 1 <u>\$</u>
	1853.0	16.6	40.8	F.4	10.3	1.23	4.49	17310	220.13	748.87	8.4	15.1
	1854.0		41.5		10.3		4,55		234,34			15.1
	1855.0		39.4		10.3		4.64	17801	324.62			15.1
	1856.0	15.0			10.3		4.71	18011				15,1
	1857.0		38.7	53	10.3		4.77		221.15			15.1
_	1858.0		37.8			1,21	4.83		226,22			15.1
П	1859.0		37.7		10.3		4.88	18565	186.66			15.1
	1860.0		36.5		10.3		4.94	18752				15.1
	_ 1861.0		37.2		10.3		5.02		284,04			15.1
	1862.0		38.0		10.3		5.09		236.37			15.1
										347 347 347 37	5.7 2 2	. u
	1863.0	16.4	35.1	53	10.3	1.13	5.15	19400	222.16	680.01	8.4	15.1
	1864.0	19.6	41.1	52	10.3	1.17	5.20	19560	185,98	673.43	8,4	
	1865.0		39.8		10.3		5.26		242,45		8.4	
	1866.0	14.5	38.1	53	10.3	1.24	5.33	19989	252,60	662,36	8.4	
_	1867.0	16.1	37.6	53	10.3	1.21	5.39	20187	227,24	656.79		15.1
	1868.0	13.3	36.5	53	10.3	1,25	5.47	20423	273.90	651.94	8.4	15.1
-	1869.0	16.4	35.2	54	10.3	1.18	5.53	20620	223.18	64 6,58	8.4	
	1870.0	16.6	39.8	53	10.3	1.22	5.59	20814	220.13	641.31	8.4	
	1871.0		38.9		10.3		5.65		198,83		8.4	
	1872.0	16.7	39.0	53	10.3	1.21	5.71		219.12		8.4	
	1873.0	15.3	37.8	53	10.3	1.22	5.77	21388	239.41	626.24	8.4	15.1
- 8	1874.0	18.9	43.1	55	10.3	1.22	5.82	21562	192.74	621.14	8.4	15.1
	1875.0	16.4	39.3	55	10.2	1.24	5.89	21762	223,18	616.51	8.4	15.1
-	1876.0	20.7	38.6	54	10.2	1.16	5.93	21919	176.51	611.45	8.4	
	1877.0	17.5		55	10.2	1.21	5.99	22107	208.98	606.88	8.4	
	1878.0	17.8			10.2		6.05		204,92		8,4	
	1879.0	20.0	37.1		10.2		6.10		182.60		8.4	
	1880.0	16.5	33.3	55	10.2	1.18	6.16	22655	221.15	593.56	8.4	
	1881.0	16.4	40.0		10.2		6.22		222.16		8.4	
	1882.0	15.7	36.2	56	10.2	1.23	6.28	23070	233.32	585.69	8.4	15.1

DEPTH	ROP WOE	RPM MW	"d"c	HOURS	TURNS ICOS	r ccost	PP FG
1883.0 1884.0 1885.0 1886.0 1887.0 1889.0 1890.0 1891.0 1892.0	23.8 38.6 20.3 37.4 21.3 35.4 19.6 37.6 10.9 42.8 19.6 39.2 15.6 38.6 15.3 36.9 17.0 37.5 14.4 38.5	51 10.2 56 10.2 55 10.2 55 10.0 55 9.9 56 10.0 56 10.0	1.14 1.13 1.18 1.43 1.22 1.29 1.27	6.32 6.37 6.42 6.56 6.56 6.61 6.88 6.87		5 576,86 4 572,64 5 568,66 5 566,27 5 562,43 6 555,97 6 552,63	8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1
1893.0 1894.0 1895.0 1896.0 1897.0 1898.0 1899.0 1900.0 1901.0	10.6 36.1 17.1 38.8 12.5 40.0 16.6 39.6 10.7 39.8 13.6 38.2 18.7 39.4 16.0 35.0 15.5 39.1	55 10.0 56 10.0 56 10.0 55 10.0 55 9.9 55 10.0 55 10.0	1.24 1.36 1.27 1.41 1.32 1.23	6.97 7.02 7.10 7.16 7.26 7.33 7.45 7.57	25320 344,91 25507 214,05 25770 292,16 25971 220,13 26282 340,85 26526 267,81 26703 195,79 26909 228,25 27121 235,35 27300 213,03	544.58 542.20 539.19 537.35 534.88 531.80 529.06 526.44	8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1 8.4 15.1
1903.0 1904.0 1905.0 1905.0 1907.0 1908.0 1909.0 1910.0 1911.0	15.7 40.2 25.5 38.8 17.6 39.0 24.2 38.2 25.2 38.2 22.6 38.2 22.5 38.0 22.0 38.4 20.0 37.3 19.0 37.0	54 10.0 55 10.0 53 10.0 53 10.0 53 10.0 53 10.0 53 10.0 53 10.0 53 10.0	1.13 1.23 1.13 1.12 1.15 1.15 1.16	7.63 7.67 7.73 7.77 7.86 7.95 8.00 8.05	27505 233.32 27634 143.04 27815 206.95 27946 151.15 28072 145.07 28213 161.30 28353 162.31 28498 166.37 28658 182.60 28826 191.73	517.83 515.15 512.04 508.93 506.01 503.15 500.36 497.76	8.4 15.1 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2
1913.0 1914.0 1915.0 1916.0 1917.0 1918.0 1919.0 1920.0 1921.0	15.6 38.0 18.9 38.5 16.8 39.6 18.6 39.8 18.2 38.5 18.7 39.5 18.2 39.7 11.4 40.4 17.8 40.4 60.0 37.2	51 10.0 53 10.0 53 10.0 53 10.0 53 10.0 57 9.9 59 10.0 60 10.0 59 9.9 54 10.0	1.21 1.26 1.22 1.22 1.24 1.24	8.11 8.16 8.22 8.28 8.33 8.39 8.44 8.53 8.59 8.60	29024 234.34 29192 192.74 29382 217.09 29553 196.80 29728 200.86 29709 195.79 30105 200.86 30420 321.58 30620 204.92 30674 60.87	490.76 488.59 486.29 484.06 481.83 479.67 478.46	8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2
1923.0 1924.0 1925.0 1926.0 1927.0 1928.0 1929.0 1930.0 1931.0	21.6 38.6 26.0 37.8 25.5 38.3 16.7 39.3 15.0 39.2 15.3 40.0 14.7 40.3 15.1 41.0 16.2 41.5 12.5 39.5	51 10.0 : 49 9.9 : 57 10.0 : 59 10.0 : 59 10.0 : 59 10.0 : 60 9.9 : 60 10.0 : 57 10.0 : 1	1.08 1.14 1.29 1.32 1.32 1.34	8.65 8.69 8.73 8.79 8.85 8.92 9.05 9.11	30816 169.41 30929 140.57 31064 143.04 31276 218.11 31512 243.47 31743 238.39 31984 248.54 32221 241.44 32441 225.21 32713 291.15	468.55 466.16 464.34 462.74 461.13 459.61 458.06 456.42	8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2 8.4 15.2

DEPTH	ROP	WOB	RPM	МИ	"d "c	HOURS	TURNS	ICOST	CCDST	PP	FG
1933.0 1934.0 1935.0 1936.0 1937.0 1938.0 1939.0 1940.0 1941.0	15.4 17.8 15.3 14.0 17.9 12.9 16.0	37.9 39.9 38.1 39.3 39.6 40.2 40.4 40.3 39.5	57 65 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10.0	1.31 1.24 1.29 1.33 1.25 1.36 1.30	9,26 9,33 9,38 9,45 9,52 9,57 9,77 9,79	33158 33347 33561 33804 33992 34257 34469 34715	242.45 237.38 204.92 238.39 260.71 203.90 283.03 228.25 265.78 249.55	452.30 450.60 449.16 447.89 446.25 445.16 443.72 442.55	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
1943.0 1944.0 1945.0 1946.0 1947.0 1948.0 1949.0 1950.0 1951.0	16.1 19.8 17.7 14.9 18.4 20.3 20.9 16.5	38.9 38.6 38.8 39.8 39.6 39.6 39.4 39.4 39.1	55 55 55 55 54 54 50	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.27 1.20 1.24 1.30 1.24 1.20	9.92 9.99 10.04 10.09 10.16 10.21 10.26 10.31 10.37	35374 35539 35726 35945 36124 36284 36284 36439	252.60 227.24 184.63 205.93 244.48 198.83 179.56 174.40 221.15 225.21	438.69 437.07 435.59 434.38 432.90 431.32 429.72 428.44	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
1953.0 1954.0 1955.0 1956.0 1957.0 1958.0 1959.0 1960.0 1961.0	11.7 8.3 9.6 10.6 7.2 8.1 7.5 9.2	38.6 40.1 40.0 39.6 40.4 41.0 39.7 40.4 41.2	53 53 53 55 54 54 54	10.0 10.0 10.0 10.0 9.9 9.9	$\frac{1.37}{1.48}$	10.54 10.62 10.74 10.85 10.94 11.08 11.21 11.34 11.45	37420 37802 38134 38434 38891 39292 39726 40075	485.92 395.63	426.22 426.30 426.03 425.55	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
1963.0 1964.0 1965.0 1966.0 1967.0 1968.0 1969.0 1970.0 1971.0	10.3 11.1 7.8 10.5 7.8 7.3 7.7	40.3 40.5 40.0 40.3 39.7 40.8 40.8 39.7 40.5	53 53 53 53 53 53 53	10.0 10.0 9.9 10.0 10.0 9.9 10.0	1.44 1.41 1.38 1.50 1.50 1.52 1.52 1.45	11.66 11.76 11.85 11.98 12.08 12.20 12.34 12.47 12.57	41068 41349 41757 42055 42457 42887 43310 43622	356.07 327.67 469.69 346.94 465.63 497.08 474.76 355.06	424.87	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
1973.0 1974.0 1975.0 1976.0 1977.0 1978.0 1979.0 1980.0 1981.0	9.9 9.6 14.0 11.8 12.5 12.9 11.9	36.0 34.4 36.4 43.8 43.8 43.9 44.3 43.9	61 60 61 62 62 61	9,9 10.0 10.0 10.0 10.0 10.0	1.48 1.40 1.43 1.40 1.45 1.45 1.43 1.45	12.80 12.90 13.01 13.08 13.16 13.24 13.32 13.40 13.46 13.53	44786 45162 45425 45736 46031 46318 46628 46839	367.23 379.40 261.73 309.41 291.15 282.02 306.87 202.89	425.43 425.11 424.87 424.00 423.39 422.69 421.95 421.34 420.21 419.41	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	lCOST	CCOST	PP	FG
■ 4 ጠጠማ ስ t	6.0 4	17 4	4.5	10.0	4 72 55	13,59	ል 77ል1	228,25	A19 A7	Ω Λ	15.3
	6.9 4			10.0		13.65		216.08			15.3
- · · · · · · · · · · · · · · · · · · ·				10.0		13,73		265.78			15.3
** * ** **	3.74					13.80		251,58			15.3
	4.5 4			10.0							
	8.6 4			10.0		13.91		426.07			15.3
	8.5 4			9.9		14.03		431.14			15.3 15.3
	1.0 4				1.43	14.12		332.00			
	0.03				1.12	14.15		121.73			15.3 15.3
4,	0.73				1.43	14.25		341.87			
1992.0 1	0.3 4	11.3	62	10.0	1.47	14.34	50145	353.03	*10.0/	O , ~?	15.3
1993.0 1	1.2 4	1.8	61	10.0	1.45	14.43		326.65			15.3
1994.0	4.9 4	8, 14		10.0		14.64		747.65			15.3
1995.0 1	3.4 4	11.9	6.0	10.0	1,39	14.71		271.87			15.3
1996.0	4.5 4	11.4			1.35	14.78		252,60			15.3
1997.0 1	4.9 4	12:3	59	10.0	1.35	14.85		244.48			15.3
1998.0 1	3,94	12.9			1.38	14.92		262.74			15.3
	2.9 4		62		1.42	15.00		284.04			15.3
2000.0 1	2.0 3	39.9	56		1.38	15.08		305.35			15,3
2001.0 1	4.5 4	80.3		10.0		15.15		251.58			15.3
	2.5 4	\$1.0	57	10.0	1.39	15.23	53309	292.16	409.17	8.4	15.3
2003.0 1	2.7 4	11.7	58	9.9	1.39	15.31		287.09			15.3
	2.5 4	11.4	57	10.0	1.39	15.39	53856	293.17	408.06		15.3
	9.5 4		56	9.9	1.48	15.50	54212	384.47	407.95		15.3
2006.0 1	1.7 4	43.5	6.0	10.0	1,45	15.58		311,43			15.3
	9.6 4		60	10.0	1.51	15,68		379.40			15.3
2008.0 1	1,1 4	13.4	60	10.0	1.46	15.77	55215		407.02		15.3
2008.0 1 2009.0	6.5 4	12.5	59	9.9	1.61	15.93	55753	558.96	407.71		15.3
2010.0	8.0 4	12.2	6.4	9.9	1.57	16.05	56229	453.96	407,92		15.3
	4.5 4	12.9	63	10.0	1.39	16.12		251,58			15.3
2012.0 1	2.5 4	\$2.6	62	10.0	1.43	16.20	56788	292.16	406.70	8.4	15.3
2013.0 1	2.6 4	12.7	62	10.0	1.42	16.28	57081	290.13	406.18		15.3
2014.0 1	2.3 4	43.0	62	9.9	1.43	16.36		296,22			15.3
	2.9 4	43.2	62	10.0	1.42	16,44	57668	282.02	405.14		15.3
	2.2 4	43.2	62	10.0	1.44	16.52		299.26			15.3
	1.9		62	10.0	1.45	16.60		307,38			15.3
	2.0 4		62	10.0	1,45	16.69	58593	304.33			15.3
	1.3		60	9,9	1.46	16.78	58913	323.61	403.47		15.3
	3.4	43.1	56	10.0	1.38	16.85		271.87			15.3
	0.3 4		56	10.0	1.47	16.95	59491	355.06	402.69	8.4	15.3
yr, m. m		,	*,*	ADC (ጉጠፕነም	537	"1 <i>k</i> T	TERVAL.	2021	0- 23	ያምም . በ
BIT NUMBER		6		IZE	ADDE	12.250		ZZLES	f V f A 1		6 18
HTC J33	0044	5.00		RIP T	TTMF	7.0		r Run			376.0
COST TOTAL HOURS					TURNS	154094		MOITION	7.5	B5 G	
FAJ F776 FRANKS	y 1.	ar 1 573.9	,	ear 2 1 1 fee.							
DEPTH	ROP	мов	RPM	MW	"d"c	HOURS	TURNS	icost	ccost	pр	FG
										с 4	9 III. TZ
2022.0 1	0.9 3	35.6	62	10.0	1.39	0.09	341	335	34165	t5 . 4	15.3

	DEPTH	ROP	MOB	RPM	MU	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2023.0	4.7	39.5	54	10.0	1.65	0.30	1030	773	17469	8,4	15.3
	2024.0	9.0	37.5	50	9,9	1.40	0.41	1361	404	11781		15.3
	2025.0	8.9	37.3	55	10.0	1,44	0.53	1733	410	8938		15.3
	2026.0	8.9	37.8	56	10.0	1.45	0.64	2110	410	7232		15.3
4	2027.0	9.9	38.3	55	9.9	1,42	0.74	2445	369	6088		15.3
	2028.0	9.0	38.2	56		1.45	0.85	2815	406	5277		15.3
	2029.0		38.1	53	10.0		0.97	3189	426	4670		15.3
	2030.0	7.0	38.2	51	9.9	1.50	1.11	3629	522	4209		15.3
	2031.0	7.7	38.4	52	10.0		1.24	4035	473	3836		15.3
_	2032.0	7.5	38.9	53	9.9	1.50	1.37	4461	485	3531		15.3
	2033.0		39.8	54		1.47	1.49	4835	421	3272		15.3
	2034.0	7.2	40.1	57	10.0	1.54	1.63	5306	507	3059		15.3
	2035.0		40.3	58	10.0	1.52	1.75	5739	454	2873		15.3
	2036.0		40.3	58	10.0	1.58	1.90	6269	553	2719		15.3
_	2037.0		39.5	58		1,43	2.00	6606	352	2571		15.3
_	2038.0		39.5		10.0		2.11	7009	419	2444		15.3
	2039.0		36.0		10.0		2.31	7660	710	2348		15.3
	2040.0	9,4	39.3	55	10.0	1.44	2.42	8010	391	2245	8.4	15.3
	2041.0	11.1	40.0	58	10.0	1,42	2.51	8325	330	2149	8.4	15.3
	2042.0	3.5	41.0	58	10.0	1.78	2.79	9305	1031	2096	8.4	15.3
	2043.0		40.8		10.0		3.03	10146	891	2041		15.3
	2044.0		41.8		10.0		3.29	11016	931	1993		15.3
	2045.0		44,4		10.0		3,48	11638	693	1939		15.3
	2046.0		42.5	58 50	10.0		3.55	11904	279	1872		15.3
_	2047.0		42.6	58		1.43	3.64	12205	314	1812		15.3
	2048.0		42.8	58 57	10.0	1.47	3.73 3.83	12524 12866	334	1757 1708		15.3 15.3
	2049.0		42.7	59	10.0		3.91	13160	362 302	1659		15.3
	2051.0		41.3	59		1.35	3.98	13402	252	1612		15.3
	2052.0		42.4	59	10.0		4.07	13722	330	1571		15.3
_	2053.0	10.0	42.7	59	10.0	1.48	4.17	14076	365	1533	8.4	15.3
	2054.0		42.4		10.0		4.26	14376	309	1496		15.3
	2055.0		42.2		10.0		4.35	14693	335	1462		15.3
	2056.0		42.6			1,50	4.46	15069	393	1431	8.4	
	2057.0		43.0	58	10.0	1.51	4.56	15453	401	1403		15.3
	2058.0		43.3	61	10.0	1.58	4.70	15932	481	1378	8,4	
_	2059.0	3.7	43.8	66	10.0	1.85	4.97	17003	987	1368	8.4	15.3
_	2060.0	5.6	43.5	56	10.0	1.66	5.15	17601	653	1349	8.4	15.3
	2061.0	9.2	42.4	57	9.9	1.49	5.25	17973	397	1325	8.4	
	2062.0	11.7	42.9	57	10.0	1.43	5.34	18266	311	1301	8.4	15.3
	2063.0		43.4		10.0		5.42	18535	288	1277	8,4	
	2064.0		43.6	57	10.0		5.51	18849	334	1255	8.4	
	2065.0	12.2	43.9	58	10.0	1.43	5.59	19134	300	1233	8.4	
7	2066.0		43.7	57	10.0		5.68	19446	333	1213	8.4	
	2067.0		43,4	57	10.0		5.78	19779	353	1194		15.4
_	2068.0		42.1	57		1.40	5.86	20058	300	1175	8.4	
	2069.0		43.4	56		1.43	5.95	20340	305	1157		15.4
	2070.0		43.1	57		1.54	6.06	20736	426	1142	8.4	
	2071.0		43.4	56		1.53	6.17	21117	412	1128	8.4	
_	2072.0	10,1	43.2	56	9.9	1.48	6.27	21451	361	1113	8.4	10.4

ı							4 2 27% 5 1 17% 27%	****	411 pr., pr., pr., bage	0.000.000	F1 F3	r.a
-	DEPTH	ROP	MUB	MYS	MW	"d "c	HOURS	TURNS	ICOST	CCOST	ÞР	FG
	2073.0		43.4	56		1.50	6.38	21800	377	1098		15.4
	2074.0		43.2	56		1.52	6.49	22171	402	1085		15.4
	2075.0		43.3	56		1.61	6.63 6.89	22662 23525	534 933	1075 1073		15.4 15.4
	2076.0		44.2	56 57		1.80	7.12	24334	862	1069		15.4
	2077.0 2078.0		44.7	58		1.61	7.27	24823	513	1059		15.4
	2079.0		43.7	58		1.50	7.37	25171	365	1047		15.4
	2080.0		44.0	58		1.49	7.46	25498	342	1035		15.4
	2081.0		43.4	58	9.9	1.50	7.56	25846	365	1024		15.4
_	2082.0	4.1	44.8	58	9.9	1.81	7.80	26701	898	1022	8.4	15.4
	2083.0	3.3	45.2	58	9.8	1.88	8.11	27768	1115	1023		15.4
_	2084.0	10.6	43.1	58		1.48	8.20	28095	344	1013		15.4
	2085.0		44,9	58		1.52	8.31	28449	373	1003		15.4
	2086.0		44.6	56		1.53	8.43		456.50			15.4
	2087.0		43.0	57		1.52	8.54 8.63	29259 29551	399.01 325.64	985.17		15.4 15.4
	2088.0 2089.0		44.9 45.0	57 57		1.53	8.74		386.50			15,4
	2090.0	10.3		52		1,48	8.83		353.03			15.4
_	2091.0		44.5	57		1.48	8.92		336.80			15,4
	2092.0		45.1	57		1.50	9.03		368.24		8.4	15.4
	2093.0	9.2	43.0	57	9.8	1.52	9.13	31276	396.65	933.17	8.4	15.4
_	2094.0		43.4	59		1.50	9.24	31627				15.4
	2095.0		42.5	57		1,50	9.34		380.42			15.4
-	2096.0		38.5	56		1,46	9,45	32356	401.72			15.4
_	2097.0		41.3	56		1.30	9.51		219.12			15.4 15.4
	2098.0		42.9	58		1.41 1.50	9.59 9.68		351.00			15.4
	2099.0 2100.0		45.0 42.6	57 57		1.46	9.78		337.81			15.4
_	2100.0		43.8	57		1.39	9.85		261.73			15.4
	2102.0		41.1	57		1.42	9.93	34001	316.51		8.4	15.4
_	2103.0	11.1	42.1	57	9.9	1,45	10.02	34309	329.69	858.99	8.4	15.4
	2104.0		39.8	57		1.61	10.19		606.64			15.4
	2105.0		42.1	57			10.28		332.74			15.4
_	2106.0		38.3	55		1.38	10.37		318.54		8.4	15.4
	2107.0		40.9	57 57		1.38 1.61	10.45 10.59		513.31			15.4
	2108.0 2109.0		43.7 45.2	58		1.79	10.81		832.86			15.4
	2110.0		46.4	58		1,86	11.09	37967	1610	835		15.4
	2111.0		45.2	58		1.66	11.25		572.15			15.4
	2112.0		44.0	57		1.30	11.30	38690	193.76	825.26	8.4	15.4
	2113.0	13.5	44.8	57	9.9	1.41	11.37		270.86			15.4
	2114.0	15.5	44.4	57		1.36	11.44		235.35			15.4
	2116.0		43.8	57		1.35	11.57		233.32			15.4
	2117.0		41.8	56		1.37	11.64		265.78 235.35			15.4 15.4
	2118.0		41.7	57 57		1.34	11.70 11.77		233.32			15.4
	2119.0 2120.0		45.0 45.5	56		1.37	11.83		241.44			15.4
	2121.0		45.1	57		1.38	11.90		243.47			15.4
	2122.0		44.7			1.42	11.98		295,20		8.4	15.4
	2123.0		44.4			1,42	12.06	41256	284.04	763.43	8.4	15.4

_14.42

in the control of the second

and the second section of the section of the

and the the sale of	nen	umm	RPM	انمد	"d"c	HOURS	TURNS	TCOST	CCOST	PP	FG
DEPTH	ROP										
2124.0 2125.0 2126.0 2127.0 2128.0 2129.0 2130.0 2131.0 2132.0 2133.0	13.7 15.0 12.6 5.6 11.1 14.2 13.7	44.8 43.8 37.7 38.1 40.4 40.7 40.4 39.9 36.9	55 56 37 77 77 77 77 77	9.9 9.9 9.9 9.9 9.9 9.9	1.41 1.39 1.28 1.31 1.58 1.37 1.29 1.30 1.30	12.14 12.21 12.28 12.35 12.53 12.62 12.69 12.77 12.85 12.92	41754 41967 42192 42698 42952 43152 43357 43585	278.97 266.80 243.47 290.13 651.27 328.68 256.65 265.78 293.17 262.74	754.00 749.14 744.81 743.93 740.09 735.65 731.38 727.43	8.4 8.4 8.4 8.4 8.4 8.4	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
2134.0 2135.0 2136.0 2137.0 2138.0 2139.0 2140.0 2141.0 2142.0 2143.0	10.1 12.6 12.4 10.8 13.1 11.8 11.8	39.9 41.4 41.7 40.4 40.5 42.8 50.2 50.2	47 44 48 48 48 48 48 48	9,9 9,9 9,9 9,9 9,9 9,9	1.39 1.34 1.34 1.38 1.38 1.45 1.46	12.99 13.09 13.17 13.25 13.35 13.42 13.51 13.59 13.69 13.78	44268 44493 44723 44986 45204 45445 45696 45962	362.16	712.50 708.91 705.73 702.10 698.79 695.63 692.68	8.4 8.4 8.4 8.4 8.4 8.4	15.4 15.4 15.4 15.4 15.4 15.4 15.4
2144.0 2145.0 2146.0 2147.0 2148.0 2150.0 2151.0 2152.0 2153.0	14.6 11.5 2.9 4.6 6.1 10.1 9.2	49.3 49.8 49.9 549.5 46.0 50.5	47 48 48 48 48 48 48 48 48	9.9 9.8 9.8 9.8 9.7 9.7	1.42 1.36 1.43 1.94 1.76 1.68 1.51 1.52	13.86 13.93 14.01 14.36 14.58 14.74 14.84 14.95 15.06	46640 46888 47896 48525 48995 49278 49590 49920	296.22 249.55 316.51 1273 793.30 596.49 360.13 397.66 420.99 456.50	682.95 680.02 685 685.58 684.89 682.37 680.18 678.20	8 . 4 8 . 4 8 . 4 8 . 4 8 . 4 8 . 4	15.4 15.4 15.5 15.5 15.5 15.5 15.5
2154.0 2155.0 2157.0 2157.0 2158.0 2159.0 2160.0 2161.0 2162.0	9,3 10,9 5,3 4,9 4,2 5,5	47.6 45.0 47.6 47.5 51.0 52.3	45 47 47 47 48 47 48 47 48	9.7 9.7 9.7 9.7 9.7 9.7	1.46 1.51 1.46 1.71 1.90 1.77 1.84 1.76 1.69	15.28 15.39 15.48 15.67 15.97 16.18 16.42 16.75 16.75	50834 51091 51619 52479 53046 53731 54246	339.84 393.60 334.77 683.74 1108 752.72 875.47 663.45 553.89 1123	671.90 669.40 669.51 673 673.28 674.74 674.66	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
2164.0 2165.0 2166.0 2167.0 2168.0 2169.0 2170.0 2171.0 2172.0 2173.0	3.8 4.4 9.2 24.3 18.6 21.3 24.5 25.2	48.8 50.1 51.0 41.8 39.6 40.2 37.9 40.5 37.9 35.4	447489 55825 55455 55455	9.6 9.6 9.6 9.6 9.6 9.6	1.83 1.88 1.55 1.55 1.22 1.31 1.21 1.14 1.18	17.32 17.59 17.81 17.92 17.96 18.02 18.06 18.10 18.14 18.20	57030 57654 58030 58174 58362 58508 58618 58753	959.66 967.78 827.79 395.63 150.14 196.80 171.44 149.12 145.07 211.00	680.95 681.96 680.00 676.40 673.15 669.79 666.32 662.86	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5

and the state of t

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2174.0 2175.0 2176.0 2177.0 2178.0 2179.0 2180.0 2181.0 2182.0 2183.0	23.2 20.5 7.8 5.4 21.1 18.1 24.3 16.7	38.5 38.8 39.2 38.5 38.8	55 55 55 55 55 55 55 55 55 55 55 55 55	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.25 1.25 1.57 1.69 1.27 1.27 1.27	18.25 18.30 18.34 18.47 18.66 18.71 18.76 18.80 18.80	59257 59422 59858 60492 60653 60825 60969 61163	183.61 157.24 178.54 468.67 676.63 173.47 201.87 150.14 218.11 133.91	653.54 650.47 649.31 649.48 646.47 643.67 640.59 637.96	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
2184.0 2185.0 2186.0 2187.0 2188.0 2189.0 2190.0 2191.0 2192.0 2193.0	23.5 23.7 21.3 22.8 22.6 15.5 23.2	38.0 37.9 38.0 38.8 38.0	55555555555555555555555555555555555555	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.20 1.30 1.20 1.20 1.24 1.21 1.34 1.28	18.94 19.00 19.04 19.08 19.13 19.18 19.22 19.28 19.33 19.38	61625 61767 61910 62067 62214 62361 62579 62728	156.22 215.06 155.21 154.20 171.44 160.28 161.30 236.37 157.24 184.63	629.37 626.50 623.65 620.95 618.20 615.50 613.27 610.60	8,4 8,4 8,4 8,4 8,4 8,4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
2194.0 2195.0 2196.0 2197.0 2198.0 2199.0 2200.0 2201.0 2202.0 2203.0	19.1 16.2 16.5 16.7 16.7 19.0 13.6	37.9 39.1 38.1 39.0 38.6 38.6 38.7 39.4 37.5 36.7	57 57 57 57 57 57 57 57 57 57 57 57 57 5	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.30 1.29 1.33 1.33 1.32 1.39 1.40 1.37	19.43 19.49 19.55 19.61 19.67 19.73 19.78 19.85 19.99	63273 63487 63694 63898 64106 64288 64543 64794	204.92 190.72 225.21 221.15 218.11 219.12 191.73 268.83 273.90 215.57	603.41 601.25 599.09 596.94 594.81 592.56 590.76 589.01	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
2204.0 2205.0 2206.0 2207.0 2208.0 2209.0 2210.0 2211.0 2212.0 2213.0	3.4 3.3 5.4 13.7 8.5 19.1 4.5	39.1 38.8 38.4 38.3 37.5 38.2 37.1 37.3 38.7 34.5	58985555555555555555555555555555555555	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.53 1.84 1.85 1.68 1.38 1.54 1.27 1.23 1.43	20.88 20.94 21.07 21.13 21.35	66419 67496 68140 68396 68805 68987 69764 70050	428.10	589 591 591.91 590.17 589.31 587.20 588.34 586.99	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
2214.0 2215.0 2216.0 2217.0 2218.0 2219.0 2220.0 2221.0 2222.0 2223.0	16.6 28.8 7.8 2.8 3.7 3.4 2.9 4.3	34.8 38.6 35.7 38.5 39.8 40.0 39.9 39.8 40.3 42.4	57778885555555555555555555555555555555	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.34 1.32 1.22 1.57 1.97 1.85 1.90 1.84	21.69 21.74 21.87 22.23 22.50 22.79 23.13 23.36	70935 71100 71546 72784 73736 74748 75919 76726	993.14 1862	582.75 580.66 580.09 584 585.81 588 591 592.76	8.4 8.4 8.4 8.4 8.4 8.4	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5

. . .

•

		_										
	DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2224.0	3.9	42.8	58	9.6	1.85	23.87	78505	937.35	596.16	8.4	15.5
	2225.0		43.1	58		1.85	24.13		918.07			15.5
	2226.0		41.6	58		1.81	24.36		863.29			15.5
	2227.0		41.0	63		1.83	24.60		874.45			15.5
	2228.0		41.3	64		1.85	24.85		914.01			15.5
	2229.0 2230.0		41.2	64 51		1,80 1,80	25.06 25.29		769,96 846,05			15.5 15.5
	2231.0		44.9	52		1.70	25.60	84553	1119	606		15.5
	2232.0		44,6	57 59		1.93	25.90	85610	1082	609		15.5
	2233.0		44.5	56		1.72	26.07		614.75			15.5
	2234.0	8.1	44.6	56	9.6	1.62	26.19	86594	451.43	607.86	8.4	15.6
_	2235.0		44.8	56		1.57	26.29		381.43			15.6
_	2236.0		44.9	56	9.6	1.38	26.35		219.12			15.6
	2237.0		40.3	51		1.20	26.40		160.28			15.6
_	2238.0		42.4	55		1.27	26.45		173.47			15.6
_	2239.0		42.7	55		1.30	26.50		182.60			15.6
	2240.0		43.2	56		1,36 1,31	26.56		218.11 176.51			15.6 15.6
	2241.0 2242.0		44.8	56 55		1.19	26.60 26.64		128.83			15.6
_	2243.0		43.3	57		1,17	26.67		117.68			15.6
	a.e. was e u											
	2244.0		44.7	56		1.39	26.73		230.28			15.6
	2245.0		45.2 45.6	58 56		1.17	26.76 26.82		112.60			15.6 15.6
	2246.0 2247.0		45.8	55		1.40	26.88		229.26			15.6
	2248.0		46.0	57		1.39	26.94		217.09			15.6
	2249.0		46.0	56		1.42	27.00		235.35		8.4	15.6
	2250.0		45.7	54		1.47	27.08		288.10	579.64		15.6
	2251.0		45.3	55		1.39	27.14		225.21	578,10		15.6
	2252.0		46.2	57		1.45	27.22		257.67			15.6
	2253.0	8.0	40.8	56	9.6	1.58	27.34		456.50		ti, 4	15.6
_	2254.0		44.4	56		1.43	27.41		253,61			15.6
	2255.0		45.5	57		1.56	27.51	91009		573.89		15.6
	2256.0		46.0	57		1.98	27.85	92178	1256	577		15.6
_	2257.0		42.3	59		1.70	28.01 28.10		586.69 321.58			15.6 15.6
	2258.0 2259.0		43.3 45.6	54 53		1,40	28.17		238.39			15.6
	2260.0		44.7	50		1.40	28.24		263.76			15.6
_	2261.0		44.8	50		1.43	28.32		282.02			15.6
	2262.0		44.6	51		1.39	28.38		247.52			15.6
	2263.0	16.7	45.6	51	9.6	1.35	28.44	94085	218.11	569,02	8.4	15.6
	2264.0		45.3	52		1.37	28.51		227.24			15.6
	2265.0		45.6	53		1.41	28.57		245.50			15.6
	2266.0		45.7			1.39	28.64		238.39			15.6
	2267.0		46.9	54		1.64	28.76		456.50 245.50			15.6 15.6
	2268.0		46.2	52 54		1,41	28.83 28.88	95478		561,69		15.6
	2269.0 2270.0		45.7 44.7	52		1.39	28.95		243.47			15.6
	2271.0		44.8	54		1.67	29.10		547.80			15.6
	2272.0	23.1		54		1.25	29.14	96310	158.25	558.76	8.4	15.6
	2273.0		46.1	52	9.6	1.41	29.21	96525	250.57	557.54	8.4	15.6

in the second second

-	DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCDST	PP	FG
	2274.0	12.5	45.7	56	9.6	1.48	29,29	96792	292.16	556.49	8.4	15.6
Ш	2275.0		44.5	57		1.45	29.36		267.81			15.8
	2276.0		44.3	56	9.6	1.43	29.43	97279	261.73	554.20	8.4	15.6
_	2277.0	12.5	44.0	57	9.6	1.47	29.51	97552	292,16	553.18		15.6
	2278.0	15.5	43.4	56	9.6	1.39	29.58		235.35			15.6
_	2279.0		43.3	53		1,38	29.64		240.42			15.6
_	2280.0		44.4	57		1,82	29,87			551.78		15.6
	2281.0		44.3	57		1.65	30.00		486.93			15.6
	2282.0		45.9	56		1,39	30.06			550,24		15.6
_	2283.0	19.6	43.9	57	У.6	1.32	30.11	99574	186.66	548.87	8.4	15.6
	2284.0		42.9	56		1.34	30.17		205.93			15.6
	2285.0		43.9	57		1.34	39.22		199.85			15.6
	2286.0		43.0	57		1.39	30.29 30.35		238.39			15.6 15.6
	2287.0		42.5	56 56		1,28	30.40		166.37			15.6
	2288.0 2289.0		44.2	52		1.26	30.44		166.37			15.6
	2290.0		45.6	57		1.67	30.58		500.12			15.6
	2291.0		45.4	57		1.83	30.80		815.61			15.6
	2292.0		45.1	57		1.90	31.08	102864	1015	544		15.6
-	2293.0		45.3	57		1.74	31.25		625.91			15.6
	2294.0		44.3	57		1.25	31,44		669.53			15.6
	2295.0		43.3	57		1.31	31.49		181.59			15.6
	2296.0		42.0	58		1.33	31.55		232.31	542.00		15.6
_	2297.0		40,4	52 55		1.30 1.58	31.60 31.71		190,72 383,46	540,73		15.6 15.6
_	2278.0	16.1	46.4	56		1.36	31.77		226.56			15.6
	2299.0 2300.0		42.3	59		1.37	31.83		218.11	537.88		15.6
_	2301.0		42.1	60		1.39	31.89			536.78		15.6
_	2302.0		44.9	60		1.45	31,96		252.60	535.76		15.6
	2303.0		44.5	60		1.38	32.02		205.93			15.6
_	2304.0	15.6	43.9	60	9.6	1,42	32.08	106325	234.34	533.53	8.4	15.6
	2305.0		44.7	59		1,40	32.14		223.18			15.6
	2306.0		44.7	59		1.41	32.21	106767	232.31	531.39	8.4	15.6
	2307.0	12.4		59	9.6	1,50	32.29	107052	295.20	530.56	8.4	15.6
	2308.0	15.9	43.3	58	9.6	1.39			229.94			15.6
	2309.0	9.9		$\theta \phi$		1.57	32,45		368.24			15.6
	2310.0	8.6		59		1.63	32.57		424.04			15.6
	2311.0		43.9	58		1.62	32.69		444.33			15.6
	2312.0		43.6	59		1.46	32.76		272.89			15.6
_	2313.0	13.7	42.7	59	9.6	1.44	32.84	108996	266.80	526.53	8.4	15.6
	2314.0		43.1	54		1.69	33.00		615.77			15.6
	2315.0		44.2	58		1.92	33.30	110577	1082	529		15.6
	2316.0		45.5	58		1.97	33.63	111713	1190	531		15.6
	2317.0		44,2	58		1.87	33.88		932.27			15.6
	2318.0		44.7	58		1.91	34.17	113588	1042	534 577		15.8
	2319.0		44.9	55		1.54	34.49	114655				15.6 15.6
	2320.0		45.7	50 49		1.71			641.13 369.26			15.6
	2321.0 2322.0		45.1 46.5	53		1,51			277,96			15.6
	2323.0		49,4	48		1.48				534.37		15.6
	and and a M) E. 1 U	**************************************	****	2 1 53	A 7 FW	Sec. 1 1 2 5.7	a a terr titul	arse results	arm raher	, 1	2 · W

- -

	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2324.0		49.8	48		1.47	35.00		287.09		8.4	15.7
	2325.0		50.3	48		1.51	35.09		318,54			15.7
	2326.0		50.5	49		1.66	35.22		486.93			15.7
	2327.0		49.0	47		1.46	35.30		287.43			15.7
	2328.0		46.9	46		1.42	35.38		283.03			15.7
	2329.0 2330.0	17.6	48.4	48		1.33	35.44		206.95			15.7
	2331.0		48.5	47 48		1.39	35.50 35.58		235.35			15.7 15.7
	2332.0		48.0	46		1.66	35.72		529,54			15.7
	2333.0		48.2	48		1.90	36.01	119036	1051	530		15.7
	/*********** /*	*** y A	a.me	40	en 1111	a mo	ر رسد ر سد	a as any one one one	4 21 20 200	2000 1000 200	 .	-1 1000 · 1000
	2334.0		48.4	48 48		1.92	36.31 36.58	119893 120671	1085	532 533.13		4577 157
	2335.0 2336.0		49.4	48	9.5	1.55	36.67	120955	361.14	532,59		15.7
	2338.0		47.8	49		1.48	36.84	121434				15.7
	2339.0		48.5	49	9.5		36.92	121672		530.37		15.7
	2340.0		49.1	48		1.47	37,00	121899	285.06			15.7
	2341.0		50.5	50		1.85	37.21	122542		530.40		15.7
	2342.0		50.1	48		1.94	37.51	123396	1079	532		1517
	2343.0	2.9	48.0	54	9.5	2.01	37,86	124521	1278	534	8.4	15.7
	2344.0	3.0	49.5	49	9.5	1.99	38.19	125513	1223	537	8.4	15.7
	2345.0		51.9	50		2.07	38.58	126657	1405	539		15.7
_	2346.0		52.5	45		1.89	38.81		843.00			15.7
	2347.0		51.9	47		1.65	38.93	127684		539.88		15.7
	2348.0		49.1	48		1.52	39.02		334.77			15.7
-	2349.0		47.4	48	9.5		39.12		359.11			15.7
	2350.0 2351.0		49.2	48 4 7		1.56	39.22 39.31		376.79 307.38	537.51		15.7 15.7
	2352.0		48.6	47		1.44	39.38		269.84			15.7
_	2353.0		48.9	47		1.43	39.45		258.68			15.7
	2354.0		48.9	47		1.41	39.52		247.52			15.7
	2355.0	9.9	49.N	48	9.5	1.55	39.62	129658	368.24	534.50	8.4	15.7
	2356.0		48.7	47		1.47	39.70		290.13			15.7
	2357.0		48.8	46		1.44	39,78		281,00			15.7
	2358.0	10.3	50.9	47		1.56	39.87		354.04			15.7
	2359.0	9.7	53.3	47	9.5	1.60	39.98		378.39		8.4	15.7
	2360.0		52.8	47	9,5	1.53	40.06		315.49			15.7
	2361.0		51.3	47	9.5	1.55	40.16		340.85			15.7
	2362.0		52.4	48	9.5	1.68	40.29		475.77			15.7
	2363.0		52.2	48	9.5		40.52		867.35			15.7
_	2364.0	4.7	53.1	48	9.5	1.86	40.74	132837	785,18	532.40	8,4	15.7
	2365.0		51.1	47		1.45	40.81		260.71			15.7
	2366.0		52.0	45		1.49	40.89		297.23	530.93		15.7
	2367.0		46.9	48	9.5	1.50	40.99	133529	337.81	530.37		15.7
	2368.0		46.8	48	9.5	1.48	41.07	133781	318.54	529.76		15.7
	2369.0		47.2	48	9.5	1.54	41.17		367,23 966,77	529.29 530.55		15.7 15.7
	2370.0 2371.0	3.8 7 A	48.3	49 49	9.5 9.5	1.88	41.44	134844 135701	1073	532		15.7
	2372.0		48.6	49	9.5	1.92	42.02	136557	1073	534		15.7
	2373.0		47.2	49	9.5	1.96	42.37	137564	1261	536		15.7
	2374.0		46.8	49	9.5	2.02	42.78	138781	1514	538		15.7
				• •		-						

The first of the second of

	DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	icost	CCOST	PP	FG
	2375.0	3.4	46.9	49	9.5	1.91	43.08	139662	1090	540	8.4	15.7
	2376.0		47.6	48	9.5	1,98	43,44	140697	1305	542	8.4	15.7
	2377.0		47.5	48	9.5	1.91	43.74	141558	1084	544	8.4	15.7
_	2378.0		48.9	48	9.5	2.01	44.11	142635	1360	546	8.4	15.7
	2379.0		47,6	48	9.5	1,97	44,46	143657	1296	548	8.4	15.7
	2380.0		47.8	48	9.5	1,68	44.62	144090	551,86	548.10	8.4	15.7
	2381.0		47.6	48	9.5	1.50	44.71	144353	335.78	547.51	8.4	15.7
	2382.0	10.2	49.6	47	9.5	1.54	44.81	144631	357,08	546.98	8.4	15.7
	2383.0	10.6	50.1	48	9.5	1,54	44.90	144899	343,90	546,42	8.4	15.7
	2384.0	13.1	48.6	45	9.5	1.43	44.98	145107	277.96	545.68	8.4	15.7
												.1 (019 1941
	2385.0		50.0	46	•	1,82	45,19	145711	791.27			15.7
	2386.0		50.0	48		1,92	45.47	146515	1016	548	8.4	15.7
	2387.0		50.0	47		1.64	45,60	146888	471.72			15.7
	2388.0		51.2	48	9.5		45.93	147827	1205	549	8.4	15.7
_	2389.0		50.7	48		1.72	46.09	148271	566.06	•	8.4	15.7
	2390.0		50.6	48		1.77	46.27	148785	658,37	549,57		
	2391.0		50.9	48	9.5		46.46	149328	693.88	549.96	8.4	15.7
	2392.0		50.2	48	9.5		46.69	149989	843.00	550,75	8.4	15.7
	2393.0		50.8	48		1,98	47.01	150920	1176	552	8.4	
	2394.0	3.4	50.8	48	9.5	1.96	47.31	151787	1090	554	8.4	15.7
					gas, pre-		4 m	a teren es en a	وت و در ا	12 12 J	O #	सुध्यु दक्ष
	2395.0		50.4	48		1.99	47.64	152751	1217	556 E69		15.7
	2396.0		51.1	53		2.04	47.98	153836	1250	557	8.4	15.7
	2397.0	12.2	51.0	53	9.5	1.53	48.06	154094	298,25	506.81	₩.4	15.7

BIT NUMBER HTC J22 COST 8520 TOTAL HOURS 53	7 IADC CODE SIZE .00 TRIP TIME .62 TOTAL TURNS	12.250 NOZZ 7.1 BIT	ERVAL 2397.0- 2719.0 MLES 16 16 16 RUN 322.0 DITJON T6 B6 G0.250	}
DEPTH ROP I	JOB RPM MW "d"c	HOURS TURNS	ICOST CCOST PP FG	e e
2398.0 16.3.3 2399.0 22.8 29 2400.0 23.2 3	9.0 56 9.5 1.13	0.06 213 0.11 361 0.15 512	225 34674 8.4 15.7 160 17417 8.4 15.7 157 11664 8.4 15.7	}
2401.0 19.4 34 2402.0 3.9 33 2403.0 2.6 43 2404.0 3.7 43 2405.0 11.9 33 2406.0 11.3 36 2407.0 18.2 33 2408.0 15.8 36 2409.0 17.4 33 2410.0 12.7 33	7.8 58 9.5 1.79 2.0 58 9.5 1.99 2.6 54 9.5 1.85 5.7 59 9.5 1.42 9.5 59 9.5 1.48 8.9 59 9.5 1.32 9.6 55 9.5 1.34 8.8 54 9.5 1.30	0.20 691 0.46 1590 0.85 2938 1.12 3817 1.20 4116 1.29 4432 1.35 4627 1.41 4834 1.47 5021 1.55 5294	189 8795 8.4 15.7 940 7224 8.4 15.7 1425 6258 8.4 15.7 988 5505 8.4 15.7 307 4855 8.4 15.7 325 4352 8.4 15.7 201 3937 8.4 15.7 231 3600 8.4 15.7 210 3317 8.4 15.7 287 3084 8.4 15.7	7 1 7 7 7
2411.0 16.7 3° 2412.0 11.5 4 2413.0 2.7 3° 2415.0 2.5 3° 2416.0 3.8 4 2417.0 4.4 3° 2418.0 5.1 4 2419.0 3.6 4 2420.0 7.8 4 2421.0 4.8 4	0.3 60 9.5 1.48 9.1 56 9.5 1.92 6.7 45 9.5 1.83 0.4 58 9.5 1.83 9.7 58 9.5 1.78 0.0 59 9.5 1.24 0.1 60 9.5 1.86 0.9 60 9.5 1.62	1.61 5505 1.69 5817 2.07 7062 2.86 9211 3.13 10116 3.36 10916 3.55 11613 3.83 12617 3.96 13080 4.17 13752	218 2880 8.4 15.7 319 2709 8.4 15.7 1359 2624 8.4 15.7 1460 2495 8.4 15.7 956 2414 8.4 15.8 838 2335 8.4 15.8 713 2258 8.4 15.8 1027 2202 8.4 15.8 468 2127 8.4 15.8	7 7 8 8 8
2422.0 2.1 4 2423.0 3.4 3 2424.0 3.6 3 2425.0 3.5 3 2426.0 3.5 3 2427.0 4.2 3 2427.0 4.2 3 2428.0 3.8 4 2429.0 5.5 4 2430.0 8.7 4 2431.0 4.2 5	9.3 50 9.5 1.81 8.5 55 9.5 1.81 8.9 61 9.5 1.86 6.3 54 9.5 1.78 9.8 49 9.5 1.74 4.3 49 9.5 1.83 9.6 49 9.5 1.59 8.0 49 9.5 1.59	4.65151914.95160795.23169975.51180495.80189846.04196776.30204546.48209896.60213246.8422021	1749 2057 8.4 15.8 1086 2020 8.4 15.8 1016 1983 8.4 15.8 1049 1949 8.4 15.8 1047 1918 8.4 15.8 866 1883 8.4 15.8 964 1853 8.4 15.8 666 1816 8.4 15.8 419 1774 8.4 15.8 869 1747 8.4 15.8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2432.0 9.3 4 2433.0 19.6 5 2434.0 8.6 5 2435.0 24.7 4 2436.0 27.7 4 2437.0 21.3 4 2438.0 30.8 4 2439.0 18.7 5 2440.0 14.9 5 2441.0 5.5 5	1.6 49 9.5 1.35 0.6 47 9.5 1.62 9.6 48 9.5 1.24 9.3 48 9.5 1.20 3.7 46 9.5 1.23 2.9 48 9.5 1.11 4.4 49 9.5 1.39 2.4 49 9.5 1.45	6.94 22336 6.99 22485 7.11 22817 7.15 22935 7.19 23039 7.23 23168 7.27 23261 7.32 23418 7.39 23615 7.57 24156	393 1709 8.4 15.8 187 1666 8.4 15.8 427 1633 8.4 15.8 148 1594 8.4 15.8 132 1556 8.4 15.8 171 1522 8.4 15.8 119 1488 8.4 15.8 196 1457 8.4 15.8 245 1429 8.4 15.8 670 1411 8.4 15.8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

.- ^ - ^ - ^ - . -

	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	ÞÞ	FG
	2442.0	14.6	49.7	49	9.5	1,44	7.64	24358	251	1386	8.4	15.8
	2443.0		50.0	47	9.5	1.43	7.71	24555	254	1361		15.8
_	2444.0		49.8	49		1.68	7.85	24963	507	1343		15.8
	2445.0		48.3	49	9.5	1.58	7,96	25282	395	1323		15.8
	2446.0		48.0	49		1.46	8.03	25512	285	1302		15.8
	2447.0		50.0	49		1,56	8,13	25802	359	1283		15.8
	2448.0		50.9	49		1.56	8.23	26085	349	1265		15.8
	2449.0		51.3	50		1.96	8.52	26943	1051	1261		15.8
	2450.0		51.7	49		2.00	8.84	27906	1186	1259		15.8
	2451.0		51.3	49		2.00	9.16	28865	1182	1258		15.8
	2452.0	4 7	51.0	49	Q S	1.74	9.32	29327	577	1245	DΛ	15.8
	2453.0		50.1	49		1.54	9,41	29598	336	1229		15.8
_	2454.0		50.2	49		1.33	9.46	29747	185	1211		15.8
	2455.0		50.0	47		1.36	9.52	29910	211	1194		15.8
8	2456.0		51.3	49		1,90	9.77	30640	915	1189		15.8
	2457.0		51.1	49		1.75	9.94	31117	598	1179		15.8
	2458.0		50.9	48		1,30	9.98	31251	169	1162		15.8
	2459.0		50.8	48		1.34	10.04	31402	191	1147		15.8
_	2460.0		51.3	48		1.38	10.09	31566	207	1132		15.8
_	2461.0		50.7	46		1.31	10.14	31705	183	1117		15.8
	2401.0	2.0.0	30.7	~† C)	77 s s.d	A COA	10.19	31700	100	1117	(C) 1 ****	10.0
	2462.0	22.1	50.2	45		1,27	10.19	31828	165	1102		15.8
	2463.0		50,0	48		1.43	10.26	32025	248	1089		15.8
	2464.0		49.2	48		1.24	10.30	32142	146	1075		15.8
	2465.0		49.2	48		1.31	10.34	32283	180	1062		15.8
	2466.0		48.7	49		1.28	10.39	32417	167	1049		15.8
	2467.0		51.1	48		1,37	10.45	32581	207	1037		15.8
	2468.0		51.2	48		1.33	10.50	32726	182	1025		15.8
	2469.0		50.9	48		1.36	10.55	32885	202	1014		15.8
	2470.0		52.3	49		1.80	10.73	33407	650	1009		15.8
	2471.0	7.7	50.9	49	9.5	1.67	10.86	33790	473	1001	8.4	15.8
_	2472.0	21.4	47.0	45	9.5	1.25	10.91	33917	170.43	990.37	8.4	15.8
	2473.0	17.8	50.9	50	9.5	1.38	10.96	34084	204.92	980.03	8.4	15.8
	2474.0		50.4	53	9.5	1.40	11.02	34263	205,93	969,98	8.4	15.8
	2475.0		50.8	51	9.5	1.74	11.18	34745	574.18	964,91	8.4	15.8
	2476.0		51.6	51	9.6	1.89	11.41	35460	859.23	963.57	8.4	15.8
	2477.0	5.0	50.5	50	9.6	1.82	11.61	36064	730,40	960.65	8.4	15.8
	2478.0	4,0	51,9	51	9.6	1.92	11.86	36828	919.09	960.14	8.4	15.8
	2479.0	5.5	51.6	51	9.6	1.80	12.04	37385	665,48	956.55	8.4	15.8
	2480.0	14.9	49.5	51	9.6	1.43	12.11	37589	244.48	947.97	8.4	15.8
	2481.0	14.5	49.9	49	9.6	1.43	12.18	37793	251.58	939.68	8.4	15.8
	2482.0	12.5	48.8	49	9.6	1.47	12.26	38030	292,16	932.06	8.4	15.8
	2483.0		50.0	49		1.36	12.32		204.92			15.8
	2484.0		48.3	49		1.29	12.36		173.47			15.8
	2485.0		48.8	49		1.28	12.41		167.38			15.8
	2486.0		48.3	49		1.32	12.46		192.74			15.8
-	2487.0		48.9	49		1.37	12.52		215.06			15.8
	2488.0		49.4	49		1,42	12.59		245.50			15.8
	2489.0		50.6	49		1.48	12.67		282.02		8,4	15.8
	2490.0		51.9	50		1.38	12.72			869.99		15.8
	2491.0		51.7	49		1.65	12.84		448.38		8.4	15.8
			-									

• •

DE	PTH R	OP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
249	3.0 13 4.0 10 5.0 15 6.0 4 7.0 3 8.0 4 9.0 4 0.0 5	861.23790	50.4 45.4 51.4 551.2 551.5 551.7 551.7	52 52 55 55 55 54 49 5	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.37 1.45 1.58 1.45 1.91 2.00 1.82 1.80 1.83	12.90 12.97 13.07 13.13 13.37 13.67 13.88 14.09 14.29	40140 40434 40642 41420 42404 43044 43632	195.79 264.77 345.93 242.45 867.35 1095 781.12 743.59 733.44 1005	852.27 847.05 840.88 841.15 844 843.06 842.09	8,4 8,4 8,4 8,4 8,4 8,4	15.8 15.8 15.8 15.8 15.8 15.8 15.8
250 250 250 250 250 250 250 251 251	3.0 6 4.0 14 5.0 10 6.0 14 7.0 13 8.0 16 9.0 17 0.0 4	.9 .30 .05 .9 .9	50.7 50.4 50.3 49.6 49.6 50.2 51.6	50 50 50 50 51 51 48 50	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.92 1.71 1.45 1.57 1.45 1.46 1.39 1.37 1.81	14.83 14.97 15.04 15.14 15.21 15.35 15.40 15.61 15.96	46294 46504 46805 47019 47243 47419 47589	965.75 532.58 255.64 366.21 260.71 269.84 216.08 203.90 746.63 1287	840.85 835.38 831.04 825.81 820.75 815.30 809.84	8.4 8.4 8.4 8.4 8.4 8.4	15.8 15.8 15.8 15.8 15.8 15.8 15.8
251 251 251 251 251 251 251 252 252	3.0 4 4.0 15 5.0 12 6.0 17 7.0 16 8.0 19 9.0 20 0.0 4	.5 .2 .6 .1 .9	51.9 50.7 51.0 52.2 52.8 52.8 52.6 50.8 48.1	51 554 544 555 553 553 553	9.6 9.6 9.6 9.6 9.6 9.6	1.87 1.88 1.46 1.55 1.42 1.45 1.38 1.37 1.87	16.18 16.40 16.47 16.55 16.60 16.67 16.72 16.77 16.77	50632 50846 51112 51298 51503 51667 51826 52515	800.40 805.47 240.42 298.25 207.96 226.22 183.61 182.60 805.47 582.29	813.30 808.40 804.08 799.07 794.29 789.25 784.27 784,45	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9
252 252 252 252 252 252 252 253 253	3.0 14 4.0 10 5.0 10 6.0 8 7.0 10 8.0 9 9.0 9	.5 .4 .5 .6 .9 .9 .9 .4	47.8 51.2 50.0 50.5 51.4 51.6 52.1 50.0	52 51 51 51 52 49 50	9.6 9.6 9.6 9.6 9.6 9.6	1.55 1.46 1.56 1.56 1.64 1.56 1.61 1.59	17.24 17.31 17.41 17.50 17.62 17.71 17.81 17.91 18.21 18.32	53533 53828 54117 54472 54751 55065 55365 56258	356.07 251.58 351.00 347.95 424.04 333.75 370.27 369.26 1077 391.58	775.21 771.87 768.56 765.89 762.57 759.57 756.62	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9
253 253 253 253 253 253 253 254 254 254	3.0 3 4.0 4 5.0 4 6.0 5 7.0 8 9.0 7 0.0 10	.3	49.0 49.2 50.2 50.5 50.5 49.6 46.4	50 50 50 51 51 53 53 53	9.6 9.5 9.6 9.6 9.5 9.6 9.6	1.73 1.94 1.86 1.91 1.77 1.63 1.67 1.56 1.48	18.48 18.78 19.01 19.26 19.44 19.55 19.82 19.92 20.00	57974 58674 59433 59959 60311 61132 61432 61686	591.42 1096 846.05 921.45 630.98 419.98 493.70 345.93 294.19 238.39	758 758.21 759.40 758.47 756.05 752.36 749.52 746.35	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9

								•			
DEPTH	ROP	MOR	RPM	MM	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2543.0 2544.0 2545.0 2547.0 2547.0 2549.0 2550.0 2551.0 2552.0	1.7 4.6 10.3 12.0 2.6 2.2 7.9	52.1 50.5 49.0 45.6 51.7 51.3 50.4	5310005 5555 5447 5555 5447 5555	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.97 2.19 1.82 1.52 1.46 2.04 2.10 2.11 1.59 1.30	20.34 20.92 21.14 21.24 21.32 21.71 22.17 22.63 22.74 22.78	65485 65734 66886 68198 69552 69867	2139 791.27 353.03 305.35 1420 1692 1687 369.26	748,75 753 759 765	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
2553.0 2554.0 2555.0 2556.0 2557.0 2558.0 2559.0 2560.0 2561.0 2562.0	15.9 14.3 11.6 3.7 19.0 1.3 3.0 3.6	48.7 48.1 47.5 48.5 49.2 52.4 51.7 52.7	50 43440 55 55 55 55 55 55 55 55 55 55 55 55 55	9.6 9.6 9.6 9.6 9.6 9.6	1.39 1.39 1.45 1.50 1.91 1.36 2.31 2.03 1.97	22.84 22.91 22.98 23.06 23.33 23.39 24.16 24.49 24.77 25.02	70395 70622 70896 71772 71942 74258 75319 76206	216.08 230.28 255.64 314.83 987.03 192.21 2820 1215 1016 914.01	752.26 749.12 746.39 747.89 744.44 757 760 762	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9
2563.0 2564.0 2565.0 2567.0 2568.0 2569.0 2570.0 2571.0 2572.0	6.1 3.8 3.9 5.9 11.7 14.0	51.6 49.3 51.2 51.3 52.5 46.3 47.4 48.7	5528 577 477 4477 4477	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.84 1.75 1.90 1.92 1.90 1.75 1.45 1.50	25.22 25.38 25.65 25.91 26.17 26.34 26.42 26.50 26.59 26.71	78143 78900 79695 80423 80903 81144 81343 81599	729.39 603.59 953.58 963.72 946.48 621.85 312.45 261.73 332.74 453.46	761.40 762.55 763.74 764.81 763.97 761.35 758.46 756.02	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9
2573.0 2574.0 2575.0 2576.0 2577.0 2578.0 2579.0 2580.0 2581.0 2582.0	7.2 8.4 10.7 12.5 14.6 9.9 3.9	50.7 50.0 50.0 47.8 46.7 50.7 50.7	46 46 46 48 48 48 48 48 5	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.55 1.66 1.60 1.50 1.42 1.39 1.52 1.88	26.81 26.95 27.07 27.16 27.24 27.31 27.41 27.67 27.87 28.07	82617 82948 83207 83415 83611 83899 84626 85195	369.26 507.22 433.17 341.53 292.16 249.55 370.27 928.22 721.27 749.67	750.72 748.93 746.66 744.13 741.40 739.36 740.39 740.29	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9
2583.0 2584.0 2585.0 2586.0 2587.0 2589.0 2590.0 2591.0 2592.0	5.8 2.4 3.8 3.2 2.6 5.3 10.0	49.2 49.7 51.1 50.6 45.8 51.0 51.2 51.3	52 49 47 51 51 51 51 51	9.6 9.6 9.6 9.6 9.6 9.6	1.59 1.75 2.09 2.05 1.85 2.02 2.05 1.58	28.18 28.35 28.80 29.21 29.48 29.79 30.17 30.36 30.46 30.55	86670 87955 89121 89921 90885 92038 92612 92916	382.45 635.04 1655 1506 959.66 1149 1380 688.81 365.20	737.86 743 747 747.90 750 753 752.95 750.95	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9

DEPTH	ROP	жов	RPM	MW	"d"c	HOURS	TURNS	icost	CCOST	PP	FG
2593.0 2594.0 2595.0 2596.0 2597.0 2598.0 2599.0 2600.0 2601.0 2602.0	9.6 5.5 10.5 15.6 2.9 2.6 2.6	51.0 51.8 52.0 52.5 47.2 50.4 50.5 51.1	46 47 48 47 47 47 47 48 48	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.45 1.58 1.79 1.55 1.51 1.37 1.98 2.02 2.03 2.09	30.63 30.73 30.91 31.01 31.10 31.17 31.51 31.89 32.27 32.73	93700 94226	662.43 346.94 347.95 234.34 1249 1387	744.54 744.13 742.13	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 15.9 15.9
2603.0 2604.0 2605.0 2606.0 2607.0 2608.0 2609.0 2610.0 2611.0	2.8 2.7 5.8 10.9 11.2 11.2	51.4 50.9 49.8 50.1 49.5 50.0 49.1 49.8	47 46 47 47 49 48 48 48 48	9.6 9.6 9.6 9.6 9.6 9.6 9.6	2.10 1.99 1.99 2.004 1.55 1.50 1.50	33.19 33.54 33.89 34.26 34.43 34.52 34.62 34.62 34.80 34.89	100677 101664 102687 103731 104235 104498 104766 105022 105303 105548	335.78 339.84	7 56.77	8.4 8.4 8.4 8.4 8.4 8.4	15.9 15.9 15.9 15.9 15.9 16.0 16.0
2613.0 2614.0 2616.0 2617.0 2618.0 2619.0 2620.0 2621.0 2622.0 2623.0	8.2 5.5 2.6 2.5 3.3 12.0 11.0	50.3 49.2 51.2 51.3 50.4 49.5 49.2	50 49 49 49 49 50 49 49	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.62 1.68 1.70 2.06 1.95 1.55 1.55	35.01 35.13 35.49 35.87 36.28 36.59 36.67 36.76 36.95	106257 107334 108468 109655 110554 110804	443.31 664.46 1397 1483 1118 305.35 330.71 356.07	752 755 757 755,01 753,12	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
2624.0 2625.0 2627.0 2627.0 2629.0 2629.0 2630.0 2631.0 2632.0 2633.0	6.5 10.3 9.7 16.7 10.7 10.8 8.9 13.4	48.6 49.3 52.1 50.6 51.5 51.7 51.3	49872372272 5555555555555555555555555555555	9,6 9,6 9,6 9,6 9,6 9,6 9,6	1.54 1.70 1.53 1.61 1.56 1.56 1.56 1.58	37.05 37.21 37.30 37.41 37.47 37.56 37.65 37.65 37.76 37.84 37.92	112355 112631 112954 113142 113435 113724 114077 114312	356.07 377.37 218.11 340.85 338.82	747.03 745.33 743.73 741.45 739.72 738.00 736.60 734.63	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
2634.0 2635.0 2636.0 2637.0 2638.0 2639.0 2640.0 2641.0 2643.0	2.2 3.1 6.1 15.9 3.6 2.6 2.9 2.3	51.8 51.2 51.7 51.7 51.7 51.6 491.7	50 490 500 501 511 512	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.90 2.10 1.99 1.75 1.41 1.94 2.01 2.01 2.10	38.16 38.61 38.94 39.10 39.16 39.44 39.83 40.17 40.61 41.02	116625 117588 118085	889.67 1644 1180 603.59 229.26 1003 1429 1239 1613 1502	737 739 738.53	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
2644.0 2645.0 2646.0 2647.0 2648.0 2649.0 2650.0 2651.0 2652.0 2653.0	3.1 2.7 2.6 3.0 8.9 8.1 9.3 9.7	50.9 49.4 51.1 46.3 48.0 43.2 46.3 47.0 46.8	51 51 52 52 53 54 51 54 54 54	9.6 9.6 9.6 9.6 9.6 9.6	2.15 1.98 2.05 1.99 1.55 1.56 1.54 1.40	41.53 41.85 42.22 42.61 42.94 43.05 43.18 43.28 43.39 43.46	130534 130860 131172	1847 1184 1360 1392 1226 410.85 448.38 392.59 375.34 253.61	759.41 757.97 756.47	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
2654.0 2655.0 2656.0 2657.0 2658.0 2659.0 2660.0 2661.0 2662.0	13.4 6.6 10.1 9.3 7.7 8.7 11.0	47.3 48.2 48.2 49.0 49.4 49.4 49.8 49.8	51 51 51 51 51 51 51 51 51 51	9.6 9.6 9.6 9.6 9.6 9.6	1.52 1.45 1.70 1.55 1.66 1.64 1.51	43.55 43.62 43.78 43.87 43.98 44.11 44.23 44.32 44.40 44.47		553.89 362.16	750.26 748.77 747.40 746.35 745.11 743.54 741.89	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
2664.0 2665.0 2666.0 2667.0 2668.0 2669.0 2670.0 2671.0 2672.0	5.1 6.9 5.0 6.1 9.8 11.9 10.9	49,2 51,6 49,7 50,8 49,4 48,0 49,1 49,8 48,4	51 51 51 51 51 51 51 51 54 9	9.6 9.6 9.6 9.6 9.6 9.6	1.53 1.83 1.70 1.82 1.74 1.56 1.50 1.54	44.56 44.79 45.12 45.34 45.45 45.54 45.7	135338 135781 136393 136897 137208	532.58 735.47 602.58 373.32 307.38 335.78 315.49	738.50 737.73 737.72 737.22 735.89 734.32 732.86	8.4 8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
2674.0 2675.0 2676.0 2677.0 2678.0 2679.0 2680.0 2681.0 2683.0	12.2 17.0 17.6 11.4 11.5 12.2 11.7	49.7 50.4 49.5 51.4 49.5 50.7 49.3	50 50 50 50 50 50 50 49	9.6 9.6 9.6 9.6 9.6 9.6	1.32 1.50 1.38 1.54 1.52 1.50 1.49	45.76 45.90 45.96 46.05 46.13 46.33 46.37 46.45	138618 138795 138964 139227 139490 139739 139798 140185	182.60 300.28 215.06 206.95 319.55 317.52 300.28 313.46 233.32 292.50	726.16 724.33 722.48 721.04 719.61 718.13 716.71 715.01	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
2684.0 2685.0 2687.0 2687.0 2688.0 2689.0 2690.0 2691.0 2693.0	4.8 8.0 11.1 12.2 7.9 5.8 6.9 2.7	49.9 49.0 49.3 48.8 50.1 50.5 51.2 50.6 49.1	50 50 50 50 50 50	9.6 9.6 9.6 9.6 9.6 9.6	1.58 1.64 1.50 1.50 1.66 1.70 2.02	46.55 46.76 46.88 46.97 47.06 47.18 47.35 47.50 47.86 48.01	141366 141741 142010 142259 142641 143155 143589	758.80 457.51 329.69 299.26 463.60	708.92 708.08 707.80 707.18 709	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0

in right of the man in the second of the sec

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	р р	FG
2694.0 2695.0 2696.0 2697.0 2698.0 2700.0 2701.0 2702.0 2703.0	5.5 10.5 8.9 5.7 10.7 9.0 12.0	47.4 49.1 50.4 48.7 48.7 51.3 48.6 48.6	49 49 49 49 49 49 49 49 48	9.6 9.6 9.6 9.6 9.6 9.6	1.39 1.49 1.73 1.59 1.59 1.57 1.62 1.40	48.08 48.16 48.34 48.44 48.55 48.72 48.82 48.93 49.01 49.08	146096 146374 146705 147220 147495 147823 148056	304.33 659.39 346.60 409.84	699.80	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.0 16.0 16.0
2704.0 2705.0 2706.0 2707.0 2708.0 2709.0 2710.0 2711.0 2712.0 2713.0	10.6 6.8 1.7 3.4 8.7 8.6 16.3	47.0 47.8 51.0 52.3 50.5 49.2 47.2 48.5 48.1	50 51 51 49 49 49 49 49 49	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.55 1.52 1.72 2.22 1.94 1.50 1.58 1.38	49.19 49.28 49.43 50.01 50.30 50.42 50.54 50.60 50.68 50.78	152625 152804 153045	383.46 344.91 534.61 2131 1071 417.95 424.04 224.19 313.46 344.91	696.18 695.66 700 701 700.58 699.69 698.18 696.96	8.4 8.4 8.4 8.4 8.4 8.4	16.0 16.0 16.0 16.0 16.1 16.1 16.1
2714.0 2715.0 2716.0 2717.0 2718.0 2719.0	1.9 2.4 1.8 1.9	51.6 52.8 44.2 51.1 50.8 51.4	49 49 53 53 53 53	9.6 9.6 9.6 9.6	2.10 2.18 2.00 2.19 2.17 2.07	51.22 51.75 52.17 52.71 53.24 53.62	154641 156199 157509 159231 160893 162095	1633 1929 1516 1991 1917 1392	699 703 705 709 713 715	8.4 8.4 8.4 8.4	16.1 16.1 16.1 16.1 16.1
BIT NUMBE HTC J22 COST TOTAL HOU	857	8 20,00 4,45	S	ADC (IZE RIP 1 OTAL		517 12.250 7.5 13405	NOZ BIT	TERVAL ZZLES T RUN VDITION		.0- 27 16 1 B1 G0	6 18 18.0
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	icost	CCOST	pр	FG
2720.0 2721.0 2722.0 2723.0	3.0 2.6	26.2 38.3 39.2 43.9	34 52 52 53	9.6 9.6	1.33 1.84 1.90 1.88	0.17 0.50 0.89 1.18	343 1381 2601 3537	611 1209 1424 1074	37616 19413 13417 10331	8.4 8.4	16.1 16.1 16.1
2724.0 2725.0 2726.0 2727.0 2728.0 2729.0 2730.0 2731.0 2732.0 2733.0	3.4 3.6 3.2 3.8 4.4 3.7	45.4 41.9 46.4 45.4 47.4 47.4 45.4	48822222349 55555554	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1,94 1,83 1,91 1,91 1,87 1,86 1,84 1,89	1.54 1.84 2.11 2.41 2.72 2.98 3.23 3.46 3.73 4.05	4583 5446 6309 7222 8187 8998 9772 10498 11373 12333	1317 1084 1003 1045 1139 952 907 836 987 1181	8528 7288 6390 5724 5215 4788 4436 4136 3893 3700	8.4 8.4 8.4 8.4 8.4 8.4	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1

• :

DEPT	тн кор	МОВ	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	рþ	FG
2734. 2735. 2736. 2737.	0 13.7 0 19.9	43.5 41.0 44.6 44.5	50 49 49 33	9.6 9.6 9.6 9.6	1.36 1.27	4.22 4.29 4.34 4.45	12828 13044 13192 13405	609 267 184 396	3494 3292 3109 2958	8.4 16 8.4 16 8.4 16 8.4 16) . 1) . 1
BIT NUCHRIS	RC4	8 0.00 2.71	S	ADC CO IZE RIP T OTAL	IME	4 9.875 7.8 19526	NOZ: BIT	ERVAL ZLES RUN DITION		0- 2755 15 15 18 B0 G0.0	16 3.0
DEPT	TH ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
2737 2737 2737 2737 2737 2738 2738	.4 18.9 .6 9.7 .8 13.6 .0 37.9	16.1 16.4 14.9 12.4 11.8 13.1	74 82 90 95 96 96	9,6 9,6 9,6 9,6 9,6 9,6	1.17 1.34 1.21 0.95	0.01 0.02 0.04 0.06 0.06	45 96 208 292 322 380	183 193 375 269 96 183	142611 71402 47726 35862 28709 23954	8.4 16 8.4 16 8.4 16 8.4 16 8.4 16	5.1 5.1 5.1
2738 2738 2738 2739 2739 2739 2739 2739 2740 2740	.6 10.1 .8 8.7 .0 11.6 .2 7.3 .4 10.9 .6 12.6 .8 7.1	13.0 13.1 13.7 12.3 13.7 14.3 16.4 18.6 21.0	111 112 112 112	9.6 9.6 9.6	1.30 1.34 1.30 1.40 1.34	0.09 0.11 0.13 0.15 0.18 0.20 0.21 0.24 0.26 0.31	492 604 735 841 1023 1147 1253 1443 1584 1870	360 360 421 314 502 335 289 517 385 796	20584 18056 16096 14518 13244 12168 11254 10488 9814 9250	8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16	5,1 5,1 5,1 5,1 5,1 5,1
2740 2740 2740 2741 2741 2741 2741 2741 2742 2742	.6 2.0 .8 1.1 .0 15.0 .2 24.0 .4 4.7 .6 5.4 .8 4.8	20.1 19.5 18.7 21.7 22.6 22.6 23.1 24.0 25.3	119 131 111 110 110 126 128 128	9.6 9.6 9.6 9.6 9.6 9.6	1.87 1.96 2.13 1.36 1.28 1.77 1.76 1.82 1.98	0.38 0.48 0.67 0.68 0.69 0.73 0.77 0.81 0.88	2368 3090 4553 4641 4696 4978 5256 5577 6097 6506	1415 1851 3388 243 152 781 675 761 1238 1014	8790 8404 8140 7745 7384 7084 6805 6553 6340 6136	8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16	5.1 5.1 5.1 5.1 5.1 5.1
2742 2742 2742 2743 2743 2743 2743 2744 2744	.6 10.0 .8 6.5 .0 8.3 .2 5.4 .4 5.3 .6 13.3 .8 26.7 .0 14.4	24.7 25.6 24.6 24.9 24.4 22.7 23.2 25.2	121 117 117 119 128 149 149	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.88 1.62 1.73 1.66 1.81 1.52 1.35 1.59	0.99 1.01 1.04 1.06 1.10 1.14 1.15 1.16 1.17	6858 7003 7218 7387 7653 7943 8078 8145 8267 8396	893 365 558 441 680 274 137 254	5941 5742 5564 5393 5249 4952 4811 4658	8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16 8.4 16	5.1 5.1 5.1 5.1 5.1 5.1

and the second second

	DEPTH	R 0 b	MOB	RPM	Mid	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2744.4	10.1	24.2	145	9.6	1.65	1,21	8567	360	4445	8.4	16.1
	2744.6	25.7	24.1	140	9.6	1.36	1.21	8633	142	4331		16.1
_	2744.8	25.7	24.7	136	9.6	1.37	1.22	8696	142	4224		16.1
_	2745.0	13.8	24.7	133	9.6	1.54	1.24	8812	264	4125		16.1
	2745.2	17.1	23.9	139	9.6	1.48	1.25	8909	213	4030	8.4	16.1
	2745.4	10.0	24.6	137	9.6	1,65	1.27	9074	365	3942	8.4	16.1
	2745.6	28.8	24.4	132	9.6	1,32	1.27	9129	127	3854	8.4	16.1
	2745.8	24.0	24.0	129	9.6	1.36	1.28	9193	152	3769		16.1
	2746.0		24.8		9.6	1.46	1.29	9279	208	3690		16.1
_	2746.2	11.6	23.8	124	9.6	1.56	1.31	9407	314	3617	8.4	16.1
I	2746.4	25.7	21.8	123	9.6	1.29	1.32	9464	142	3543	8.4	16.1
_	2746.6	22.5	22.0	123	9.6	1.33	1.33	9530	162	3473	8.4	16.1
	2746.8		25.9	127		1.77	1.36	9760	553	3413	8.4	16.1
	2747.0		25.8	132		1.91	1.40	10122	837	3361	8.4	16.1
_	2747.2		25,5			1.61	1,42	10259	309	3302	8.4	16.1
	2747.4		25.7			1.83	1.46	10541	664	3251	8.4	16.1
	2747.6			125		1.58	1.48	10671	314	3195		16.1
	2747.8		24.1	123	9.6	1.46	1.49	10761	223	3140	8.4	16.1
	2748.0		23.9	120		1.75	1.58	11006	624	3095	8.4	16.1
	2748.2	1.9	24.4	114	9.6	2.09	1.63	11739	1958	3074	8.4	16.1
	2748.4			123		1.70	1.66	11971	57 3	3031	8.4	16.1
_	2748.6	12.9	23.3	140		1.55	1.68	12101	284	2983	8.4	16.1
	2748.8		23.3	138		1,94	1.73	12597	1070	2951	8.4	16.1
	2749.0		20.5	119		1.56	1.76	12750	416	2908	8.4	16.1
	2749.2		18.5	119		1,32	1.77	12827	198	2864	8,4	16.1
	2749.4		16.9			1,45	1.79	12969	360	2824	8,4	16.1
	2749.6			124		1.29	1.80	13058	218	2782	8.4	16.1
	2749.8		15.6	133		1,34	1.81	13164	243	2743		
	2750.0			132		1.16	1.82	13215	117	2702		16.1
	2750.2	15.7	16.4	131	9.6	1.35	1.83	13315	233	2665	8.4	16.1
	2750.4	6.7	17.5	125	9.6	1.59	1.86	13538	543	2633	8.4	16.1
	2750.6	3.4	16.9	123	9.6	1,75	1.92	13972	1075	2610	8.4	16.1
	2750.8	6.6	16.7	119	9.6	1,56	1.95	14189	553	2580	8.4	16.1
	2751.0	10.7	16.5	113	9.6	1.41	1.97	14315	340	2548		16.1
	2751.2	1.6	22.6	105	9.6	2.07	2.10	15115	2313	2545	8.4	16.1
	2751.4	19.5	24.3	131	9.6	1,43	2.11	15196	188	2512	8.4	
	2751.6	21.8	23.2	133	9.6	1.38	2.12	15270	167	2480	8.4	16.1
-	2751.8	17.6	23.8	129	9.6	1,45	2.13	15358	208	2450	8.4	16.1
	2752.0		24.5		9.6		2.13	15418	142	2419	8.4	16.1
	2752.2	15.3	24.7	129	9.6	1.50	2.15	15518	238	2390	8.4	16.1
	2752.4	15.3			9.6		2.16	15614	238	2362	8.4	16.1
	2752.6		24.5		9.6		2.17	15715	249	2335	8.4	
	2752.8	22.5			9.6		2.18	15781	162	5308	8.4	16.1
	2753.0		24.5		9.6		2.20	15913	335	2283	8.4	16.1
	2753.2	12.6			9.6		2.22	16013	289	2258	8.4	16.1
-	2753.4		24.3		9.6		2.27	16356	959	2242	8.4	16.1
-	2753.6	8.3			9,6		2,29	16510	441	2221	8.4	16.1
	2753.8	1.9	20.3		9.6		2.40	17353	1953	2218	8.4	16.1
	2754.0	5.5	19.6	126	9.6	1.69	2.44	17626	659	2199	8.4	16.1
	2754.2	11.4	19.2	129	9.6	1.49	2.45	17762	320	2177	8.4	16.1
•												

....

DEPT	н гор	мов	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	PP	FG
2754. 2754. 2755.	6 4.8	21.3 22.8 22.9	127	9.6	1.91 1.81 2.33	2,53 2,57 3,13	18285 18603 22351	1339 761 5153	2168 2152 2218	8,4	16.1 16.1 16.1
BIT NU HTC J2 COST TOTAL	2	9 0.00 14.24	S	ADC (IZE RIP OTAL		517 12.250 7.8 40290	NOZ BIT	ERVAL ZLES RUN DITION			6 18 66.0
DEPT	H ROP	МОВ	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2756. 2757. 2758. 2759. 2760. 2761. 2762.	0 8.6 0 4.0 0 7.5 0 11.7 0 6.1	16.5 26.7 35.7 38.2 41.5 43.9 42.6	74 55 55 55 55 55 55	9.6 9.6 9.6 9.6 9.6	1.31 1.38 1.72 1.56 1.46 1.69	4,58 4,69 4,94 5,07 5,16 5,38	13967 14368 15184 15628 15910 16435 16943	460 424 907 490 312 598 565	2379 2281 2216 2137 2050 1997 1940	8.4 8.4 8.4 8.4	16.1 16.1 16.1 16.1 16.1 16.1
2763. 2764. 2765. 2766. 2767. 2768. 2769. 2770. 2771. 2772.	0 8.6 0 7.9 0 10.3 0 10.9 0 11.1 0 10.7 0 8.7 0 7.6	41.4 41.2 42.4 42.3 43.3 43.1 44.2 43.3	54 55 55 54 53	9,6 9,6 9,6 9,6 9,6 9,6	1.45 1.59 1.59 1.449 1.59 1.50 1.50	5.56 5.68 5.90 5.99 6.18 6.29 6.42 6.52	17219 17601 18015 18331 18633 18927 19233 19604 20032 20343	306 426 460 354 334 328 342 480 347	1877 1823 1774 1725 1679 1635 1560 1528 1494	8.4 8.4 8.4 8.4 8.4 8.4	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782	0 8.5 0 9.2 0 6.5 0 7.3 0 7.7 0 2.3	41.4 42.9 43.9 42.4 42.4 41.0 51.5	54 54 55 55 55 55 55 55 57	9.6 9.6 9.6 9.6 9.6 9.6	1.46 1.57 1.53 1.66 1.60 1.98 2.09 2.04	6.61 6.72 6.83 6.99 7.12 7.25 7.68 8.27 8.70 9.07	20433 21016 21369 21863 22308 22733 24117 26041 27330 28260	325 429 398 564 497 477 1560 2133 1587 1351	1462 1434 1406 1385 1363 1341 1346 1364 1370	8.4 8.4 8.4 8.4 8.4 8.4	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792	.0 2.3 .0 2.2 .0 3.1 .0 3.1 .0 6.4 .0 11.0 .0 12.5	52.0 52.4 52.3 49.2 50.0 49.7 46.3 49.4	43 43 43 43 43 43 39	9,6 9,6 9,6 9,6 9,6 9,6	2.02 2.06 2.08 1.92 1.66 1.44 1.40 1.93	9.47 9.91 10.38 10.70 11.02 11.18 11.27 11.35 11.70 11.94	29274 30410 31604 32444 33259 33656 33889 34076 34955 35556	1460 1619 1695 1194 1161 568 332 292 1277 874	1371 1376 1383 1379 1375 1359 1319 1319	8.4 8.4 8.4 8.4 8.4 8.4	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1

•												
	DEPTH	ROP	MOB	RPM	МЫ	"d"c	HOURS	TURNS	LCOST	CCOST	PP	FG
-	2793.0	4.1	50.3	42	9.6	1.82	12.18	36175	701	1303	8.4	16.1
	2794.0	6.3	48.4	42	9.6	1.65	12.34	36571	580	1291	8.4	16.1
_	2795.0	11.6		49	9.6	1.42	12.43	36788	314	1274	8.4	16.1
	2796.0		43.6	42		1,42	12.52	37021	341	1258	8.4	16.1
	2797.0		49.8	41		1,40	12.60	37218	293	1242	8.4	16.1
	2798.0		50.3	41		1.49	12,70	37455	355	1227	8.4	16.1
	2799.0		47.6	49		1,81	12.93	38122	825	1221	8.4	16.1
	2800.0		51.5	52		2.05	13.30	39272	1351	1223	8.4	16.1
	2801.0		50.6	44		1.97	13.65	40203	1285	1224	8.4	16.1
_	2802.0		49.9	44		1.97	14.01	41161	1313	1225	8.4	16.1
_	7U U C 1 U	for 8 lef	17,7	• •								
	2803.0	77 77	49.3	49	9.6	1.89	14.28	41949	982	1222	8.4	16.1
	2804.0	3.1	49.5	49		1.97	14.60	42917	1194	1221		16.1
	2805.0	3.1	49.0	50		1,96	14,93	43894	1196	1221	8.4	16.1
	2806.0		44.7	49		1.40	15.00	44107	264	1207		16.1
- 5	2807.0	11.5		49		1.51	15.09	44362	317	1194	8.4	16.1
	2808.0		49.7	42		1.24	15.14	44481	172	1180		16.1
	2809.0		48.2	43		1.68	15.31	44919	618	1172	8.4	16.1
	2810.0	7.8		43		1.59	15.44	45251	471	1162	8.4	16.1
_	2811.0		49.0	43		1.63	15.58	45625	531	1154	8.4	16.2
	2812.0	8.7		43		1.51	15.70	45921	421	1144		16.2
	mo in i	() 1 7	-71011	T S.2	7 7 5.0	7 7 (1 %	3 40 1 2 5					
	2813.0	9 9	50.6	43	9.6	1.95	16.04	46807	1260	1146	8.4	16.2
	2814.0		50.4	43		2.00	16.43	47822	1439	1149	8,4	16.2
	2815.0		50.0	43		1.78	16.65	48383	798	1145	8.4	16.2
	2816.0	3.1		43		1.92	16.97	49197	1163	1145	8.4	16.2
	2817.0	2.6		43	9.6		17.35	50176	1393	1148		16.2
_	2818.0	2.8		43		1,97	17,70	51076	1283	1150	8.4	16.2
	2819.0		48.5	46		1.92	18.02	51950	1143	1150		16.2
	2820.0	3.4		43		1.82	18.31	52725	1084	1149		16.2
	2821.0		48.6	43		1.96	18.69	53695	1375	1152		16.2
_	COMMAD O	f.u. 1 /	410/11/2	2.44								

• • • • • • • •

•

•

anga ing saya saya saya dangan kengapi saya kengapi saya sa saya saya saya sa saya sa saya saya sa saya sa say

(d), COMPUTER DATA LISTING : LIST B

and the second control of the second control

INTERVAL 10m averages.	
DEPTH Well depth, in metres.	
ROP Rate of penetration, in metres per hour.	
BIT RUN Depth interval drilled by the bit, in metres.	
HOURS Cumulative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours.	
TURNS Comulative bit turns. The number of turns made by the bit, while actually 'on bottom'.	
TOTAL COST Cumulative bit cost, in A dollars.	
ICOST Incremental cost per metre, calculated from the drilling time, in A dollars.	
CCOST Cumulative cost per metre, calculated from the drilling time, in A dollars.	
IC ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, (and therefore uneconomic), this should change	

from negative to positive.

BIT NUMBER HTC OSC3AJ COST TOTAL HOURS	0.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	26,000 1.2	NOZZLES BIT RUN	61.0- 197.0 20 20 20 136.0 T1 B1 G0.000
DEPTH	ROP BIT R	UN HOURS	TURNS T	OTAL COST	icost ccost i-c
70.0 80.0 90.0	14.6 9 19.6 19 16.7 29	.0 1.13	2687 6051 9962	8495.77 1	86.11 447.15 - 19.24 368.56 -
100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0	30.6 39 44.8 49 52.8 59 49.6 69 69.9 79 42.7 89 55.0 99 62.2 109 52.4 119	.0 2.28 .0 2.47 .0 2.67 .0 2.81 .0 3.04 .0 3.23	11922 13199 14426 15747 16637 18079 19312 20333 21552	12696.16 13388.28 14125.30 14647.64 15502.14 16166.60 16753.88	19.31 304.65 - 81.49 259.11 - 69.21 226.92 - 73.70 204.71 - 52.23 185.41 - 85.45 174.18 - 66.45 163.30 - 58.73 153.71 - 69.72 146.65 -
190.0	57.6 129		22670		63.42 140.20 -
_	4978.00	IADC CODF SIZE TRIP TIME TOTAL TURNS	17.500 2.0	NOZZLES BIT RUN	197.0- 797.0 20 20 20 600.0 T1 B1 G0.000
DEPTH	ROP BIT R	UN HOURS	TURNS T	OTAL COST	TCOST CCOST I-C
220.0 230.0 240.0 250.0 260.0 270.0		.0 0.29 .0 0.32 .0 0.36 .0 0.40	187 882 1490 2179 2586 2893 3272 3624 4034	12886.80 13166.09 13331.52 13455.95 13609.82 13752.34	25 4119 28.20 972.29 24.70 560.30 27.93 398.97 16.54 310.04 12.44 253.89 15.39 216.03 14.25 188.39 16.67 167.70
300.0 310.0 320.0 330.0 340.0 350.0 360.0	232.9 93 158.9 103 140.3 113 127.9 123 139.2 133 181.4 143 99.0 153 117.5 163 160.2 173 426.6 183	.0 0.55 .0 0.63 .0 0.70 .0 0.78 .0 0.83 .0 0.93 .0 1.02	4421 4987 5629 6332 6979 7475 8384 9150 9712	14305,63 14566,01 14851,53 15113,84 15315,20 15684,14 15994,90	15.68 151.35 - 22.98 138.89 - 26.04 128.90 - 28.55 120.74 - 26.23 113.64 - 20.14 107.10 - 36.89 102.51 - 31.08 98.13 - 22.80 93.77 - 8.56 89.12 -

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-C
390.0	169.9	193.0	1.16	10453	16523.43	21.49	85.61	
400.0	304.0	203.0	1.19	10749	16643.56	12.01	81.99	***
410.0	244.9	213.0	1.24	11116	16792.71	14.92	78.84	
420.0	284.6	223.0	1.27	11432	16921.01	12.83	75.88	
430.0	164.0	233.0	1.33	11981	17143.68	22.27	73.58	
440.0	171.6	243.0	1.39	12506	17356.50	21,28	71,43	
450.0	151.9	253.0	1,46	13098	17596,93	24.04	69,55	••••
460.0	224.0	263.0	1.50	13500	17759,98	16.31	67.53	****
470.0	195.1	273.0	1.55	13961	17947.17	18.72	65.74	****
480.0	151.9	283,0	1.62	14554	18187.60	24.04	64.27	****
490.0	139.3	293.0	1.69	15200	18449.83	26.22	62.97	****
500.0	112.5	303.0	1.78	16000	18774.45	32.46	61.96	***
510.0	135.6	313.0	1.85	16664	19043.84	26.94	60.84	
520.0	92.1	323.0	1.96	17641	19440.47	39.66	60.19	****
530.0	137.2	333.0	2.03	18297	19706,66	26.62	59,18	***
540.0	105.9	343.0	2.13	19147	20051.58	34.49	58.46	***
550.0	120.0	353.0	2.21	19897	20355.91	30.43	57,67	•••
560.0	83.4	363.0	2.33	20977	20793,87	43.80	57.28	***
570.0	67.3	373.0	2.48	22314	21336,60	54,27	57,20	
580.0	66.1	383.0	2.63	23675	21888,75	55.21	57.15	 -
			ATT. 120 1200	AM 1887 A 1887 AL				
590.0	46.0	393.0	2.85	25630	22682.04	79.33	57.72	-Ą.
600.0	48.6	403.0	3.05	27483	23434.00	75.20	58.15	4
610.0	29.6	413.0	3.39	30528	24669,59	123.56	59.73	4.
620.0	32.1	423.0	3.70	33336	25808.82	113.92	61.01	-∳-
630.0	37.0	433.0	3.97	35768	26795.97	98.71	61.88	4.
640.0	29.5	443.0	4.31	38823	28035.52	123.97	63.29	-∳-
650. 0	21.6	453,0	4.78	42993	29727.61	169.21	65,62	.4-
660.0	25.6	463.0	5.17	46516	31156.97	142.94	67.29	.4.
670.0	28.4	473.0	5.52	49 679	32440.75	128.38	68.59	-∳∙
680. 0	19.9	483.0	6.02	54204	34276.89	183.61	70.97	+
690.0	20.8	493.0	6.50	58529	36031.88	175.50	73.09	4.
700.0	21.3	503.0	6.97	62763	37749.84	171.80	75.05	
710.0	20.6	513.0	7.46	67128	395 21,06	177.12	77,04	+
720.0	19.0	523.0	7.99	71866	41443.43	192.24	79.24	+
730.0	18.7	533.0	8,52	76681	43397,25	195.38	81.42	- 4 ·
740.0	15.0	543.0	9.19	82668	45826,85	242.96	84.40	4-
750.0	19.3	553.0	9.70	87323	47715,74	188.89	86.29	+
760.0	21.5	563.0	10.17	91506	49412.91	169.72	87.77	-ţ-
770.0	14.8	573.0	10.84	97581	51878.13	246.52	90.54	4.
780.0	14.5	583.0	11.53	103787	54396.29	251.82	93.30	+
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠ . د د	gripo part anns yn	apri ma	a	gan y post post at a	, and green , and , and , and	عدد يسر	_
790.0	14.1	593.0	12.24	110177	56989.46	259.32	96.10	+
797.0	15.1	600.0	12.70	114343	58680.00	241.51	97.80	-4∙

•

.

797.0- 1165.4 3 IADC CODE 114 INTERVAL BIT NUMBER 12,250 NOZZLES 18 18 18 SIZE HTC X3A TRIP TIME 3.0 BIT RUN 368,4 COST 2445,00 CONDITION TOTAL TURNS 72677 T3 B3 G0,000 TOTAL HOURS 10.54 TCOST CCOST I-C DEPTH ROP BIT RUN HOURS TURNS TOTAL COST 101 36.0 0.08 441 13705.00 4568 800.0 3.0 •••• 1576 1103 ٠. 57.1 13.0 0.26 14344.10 64 810.0 15094.78 75,07 656.29 820.0 23.0 0.46 3007 48.6 830.0 40.7 33.0 0.71 4864 15991,55 89.68 484,59 0.90 6380 69.74 388.12 52.4 43.0 16688.78 840.0 1,07 7814 17314.90 62,59 326,70 59.3 53.0 850.0 1.72 17871.83 9237 55.69 283,68 63.0 860.0 65.6 68.22 1,41 10644 18554.04 254,16 870.0 53.5 73.0 44.0 83.0 1.64 11816 19383,86 82,98 233,54 880.0 93.0 1,81 12757 20011,80 62.79 215,18 890.0 58,2 13707 20570.76 55,90 199,72 900.0 65,3 103.0 1,96 113.0 2.12 14692 21157.61 58.69 187.24 62,2 910.0 2,28 15619 56.90 176.64 64.2 123.0 21726.65 920.0 16595 22310.97 2.44 58,43 167,75 930.0 62.5 333.0 2.65 23064.71 75.37 161,29 48.5 143.0 18115 940.0 103.13 2.93 24095,96 157,49 153.0 20136 950.0 35,4 153,18 ••• 3,17 21855 24967.53 87,16 960.0 41,9 163.0 3,38 23216 25737,31 76,98 .148.77 970.0 47.4 173.0 ----3,54 24135 26312,50 57,52 143.78 63.5 183.0 980.0 3.75 78,42 140.40 ,... 193.0 25724 27096.66 990.0 46.6 27840.25 74.36 **** 137,14 1000.0 49.1 203.0 3,95 26952 **** 28753,25 4.20 28518 91.30 134.99 40.0 213.0 1010.0 30336 29808.27 105.50 133.67 223.0 4,49 1020.0 34.6 233.0 4,78 32051 30846.56 103.83 132.39 35.2 1030.0 33948 34.3 5,07 31912.59 106,60 131,33 243.0 1040.0 253.0 5.39 36076 33080.99 116.84 130,75 31.3 1050.0 4. 6.47 43545 37015.51 393,45 140,74 9.3 263.0 1060.0 25.1 140,93 1070.0 273.0 6.87 46345 38473,16 145,76 0,889 89.07 139,09 41.0 7.11 48024 39363.84 1080.0 90.17 137,43 40.5 293.0 7.36 49678 40265,53 1090.0 7.59 51372 41124.77 85,92 135.73 42.5 303.0 1100.0 7.99 54010 42581.51 145,67 136,04 25.1 1110.0 313.0 124,47 8.33 56507 43826.23 135.68 29.3 323.0 1120.0 8,85 60444 45733.73 190,75 137.34 ٠4. 19.1 333.0 1130.0 9.28 63829 47276.78 154.30 137,83 + 23.7 343.0 1140.0 353.0 ♣. 14,9 9.95 67663 49732.67 245,60 140,89 1150.0 22.9 4. 363.0 10.39 71383 51327,37 159.47 141.40 1160.0 368.4 34.2 10.54 72677 51903.58 106.70 140,89 1165.4

BIT NUMBER CHRIS RC44 COST TOTAL HOURS	3 0.00 0.31	IADC COI SIZE TRIP TIM TOTAL TU	9,87 15 4.	5 NOZZLES 5 BIT RUN		7.4- 117 15 15 1 1 B0 G0.	14
DEPTH	ROP BIT	RUN HOU!	RS TURNS	TOTAL COST	ICOST	CCOST	I-C
1170.0 1175.5	27.2 40.3 1		17 517 31 1029		134 91	3707 1738	****
BIT NUMBER HTC J22 COST TOTAL HOURS	4 8520.00 33.91	IADC COI SIZE TRIP TI TOTAL TO	12.25 40 4.	0 NOZZLES 5 BIT RUN		5.5- 178 18 18 61 8 86 G0	16 3.5
DEPTH	ROP BIT	RUN HOUI	RS TURNS	TOTAL COST	ICOST	ccost	1-c
1180.0	27.2	4.5 0.3	17 449	25557.85	134	5680	****
1190.0 1200.0 1210.0 1220.0 1230.0 1240.0 1250.0 1260.0 1280.0	61.2 2 37.3 3 12.8 4 25.5 5 42.6 6 29.1 7 27.6 6 34.3 9	4.5 0.3 4.5 0.3 4.5 0.3 4.5 1.3 4.5 2.3 4.5 2.3 4.5 2.3 4.5 2.3 4.5 3.3	50 1993 77 3740 55 9128 74 11810 18 13219 52 15128 38 17505 18 19003 04 23471	30620.94 2 32052.32 3 32909.68 34165.39 3 35486.79 3 36550.31 3	64 60 97.79 285.16 143.14 85.74 125.57 132.14 106.35	1807 1094 804.91 688.11 588.12 510.23 458.60 419.96 386.78 379.88	100 100 100 100 100 100 100 100 100 100
1290.0 1300.0 1310.0 1320.0 1330.0 1340.0 1350.0 1360.0 1370.0	29.1 12 27.7 13 27.0 14 25.0 15 29.8 16 19.7 17 16.1 18 15.5 19	4.5 4.6 4.5 5.3 4.5 5.4 54.5 6.4 54.5 6.4 64.5 6.4 64.5 7.3 64.5 8.7 64.5 8.7	26 27789 32 29153 69 30657 09 32222 42 33654 23 35696 55 38202 20 40591	43051.89 : 44368.64 : 45722.92 : 47183.72 : 48410.18 : 50260.53 : 52534.19 : 254890.24	210.09 125.39 131.67 135.43 146.08 122.65 185.03 227.37 235.60	365.05 345.80 329.88 316.42 305.40 294.29 288.03 284.74 282.21 278.25	
1390.0 1400.0 1410.0 1420.0 1420.0 1430.0 1440.0 1450.0 1460.0	17.9 22 18.4 23 14.7 24 14.5 25 11.9 26 12.6 27 23.4 28 34.8 29	4.5 9.3 4.5 9.6 34.5 10.4 34.5 11.3 34.5 12.6 34.5 13.6 34.5 13.6 34.5 14.3	39 47384 43 49660 11 52224 30 54943 64 57952 44 60924 87 62303 16 63246	61064.15 2 63048.40 55528.04 2 68054.68 2 71129.10 74036.49 2 75599.75 76649.56	211.61 204.51 198.43 247.96 252.66 307.44 290.74 156.33 104.98	275.15 272.00 268.86 268.01 267.41 268.92 269.71 265.73 260.27 258.98	++

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-0
1490.0	12.8	314,5	15.54	67503	81719.75	286.07	259,84	4
1500.0	14.9	324.5	16.21	70144	84169.63	244.99	259,38	***
1510.0	19.1	334.5	16.74	71582	86077.80	190.82	257.33	
_ 1520.0	12.7	344.5	17,53	73643	88963.90	288,61	258.24	4.
1530.0	13.0	354.5	18.30	77319	91772.90	280.90	258.88	4
1540.0	10.2	364.5	19.27	82003	95336.64	356.37	261,55	4.
1550.0	28.8	374.5	19.62	83670	96604,69	126.81	257.96	****
1560.0	22.4	384.5	20.07	85811	98233,89	162.92	255.48	im
1570.0	28.5	394.5	20.42	87496	99516.15	128.23	252.26	
1580.0	27.0	404.5	20.79	88949	100867.39	135,12	249,36	
1590.0	31.6	414.5	21.10	90090	102024.87	115.75	246,14	
1600.0	25.4	424.5	21.50	91508	103463.35	143.85	243.73	
1610.0	13.4	434.5	22.24	94186	106180.04	271.67	244.37	- 4-
1620.0	30.8	444.5	22.57	95355	107365.92	118.59	241.54	
1630.0	29.6	454.5	25.20	96573	108601.51	123.56	238.95	***-
_ 1640.0	18.6	464.5	23.44	98541	110567.36	196.58	238.04	***
1650.0	25.2	474.5	23.84	100490	112014.98	144.76	236.07	****
1660.0	16.9	484.5	24.43	102699	114175.74	216,08	235.66	****
1670.0	11.5	494.5	25.30	105909	117340,81	316.51	237.29	·\$.
1680.0	13.4	504.5	26.05	108913	120074.20	273,34	238.01	- ‡ .
1690.0	13.5	514.5	26.79	111614	122775.19	270.10	238,63	-4.
1700.0	16.0	524.5	27.41	114088	125052.62	227.74	238.42	****
1710.0	13.4	534.5	28.15	116942	127769.30	271.67	239.04	-4-
1720.0	16.9	544.5	28,74	119277	129929.06	215,98	238.62	
1730.0	15.0	554.5	29.41	121894	132361.69	243,26	238.70	-†-
1740.0	14.1	564.5	30.12	124718	134953.60	259,19	239,07	
1750.0	15.9	574.5	30.75	127282	137251.32	229.77	238.91	****
1760.0	14,5	584.5	31.44	129978	139770.92	251.96	239.13	٠4.
1770.0	12.3		32.26	133196	142750.68	297,98	240.12	+
1780.0	12.7	604.5	33.04	136285	145627.65	287.70	240,91	+
1789.0	10.8	613.5	33.88	139548	148668.95	337.92	242.33	-\$·
BIT NUMBER			DC CODE	517			9.0- 202	
HTC J22	ever eve	SI on Th		12.250			16 16	32. 0
COST	8520		IP TIME	6.3 59491			2 B3 G0.	
TOTAL HOURS	16	.95 TO	TAL TURN	5 57471	CONDITI	UK I	a po tou.	i karu
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	X-C
1790.0	16.1	1,0	0,06	251	31754.16	227	31754	****
1800.0	14.1	11.0	0.77	2946	34345.05	259	3122	
1810.0	14.6	21.0	1.46	5589	36841.60	250	1754	****
1820.0	10.4	0, 17,	2.42	9460	40362.20	352	1302	
1830.0	16.1	41.0	3.04	12230	42635.57	227	1040	•
1840.0	15.9	51.0	3.67	14692	44929.23	229.37	880.97	
1850.0	15.5	61.0	4.32	16747	47286.80	235.76	775.19	
1860.0	15.9	71.0	4,94	18752	49578,43	229.16	698.29	****
1870.0	15.4	0,18	5.59	20814	51946.48	236.81	641.31	****

the state of the s

attender of the second and the secon

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	icost	CCOST	1-C
1880.0 1890.0 1900.0 1910.0 1920.0 1930.0 1940.0 1950.0 1960.0	17.7 17.1 14.2 20.1 17.1 19.1 15.1 16.7 9.8	91.0 101.0 111.0 121.0 131.0 141.0 151.0 161.0	6.16 6.74 7.45 7.95 8.53 9.05 9.71 10.31 11.34	22655 24593 26909 28498 30420 32221 34469 36439 39726 43310	54013.92 56153.38 58726.01 60543.90 62678.29 64587.04 67002.43 69185.52 72937.95 77064.71	206.74 213.95 257.26 181.79 213.44 190.87 241.54 218.31 375.24 412.68	593.56 555.97 529.06 500.36 478.46 458.06 443.72 429.72 426.54 425.77	
1980.0 1990.0 2008.0 2010.0 2020.0 2021.0	10.7 13.3 10.8 10.3 12.5	191.0 201.0 211.0 221.0 231.0 232.0	13.40 14.15 15.08 16.05 16.85 16.95	46628 49441 52796 56229 59164 59491	80476.79 83219.11 86609.38 90150.30 93068.86 93423.91	341,21 274,23 339,03 354,09 291,86 355,06	421.34 414.03 410.47 407.92 402.90 402.69	
BIT NUMBER HTC J33 COST TOTAL HOURS	8266 48	,00 TI	ADC CODE IZE RIP TIME DTAL TURNS	537 12,250 7,0 154094	NOZZLES BIT RUN		1.0- 239 16 16 37 5 85 G0.	18
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	10
2030.0 2040.0 2050.0 2060.0	8.1 7.7 6.7 8.1		1.11 2.42 3.91 5.15	3629 8010 13160 17601	37884.73 42649.58 48116.42 52621.57	451 476 547 451	4209 2245 1659 1349	
2070.0 2080.0 2090.0 2100.0 2110.0 2120.0 2130.0 2140.0 2150.0	10.9 7.2 7.3 10.6 13.5 11.6 12.3 7.5	59.0 69.0 79.0 89.0 99.0 109.0 119.0	6.06 7.46 8.83 9.78 11.09 11.83 12.69 13.51 14.84 16.42	20736 25498 30243 33463 37967 40506 43152 45445 49278 53731	55968.95 61070.59 66086.34 69529.36 74332.76 77047.41 80186.10 83156.39 88025.73 93788.79	335 510 501.58 344.30 480.34 271.47 313.87 297.03 486.93 576.31	1142 1035 957.77 880.12 835.20 778.26 735.65 698.79 682.37 674.74	
2170.0 2180.0 2190.0 2200.0 2210.0 2220.0 2230.0 2240.0 2250.0	6.1 14.3 21.8 17.4 6.0 4.0 7.9 18.9	159.0 169.0 179.0 189.0 199.0 209.0 219.0	18.06 18.76 19.22 19.78 21.13 22.79 25.29 26.56 27.08 28.24	58508 60825 62361 64288 68987 74748 83593 87806 89575 93462	99798.36 102343.60 104019.46 106068.64 110980.07 117052.53 126206.88 130809.42 132737.87 136955.93	600.96 254.52 167.59 204.92 491.14 607.25 915.43 460.25 192.85 421.81	669.79 643.67 615.50 592.56 587.20 588.20 603.86 597.30 579.64 573.04	+

	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	1-C
	2270.0	14.1	249.0	28.95	95687	139542.77	258.68	560.41	
	2280.0	10.8	259.0	29,87	98741	142911,74	336.90	551.78	****
_	2290.0	14.1	269.0	30.58	101141	145509.73	259.80	540,93	****
_	2300.0	8,0	279.0	31.83	105421	150068.98	455.93	537,88	****
	2310.0	13.6	289.0	32.57	108046	152763.01	269.40	528.59	
	2320.0	4.8	299.0	34.67	115177	160427,47	766.45	536.55	
	2330.0	11.9	309.0	35.50	117600	163484.33	305.69	529.08	
	2340.0	6.7	319.0	37,00	121899	168942,04	545.77	529,60	4-
	2350.0	4.5	329.0	39.22	128528	177072.24	813.02	538.21	-∳-
	2360.0	11.9	339.0	40.06	130908	180142.96	307.07	531,40	***
	2370.0	7.3	349.0	41.44	134844	185160.40	501.74	530.55	m**1
	2380.0	3.1	359.0	44.62	144090	196767.34	1161	548	·\$-
	2370.0	6.1	369.0	46.27	148785	202791.11	602.38	549.57	-4 -
	2397.0	3.9	376.0	48.06	154094	209359.13	938,29	556.81	+

	BIT NUMBER HTC J22 COST TOTAL HOURS	8520 53	.00	IADC CODE BIZE FRIP TIME FOTAL TURNS	517 12.250 7.1 162095	NOZZLES BIT RUN		7.0- 271 16 16 32 6 B6 G0.	\ 18 22.0
	DEPTH	ROP	BIT RU	4 HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	2400.0	20.2	3.1	0.15	512	34991.35	181	11664	***
	2410.0	7.2	13.		5294	40095.02	510	3084	•
	2420.0	4.1	23.		13080	48911.55	882	2127	
	2430.0	3,8	33,		21324	58542.69	963	1774	••••
_	2440.0	12.6	43.1	7.39	23615	61429.80	289	1429	
	2450.0	6.9	53.0	8.84	27906	66735,34	531	1259	***
П	2460.0	8.0	63.4		31566	71305,42	457	1132	•••
	2470.0	15.7	73.0	10.73	33407	73634,58	233	1009	
	2480.0	7.2	83.4	12.11	37589	78681,44	504.69	947.97	••••
	2490.0	16.4	93.0	12.72	39387	80909.16	222.77	869.99	
	2500.0	6.4	103.	14.29	44224	86626.57	571.74	841.03	
	2510.0	7.6	117.	15.61	48174	91449,24	482.27	809.29	***
	2520.0	7.2	123.	16.99	52515	96486.97	503.77	784,45	•••
	2530.0	8.2	133.	0 18.21	56258	100950.53	446.36	759.03	•
	2540.0	5.9	143.		61432	107180.91	623.04	749.52	
	2550.0	3.7	153.	0 22.63	69552	117111.30	993.04	765.43	4
	2560.0	5.4	163.		75319	123890.62	677.93	760.07	****
	2570.0	5.0	173.		81343	131213.90	732.33	758.46	
	2580.0	8.5	183.		84626	135491.47	427.76	740.39	****
	2590.0	3.7	193.		92612	145318.39	982.69	752.95	-∳∙
_	2600.0	6.5	203.		96984	150901.90	558.35	743.36	****
	2610 0	3.5	213.		105022	161191.41	1029	757	- 4·
	2620.0	5.1	223.	a.	110804	168367.59	717.62	755.01	
	2630,0	10.2	233.	37.65	113724	171954.66	358,71	738.00	••••
		4.6	243.	39 ,83	120293	179907.91	795.32	740.36	4-
	2650.0	3.0	253.		130534	192130.95	1222	759	4
_	2660.0	9.5	263.		133721	195963.52	383.26	745.11	****
	man n	8.1	273	•	137464	200468.67	450.51	734.32	
	2680.0	13.2	283.		139739	203231.00	276.23	718.13	•
	2690.0	8.8	293.	•	143155	207384.47	415.35	707.80	****
	0.000	6.8	303.		147495	212726.20	534.17	702.07	
	2710.0	5.8	313,	•	152625	219003.58	627.74	699.69	
	2719.0	2.9	322.		162095	230264.93	1251	715	+

. . .

A CONTRACTOR OF THE STATE OF TH

BIT NUMBER HTC J22 COST TOTAL HOURS		SIZE	CODE TIME L TURNS	512 12,25(7,3 13405	NOZZLES		.0- 273 16 16 1 B1 G0.	18 8.0
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	icost	CCOST	I-c
2720.0 2730.0 2737.0	6.0 3.3 5.7	1.0 11.0 18.0	3.23	343 9772 13405	48791.42		37616 4436 2958	
BIT NUMBER CHRIS RC4 COST TOTAL HOURS		TR15	CODE TIME L TURNS	7.8	BIT RUN			16 8.0
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I C
2750.0	11.5 6.4 3.8	3.0 13.0 10.0			29442.22 35129.20 39931.58		2702	
BIT NUMBER HTC J22 COST TOTAL HOURS	9 0.00 14.24	SIZE	CODE E TIME N. TURNS	12.25	NOZZLES BIT RUN			18 6.0
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2760.0 2770.0 2780.0 2790.0 2800.0 2810.0 2820.0	7.0 8.8 5.1 3.2 5.1 4.7 3.5	23.0 33.0 43.0 53.0 63.0 73.0	5,16 6,29 8,27 11,35 13,30 15,44 18,31	15910 19604 26041 34076 39272 45251 52725	47329.92 51463.78 58673.44 69931.74 77044.01 84855.23 95370.97	519 413 721 1126 711 781 1052	2058 1560 1364 1319 1223 1162 1149	
2821.0	2.7	84.0	18.69	53695	96745.54	1375	1152	.+

(e), COMPUTER DATA LISTING : LIST \mathbf{C}

INTERV	ሳ1	٠	1	•	•	•		10m averages.
DEPTH.	, ,	,	•	,	ı	1	,	Well depth, in metres.
FLOW RA	ATE.	,	1		,	1		Mud flow into the well, in gallons per minute.
PSP	. ,	1	,		,		•	Pump pressure, in pounds per square inch.
PBIT .	1 1		•			,	•	Bit pressure drop, in pounds per square inch.
%PSP .	, ,		•		1	•		Percentage of surface pressure dropped at the bit.
н.н.Р.		•	,	,	,	•	ı	Bit hydraulic horsepower.
HHP/SQ	IN.			,	•	•	r	Bit hydraulic horsepower per square inch of bit diameter.
IMPACT	FOR	Œ			r	ŧ	•	Bit impact force, in foot-pounds per second squared.

JET VELOCITY Mud velocity through the bit nozzles, in metres per second.

DIT NUMBER HTC OSC3AJ COST TOTAL HOUR:	0	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	111 26.000 1.2 23470	NOZ BIT	TERVAL ZLES RUN DITION	ā	197.0 20 20 20 136.0 G0.000
DEPTH	FLOW RATE	PSP	PRIT	%PSP	ННР	HHP/ sain		JET PELOCITY
70.0 80.0 90.0	520 520 635	270.0 270.0 450.0	252.6 252.6 376.7	93.6 93.6 83.7	77 77 140	0.14 0.14 0.26	419 419 625	55 55 67
100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0	635 720 720 720 717 720 719 718 715 722	450.0 545.0 545.0 556.0 526.8 564.0 564.6 567.4	487.2	83.7 88.9 88.9 87.5 93.1 86.6 86.3 85.4	140 203 203 203 204 206 205 204 201 208	0,26 0,38 0,38 0,38 0,39 0,39 0,39 0,38 0,38	625 804 804 808 814 811 808 802 812	57 76 76 76 76 76 76 76 77
197.0	721	579.6	491.1	84.7	206	0.39	815	76
BIT NUMBER HTC X3A COST TOTAL HOURS	4978 3 12	.00	IADC CODE BIZE TRIP TIME TOTAL TURNS	114 17,500 2,0 114343	NOZ BIT	FRVAL ZLES RUN DITION	2	797.0 0 20 20 600.0 G0.000
DEPTH	FLOW RATE	PSP	PBIT	%PSP	ннр	HHP/ sain	IMPACT FORCE V	JET ELOCITY
	985 985 985 985 985 985 995 995	1500.0 1500.0 1500.0 1500.0 1500.0 1500.0 1826.0	917.0 917.0 917.0 917.0 917.0 917.0 917.0 935.7	61.1 61.1 61.1 61.1 61.1 61.1 51.2 51.2	527 527 527 527 527 527 527 543	2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.26 2.26	1522 1522 1522 1522 1522 1522 1523 1553	104 104 104 104 104 104 105 105
290.0 300.0 310.0 320.0 330.0 340.0 350.0	995 995 995 995 995 995 995	1826.0 1847.0 1847.0 1847.0 1847.0 1847.0	935.7 935.7 935.7 935.7 935.7 935.7 935.7	51.2 50.7 50.7 50.7 50.7 50.7 50.7	543 543 543 543 543 543 543	2.26 2.26 2.26 2.26 2.26 2.26 2.26	1553 1553 1553 1553 1553 1553 1553	105 105 105 105 105 105 105

and the state of t

العارية العامل الانطاقية المتهلية الأخرار والمترازية المترازية المترازية

		FLOW					HHP/	IMPACT	JET
_	DEPTH	RATE	PSP	PRIT	%PSP	HHP	sqin		VELOCITY
	390.0	995	1847.0	935.7	50.7	543	2.26	1553	105
	400.0	995	1880.0	935.7	49.8	543	2.26	1553	105
	410.0	995	1880.0	935.7	49.8	543	2.26	1553	105
	420.0	988	1817.8	945.0	52.0	545	2.27	1569	
	430.0	990	1850.0	947.6	51.2	547	2.27	1523	105
	440.0	993	1878.2	954.5	50.8	553	2.30	1585	105
	450.0	987	2044.7	943.5	46.1	544	2.26	1566	105
	460.0	979	1843.8	927.7	50.3	530	2.20	1540	104
_	470.0	987	1879.1	943.1	50.2	543	2.26	1566	105
	480.0	995	1923.1	958.9	49.9	557	2.32	1592	105
	490.0	990	1921.5	949.2	49.4	548	2.28	1576	105
	500.0	991	2094.7	950.9	45.4	550	2,29	1579	105
	510.0	995	1975.0	957.2	48.5	555	2.31	1589	105
	520.0	993	1974.6	953.5	48.3	552	2.30	1583	105
	530.0	994	1992.6	955.4	47,9	554	2,30	1586	105
	540.0	985	1973.3	938,5	47.6	539	2.24	1558	104
	550.0	982	1977.0	933.3	47.2	535	2.22	1549	104
_	560.0	997	2028.2	961.4	47.4	559	2.32	1596	106
-	570.0	987	1990.0	943.5	47.4	544	2.26	1566	105
	580.0	990	1999.0	947.6	47.4	547	227	1573	105
	590.0	988	1965.6	945.1	48.1	545	2.27	1569	105
	600.0	991	1988.9	950.1	47.8	549	2.28	1577	
	610.0	985	1995.8	939.6	47.1	540	7.25	1560	104
	620.0	988	2015.6	945,4	46.9		2.27	1569	105
	630.0	989	2032.7	945.6	46.5	545	2.27	1570	105
	640.0	988	2036.0	944.2	46,4	544	2.26	1568	105
	650.0	988	2032.5	945.2	46.5	545	2.27	1569	105
	660.0	987	2034.1	943.5	46.4	544	2,26	1566	105
	670.0	985	2023.8	939.4	46.4	540	2.25	1560	104
	680.0	987	2033.7	942.3	46.3	543	2.26	1564	105
	690.0	986	2020.8	939.8	46.5	540	2.25	1560	104
	700.0	988	2028.4	944.4	46.6	544	2.26	1568	105
	710.0	996	2053.2	959.5	46.7	557	2,32	1593	106
	720.0	986	2017.5	941.2	46.6	542	2.25	1562	105
	730.0	987	2056.5	942.1	45.8	542	2.25	1564	105
=	740.0	985	2030.1	938.9	46.2	540	2.24	1559	104
_	750. 0	984	2056.1	937.3	45.6	538	2.24	1556	104
	760.0	983	2055.4	934.5	45.5	536	2.23	1551	104
	770. 0	975	2056.0	919.1	44.7	523	2.17	1526	103
_	780.0	975	2056.0	919.1	44.7	523	2,17	1526	103
	790.0	958	1991.9	888.7	44.6	497	2.07	1475	102
_	797.0	990	2108.0	947.6	45.0	547	2.27	1573	105

A supplied to a supplied to the s

BIT NUMBER HTC X3A COST TOTAL HOURS		, 00	IADC CODE BIZE TRIP TIME TOTAL TURNS	114 12.250 3.0 72677	NOZ: BIT	ERVAL ZLES RUN DITION	1	- 1165.4 8 18 18 368.4 3 G0.000
	FLOW RATE	PSP	PRIT	ZP SP	ННР	HHP/ sqin		JET PELOCITY
mn.a. 6		mann m	an mar ma	ET A A	629	5.34	1609	118
	901	2198.9		54.4 54.2	620	5.26	1594	117
810.0	897	2187.0		55.1	807	6.84	1900	128
820.0	979	2563.4	17111	43 43 7 A	007	13 1 C 144	1700	4 f U
830.0	976	2555.1	1404.9	55.0	800	6.79	1889	128
840.0	978	2583.0	1410.5	54.6	805	6.83	1897	128
850.0	980	2512.8	1415.7	56.3	809	6.87	1904	128
860,0	943	2398.1	1312.1	54.7	722	6.13	1764	123
_ 870.0	983	2581.9	1423.9	55.1	816	6.93	1915	129
880. 0	980	2439.7	1416.8	58.1	810	6.87	1905	128
890.0	963	2430.7	1368.1	56,3	769	6.52	1840	126
900.0	972	2564.5	1392.4	54.3	789	6.70	1872	127
910.0	975	2622.3		53.5	798	6.77	1886	128
920.0	982	2631.7	1422.6	54.1	815	6.92	1913	128
_ 930.0	975	2613.6	1402.8	53.7	798	6.77	1886	120
940.0	973	2659.0	1396.4	52.5	793	6.73	1878	127
950.0	975	2690.0	1400.8	52.1	797	6.76	1884	128
960.0	975	2690.0	1400.8	52.1	797	6.76	1884	128
970.0	976	2711.4	1404.8	51.8	800	6.79	1889	128
980.0	977	2737.6	1406.3	51.4	801	6.80	1891	128
990.0	988	2817.9	1438.3	51.0	829	7.03	1934	129
1 000.0	972	2810.7	1406.4	50.0	797	6.77	1891	127
	1087	463.8		379.8	1117	9,47	2368	142
1020.0	973	2910.4		49.0	810	6.87	1919	127
1030.0	971	2938.0	1420.8	48.4	805	6.83	1911	127
1040.0	949	2916.5				6.38		124
1050.0	938	2907.2		48.7	774	6.57	1902	123
1060.0	999	2821.0	1338.2	47.4	702	5.95	1799	118
1070.0	902	2919.2	1375.2	47.1	724	6.14	1849	118
1080.0	894	2872.7	1349.9	47.0	704	5.97	1815	117
1090.0	897	2912.2	1359.8	46.7	712	6.04	1827	117
	909	3016.6		46.3	740	6.28	1876	119
1100.0	885	2923.7	1338.2	45.8	691	5.87	1800	116
1120.0	886	2934.0	1338.7	45.6	692	5.87	1800	116
1130.0	000	2044 2	1328.6	45.1	684	5.80	1787	115
	882 6 02	2944.8 2969.9		44.7	684	5.80	1786	115
1140.0	882 859	2825.2	1258.4	44.5	630	5,35	1692	112
1150.0	878	2908.9		45.3	675	5.72	1770	115
1160.0	870	2879.2		44.9	656	5,57	1738	114
1165.4	ωv α	66337771E	S. S. L. F. S	ाक्राका स्ट्	4.5 (.5 6.5	S2 1 12 1	A 4 60 60°	41 24 d

* · ·

BIT NUMBER CHRIS RC44 COST TOTAL HOURS	0 :	. 00	IADC CODE BIZE TRIP TIME TOTAL TURNS		NOZ BIT	ERVAL ZLES RUN DITION		- 1175.5 15 15 14 10.1 0 G0.005
DEPTH	FLOW RATE	pSP	PBIT	%P SP	ннР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
	170 170	317.8 300.0		35.2 37.2	11	0.14		33 33
BIT NUMBER HTC J22 COST TOTAL HOUR	8520	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	12.250 4.5	NOZ BIT	ERVAL ZLES RUN DITION		- 1789.0 18 18 16 613.5 6 G0.188
DEPTH	FLOW RATE	PSP	PRIT	%P SP	ннР	HHP/ sgin		JET VELOCITY
1180.0	877	3012.9	1518.8	50.4	777	6.60	1899	123
1190.0 1200.0 1210.0 1220.0 1230.0 1240.0 1250.0 1260.0 1270.0 1280.0 1310.0 1320.0 1320.0 1350.0 1350.0 1350.0	948 848 848 848 863 553 547 553 553 553 553 553 553 553 55	2788.1 2824.0 2852.5 2895.0 2865.5 2900.0 1250.7 1321.7 1228.5 1225.4	1399.9 1420.2 1457.2 1498.4 1475.2 1475.1 5074.3 5556.3 584.8 5991.8 5991.8 5991.8 59923.1	50.3 51.8 51.8 551.8 551.9 70.1 45.4 45.4 46.4 45.9 46.2 45.4 45.4 45.4 45.4 45.4 45.4	688 7031 762 744 7744 1771 1771 186 1971 1981 1991 1993 187	5.243312756 6.3356444 5.5646661 155645612249		
1380.0 1390.0 1400.0 1410.0 1420.0 1420.0 1430.0 1440.0 1450.0 1460.0 1480.0	547 554 552 549 5514 849 850 849	1271.6 1325.2 1314.1 1316.3 1371.5 1205.8 2876.8 2938.6 2937.2	599.9 595.2 588.4 590.9 515.4 1409.6 1440.4	46.0 45.3 45.7 44.7 43.1 42.7 49.0 49.2 48.8	187 194 192 188 198 154 699 724 697	1.59 1.63 1.60 1.61 1.31 5.93 6.15 5.91	732 750 744 736 739 645 1763 1801 1806 1760	77 78 78 77 77 72 119 121 121

						t 1. 4 m. 2	ap 0.6 mm. A. am man	
	FIOW	~ ~ ~	en, an, an can	%PSP	HHP	HHP/ sain	IMPACT	JET VELOCITY
DEPTH	RATE	PSP	PBIT	Ar or	11111	15 tj 3.11	1 1.31% C.S.L.	Vinhalite i i i
1490.0	847	2909.7	1403.0	48.2	694	5.89	1755	119
1500.0	864	2961.9	1457.8	49.2	735	6.23	1823	122
1510.0	868	2999.5	1464.5	48.8	742	6.29	1832	122
1520.0	864	2958.4	1452.6	49.1	732	6.21	1817	122
1530.0	867	2966.8	1462.8	49.3	740	6.28	1829	122
1540.0	669		871.3	46.1	340	2.89	1090	94
1550.0	655	1823.2	833.0	45.7	318	2.70	1042	92
1560.0	856	2888.6	1417.1	49.1	708	გ.00	1772	120
1570.0	874	2981.8	1476.6	49.5	753	6.39	1847	123
1580.0	867	2938.8	1455.5	49.5	736	6.25	1820	122
1590.0	848	2881.5	1390.5	48.3	688	5.83	1739	119
1600.0	864	2967.4	1445.7	48.7	729	6.19	1808	122
1610.0	780	2449.0	1178.2	48.1	536	4.55	1474	110
1620.0	858	2834.1	1425.0	50.3	714	6.05	1782	121
_ 1630.0	865	2052.3	1447.5	50.7	730	6.20	1810	122
1640.0	686	1912.6	909.4	47.5	364	3.09	1137	96
1650.0	683	1865.7	907.4	48.4	360	3,05	1129	96
1660.0	672	1850.7	864.8	46.5	339	2.88	1082	95 os
1670.0	672	1872.2	864.6	46.2	339	2.88 5.27	1081 1619	95 116
1680.0	822	2670.5	1294.4	48,5	621	S : 2 /	1017	7.7.0
_ 1690.0	840	2910.0	1350.7	46,4	662	5.61	1689	118
1700.0	859	2922.5	1412.4	48.3	708	6.00	1766	121
1710.0	852	2893.2	1389.7	48.0	691	5.86	1738	120
1720.0	857	2928.8	1405.5	48.0	702	5.96	1758	120
1730.0	856	2911.4	1404.7	48.2	702	5.95	1757	120
1740.0	849	2885.9	1397.1	48.3	690	5.85	1742	119
1750.0	847	2864.3	1387.4	48.4	685	5.82	1735	119
1760.0	841	2874.5	1367.3	47.6	671	5.69	1710	118
1770.0	845	2911.1	1381.6	47.5	681	5.78	1728	119
1780.0	844	2919.0	1379.1	47.2	679	5.76	1725	119
1789.0	843	2915.0	1376.2	47.2	677	5.75	1721	119
BIT NUMBER		5 I	ADC CODE	517	INTI	ERVAL.	1789.(0.1502 -(
HTC J22			IZE	12,250		ZLES		16 16 18
_ COST	8520	.00 T	RIP TIME	6.3		RUN		232.0
TOTAL HOURS	16	,95 T	OTAL TURNS	59491	COM	NOITION	T2 F	83 G0.125
						•		
_	mi mu					HHP/	IMPACT	JET
	FLOW RATE	PSP	PRIT	%PSP	ННР	sain		VELOCITY
2/31 111	73 [7 7 8	•	, , , , ,			•		
1790.0	798	2929.8	1470.1	50.2	685	5.81	1700	121
1800.0	791	2900.8	1444.5	49.8	667	5.66	1671	120
1810.0	787	2839.1	1428.9	50.3	656	5.57	1653	120
1820.0	794	2869.7	1456.1	50.7	675	5.73	1684	121
1830.0	800	2902.2	1476.2	50.9	689	5.85	1707	122 121
1840.0	794	2852.5	1454.0	51.0	673	5.71	1682	123
1850.0	808	2955.6	1506.9	51.0	711	6.03 5.71	1743 1681	121
1860.0	794	2860.9	1453.8	50.8	673 682	5.79	1696	121
1870.0	797	2883.7	1466,2	50.8	១១៥	Sili	1070	2 5 1

in the second se

	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
1880.0 1870.0 1700.0 1910.0 1920.0 1930.0 1940.0 1950.0 1960.0	804 791 550 819 822 821 815 814 818	2875.5 2799.4 1470.0 2935.4 2935.7 2928.2 2898.1 2892.7 2907.1 2908.8	1468.5 1395.5 677.1 1496.5 1507.5 1502.6 1482.2 1476.8 1491.1	51.1 49.9 46.1 51.0 51.4 51.3 51.1 51.1	689 644 217 715 723 720 705 701 712 714	5.84 5.47 1.84 6.07 6.14 6.11 5.98 5.95 6.04 6.06	1698 1614 783 1731 1744 1738 1714 1708 1725 1729	122 120 84 125 125 124 124 124
1980.0 1990.0 2000.0 2010.0 2020.0 2021.0	819 810 815 812 809 810	2916.6 2859.7 2899.0 2879.2 2860.7 2869.2	1496.6 1462.8 1480.1 1470.0 1458.0 1462.7	51.3 51.2 51.1 51.1 51.0 51.0	716 691 704 696 688 691	6,07 5,87 5,97 5,91 5,84 5,87	1731 1692 1712 1700 1686 1692	125 123 124 124 123 123
BIT NUMBER HTC J33 COST TOTAL HOURS	8266	. 00 T	ADC CODE SIZE FRIP TIME FOTAL TURNS	537 12.250 7.0 154094	NOZZ BIT	ERVAL 7LES RUN)ITION		- 2397.0 16 16 18 376.0 5 G0.250
	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2030.0 2040.0 2050.0 2060.0	807 793 799 800	2977.1 2867.9 2896.8 2899.1	1450.4 1402.2 1421.9 1425.1	48.7 48.9 49.1 49.2	683 649 663 665	5.79 5.51 5.62 5.64	1677 1622 1644 1648	123 121 121 122
2070.0 2080.0 2090.0 2100.0 2110.0 2120.0 2130.0 2140.0 2150.0	800 800 804 799 804 803 799 801 812	2905.8 2903.8 2900.1 2923.4 2891.8 2924.0 2914.1 2880.0 2857.0 2874.1	1410.4 1411.0 1412.9 1426.5 1410.1 1425.0 1421.2 1408.3 1394.0 1432.1	48.5 48.6 48.7 48.8 48.7 48.8 48.9 48.9 48.8	658 658 669 658 658 665 656 651 678		1631 1632 1634 1650 1631 1648 1644 1629 1612 1656	122 122 122 122 122 122 122 122
2170.0 2180.0 2190.0 2200.0 2210.0 2220.0	816 814 815 814 816 815	2866.2 2836.6 2846.9 2847.5 2853.9 2845.8	1425.6 1418.0 1421.6 1417.6 1423.9 1419.5	49.7 50.0 49.9 49.8 49.9	679 674 676 673 678 675	5.76 5.71 5.74 5.71 5.75 5.72	1649 1640 1644 1640 1647 1642	124 124 124 124 124 124

कर हुए। विकास स्कृतिकार इ.स.च्या

DEPTH	FLOW RATE	PSP	PBIT	%P SP	ННР	HHP/ sgin	IMPACT FORCE	JET VELOCITY
2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0	814 814 813 816 554 823 815 824 821	2860.0 2863.7 2881.7 2888.9 1427.9 2911.3 2897.1 2906.9 2919.4 2858.8	1416.2 1416.5 1415.3 1424.7 656.4 1436.8 1406.0 1415.1 1444.8	49.5 49.5 49.1 49.0 49.5 48.5 49.5 50.1	672 672 678 212 687 6673 695 686	5.70 5.71 5.76 1.80 5.83 5.66 5.71 5.89	1638 1638 1637 1648 759 1662 1626 1637 1671	124 124 124 124 125 124 125 125
2370.0 2380.0 2390.0 2397.0	818 821 819 813	2866.4 2899.7 2902.8 2889.5	1423.6 1432.7 1426.7 1405.9	49.7 49.4 49.1 48.7	679 686 682 667	5.76 5.82 5.78 5.66	1647 1657 1650 1626	124 125 125 124

	BIT NUMBER HTC J22 COST TOTAL HOURS		.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 12.250 7.1 162095	NOZ BIT	ERVAL ZLES RUN DITION		- 2719.0 16 16 18 322.0 5 G0.250
		FLOW RATE	PSP	PBIT	%P SP	ННР	HHP/	IMPACT FORCE	JET VELOCITY
	40' 2411 1 1 1 1	,					•		
	2400.0	791	2935.1		45.4	615	5.22	1540	120
	2410.0	794	2898.6		46.3	-622	5.28	1552	121
	2420.0	797	2897.7	1352.3	46.7	629	5,34	1564	121
	2430.0	792	2843.6	1333.5	46.9	616	5.23	1542	120
_	2440.0	799	2884.0	1358.5	47.1	633	5.37	1571	122
	2450.0	800	2890.4		47.1	635	5.39	1575	122
	2460.0	802	2901.8		47.2	641	5.44	1584	122
	2470.0	799	2895,4		46.9	632	5.37	1570	121
	2480.0	801	2876.3		47.7	641	5,44	1588	122
	2490.0	801	2886.0		47.6	642	5.45	1589	122
	2500. 0	799	2886.3		47.4	638	5.41	1581	122
_	2510.0	795	2868.5		47.1	627	5.32	1564	121
	2520.0	798	2895.9	1361.1	47.0	633	5.37	1574	121
	2530.0	800	2923.1	1368.6	46.8	639	5,42	1583	122
	2540.0	698	2266.1		46.0	425	3.61	1207	106
	2550.0	626	2164.7		38.7	306	2.59	968	95
	2560.0	729	2527.6		45.0	485	4,11	1317	111
_	2570.0	727	2512.3		45.0	480	4.07	1308	111
	2580.0	721	2483.2		44.8	469	3,98	1288	110
	2590.0	786	2873.3		46.0	606	5.14	1529	120
	2600.0	787	2887.6		45.9	609	5.17	1533	120
	2610.0	790	2907.7		45.9	614	5,21	1542	120
	2620.0	788	2898.1		45.8	611	5.18	1536	120
_	2630.0	787	2904.7	1326.6	45.7	609	5.17	1534	120
	2640.0	792	2927.2		45.8	619	5.25	1550	120
	2650.0	451	1246.1		35.0	115	0.97	504	69
	2660.0	792	2943.2		45.6	621	5.27	1553	121
	2670.0	792	2947.7		45.5	619	5.25	1551	120
	2680.0	794	2968.0		45.4	624	5.30	1559	121
	2690.0	792	2952.5		45.4	619	5.26	1551	120
	2700.0	792	2956.6		45.4	620	5.26	1551	120
	2710.0	782	2889.2		45.3	598	5.07	1514	119
	2719.0	786	2897.2		45.6	606	5.14	1528	120
	ture a e I V	e. 145 gr.							

or a second was a second

TO THE STATE OF TH

and the control of th

Andrew Communication (Communication Communication Communic

The second secon

BIT NUMBER HTC J22 COST TOTAL HOURS	8520 6 4	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 12.250 7.8 13405	NOZ. BIT	ERVAL ZLES RUN DITION		- 2737.0 16 16 18 18.0 1 G0.000
DEPTH	FLOW RATE	PSP	PBIT	ЖРSР	HHP	HHP/ sain	IMPACT FORCE	JET VELOCITY
2720.0 2730.0 2737.0	752 770 769	2883.7 2924.0 2987.1	1269.8	42.0 43.4 43.5	532 571 567	4.51 4.84 4.81	1401 1469 1462	114 117 117
BIT NUMBER CHRIS RC4 COST TOTAL HOUR	0	R .00 .71	IADC CODE SIZE TRIP TIME TOTAL TURNS	9,875 7,8 19526	NOZ BIT	ERVAL ZLES RUN DITION		- 2755.0 15 15 16 18.0 0 G0.020
DEPTH	FLOW RATE	PSF	PRIT	ZPSP	ннг	HHP/ sqin		JET VELOCITY
2740.0 2750.0 2755.0	304 235 229	1023.6 594.9 667.3	166.3	27.1 28.0 23.6	49 23 21	0.64 0.30 0.28	271 162 154	55 42 41
BIT NUMBER HTC J22 COST TOTAL HOUR	0	9 .00 .24	IADC CODE SIZE TRIP TIME TOTAL TUPNS	517 12.250 7.8 40290	NOZ BIT	ERVAL ZLES RUN DITION		- 2821.0 16 16 18 66.0 3 G0.125
DEPTH	FLOW RATE	281	PBIT	%PSP	HHP	HMP/ sqin		JET VELOCITY
2760.0 2770.0 2780.0 2790.0 2800.0 2810.0	768 773 778 776 772	2958.6 2975.6 2990.3 2880.3 2885.4	3 1278.4 3 1295.5 7 1288.7 4 1275.2	42.6 43.8 43.3 44.7 44.2 44.3	565 577 588 584 574 581	4.79 4.89 4.99 4.95 4.87 4.93	1458 1479 1498 1491 1475 1486	117 118 118 118 117 118
2820.0	775 764	2900.8 2817.8		44.3	556	4.72	1443	116

(f), COMPUTER DATA LISTING : LIST D

INTERVAL 10m averages.

DEPTH Well depth, in metres.

SPM1 Stroke rate per minute, for Pump no.1

SPM2 Stroke rate per minute, for Pump no.2.

FLOW RATE Mud flow rate into the well, in gallons per minute.

ANNULAR VELOCITIES : (in metres per minute)

DC/OH - Between drill collars and the open hole.

DC/CSG - Between drill collars and casing.

HW/OH - Between heavyweight drill pipe and the open hole.

HW/CSG - Between heavyweight drill pipe and casing.

DP/OH - Between drill pipe and open hole.

DP/CSG - Between drill pipe and casing.

DP/RIS - Between drill pipe and riser.

BIT NUMBER HTC OSC3AJ COST TOTAL HOUR	0 ,	1 00 87	IADC CODE SIZE TRIP TIME TOTAL THE	2	111 6.000 1.2 23470	NOZ.	ERVAL ZLES RUN DITION			197,0 20 20 136.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/	DC/ CSG	НW/ ОН	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
70.0 80.0 90.0	50 50 60	54 54 67	520 520 635			6 6 7		6 6 7		
100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0	60 72 72 72 71 72 72 71 71	-67 72 72 72 72 72 72 72 73	635 720 720 727 717 718 715 722			7888888888		7888888888		
197.0	72	72	721			8		8		
BIT NUMBER HTC X3A COST TOTAL HOUR	4978. S 12.	00	IADC CODE SIZE TRIP TIME TOTAL TUR	1:	114 7.500 2.0 14343	NOZZ BIT			20 3	797.0 20 20 600.0 0.000
ОЕРТН	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	НЫ/ ОН	H₩/ CSG	DP/ OH	DP/ CSG	DP/ RIS
200.0 210.0 220.0 230.0 240.0 250.0 260.0 270.0	99 99 99 99 99 99 181	98 98 98 98 98 98 98	985 985 985 985 985 985 995 995	30 30 30 30 30 30 31 31	24 24 24 24 24 25 25		22 22 22 22 22 22 22 22 22 22 22 22 22		22 22 22 22 22	18 18 18 18 18 18 18
290.0 300.0 310.0 320.0 330.0 340.0 350.0 360.0 380.0	101 101 101 101 101 101 101 101	98 98 98 98 98 98 98 98	995 995 995 995 995 995 995 995	31 31 31 31 31 31 31 31	25	26 26 26 26 26 26 26 26 26 26	22 22 22 22 22 22 22	26 26 26		18 18 18 18 18 18 18

. . .

rishkar hakkar kasar ing kasar

	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/	HW/ CSG	NP / OH	DP/ CSG	DP/ RIS
	390.0	101	98	995	31		26		26	22	18
	400.0	101	98	995	31		26		26	22	18
	410.0	101	98	995	31		26		26	22	18
	420.0	99	99	988	30		26		26	22	18
	430.0	100	98	990	31		26		26	22	18
_	440.0	100	99	993	31		26		26	22	8 t
_			97	987	30		26		26	22	18
	450.0	101 98	98	979	30		26		26	21	18
	460.0		70 98	987	30		26		26	22	18
	470.0	99	70 99	995	31		26		26	22	18
	480.0	100	77	77.3	9.7		fan Va.				
	490.0	100	98	990	31		26		26	22	18
	500.0	100	98	991	31		26		56	22	18
	510.0	100	ዎዎ	995	31		26		26	22	18
	520.0	101	98	993	31		26		26	22	18
	530.0	101	98	994	31		26		26	22	18
	540.0	99	98	985	30		26		26	22	18
	550.0	100	97	982	30		26		26	55	18
	560.0	100	99	997	31		26		26	22	18
_	570,0	100	97	987	30		26		26	22	18
	580.0	100	98	990	31		26		26	22	18
_	590.0	100	98	988	30		26		26	22	18
	600.0	100	98	991	31		26		26	22	18
	610.0	99	98	985	3.0		26		26	22	18
_	620.0	100	98	988	30		26		26	22	18
_	630.0	99	98	989	30		26		26	22	18
	640.0	100	98	988	30		26		26	22	18
	650.0	100	98	988	30		26		26	22	18
	660.0	99	98	987	30		26		26	22	18
	670.0	99	98	985	30		26		26	22	18
	680.0	99	98	987	. 30		26		26	22	18
_	690.0	99	98	986	30		26		26	22	18
	700.0	99	98	988	30		26		26	22	18
	710.0	99	100	996	31		26		26	22	18
		99	98	986	30		26		26	22	18
	720.0 730.0	99	99	987	30		26		26	22	18
	730.0	77 99	98	985	30		26		26	22	18
	750.0	99	97	984	30		26		26	22	18
	760.0	99	98	983	30		26		26	22	18
	770.0	97	70 78	975	30		26		26	21	18
_	780.0	97	98	975	30		26		26	21	18
	programme and are	m.a	m z	9 58	30		25		25	21	17
	790.0	96 00	96 100	990 990	31		26		26	22	18
	797.0	98	100	7 7 U	'3 Y		6. W		I 7.3	Sacr Form	140

and the second of the second s

BIT NUMBER HTC X3A COST TOTAL HOUR	2445.		IADC CODE SIZE TRIP TIME TOTAL TUR	1:	114 2.250 3.0 72677	NOZZ BIT				18 18 368.4
DEPTH	SPM1	SPM2	FLOW RATE	DC/	DC/ CSG	OH OH	HW/ CSG	DP / OH	DP/ CSG	DP/ RIS
800.0 810.0 820.0	90 98 98	90 90 97	901 897 979	78 78 85	71 7 0 77		50 50 55		50 50 55	16 16 18
830.0 840.0 850.0 860.0 870.0 880.0 890.0	98 97 98 98 99 96 96	98 98 98 91 98 97 97	976 978 980 943 983 980 963 972	85 85 87 87 88 84 85	77 77 77 74 77 76 77 76		54453554444 55554444		5 4 4 5 5 5 5 5 5 4 4 4 5 5 5 5 5 5 5 5	18 18 17 18 19 17
910.0 920.0 930.0 940.0 950.0 950.0 970.0 980.0 990.0 1000.0 1010.0	98 99 98 98 98 98 98 101 97 103 96	99 98 98 97 97 97 97 97 114 99	977 982 975 973 975 976 977 988 977 987	85555555555555555555555555555555555555	77 77 76 77 77	58 58 58 58 68 58	55 44444445414 55 55 55 55 55 65		05	18 18 18 18 18 18 17 20
1030.0 1040.0 1050.0 1050.0 1070.0 1070.0 1080.0 1100.0 1110.0	97 93 94 88 89 88 88 88 87 88	98 97 94 92 91 93 94 90 89	971 949 938 899 902 894 897 909 885 886	84 82 81 78 78 78 79 77		58 57 54 54 54 53 53	54 53	5 6 4 4 3 5 5 5 5 5 5 5 5	54 52 50 50 50 51 49	17 17 16 16 16 16 16 16
1130,0 1140.0 1150.0 1160.0 1165.4	88 86 85 88 87	89 90 87 87 87	882 882 859 878 870	77 77 75 76 76		53 53 51 52 52		53 53 52 52	49 49 48 49 48	16 15 16 16

BIT NUMBER		3	IADC CODE SIZE	(4 9.875		ERVAL ZLES	1165	i.4 11	75.5 5 14
CHRIS RC44	0.0		TRIP TIME		4,5	BIT	RUN		2773 3	10.1
TOTAL HOURS			TOTAL TUR	48	1029	CONI	NOTTI	Τ0	F0 G(0.005
_										
			FLOW	DC/	DCZ	HW/	HWZ	DP/	DP/	DP/
DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
		_	.1 **** **	2017 PT.		4.5		9.65	9	3
1170.0		0 0	170 170	38 38		18 18		18 18	y 9	3 3
1175.5	34	v	170	(3.43					•	
BIT NUMBER		Λ	IADC CODE		517	TATE	ERVAL	1175	5.5- 17	789.N
HIC 155		^	SIZE		2.250		ZLES		18 1	8 16
COST	8520.0		TRIP TIME		4.5		RUN			513.5
_ TOTAL HOURS	33.9	1	TOTAL TURI	VS 1	39627	COM	MOLTEC	1.4	Be Gt	1.188
			FLOW	DCZ		HWZ	HW/	DP/	DP/	DP/
DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
1180.0	87	88	877	76		52		52	49	1.6
a 205 0	m a	85	842	73		50		50	47	15
1190.0 1200.0	84 85	84	848	74		51		51	47	15
1210.0	87	85	859	75		51		51	48	15
1220.0	88	87	871	76		52		52	49	16
1230.0	87	86	865	75		52		52	48	16
1240.0	87	86	865 538	75 47		52 32		52 32	48 30	16 10
1250.0 1260.0	1 0 8 111	0 0	555	47 48		33		33	31	10
1270.0	106	O O	530	46		32		32	30	10
1280.0	106	()	531	46		32		32	30	10
1290.0	109	n	545	47		33		33	30	10
1300.0	109	í)	547	47		33		- 33	30	10
1310.0	110	()	550	48		33	**	33	31	10
1320.0	106	()	531	46		32		32	30	10
1330.0	109	0	544	47		33		33 33	30 31	10 10
1340.0	110	t) ()	550 551	48 48		33 33		33	31	1 O
1350.0 1360.0	110 110	0	55i	48		33		33	31	10
1370.0	111	ñ	553	48		33		33	31	10
1380.0	110	Û	547	48		33		33	31	10
1390.0	110	0	547	48		33		SZ	30	10
1400.0	111	n	554	48		33		33	31	10
1410.0	110	()	552	48		33		33	31	10
1420.0	110	0	549	48		33 33		33 33	31 31	10 10
1430.0 1440.0	110 103	0	550 514	48 45		33 31		31	29	Ŷ
1450.0	84	86	849	74		51		51	47	15
1460.0	83	89	859	75		5 t		51	48	15
1470.0	83	89	860	75		51 = 1		51	48	15 15
1480.0	83	87	849	74		51		51	47	IJ

рертн	SPM1	SPM2	FLOW RATE	DC/ OH	DCZ CSG	HW/ OH	CSG	NPZ HO	DP/ CSG	DP/ RIS
1490.0	84	86	847	74		51		51	47	15
1 500.0	84	89	864	75		52		52	48	16
1510.0	85	89	868	75		52		52	48	16
1520.0	84	89	864	75		52		52	48	16
1530.0	84	89	867	75		52		52	48	16
_ 1540.0	63	71	669	58		40		4) ()	37	12
1550.0	67	64	655	57		39		39	36	12
1560.0	84	87	856	74		51		51	48	15
1570.0	85	90	874	76		52		52	49	16
1580.0	87	86	867	75		52		52	48	16
1590.0	86	84	848	74		51		51	47	15
1600.0	89	8.4	864	75		52		52	48	16
1610.0	76	8.0	760	68		47		47	43	14
1620.0	88	84	858	75		51		51	48	15
1630.0	86	87	865	75		52		52	48	16
1640.0	64	73	686	60		41		41	38	12
1 650.0	64	77	687	59		41		41	38	12
1660.0	64	177 g		58		4(1		40	37	12
1670.0	64	71	672 822	58 71		40 49		4() 49	37 46	12 15
1680.0	81	84								
1690.0	84	84	840	73		50		50	47	15
1700.0	87	85	857	75		51		51	48	15
1710.0	86	84	852 852	74		51		51	47	15
1720.0	87	84	857 856	74 74		51 51		51 51	48 48	15 15
1730.0	86	85 84	849	74		51		51	47	15
1740.0	86	85	847	74		51		51	47	15
1750.0 ■ 1760.0	84 83	85	841	73		50		50	47	15
1770.0	84	85	845	73		50		50	47	15
1780.0	84	85	844	73		50		50	47	15
1789.0	85	84	843	73		50		50	47	15
BIT NUMBER HTC J22 COST	8520.	5 00	IADO CODE SIZE TRIP TIME	1	517 2.250 6.3	NOZI BIT	ERVAL. ZLES RUN		;	16 18 232.0
TOTAL HOURS	16.	95	TOTAL TUR	NS	59491	COM	NOITION	12	B3 G	0.125
			FLOW	DCZ	DC/	HW/	H6/	DP/	DP/	DPZ
нтчаа	SPM1	SPMA	RATE	OH	ess	OH	CSG	OH	CSG	RIS
1790.0	77	83	79 8	69		48		48	44	14
1800.0	82	76	791	69		47		47	44	14
1810.0	80	78	787	68		47		47	44	14
1820.0	79	80	794	69		47		47	44	14
1830.0	81	79	800	69		4 8		48	45	14
1840.0	80	79	794	69		47		47	44	14
1850.0	81	81	808	70		48		48	45	15
1860.0	79	79	794	69		47		47	44	14
1870.0	81	78	7 97	69		48		48	44	14

• •

			FLOW	DC/	NOZ	HW/	HW/	DP/	DP/	DP/
DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
1880.0	81	80	804	70		48		48	45	14
1890.0	80	78	791	69		47		47	44	14
1900.0	0	110 18	550 819	48 71	•	33 49		33 49	31 46	10 15
1910.0 1920.0	83 83	82	822	71		49		49	46	15
1930.0	83	81	821	71		49		49	46	15
1940.0	83	80	815	71		49		49	45	15
1950.0	83	80	814	71		49		49	45	15
1960.0	83	81	818	71		49		49	46	15
1970.0	83	81	819	71		49		45	46	15
1980.0	83	81	819	71		49		49	46	15
1990.0 2000.0	82 82	80 81	810 815	70 71		4 8 49		4 8 4 9	45 45	15 15
2010.0	83	80	812	71		49		40	45	15
2020.0	82	80	809	Ź 0		48		48	45	15
2021.0	82	80	810	70		48		48	45	15
=					•					
BIT NUMBER	ı	6	IADC CODE		537	INTI	RVAL	2021	1.0- 20	397.0
HTC J33			SIZE		2,250		7LES			16 48
COST	8266		TRIP TIM		7.6		RUN			376.0
TOTAL HOUR	15 48	. 06	TOTAL TU	RNS 1	54094	COM	NOTTIC	T :	5 B5 G	0.250
-										
8			FLOW	DC/	DCZ	HW/	HW/	DP/	DP/	DP/
DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
2030.0	82	80	807	70		48		48	45	14
2040.0	80	78	793	69		47		47	44	14
2050.0	81	79	799 000	69 70		48 48		48 48	45 45	14 14
2060.0	80	80	800	69		₩ C.		-4 C)	-4 J	7 04
2070.0	80	8.0	800	69		48		48	45	14
2080.0	82	78	800	69		48		48	45	14
2090.0	81	80	800 804	69 70		48 48		48 48	45 45	14 14
2100.0 2110.0	81 80	80 79	799	59		48		48	45	14
_ 2120.0	81	90	804	70		48		48	45	14
2130.0	8i	79	803	70		48		48	45	14
2140.0	81	79	799	69		48		48	45	14
_ 2150.0	81	8.0	801	70		48		48	45	14
2160.0	82	81	812	71		49		49	45	15
2170.0	83	81	816	71		49		49	45	15
2180.0	82	81	814	71		49		49	45 45	15 15
2180.0 2190.0 2200.0	82 82	81 81	815 814	71 71		49 49		49 49	45 45	15
2210.0	81	82	816	71 71		49		49	45	15
2220.0	81	82	815	Źî		49		49	45	15
2230.0	83	82	824	72		49		49	46	15
2240.0	83	82	822	71		49		49	46	15
2250.0	82	81	817	71		49		49	46 45	15 15
2260.0	83	81	816	71		49		49	45	L.J.

DEPTH	SPMi	SPM2	FLOW RATE	DĊ/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2270.0	82	81	814	71		49		49	45	15
2280.0	82	81	814	71		49		49	45	15
2290.0	82	81	813	71		49		49	45	15
2300.0	82	81	816	71		49		49	45	15
2310.0	0	171	554	48		33		3.3	31	10
2320.0	83	81	820	71		49		49	46	15
2330.0	82	81	817	71		49		49	45	15
2340.0	83	81	815	71		49		49	45	15
2350.0	83	82	824	72		49		49	46	15
2360.0	82	82	821	71		49		49	46	15
2370.0	82	82	818	71		49		49	46	15
2380.0	83	81	821	71		49		49	46	15
2390.0	83	81	819	71		49		49	46	15
2397.0	82	81	813	71		49		49	45	15

The British was an interest of the second of

BIT NUMBER HTC J22 COST TOTAL HOUR	8520. S 53.	00 T	ADC CODE IZE RIP TIME OTAL TUR	1 2	517 2.250 7.1 32095	NOZZ BIT	ERVAL ZLES RUN DITION			.6 18 322.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	H⊌/ CSG	DP / OH	DP/ CSG	DP7 RIS
2400.0	79	80	791	69		47		47	44	14
2410.0	79	8.0	794	69		47		47	44	14
2420.0	80	80	797	69		48		48	44	14
2430.0	79	79	792	69		47		47	44	14
_ 2440.0	80	80	799	69		48		48	45	14
2450.0	79	81	800	69		48		48	45	14
2460.0	81	8.0	802	70		48		48	45	14
2470.0	79	9.9	799	69		48		48	44	14
2480.0	80	80	108	70		48		48	45	14
2490.0	80	9.0	801	70		4 8		48	45	14
2500.0	80	$\otimes 0$	799	69		48		48	45	14
2510.0	79	8.0	795	69		48		49	44	14
2520.0	79	80	798	69		48		48	44	1.4
_ 2530.0	80	8.0	800	69		48		48	45	14
2540.0	45	95	698	61		42		42	39	13
2550.0	95	30	626	54		37		37	35	11
2560.0	73	73	729	63		44		44	41	13
2570.0	73	72	727	63		43		43	41	13
2580.0	72	72	721	63		43		43	40	13
2590.0	79	78	786	68		47		47	44	14
26 00.0	79	28	787	68		47		47	44	14
2610.0	8.0	78	790	69		47		47	44	14
2620.0	79	78	788	68		47		47	44	14
2630.0	80	77	787	68		47		47	44	14
2640.0	80	78	792	69		47		47	44	14
2650.0	0	ቃ በ	451	39		27		27	25	8
2660.0	80	79	792	69		47		47	44	14
2670.0	80	78	792	69		47		47	44	14
– 2680.0	80	79	794	69		47		47	44	14
2 690.0	80	78	792	69		47		47 47	44	14 14
2700.0	80	79	792	69		47		47 47	44 44	14
2710.0	78	79	782	68		47 47		47 47	44	14
2719.0	78	79	786	68		*1/		~¶ /		\$ ···\$

BIT NUMBER HTC J22 COST TOTAL HOURS	8520. 3 4.	0.0	IADC CODE SIZE TRIP TIME TOTAL TUR	1	517 2.250 7.8 13405	NOZ:	ERVAL ZLES RUN DITION		7.0- 2 16 1 B1 G	16 18
DEPTH	SPM1	SPMA	FLOW RATE	DC/ OH	ose Do∧	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2720.0 2730.0 2737.0	75 77 77	7 5 77 77	752 770 769	65 67 67		45 46 4 6		45 46 46	42 43 43	14 14 14
BIT NUMBER CHRIS RC4 COST TOTAL HOURS	0.		IADC CODE SIXE TRIP TIME TOTAL TUR		4 9.875 7.8 19526	NOZI BIT	ERVAL ZLES RUN DITION			15 16 18.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/	HW/ OH	HW/ CSG	DP/ (IH	DP/ CSG	DP/ RJS
2740.0 2750.0 2755.0	61 47 46	0 0 0	304 235 229	68 53 51		31 24 24		31 24 24	17 13 13	5 4 4
BIT NUMBER HTC J22 COST TOTAL HOURS	0. : 14.	0 0	IADC CODE SIZE TRIP TIME TOTAL TOR	1	517 2.250 7.8 40290	NOZZ BIT	ERVAL ZLES RUN DITION		5.0 28 16-1 183 G(66.6
· 	SPM1	SPMP	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RJS
2760.0 2770.0 2780.0 2790.0 2800.0 2810.0 2820.0	76 78 79 78 78 78 78	70 77 77 77 77 77 75	768 773 778 776 772 775 764	67 67 68 67 67 67 66		46 47 46 46 46 46		46 47 46 46 46 46	43 43 43 43 43 43	14 14 14 14 14
2821.0	78	75	764	66		46		4 6	43	14

, 1

This is an enclosure indicator page.

The enclosure PE603931 is enclosed within the container PE905518 at this location in this document.

The enclosure PE603931 has the following characteristics:

ITEM_BARCODE = PE603931
CONTAINER_BARCODE = PE905518

NAME = Drill Data Plot

BASIN = GIPPSLAND

PERMIT = VIC/L1 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drill Data Plot (from final well

report--attachment to WCR) for

Whiptail-1A

REMARKS =

DATE_CREATED = 27/08/85 DATE_RECEIVED = 23/12/85

 $W_NO = W915$

WELL_NAME = WHIPTAIL-1A

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603932 is enclosed within the container PE905518 at this location in this document.

The enclosure PE603932 has the following characteristics:

ITEM_BARCODE = PE603932
CONTAINER_BARCODE = PE905518

NAME = Temperature Plot

BASIN = GIPPSLAND PERMIT = VIC/L1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Plot (from final well

report--attachment to WCR) for

Whiptail-1A

REMARKS =

DATE_CREATED = 27/08/85 DATE_RECEIVED = 23/12/85

W_NO = W915

WELL_NAME = WHIPTAIL-1A

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603936 is enclosed within the container PE905518 at this location in this document.

The enclosure PE603936 has the following characteristics: ITEM_BARCODE = PE603936 CONTAINER_BARCODE = PE905518 NAME = Mudlog (grapholog) BASIN = GIPPSLAND PERMIT = VIC/L1 $\mathtt{TYPE} = \mathtt{WELL}$ SUBTYPE = MUD_LOG DESCRIPTION = Mud Log (from final well report--attachment to WCR) for Whiptail-1A REMARKS = $DATE_CREATED = 27/08/85$ $DATE_RECEIVED = 2/12/86$ $W_{NO} = W915$ WELL_NAME = WHIPTAIL-1A

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

CONTRACTOR = CORE LABORATORIES

This is an enclosure indicator page.

The enclosure PE603933 is enclosed within the container PE905518 at this location in this document.

The enclosure PE603933 has the following characteristics:

ITEM_BARCODE = PE603933
CONTAINER_BARCODE = PE905518

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/L1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure plot (from final well

report--attachment to WCR) for

Whiptail-1A

REMARKS =

DATE_CREATED = 27/08/85

DATE_RECEIVED = 23/12/85

 $W_NO = W915$

WELL_NAME = WHIPTAIL-1A

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603934 is enclosed within the container PE905518 at this location in this document.

The enclosure PE603934 has the following characteristics: ITEM_BARCODE = PE603934

CONTAINER_BARCODE = PE905518

NAME = Geoplot BASIN = GIPPSLAND

PERMIT = VIC/L1

TYPE = WELL SUBTYPE = WELL_LOG

DESCRIPTION = Geoplot (from final well

report--attachment to WCR) for

Whiptail-1A

REMARKS =

DATE_CREATED = 27/08/85 DATE_RECEIVED = 23/12/85

 $W_NO = W915$

WELL_NAME = WHIPTAIL-1A

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603935 is enclosed within the container PE905518 at this location in this document.

The enclosure PE603935 has the following characteristics:

ITEM_BARCODE = PE603935 CONTAINER_BARCODE = PE905518

NAME = Tritium Plot BASIN = GIPPSLAND

PERMIT = VIC/L1 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Tritium Plot (from final well

report--attachment to WCR) for

Whiptail-1A

REMARKS =

DATE_CREATED = 27/08/85 DATE_RECEIVED = 23/12/85

 $W_NO = W915$

WELL_NAME = WHIPTAIL-1A

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED