

WII45

WCR VOL 2

TURRUM-5

W1145

Esso Australia Ltd.

WELL COMPLETION REPORT PETROLEUM DIVISION 29 NOV 1996 VOLUME 2

INTERPRETED DATA

GIPPSLAND BASIN, VICTORIA

ESSO AUSTRALIA LTD

Compiled by : A.Zannetos P.N.Glenton July 1996

WELL COMPLETION REPORT

VOLUME 2: INTERPRETATIVE DATA

CONTENTS

- 1. SUMMARY OF WELL RESULTS
- 2. INTRODUCTION
- 3. REGIONAL SETTING
- 4. STRUCTURE
- 5. STRATIGRAPHY
- 6. -HYDROCARBONS AND RESERVOIR
- 7. GEOPHYSICAL DISCUSSION
- 8. GEOLOGICAL DISCUSSION

TABLES

1. PREDICTED VS ACTUAL FORMATION TOPS

FIGURES

- 1. LOCALITY MAP
- 2. STRATIGRAPHIC TABLE

APPENDICES

- 1. PALYNOLOGICAL ANALYSIS
- 2. QUANTITATIVE FORMATION EVALUATION
- 3. MDT ANALYSIS
- 4. CORE ANALYSIS
- 5. WELL SEISMIC PROCESSING REPORT: ZERO OFFSET VSP AND GEOGRAM

ENCLOSURES

- 1. POST DRILL L360 DEPTH STRUCTURE MAP
- 2. POST DRILL L500 DEPTH STRUCTURE MAP
- 3. SYNTHETIC SEISMOGRAM
- 4. SEISMIC INLINE I310
- 5. STRATIGRAPHIC CROSS SECTION
- 6. STRUCTURAL CROSS SECTION

ATTACHMENTS

1. COMPOSITE WELL LOG

1. <u>SUMMARY OF WELL RESULTS</u>

Turrum 5 was spudded on 23 August 1995, and was drilled as a vertical well from a location in 60m water depth. The primary objective of Turrum 5 was to delineate previously discovered hydrocarbon systems within the intra-Latrobe Group Turrum 'L' reservoir interval. This Paleocene section (lower *L. balmei* spore-pollen zone) of fluvial to marginal marine sediments underlies the top of Latrobe Group Marlin gas field. On 11 September 1995 Turrum 5 reached total depth of 2755mRT in Late Cretaceous section (Upper *T. Longus* spore-pollen zone). The well was plugged and abandoned and the rig was released on 23 September 1995.

Turrum-5 intersected the top of the Latrobe Group at 1361.5m subsea, 9.5m low to prediction (Table 1). The current Marlin field gas-water contact is interpreted from logs and wireline pressure data to be in shale at 1493.5mSS, 18.5m deeper than predicted for this location, with residual gas in the underlying swept zone from 1493.9 to 1553.0mSS. The original oil leg would be expected between 1556 and 1564mSS, but it is difficult to identify residual oil in the thin, poor quality sands in this interval.

The L-110 reservoir in the upper part of the Turrum 'L' reservoir sequence was intersected at 2172mSS, 13m low to prediction. The L-360 and deeper 'L' reservoirs were penetrated shallower than predicted (Table 1).

Gas and oil shows were recorded through the Turrum reservoir interval. Oil was recovered from the L-360 and L-400 reservoirs. Turrum-5 increased the mapped extent of the L-500 gas and oil reservoir because this reservoir was intersected shallower than predicted, above the L-500 oil-water contact. Turrum 5 provides good control on the depth of gas-oil and oil-water contacts for the L-500 in the western area of Turrum.

Six cores were recovered from the Turrum reservoir interval. Core recoveries are detailed in Volume 1 of the Turrum 5 Well Completion Report and on the Composite Well Log (Volume 2, Attachment 1). The wireline logging suite at Total Depth included resistivity, gamma, density, neutron, sonic, nuclear magnetic resonance imaging, dipmeter/borehole imaging, formation pressure measurements, fluid sampling, vertical incidence VSP, and sidewall core runs.

Log interpretation, pressure tests and core data indicate a total net gas pay of 42.5m in the L-110 to L-350 section, with no zones interpreted as oil bearing. (Reservoir properties are summarised in Appendix 2).

The L-360 reservoir is interpreted to contain 5.4m of net gas, underlain by a gross oil column of 6m in poor quality sandstone, with 3m net oil. The L-400 reservoir contains 1.8 m net gas and 4.7 m net oil, and the L-500 contains 2.1 m net gas and 15.9 m net oil. The L-360, L-400, and L-500 reservoirs are interpreted from contact, pressure, and fluid sample data to be separate systems.

Formation/Horizon	Predicted Depth (mss TVD)	Actual Depth (mss TVD)	Actual Depth (m MD KB)
Sea Floor	-55	-60.3	85.3
Lakes Entrance Formation	-1264	-1267.0	1292
Top of Latrobe Group	-1352	-1361.5	1386.5
Top of Latrobe Group'coarse clastics'	-1357	-1370.0	1395.0
Top of L-110 Reservoir	-2159	-2171.5	2196.5
Top of L-200 Reservoir	-2326	-2344.0	2369.0
Naples Yellow Sequence Boundary	-2364	-2368.0	2393.0
Top of L-300 Reservoir (shaled out)	-2403	-2423.0	2448.0
Top of L-350 Reservoir (shaled out)	-2462	-2478.0	2503.0
Top of L-360 Reservoir	-2518	-2499.5	2524.5
Top of L-400 Reservoir	-2555	-2541.0	2566.0
Top of L-500 Reservoir/MFSA	-2593	-2570.0	2595.0
seismic marker			
Base of L-550 Reservoir	-2725	-2654.0	2679.0
Total Depth	-2780	-2730.0	2755.0

Table 1 : Predicted vs Actual Formation Tops

RT Height = 25 m

2. INTRODUCTION

Turrum 5 is a delineation well in 60m water depth in VIC/L3 in the offshore part of the Gippsland Basin. The well is located 2.5 km to the southwest of Marlin A platform, 0.8 km southwest of Marlin A-24 (at the level of the L-110 reservoir), and 2.8 km northeast of Marlin-2.

The primary objective of Turrum 5 was to increase technically proven gas reserves in the Turrum 'L' reservoirs, by testing the western flank of the main fault block of the faulted Turrum anticline which underlies the top-of-Latrobe Group Marlin field. Eight main reservoirs (the L-100, L-110, L-200, L-300, L-350, L-360, L-400, and L-500), and numerous minor reservoirs, had been identified in the fluvial to marginal marine Paleocene (lower *L. balmei* spore pollen zone) Turrum reservoir interval prior to Turrum 5.

In addition Turrum 5 provided the opportunity to monitor the present position of the gas water contact and the residual gas saturation in the swept zone for the Marlin gas field

The four previous wells to have intersected hydrocarbons in the main Turrum block are: the Marlin platform wells A6 (1969) and A24 (1973); Turrum 2 (1973); and Turrum 3

(1985). Turrum 4 (1992) was a dry hole on the eastern flank, which penetrated all reservoirs deeper than predicted. Only the deviated Marlin A24, with its limited wireline logging suite and questionable deviation survey data, had tested the western part of the structure. The eastern wells Turrum 3 and Turrum 4 provide a reasonably complete suite of modern well data.

Four wells (Marlin 1 and Marlin 2 (1966), Turrum 1 (1969) and Marlin 4 (1973)) have tested the Turrum lower *L. balmei* section in nearby fault blocks. Marlin 1 was production tested at a rate of 10.9 million cubic feet of gas per day from a total perforation interval of 37 metres.

Turrum 5 was drilled after a major study had been undertaken during 1994-95 at Exxon Exploration Company in Houston with the purpose of re-evaluating the field after the disappointing result of Turrum 4. The study used results from the 1993 regional Esso Australia Collaborative Study, and involved some of the same personnel. For the Turrum study, staff from Exxon Exploration Company, Exxon Production Research Company, and Esso Australia Limited integrated seismic interpretation using a 1993 seismic data set, facies analysis and sequence stratigraphy, biostratigraphy (using cuttings, cores and sidewall cores from the seven previous vertical wells), reservoir engineering data (from wireline and production test data), and reservoir modelling (using Exxon's mainframe RESMAP (GEOSET) program).

The Turrum study indicated the need to to increase the technically proven gas reserves, and to improve the structural and stratigraphic control in the western part of the feature. The Turrum 5 location was selected as appropriate to achieve these objectives while maintaining risk (especially associated with depth conversion) at an acceptable level.

3. <u>REGIONAL SETTING</u>

•

The initial formation of the Gippsland Basin was associated with rifting and subsidence that extended along the southern and eastern margins of Australia during the Jurassic to Early Cretaceous, as Australia separated from the Antarctic. The mainly volcanoclastic Strzelecki Group was deposited in a fluvial environment during this time.

In the Late Cretaceous (about 95 Ma), rifting associated with the separation of the Antarctic diverged along the west coast of Tasmania; and the north-south Tasman rift, which led to the separation of Australia from the Lord Howe Rise, developed along the eastern Australian margin.

The Gippsland Basin became a triple junction arm of the Tasman rift. The Golden Beach Group was deposited in this setting, with initial deep rift lacustrine shales and basin margin alluvial fans gradually evolving into a fluvial-dominated system. Marine transgressions are recorded in the upper Golden Beach Group in the southeast of the basin.

The active rift phase in the Gippsland Basin ceased at about 80 Ma. The Gippsland Basin became a failed rift and deposition of the Golden Beach Group ended.

The Latrobe Group was deposited in this post rift setting during extensional structuring associated with the opening of the Tasman Sea. Fault controlled subsidence continued until the late Paleocene.

Most of the Latrobe Group was deposited in a non-marine setting behind a northeast trending beach-barrier complex. As sedimentation rates declined, the strandline moved to the northwest, and during the Eocene thin glauconitic green-sand units of the Gurnard Formation were deposited over a wide area.

Two major phases of canyon cutting occurred during the Tertiary. The Early Eocene Tuna/Flounder Channel was cut, then filled with mainly marine sediments of the Flounder Formation. The Marlin Channel was cut during the Middle Eocene and partially filled with distal marine sediment of the Turrum Formation. Erosion associated with the top of Latrobe Group unconformity resulted in the formation of many of the hydrocarbon traps in the basin.

A late Eocene to mid Miocene compressional event caused selective inversion of faults and established the basin's major east-northeast anticlinal trends.

The Latrobe Group is overlain by marl and calcareous siltstone of the Oligocene Lakes Entrance Formation, which is in turn overlain by the prograding limestone and calcareous siltstone wedges of the Gippsland Limestone that form the present day shelf.

4. <u>STRUCTURE</u>

The Turrum feature is an intra-Latrobe Group fault dependent anticlinal trap situated to the north of the Latrobe Group depositional axis. The structure map on the L360 reservoir top (Enclosure 1) displays the major northeasterly anticlinal axis, formed by the northwest-southeast compression that commenced in the late Eocene.

The Turrum anticline plunges to the southwest and is dissected by a set of westnorthwest oriented normal faults which mainly step down-to-the-south. These faults relay and have an average length of 6km. Seismic data indicate that faults become more common with depth and often show growth of the lowside section. Two secondary north-trending folds produce smaller fault dependent closures within the larger scale faulted anticline. Two significant northeast-trending reverse faults have also been identified.

Turrum 5 tested the west flank of the main Turrum fault block. The well was located on a small, north-plunging anticlinal nose on the highside of the normal fault that forms the southern boundary of this main block.

5. <u>STRATIGRAPHY</u>

A thick succession (1232m) of Gippsland Limestone (Mid Miocene to Recent age) was penetrated by Turrum 5 (Figure 2). No samples were collected above 690mRT as this section was drilled without a riser and cuttings were ejected at the sea floor. Below this depth, the Gippsland Limestone comprised light grey to brown grey fossiliferous calcilutite and calcisiltite.

The Oligocene to Middle Miocene Lakes Entrance Formation is 95m thick and includes light and medium grey to olive grey calcareous claystone and argillaceous calcisiltite with some fossil fragments and carbonaceous material.

The Gurnard Formation at the top of the Latrobe Group is 8m thick at Turrum 5, and consists of glauconitic and pyritic sandstone and siltstone, and oxidised iron minerals.

Turrum 5 penetrated 1360 metres of the underlying Eocene to Late Cretaceous Latrobe Group 'coarse clastics'.

The uppermost part of the 'coarse clastics' is of Eocene age (*N.asperus* to *M.diversus* spore-pollen zones), and consists mainly of coarse grained marginal marine to lower coastal plain sandstone, with minor siltstone and coal. This forms the Marlin Field 'N' reservoir sequence.

The underlying section is dominated by shale and siltstone with thin sandstone and coal beds, deposited in a mainly lower delta plain environment. Sandstones in this interval are generally less than 5m thick and were deposited in channels, point bars and crevasse

splays during the Eocene to Paleocene (lower *M.diversus* to upper *L. balmei* spore-pollen zones).

The objective of Turrum 5 was to test the 500m thick 'L' reservoir section, which is of Paleocene age (lower *L. balmei* spore-pollen zone). Parts of this interval are shale-prone, but sandstone packages up to 25m thick are present. Reservoir quality and extent varies considerably. Coals are more common and thicker than in the overlying section, and help to constrain the stratigraphic framework within Turrum.

Interpretation of the facies and stratigraphy of the Turrum L reservoirs was an important part of the 1994-95 Exxon Exploration Company Turrum study. The initial stratigraphic framework established during the Esso Australia Collaborative Study (1993-94) was revised substantially when all the Turrum wells were included. The Turrum study incorporated cores, facies, biostratigraphic analysis, and correlation to the seismic surfaces interpreted from the 1993 3D Turrum seismic data set.

The facies interpretation of Marlin and Turrum cores indicate that the main reservoir sandstones were deposited within sandy-braided channel complexes as *stacked channel and channel-levee deposits* with associated splay and splay levee deposits; *point bars encased in floodplain mudstones*; and *tidal-estuarine deposits*. In general, the channel complexes are interpreted to be oriented parallel to the faults, and trends of meandering stream deposits are considered to be more variable. Reservoir distribution is primarily determined by movement of the rift-margin faults and pivoting of individual tilt-blocks. The Turrum reservoir units are interpreted to thicken on the lowside of major tilted fault blocks, and to be flanked by ponded, brackish-water floodplains.

In the *stacked channel and channel levee association*, splay levee fine clastics typically grade up into channel levee sandstones and stacked channel sandstones. The vertical stacking pattern reflects the lateral migration of a multi-channel system across floodplain splays and a poorly defined channel levee system. Medium to coarse sands were deposited in a series of downstream-prograding bars within the multichannel system. Laterally equivalent, finer grained sands formed shallow-mounded levees separating floodplain mudstones from riverine sandstones during low water stage.

Point bar deposits typically form upward fining packages up to 10-15 metres thick, separated by a basal scour from the underlying floodplain mudstones and coals. Gravels and coarse sands deposited above the basal scour grade upwards into trough cross bedded sands of the middle point bar, where mud drapes between beds indicate fluctuating water levels. The upper point bar sands are current rippled and interfinger with flood plain deposits. The vertical stacking of these deposits reflects the lateral migration of a single channel and point bar.

Tidal-estuarine sediments were deposited as stacked subtidal bar complexes within an estuarine setting. The narrow, elongate subtidal bar deposits form upward coarsening tidal bar complexes overlain sharply by lagoonal mudstones. This vertical stacking reflects the lateral facies transition from subtidal bar toe to bar core and bar top. Individual bars are typically a few metres thick and may be separated by thin muddy

drapes. The bars may toe out into subtidal muds and muddy sands. Tidal bar complexes at Turrum merged to form a sheet-like geometry that filled most of the estuary.

The predominantly non-reservoir or seal-prone facies at Turrum include *floodplain deposits with small channel fills, splay deposits, and coals;* and *bay head delta and lagoonal deposits*. Sandstones deposited within these environments potentially represent minor reservoir units.

Floodplain deposits are variable and thin bedded, with often abrupt lateral and vertical facies changes. Channels were probably fairly stable and leveed, and are interpreted to have connected with the floodplain via small splays. Coals and individual channel and splay deposits are laterally discontinuous, but overall the floodplain intervals are relatively continuous. The abundance and variable thickness of coal, and the presence of clay zones within the mudstones, indicate significant ponding in the floodplain.

Within the *bay-head delta and lagoonal association*, fine grained lagoonal deposits typically coarsen upward through the lower and middle parts of the bayhead delta, into the the coarser clastics deposited in outer and inner stream mouth bars and distributary channels. This succession may be capped by thin, laterally extensive coals and floodplain deposits. Along depositional strike, the bidirectional downlap and clinoforms of the outer stream mouthbar may be truncated by minor channelling. The areal extent of stacked bay-head delta intervals may by 10s of square kilometres.

The L-100 unit is the shallowest significant Turrum reservoir. As predicted by trends from Marlin A24 and other wells, the typical L-100 association of stacked fluvial channel and channel levee deposits was absent at Turrum 5.

The top of the L-110 reservoir was penetrated at 2171.5 m subsea, 12.5m deeper than predicted. This reservoir is a stratigraphic trap, previously penetrated in Marlin A24 where 25 metres of fair to good quality gas-bearing sandstone is interpreted from cores to represent splay levee, channel levee, and stacked fluvial channel deposits. In Turrum 5, two cores were cut and the L-110 is substantially thinner and of poorer quality than in Marlin A24. The unit is interpreted at Turrum 5 to represent mainly poorer quality splay levee and channel levee deposits.

The L-195 reservoir is indicated by wireline pressure data to be separate from the underlying, more volumetrically important, L-200 and L-220. Log character and correlation suggest that the L-195 includes thin coastal plain splay and channel deposits.

The upward fining L-200 and L-220 sandstones above the Naples Yellow Sequence Boundary probably represent point bar deposits. A small pressure discontinuity between the reservoirs suggests they form separate fluid systems, although if there are measurement inaccuracies, for example due to slight supercharging, these reservoirs could form a common system.

I

The L-260 reservoir beneath the Naples Yellow sequence Boundary is interpreted as a bayhead delta or coastal plain splay complex overlain by a fining-upward point bar deposit.

The L-300 reservoir overlying the MFS 'B' sequence boundary was expected to be significant at Turrum 5. In Turrum 3 this unit is about 20 metres thick, with about 15% average effective porosity, and is interpreted to represent the deposits of the stacked channel and channel levee association. The lateral equivalents in Turrum 4 and Turrum 2 are interpreted as point bar sandstones. Correlation into Marlin A6 and A24 is difficult and the unit may be faulted out in those wells. In Turrum 5 the L-300 was penetrated 20 metres deep to prediction and is 5 metres thick and upward-fining, with porosity less than 10%; it possibly represents a point bar or a floodplain channel. It now appears that the stacked fluvial channel sandstones of the L-300 in Turrum 3 are of limited areal extent.

The L-350 reservoir which overlies the 'Pink' Sequence Boundary is interpreted to be absent in Turrum 5. This unit is a well-developed 7 metre thick point bar sandstone in Turrum 3, where wireline pressure data suggest that L-350 may form a common reservoir system with the underlying L-360 unit. In Marlin A24 a sandstone at this level is more than 10 metres thick.

The L-360 sandstone overlies the 'Sub Pink' Sequence boundary. It is correlated as the most extensive reservoir unit above the L-500. It is interpreted to represent mainly stacked channel and channel-levee deposits. At Turrum-3 the reservoir is of good quality, about 20 metres thick and with effective porosity of up to 24%. At Marlin A24 the L-360 is almost 20 metres thick but of slightly poorer quality. At Turrum 5, the L-360 was penetrated 19 m shallower than predicted, and is 25 metres thick, with about 8 metres total net sandstone at an average porosity of 15%. Only the top 4 metres of the L-360 is good quality sandstone, with average porosity of 17%.

The underlying L-400 reservoir is interpreted to be a point bar deposit in Turrum-5. The unit is interpreted to be part of a fairly extensive system, as similar sandstones are present at this level in Turrum 3 and Marlin A24. At Turrum 5, the L-400 contains 6.5 metres net sandstone with an average effective porosity of 17%. The Nuclear Magnetic Resonance Log indicates that the upper part of the unit is gas-bearing (Appendix 2). Oil was recovered from good quality sandstone in the lower part of the L-400.

The L-360 and L-400 reservoirs exhibit lateral variability, and it is possible that stratigraphic barriers could isolate the west-flank oil accumulations penetrated by Turrum-5 from fluid systems in equivalent reservoirs on the eastern flank.

Sandstones in the L-500 to L-550 interval were deposited as tidal bars within an estuarine environment. Intensive bioturbation is evident in some intervals on the FMI image log. The gas and oil-bearing L-500 is of moderate quality in Turrum 5, with average porosity of about 14%.

I

About 75m of Late Cretaceous (*T. longus* spore-pollen zone) coastal plain to marginal marine sediment with minor sandstone, common siltstone and shale, and minor coal was drilled below the base of the lower *L. balmei* before the well reached its total depth of 2730mSS.

6. <u>HYDROCARBONS AND RESERVOIR</u>

No significant hydrocarbon shows were encountered within the Gippsland Limestone or Lakes Entrance Formation in Turrum 5. Typically, background gas levels within this section were less than 0.5% (25units).

The top of the Latrobe Group was penetrated at 1387 mRT, with gas increasing to nearly 1% in the 8 m thick Gurnard Formation.

Reservoir properties and net pay in the Latrobe Group 'coarse clastics' are summarised in Appendix 2, using a 10% cutoff to define net sandstone. A lower cut off may be appropriate for the Turrum gas reservoirs; this will be considered when final core analysis results are available.

Within the Latrobe Group 'coarse clastics', up to 7% gas was recorded on the mudlog above the current Marlin field gas-water contact, interpreted from logs and wireline pressure data to be in shale at 1518.5 mRT (1493.5 m SS), 18.5 m deeper than the predrill prediction for this location and 62.5m above the original gas-oil contact. Wireline logs indicate gas-bearing sandstone from 1393.7 to 1513.7 mRT, with a total of 79.6 m TVT net gas pay and a weighted mean porosity of 24.1%.

Residual gas is clearly indicated to be present in sandstones from 1518.9 to 1578.0m RT. The original oil leg would be expected in the interval 1581 to 1589m RT, but the quality of the very thin sands in this interval makes it difficult to identify residual oil.

In the interval between the Marlin N-1 reservoir and the Turrum L reservoirs, gas peaks of up to 10% were recorded. The major peaks are associated with coal; and water bearing sands are interpreted from 1592.6 to 2054.9mRT. Minor gas shows were encountered through a 150 metre interval above the L-110 reservoir, where log analysis indicates thin interbedded gas and water sands from 2060.5 m to 2172.6 mRT.

Core 1 was cut in the L-110 reservoir from 2197.0-2205.5mRT, with 8.3m recovered. Core 2 was cut from 2205.5-2223.5mRT, recovering 17.3m. Gas was not circulated to surface after coring. These cores are interpreted to have recovered the entire gasbearing L-110 reservoir and drilled into the underlying siltstone and shale. Log analysis and preliminary core description indicates that at the Turrum 5 location the L-110 reservoir contains 6.6 m net gas pay in fine and medium grained sandstone, with average porosity of 17% and average water saturation of 19%. Core analysis indicates air permeabilities ranging from several millidarcies to around 1 darcy. Wireline pressure data indicate that a gas-water contact (ie, assuming no oil leg) would occur at 2218mSS (Appendix 3). The L-110 in Turrum 5 is substantially thinner and poorer quality than in the nearby Marlin A24 well where it contains almost 30 m net sandstone with variable effective porosities ranging up to 24%.

Only minor gas sandstones occur between the L-110 and the L-195 reservoirs.

The L-195 reservoir is interpreted to contain 4.4 m net sandstone from 2356.4 to 2363.9mRT, with average effective porosity of 16% and average water saturation 30%. Wireline pressure data indicate a gas-water contact (asuming no oil leg) of 2361mSS (Appendix 3).

The L-200 reservoir is interpreted to contain 3.7 m net sandstone from 2370.8 to 2381.2mRT, with average porosity of 12% and average water saturation 24%. Wireline pressure data indicate a gas-water contact (assuming no oil leg) of 2392mSS (Appendix 3).

Log analysis indicates that the L-220 reservoir contains 7.0 m net sandstone from 2585.7 to 2393.1 mRT, with average porosity of 17.0% and average water saturation 20%. Wireline pressure data indicate a gas-water contact, if there is no oil leg, of 2390mSS.

It is possible that the L-200 and L-220 reservoirs are in communication. Only a thin shale separates them, and they have similar interpreted gas-water contacts,

The L-260 reservoir is interpreted to contain 10 m net sandstone from 2405.0 to 2419.3mRT, with average porosity of 14% and average water saturation of 36%. Wireline pressure data indicate that the L-260 is separate from the overlying L-200 and L-220 reservoirs, with an interpreted gas-water contact (assuming no oil leg) of 2409mSS.

The L-300 unit is interpreted to be represented by a thin siltstone at 2450mRT, with no net sandstone.

Cores 3, 4, and 5 drilled the entire L-350 and L-360 interval. Core 3 was cut from 2508.5 to 2526.8 m MD RT, recovering 18.3 m. The upper part of this core recovered the non-net equivalent of the L-350 reservoir. Core 4 from 2526.8 to 2544.8 m MDRT recovered 16.7 m; and Core 5 from 2544.8 to 2549.8 m MDRT recovered 5.0 metres.

The uppermost part of the L-360 is good quality gas-bearing sandstone. In total there is an estimated 5 metres of net gas sandstone in the L-360, with an average effective porosity of 16% and water saturation of 21%. The lower part of the L-360 is oil bearing, but is of very poor quality, containing about 3m net sandstone with average effective porosity of 14% and water saturation of 32%. The low permeability and producibility of the L-360 oil zone are demonstrated by the wireline sampling. More than 11 hours was required to recover 3.75 litres of 41 degree API oil. The gas-oil contact cannot be determined from log or wireline pressure data, but is indicated by a marked change in fluorescence in Core 4 at about 2518mSS, which is 13m below the

previous L-360 Low Proved gas (LPG) of 2505 mSS. Previously, only gas had been intersected in the L-360 (except for the water-wet Turrum 4), and a gas-oil contact so close to the LPG, with the implied substantial oil leg, has been considered unlikely.

Good quality pressure data were obtained from the gas zone in the upper part of the L-360. These pressure points are on a gradient 3 to 4 psi below that in the equivalent unit in Turrum 3 in 1985. This is consistent with a slight aquifer drawdown due to production from other fields. However, the wireline pressure data from the underlying poorer quality interval are difficult to interpret (Appendix 3). If the oil leg in the L-360 in Turrum 5 is in communication with the gas at the top of the unit, and the pressure data are constrained by the gas-oil contact indicated by core fluorescence, an oil-water contact is estimated between 2623 and 2665mSS, depending on the oil gradient. (A gradient of 1.0 psi/m gradient is based on a small recovered oil sample; a 0.833 psi/m gradient is based on the wireline pressure gradient in the underlying L-400 oil system). A contact at 2665 mSS would be 12m deeper than high proved water in Turrum 4.

There are a number of possible explanations, including:

1. The pressures obtained from the L-360 oil leg in Turrum 5 may be supercharged due to the low formation permeability. This is supported by the inability to tie Turrum 5 oil pressure data to the oil-water contact indicated by core fluorescence.

2. The oil sample used to calculate the oil pressure gradient may be unreliable, as only a small oil volume was available for analysis; the lighter oil gradient based on the L-400 pressure data may be more accurate.

3. The gas-bearing upper part of the L-360 sandstone may be isolated from the lower interval, although no obvious seal is present.

4. The western part of the Turrum feature may be isolated at the L-360 level from the eastern area. However correlation, and gas cap pressure data, in Turrum 3 and Turrum 5 are consistent with reservoir continuity.

Core 6 from 2568 to 2586.5 mRT recovered 18.5m from the lower part of the L-400 and the underlying shale prone interval, and wireline sampling recovered 1.5 litres of 43 degree API oil from the L-400 reservoir, the first oil recovery from this unit. This oil has a similar API gravity and visual appearance to the L-360 oil sample. The Nuclear Magnetic Resonance Log log indicates that the upper part of the unit is gas-bearing (Appendix 2), although this was not confirmed by wireline pressure tests or samples. Wireline log analysis indicates 1.8 metres net gas sandstone in the L-400, with average effective porosity of 15% and water saturation of 25%; and 4.7 metres net oil sandstone with average effective porosity of 18% and water saturation of 17%.

The L-500 reservoir was expected to be outside the field L-500 oil-water contact at the Turrum 5 location, but was penetrated higher than predicted. Turrum 5 contains 2.1m net gas with average effective porosity of 15% and water saturation of 21%, and a gasoil contact at 2577mSS; and 15.9m net oil with average effective porosity of 14% and

water saturation of 30%. Oil is present at the base of L-500 porosity at 2598mSS, and wireline log character and pressure data suggest that this is very close to the oil-water contact. Turrum 5 provides good control on the thickness of the L-500 oil leg in the western part of the field. Gas and oil were previously known within the L-500 from Turrum 3, Marlin A6, and Marlin A24. It is possible that the accumulation at Turrum 3 is in a separate culmination and has different gas-oil and oil-water contacts than Turrum 5.

Minor thin, low porosity gas sandstones, were penetrated in the Late Cretaceous interval below 2700mRT. These were not sampled and are considered to contain very small volumes.

7. <u>GEOPHYSICAL DISCUSSION</u>

Turrum-5 was drilled on the western flank of the Turrum field, 0.8km southwest of Marlin-A24. The location was identified after integrating the analysis of the Turrum G93C seismic grid with data from the surrounding Marlin and Turrum wells. The actual well depths for the Top of Latrobe and Turrum horizons were within 1% of prognosis.

Depth conversion was recognised as a major uncertainty after the poor depth prediction results of Turrum-4, which at the lower Turrum levels (L-250 to L-500) was from 50 to 60m deep to prediction. During the Turrum 3D seismic interpretation, depth conversion methods were examined in detail. The preferred depth conversion technique used velocities calculated from GEODEPTH down to the Top of Latrobe Group, and compaction-based time-velocity relationships intra-Latrobe. The final Top of Latrobe depth map was also verified using attribute analysis that targetted the Marlin gas-oil contact. The top of Latrobe was intersected at 1361.5mSS, 9.5m deep to prediction; an error of 0.7%. This is within the expected depth conversion uncertainty of 1% at this level.

The Intra-Latrobe depth conversion from Top of Latrobe to the Blue-Grey Sequence Boundary (intra L-100 marker) was made using a relationship between seismic time and interval velocity, which relates the mid-point seismic time for the interval to the interval velocity seen in the Marlin and Turrum wells. Compaction due to depth of burial beneath Top of Latrobe is the main element in this relationship. Turrum-5 intersected the top of the L-110 at 2171mSS, 12m deep to prognosis: an error of 0.6%. This is within the pre-drill depth conversion uncertainty of 1.5% for Intra-Latrobe horizons.

The top of the L-110 was built from the Blue-Grey Sequence Boundary, which came in in 16m shallow than expected. The different results at these two horizons is due to uncertainties in the isopach between them. The depth error at the Blue-Grey Sequence Boundary has been attributed to the interval velocity being lower than expected.

The horizons from L-200 to L-500 were also depth converted using compaction based relationships, but it was recognised pre-drill that these relationships would be less certain due to variations in the stratigraphy. These horizons were built from seismic boundaries carried during the interpretation. The three key control surfaces were Blue-Grey (intra L-100), Naples Yellow (Base L-250) and MFSA (Top L-500).

The Naples Yellow Sequence Boundary was intersected at 2368mSS, 4m deep to prediction; a depth error of 0.2%. The MFSA Sequence Boundary was intersected at 2570mSS, 23m shallow to prediction; a depth error of 0.9%. These depth errors although small contain variations in prognosed isopach thicknesses that need to be examined. The isopach between Blue-Grey and Naples Yellow sequence boundaries is 20m thicker than predicted while the Naples Yellow to MFSA isopach is 27m thinner than predicted. In addition, the complete isopach is only 7m thinner than expected. The

reason is that the Naples Yellow time-pick is being carried slightly high when matched against the Turrum-5 synthetic.

The top of the L-360 was intersected 19m shallow to prognosis. Most of this error can be attributed to the 16m error at the Blue-Grey level.

The top of the L-200 is 18m deep to prognosis, but this variation is due to a change in the correlation surface used to pick the reservoir top. The original stratigraphic top on which the L-200 was based (the Naples Yellow Flooding Surface 4) is 1m deep to prognosis.

The base of the L-550 is markedly shallower than the pre-drill prognosis but no seismic event was identified at this level. Instead nearby well control was used to estimate the thickness of the L500 to L550 package.

8. <u>GEOLOGICAL DISCUSSION</u>

Reservoir properties and volumes were predicted pre-drill using correlations from the Exxon Exploration Company Turrum Field Study and 3-dimensional GEOSET models. Turrum is a complex field, in which reservoir heterogeneity occurs at a finer scale than well spacing, hence pseudo and random wells were incorporated into the GEOSET models to capture the heterogeneity implied by the stratigraphic and facies models.

Prior to Turrum 5, only gas-on-rock had been observed in the L-110 to L-400 interval. The downdip oil potential for these reservoirs was expected to be small.

The important results of Turrum 5 were:

/

1. Oil was proven in the L-360 and L-400 reservoirs. The lateral extent of these separate oil pools remains to be delineated, and the downdip column was not well established due to the poor quality of the pressure data (particularly in the L-360).

2. The reservoir quality of the lower part of the L-360 was poorer at Turrum 5 than expected.

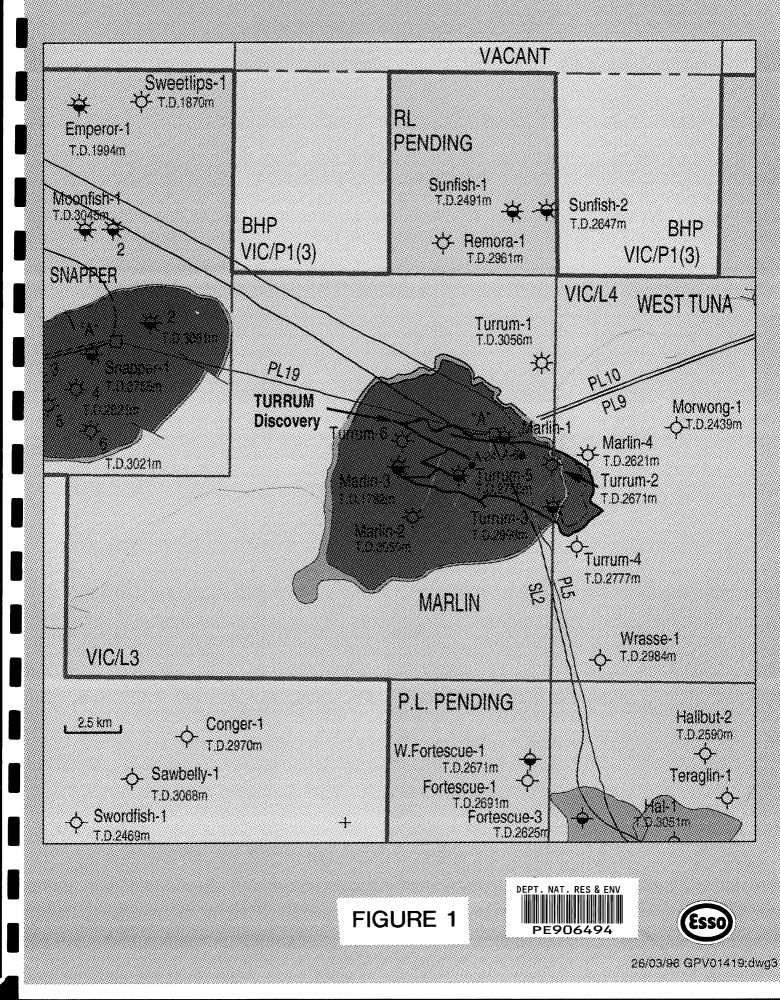
3. The interval previously assigned to the L-200 reservoir contains at least two separate gas systems. Good quality pressure data in the L-195, L-200, L-220, and L-260 improves confidence in estimating the downdip potential of these units. This interval contains more net sandstone at the Turrum-5 location than expected.

4. The known extent of the L-110 reservoir was increased; previously this stratigraphic trap was known only from Marlin A24. Although thinner and poorer quality than predicted from A24, the intersection at Turrum-5 supports the depositional model, and adds proved reserves to the unit. Valuable pressure data were acquired.

5. The L-350 reservoir appears not to be present in Turrum 5.

6. The L-300 reservoir is interpreted to be present but essentially non-net.

7. The current gas-water contact for the Marlin N-1 gas reservoir was intersected at 1493.5m SS, 62.5m above the original gas-oil contact, and 18.5m deeper than expected for the Turrum-5 location at the time of drilling. This information is important for Marlin volumetric assessments.


PE906494

.

This is an enclosure indicator page. The enclosure PE906494 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90 ITEM BARCODE =	6494 has the following characteristics:
CONTAINER BARCODE =	
—	· Locality Map
	GIPPSLAND
PERMIT =	
	GENERAL
	PROSPECT_MAP
DESCRIPTION =	Locality Map for Turrum-5
REMARKS =	:
DATE_CREATED =	: 17/07/95
DATE_RECEIVED =	29/11/96
	W1145
WELL_NAME =	TURRUM-5
CONTRACTOR =	
••••••	ESSO AUSTRALIA LIMITED
CHINITOL CO	
(Inserted by DNRE -	Vic Govt Mines Dept)

LOCALITY MAP

GIPPSLAND BASIN TURRUM-5 STRATIGRAPHIC SECTION FIGURE 2

MM YEARS	ЕРОСН	SERIES	FORMATION HORIZON	PALYNOLOGICAL ZONATION SPORE - POLLEN ASSEMBLAGE ZONES A. D. PARTRIDGE/H. E. STACY	DRILL DEPTH (METRES) MEASURED DEPTH	SUBSEA DEPTH (METRES) TRUE VERTICAL DEPTH	THICKNESS (METRES) TRUE VERTICAL
-0-	<u> </u>		SEAFLOOR		85.3	60.3	
- 5 -		EMLE					
-10-	-	LATE	GIPPSLAND				1206.7
-15-	MIOCENE	MIDDLE			1292	1267	
-20-	W	EARLY	LAKES				
-25-			ENTRANCE				
-30-	OLIGOCENE	LATE	FORMATION	P. tuberculatus			94.5
-35-	OLIG	EARLY		Upper N. asperus			
-40-		LATE	GURNARD	Middle N. asperus	1386.5 1395		9.5
-45-	EOCENE	MIDDLE		Lower N. asperus	1395	1370	
50 55		EARLY	LATROBE GROUP "COARSE CLASTICS"	P. asperopolus Upper M. diversus Middle M. diversus Lower M. diversus			
-55-	PALEOCENE	LATE		Upper L. balmei			1360+
-65-	PALE	EARLY		Lower L. balmei			
	ITIAN	LATE	T.D	Upper T. Longus	<u> </u>		
-70-	MAASTRICHTIAN	EARLY L		Lower T. Longus T. Lilliei			

ÌX.

96210

K.B. = 25.0m NB: Ages are based on correlation to other Marlin/Turrum wells

APPENDIX 1

APPENDIX 1

:

TURRUM 5

Palynological Analysis

PE906495

This is an enclosure indicator page. The enclosure PE906495 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90 ITEM_BARCODE =	6495 has the following characteristics: PE906495
CONTAINER_BARCODE =	PE900858
NAME =	Palynological Report
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	=
DESCRIPTION =	Biostratigraphic Zonation and
	Palaeoenvironments of the Turrum-5
	Well, Gippsland Basin, Australia
	(enclosure from WCR vol.2) for Turrum-5
	REMARKS =
DATE_CREATED =	
DATE_RECEIVED =	
W_NO =	
WELL_NAME =	
	EXXON EXPLORATION COMPANY
$CLIENT_OP_CO =$	ESSO AUSTRALIA LIMITED
(Inserted by DNRE -	Vic Govt Mines Dept)

APPENDIX 2

APPENDIX 2

16/ R.M.

.*

ς.

TURRUM 5

Quantitative Formation Evaluation

1

Esso Australia Ltd Exploration Department

ł

÷

TURRUM-5 Formation Evaluation Log Analysis Report

Petrophysicist: L.J. Finlayson January 1996

TURRUM-5 LOG ANALYSIS

.*

Turrum-5 wireline logs have been analysed for effective porosity and water saturation over the interval 1385m to 2740m. Analysis was carried out using LASER derived total porosity and a combination of Dual Water and Archie water saturation models.

Note that all depths quoted below are MDRT unless specified otherwise. Subtract 25m to convert measured-depth to sub sea-depth.

DATA

Logs Acquired

Suite 1

LDT-AS-GR

118m to 658m

Suite 2

2757m to 655m (MSFL to 1305m) 2750m to 2135m (only FMI recorded) 2757m to 1305m (LDT to 655m) 2711m to 1406.5m (pretests and samples) 2753m to 1340m (75 levels) 1340m to 645m (11 levels) 2695m to 2460m (Numar)
2756.5m to 2133.5m, 58/60 recovered

Note: All logs acquired conventionally on wireline.

Log Quality

- The Array Sonic curves showed some minor anomalies so an edited DT curve was produced from the four transit time curves available (DT, DTL, DTLN, DTLF).
- The PEF curve was reading too high due to barite in the mud and was not used in the log analysis.
- The initial run of the LDT in suite two had unstable long and short spacing detector high voltage readings (LSHV and SSHV). These curves should normally increase slowly with temperature. Due to concerns about log validity the nuclear string was rerun with the backup LDT. The backup tool initially exhibited similar voltage instability but then stabilised. The repeat section was good (and also repeated well with the first LDT log) and the log is considered valid except for the interval 2692m to 2701m where severe voltage problems result in bad data.

Log Processing

• The NGT curves were environmentally corrected for barite and potassium in the mud by Schlumberger using the ALPHA filtering option.

.*

- Schlumberger ALPHA processed hi-res bulk density curve HNRH was used with TNPH in LASER porosity calculations.
- A gain of 1.2 was applied to TNPH to estimate the environmental corrections.
- An invasion corrected Rt was derived from the dual laterolog curves in fresh water and hydrocarbon zones. In saline water zones the LLD curve is reading too high due to resistive shoulder beds so the LLS curve was used as Rt.

INTERPRETATION

Logs Used

LLD, LLS, MSFL, HNRH, TNPH, POTA, THOR, DT (Schlumberger).

Analysis Parameters

a	1
m	1.85
n	2
Apparent Shale Porosity (PHISH)	0.15
Shale Resistivity (RSH)	20 ohmm
Bottom Hole Temperature	119 DEGC

Total Porosity

Total porosity was derived from LASER using a 4 mineral model based on quartz, feldspar, illite and kaolinite with gas included as necessary.

Neutron porosity response was modelled in SNUPAR (Schlumberger Nuclear Parameter programme) for each mineral including gas based on Marlin and Turrum composition data.

Both Marlin and Turrum sands are quartz rich with up to 10% feldspar content. When clay is present it is typically illite/smectite with minor amounts of kaolinite. Below 2595m the feldspar content of sands increases to about 20%.

Mineralog

The Mineralog analytical technique is based on the infrared absorption of a finely ground sample dispersed in a potassium bromide matrix.

.

In this well the samples were from wellsite plugs and the volume percentages of common rock forming minerals are displayed in a table and compared on a depth plot with the LASER outputs. Mineralog accuracy is plus or minus five percent. In general, a good match is seen with the LASER output which validates the mineral model and total porosity calculated.

Coring and Core Analysis

Core No.	Depth (m)	Recovery (m) (%)		Shift to Log (m)	
1	2197.0-2205.5	8.3	98	+2.3	
2	2205.5-2223.5	17.3	96	+2.3	
3	2508.5-2526.5	18.0	100	+3.5	
4	2526.5-2544.5	16.7	96	+3.4	
5	2544.8-2549.8	5.0	100	+2.0	
6	2568.0-2586.5	18.5	100	+3.0	

Five conventional cores were cut as follows:

Routine core porosity and permeability measurements were performed by ACS at overburden conditions on wellsite plugs cut every metre. Final core analysis will be performed by ACS every 20cm. Attached is a plot showing a comparison of core and LASER derived total porosity and grain density. In general, a good match is seen which validates the four mineral model used in LASER.

Shale Volume

The Volume of Wet Clay derived from LASER was used as VSH in effective porosity and water saturation calculations.

Free Formation Water Resistivity

Below the current Marlin GWC free formation water resistivity was derived from RWA calculations in clean water sands. Above the current Marlin contact an Rw equivalent to the deeper saline reservoirs was used instead of the underlying fresh water which is believed to have replaced the original water in this interval.

Depth	Rw (ohmm)	Salinity (ppm NaCleq)	Comments
1385-1515	0.09	35,000	saline water
1515-1725	0.40	6,500	fresh water
1725-2740	0.80-0.60	35,000	saline water

٠

Listed below are the selected Rw values and equivalent salinity.

The fresh water salinity is consistent with water produced from the Marlin gas reservoirs and the saline water is consistent with regional salinity data below fresh water flushing.

Water Saturations

Below the Marlin current GWC total water saturation was calculated using LASER total porosity in the Dual Water programme DWGP. Effective porosity and effective water saturation were calculated using the LASER VWCL as VSH. Above the Marlin current GWC the sands have high porosities, low clay content and high resistivities. In these zones, where the Dual Water equation over-corrected the effective water saturation, it was considered appropriate to use an Archie equation to derive water saturation. Invaded zone saturation, SXO, was calculated from effective porosity and an Rxo derived from the MSFL using an apparent mud filtrate resistivity of 0.05 to 0.035 ohmm.

The SXO calculation should be treated with some caution due to uncertainty in the depth of filtrate invasion and resistivity of the filtrate/formation water in the invaded zone.

Water saturation was set to 1 and porosity set to 0 in coals and carbonaceous shales.

Nuclear Magnetic Resonance Logging

Numar's MRIL was run in several modes over the interval 2460m to 2695m. Attached is a memorandum discussing the results and interpretation of this log. As a tool to identify sand fluid content it confirmed the gas, oil and water systems as interpreted by conventional log analysis over the Turrum interval. In addition, it also suggested the presence of a GOC at 2568m which was not clear from the other logs.

The L-360 Gas-Oil Contact at 2540m in the memorandum is based on core fluorescence <u>before</u> the core was shifted. After a core gamma shift of +3.4m is applied the L-360 GOC is at 2543.4m.

RESULTS

- 1. Gas bearing sands are interpreted in the Marlin reservoirs from 1393.7m to 1513.7m.
- 2. Residual gas sands are interpreted from 1518.9m to 1578m.
- 3. Residual oil sands are interpreted from 1582.6m to 1586.1m.
- 4. Water bearing sands are interpreted from 1592.6m to 2054.9m.
- 5. Thin interbedded gas and water sands are interpreted from 2060.5m to 2172.6m.
- 6. Turrum gas and oil sands are interpreted from 2198.7m to 2623m with a water sand at 2438m.
- 7. Water sands are interpreted from 2627.8m to 2679m.
- 8. Thin gas bearing sands are interpreted from 2710m to 2735.3m.

Attached are the following presentations of results:

Summary Table Log Analysis Listing Core Analysis Plots Mineralog Tables Mineralog Plots Log Analysis Depth Plot LASER Modelling Results SNUPAR Modelling Results MRIL Magnetic Resonance Image Log Results

TURRUM 5

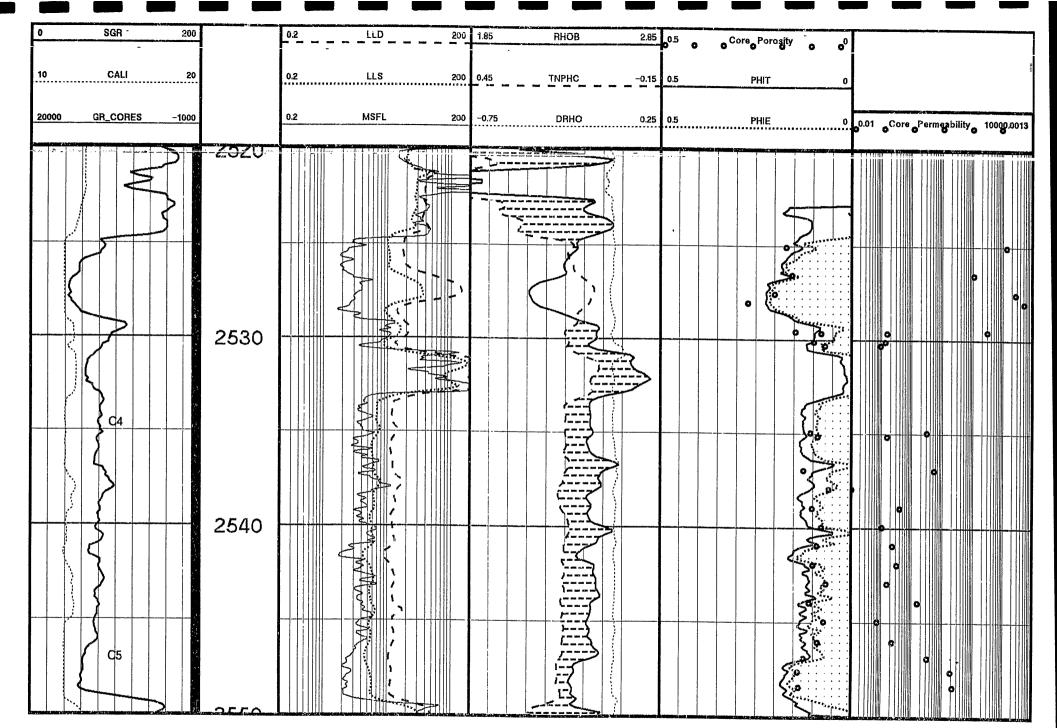
A/ 10-1

SUMMARY OF RESULTS

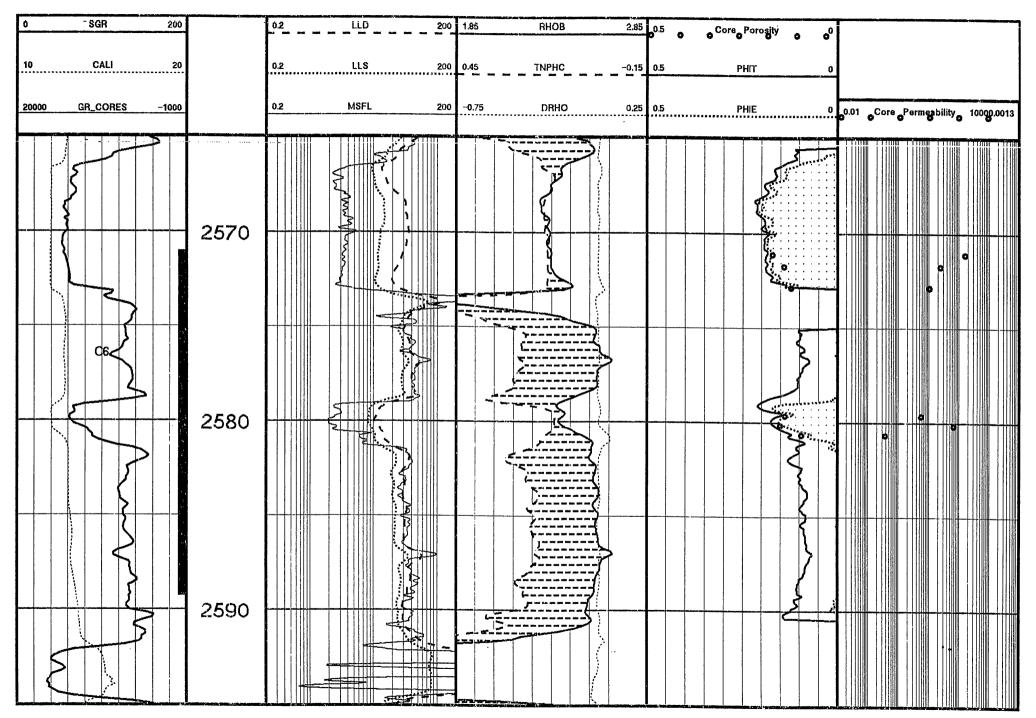
Net porosity Cut-off: 10%

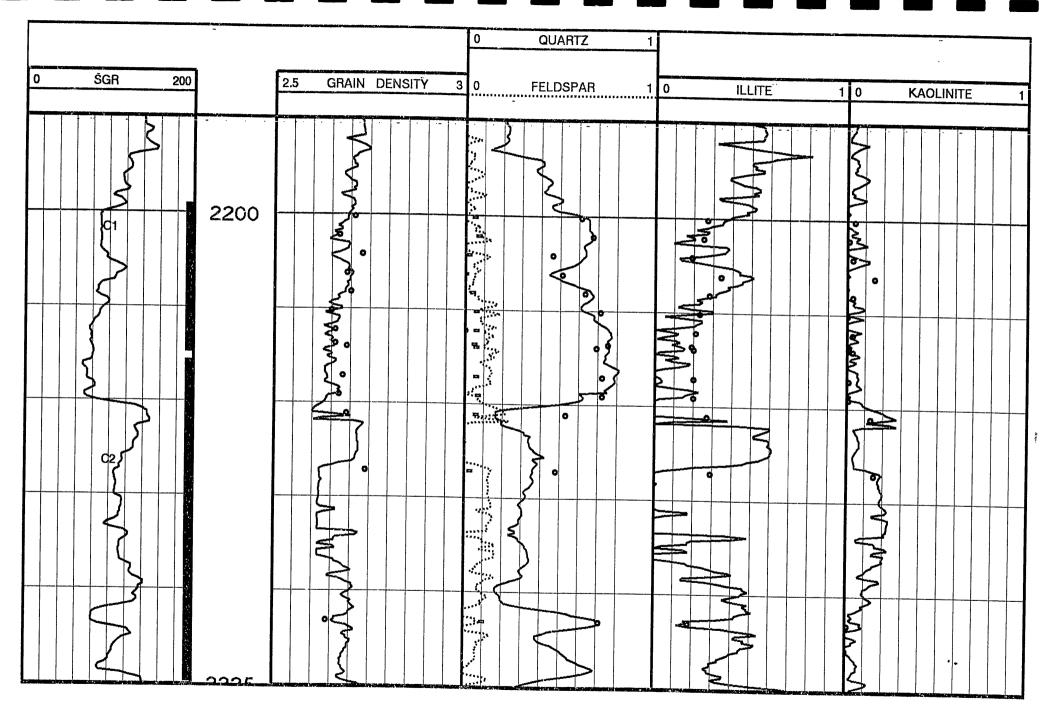
1303.7 1401.2 7.5 5.6 75 0.180 0.220 0.030 0.410 Gas 1465.4 1453.9 7.5 0.6 8 0.040 0.130 0.022 0.370 Gas 1479.3 1448.1 1.5 1.0 65 0.400 0.130 0.022 0.370 Gas 1479.3 1448.1 1.5 1.0 65 0.400 0.130 0.022 0.020 0.024 0.030 Gas 1493.2 1513.7 2.0.5 1.7.4 85 0.310 0.2210 0.024 0.760 Gas 1534.1 1537.6 3.5 3.4 97 0.070 0.290 0.100 Resid. Gas 1560.1 1547.2 1.5 1.1 77 0.470 0.150 0.022 1.000 Resid. Gas 1560.1 1543.3 1.7 1.6 92.0 0.200 0.040 0.700 Resid. Gas 1560.1 1551.8 1.7	Depth (mM (top)	DRT) (base)	Gross (m)	Nət (m)	N/G (%)	Mean Vwciay	Mean Porosity	(Std.) (Dəv.)	Məan Sw	Comments
1465.4 1452.0 466.6 458.8 98 0.150 0.2250 0.038 0.040 Gess 1473.3 1474.8 1.5 1.0 66 0.400 0.130 0.016 0.022 0.370 Gess 1479.3 1474.8 1.5 1.0 65 0.030 0.029 0.020 0.029 0.060 Gess 1493.2 151.7 2.0.5 17.4 85 0.310 0.220 0.024 0.700 Gess 1534.1 1537.6 3.5 3.4 97 0.0170 0.220 0.024 0.700 Resid. Gess 1550.0 151.8 1.7 1.6 92 0.200 0.100 Resid. Gess 1550.0 15.3 1.7 1.6 92 0.240 0.240 0.400 0.780 Resid. Gess 1550.0 15.4 1.7 1.6 92.0 0.200 0.040 0.700 Resid. Gess 1550.0 15.4 0.16 0						-	-			_
1465.4 1463.9 7.5 0.6 8 0.040 0.130 0.016 0.040 Ges 1473.3 1474.8 1 0.8 0.6 78 0.210 0.230 0.034 0.310 Ges 1483.6 1492.3 8.7 8.6 99 0.080 0.290 0.024 0.045 0.160 Ges 1493.2 1513.7 20.5 17.4 85 0.310 0.220 0.024 0.040 Resid. Ges 1518.9 1534.7 1.5 1.1 77 0.470 0.150 0.226 0.760 Resid. Ges 1545.4 1551.4 1.7 1.6 92 0.260 0.040 0.560 Resid. Ges 1554.6 1553.5 1.0 0.8 80 0.370 0.260 0.044 0.710 Resid. Ges 1554.6 1563.5 1.0 0.8 80 0.300 0.220 0.400 0.160 0.221 0.201 Resid. Ges <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
1473.3 1474.8 1.5 1.0 66 0.400 0.160 0.022 0.031 Grass 1483.6 1480.1 0.8 0.6 78 0.210 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.024 0.045 0.160 Grass 1483.6 1493.2 153.1 153.1 153.4 0.010 0.220 0.012 0.026 0.760 Resid. Grass 1554.1 153.7 1.5 1.1 77 0.470 0.160 0.026 1.000 Resid. Grass 1550.0 1551.8 1.7 1.6 92 0.000 0.020 0.040 0.710 Resid. Grass 1560.0 1563.2 1.2 2.9 90 0.080 0.200 0.040 0.710 Resid. Grass 1576.7 1578.0 1.4 1.0 74 0.520 0.040 0.700 Resid. Crass 1582.4 1583.3 0.7 0.5										
1479.3 1480.1 0.6 0.6 78 0.210 0.024 0.030 Gas 1483.6 1492.3 1513.7 20.5 17.4 85 0.310 0.210 0.045 0.160 Gas 1518.9 1534.0 15.1 15.0 97 0.100 0.220 0.024 0.045 0.000 Resid. Gas 1544.7 154.7.2 1.5 1.1 77 0.470 0.150 0.026 0.040 0.560 Resid. Gas 1554.6 1555.5 1.0 0.8 80 0.390 0.220 0.040 0.780 Resid. Gas 1562.6 1563.3 1.7 1.6 92 0.260 0.044 0.710 Resid. Gas 1563.6 1563.7 1.4 1.0 74 0.520 0.140 0.027 0.890 Resid. Gas 1582.6 1583.3 0.7 0.5 7.6 0.460 0.160 0.021 1.000 Water 1582.6										
1483.6 1493.2 151.3.7 20.5 17.4 85 0.100 0.229 0.029 0.029 0.60 Gas 1518.9 153.40 15.1 15.0 99 0.100 0.280 0.024 0.760 Resid. Gas 1584.1 153.7.6 3.5 3.4 97 0.070 0.290 0.019 Resid. Gas 1565.0 1561.8 1.7 1.6 92 0.040 0.760 Resid. Gas 1565.0 1563.2 3.2 2.9 90 0.080 0.260 0.044 0.710 Resid. Gas 1562.6 1563.2 3.2 2.9 90 0.080 0.260 0.044 0.710 Resid. Gas 1582.6 1583.3 0.7 0.5 67 0.460 0.160 0.027 0.890 Resid. Cis 1582.6 1583.3 0.7 0.5 76 0.400 0.160 0.023 1.000 Water 1582.6 1587.4 1.8										
1432. 1513.7 20.5 17.4 85 0.310 0.210 0.045 0.163 Caract 1518.9 1534.0 15.1 15.0 99 0.100 0.280 0.024 0.760 Resid. Gas 1543.1 1537.2 1.5 1.1 17 0.070 0.200 0.040 0.560 Resid. Gas 1554.6 1555.6 1.0 0.8 20 0.200 0.040 0.780 Resid. Gas 1564.7 1578.0 1.4 1.0 74 0.850 0.170 0.025 0.100 Resid. Gas 1582.6 1583.3 0.7 0.5 67 0.460 0.160 0.024 0.980 Resid. Cit 1582.6 1583.3 0.7 0.5 76 0.460 0.160 0.021 1.000 Water 1592.6 15973.3 0.7 0.5 76 0.400 0.150 0.021 1.000 Water 1592.6 1597.4 1.8										
Current Martin Gas-Worler Contact of 1518.5m MDRT 1518.9 1534.0 15.1 15.0 99 0.100 0.280 0.026 0.760 Resid. Gas 1543.1 1537.6 3.5 3.4 97 0.070 0.290 0.019 1.000 Resid. Gas 1545.0 1551.8 1.7 1.6 92.020 0.040 0.780 Resid. Gas 1550.0 1563.2 2.2 9 0.080 0.260 0.044 0.710 Resid. Gas 1582.6 1583.3 0.7 0.5 67 0.460 0.102 0.890 Resid. Cit 1582.6 1583.3 0.7 0.5 67 0.460 0.102 0.890 Resid. Cit 1682.6 1583.3 0.7 0.5 67 0.460 0.102 0.00 Water 1682.6 1583.3 0.7 0.5 76 0.400 0.120 0.00 Water 1682.6 1597.4 1.8 1.6 89 0										
1534.1 1537.6 3.5 3.4 97 0.070 0.290 0.019 1.000 Resid: Gas 1545.7 1551.8 1.7 1.6 92 0.260 0.240 0.040 0.560 Resid: Gas 1550.0 1553.2 2.2 9 0.080 0.220 0.044 0.710 Resid: Gas 1560.0 1563.2 3.2 2.9 0.080 0.220 0.044 0.710 Resid: Gas 1582.6 1583.3 0.7 0.5 67 0.460 0.160 0.022 0.980 Resid: Cit 1582.6 1583.3 0.7 0.5 76 0.400 0.140 0.027 0.980 Resid: Cit 1692.6 1597.4 1.8 1.8 87 0.400 0.140 0.012 1.000 Water 1605.8 1608.7 2.9 1.5 52 0.470 0.120 0.100 Water 1612.9 1644 2.0 1.3 68 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1545.7 1547.2 1.5 1.1 77 0.470 0.150 0.026 1.000 Resid. Gas 1550.6 1551.8 1.7 1.6 92 0.260 0.240 0.040 0.560 Resid. Gas 1564.6 1555.5 1.0 0.8 80 0.390 0.200 0.044 0.710 Resid. Gas 1562.6 1583.3 0.7 0.5 67 0.460 0.160 0.022 0.890 Resid. Cit 1582.6 1583.3 0.7 0.5 76 0.400 0.160 0.022 0.890 Resid. Cit 0.592.6 1593.3 0.7 0.5 76 0.400 0.150 0.021 1.000 Water 1602.0 1604.5 2.5 1.8 73 0.400 0.120 0.101 1.000 Water 1612.9 1614.9 2.0 1.3 68 0.420 0.120 0.015 1.000 Water 1602.0 1641.8 <					99	0.100			0.760	Resid. Gas
1550.0 1551.8 1.7 1.6 92 0.240 0.240 0.040 0.780 Resid. Gas 1564.0 1555.6 1.0 0.8 80 0.390 0.200 0.044 0.710 Resid. Gas 1570.7 1578.0 1.4 1.0 74 0.350 0.170 0.025 1.00 Resid. Gas 070janid Mariin Gas - Oll Contact at 1581m MDRT (-1556m SS) 0.40 0.027 0.890 Resid. Oll 1592.6 1593.3 0.7 0.5 76 0.400 0.120 0.021 1.000 Water 1692.6 1597.4 1.8 1.6 89 0.240 0.023 1.000 Water 1602.0 1604.5 2.5 1.8 73 0.400 0.120 0.1015 1.000 Water 1605.8 10.027 1.03 8.6 0.450 0.140 0.022 1.000 Water 1605.5 1.6 1.4 90 0.330 0.170										Resid. Gas
1554.6 1555.6 1.0 0.8 80 0.390 0.200 0.040 0.780 Resid. Gas 1576.7 1578.0 1.4 1.0 74 0.350 0.170 0.025 1.000 Resid. Gas 1582.6 1583.3 0.7 0.5 67 0.460 0.160 0.026 0.980 Resid. OII 1582.6 1583.3 0.7 0.5 7 0.400 0.126 0.027 0.890 Resid. OII 1592.6 1597.4 1.8 1.6 89 0.240 0.230 0.040 1.000 Wather 1605.8 1608.7 2.9 1.5 52 0.470 0.120 0.012 1.000 Wather 1612.9 1614.9 2.0 1.3 68 0.450 0.140 0.012 1.000 Wather 1620.7 1621.8 1.1 1.0 92 0.330 0.170 0.022 1.000 Wather 1630.1 1644.8										
1560.0 1563.2 3.2 2.9 90 0.080 0.260 0.044 0.710 Resid. Gas 1576.0 1578.0 1.4 1.0 74 0.350 0.170 0.025 1.000 Resid. Gas 1582.6 1583.3 0.7 0.5 67 0.440 0.120 0.026 0.890 Resid. Cill 1585.1 0.8 0.6 74 0.520 0.140 0.027 0.890 Resid. Cill 1592.6 1593.3 0.7 0.5 76 0.400 0.160 0.021 1.000 Water 1595.6 1597.4 1.8 1.8 73 0.400 0.140 0.023 1.000 Water 1605.8 1608.7 2.9 1.5 52 0.470 0.120 0.015 1.000 Water 1612.9 1614.9 2.0 1.3 6.8 0.450 0.140 0.022 1.000 Water 1620.7 1621.8 1.1 1.0										
1576.7 1578.0 1.4 1.0 74 0.320 0.170 0.025 1.000 Resid. Gas 1582.6 1583.3 0.7 0.5 67 0.460 0.160 0.022 0.980 Resid. Oil 1585.5 1586.1 0.8 0.6 74 0.520 0.140 0.027 0.980 Resid. Oil 070jinal Martin Oil -Water Contact at 1589m MDRT (-1564m SS) 0.001 Water 1.000 Water 1602.6 1597.4 1.8 1.6 89 0.240 0.120 0.001 1.000 Water 1612.9 1644.9 2.0 1.3 68 0.450 0.140 0.012 1.000 Water 1630.1 1.644.8 1.4 100 0.120 0.005 1.000 Water 1633.1 1.644.8 1.4 1.00 0.160 0.022 1.000 Water 1633.1 1644.8 1.48 1.00 0.160 0.021 1.000 Water										
Original Martín Gas - Oil Contact at 1881m MDRT (-1556m SS) 1582.5 1583.3 0.7 0.5 67 0.460 0.020 0.980 Resid. Oil 1582.6 1583.3 0.7 0.5 67 0.400 0.027 0.890 Original Martín Oll - Water Contact at 1589m MDRT (-1564m SS) 0.7 0.5 7.6 0.400 0.150 0.021 1.000 Water 1602.0 1604.5 2.5 1.8 7.3 0.400 0.140 0.023 1.000 Water 1612.9 1614.9 2.0 1.3 68 0.450 0.140 0.012 1.000 Water 1620.7 1621.8 1.1 1.0 92 0.330 0.160 0.028 1.000 Water 1630.1 1644.8 14.8 14.8 100 0.180 0.230 0.052 1.000 Water 1657.5 1654.5 1.0 0.9 87 0.400 0.160 0.028 1.000 Water 165										
1582.6 1583.3 0.7 0.5 67 0.400 0.160 0.027 0.890 Resid. Oil Driginal Martin OII- Water Contact at 1589m MDRT(-1554m SS) 0.7 0.5 76 0.400 0.150 0.021 0.000 Water 1592.6 1593.3 0.7 0.5 76 0.400 0.150 0.023 1.000 Water 1602.0 1604.5 2.5 1.8 73 0.400 0.160 0.023 1.000 Water 1612.9 1614.9 2.0 1.3 68 0.450 0.160 0.028 1.000 Water 1630.7 1621.8 1.1 1.0 92 0.330 0.170 0.022 1.000 Water 1630.7 1644.8 1.48 1.48 0.400 0.160 0.021 1.000 Water 1635.5 1656.5 1.0 0.9 87 0.400 0.150 0.017 1.000 Water 1636.1 1644.8 1.48 <td>15/0./</td> <td>15/8.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.000</td> <td>Resia. Gas</td>	15/0./	15/8.0							1.000	Resia. Gas
1585.3 1586.1 0.8 0.6 74 0.520 0.140 0.027 0.890 Resid. Oil 1592.6 1597.4 1.8 1.6 89 0.240 0.230 0.040 1.000 Water 1605.6 1597.4 1.8 1.6 89 0.240 0.230 0.040 1.000 Water 1605.8 1608.7 2.9 1.5 52 0.470 0.120 0.015 1.000 Water 1612.9 1614.9 2.0 1.3 68 0.450 0.140 0.012 1.000 Water 1620.7 1621.8 1.1 1.0 92 0.330 0.160 0.028 1.000 Water 1620.7 1644.8 1.4.8 100 0.180 0.230 0.052 1.000 Water 1675.5 1674.6 2.0 1.9 91 0.370 0.160 0.021 1.000 Water 1675.5 1674.6 2.0 1.9	1582.6	1583.3							0.080	Posid Oil
Criginal Marlin Oil - Water Contact at 1589m MDRT (-1564m SS) 1592.6 1593.3 0.7 0.5 76 0.400 0.150 0.021 1.000 Water 1595.6 1597.4 1.8 1.6 89 0.240 0.230 0.040 1.000 Water 1602.0 1604.5 2.5 1.8 73 0.400 0.140 0.023 1.000 Water 1612.9 1614.9 2.0 1.3 68 0.450 0.140 0.012 1.000 Water 1620.7 1621.8 1.1 1.0 92 0.330 0.160 0.022 1.000 Water 1630.1 1644.8 14.8 14.8 100 0.180 0.230 0.052 1.000 Water 1675.5 1658.5 1.0 0.9 87 0.400 0.150 0.021 1.000 Water 1678.6 1679.8 1.2 1.0 89 0.360 0.160 0.028 1.000										
1692.6 1693.3 0.7 0.5 76 0.400 0.150 0.021 1.000 Water 1692.6 1597.4 1.8 1.6 89 0.240 0.230 0.040 1.000 Water 1602.0 1604.5 2.5 1.8 73 0.400 0.120 0.015 1.000 Water 1617.7 1619.9 1.6 1.4 90 0.430 0.160 0.028 1.000 Water 1620.7 1621.8 1.1 1.0 92 0.330 0.170 0.029 1.000 Water 1657.5 1658.5 1.0 0.9 87 0.400 0.150 0.017 1.000 Water 1675.5 1674.6 2.0 1.9 91 0.370 0.160 0.028 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1698.1 1705.4 10.3 9	1000.0	1000.1								
1595.6 1597.4 1.8 1.6 89 0.240 0.230 0.040 1.000 Water 1602.0 1604.5 2.5 1.8 73 0.400 0.140 0.023 1.000 Water 1612.9 1614.9 2.0 1.3 68 0.450 0.140 0.012 1.000 Water 1617.7 1619.3 1.6 1.4 90 0.430 0.160 0.028 1.000 Water 1620.7 1621.5 1624.6 1.0 1.9 2.033 0.170 0.029 1.000 Water 1657.5 1658.5 1.0 0.9 87 0.400 0.150 0.017 1.000 Water 1678.5 1674.6 2.0 1.9 91 0.370 0.160 0.028 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.022 1.000 Water	1592.6	1593.3								Water
1602.0 1604.5 2.5 1.8 73 0.400 0.140 0.023 1.000 Worter 1612.9 1614.9 2.0 1.5 52 0.470 0.120 0.015 1.000 Worter 1617.7 1619.3 1.6 1.4 90 0.430 0.160 0.028 1.000 Worter 1630.1 1644.8 1.4 1.0 92 0.330 0.170 0.029 1.000 Worter 1630.1 1644.8 1.48 1.48 1.00 0.180 0.230 0.052 1.000 Worter 1678.6 1679.8 1.2 1.0 9 0.360 0.160 0.021 1.000 Worter 1688.2 1689.0 0.9 0.8 92 0.160 0.025 1.000 Worter 1717.5 0.7 0.6 90 0.360 0.180 0.027 1.000 Worter 1719.9 1722.4 2.6 2.3 92 <										
1605.8 1608.7 2.9 1.5 52 0.470 0.120 0.015 1.000 Water 1612.9 1614.9 2.0 1.3 68 0.450 0.140 0.012 1.000 Water 1620.7 1621.8 1.1 1.0 92 0.330 0.170 0.029 1.000 Water 1630.1 1644.8 14.8 14.8 100 0.180 0.230 0.052 1.000 Water 1672.5 1674.6 2.0 1.9 91 0.370 0.160 0.021 1.000 Water 1678.6 1679.8 1.2 1.0 89 0.360 0.160 0.021 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.400 0.150 0.027 1.000 Water 1719.9 172.4 2.6 2.3 92 0.400 0.150 0.027 1.000 Water 1741.5 175.6 4.0 2					73					
1617.7 1619.3 1.6 1.4 90 0.430 0.160 0.028 1.000 Water 1620.7 1621.8 1.1 1.0 92 0.330 0.170 0.029 1.000 Water 1630.1 1648.8 14.8 14.8 100 0.180 0.220 0.052 1.000 Water 1657.5 1658.5 1.0 0.9 87 0.400 0.150 0.017 1.000 Water 1678.6 1679.8 1.2 1.0 89 0.360 0.160 0.028 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.022 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.014 1.000 Water 17475. 1751.6 4.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Water</td></td<>										Water
1620.7 1621.8 1.1 1.0 92 0.330 0.170 0.029 1.000 Water 1630.1 1644.8 14.8 14.8 100 0.180 0.230 0.052 1.000 Water 1657.5 1658.5 1.0 0.9 87 0.400 0.150 0.017 1.000 Water 1678.6 1679.8 1.2 1.0 89 0.360 0.160 0.028 1.000 Water 1683.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 179.3 170.3 9.5 92 0.400 0.150 0.027 1.000 Water 179.9 1722.4 2.6 2.3 92 0.400 0.150 0.027 1.000 Water 173.2 1751.6 4.0 2.6 65 0.420 0.130 0.014 1.000 Water 1753.8 1751.6 4.0 2.6 65 0.420 0.130 0.024 1.000 Water 1765.8 <	1612.9	1614.9	2.0	1.3	68	0.450	0.140	0.012	1.000	Water
1630.1 1644.8 14.8 14.8 100 0.180 0.230 0.052 1.000 Water 1657.5 1658.5 1.0 0.9 87 0.400 0.150 0.017 1.000 Water 1672.5 1674.6 2.0 1.9 91 0.370 0.160 0.028 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1688.1 1717.5 0.7 0.6 90 0.360 0.180 0.025 1.000 Water 1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.027 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1791.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water	1617.7	1619.3		1.4						
1657.5 1658.5 1.0 0.9 87 0.400 0.150 0.017 1.000 Water 1678.6 1678.6 2.0 1.9 91 0.370 0.160 0.028 1.000 Water 1678.6 1679.8 1.2 1.0 89 0.360 0.160 0.028 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1693.1 1703.4 10.3 9.5 92 0.190 0.210 0.058 1.000 Water 1719.9 1722.4 2.6 2.3 92 0.400 0.150 0.027 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.020 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1779.1 1782.6 3.6 3										
1672.5 1674.6 2.0 1.9 91 0.370 0.160 0.021 1.000 Water 1678.6 1679.8 1.2 1.0 89 0.360 0.160 0.028 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1693.1 1703.4 10.3 9.5 92 0.400 0.210 0.058 1.000 Water 1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.025 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.014 1.000 Water 1747.5 1751.6 4.0 2.6 65 0.420 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1791.1 1782.6 3.6 3.4 96 0.190 0.221 1.000 Water 1796.5 <										
1678.6 1679.8 1.2 1.0 89 0.360 0.160 0.028 1.000 Water 1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1693.1 1703.4 10.3 9.5 92 0.190 0.210 0.058 1.000 Water 1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.025 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.177 0.043 1.000 Water 1779.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1796.5 1800.9 4.4 3.6 83 0.370 0.140 0.024 1.000 Water <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1688.2 1689.0 0.9 0.8 92 0.460 0.130 0.010 1.000 Water 1693.1 1703.4 10.3 9.5 92 0.190 0.210 0.058 1.000 Water 1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.025 1.000 Water 1719.9 1722.4 2.6 2.3 92 0.400 0.150 0.027 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1779.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1835.1 180.7 4.4 3.										
1693.1 1703.4 10.3 9.5 92 0.190 0.210 0.058 1.000 Water 1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.025 1.000 Water 1719.9 1722.4 2.6 2.3 92 0.400 0.150 0.027 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.020 1.000 Water 1747.5 1751.6 4.0 2.6 65 0.420 0.130 0.014 1.000 Water 1779.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.160 0.017 1.000 Water <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1716.8 1717.5 0.7 0.6 90 0.360 0.180 0.025 1.000 Water 1719.9 1722.4 2.6 2.3 92 0.400 0.150 0.027 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.020 1.000 Water 1747.5 1751.6 4.0 2.6 65 0.420 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1779.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1796.5 1800.9 4.4 3.6 83 0.370 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1719.9 1722.4 2.6 2.3 92 0.400 0.150 0.027 1.000 Water 1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.020 1.000 Water 1747.5 1751.6 4.0 2.6 65 0.420 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1779.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1824.7 1827.0 2.4 2.2 93 0.350 0.150 0.031 0.900 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1732.2 1734.3 2.0 1.7 82 0.340 0.130 0.020 1.000 Water 1747.5 1751.6 4.0 2.6 65 0.420 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1779.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1846.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1747.5 1751.6 4.0 2.6 65 0.420 0.130 0.014 1.000 Water 1753.8 1760.4 6.6 6.2 93 0.300 0.170 0.043 1.000 Water 1777.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1786.5 1789.1 2.6 2.2 84 0.380 0.140 0.025 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1846.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1779.1 1782.6 3.6 3.4 96 0.190 0.210 0.029 1.000 Water 1786.5 1789.1 2.6 2.2 84 0.380 0.150 0.023 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1796.5 1800.9 4.4 3.6 83 0.370 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.140 0.019 1.000 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td>65</td><td>0.420</td><td></td><td>0.014</td><td></td><td></td></td<>					65	0.420		0.014		
1786.5 1789.1 2.6 2.2 84 0.380 0.150 0.023 1.000 Water 1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1796.5 1800.9 4.4 3.6 83 0.370 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1850.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1860.3 1861.3 1.0 0.8 73 0.410 0.120 0.008 1.000 Water <td< td=""><td>1753.8</td><td>1760.4</td><td>6.6</td><td>6.2</td><td>93</td><td>0.300</td><td>0.170</td><td>0.043</td><td>1.000</td><td>Water</td></td<>	1753.8	1760.4	6.6	6.2	93	0.300	0.170	0.043	1.000	Water
1791.8 1793.0 1.3 1.0 82 0.380 0.140 0.025 1.000 Water 1796.5 1800.9 4.4 3.6 83 0.370 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water 1824.7 1827.0 2.4 2.2 93 0.350 0.140 0.019 1.000 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Water</td></td<>										Water
1796.5 1800.9 4.4 3.6 83 0.370 0.140 0.025 1.000 Water 1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water 1824.7 1827.0 2.4 2.2 93 0.350 0.140 0.019 1.000 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.028 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1813.1 1817.2 4.1 3.7 89 0.300 0.160 0.024 1.000 Water 1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water 1824.7 1827.0 2.4 2.2 93 0.350 0.140 0.019 1.000 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.023 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1821.1 1823.2 2.1 1.6 76 0.350 0.150 0.031 0.900 Water 1824.7 1827.0 2.4 2.2 93 0.350 0.140 0.019 1.000 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.023 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.021 0.940 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1824.7 1827.0 2.4 2.2 93 0.350 0.140 0.019 1.000 Water 1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.023 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.021 0.940 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1835.1 1839.4 4.3 4.1 95 0.290 0.180 0.017 1.000 Water 1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.028 1.000 Water 1888.1 1890.1 2.1 0.7 35 0.410 0.120 0.009 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.023 1.000 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1848.0 1849.4 1.5 0.9 62 0.440 0.120 0.011 0.890 Water 1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.028 1.000 Water 1888.1 1890.1 2.1 0.7 35 0.410 0.120 0.009 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.023 1.000 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water 1968.8 1971.8 2.9 1.6 56 0.380 0.120 0.017 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1851.1 1853.2 2.2 1.9 85 0.350 0.150 0.025 1.000 Water 1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.023 1.000 Water 1888.1 1890.1 2.1 0.7 35 0.410 0.120 0.009 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.023 1.000 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water 1968.8 1971.8 2.9 1.6 56 0.380 0.120 0.017 1.000 Water 1977.1 1978.0 0.9 0.6 69 0.350 0.120 0.010 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1860.3 1861.3 1.0 0.8 83 0.330 0.120 0.013 1.000 Water 1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.028 1.000 Water 1888.1 1890.1 2.1 0.7 35 0.410 0.120 0.009 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.023 1.000 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water 1968.8 1971.8 2.9 1.6 56 0.380 0.120 0.017 1.000 Water 1977.1 1978.0 0.9 0.6 69 0.350 0.120 0.010 1.000 Water 1979.8 1984.2 4.4 3.1 71 0.300 0.150 0.022 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1870.6 1871.7 1.1 0.8 73 0.410 0.120 0.008 1.000 Water 1881.4 1883.0 1.6 1.4 87 0.290 0.160 0.028 1.000 Water 1888.1 1890.1 2.1 0.7 35 0.410 0.120 0.009 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.023 1.000 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water 1968.8 1971.8 2.9 1.6 56 0.380 0.120 0.017 1.000 Water 1977.1 1978.0 0.9 0.6 69 0.350 0.120 0.010 1.000 Water 1979.8 1984.2 4.4 3.1 71 0.300 0.150 0.022 1.000 Water 1994.0 2000.3 6.3 6.2 97 0.230 0.180 0.024 1.000 Water <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
1888.1 1890.1 2.1 0.7 35 0.410 0.120 0.009 1.000 Water 1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.023 1.000 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water 1968.8 1971.8 2.9 1.6 56 0.380 0.120 0.017 1.000 Water 1977.1 1978.0 0.9 0.6 69 0.350 0.120 0.010 1.000 Water 1979.8 1984.2 4.4 3.1 71 0.300 0.150 0.022 1.000 Water 1994.0 2000.3 6.3 6.2 97 0.230 0.180 0.024 1.000 Water 2003.8 2006.3 2.5 1.7 67 0.320 0.130 0.019 1.000 Water 2013.3 2014.9 1.7 1.4 83 0.290 0.140 0.017 1.000 Water <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.410</td> <td>0.120</td> <td>0.008</td> <td>1.000</td> <td>Water</td>						0.410	0.120	0.008	1.000	Water
1930.7 1932.2 1.4 1.0 74 0.290 0.160 0.023 1.000 Water 1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water 1968.8 1971.8 2.9 1.6 56 0.380 0.120 0.017 1.000 Water 1977.1 1978.0 0.9 0.6 69 0.350 0.120 0.010 1.000 Water 1979.8 1984.2 4.4 3.1 71 0.300 0.150 0.022 1.000 Water 1994.0 2000.3 6.3 6.2 97 0.230 0.180 0.024 1.000 Water 2003.8 2006.3 2.5 1.7 67 0.320 0.130 0.019 1.000 Water 2013.3 2014.9 1.7 1.4 83 0.290 0.140 0.017 1.000 Water	1881.4	1883.0		1.4		0.290	0.160	0.028	1.000	Water
1960.0 1961.0 1.0 0.8 81 0.310 0.140 0.021 0.940 Water 1968.8 1971.8 2.9 1.6 56 0.380 0.120 0.017 1.000 Water 1977.1 1978.0 0.9 0.6 69 0.350 0.120 0.010 1.000 Water 1979.8 1984.2 4.4 3.1 71 0.300 0.150 0.022 1.000 Water 1994.0 2000.3 6.3 6.2 97 0.230 0.180 0.024 1.000 Water 2003.8 2006.3 2.5 1.7 67 0.320 0.130 0.019 1.000 Water 2013.3 2014.9 1.7 1.4 83 0.290 0.140 0.017 1.000 Water										
1968.81971.82.91.6560.3800.1200.0171.000Water1977.11978.00.90.6690.3500.1200.0101.000Water1979.81984.24.43.1710.3000.1500.0221.000Water1994.02000.36.36.2970.2300.1800.0241.000Water2003.82006.32.51.7670.3200.1300.0191.000Water2013.32014.91.71.4830.2900.1400.0171.000Water										
1977.11978.00.90.6690.3500.1200.0101.000Water1979.81984.24.43.1710.3000.1500.0221.000Water1994.02000.36.36.2970.2300.1800.0241.000Water2003.82006.32.51.7670.3200.1300.0191.000Water2013.32014.91.71.4830.2900.1400.0171.000Water										
1979.81984.24.43.1710.3000.1500.0221.000Water1994.02000.36.36.2970.2300.1800.0241.000Water2003.82006.32.51.7670.3200.1300.0191.000Water2013.32014.91.71.4830.2900.1400.0171.000Water										
1994.0 2000.3 6.3 6.2 97 0.230 0.180 0.024 1.000 Water 2003.8 2006.3 2.5 1.7 67 0.320 0.130 0.019 1.000 Water 2013.3 2014.9 1.7 1.4 83 0.290 0.140 0.017 1.000 Water										
2003.8 2006.3 2.5 1.7 67 0.320 0.130 0.019 1.000 Water 2013.3 2014.9 1.7 1.4 83 0.290 0.140 0.017 1.000 Water										
2013.3 2014.9 1.7 1.4 83 0.290 0.140 0.017 1.000 Water										

:

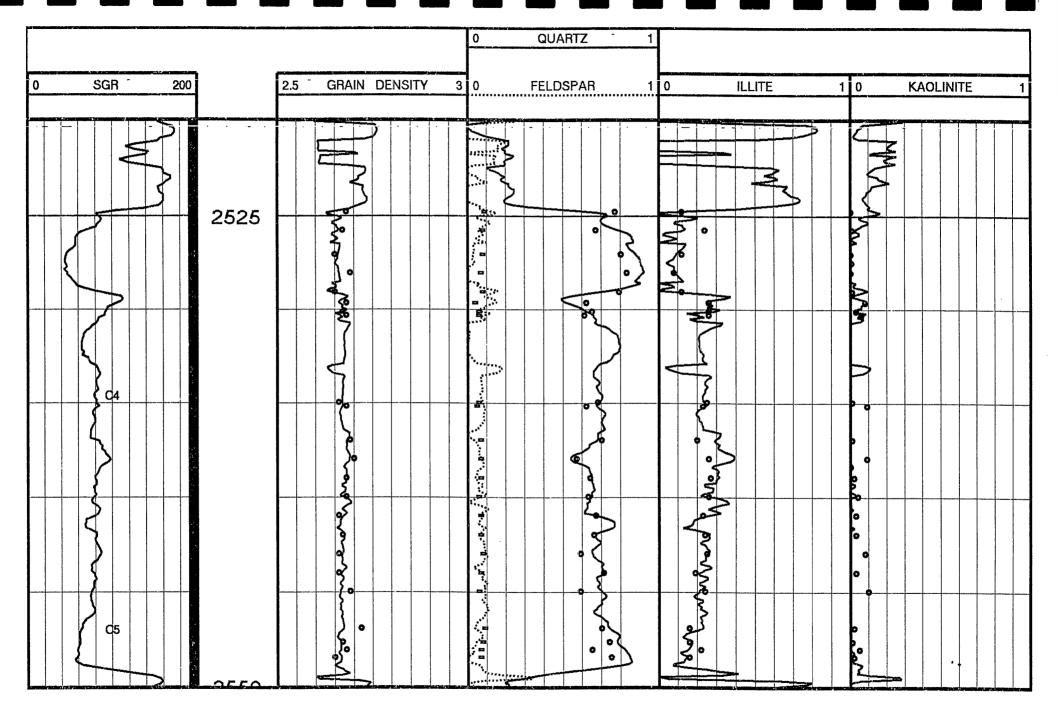

Depth (mM		Gross	Net	N/G	Mean	Mean Porosity	(Std.)	Məan Sw	Comments	
(top)	(base)	(m)	(m)	(%)	Vwclay	-	(Dev.)		Mater	
2048.4	2054.9	6.5	2.2	33	0.390	0.110	0.007	1.000	Water	
2060.5	2063.0	2.4	1.9	79	0.280	0.150	0.025		Vater w/gas ?	
2079.1	2082.3	3.2	2.3	73	0.340	0.140	0.031		Vater w/gas ?	
2088.6	2090.2	1.6	1.3	79	0.290	0.140	0.026		Vater w/gas ?	
2096.1	2100.1	4.0	3.5	86	0.290	0.130	0.015	1.000	Water	
2102.3	2104.2	1.9	1.4	70	0.160	0.170	0.030	0.630	Water w/gas	
2105.1	2107.0	1.9	1.2	64	0.340	0.140	0.030	0.760	Water w/gas	
2110.2	2112.6	2.4	1.8	78	0.270	0.140	0.039	0.700	Water w/gas	
2113.7	2115.6	1.9	1.7	91	0.220	0.160	0.021	0.780	Water w/gas	
2116.2	2116.9	0.7	0.3	46	0.350	0.120	0.007	0.900 v	Vater w/gas ?	
2125.7	2128.7	3.0	2.5	84	0.300	0.140	0.028	1.000	Water	
2134.4	2137.1	2.6	2.2	84	0.300	0.130	0.015	0.800	Water	
2145.8	2147.0	1.1	0.9	77	0.400	0.110	0.006	0.950	Water	
2140.0	2147.0	1.1	0.6	58	0.320	0.130	0.015	0.770	Water w/gas	
		0.6	0.3	52	0.460	0.120	0.012	0.670	Water w/gas	
2157.2	2157.8							0.670		
2162.4	2163.7	1.3	1.0	73	0.340	0.120	0.006		Water w/gas	
2166.6	2168.0	1.4	0.4	27	0.350	0.110	0.003	1.000	Water	
2171.5	2172.6	1.1	0.8	75	0.220	0.150	0.030	0.940	Water	
L110										
2198.7	2209.4	10.8	6.6	61	0.170	0.170	0.038	0.190	Gas	
2221.4	2224.0	2.6	0.3	12	0.240	0.100	0.002	0.680	Gas	
2230.8	2232.2	1.4	0.9	65	0.180	0.180	0.044	0.370	Gas	
2246.3	2249.2	2.9	1.5	53	0.300	0.140	0.026	0.380	Gas	
2256.3	2259.6	3.3	1.8	55	0.270	0.150	0.031	0.400	Gas	
2261.2	2262.4	1.2	0.2	20	0.340	0.100	0.002	0.680	Gas	
2290.5	2294.8	4.3	3.4	80	0.270	0.120	0.017	0.320	Gas	
2331.2	2335.9	4.6	0.8	17	0.200	0.130	0.016	0.390	Gas	
2339.9	2345.3	5.4	0.0	0	0.200	01100	0.010		< 10% porosity	
2356.4	2363.9	7.5	4.4	59	0.160	0.160	0.030	0.300	Gas	
	2000.9	7.5	4.4	07	0.100	0.100	0.000	0.000	040	
L200	2381.2	10.4	3.7	35	0.310	0.120	0.017	0.240	Gas	
2370.8				94	0.130	0.120	0.035	0.240	Gas	
2385.7	2393.1	7.5	7.0						Gas	
2405.0	2407.5	2.4	2.2	89	0.120	0.160	0.035	0.300		
2409.6	2419.3	9.6	7.8	81	0.180	0.130	0.021	0.380	Gas	
2435.8	2437.4	1.6	0.3	17	0.310	0.100	0.002	0.610	Gas ?	
2437.6	2439.5	1.9	1.3	71	0.210	0.120	0.007	0.890	Water	
2473.9	2475.4	1.5	0.3	17	0.280	0.100	0.001	0.640	Gas ?	
L360										
2524.6	2529.2	4.6	4.2	92	0.110	0.170	0.034	0.180	Gas	
2533.1	2543.4	[`] 10.3	1.2	12	0.190	0.120	0.014	0.380	Gas	
			Gas - (Oil Conto	act at 2543	3.4m**				
2543.4	2549.5	6.0	3.0	50	0.170	0.140	0.021	0.320	Oil*	
L400										
2566.0	2568.0	2.0	1.8	88	0.160	0.150	0.021	0.250	Oil**	
					tact at 25					
2568.1	2572.8	4.7	4.7	100	0.090	0.180	0.020	0.170	Oil*	
2579.0	2581.0	2.0	1.5	72	0.210	0.140	0.018	0.310	Gas ?	
L500	2001.0	2.0	1.0	12	0.210	0.140	0.010	0.010	0.001	
2598.9	2602.0	3.1	2.1	67	0.050	0.150	0.029	0.300	Gas*	
2090.9	2002.0	5.1			tact at 26		0.027	0.000	000	
0(00.1	0/00/	7 6					0.014	0.210	Oil	
2602.1	2609.6	7.5	7.2	97 71	0.040	0.150				
2610.6	2623.0	12.4	8.7	71	0.060	0.130	0.016	0.390	Oil	
2627.8	2641.6	13.7	6.6	48	0.080	0.120	0.008	1.000	Water	
2649.6	2675.1	25.5	14.7	58	0.110	0.130	0.014	1.000	Water	
2676.5	2679.0	2.5	1.4	55	0.100	0.120	0.012	0.870	Water	
2710.0	2711.7	1.7	0.8	47	0.210	0.120	0.013	0.670	Gas?	
2721.9	2723.8	2.0	0.0	0					< 10% porosity	
2726.4	2727.9	1.4	0.4	27	0.260	0.110	0.003	0.350	Gas	
2729.2	2730.4	1.2	0.5	43	0.210	0.120	0.007	0.310	Gas	
2734.2	2735.3	1.1	0.4	39	0.230	0.110	0.007	0.370	Gas	

66 ges

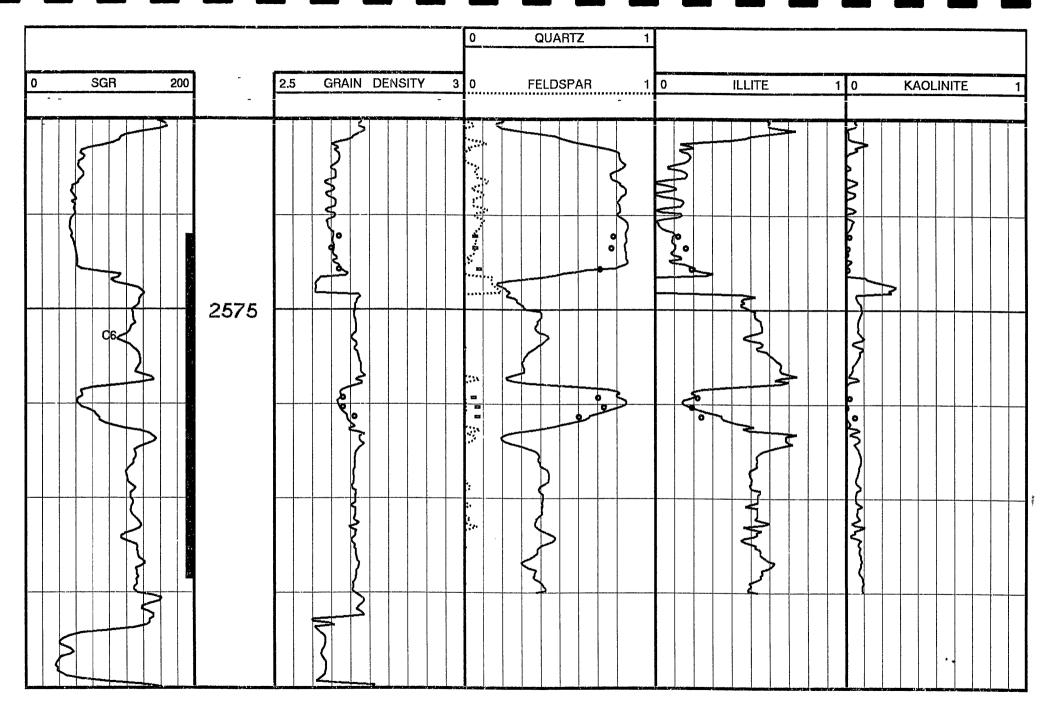

.*


*Confirmed by MDT sample **Based on core fluorescence

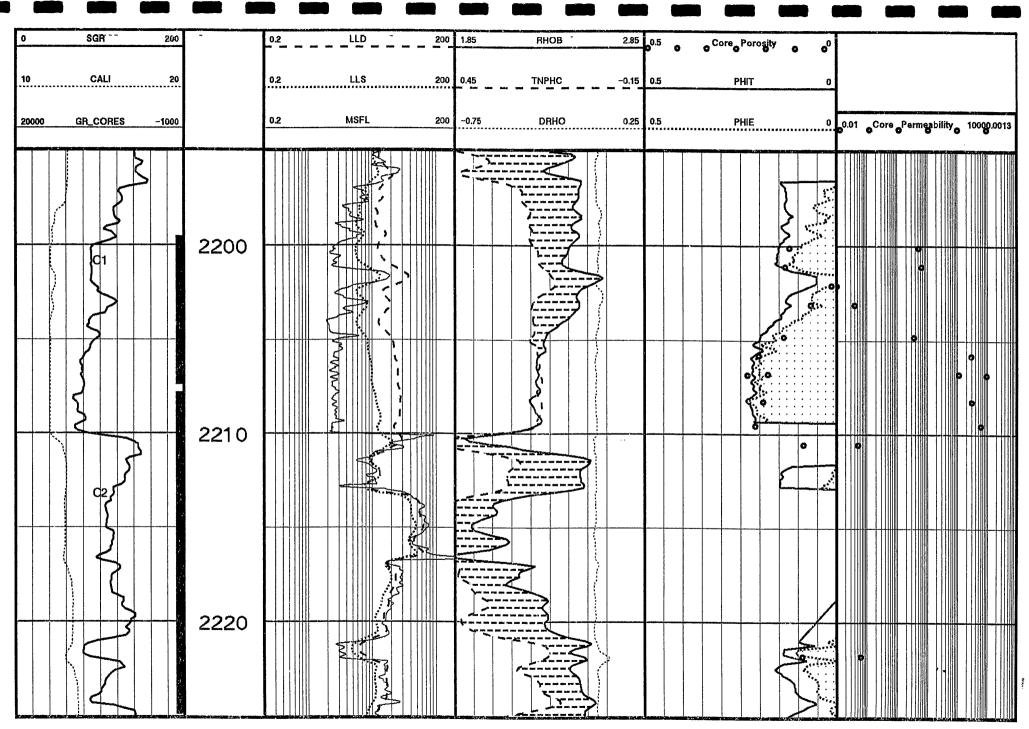
CORE ANALYSIS VS LOG ANALYSIS



CORE ANALYSIS VS LOG ANALYSIS



MINERALOG VS LASER RESULTS


MINERALOG VS LASER RESULTS

MINERALOG VS LASER RESULTS

.

CORE ANALYSIS VS LOG ANALYSIS

CORE LABORATORIES MINERALOG ANALYSIS VOLUME %*

COMPANY: ESSO AUSTRALIA LTD. WELL NAME: TURRUM #5 WELL LOCATION: AUSTRALIA SAMPLE TYPE: PLUG TRIM ENDS

FILE NO.: PRP-95048 DATE: 1-Nov-95 ANALYSTS: M.KAROLIA J.LOWRY

٠.

	GRAIN		······································								
DEPTH (M)	DENSITY INDEX	QUARTZ	PLAGIOCLASE	K-FELDSPAR	SIDERITE	DOLOMITE	PYRITE	TOTAL CLAY	KAOLINITE	CHLORITE	ILL+SMEC
CORE 1											
2197.78	2.71	61	0	5	2	1	0	31	4	0	27
2198.78	2.67	67	0	7	0	0	0	26	0	0	26
2199.78	2.73	46	0	2	0	30	0	22	3	0	19
2200.78	2.69	51	0	0	.0	0	0	49	15	0	34
2201.78	2.70	63	0	4	2	0	0	31	3	0	28
2202.78	2.65	71	0	6	0	0	0	23	0	0	23
2203.78	2.66	70	0	6	0	0	0	24	3	0	21
2204.52	2.66	75	0	5	0	0	0	20	0	0	20
2204.68	2.68	67	0	5	1	. 0	0	27	3	0	24
2206.25	2.68	72	0	6	1	0	0	21	0	0	21
CORE 2	l .							0			
2207.25	2.67	72	0	7	0	0	0	21	0	0	21
2208.25	2.69	53	0	6	1	0	0	40	13	0	27
2211.25	2.74	48	0	3	4	1	0	44	15	0	29
2219.25	2.64	71	0	10	0	0	0	19	0	0	19
CORE 3	1							0			
2521.25	2.68	77	0	9	0	0	2	12	0	0	12
2522.25	2.67	67	0	8	0	0	0	25	0	0	25
2523.55	2.65	80	0	8	0	0	0	12	0	0	12
2524.55	2.69	83	0	7	0	0	2	8	0	0	8
2525.55	2.65	79	0	8	0	0	0	13	0	0	13
2526.15	2.68	62	0	4	0	0	0	34	8	0	26
2526.70	2.67	65	0	6	0	0	0	29	3	0	26
1	1								1		

* Values calculated using mineral densities supplied by ESSO Australia Ltd.

Core Laboratories - Australia

MINERALOG RESULTS

CORE LABORATORIES MINERALOG ANALYSIS VOLUME %*

COMPANY: ESSO AUSTRALIA LTD. WELL NAME: TURRUM #5 WELL LOCATION: AUSTRALIA SAMPLE TYPE: PLUG TRIM-ENDS FILE NO.: PRP-95048 DATE: 1-Nov-95 ANALYSTS: M.KAROLIA J.LOWRY

۰.

	GRAIN										
DEPTH (M)	DENSITY INDEX	QUARTZ	PLAGIOCLASE	K-FELDSPAR	SIDERITE	DOLOMITE	PYRITE	TOTAL CLAY	KAOLINITE	CHLORITE	ILL+SMEC
CORE 4											
2526.90	2.68	61	0	6	0	0	1	32	6	0	26
2531.55	2.66	68	0	6	0	0	0	26	1	0	25
2531.75	2.68	62	0	5	0	0	1	32	9	0	23
2533.55	2.68	69	0	9	· 2	0	0	20	0	0	20
2534.55	2.70	57	0	7	0	0	1	35	9	0	26
2535.55	2.68	64	0	7	0	0	0	29	0	0	29
2536.55	2.68	63	0	6	0	0	1	30	4	0	26
2537.55	2.66	67	0	7	0	0	0	26	3	0	23
2538.55	2.66	67	0	7	0	0	0	26	3	0	23
2539.55	2.66	59	0	8	0	0	0	33	8	0	25
2540.55	2.66	71	0	7	0	0	0	22	0	0	22
2541.55	2.69	59	0	6	0	0	1	34	10	0	24
2544.65	2.68	65	0	7	0	0	1	27	5	0	22
CORE 5								0			
2544.90	2.72	70	0	9	0	0	3	18	0	0	18
2545.65	2.67	74	0	8	0	0	1	17	0	0	17
2546.45	2.65	75	0	7	0	0	0	18	0	0	18
CORE 6					÷			0			
2568.10	2.67	78	0	6	2	0	0	14	0	0	14
2568.75	2.65	77	0	6	0	0	0	17	0	0	17
2569.85	2.67	71	0	8	0	0	1	20	0	0	20
2576.65	2.68	70	0	5	1	0	0	24	2	0	22
2577.15	2.68	73	0	7	1	0	0	19	0	0	19
2577.65	2.71	60	0	7	4	0	0	29	5	0	24

* Values calculated using mineral densities supplied

by ESSO Australia Ltd.

Core Laboratories - Australia

MINERALOG RESULTS

Petrophysical Response of Common Minerals LASER Modelling Parameters Marlin and Turrum Reservoirs by

Wm Scott Dodge Snr


Mineral	Mineral	Chemical	RHOB Litho	PEF Photoelectric	U Volumetric	TNPH Thermal	DT Compressional	POTA Potassium	THOR
Classification	Name	Elements	Density	Factor	Photoelectric Factor	Neutron Porosity	Transit Time		monum
			(gm/cm3)	(barns/electron)) (barns/cm3)	(p.u.)	(us/metre)	(wt %)	(ppm)
Silica	Quartz	SIO2	2.64	1.81	4.79	-2.1	165.3	0.00	0.5 -> 6.0
Feldspars	Orthoclase	KAISi3O8	2.54	2.86	7.29	-0.1	175.5	10.50	0.0
Clays	Kaolinite	Al4(Si4O10)(OH)8	2.62	1.70	4.46	32.8	694.6	0.49	7 -> 47
	Illite	K.8(Al1.6Fe.2Mg.2)(Si3.4Al.6)O10(OH)2	2.77	3.03	8.37	13.3		4.91	8 -> 25
	Water (35 kppm)	H2O(0.965) NaCl(0.035)	1.02	0.61	0.54	100.0	620.0	0.00	0.0
	Gas-Marlin	CH3.383 O0.031 N0.008	0.13	0.61	0.18	7.3	620.0	0.00	0.0
	Gas-Turrum	CH3.043 O0.169 N0.003	0.25	0.61	0.25	17.7	620.0	0.00	0.0
	Reservoir sands p Muscovite and Bid Micro porous clay Biotite is usually as Detrital heavy min Feldspar dissolutio Granitic trace min	mberger 1990 Element Mineral Rock Catal rimary constituent is quartz with secondar otite are present and commonly decomp vs assosciated with micas are Chlorite, Illite ssociated with Pyrite from the decomposit nerals of Zircon and Tourmaline are visible on develops micro/secondary porosity. Ko nerals causing saturated GR responses: Ziru pes: Potassium 40, Thorium 232, Uranium 2	y potassium fe ose to form au a, Illite-Smectite ion of this mice in clean resen aolin is formed con, Sphene	uthigenic clays (i.e e, Glauconite-Sme a mineral with kac voir sands.	ectite mixtures. Dinite and illite.		Structural Grains	Quartz Potassium Fel	dspar

Version 2: 18/04/94 Version 3: 22/12/94 Version 4: 14/07/95 (EXCEL)

h:\swindows\log\tech_inf\laser\TURRUM.XLS

LASER MODELLING RESULTS

..

Molecular Composition Modeled by SNUPAR

Quartz: Si O2 K Feldspar: K Al Si3 O8 Kaolinite: Al4 (Si4 O10) (OH)8 Illite: K0.8 (Al1.6 Fe0.2 Mg0.2) (Si3.4 Al0.6) O10 (OH)2 Marlin Gas: C1.0 H3.383 O0.031 N0.008 Turrum Gas: C1.0 H3.043 O0.169 N0.003

True Porosity	Quartz	K Feldspar	Kaolinite	Illite	Gas-M	Gas-T
0	-2.074	-0.046	32.75	13.34	7.253	17.74
5	1.75	6.18	38.49	19.4	8.474	19.95
10	5.93	11.26	43.88	24.97	10.048	22.16
20	15.32	20.39	52.89	34.65	13.374	25.95
40	35.39	37.62	66.07	50.85	22.545	34.06

1/11/95 h:\swindows\log\tech_inf\snupar\T5_LJF.XLS

SNUPAR MODELLNG RESULTS

MEMORANDUM

TO:

Brodie Thomson Bob Griffith

FROM: Andy Mills

DATE: 27 November, 1995

.*

CC: Wayne Mudge Adem Djakic Kumar Kuttan (EEC) Marianne Weaver (EPR) Dale Fitz (EPMI) Hans Thomann (ER&E)

SUBJECT: Turrum 5 MRIL Magnetic Resonance Image Log Results

Logging of the NUMAR MRIL Magnetic Resonance Image Log on Turrum 5 in the L-360, L-400 and L-500 reservoirs has been summarised in the attached report. This report focuses on using the MRIL for detection of hydrocarbon fluid type in these reservoirs which contain multiple gas-oil contacts.

In brief the tool successfully measured the presence of oil in the L-360, L-400 and L-500 reservoir sands. Of particular mention is the tools ability to identify oil in the basal portion of the L-360 reservoir which was not definitive from conventional wireline logs. The only conventional means to validate oil in this sand was by recovering a 1 gallon MDT oil sample at the cost of 2 days rig time. Table 1 shows the gas-oil contacts and what technology was used to determine these contacts in Turrum 5.

 Table 1 Turrum 5 Gas-Oil Contacts

Reservoir	Depth (metres MDKB)	Technology
L-360	2540.0	MDT pressures & Core
L-400	2568.0	MRIL T2
L-500	2602.5	MRIL T2, TNPH porosity

Upon completion of NMR core measurements in the L-360 and L-400 reservoirs a subsequent report will detail additional data on reservoir permeability, porosity and irreducible pore fluids. The attached report will be sent to EPRCo for publication in the Exxon Formation Evaluation Newsletter as a means of technology transfer to Exxon affiliates. If you have any further questions, please feel free to contact Scott Dodge or myself.

Title: Identification of Hydrocarbon Pore Fluids with the MRIL at Turrum :

Authors: Scott Dodge, Lachlan Finlayson, John Phillips, Peter Glenton

Affiliate: Esso Australia Ltd

Location: Melbourne, Victoria, Australia

PROBLEM

The Turrum 5 well was drilled as an appraisal in the undeveloped Turrum gas field. The well was designed to increase proven gas reserves in the western flank of the field. On a going in basis, the NUMAR Magnetic Resonance Image Log, MRIL, was planned to be run in Turrum 5 gas reservoirs to assess the petrophysical properties; permeability, effective porosity and irreducible fluid filled porosity. However, the well encountered both gas and oil reservoirs in a complex hydrodynamic system with multiple gas-oil contacts. Therefore a high priority was placed on obtaining fluid identification with the MRIL in both good and poor quality sandstone reservoirs.

DISCUSSION

Turrum reservoirs are set in a fluvial depositional system characterised by good and stream estuarine braided quality sandstones, commonly bounded by thick coal beds in the coastal plain. Many of the reservoirs exhibit fining upward sequences which result in a gradation from good quality sandstone to low quality silty sands and shales. The MRIL used improve was to characterisation of porosity and permeability in poorer quality hydrocarbon bearing sands. Additionally, the carefully designed MRIL logging programme was successful in measuring the hydrocarbon filled pore volume in these low quality reservoirs which are difficult to assess with conventional logging suites. Following is a description of the oil bearing hydrocarbon reservoirs in Turrum 5 based on information from conventional core and logs:

Turrum 5 petrophysical log measurements in Figure 1 show three hydrocarbon bearing reservoirs. The L-360 reservoir from 2525 to 2550 metres contains a high porosity gas sand and an underlying poor quality oil sand. Core fluorescence, MDT pressures and samples were used to confirm the presence of oil and identify a gas-oil contact at 2540 metres. An MDT sample, which took 11 hours to recover, was required to prove oil in this sand at 2548.6 metres which has a low core air permeability of 21 md.

In the underlying L-400 reservoir from 2566 to 2573 metres, oil was identified from core fluorescence as well as MDT pressure gradients and a fluid sample. From these data alone, it was believed that this reservoir was in the same hydrodynamic fluid system as the overlying L-360 reservoir. However the MRIL identified a gas-oil contact, which has significant implications on oil volumes in this reservoir.

The L-500 reservoir from 2599 to 2623 metres contains oil with an associated gas cap. The gas cap was identified by crossover of the bulk density and neutron porosity in a clean sand at the top of the L-500 at 2602 metres. Lower formation resistivity suggests that the lower portion of the reservoir from 2610 to 2623 metres is in a transition zone. This would indicate that the oil-water contact is near the base of the sand and if perforated the oil sand would produce oil and mobile formation water. The basal L-520 reservoir from 2628 to 2642 metres is wet and is in a separate hydrodynamic fluid system from the L-500 (determined from other field wells).

Identification of Hydrocarbon Pore Fluids with the MRIL

The MRIL logging programme in Turrum 5 was designed to acquire T2 relaxation data which could be used to identify hydrocarbon fluid type. The theory and procedures are described by *Akkurt, 1995* and *Prammer, 1995* who explain that the T1 longitudinal relaxation mechanism of hydrocarbon filled pores is dominated by bulk relaxation, rather than surface relaxation, as observed for water filled rocks, Equation 1.

$$\frac{1}{T_1} = \frac{1}{T_{1B}} + \frac{1}{T_{1S}}$$
(1)

where subscripts B and S refer to bulk and surface relaxation.

In the past, NMR measurements on water saturated rocks exhibit T1 longitudinal relaxation which is dominated by the surface-to-volume ratio, S/V, Equation 2. Surface relaxivity, ρ , is a constant in non-paramagnetic rocks, however it has been shown that it can vary by a factor of 4 in iron-rich sandstones (Dodge, 1995).

$$\frac{1}{T_{1S}} = \rho \times \frac{S}{V} \tag{2}$$

The understanding of NMR response to hydrocarbon filled pores has not been well understood, but industry research is beginning to explain some of these effects. Gas is always a non-wetting phase while oil reservoirs may be either water wet, oil wet or mixed wet. When the hydrocarbon phase is present as the non-wetting phase, the T1 is always that of bulk relaxation, T1B, since the hydrocarbon molecules are not in contact with grain surfaces. The T1 relaxation for methane has characterised in the laboratory been (Gerritsma, 1971, Rajan, 1974) and is shown to increase linearly with density at constant temperature. The T1 of supercritical methane varies from 3 to 6 seconds and undergoes a relaxation mechanism termed spin-rotation. Liquid hydrocarbons and dissolved gas relax primarily by dipole-dipole relaxation where $T_1 \approx 1$ / viscosity.

The transverse relaxation time T2 in a magnetic field gradient is also affected by diffusion, in addition to bulk and surface relaxation, equation 3.

$$\frac{1}{T_2} = \frac{1}{T_{2B}} + \frac{1}{T_{2S}} + \frac{1}{T_{2D}}$$
(3)

Under typical reservoir conditions, methane diffuses an order of magnitude faster than water or oil. Unrestricted diffusion, Do, of methane has been measured by *Harris*, 1978 and *Oosting*, 1971 and is shown to range from 70 to $150(10^{-5})$ cm²/s. Physical properties of the hydrocarbons and water for Turrum 5 are shown in Table 1.

Table 1 Properties of Turrum Reservoir Fluids

Fluid	Density	T1 T2		Do 10 ⁻⁵					
	(g/cc)	(msec)	(msec)	(cm ² /s)					
Brine	1.02	13000	13000	8.7					
Oil	0.8	5100	460	5.7					
Gas	0.25	4400	37	130					

NUMAR "Method A" or Akkurt "Differential. Spectrum Method" is a data acquisition procedure which broadcasts two Carr-Purcell-Meiboom-Gill (Carr, 1954 and Meiboom, 1958), CPMG, pulse sequences using a long and short recovery period, TR, to isolate the hydrocarbon relaxation response. Equation 4 is designed into the logging programme to permit complete T1 relaxation recovery for the water and hydrocarbon phases prior to the long TR pulse train, and complete T1 recovery of the water filled pores, T1max, in the short TR pulse train.

$$TR_{long} \rangle T_{1gas, oil} \rangle TR_{short} \rangle 3 \times T_{1max}$$
 (4)

The Method A or Differential Spectrum Method is the result of a bin-to-bin difference between the CPMG TR long pulse train and TR short pulse train. The difference yields a hydrocarbon signal, if present, which has a T2 relaxation of the gas or oil. The Turrum 5 Method A acquisition used a TR long of 8 seconds and TR short of 2 seconds. The TR long should achieve complete T1 recovery of the longitudinal magnetisation of the hydrocarbon and water, while the TR short is obtained by logging over a water sand to measure the maximum TR to achieve complete T1 recovery.

L-500 Reservoir Fluid Identification

The MRIL T2 variable density log, VDL, acquired from the 8 second TR long CPMG pulse train is shown in Figure 2. At each depth, the colours correspond to the amount of porosity which occupies pores with a specific T2 relaxation time and surface-to-volume ratio as described by Equation 2. Integration of the porosity over all T2 time yields the MRIL porosity, MPHI. MRIL porosity is subdivided into bulk volume irreducible pore volume, MBVI, and free fluid index (producible porosity), MFFI. This subdivision of porosity occurs by applying a T2 cut-off of 30 msec such that the amplitude below this cut-off represents the BVI water filled porosity. This signal amplitude plot represents pore size distribution of the formation when it is completely water filled as is the case of the L-520 water sand.

In the upper most L-500 oil reservoir from 2602.5 to 2610 metres, the T2 relaxation reflects the bulk relaxation of the 41° API oil filled pores occurring at a T2 time of 500 msec. This is in contrast to similar water saturated

rock in the L-520 reservoir which shows a range of T2 relaxation times from 20 to 1000 msec and reflects the pore size distribution.

The oil-water transition zone from 2612 to 2623 metres shows the dominant oil signal at 500 msec as well as "producible water" signal from 30 to 100 msec. This indication of producible water supports the interpretation that the lower formation resistivities reflect a transition zone which is proximal to the oil-water contact in the reservoir.

The T2 differential spectrum "Method A" processing shown in Figure 3 reveals the dominant oil signal that was observed in the TR long CPMG pulse train. Most of the water signal is removed in the differential spectrum processing, except for a small residual signal at 500 msec. This residual water signal could have been eliminated by acquiring the TR short CPMG pulse train with a marginally longer recovery time than 2 seconds. Also a residual signal occurs between 3 and 20 msec which is likely caused by small statistical differences in the BVI region.

The GOC identified from the bulk density and neutron crossover above 2602 metres is seen by a reduction in T2 amplitude. Turrum gas has a hydrogen index of 0.38 which results in an apparent reduction of T2 amplitude by this ratio as compared to water filled porosity. The T2 bulk relaxation of the gas is 37 msec and a reduction in T2 time is also observed at this depth.

The oil-water transition zone between 2612 to 2623 metres shows the same dominant T2 oil signal as in the overlying oil column. Processing of this differential spectrum has successfully removed the water signal in the transition zone.

L-360 Reservoir Fluid Identification

The L-360 reservoir was originally expected to be gas bearing; however upon coring the reservoir, fluorescence was observed below 2540 metres. Fluid identification of gas or oil would be difficult using conventional logs in this poor quality silty sand. The MRIL T2 VDL in Figure 4 shows a strong oil signal at 2548 metres which is at the same depth where the MDT recovered a 1 gallon oil sample. Over the low permeability silty sand no oil signal is observed, but the T2 distribution reflects lower relaxation times representative of poorer rockquality and smaller pore sizes.

The L-360 gas sand from 2525 to 2528 metres does not show a strong amplitude peak at lower T2 relaxation times as expected for a gas sand. Core analysis shows a "sweet spot" only 1.5 metres thick corresponding to formation permeability of 5000 md and 27 percent porosity. A significant difference of oil versus gas detection is in the hydrogen index of the fluid. This low density gas with a hydrogen index of 0.38 will have a signal amplitude 3 times smaller than that of the oil filled porosity. Therefore the dominant oil peak observed in the oil reservoirs will not be observed in this gas sand.

The T2 differential spectrum in Figure 5 shows good removal of the water signal in the lower L-360 reservoir with only the oil signal present at 2548 metres. Although the entire reservoir is hydrocarbon bearing, no oil signal is observed in the low permeability silty sandstone from 2533 to 2547 metres. Two factors to consider for detection of hydrocarbons with the MRIL are invasion and reservoir quality. The MRIL sensitive volume is in the shape of a cylinder, approximately 1 mm thick and a length of 24 inches with the diameter dependent upon the operating frequency of the tool. In Turrum 5 a low frequency version of the MRIL C tool was used to achieve a larger diameter due to drilling the well with a 12.25 inch bit. The low frequency MRIL C tool operating at 600 kHz has a sensitive diameter of 18 inches, which places the measurement cylinder surface 3 inches into the formation from the wellbore.

Although mud filtrate invasion was estimated to be as deep as 1 metre based on the DLL resistivity profile, good oil signal was observed in both the L-500, L-400 and L-360 reservoirs. Therefore enough oil filled pore volume within the sensitive volume of the tool permitted detection of hydrocarbon. Core permeability measurements in the L-360 silty sandstone yielded low values ranging from 0.1 to 1 md. This low permeability is expected to contain oil saturations no higher than 20 percent estimated from drainage capillary pressure. This small volume of oil is reaching the detection limits of the measurement.

The L-360 gas sand shows a residual water signal resulting from incomplete T1 recovery with the 2 second TR short CPMG pulse train

as explained earlier. However in the 1.5 metre "sweet spot" of the gas sand the T2 relaxation time of the differential spectrum is 100 msec. Although the computed T2 response of this gas is 37 msec, the logged T2 response is about 5 times shorter than that of oil. This difference is the basis for identifying gas from oil using T2 relaxation time.

CONCLUSION

The MRIL low frequency, 24 inch C tool was run in Turrum 5 to obtain a number of petrophysical parameters. However fluid identification became an important objective as a result of the complex hydrodynamic fluid system with multiple gas-oil contacts. The MRIL logging programme was designed to measure the relaxation time and pore volume of the hydrocarbon phases using the Method A, or Differential Spectrum Method. Very good results were achieved in measuring the T2 oil signal in three oil reservoirs, while gas-oilcontacts and gas bearing sandstones could be differentiated from oil bearing zones. Identification of the L-400 and L-500 reservoir gas-oil contacts from the MRIL plays an important role in determining hydrocarbon reserves at Turrum.

Successfully detecting oil in the poor quality sandstones of the L-360 is important when it was unclear from conventional logs that this sand contained oil. The MDT sample which recovered oil in this same sand cost Esso \$350,000 in rig time associated with sampling and fishing costs. With more experience using the MRIL, real cost savings will be realised from less MDT sampling to verify fluid type.

Logging programme design is critical to successfully achieving the desired petrophysical objectives with the MRIL. Very few logging tools require such detailed pre-job planning and well site procedures as well as follow-up with NMR core measurements. However the benefits obtained from NMR logging are numerous, many of which are not available from conventional logging suites.

REFERENCES

Akkurt, R., Vinegar, J.H., Tutunjian, P.N., Guillory, A.J., "NMR Logging of Natural Gas Reservoirs", SPWLA 36th Annual Logging Symposium, June 26-29, 1995. Carr, H.Y., Purcell, E.M., "Effects of diffusion on free precession in NMR experiments", Physical Review, 94, p630, 1954.

Dodge, W.S., Shafer, J.L., Guzman-Garcia, A.G., "Core and Log NMR Measurements of an Iron-Rich Glauconitic Sandstone Reservoir", SPWLA 36th Annual Logging Symposium, June 26-29, 1995, Paper O.

Gerritsma, C.J., Oosting, P.H., Trappeniers, N.J., "Proton Spin-Lattice Relaxation and Self-Diffusion in Methanes: II. Experimental Results for Proton Spin-Lattice Relaxation Times", Physica, 51 1971.

Harris, K.R., "The Density Dependence of the Self-diffusion Coefficient of Methane at -50°, 25° and 50°C", Physica 94A, 1978.

Meiboom, S., Gill, D., "Compensation for pulse imperfections in Carr-Purcell NMR experiments", Rev. Sci., Instrum., 29, p688, 1958.

Morriss, C.E., Freedman, R., Straley, C., Johnston, M., Vinegar, J.H., Tutunijian, P.N., "Hydrocarbon Saturation and Viscosity Estimation from NMR Logging in the Belridge Diatomite", SPWLA 35th Annual Logging Symposium, June 19-22, 1994, Paper C.

Oosting, P.H., Trappeniers, N.J., "Proton-Spin-Lattice Relaxation and Self-Diffusion in Methanes: IV. Self-Diffusion in Methane", Physica 51, 1971.

Prammer, M.G., Mardon, D., Coates, G.R., Miller, M.N., "Lithology-Independent Gas Detection by Gradient-NMR Logging", SPE 30562, SPE Annual Technical Conference, Dallas Tx, USA, 22-25 October, 1995.

Rajan, S., Lalita, K., Babu, S.V., "Nuclear Spin-Lattice Relaxation in CH_4 -Inert Gas Mixtures", Journal of Magnetic Resonance 16, 1974.

PERSON TO CONTACT

Scott Dodge Tele: (61)3 9270 3848 Fax: (61)3 9270 3883 Profs: MELBRNVM(WSDODGE)

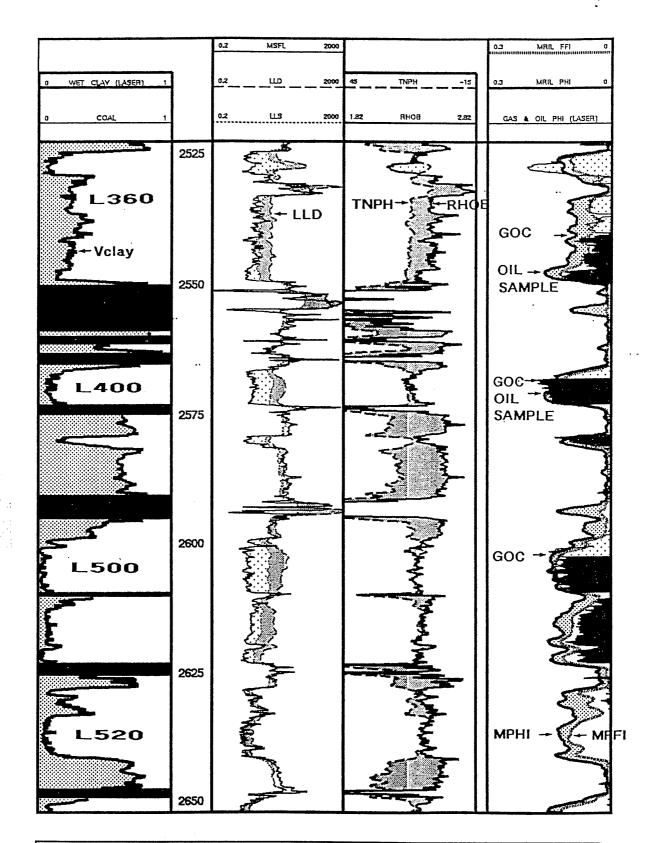


Figure 1Turrum 5 reservoir sequence containing individual gas-oil hydrocarbon systems.L-360 Reservoir: Gas-Oil Contact -2540.0 metres (MDT pressures)Content of the securityL-400 Reservoir: Gas-Oil Contact -2568.0 metres (MRIL T2)L-500 Reservoir: Gas-Oil Contact -2602.5 metres (MRIL T2, TNPH porosity)L-520 Reservoir: Water bearing -2628.0 metres to 2641.5 metres

PE906496

This is an enclosure indicator page. The enclosure PE906496 is enclosed within the container PE900858 at this location in this document.

The enclosure PE906496 has the following characteristics: ITEM BARCODE = PE906496CONTAINER_BARCODE = PE900858 NAME = Log Analysis Diagram, Figure 2 BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELLSUBTYPE = DIAGRAM DESCRIPTION = Log Analysis Diagram, (Figure 2, Appendix 2 of WCR vol.2) for Turrum-5 REMARKS = DATE_CREATED = 31/01/96 $DATE_RECEIVED = 29/11/96$ $W_NO = W1145$ WELL_NAME = TURRUM-5 CONTRACTOR = ESSO AUSTRALIA LTD. CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

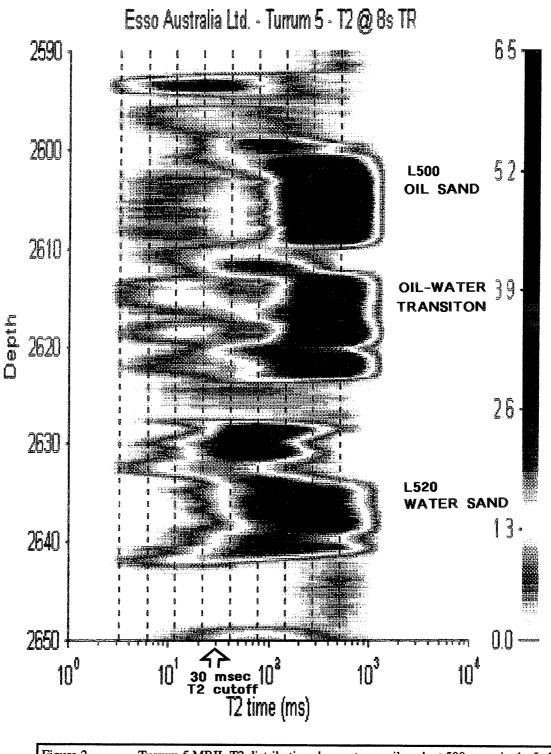
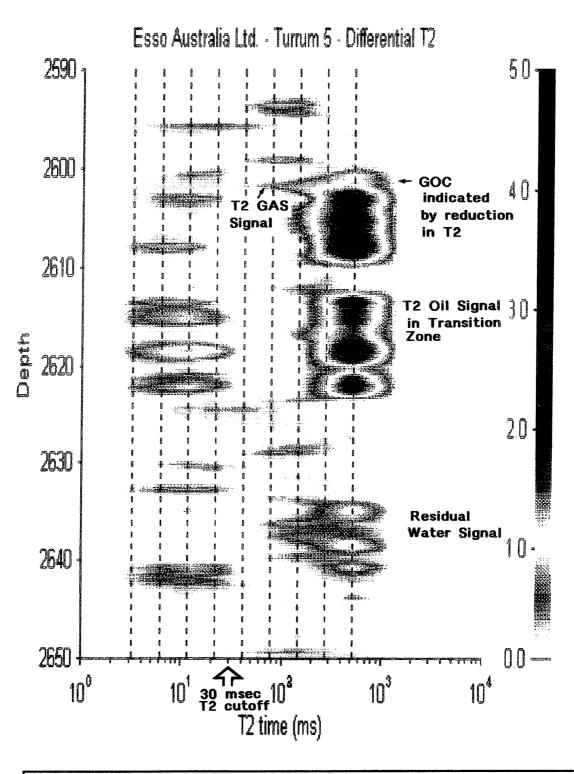
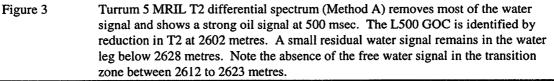


Figure 2 Turrum 5 MRIL T2 distribution shows strong oil peak at 500 msec in the L-500 reservoir above 2623 metres which overlies the L-520 water bearing reservoir. An oil-water transition zone occurs from 2612 to 2623 metres indicated by T2 amplitude less than the oil signal (< 100 msec). This is in contrast to the overlying oil reservoir from 2602.5 to 2610 metres.




PE906497

.

This is an enclosure indicator page. The enclosure PE906497 is enclosed within the container PE900858 at this location in this document.

ITEM_BARCODE =	
CONTAINER_BARCODE =	
	= Log Analysis Diagram, Figure 3
BASIN =	GIPPSLAND
PERMIT =	= VIC/L3
TYPE =	WELL
SUBTYPE =	DIAGRAM
DESCRIPTION =	Log Analysis Diagram, (Figure 3,
	Appendix 2 of WCR vol.2) for Turrum-5
REMARKS =	
DATE_CREATED =	= 31/01/96
DATE_RECEIVED =	29/11/96
	W1145
WELL NAME =	TURRUM-5
	ESSO AUSTRALIA LTD.
	ESSO AUSTRALIA LIMITED
CLIENT_OF_CO	- TOO YOUTHTY THITTD
(Inserted by DNRE -	Vic Govt Mines Dept)

PE906498

This is an enclosure indicator page. The enclosure PE906498 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90 ITEM_BARCODE =	6498 has the following characteristics: PE906498
CONTAINER_BARCODE =	PE900858
NAME =	Log Analysis Diagram, Figure 4
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	DIAGRAM
DESCRIPTION =	Log Analysis Diagram, (Figure 4,
	Appendix 2 of WCR vol.2) for Turrum-5
REMARKS =	
DATE_CREATED =	31/01/96
DATE_RECEIVED =	29/11/96
W_NO =	W1145
WELL_NAME =	TURRUM-5
CONTRACTOR =	ESSO AUSTRALIA LTD.
CLIENT_OP_CO =	ESSO AUSTRALIA LIMITED
(Inserted by DNRE -	Vic Govt Mines Dept)

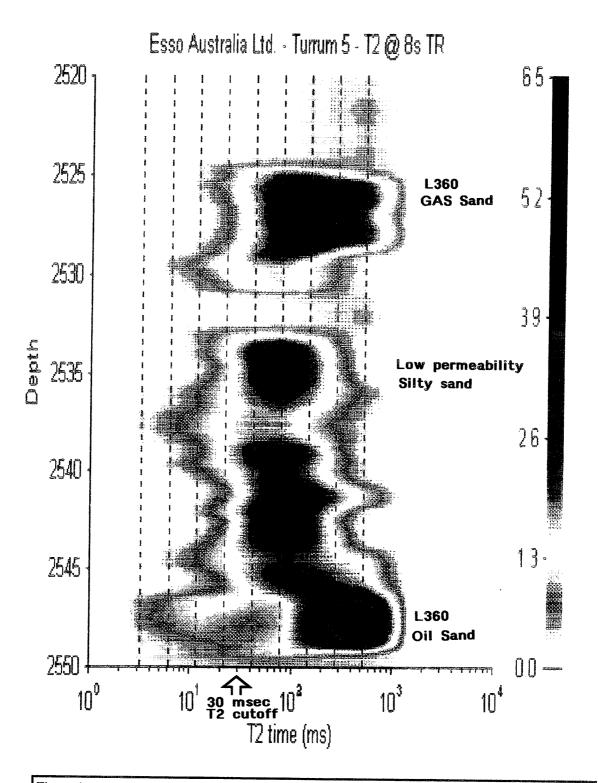


Figure 4Turrum 5 MRIL T2 distribution in the L-360 reservoir shows oil peak at 500 msec
where MDT recovered 1 gallon of 41° API oil at 2548.6 metres (21md). Absence of
oil peak above 2547 metres due to low permeability (< 0.5 md), low oil saturation.</th>

PE906499

This is an enclosure indicator page. The enclosure PE906499 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90	6499 has the following characteristics:
$ITEM_BARCODE =$	PE906499
CONTAINER_BARCODE =	PE900858
NAME =	Log Analysis Diagram, Figure 5
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	DIAGRAM
DESCRIPTION =	Log Analysis Diagram, (Figure 5,
	Appendix 2 of WCR vol.2) for Turrum-5
REMARKS =	
$DATE_CREATED =$	31/01/96
$DATE_RECEIVED =$	29/11/96
W_NO =	W1145
WELL_NAME =	TURRUM-5
CONTRACTOR =	ESSO AUSTRALIA LTD.
CLIENT_OP_CO =	ESSO AUSTRALIA LIMITED
(Inserted by DNRE -	Vic Govt Mines Dept)

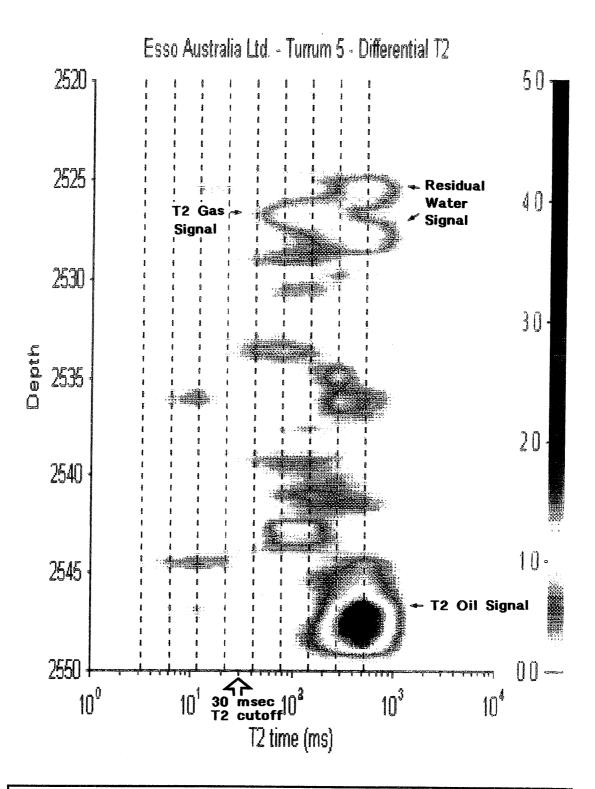


Figure 5 Turrum 5 MRIL T2 differential spectrum (Method A) exhibits good removal of water signal with remaining signal due to oil bulk relaxation at 500 msec. Gas reservoir between 2525 to 2530 metres shows indication of 100 msec gas bulk relaxation bounded by a residual water signal.

TURRUM 5 LOG ANALYSIS LISTING

۰.

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
1385	102	2.1	2.401	0.385	108	Coal		
1386				0.275	88	Coal		
1387				0.407	99	Coal		
1388				0.590	100	Coal		
1389				0.623	93	Coal		
1390	97			0.586	89	Coal		
1391	88			0.354	95	Coal		
1392	79			0.353	79	Coal		
1393	71	3.0		0.288	82	Coal		
1394	74			0.253	107	0.240	0.180	0.748
1395	70		2.477	0.219	121	Coal		
1396	89		2.097	0.452	107	Coal		
1397			2.203	0.362	125	Coal		
1398	58	22.8	2.207	0.131	101	Coal		
1399	63	21.0	2.134	0.101	110	0.118	0.244	0.216
1400	84	10.6	2.179	0.212	113	0.189	0.252	0.290
1401	99	7.7	2.297	0.266	110	Coal		
1402	87	30.4	1.384	0.822	152	Coal		
1403	161	8.3	2.080	0.594	145	Coal		
1404	130	11.3	2.385	0.374	106	Coal		
1405	169	15.8	2.395	0.412	106	0.687	0.008	1.000
1406	65	49.6	2.136	0.150	129	0.125	0.281	0.134
1407	59	588.1	2.107	0.058	129	0.112	0.274	0.041
1408	57	1414.1	2.016	0.078	128	0.127	0.294	0.025
1409	61	1131.9	2.150	0.101	117	0.157	0.249	0.032
1410	60	1246.1	2.250	0.085	97	0.160	0.187	0.040
1411	59	803.0	2.216	0.082	101	0.167	0.185	0.053
1412	67	651.8	2.177	0.179	87	0.113	0.217	0.047
1413	63	534.1	2.210	0.135	102	0.170	0.213	0.054
1414	69	557.0	2.114	0.135	111	0.133	0.250	0.046
1415	93	47.7	2.290	0.215	98	0.259	0.186	0.206
1416	53	1740.6	2.104	0.119	100	0.047	0.253	0.026
1417	58	1935.1	2.037	0.074	110	0.095	0.266	0.023
1418	63	1913.6	1.943	0.060	111	0.071	0.287	0.022
1419	59	2295.0	2.046	0.049	108	0.104	0.256	0.023
1420	56	1204.1	2.084	0.079	107	0.101	0.251	0.032
1421	54	1567.9	2.174	0.071	108	0.125	0.222	0.031
1422	60	1449.4	2.057	0.100	108	0.114	0.262	0.027
1423	64	950.6	2.071	0.090	108	0.130	0.252	0.035
1424	70	467.7	2.158	0.150	109	0.150	0.241	0.051
1425	65	931.0	2.053	0.138	114	0.125	0.275	0.033
1426 1427	71 77	750.3	2.070	0.152	115	0.148	0.271	0.036
1427	77 73	502.9 337.0	2.121 2.056	0.211	115	0.148	0.272	0.044
1420	73 86	221.5	2.036	0.171 0.175	117 115	0.161 0.209	0.278 0.261	0.054 0.070
1429	73	464.2	2.085	0.175	115	0.209	0.201	0.070
1430	73 92	404.2 88.7	2.175	0.142	107	0.227	0.228	0.035
1401	72	00.7	2.241	0.170	107	0.270	0.200	0.109

T5LIST.XLS

:

DEPTH (mRKB)	GR api		RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac		SWE fraic
1432	-	87	287.2	-	0.145	-	20 0.277		0.062
1433		168	300.1	2.186	0.207		2 0.583		0.149
1434		110	87.7		0.167	11		0.243	0.119
1435		136	39.6	2.324	0.293	11			0.232
1436		124	77.4	2.244	0.244	11			0.158
1437		78	803.1	2.062	0.109	11			0.038
1438		70	1485.7	1.963	0.091	11			0.024
1439		63	980.7	2.012	0.080	10			0.032
1440		54	570.5	2.069	0.059	11		0.267	0.042
1441		56	674.9	2.014	0.099	11		0.293	0.036
1442		61	643.5	2.045	0.135	11			0.037
1443		68	815.5	2.075	0.134	11		0.272	0.035
1444		59	1038.2	1.998	0.082	11		0.288	0.030
1445		60	802.4	2.025	0.124	11		0.291	0.033
1446		59	839.5	2.045	0.201	11		0.303	0.031
1447		59	974.0	2.197	0.211	10		0.252	0.034
1448		57	892.5	2.083	0.188	11		0.277	0.033
1449		56	756.3	2.135	0.160	11		0.257	0.038
1450		52	776.1	2.151	0.192	10		0.257	0.038
1451		55	1015.7	2.208	0.154	10		0.216	0.038
1452		51	2014.5	2.168	0.068		6 0.076	0.168	0.040
1453		40	3144.0	2.613	-0.005		4 0.035	0.006	1.000
1454		46	3898.4	2.626	-0.006		5 0.036	0.002	1.000
1455		41	4758.8	2.659	-0.015		4 0.045	0.001	1.000
1456		40	5205.5	2.589	-0.012	5	7 0.039	0.017	0.266
1457		40	3704.2	2.500	0.004	5	9 0.045	0.052	0.079
1458		40	4167.0	2.500	-0.005	6	2 0.031	0.053	0.076
1459		42	4884.7	2.424	0.017	6	7 0.035	0.089	0.041
1460		41	3110.6	2.471	0.019	6	3 0.039	0.070	0.066
1461		42	10280.4	2.575	-0.002	5	6 0.042	0.021	0.105
1462		44	7475.6	2.565	-0.001	5	7 0.041	0.024	0.107
1463		40	10987.4	2.435	0.014	7	2 0.046	0.085	0.028
1464		41	12648.7	2.654	0.004	4	7 Coal		
1465		70	19.9	2.341	0.044	10	1 Coal		
1466		32	478.8	1.228	0.910	14	1 Coal		
1467		28	465.8	1.250	0.755	14	5 Coal		
1468		31	506.4	1.236	0.679	14	5 Coal		
1469		54	55.2	1.395	0.622	13	B Coal		
1470		27	279.0	1.231	0.724	14			
1471		98	23.3	1.550	0.744	12			
1472		22	31.1	2.076	0.482	12			
1473	٦	50	13.6	2.507	0.414	10			
1474		97	9.0	2.325	0.267	10		0.179	0.365
1475		63	17.5	2.455	0.374	10		0.000	1.000
1476		27	16.9	2.433	0.342	10			
1477		111	17.0	1.863	0.763	12			
1478		40	12.6	2.473	0.328	9		0.000	1.000
1479	1	17	25.6	1.872	0.474	12			
1480	_	76	18.5	2.167	0.235	11			
1481	1	44	46.3	1.797	0.772	14	5 Coal		

Aren.

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
1482	-		-	0.466	109	Coal	iiuc	nac
1483	16			0.325	95	0.692	0.003	1.000
1484	6			0.105	116	0.106	0.305	0.091
1485	50			0.060	116	0.053	0.307	0.027
1486	50		1.907	0.068	114	0.036	0.307	0.027
1487	55		1.904	0.079	115	0.053	0.306	0.024
1488	6	882.4	2.024	0.087	114	0.128	0.272	0.033
1489	49	2 1407.2	1.926	0.070	116	0.059	0.302	0.024
1490	52	2 1098.5	1.889	0.065	117	0.036	0.313	0.024
1491	55	5 282.9	1.967	0.075	112	0.072	0.286	0.058
1492	83	34.7	2.046	0.130	111	0.219	0.250	0.184
1493	207	28.4	2.382	0.270	108	0.791	0.000	1.000
1494	127	46.5	2.163	0.226	114	0.388	0.217	0.072
1495	126	44.6	2.236	0.231	112	0.426	0.193	0.067
1496	113	41.5	2.224	0.216	107	0.384	0.195	0.087
1497	98	74.6	2.261	0.154	106	0.311	0.183	0.059
1498	59	2095.2	1.939	0.040	110	0.098	0.276	0.022
1499	60	166.3	2.025	0.063	104	0.129	0.251	0.048
1500	60	115.7	1.974	0.066	108	0.098	0.272	0.070
1501	63	342.9	1.936	0.062	107	0.065	0.282	0.039
1502	64	316.3	1.967	0.063	107	0.073	0.274	0.041
1503	147	11.7	2.112	0.182	114	0.383	0.219	0.244
1504	115	11.0	2.227	0.227	111	0.333	0.211	0.280
1505	125	12.6	2.351	0.280	104	0.446	0.159	0.290
1506	121	14.6	2.391	0.285	109	0.487	0.149	0.241
1507	109	14.1	2.295	0.269	109	0.376	0.192	0.242
1508	116	14.1	2.376	0.296	109	0.477	0.156	0.248
1509	120	11.9	2.334	0.289	107	0.435	0.171	0.280
1510	129	11.3	2.475	0.319	102	0.582	0.058	0.588
1511	150	11.6	2.491	0.309	99	0.648	0.019	0.899
1512	151	9.7	2.493	0.342	98	0.696	0.002	1.000
1513	135	7.1	2.431	0.313	101	0.578	0.069	0.708
1514	141	3.6	2.301	0.419	123	Coal		
1515	83	37.3	1.354	0.747	146	Coal		
1516	154	4.4	2.179	0.502	145	Coal		
1517	163	4.2	2.243	0.483	138	0.649	0.000	1.000
1518	172	9.4	2.051	0.509	121	Coal		
1519	120	4.5	2.391	0.349	109	0.538	0.118	1.000
1520	73	4.4	2.164	0.275	115	0.176	0.267	0.947
1521	79	5.3	2.195	0.268	111	0.151	0.260	0.881
1522	65	9.7	2.137	0.269	112	0.059	0.290	0.618
1523	62	8.2	2.122	0.258	114	0.059	0.297	0.654
1524	61	5.7	2.165	0.237	104	0.076	0.267	0.854
1525	61	8.4	2.130	0.251	113	0.099	0.285	0.656
1526	59	8.2	2.140	0.246	114	0.108	0.281	0.668
1527	59	7.9	2.127	0.247	110	0.074	0.282	0.689
1528	74	4.6	2.204	0.234	113	0.104	0.263	0.938
1529	71	4.7	2.119	0.244	113	0.102	0.287	0.879
1530	60 60	9.5	2.099	0.223	113	0.051	0.296	0.611
1531	60	8.1	2.084	0.217	114	0.056	0.296	0.660

DEPTH (mRKB)	GR api		RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWC	LAY	PHIE frac	SWE frac
1532	-	63	7.2	-				092	0.278	0.735
1533		61	7.5					057	0.299	0.691
1534		60	5.3	2.162	0.193			099	0.257	0.918
1535		56	4.0	2.003	0.238			057	0.309	0.930
1536		60	3.7	2.089	0.211			087	0.292	0.996
1537	,	72	4.0	2.127	0.265	10	0.0	059	0.284	0.997
1538	3	76	21.0	1.295	0.633	14	48 C	oal		
1539)	88	7.2	1.711	0.678	1	18 C	oal		
1540)	48	19.7	1.222	0.597]4	19 C	oal		
1541		122	5.9	2.401	0.416	10	04 C	oal		
1542		151	6.7	2.175	0.525	11	6 C	oal		
1543	,	38	26.1	1.220	0.832]4	46 C	oal		
1544		29	51.3	1.205	0.940	14	17 C	oal		
1545	i i	155	17.9	1.937	0.591	13	32 C	oal		
1546	1	129	5.3	2.236	0.263	10	04 C	oal		
1547		144	11.1	2.347	0.219	8	34 0.8	529	0.084	0.990
1548		119	79.2	2.662	0.123	6	69 0.4	439	0.001	1.000
1549		142	8.0	2.366	0.375	10)6 C	oal		
1550		119	31.0	2.067	0.266	11		oal		
1551		90	8.2	2.091	0.274	11		163	0.274	0.641
1552		151	25.7	2.350	0.418	11		oal		
1553		61	31.6	1.282	0.615	14		sal		
1554		69	55.1	1.274	0.763	13		bal		
1555		107	7.2	2.151	0.163	11		pal		
1556		124	7.4	2.155	0.489	12		sal		
1557		145	5.7	2.311	0.473	13		sal		
1558		116	27.8	1.514	0.733	13		bal		
1559		137	9.8	2.445	0.325			oal	0.050	0.007
1560		142	13.4	2.464	0.301			573	0.059	0.927
1561		49 42	8.9	2.207	0.204	10)78	0.249	0.733
1562 1563		43 43	9.8 7.2	2.124 2.097	0.202 0.198	10 10)17 Sal	0.284	0.640
1564	-	43	39.9	1.743	0.721	14		oal Dal		
1565	i	60	28.1	1.287	0.989	13		bal		
1566	1	114	13.4	2.608	0.281	8		bal		
1567		37	13.0	2.200	0.475	13		bal		
1568		27	79.9	1.176	1.062	14		bal		
1569		29	82.7	1.202	0.821	14		bal		
1570		39	61.1	1.209	0.726	14		bal		
1571		60	43.8	1.220	0.698	14		bal		
1572		29	104.4	1.172	0.787	14		bal		
1573		34	164.3	1.211	0.827	14		bal		
1574		29	25.4	1.238	0.805	15		bal		
1575	1	09	16.2	2.069	0.584	11		bal		
1576		44	11.7	2.334	0.427	10		bal		
1577		90	6.9	2.324	0.299	9	5 0.3	30	0.173	1.000
1578	1	55	14.6	2.422	0.347	11	1 Co	bal		
1579		24	7.4	2.177	0.468	10		bal		
1580		34	9.6	2.507	0.333	9				
1581	ן	43	7.7	2.493	0.380	9	8 0.6	90	0.004	1.000

À.....

T5LIST.XLS

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
1582	-		•		99	0.734	0.000	1.000
1583				0.365	98	Coal		
1584	144	8.7	2.529	0.399	98	Coal		
1585	6 162	2 11.0	2.444	0.394	106	0.758	0.000	1.000
1586	126	5.8	2.461	0.346	95	0.544	0.079	1.000
1587	167	9.9	2.450	0.433	108	0.813	0.000	1.000
1588	158	10.5	2.387	0.461	107	0.699	0.001	1.000
1589	148	8.7	2.464	0.372	103	0.652	0.023	1.000
1590	154	7.3	2.392	0.404	107	0.643	0.038	1.000
1591	151		2.386	0.473	108	Coal		
1592			1.571	0.632	112	Coal		
1593			2.361	0.315	96	Coal		
1594			2.456	0.365	98	Coal		
1595			1.984	0.545	125	Coal		
1596			2.177	0.329	99	Coal		
1597			2.307	0.371	98	0.423	0.185	0.842
1598			2.402	0.383	98	0.705	0.000	0.988
1599			2.428	0.402	103	0.733	0.000	1.000
1600			2.447	0.371	100	0.672	0.014	0.999
1601	124		2.459	0.332	95	0.552	0.075	0.978
1602	122		2.417	0.363	99	0.532	0.108	1.000
1603	132		2.206	0.422	106	0.379	0.151	1.000
1604	122		2.343	0.315	96	0.450	0.147	1.000
1605	160	13.2	2.418	0.375	98	0.744	0.000	1.000
1606	119	11.2	2.388	0.299	91 0(0.496	0.120	0.908
1607	129	10.1 7.3	2.432	0.311	96	0.592	0.053	0.992
1608 1609	132 140	7.3 11.0	2.421 2.487	0.337 0.324	98 96	0.568	0.077	1.000
1610	140	10.2	2.407	0.324	90 99	0.659 0.652	0.015 0.028	1.000 0.991
1611	140	4.4	2.402	0.318	99 93	0.002	0.028	1.000
1612	158	12.9	2.434	0.409	96	0.756	0.000	1.000
1612	131	13.3	2.437	0.296	88	0.520	0.079	1.000
1614	121	6.1	2.353	0.296	95	0.431	0.147	1.000
1615	154	8.9	2.487	0.352	98	0.708	0.000	1.000
1616	106	10.7	2.351	0.448	117	Coal	0.000	11000
1617	39	95.3	1.209	0.879	138	Coal		
1618	117	3.6	2.251	0.337	100	Coal		
1619	121	6.0	2.358	0.336	97	0.507	0.137	1.000
1620	157	14.3	2.409	0.429	111	0.780	0.000	1.000
1621	106	4.6	2.273	0.322	95	0.315	0.185	1.000
1622	109	14.2	2.589	0.286	73	0.591	0.006	1.000
1623	148	12.0	2.431	0.427	98	0.736	0.000	1.000
1624	142	10.6	2.500	0.384	96	0.762	0.000	1.000
1625	151	10.2	2.499	0.401	103	0.787	0.000	1.000
1626	151	10.2	2.487	0.381	97	0.747	0.000	1.000
1627	105	5.0	1.936	0.448	121	Coal		
1628	61	6.2	1.485	0.548	128	Coal		
1629	139	9.2	2.430	0.533	114	Coal	0.040	1 6 6 6
1630	125	6.3	2.493	0.380	99	0.612	0.043	1.000
1631	110	2.8	2.282	0.305	101	0.359	0.186	1.000

.

.

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
1632	-	0 4.7	-		96	0.431	0.136	1.000
1633)5 6,4			90 95	0.431	0.130	
1634		97 4.8			90 99	0.479	0.114	1.000
1635		32 4.9			99 95	0.282		1.000
1636		17 3.7			95 110		0.174	1.000
1630		+/ 3.7 56 3.3		0.307	97	0.075 0.060	0.305	0.973
1638		15 3.6		0.209	103		0.254	1.000
1639		18 3.6				0.046	0.280	1.000
1640		ю 3.0 Ю 3.3		0.282 0.270	101 94	0.054	0.271	1.000
1640		54 54 54 54 54 54 54 54 54 54 54 54 54 5		0.270	94 98	0.171	0.210	1.000
1641		4 4.2 14 3.7		0.293		0.084	0.261	1.000
1643		14 3.7 15 3.2			101	0.051	0.278	1.000
				0.293	97	0.056	0.276	1.000
1644				0.298	97	0.071	0.271	1.000
1645				0.317	89	0.812	0.000	1.000
1646				0.296	86	0.522	0.090	1.000
1647				0.330	102	Coal		
1648				0.427	87	Coal		
1649				0.525	109	Coal		
1650			2.130	0.500	134	Coal		
1651	17			0.496	107	Coal		
1652				0.367	97	Coal		
1653	15			0.403	99	Coal		
1654				0.382	89	0.831	0.000	1.000
1655				0.369	95	0.764	0.000	1.000
1656	13			0.415	107	Coal		
1657	12		2.336	0.642	108	Coal		
1658	12		2.318	0.309	93	0.407	0.152	1.000
1659	16		2.529	0.332	90	0.769	0.000	1.000
1660	14			0.428	111	Coal		
1661	2		1.221	0.845	141	Coal		
1662	13		1.990	0.813	138	Coal		
1663	15		2.517	0.374	94	Coal		
1664	14		2.512	0.303	92	0.725	0.000	1.000
1665	17		2.490	0.371	104	0.816	0.000	1.000
1666	178		2.240	0.574	120	0.719	0.000	1.000
1667	15		2.430	0.420	101	0.731	0.000	1.000
1668	12		2.331	0.451	109	Coal		
1669	118		1.863	0.641	114	Coal		
1670	178		2.396	0.402	110	Coal		
1671	164		2.513	0.415	99	Coal		
1672	130		2.408	0.344	96	0.597	0.057	0.934
1673	9		2.311	0.291	94	0.309	0.177	1.000
1674	107		2.361	0.294	92	0.411	0.147	1.000
1675	164		2.413	0.372	103	0.757	0.000	1.000
1676	83		2.012	0.546	129	Coal		
1677	113		1.441	0.751	144	Coal		
1678	118		1.628	0.739	137	Coal		
1679	88		2.294	0.285	92	Coal		
1680	11.		2.238	0.397	124	Coal		
1681	33	3 25.0	1.213	0.765	149	Coal		

A/10**

T5LIST.XLS

DEPTH GR (mRKB) api	RT	nmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
1682	34	21.3	-	0.872		Coal		
1683	32	23.1	1.203	0.774	149	Coal		
1684	70	16.4	1.298	0.766	150	Coal		
1685	111	3.9	2.400	0.302	94	Coal		
1686	158	8.3	2.458	0.350	102	0.746	0.000	1.000
1687	142	7.4	2.422	0.362	96	Coal		
1688	125	6.2	2.378	0.429	100	Coal		
1689	139	5.7	2.379	0.320	96	0.557	0.089	1.000
1690	131	8.8	2.307	0.417	105	0.560	0.082	1.000
1691	132	10.8	2.456	0.335	93	0.624	0.034	1.000
1692	148	10.5	2.434	0.325	102	0.665	0.017	1.000
1693	116	6.4	2.447	0.257	90	0.552	0.062	1.000
1694	104	5.5	2.378	0.266	91	0.413	0.130	1.000
1695	73	3.3	2.260	0.279	94	0.186	0.209	1.000
1696	90	18.4	2.970	0.255	69	0.507	0.001	1.000
1697	84	4.4	2.310	0.280	94	0.276	0.183	1.000
1698	74	4.0	2.293	0.271	95	0.221	0.199	1.000
1699	70	3.8	2.249	0.274	95	0.135	0.225	1.000
1700	73	4.2	2.257	0.299	94	0.164	0.221	1.000
1701	44	3.6	2.150	0.280	101	0.032	0.281	1.000
1702	46	3.0	2.215	0.279	96	0.052	0.254	1.000
1703	44	3.0	2.119	0.304	97	Coal		
1704	145	7.1	1.909	0.611	132	Coal		
1705	159	6.6	2.261	0.516	122	Coal		
1706	97	5.0	2.385	0.448	103	Coal		
1707	127	8.1	2.438	0.281	92	0.509	0.100	1.000
1708	165	6.1	2.238	0.434	111	0.531	0.107	1.000
1709	162	8.4	2.494	0.409	107	Coal		
1710	154	11.6	1.529	0.632	138	Coal		
1711	132	8.6	2.554	0.280	95	Coal		
1712	64	23.9	1.237	0.778	156	Coal		
1713	146	3.9	2.243	0.520	146	Coal		
1714	153	4.5	2.280	0.532	129	Coal		
1715	138	8.9	1.628	0.742	150	Coal		
1716	147	8.9	2.231	0.520	127	Coal		
1717	94	2.3	2.305	0.318	98	Coal		
1718	146	10.0	2.449	0.375	95	0.694	0.003	1.000
1719	93	19.5	1.609	0.503	121	Coal		
1720	115	5.3	2.401	0.273	91	Coal	0.000	1 000
1721	119	4.7	2.444	0.280	94	0.515	0.093	1.000
1722 1723	115	4.5 10.1	2.328	0.297	94	0.367	0.163	1.000
1723	144 94	4.9	2.435 2.232	0.353 0.445	96 106	Coal		
1724	94 129	4.9 6.2	2.232	0.445	100	Coal		
1725	34	0.2 9.9	1.262	0.308	144	Coal		
1720	34 148	9.9 6.2	2.263	0.713	144	Coal Coal		
1727	140	0.2 4.7	2.203	0.844	95	0.665	0.014	1.000
1728	153	4.7 6.1	2.400	0.341	90 98	Coal	0.014	1.000
1730	101	2.6	2.407	0.353	81	Coal		
1731	136	3.8	2.452	0.357	96	0.628	0.034	0.956
1701		0.0	2,402	0.007	70	0.020	0.004	0.700

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE fraic
1732	-		-	0.447	- 107	0.626	0.036	0.931
1733						0.260	0.146	1.000
1734				0.273	91	0.447	0.117	0.945
1735				0.355		Coal		
1736				0.473	120	Coal		
1737				0.563	134	Coal		
1738				0.411	100	0.925	0.000	1.000
1739				0.412	102	0.739	0.000	1.000
1740				0.452		0.929	0.000	1.000
1741				0.338	105	0.759	0.000	1.000
1742				0.370	103	0.884	0.000	1.000
1743				0.446	107	0.906	0.000	1.000
1744				0.426	98	0.868	0.000	1.000
1745				0.288	89	0.601	0.036	1.000
1746			2.556	0.300	84	0.736	0.000	1.000
1747				0.278	88	0.602	0.034	1.000
1748				0.292	91	0.414	0.139	1.000
1749				0.276	92	0.488	0.112	1.000
1750			2.464	0.275	88	0.575	0.047	1.000
1751			2.392	0.277	92	0.407	0.131	1.000
1752			2.441	0.302	85	0.543	0.070	0.962
1753			2.520	0.291	85	0.624	0.017	1.000
1754			2.402	0.231	85	0.368	0.109	1.000
1755			2.316	0.262	90	0.249	0.172	1.000
1756			2.285	0.270	96	0.217	0.201	1.000
1757			2.415	0.297	91	0.405	0.134	1.000
1758			2.247	0.301	99	0.183	0.227	1.000
1759		1.0	2.269	0.306	98	0.235	0.214	1.000
1760	104	1,4	2.364	0.290	96	0.431	0.150	1.000
1761			2.592	0.262	78	0.655	0.001	1.000
1762			2.580	0.318	88	0.777	0.000	1.000
1763	138	5.4	2.541	0.348	89	0.747	0.000	1.000
1764			2.590	0.338	89	0.773	0.000	1.000
1765	155	4.6	2.520	0.363	91	0.753	0.000	1.000
1766	163	5.3	2.581	0.404	93	0.880	0.000	1.000
1767	157	5.3	2.543	0.337	91	0.805	0.000	1.000
1768	165	5.3	2.595	0.381	93	0.935	0.000	1.000
1769	156	5.2	2.496	0.410	97	Coal		
1770	125	4.3	2.391	0.387	92	Coal		
1771	151	5.8	2.498	0.337	96	0.723	0.000	1.000
1772	154		2.456	0.424	103	0.735	0.000	1.000
1773	137		2.295	0.477	112	Coal		
1774			2.343	0.383	105	Coal		
1775			2.393	0.457	109	Coal		
1776		4.4	1.675	0.653	134	Coal		
1777			2.446	0.310	91	Coal	_	_
1778			2.406	0.326	93	0.607	0.048	0.821
1779			2.471	0.320	92	0.540	0.076	1.000
1780		1.1	2.334	0.267	95	0.284	0.179	1.000
1781	71	1.2	2.295	0.279	93	0.209	0.201	1.000

A. K. .

1

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE fraic
1782	-		-	0.275	91	0.109	0.226	0,994
1783				0.500	141	Coal		0.777
1784				0.324	96	Coal		
1785				0.437	99	0.771	0.000	1.000
1786				0.346	90	0.550	0.078	0.950
1787				0.305	94	0.527	0.093	0.908
1788			2.345	0.284	90	0.328	0.161	1.000
1789			2.547	0.308	88	0.526	0.057	1.000
1790			2.522	0.331	96	Coal	0.007	
1791			1.617	0.729	113	Coal		
1792			2.384	0.292	91	Coal		
1793			2.487	0.296	92	0.604	0.035	1.000
1794			2.489	0.401	98	0.738	0.000	1.000
1795			2.350	0.390	98	0.571	0.068	0.804
1796			2.487	0.328	91	0.651	0.015	1.000
1797			2.303	0.264	92	0.320	0.154	1.000
1798			2.410	0.246	87	0.440	0.103	1.000
1799			2.315	0.281	94	0.289	0.178	1.000
1800			2.392	0.293	90	0.329	0.150	1.000
1801	135		2.287	0.471	99	0.518	0.001	1.000
1802			2.065	0.537	115	Coal	0.001	1.000
1803			2.475	0.335	103	Coal		
1804			2.605	0.281	85	Coal		
1805			2.526	0.285	85	0.794	0.000	1.000
1806	142		2.529	0.260	84	0.712	0.000	1.000
1807	124		2.409	0.277	88	0.487	0.104	1.000
1808	118		2.486	0.261	86	0.588	0.034	1.000
1809	119		2.468	0.260	86	0.569	0.045	1.000
1810	127		2.525	0.302	88	0.704	0.000	1.000
1811	123		2.488	0.278	84	0.610	0.026	1.000
1812	113		2.486	0.259	79	0.535	0.050	1.000
1813	116		2.574	0.257	83	0.593	0.015	1.000
1814	94		2.375	0.259	91	0.361	0.143	1.000
1815	85		2.355	0.243	91	0.286	0.158	1.000
1816	84		2.349	0.240	90	0.262	0.163	1.000
1817	98		2.489	0.288	87	0.439	0.094	1.000
1818	174		2.528	0.415	99	Coal		
1819	72		2.089	0.680	121	Coal		
1820	89	9.7	1.801	0.483	128	Coal		
1821	100	2.3	2.389	0.274	88	Coal		
1822	96	1.9	2.281	0.279	92	0.234	0.187	0.878
1823	128	3.6	2.421	0.296	90	Coal		
1824	80	3.6	1.442	0.631	105	Coal		
1825	108	2.1	2.420	0.264	89	Coal		
1826	91	2.0	2.397	0.245	87	0.345	0.133	1.000
1827	133	5.0	2.491	0.311	86	0.630	0.022	0.942
1828	154	4.5	2.504	0.335	97	0.726	0.000	1.000
1829	142	4.6	2.482	0.369	92	0.680	0.007	0.996
1830	127	3.4	2.431	0.301	91	0.530	0.085	0.949
1831	178	5.6	2.488	0.409	103	0.829	0.000	1.000

*Wer*s

1

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
1832	-		•	0.388	111	Coal		
1833				0.366	99	Coal		
1834				0.308	94	Coal		
1835				0.360	96	0.713	0.000	1.000
1836				0.298	94	0.287	0.171	1.000
1837		5 0.9	2.284	0.288	94	0.276	0.185	1.000
1838			2.270	0.282	93	0.277	0.178	1.000
1839	11	I 0.9	2.278	0.271	95	Coal		
1840	152	2 5.0	2.135	0.535	119	Coal		
1841	144	4 6.1	2.434	0.331	99	Coal		
1842	152	2 5.7	2.537	0.391	87	Coal		
1843	105	5 6.6	2.909	0.344	77	0.650	0.000	1.000
1844	132	2 4.7	2.527	0.248	84	0.637	0.011	1.000
1845	123		2.495	0.273	83	0.590	0.033	1.000
1846				0.404	128	Coal		
1847				0.717	144	Coal		
1848				0.272	91	Coal		
1849				0.292	88	0.439	0.126	0.840
1850				0.375	99	Coal		
1851	94			0.351	84	Coal	0.001	1 000
1852				0.280	90	0.534	0.081	1.000
1853				0.283	87	0.344	0.145	1.000
1854				0.298	89	0.558	0.070	0.978
1855				0.274	90	0.573	0.048	1.000
1856			2.127	0.443	92	Coal		
1857				0.347	95	Coal		
1858				0.308	89 112	Coal Coal		
1859			2.146 2.366	0.446 0.288	113 89	Coal		
1860 1861	115 110			0.288	70	0.322	0.108	1.000
1862			2.546	0.270	70 94	0.765	0.000	1.000
1863	152		2.507	0.371	94	0.726	0.000	1.000
1864				0.367	95	0.769	0.000	1.000
1865			2.504	0.387	93	0.760	0.000	1.000
1866			2.501	0.297	86	0.661	0.008	1.000
1867			2.488	0.384	83	0.760	0.000	1.000
1868			2.530	0.321	91	0.771	0.000	1.000
1869			2.399	0.325	100	Coal		
1870			2.182	0.507	101	Coal		
1871	114		2.357	0.261	88	Coal		
1872			2.508	0.222	84	0.571	0.026	1.000
1873			2.468	0.296	89	Coal		
1874	135	5 6.9	2.199	0.537	97	Coal		
1875	149	9 8.1	2.484	0.318	92	Coal		
1876	109	7.3	1.554	0.584	119	Coal		
1877	118		2.453	0.321	88	Coal		
1878			2.451	0.355	108	Coal		
1879			2.525	0.451	100	Coal		
1880				0.504	125	Coal		
1881	124	4.0	2.429	0.374	91	Coal		

A. 8.

DEPTH	GR	rt ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
(mRKB) 1882	api	6 1.3	-	0.262	92	0.273	0.171	1.000
1883				0.281	87	0.571	0.018	1.000
1884				0.357	96	0.732	0.000	1.000
1885				0.409	97	Coal	0.000	1.000
1886				0.307	89	Coal		
1887				0.328	91	0.646	0.023	0.997
1888				0.302	88	0.575	0.056	0.956
1889				0.255	87	0.424	0.112	1.000
1890				0.286	86	0.546	0.050	1.000
1891				0.357	90	0.752	0.000	1.000
1892				0.339	93	0.713	0.000	1.000
1893				0.369	93	0.724	0.000	1.000
1894				0.340	86	0.688	0.003	1.000
1895				0.377	93	Coal	0.000	11000
1896				0.499	110	Coal		
1897				0.410	94	Coal		
1898				0.339	88	Coal		
1899				0.293	88	0.540	0.043	1.000
1900				0.289	87	0.785	0.000	1.000
1901				0.273	79	0.597	0.019	1.000
1902				0.322	91	0.696	0.001	1.000
1903				0.343	87	0.693	0.000	1.000
1904			2.507	0.367	91	0.668	0.010	1.000
1905				0.387	94	0.730	0.000	1.000
1906				0.396	93	0.751	0.000	1.000
1907				0.410	97	0.796	0.000	1.000
1908				0.262	82	0.548	0.038	1.000
1909				0.377	92	0.753	0.000	1.000
1910				0.366	96	0.720	0.000	1.000
1911	11		2.487	0.315	85	0.503	0.083	0.943
1912			2.532	0.279	89	0.659	0.006	1.000
1913			2.492	0.313	91	0.697	0.001	1.000
1914				0.365	88	0.772	0.000	1.000
1915				0.314	91	0.676	0.005	1.000
1916	15	3 5.3	2.506	0.366	94	0.720	0.000	1.000
1917	13	7 4.7	2.551	0.352	88	0.679	0.004	1.000
1918	13	3 5.0	2.535	0.268	84	0.584	0.019	1.000
1919	16	2 5.2	2.519	0.361	95	0.775	0.000	1.000
1920	15	3 5.2	2.555	0.329	90	0.766	0.000	1.000
1921	15	7 5.7	2.521	0.417	93	0.776	0.000	1.000
1922	15	7 5.5	2.573	0.324	92	0.766	0.000	1.000
1923	14	5 5.7	2.543	0.337	91	0.704	0.000	1.000
1924	14	9 5.5	2.456	0.408	96	0.719	0.000	1.000
1925	15	9 5.7	2.441	0.456	97	0.780	0.000	1.000
1926	15			0.418	94	0.800	0.000	1.000
1927				0.285	82	0.415	0.106	1.000
1928				0.306	91	0.741	0.000	1.000
1929				0.412	95	0.733	0.000	1.000
1930				0.394	93	0.754	0.000	1.000
1931	9	9 1.4	2.296	0.300	90	0.290	0.174	1.000

ſ

DEPTH (mRKB)	GR api	rt ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
1932	-	2.6	-	0.248	83	0.453	0.092	1.000
1933				0.169	74	0.507	0.001	1.000
1934				0.336	88	0.797	0.000	1.000
1935			2.538	0.275	85	0.698	0.000	1.000
1936			2.588	0.268	85	0.689	0.000	1.000
1937			2.510	0.375	92	0.754	0.000	1.000
1938			2.539	0.377	96	Coal	01000	11000
1939			1.227	0.621	135	Coal		
1940			2.433	0.238	84	Coal		
1941			2.440	0.271	85	0.512	0.087	0.940
1942			2.213	0.451	100	Coal	0.007	0.740
1943			2.432	0.263	79	Coal		
1944			2.434	0.268	88	0.565	0.051	1.000
1945			2.388	0.263	88	0.402	0.121	1.000
1946			2.702	0.332	81	0.752	0.000	1.000
1947			2.515	0.360	91	0.687	0.004	1.000
1948			2.514	0.360	84	0.661	0.011	1.000
1949			2.546	0.373	92	0.725	0.000	1.000
1950			2.534	0.390	93	0.762	0.000	1.000
1951	142		2.572	0.356	90	0.761	0.000	1.000
1952			2.506	0.352	94	0.768	0.000	1.000
1953	151	6.1	2.535	0.303	87	0.766	0.000	1.000
1954			2.521	0.340	90	0.775	0.000	1.000
1955			2.726	0.366	87	0.841	0.000	1.000
1956	147		2.538	0.360	91	Coal		
1957	71	12.3	1.264	0.619	125	Coal		
1958	92	3.4	2.420	0.246	81	Coal		
1959	92	9.1	1.867	0.474	117	Coal		
1960	106	2.8	2.441	0.270	85	Coal		
1961	93	3.5	2.548	0.259	88	0.455	0.064	1.000
1962	149	6.3	2.494	0.373	90	0.754	0.000	1.000
1963	146	6.3	2.511	0.395	95	0.738	0.000	1.000
1964	147	5.1	2.578	0.342	88	0.715	0.000	1.000
1965	146	6.4	2.516	0.385	95	0.750	0.000	1.000
1966	155		2.467	0.406	96	Coal		
1967	124		1.849	0.500	103	Coal		
1968	146	5.4	2.520	0.326	90	Coal		
1969	102		2.361	0.240	88	0.306	0.139	1.000
1970	107	2.7	2.463	0.241	85	0.450	0.088	1.000
1971	106	2.1	2.441	0.262	86	0.450	0.099	1.000
1972	140		2.528	0.321	90	0.716	0.000	1.000
1973	149	4.7	2.506	0.370	92	0.793	0.000	1.000
1974	95	2.3	2.431	0.229	76	0.344	0.100	1.000
1975	134	5.2	2.544	0.263	85 97	0.652	0.007	1.000
1976	139	6.4	2.525	0.330	87	0.692	0.002	1.000
1977	121	3.3	2.499	0.265 0.265	83 84	0.555 0.450	0.044 0.067	1.000 1.000
1978 1979	92 153	2.5 5.5	2.528 2.518	0.205	84 89	0.450	0.007	1.000
1979	98	5.5 1.5	2.318	0.302	88	0.729	0.000	1.000
1980	90 98	1.5	2.387	0.294	84	0.330	0.140	1.000
1701	70	1.7	2.400	0.207	04	0.414	0.100	1.000

Avan.

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac		SWE frac
1982	-		-	0.237	8		0.080	1.000
1983	9			0.250	8		0.115	1.000
1984				0.243	8		0.124	1.000
1985	13			0.260	8		0.058	1.000
1986	15			0.373	9		0.000	1.000
1987	10			0.275	8		0.084	1.000
1988	13			0.255	84		0.060	1.000
1989	12			0.278	8		0.090	1.000
1990	15		2.489	0.380	9		0.000	1.000
1991	13		2.442	0.305	90		0.070	0.965
1992	14			0.321	90		0.015	1.000
1993	14		2.462	0.336	90		0.002	1.000
1994	104		2.480	0.297	89		0.087	1.000
1995	11(2.295	0.260	9		0.181	1.000
1996	92		2.313	0.252	9		0.183	1.000
1997	90		2.355	0.257	88		0.162	1.000
1998	9		2.334	0.263	88		0.171	1.000
1999	70		2.271	0.262	92		0.209	1.000
2000	93		2.247	0.202	90		0.207	0.914
2000	119		2.449	0.325	88		0.060	1.000
2002	140		2.488	0.314	89		0.014	1.000
2002	15		2.502	0.375	94		0.000	1.000
2000	88		2.372	0.251	86		0.149	1.000
2004	79		2.420	0.240	83		0.147	1.000
2006	12		2.391	0.308	89		0.121	0.907
2007	149		2.516	0.345	92		0.000	1.000
2008	132		2.474	0.328	86		0.035	1.000
2009	138		2.470	0.286	88		0.031	1.000
2010	149		2.427	0.412	95		0.000	1.000
2011	150		2.510	0.384	92		0.000	1.000
2012	158		2.536	0.375	87			
2013	120		2.490	0.326	84			
2014	96		2.407	0.230	83		0.120	1.000
2015	89		2.547	0.249	82		0.059	1.000
2016	147		2.543	0.270	87		0.003	1.000
2017	143		2.498	0.348	88		0.000	1.000
2018	143		2.524	0.349	88		0.000	1.000
2019	149		2.529	0.373	89		0.000	1.000
2020	154		2.527	0.364	93		0.000	1.000
2021	150	6.7	2.471	0.361	93	0.643	0.023	0.985
2022	134	2.8	2.438	0.313	86	0.578	0.052	1.000
2023	124	2.5	2.435	0.233	84	0.453	0.085	1.000
2024	106	5.5	2.738	0.232	69	0.483	0.001	1.000
2025	149	5.0	2.536	0.288	85	0.644	0.011	1.000
2026	147	6.1	2.491	0.340	87	0.665	0.010	1.000
2027	145	6.3	2.522	0.335	90	0.686	0.003	1.000
2028	145	6.3	2.519	0.360	92	0.701	0.000	1.000
2029	152	7.3	2.469	0.388	92	0.690	0.003	1.000
2030	146		2.501	0.383	95		0.012	1.000
2031	149	7.3	2.504	0.366	92	0.655	0.014	1.000

4 m.

ļ

DEPTH	GR	rt ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY	PHIE	SWE
(mRKB) 2032	api 2. 150		-	0.358	us/m 91	frac 0.662	frac 0.011	frac
2032				0.393	88	0.002	0.000	1.000 1.000
2033				0.393	00 90		0.000	
2034				0.301	90 86			1.000
2035			2.500 2.545	0.301	00 86	0.666 0.689	0.009 0.001	1.000 1.000
2030				0.278	87	0.089	0.001	1.000
2037			2.333	0.360	92	0.707	0.000	1.000
2030			2.404	0.366	92 91	0.713	0.000	1.000
2039			2.000	0.322	86	0.717	0.000	1.000
2040			2.490	0.322	88	0.000	0.013	1.000
2041			2.400	0.242	84	0.423	0.110	1.000
2042			2.370	0.258	82	0.575	0.120	1.000
2043			2.490	0.232	83	0.362	0.035	1.000
2044 2045			2.410	0.229	84	0.538		1.000
			2.490	0.201	84 93		0.052	
2046 2047						0.674	0.007	1.000
2047			2.522	0.348	89	0.700	0.000	1.000
			2.512	0.401	90	0.750	0.000	1.000
2049			2.757	0.234	83	0.590	0.001	1.000
2050			2.477	0.228	85	0.500	0.073	1.000
2051	90		2.446	0.239	81	0.397	0.099	1.000
2052			2.425	0.255	89	0.512	0.084	1.000
2053			2.557	0.254	84	0.556	0.031	1.000
2054			2.393	0.229	84	0.309	0.124	1.000
2055		5.5	2.561	0.321	92	0.770	0.000	1.000
2056			2.474	0.283	86	0.521	0.071	1.000
2057			2.525	0.389	91	0.757	0.000	1.000
2058			2.587	0.359	88	0.775	0.000	1.000
2059		4.1	2.776	0.240	81	0.601	0.000	1.000
2060	160	7.6	2.502	0.355	93	0.753	0.000	1.000
2061	97	2.2	2.298	0.242	93	0.214	0.180	0.816
2062	92	2.5	2.360	0.217	84	0.255	0.144	0.896
2063	124	2.5	2.481	0.253	86	0.567	0.043	1.000
2064	145	4.4	2.541	0.317	86	0.772	0.000	1.000
2065	95	1.6	2.378	0.231	86	0.328	0.121	1.000
2066	132	2.3	2.464	0.168	80	0.437	0.032	1.000
2067	133	2.9	2.656	0.248	82	0.677	0.000	1.000
2068	140	2.8	2.431	0.251	86	0.543	0.055	1.000
2069	138	7.5	2.515	0.373	88	0.679	0.006	1.000
2070	146	7.7	2.555	0.331	89 07	0.715	0.000	1.000
2071	155	9.2	2.451	0.418	97	0.737	0.000	1.000
2072	125	4.4	2.415	0.255	84	0.454	0.086	0.912
2073	142	6.1	2.417	0.282	87	0.574	0.048	0.787
2074	130	3.2	2.369	0.220	89	0.396	0.106	0.967
2075	148	6.5	2.468	0.261	86	0.618	0.023	0.991
2076	96 103	6.0 3.0	2.587	0.209	67 83	0.459	0.018	1.000
2077 2078	123	3.0 4.2	2.418 2.468	0.229 0.281	88 88	0.398 0.632	0.092 0.021	1.000
2078	138 120	4.2 3.2	2.408 2.472	0.281	88 84	0.032	0.021 0.046	1.000 1.000
2079	120	3.2 3.2	2.472	0.282	84 89	0.559	0.048	0.982
2081	103	3.0	2.334	0.252	93	0.302	0.156	0.755

A.z.

•

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT	VWCLAY	PHIE	SWE
2082	-		-	0.240	us/m	frac	frac	frac
2083	-	7.5		0.240	92	0.247	0.173	0.671
2084			2.397	0.230	91 94	0.661	0.009	1.000
2085		4.8	2.397	0.230	86	0.407	0.101	1.000
2086	139	4.0	2.490	0.248	83	0.599	0.024	1.000
2087	126	4.7	2.438		86	0.645	0.016	1.000
2088	120	4.0 6.8	2.343	0.245 0.375	82 05	0.635	0.007	1.000
2089	87	2.9	2.493		95	0.830	0.000	1.000
2090	107	3.9	2.354	0.226 0.234	90	0.236	0.158	0.765
2091	107	3.7	2.450		83	0.444	0.091	0.942
2092	142	6.3	2.431	0.254	85 87	0.514	0.074	1.000
2093	89	5.9	2.650	0.281	86 75	0.693	0.001	1.000
2094	141	6.2	2.553	0.163	75	0.417	0.001	1.000
2095	141	4.3	2.333	0.274	86	0.697	0.000	1.000
2070	140	4.3 3.0	2.460 2.441	0.315	84	0.717	0.000	1.000
2070	92	2.3	2.441	0.296	84	0.555	0.061	1.000
2098	92 80	2.3		0.213	84	0.341	0.107	1.000
2090	120		2.380	0.213	84	0.230	0.145	1.000
2100	91	2.0	2.498	0.251	84	0.498	0.069	1.000
2100	129	2.2	2.427	0.214	81	0.317	0.112	1.000
2101		3.9	2.502	0.248	82	0.575	0.033	1.000
2102	133	5.4	2.463	0.323	91	0.633	0.014	1.000
2103	67	4.1	2.342	0.192	89	0.160	0.164	0.627
2104	92	4.0	2.400	0.192	83	0.278	0.131	0.753
2105	140	5.6	2.532	0.296	91	0.667	0.008	0.963
2108	126	4.3	2.389	0.226	84	0.384	0.113	0.770
2107	93	4.3	2.522	0.242	80	0.419	0.069	1.000
2108	142	5.7	2.496	0.289	85	0.660	0.011	1.000
2109	145	7.8	2.533	0.279	86	0.692	0.001	1.000
	139	12.5	2.479	0.399	91	0.698	0.000	1.000
2111 2112	71	4.0	2.272	0.167	96	0.089	0.199	0.559
	99	3.8	2.426	0.194	84	0.340	0.103	0.904
2113	133	5.9	2.488	0.271	86	0.597	0.030	0.992
2114	85	2.6	2.329	0.245	90	0.245	0.171	0.760
2115	72	2.3	2.280	0.204	88	0.099	0.197	0.759
2116	135	6.0	2.521	0.254	81	0.602	0.019	1.000
2117	136	6.2	2.541	0.267	89	0.636	0.013	1.000
2118	117	3.9	2.563	0.228	80	0.538	0.019	1.000
2119	140	7.2	2.540	0.264	81	0.653	0.005	1.000
2120	136	5.2	2.509	0.305	88	0.623	0.020	1.000
2121	147	5.2	2.457	0.321	84	0.645	0.018	0.997
2122	113	2.7	2.472	0.249	81	0.499	0.069	1.000
2123	119	3.8	2.666	0.255	83	0.650	0.000	1.000
2124	138	7.2	2.563	0.305	82	0.766	0.000	1.000
2125	147	6.2	2.594	0.361	89	0.872	0.000	1.000
2126	107	2.0	2.349	0.247	86	0.327	0.137	1.000
2127	83	1.7	2.302	0.249	87	0.189	0.184	0.908
2128	90	1.9	2.439	0.245	82	0.352	0.114	1.000
2129	129	4.3	2.559	0.274	84	0.652	0.007	1.000
2130	149	7.4	2.543	0.362	84	0.772	0.000	1.000
2131	138	8.4	2.541	0.270	81	0.673	0.003	1.000

Anos.

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI	DT	VWCLAY	PHIE	SWE
2132	-		-	frac 0.328	us/m 86	frac	frac	frac
2132	14			0.328	80 90	0.732	0.000	1.000
2133	138			0.323	90 84	0.728	0.000	1.000
2134	89		2.462	0.289	84 90	0.645	0.015	1.000
2136	86			0.220		0.269	0.146	0.795
2130	99			0.213	88 84	0.304	0.137	0.754
2137	14C		2.348	0.257		0.503	0.048	1.000
2130	140			0.235	83 93	0.607	0.022	1.000
2107	112		1.868	0.359	93 107	Coal		
2140	104		2.431	0.400	84	Coal Coal		
2141	143		2.451	0.203	87	0.721	0.000	1.000
2142	140		2.508	0.352	90	0.721	0.000	1.000
2140	154		2.573	0.319	90 86	0.780	0.000	1.000
2145	104		3.011	0.300	77	0.700	0.000	1.000
2146	116		2.403	0.285	88	0.484	0.106	0.954
2140	133		2.499	0.200	83	0.404	0.023	1.000
2148	100		2.499	0.220	81	0.505	0.023	1.000
2149	140		2.514	0.247	84	0.662	0.004	0.993
2150	140	7.8	2.541	0.299	83	0.702	0.007	1.000
2151	156	8.2	2.558	0.338	91	0.779	0.000	1.000
2152	145	8.1	2.568	0.379	88	0.773	0.000	1.000
2153	83	4.0	2.446	0.200	81	0.288	0.113	0.803
2154	112	5.1	2.525	0.248	82	0.501	0.056	1.000
2155	157	8.0	2.529	0.312	85	0.751	0.000	1.000
2156	157	8.8	2.506	0.368	95	0.745	0.000	1.000
2157	146	7.9	2.578	0.399	94	0.766	0.000	1.000
2158	119	9.0	2.638	0.246	82	0.600	0.000	1.000
2159	154	9.2	2.528	0.323	86	0.770	0.000	1.000
2160	149	9.0	2.561	0.318	88	Coal		
2161	80	17.6	1.888	0.471	132	Coal		
2162	89	4.4	2.512	0.231	85	Coal		
2163	111	5.0	2.404	0.210	86	0.339	0.113	0.688
2164	135	8.0	2.511	0.243	82	0.593	0.023	0.954
2165	153	9.9	2.525	0.342	92	Coal		
2166	106	12.7	1.642	0.535	96	Coal		
2167	100	3.0	2.488	0.203	83	Coal		
2168	127	3.7	2.443	0.241	84	0.508	0.067	1.000
2169	159	9.6	2.501	0.340	91	0.858	0.000	1.000
2170	104	3.4	2.462	0.242	81	0.460	0.082	1.000
2171	147	6.1	2.565	0.265	85	0.741	0.000	1.000
2172	81	2.0	2.335	0.213	84	0.191	0.164	0.956
2173	104	5.7	2.648	0.134	73	0.471	0.001	1.000
2174	108	4.9	2.486	0.203	80	0.434	0.061	1.000
2175	161	8.4	2.514	0.341	87	0.832	0.000	1.000
2176	135	8.1	2.500	0.277	79	0.627	0.016	1.000
2177	124	3.2	2.432	0.195	83	0.374	0.075	1.000
2178	86	28.6	2.713	0.114	59	0.383	0.001	1.000
2179	135	7.2	2.499	0.240	81	0.586	0.021	1.000
2180	144	7.7	2.507	0.248	80 70	0.653	0.005	1.000
2181	139	8.8	2.530	0.238	79	0.629	0.005	1.000

1

Alven.

	HIE SWE rac frac
	083 1.000
	005 1.000
2184 129 8.5 2.496 0.266 86 Coal	1000
2185 141 10.8 2.357 0.417 93 Coal	
	000.1 810
	013 1.000
	044 1.000
	000 1.000
	1.000
	1.000
	1.000
	0.959
2194 140 11.7 2.464 0.288 90 Coal	,10 0.707
2195 141 15.4 2.417 0.443 93 Coal	
2196 142 23.0 2.265 0.413 101 Coal	
2197 123 17.3 2.496 0.244 81 Coal	
	0.462
	0.349
	0.313
	116 0.231
	0.965
	0.309
	120 0.279
	161 0.150
	204 0.164
	195 0.154
	210 0.145
2208 89 39.8 2.271 0.100 97 0.007 0.2 2209 81 36.2 2.288 0.182 98 Coal	0.140
2210 86 34.6 2.179 0.313 119 Coal	
2210 80 54.0 2.179 0.313 119 Cool 2211 148 17.1 2.315 0.377 87 Cool	
2212 133 13.1 2.493 0.279 86 Coal	
2212 135 13.1 2.493 0.277 00 Coal	
2214 107 65.4 2.086 0.470 118 Coal	
2215 107 71.4 1.921 0.475 125 Coal	
2216 112 56.3 2.093 0.489 120 Coal	
2217 123 18.4 2.301 0.453 104 Coal	
2218 112 24.6 2.068 0.399 99 Coal	
2219 126 20.8 2.338 0.339 93 Coal	
	000 1.000
	025 1.000
	01 1.000
	0.356
	0.727
	1.000
	01 1.000
	1.000
	1.000
	1.000
	0.974

Aren.

	GR	RT	RHOB	NPHI	DT	VWCLAY frac	PHIE frac	SWE
(mRKB)	api	ohmm 8 9.9	0.	frac 0.198	us/m 80	0.432	0.090	frac 0.474
2232				0.198	75	0.432	0.090	1.000
2233				0.149	87	0.583	0.008	0.873
2234 2235				0.238	86	0.835	0.000	1.000
				0.342	85		0.000	1.000
2236						Coal		
2237			2.128	0.453	124	Coal		
2238				0.437	93	Coal	0.001	1 000
2239				0.278	88	0.524	0.001	1.000
2240				0.292	89	0.501	0.001	1.000
2241				0.232	65	0.596	0.001	1.000
2242				0.228	81	0.617	0.009	0.989
2243			2.521	0.225	81	0.573	0.025	0.962
2244				0.242	81	0.663	0.004	1.000
2245				0.273	81	0.702	0.000	1.000
2246				0.265	82	0.640	0.011	1.000
2247				0.236	83	0.528	0.047	0.587
2248				0.262	90	0.412	0.116	0.258
2249			2.339	0.225	85	0.198	0.150	0.419
2250			2.604	0.281	79	0.797	0.000	1.000
2251	140		2.585	0.315	78	0.791	0.000	1.000
2252			3.012	0.372	77	0.784	0.000	1.000
2253				0.327	87	0.852	0.000	1.000
2254				0.345	88	0.755	0.000	1.000
2255				0.347	85	0.803	0.000	1.000
2256				0.331	88	0.719		1.000
2257			2.563	0.226	81	0.503	0.033	0.901
2258			2.375	0.218	94	0.330	0.125	0.404
2259			2.339	0.214	86	0.269	0.152	0.366
2260			2.642	0.176	64	0.586	0.001	1.000
2261	140		2.503	0.214	75	0.489	0.017	1.000
2262			2.490	0.212	84	0.350	0.087	0.734
2263	118		2.518	0.265	81	0.558	0.032	0.862
2264			2.534	0.262	80	0.654	0.005	1.000
2265			2.545	0.304	82	0.690	0.001	1.000
2266			2.605	0.308	81	0.779	0.000	1.000
2267			2.578	0.313	76	0.747	0.000	1.000
2268			2.569	0.292	84	0.713	0.000	1.000
2269			2.550	0.331	83	0.737	0.000	1.000
2270			2.561	0.308	81	Coal		
2271	98		2.242	0.390	81	Coal		
2272			1.796	0.547	94	Coal		
2273			2.031	0.426	117	Coal		
2274			2.450	0.295	90	Coal		1 000
2275			2.652	0.257	77	0.703	0.000	1.000
2276			2.579	0.251	78	0.739	0.000	1.000
2277			2.564	0.219	77	0.616	0.000	1.000
2278			2.569	0.282	80	0.799	0.000	1.000
2279			2.540	0.343	87	0.776	0.000	1.000
2280			2.559	0.273	81	0.773	0.000	1.000
2281	122	2 11.6	2.582	0.224	72	0.673	0.000	1.000

M/8-1

DEPTH (mRKB)	GR api		RT Shmm		NPHI frac	DT us/m		VWCLAY frac	PHIE frac	SWE frac
2282	•	133	14.1	2.568	0.265	,	78	0.746	0.000	1.000
2283		123	16.1	2.782	0.272		75	0.704	0.000	1.000
2284		130	11.0	2.684	0.251		75	0.690	0.000	1.000
2285		148	12.9	2.565	0.279		80	0.765	0.000	1.000
2286		147	13.4	2.558	0.357		84	0.756	0.000	1.000
2287		168	11.7	2.563	0.361		88	0.847	0.000	1.000
2288		167	11.8	2.567	0.333		82	Coal		
. 2289		51	285.6	1.220	0.759		141	Coal		
2290		132	43.2	2.378	0.520		99	Coal		
2291		91	14.2	2.398	0.190		86	0.311	0.124	0.319
2292		90	15.4	2.340	0.184		89	0.178	0.150	0.302
2293		93	16.1	2.410	0.186		85	0.285	0.117	0.306
2294		91	14.3	2.395	0.170		84	0.253	0.121	0.344
2295		99	48.1	2.646	0.169		67	0.531	0.001	0.974
2296		25	16.9	2.617	0.186		77	0.613	0.000	1.000
2297		45	16.2	2.562	0.305		82	0.755	0.000	1.000
2298		43	13.3	2.589	0.316		82	0.768	0.000	1.000
2299		19	20.0	2.864	0.282		74	0.650	0.000	1.000
2300		14	10.1	2.490	0.216		79	0.483	0.059	0.656
2301		49	18.8	2.252	0.428		97	Coal		
2302	1	33	10.1	2.603	0.291		80	Coal		
2303		38	15.7	2.535	0.274		81	0.663	0.004	1.000
2304		43	12.5	2.521	0.281		81	0.647	0.008	1.000
2305	1	62	16.8	2.576	0.341		82	0.826	0.000	1.000
2306	٦	45	17.5	2.597	0.323		80	0.728	0.000	1.000
2307	1	48	18.4	2.567	0.320		81	0.747	0.000	1.000
2308	1	04	10.5	2.459	0.262		82	0.461	0.056	0.634
2309	1	00	9.8	2.477	0.168		79	0.299	0.065	0.950
2310	٦	40	17.3	2.548	0.263		80	0.723	0.000	1.000
2311	1	22	20.4	2.564	0.246		71	0.662	0.000	1.000
2312	1	29	12.5	2.553	0.249		80	0.663	0.001	1.000
2313	1	30	13.4	2.518	0.245		79	0.598	0.018	0.983
2314	ו	40	11.8	2.527	0.233		79	0.633	0.005	1.000
2315	1	32	14.9	2.556	0.281		81	0.659	0.003	1.000
2316	1	37	18.8	2.545	0.283		74	0.701	0.000	1.000
2317	1	48	16.2	2.545	0.336		85	0.796	0.000	1.000
2318	1	46	15.6	2.573	0.331		84	0.844	0.000	1.000
2319	1	26	16.9	2.669	0.316		80	0.762	0.000	1.000
2320		45	15.6	2.593	0.341		83	0.831	0.000	1.000
2321		48	15.5	2.532	0.325		87	0.757	0.000	1.000
2322		39	15.0	2.580	0.289		76	Coal		
2323		28	17.6	1.840	0.542	-	117	Coal		
2324		35	13.9	2.612	0.308		80	Coal		
2325		49	20.2	2.526	0.337		113	Coal		
2326		43	786.4	1.227	0.650		144	Coal		
2327		51	623.0	1.277	0.651		143	Coal		
2328		19	31.3	2.140	0.582	1	108	Coal		
2329		43	13.9	2.519	0.234		78	Coal	0.000	1 000
2330		39	20.8	2.535	0.256		77	0.695	0.000	1.000
2331	1	33	19.2	2.492	0.234		78	0.554	0.019	0.971

A/1014 -

		RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE frac
2332	106	14.9	-		-	0.314	0.088	0.411
2333	74	10.5				0.192	0.132	0.415
2334	100	19.0				0.304	0.087	0.367
2335	106	12.5			81	0.454	0.060	0.513
2336	110	16.0			80	0.493	0.048	0.608
2337	143	26.9	2.562			0.718	0.000	1.000
2338	150	23.4	2.571	0.346	81	0.771	0.000	1.000
2339	130	27.5	2.808	0.310	74	0.718	0.000	1.000
2340	116	10.1	2.447	0.247	83	0.474	0.079	0.508
2341	95	10.4	2.447	0.209	83	0.387	0.089	0.506
2342	128	9.0	2.453	0.223	84	0.487	0.064	0.696
2343	111	14.8	2.598	0.214	80	0.530	0.008	0.998
2344	133	17.0	2.580	0.235	81	0.638	0.002	1.000
2345	108	9.3	2.446	0.216	81	0.424	0.082	0.570
2346	134	17.1	2.520	0.277	83	0.642	0.009	1.000
2347	112	23.2	2.327	0.455	119	Coal		
2348	141	29.4	2.290	0.437	94	Coal		
2349	141	25.9	2.450	0.312	84	0.687	0.000	1.000
2350	137	25.6	2.551	0.282	79	0.728	0.000	1.000
2351	142	23.2	2.531	0.284	80	Coal		
2352	117	67.9	1.673	0.594	119	Coal		
2353	113	17.4	2.543	0.297	74	Coal		
2354	165	30.6	2.501	0.337	86	0.815	0.000	1.000
2355	145	17.1	2.541	0.304	80	0.729	0.000	1.000
2356	157	30.8	2.506	0.280	81	0.719	0.000	1.000
2357	146	24.5	2.591	0.234	76	0.731	0.000	1.000
2358	94	18.1	2.444	0.215	84	0.356	0.094	0.302
2359	63	23.3	2.294	0.130	77	0.067	0.180	0.241
2360	98	108.6	2.706	0.107	58	0.407	0.001	1.000
2361	93	13.1	2.423	0.213	86	0.319	0.111	0.357
2362	99	22.9	2.376	0.206	82	0.254	0.137	0.219
2363	68	15.2	2.345	0.151	92	0.134	0.168	0.300
2364	132	27.3	2.674	0.225	109	Coal		
2365	68	68.3	1.391	0.682	176	Coal		
2366	37	299.3	1.769	0.631	144	Coal		
2367	101	34.4	1.760	0.710	156	Coal		
2368	154	22.5	2.406	0.460	100	Coal		
2369	151	25.7	2.551	0.290	76	Coal		
2370	121	19.7	2.528	0.224	77	0.566	0.016	1.000
2371	113	23.1	2.509	0.214	80	0.524	0.040	0.380
2372	107	16.9	2.480	0.217	80	0.442	0.067	0.388
2373	157	24.7	2.503	0.237	82	0.613	0.016	1.000
2374	103	26.1	2.487	0.173	78	0.382	0.069	0.265
2375	114	21.8	2.488	0.195	81	0.443	0.060	0.316
2376	108	23.9	2.416	0.237	85	0.406	0.109	0.181
2377	108	27.0	2.383	0.265	86 49	0.396	0.124	0.149
2378	85	44.5	2.642	0.150	68 1	0.423	0.001	1.000
2379	84 71	20.0	2.431	0.244	81 89	0.351	0.108	0.294
2380	71 85	13.2	2.408	0.188	89 70	0.239 0.358	0.135 0.086	0.325
2381	CO	30.3	2.472	0.241	70	0.000	0.000	0.202

A.

DEPTH GR RT RHOB NPHI DT VWCLAY PHIE (mRKB) api ohmm g/cc frac us/m frac frac	SWE fraic
2382 143 34.5 2.624 0.253 70 0.721 0.000	1.000
2383 143 41.9 2.211 0.403 93 Coal	
2384 153 28.6 2.604 0.226 72 0.758 0.000	1.000
2385 104 37.6 2.746 0.218 73 0.547 0.001	1.000
2386 88 14.5 2.419 0.180 85 0.302 0.102	0.377
2387 70 21.8 2.403 0.143 86 0.195 0.130	0.260
2388 56 25.6 2.281 0.121 91 0.028 0.198	0.220
2389 74 28.1 2.454 0.156 85 0.226 0.109	0.230
2390 61 33.7 2.377 0.150 90 0.129 0.156	0.188
2391 55 38.2 2.326 0.145 92 0.134 0.174	0.158
2392 45 96.8 2.165 0.079 93 0.078 0.216	0.083
2393 156 29.3 2.311 0.360 102 Coal	
2394 104 46.3 1.457 0.591 117 Coal	
2395 126 81.2 1.690 0.614 132 Coal	
2396 169 22.5 2.530 0.408 90 Coal	
2397 155 29.5 2.174 0.449 102 Coal	
2398 145 23.4 2.528 0.270 79 Coal	
2399 143 27.9 2.047 0.386 95 Coal	
2400 148 21.7 2.570 0.287 76 Coal	
2401 93 22.9 2.471 0.399 84 Coal	
2402 130 29.6 1.717 0.565 111 Coal	
2403 95 41.5 1.606 0.637 99 Coal	
2404 139 28.0 2.591 0.287 72 Coal	
2405 98 17.6 2.579 0.203 76 0.521 0.017	0.801
2406 56 10.5 2.369 0.152 87 0.129 0.158	0.382
2407 48 28.9 2.200 0.091 82 0.040 0.201	0.190
2408 61 175.0 2.689 0.020 61 0.178 0.001	1.000
2409 138 50.8 2.565 0.218 71 0.602 0.000	1.000
2410 95 16.9 2.443 0.209 79 0.334 0.093	0.343
2411 75 15.2 2.475 0.176 84 0.261 0.103	0.371
2412 116 19.0 2.425 0.164 83 0.311 0.097	0.301
2413 72 13.5 2.363 0.181 84 0.152 0.156	0.318
2414 60 11.5 2.399 0.152 86 0.137 0.145	0.384
2415 71 15.4 2.388 0.165 82 0.173 0.142 0.11 0.000 0.000 0.000 0.000 0.000 0.000	0.315
2416 84 13.9 2.415 0.164 82 0.230 0.118 2417 40 11.2 2.400 0.170 82 0.230 0.118	0.366
2417 68 11.3 2.402 0.178 82 0.192 0.134 2418 57 0.4 2.207 0.140 82 0.192 0.134	0.407
2418 57 9.6 2.397 0.160 82 0.144 0.145 2410 78 0.8 0.378 0.137 81 0.148 0.130	0.428
2419 78 9.8 2.378 0.137 81 0.148 0.139 2420 136 21.8 2.604 0.217 74 0.633 0.000	0.444
	1.000
2421 174 31.3 2.657 0.322 80 0.870 0.000 2422 156 29.6 2.636 0.308 79 0.810 0.000	1.000
2422 136 29.6 2.836 0.306 79 0.810 0.000 2423 121 47.9 2.235 0.456 108 Coal	1.000
2423 121 47.7 2.233 0.460 108 COOL 2424 92 27.8 2.481 0.469 97 Cool	
2424 72 27.5 2.461 0.467 77 COOL 2425 138 14.7 2.522 0.199 81 Cool	
2426 174 19.3 2.586 0.308 77 0.928 0.000	1.000
2420 174 19.0 2.580 0.000 77 0.920 0.000 2427 167 19.2 2.587 0.275 74 0.846 0.000	1.000
2427 107 17.2 2.007 0.270 74 0.040 0.000 2428 143 21.0 2.597 0.217 73 0.671 0.000	1.000
2429 165 22.6 2.612 0.266 75 0.834 0.000	1.000
2430 159 23.1 2.546 0.250 76 Coal	
2431 69 92.4 2.176 0.617 121 Coal	

A. a.

DEPTH (mRKB)	GR api		RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE fraic
2432	-	172	26.6	•	0.394		Coal		
2433		118	25.9		0.263	68	0.636	0.000	1.000
2434		113	10.6		0.197	73	0.502	0.020	1.000
2435		101	11.7		0.175	73	0.460	0.027	1.000
2436		87	7.2		0.227	79	0.357	0.099	0.592
2437		96	10.8	2.463	0.235		0.414	0.089	0.467
2438		68	3.4	2.459	0,191	79	0.264	0.106	0.948
2439		64	3.1	2.426	0.174		Coal		
2440		105	12.1	2.052	0.366	119	Coal		
2441		158	11.1	2.470	0.426	90	Coal		
2442		153	14.7	2.578	0.234	73	0.725	0.000	1.000
2443		161	15.0		0.238	73	0.729	0.000	1.000
2444		161	12.4	2.560	0.221	73	0.719	0.000	1.000
2445		104	4.6	2.470	0.196	80	0.379	0.074	0.979
2446		106	6.2	2.536	0.202	77	0.461	0.038	1.000
2447		150	10.0	2.556	0.215	76	0.645	0.000	1.000
2448		152	13.9	2.568	0.224	74	0.676	0.000	1.000
2449		135	10.4	2.549	0.206	75	0.579	0.004	1.000
2450		115	9.0	2.512	0.210	74	0.460	0.042	0.955
2451		101	25.3	2.758	0,151	62	0.455	0.001	1.000
2452		94	12.9	2.717	0.224	68	0.485	0.001	0.946
2453		104	29.3	2.808	0.156	55	0.450	0.001	1.000
2454		152	26.2	2.608	0.210	71	0.697	0.000	1.000
2455		155	26.3	2.618	0.265	76	0.740	0.000	1.000
2456		150	26.2	2.610	0.308	77	0.752	0.000	1.000
2457		150	22.5		0.311	80	0.758	0.000	1.000
2458	3	152	22.2	2.610	0.330	82	0.793	0.000	1.000
2459		152	23.0	2.589	0.311	81	0.799	0.000	1.000
2460)	152	23.8	2.570	0.332	83	0.820	0.000	1.000
2461		153	25.0	2.589	0.331	79	0.844	0.000	1.000
2462	2	151	23.1	2.615	0.298	79	0.780	0.000	1.000
2463	3	154	22.0	2.585	0.302	83	Coal		
2464	1	131	45.3	1.859	0.429	110	Coal		
2465	5	159	28.6	2.068	0.525	99	Coal		
2466	b	120	76.5	1.764	0.474	152	Coal		
2467	7	61	422.9	1.284	0.692	134	Coal		
2468	3	77	104.4	1.261	0.669	120	Coal		
2469)	140	41.9	1.693	0.542	108	Coal		
2470)	159	25.5	2.607	0.243	70	Coal		
2471		143	28.0	2.591	0.207	71	0.715	0.000	1.000
2472		147	35.4	2.614	0.236	72	0.735	0.000	1.000
2473		147	27.2	2.569	0.232	73	0.740	0.000	1.000
2474		115	7.2	2.428	0.180	79	0.343	0.077	0.787
2475		81	7.0	2.442	0.186	84	Coal		
2476		137	38.9	1.753	0.515	99	Coal		
2477		157	27.7	2.461	0.275	79	Coal	0.000	1 000
2478		163	25.7	2.497	0.324	87	0.790	0.000	1.000
2479		163	20.0	2.455	0.309	76	0.682	0.000	1.000
2480		161	26.7	2.485	0.447	101	Coal		
2481		127	125.8	1.534	0.642	117	Coal		

DEPTH (mRKB)	GR api	RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SWE fraic
2482	-	35 31.2	2 2.092	0.557	104	Coal		
2483	3 14	12 26.0) 2.595	0.239	73	Coal		
2484	13	36 24.8	3 2.584	0.204	73	0.621	0.000	1.000
2485	5 13	37 26.2	2 2.598	0.204	75	0.627	0.000	1.000
2486) 13	34 29.7	2.586	0.206	74	0.630	0.000	1.000
2487	'] <i>2</i>	13 24.9	2.582	0.205	74	0.647	0.000	1.000
2488					76	0.688	0.000	1.000
2489					78	0.507	0.036	0.873
2490				0.191	75	0.505	0.016	1.000
2491				0.233	75	0.737	0.000	1.000
2492				0.243	76	0.714	0.000	1.000
2493				0.214	76	0.548	0.019	1.000
2494				0.214	78	0.524	0.027	0.863
2495		2 224.2		0.163	59	0.376	0.001	1.000
2496				0.177	74	0.445	0.025	1.000
2497				0.190	74	0.573	0.001	1.000
2498				0.183	74	0.567	0.001	1.000
2499				0.278	75	0.826	0.000	1.000
2500				0.331	88	Coal		
2501	10			0.587	129	Coal		
2502				0.477	83	Coal		
2503				0.536	125	Coal		
2504		6 510.4		0.757	137	Coal		
2505		9 199.6		0.646	134	Coal		
2506				0.679	119	Coal		
2507				0.555	128	Coal		
2508				0.725	137	Coal		
2509 2510				0.780 0.365	117 88	Coal Coal		
2510	15			0.353	101	Coal		
2512				0.538	101	Coal		
2512	15			0.368	90	Coal		
2514			2.565	0.272	73	Coal		
2515	14			0.224	78 78	0.649	0.000	1.000
2516	15			0.291	88	0.806	0.000	1.000
2517	15			0.459	102	Coal	0.000	11000
2518	12		1.680	0.532	115	Coal		
2519	14			0.584	94	Coal		
2520	15			0.546	100	Coal		
2521	15			0.455	115	Coal		
2522	10	9 46.4	1.385	0.619	123	Coal		
2523	16	9 47.8	2.452	0.344	86	Coal		
2524	16	1 53.4	2.619	0.290	77	0.815	0.000	1.000
2525	8	4 24.0	2.433	0.122	82	0.210	0.101	0.285
2526	59	9 25.2	2.329	0.126	91	0.067	0.174	0.224
2527	4			0.074	91	0.085	0.207	0.061
2528	4			0.073	95	0.071	0.214	0.104
2529	79			0.114	80	0.102	0.127	0.325
2530	9			0.142	76	0.355	0.045	0.467
2531	73	3 173.8	2.735	0.080	57	0.287	0.001	1.000

N:***

DEPTH (mRKB)	GR api		RT ohmm	RHOB g/cc	NPHI frac	DT us/m	VWCLAY	PHIE	SWE
(IIIKKB) 2532	•	64	258.6	2.791	0.064	us/ 111 58	frac	frac	
2532		81	238.0 51.0	2.791	0.004	66	0.223 0.190	0.001 0.024	1.000
2533		81	15.3	2.337	0.078	80		0.024	0.799
2535		81	18.5	2.477	0.152	79	0.243 0.246	0.092	0.415 0.388
2535		80	15.0	2.494	0.150	79	0.240	0.084	
2530		85	16.3	2.470	0.130	77	0.224	0.093	0.407
2538		98	20.7	2.528	0.143	78	0.299	0.054	0.666 0.411
2539		80	18.1	2.485	0.175	80	0.397	0.030	0.362
2540		78	16.6	2.403	0.100	71	0.305	0.083	0.382
2540		78	17.9	2.480	0.154	79	0.303	0.052	0.885
2542		82	15.2	2.400	0.155	79	0.241	0.091	0.399
2543		86	18.3	2.509	0.161	77	0.202	0.078	0.408
2544		79	17.2	2.007	0.164	79	0.204	0.078	0.359
2545		75	17.2	2.400	0.163	77	0.203	0.107	0.359
2546		79	17.9	2.482	0.100	79	0.237	0.105	0.379
2540		63	14.8	2.402	0.169	81	0.237	0.090	0.379
2548		59	14.0	2.381	0.174	85	0.207	0.098	0.421
2549		82	15.2	2.387	0.174	85	0.149	0.134	0.207
2550		148	60.4	2.533	0.105	88	Coal	0.134	0.007
2551		154	46.0	2.333	0.230	107	Coal		
2552		33	593.7	1.232	0.680	133	Coal		
2553		36	1120.0	1.683	0.509	81	Coal		
2554		33	1993.0	1.225	0.633	143	Coal		
2555		144	29.2	2.017	0.471	96	Coal		
2556		150	43.6	2.140	0.632	114	Coal		
2557		140	46.2	2.179	0.533	120	Coal		
2558		143	36.8	1.983	0.443	106	Coal		
2559		167	22.9	2.598	0.309	81	Coal		
2560		165	30.9	2.449	0.394	96	Coal		
2561		161	28.8	2.509	0.457	92	Coal		
2562		106	18.9	2.550	0.170	76	0.408	0.030	0.862
2563		195	8.4	2.563	0.396	95	Coal		
2564		130	55.5	1.516	0.484	120	Coal		
2565		156	65.1	2.548	0.366	81	Coal		
2566	Ţ	111	27.9	2.530	0.190	74	0.444	0.041	0.393
2567		69	18.1	2.408	0.139	88	0.171	0.137	0.283
2568		67	33.6	2.335	0.162	94	0.144	0.175	0.161
2569		58	44.6	2.301	0.173	91	0.076	0.195	0.140
2570		58	51.4	2.373	0.170	87	0.131	0.161	0.132
2571		56	42.4	2.361	0.164	88	0.094	0.170	0.157
2572		60	28.9	2.343	0.162	88	0.090	0.175	0.197
2573		90	36.0	2.443	0.172	95	Coal		
2574	1	38	75.3	1.946	0.553	109	Coal		
2575	1	26	35.1	2.620	0.291	81	Coal		
2576		24	41.7	2.601	0.245	76	0.662	0.000	1.000
2577		27	62.1	2.585	0.234	73	0.655	0.000	1.000
2578		34	47.7	2.587	0.263	79	0.717	0.000	1.000
2579	1	07	24.7	2.388	0.307	97	0.466	0.139	0.286
2580		63	11.6	2.371	0.141	89	0.140	0.156	0.346
2581		95	18.2	2.595	0.186	79	0.476	0.018	0.844

	GR		RT ohmm	RHOB	NPHI frac	DT us/m	VWCLAY frac	PHIE frac	SW,E frac
(mRKB)	api		45.2	g/cc 2.529		82		0.000	1.000
2582 2583		151 128	40.2 34.7			7		0.000	1.000
2584		120	35.1	2.596	0.192	74		0.000	1.000
2585		125	38.6		0.203	7:		0.000	1.000
2586		130	36.4		0.200	7:		0.000	1.000
2587		113	66.3	2.500	0.203	67			1.000
2588		134	43.2		0.203	75		0.000	1.000
2589		132	39.5	2.563	0.239	78		0.002	1.000
2590		132	32.8	2.530	0.263	84		0.002	0.993
2590		145	38.0		0.314	92		0.007	0.770
2591		97	188.3	1.498	0.561	125			
2592		54	814.1	1.327	0.666	132			
2593		38	2754.0		0.699	130			
2595		160	2704.0	2.465	0.480	90			
2596		115	20.0		0.156	72		0.001	1.000
2590		106	20.3	2.537	0.148	72		0.021	0.987
2598		97	20.0		0.140	72		0.019	0.999
2590		116	23.6	2.461	0.142	74		0.067	0.379
2600		87	15.5	2.435	0.098	, 70		0.102	0.448
2600		77	26.7	2.313	0.124	80		0.173	0.233
2601		74	43.6	2.367	0.104	84		0.151	0.197
2602		69	61.1	2.357	0.120	80		0.156	0.168
2603		71	53.3	2.366	0.129	78		0.150	0.183
2605		68	50.7	2.342	0.118	82		0.165	0.183
2606		74	39.7	2.393	0.117	80			0.224
2600		71	35.5	2.329	0.142	79		0.169	0.209
2608		75	38.6	2.395	0.119	78		0.134	0.227
2609		64	25.6	2.394	0.114	77			
2610		105	30.5	2.419	0.373	88			
2611		90	10.8	2.488	0.129	73	0.237	0.069	0.627
2612		92	11.2		0.135	74	0.118	0.110	0.532
2613		63	22.1		0.082	70	0.084	0.081	0.454
2614		74	21.4	2.417	0.105	75		0.115	0.359
2615		75	21.1	2.405	0.109	70	6 0.051	0.123	0.351
2616		74	21.3	2.417	0.115	70	6 0.079	0.118	0.341
2617		72	25.9	2.415	0.104	73	3 0.060	0.114	0.331
2618	3	70	20.8	2.407	0.119	77	0.079	0.123	0.331
2619)	76	14.7	2.358	0.141	82		0.151	0.339
2620)	92	25.9	2.498	0.090	69	0.152	0.063	0.465
2621		66	10.6	2.400	0.114	70		0.137	0.469
2622	2	61	7.9	2.398	0.111	77		0.140	0.540
2623		72	8.9	2.396	0.131	82			
2624		153	16.0	2.381	0.403	93			
2625		101	18.6	1.858	0.450	105			
2626		144	10.0		0.207	88			
2627		151	11.0		0.228	78		0.000	1.000
2628		99	4.0	2.449	0.168	70		0.083	0.984
2629		80	2.8	2.393	0.107	70		0.120	1.000
2630		102	3.7	2.438	0.161	78		0.098	0.916
2631		91	3.2	2.412	0.137	70	6 0.133	0.112	0.990

A/8-1

1

Î

DEPTH	GR	RT		RHOB	NPHI	DT	١	/WCLAY	PHIE	SWE
(mRKB)	api	ohr	nm	g/cc	frac	us/m		frac	frac	fraic
2632		114	5.6	2.497	0.147	7	7	0.335	0.057	1.000
2633		81	6.2	2.541	0.163	7	'4	0.310	0.051	1.000
2634		66	3.5	2.467	0.063	7	'0	0.061	0.080	1.000
2635		66	2.7	2.491	0.074	7	'1	0.093	0.074	1.000
2636		70	2.0	2.414	0.103	7	'5	0.047	0.118	1.000
2637		73	2.0	2.388	0.100	7	'5	0.033	0.130	1.000
2638		67	2.2	2.437	0.095	7	'4	0.047	0.111	1.000
2639		76	2.2	2.426	0.098	7	'4	0.055	0.107	1.000
2640		80	2.9	2.476	0.100		4	0.121	0.087	1.000
2641		82	2.5	2.442	0.118	7	6	0.143	0.100	1.000
2642		156	6.7	2.572	0.190	7	7	0.605	0.000	1.000
2643		150	10.9	2.571	0.244	8	1	0.710	0.000	1.000
2644		141	13.5	2.555	0.254		9	0.620	0.009	1.000
2645		160	13.2	2.557	0.313	8	5	0.759	0.000	1.000
2646		156	15.1	2.545	0.291	8	4	0.722	0.000	1.000
2647		164	15.4	2.527	0.337	8	5	0.773	0.000	1.000
2648		99	30.0	1.916	0.333	7	2	Coal		
2649		162	5.7	2.171	0.314	8	4	Coal		
2650		104	4.2	2.472	0.156	7	6	0.275	0.080	1.000
2651		72	2.0	2.372	0.135	7	8	0.062	0.143	1.000
2652		79	1.9	2.378	0.150	8	1	0.106	0.144	1.000
2653		72	2.1	2.403	0.134	7	9	0.103	0.133	1.000
2654		94	2.9	2.452	0.151	7	9	0.255	0.094	1.000
2655		85	1.9	2.426	0.162	8	4	0.233	0.117	1.000
2656		92	3.3	2.495	0.153	7	8	0.296	0.074	1.000
2657		92	2.6	2.445	0.180	8	0	0.284	0.102	1.000
2658		70	1.8	2.404	0.144	8	0	0.144	0.127	1.000
2659		128	8.8	2.505	0.211	8	0	0.512	0.042	0.840
2660		91	5.6	2.443	0.108	7	9	0.179	0.089	0.874
2661		88	5.1	2.415	0.125	6		0.121	0.097	0.908
2662	-	102	5.0	2.473	0.184	7.	5	0.293	0.087	0.867
2663		79	2.3	2.421	0.156	8	1	0.164	0.124	1.000
2664		76	2.8	2.513	0.137	7		0.217	0.070	1.000
2665		123	3.4	2.443	0.126	7		0.219	0.072	1.000
2666		117	4.4	2.523	0.193	7'		0.432	0.051	1.000
2667		68	2.3	2.413	0.123	7		0.086	0.122	1.000
2668		80	2.1	2.525	0.127	7		0.192	0.071	1.000
2669		72	1.9	2.400	0.103	7		0.029	0.129	1.000
2670		70	2.0	2.405	0.120	70		0.049	0.132	1.000
2671		84	1.8	2.393	0.128	70		0.051	0.132	1.000
2672		71	2.5	2.466	0.088	7		0.055	0.096	1.000
2673		75	1.4	2.377	0.140	79		0.064	0.145	1.000
2674	_	82	1.7	2.348	0.147	70		0.083	0.146	1.000
2675		135	2.5	2.628	0.162	7		0.546	0.001	1.000
2676	1	145	11.4	2.588	0.255	74		0.663	0.000	1.000
2677		77	4.4	2.444	0.101	74		0.099	0.098	0.968
2678		81	3.9	2.469	0.123	7		0.168	0.095	0.969
2679	ן	144	3.8	2.497	0.253	8:		Coal		
2680	-	89	29.9	1.458	0.647	13:		Coal		
2681]	117	19.2	2.449	0.184	80	J	Coal		

North Contract

DEPTH (mRKB)	GR api		RT Shmm	RHOB g/cc	NPHI frac	DT us/m		VWCLAY frac	PHIE frac	SWE frac
2682	-	131	33.7	-	0.286	-	83	Coal	nao	nao
2683		147	14.4				95	Coal		
2684		146	21.8	2.552	0.222		75	Coal		
2685		156	35.5	2.335	0.350		11	Coal		
2686		153	17.5	2.573	0.194		71	0.633	0.000	1.000
2687		131	17.0	2.529	0.189		75	0.521	0.016	1.000
2688		125	17.8	2.567	0.197		75	0.593	0.003	0.816
2689		114	13.3	2.543	0.153		77	Coal	0.000	01010
2690		152	9.2	2.049	0.390		99	Coal		
2691		125	21.3	2.498	0.190		79	Coal		
2692		135	24.8	2.093	0.429		98	Coal		
2693		124	17.4	2.237	0.299		82	Coal		
2694		114	14.7	-2.394	0.163		83	Coal		
2695		164	13.9	2.167	0.209		76	Coal		
2696		147	16.4	-0.924	0.229		. e 76	Coal		
2697		146	15.1	2.001	0.351		88	Coal		
2698		96	9.6	2.033	0.155		80	Coal		
2699		114	10.6	4.749	0.169		78	Coal		
2700		155	17.6	2.601	0.216		73	Coal		
2700		148	14.4	2.602	0.226		78	Coal		
2701		136	16.7	2.163	0.443		06	Coal		
2702		146	20.5	2.647	0.231		74	Coal		
2700		154	20.2	2.623	0.229		74	0.723	0.000	1.000
2705		142	13.8	2.546	0.209		79	0.616	0.004	0.925
2706		148	19.4	2.500	0.262		79	Coal		
2707		153	18.1	2.186	0.343		87	Coal		
2708		118	10.2	2.440	0.159		79	0.309	0.078	0.614
2709		118	26.9	2.700	0.153	(64	0.551	0.001	1.000
2710		112	11.4	2.494	0.182		71	0.383	0.055	0.689
2711		69	4.7	2.393	0.162		82	0.174	0.138	0.632
2712		110	11.0	2.778	0.191	-	72	0.532	0.001	1.000
2713		95	4.7	2.405	0.157	-	77	0.195	0.102	0.912
2714		109	6.4	2.460	0.179	-	76	0.343	0.068	0.874
2715	1	119	6.4	2.609	0.193	-	75	0.546	0.001	1.000
2716	1	146	12.6	2.556	0.194	-	74	0.577	0.001	1.000
2717	٦	141	17.4	2.462	0.262	-	79	Coal		
2718	1	142	27.5	1.694	0.507	1(07	Coal		
2719	1	124	14.7	2.502	0.172	-	78	Coal		
2720	1	126	19.9	2.613	0.214	-	76	0.627	0.000	1.000
2721	1	147	15.3	2.368	0.299	8	82	0.459	0.033	0.941
2722	1	100	19.5	2.503	0.136		77	0.336	0.057	0.412
2723		88	13.7	2.514	0.153	8	80	0.320	0.064	0.528
2724	. 1	128	17.5	4.072	0.247		74	Coal		
2725	1	170	11.2	2.582	0.403		93	Coal		
2726		133	22.7	2.518	0.200		74	Coal		
2727		104	15.0	2.442	0.175		80	0.328	0.083	0.373
2728		129	17.2	2.653	0.222		78	Coal		
2729		102	19.6	2.448	0.269		93	Coal		
2730		98	17.1	2.213	0.199		83	0.189	0.122	0.313
2731	1	167	24.8	1.816	0.495	(92	Coal		

A/8m.

DEPTH	GR		RT	RHOB	NPHI	DT	VWCLAY	PHIE	SWĘ
(mRKB)	api		ohmm	g/cc	frac	us/m	frac	frac	frac
2732	2	143	8.3	2.492	0.277	91	Coal		
2733	3	162	16.1	2.561	0.196	75	0.656	0.000	1.000
2734	ļ	126	16.5	2.594	0.195	73	0.571	0.001	1.000
2735	5	94	9.8	2.440	0.198	82	0.338	0.098	0.469
2736)	174	25.0	2.525	0.227	76	Coal		
2737	,	105	20.2	2.631	0.136	76	Coal		
2738	5	115	21.0	2.496	0.193	80	Coal		
2739)	168	21.7	2.545	0.266	77	0.734	0.000	1.000
2740)	127	Ν	2.529	0.177	72	Nul	0.000	0.000

A. 6.1

1

APPENDIX 3

APPENDIX 3

1

70. 10.1

TURRUM 5

MDT Analysis

TURRUM-5 MDT INTERPRETATION

1

VIC/L3 Bass Strait

Ocean Bounty

13th-16th September 1995

Mike Scott

Reservoir Technology

Production Department

Contents

- 1.0 Summary and Conclusions
- 2.0 Marlin @ TOL Interpretation
- 3.0 Figure 3 Turrum-5 MDT 2150-2300 m TVDSS Interpretation
- 4.0 Figure 4 Turrum-5 MDT 2325-2450 m TVDSS Interpretation
- 5.0 Figure 5a, 5b, 5c Turrum-5 MDT 2490-2570 m TVDSS Interpretation
- 6.0 Figure 6 Turrum-5 MDT 2570-2650 m TVDSS Interpretation
- 7.0 Turrum-5 MDT Sampling

Attachments:

- Figure 1 Turrum-5 MDT Full Pressure Dataset
- Figure 2 Turrum-5 MDT Marlin @ TOL
- Figure 3 Turrum-5 MDT 2150-2300 m TVDSS
- Figure 4 Turrum-5 MDT 2325-2450 m TVDSS

Figure 5a - Turrum-5 MDT 2490-2570 m TVDSS

Figure 5b - Turrum-5 MDT 2490-2570 m TVDSS. Alternate interpretation matching core fluorescence @ 2518.0 m TVDSS.

Figure 5c - Turrum-5 MDT 2490-2570 m TVDSS. Depth scale extended to show OWC intersections with original aquifer.

Figure 6 - Turrum-5 MDT 2570-2650 m TVDSS

Esso Australia Ltd - Pressure Data Forms (8 pages)

Esso Australia Ltd - Sample Forms (1 summary page and 16 sample pages)

1.0 Summary and Conclusions

Turrum-5 was spud 08:00hrs 23rd September 1995, reached TD at 11:30hrs 11th October 1995 and the rig was released from location at 22:30hrs 23rd October 1995. The well is located in VIC production licence L3 at 5765878 m North and 605099 m East (Latitude: 38 14' 55.83"N, Longitude: 148 12' 3.99"E) and lies approximately 1.9 km west of the Marlin-A platform in 60m of water.

Turrum-5 is a vertical well, drilled to a total depth of 2755 m with a KB height of 25 metres. The well encountered the Marlin gas reservoir with top of latrobe group at 1386.5 m MDRKB (1361.5 m TVDSS), top of coarse clastics at 1395 m MDRKB (1370 m TVDSS) and a number of Turrum oil and gas reservoirs were encountered between 2075 m MDRKB (2050 m TVDSS) and TD.

The MDT obtained 71 pressure survey points (54 apparently valid, 12 tight, 2 potentially supercharged, 2 seal failures and 1 repeated due to operator error) and attempted 28 samples in 6 runs. The full MDT pressure dataset is demonstrated in Figure 1.

The conclusions of the MDT interpretation are:

- 1. A gas-water contact for the Marlin reservoir is interpreted at 1493.4 m TVDSS. The gas bearing sands above this depth are all in communication which is demonstrated by the common gas pressure gradient (Figure 2). The aquifer sands below the gas-water contact are also in good communication. The Marlin gas cap at this location demonstrates a 226 psi pressure drop (89 psi hydrostatic and 137 psi aquifer decline).
- 2. Relative to the original aquifer, the current aquifer pressures in the Turrum reservoirs range from drawn-down by 38 psi to over-pressured by 8 psi (Figures 3 & 6). Because of this complex pressure regime it is difficult to interpret definitive free water contacts for the Turrum hydrocarbon systems.
- 3. In the Turrum reservoirs the MDT interpretation has identified 4 gas reservoirs, 1 potential gas cap and 3 oil reservoirs. In combination with the preliminary log analysis, an interpretation for 1 potential gas reservoir and 2 potential oil or gas reservoirs is also proposed. Figures 3 to 6 detail the interpretations.
- 4. The sampling program planned for Turrum-5 was relatively unsuccessful. This was caused by problems with the MDT power supply, telemetry system, bottle operation and the low permeable formations. However, the MDT was successful in capturing oil in the reservoirs at 2523 m TVDSS and 2545 m TVDSS.

2.0 Marlin @ TOL Interpretation

Figure 2 details the MDT interpretation for the Marlin reservoir at TOL. As can be seen from Figure 2, a gas-water contact is interpreted at 1493.4 m TVDSS. The gas sands above this depth are all in communication, which is demonstrated by the common gas gradient of 0.19 psi/m. The water sands below the gas-water contact are also in good communication.

The gas contact for Marlin has risen 62.6 m since discovery - original gas contact is interpreted to be 1556m TVDSS. This rise of water contact represents a hydrostatic head pressure decline of 89 psi. The total pressure drop in the gas sands from original to current is 226 psi (89 psi hydrostatic and 137 psi aquifer decline).

3.0 Figure 3 - Turrum-5 MDT 2150-2300 m TVDSS Interpretation

Figure 3 shows the upper Turrum reservoirs.

The upper sand in Figure 3 has an calculated gas gradient of 0.25 psi/m. Extrapolating the gas gradient to the original aquifer pressure results in a gas-water contact at 2224.64 m TVDSS.

An apparently valid pretest (#1/24) at 2233.5 m TVDSS would indicate that the aquifer in this area may be slightly overpressured and an equally likely gas-water contact for this upper sand could be interpreted at 2217.88 m TVDSS.

Connecting the two pretests (#1/26 & #1/28) at approximately 2268 m TVDSS results in a gradient of 0.947 psi/m which suggests that this interval could be oil. Although the pretests appear valid, pretest #1/26 has a calculated mobility of 65.4 md/cp and pretest #1/28 has a calculated mobility of 9.1 md/cp and therefore there exists the potential that this formation is slightly supercharged. Extrapolating the 0.947 psi/m gradient to the original aquifer pressure yields a potential oil-water contact at 2414.9 m TVDSS. Preliminary log analysis reveals that this sand could however be a gas sand. Using a gas gradient of 0.25 psi/m with pretest #1/26 (which has a larger mobility than #1/28) yields a potential gas-water contact with the original aquifer pressure at 2326.9 m TVDSS. This formation was not sampled and therefore the hydrocarbon content of the reservoir cannot be confirmed. Due to the unknown aquifer pressure in this area and the potential that the sand is supercharged there is low confidence in the interpretation.

4.0 Figure 4 - Turrum-5 MDT 2325-2450 m TVDSS Interpretation

Figure 4 summarises the central Turrum gas reservoirs. As can be seen from Figure 4, potentially up to 5 gas sands have been identified.

Pretests #1/32 and #1/33 yield a gas gradient of 0.319 psi/m and a potential gas-water contact with the original aquifer pressure at 2361.0 m TVDSS.

Pretest #1/34 at 2354.4 m TVDSS may indicate a separate gas system to the gas reservoir identified by points #1/36, #1/37 and #1/38 at 2365.0 m TVDSS. Point #1/34 has a calculated mobility of 0.5 md/cp however and has the potential to be supercharged. Using the original aquifer pressure and a gas gradient of 0.268 psi/m (calculated using points #1/36, 37 and 38), the lower gas sand has a calculated gas-water contact at 2389.9 m TVDSS and the upper gas sand has a calculated contact at 2392.4 m TVDSS. An alternate explanation is that the lower sand is better quality than the upper sand and the difference in pressures is due to differential drawdown.

Pretests #1/40 to #1/42 yield a gas gradient of 0.316 psi/m and a potential gas-water contact with the original aquifer pressure of 2408.97 m TVDSS.

Pretest #1/68 at 2413.3 m TVDSS has been identified a a hydrocarbon sand by preliminary log analysis. However, as there is only one pretest in the sand, there is insufficient data to calculate a gradient or hydrocarbon-water contact. The sand is assumed to be gas and therefore applying an average gas gradient of 0.3 psi/m yields a gas-water contact with the original aquifer pressure at 2473.83 m TVDSS. Pretest #1/68 has a calculated mobility of 11.2 md/cp and has the potential to be supercharged. This sand was not sampled to confirm the hydrocarbon content.

As can be seen from Figure 4, there are no aquifer pressures through this section. Because the aquifer pressure is therefore unknown, the calculated gas-water contacts are open to interpretation.

5.0 Figure 5a, 5b, 5c - Turrum-5 MDT 2490-2570 m TVDSS Interpretation

Figure 5a summarises a complicated system of oil and gas reservoirs.

At 2502 m TVDSS, pretests #1/44 and #1/45 return a calculated gas gradient of 0.467 psi/m. This gradient indicates that this is a very heavy gas system - potentially caused by a high concentration of CO₂, high liquids content, combination of both CO₂ and liquids or invalid pretest pressures. If the gas is not in communication with the oil system below, the gas-water contact with the original aquifer pressure would be at 2582.8 m TVDSS.

The most likely interpretation, inferred from the lack of obvious seal, is that the gas reservoir at 2502 m TVDSS is in communication with the oil reservoir below at 2522 m TVDSS.

It is difficult to make a definitive interpretation in the oil system at 2522 m TVDSS. The gradient between pretests #1/71 and #1/49 is 1.286 psi/m which is too heavy to be an oil gradient and, as can be seen from Figure 5a, the other pressure data points scatter around 3723 psia and no pressure gradient can be logically calculated from the dataset. The data scatter has potentially three causes:

- 1. The formation is poor quality and some, or all, of the pretests are supercharged.
- 2. Sample runs 2 to 6 had the primary objective of confirming the hydrocarbon content of the formation and therefore the MDT tool did not have sufficient time for temperature stabilisation prior to obtaining the pretest pressures.
- 3. Due to the tight nature of the formation the samples were not permitted sufficient time to buildup to original reservoir pressure before the chambers were sealed and/or the tool retracted.

In the absence of any other data, it has been assumed that pretest #1/49 is more representative of the formation pressure than pretest #1/71 because pretest #1/49 has a higher mobility than #1/71 (123.1 md/cp compared to 63.5 md/cp).

There are two other data points introducing further complexity to the interpretation:

Fluid analysis data on preserved sample #S6/5 at 2548.6 m MDRKB indicates that the oil density at reservoir conditions is 0.705 gm/cc, which is equivalent to an oil gradient of 1.0 psi/m. Using this gradient with pretest #1/49, the interpreted OWC with the original aquifer pressure is calculated to be 2672.1 m TVDSS. This depth however conflicts with the current geological interpretation and would place low proved oil below high proved water (2653 m TVDSS) in the Turrum-4 well according to the current geological correlation, and assuming that the eastern flank of the field has the same fluid contacts as the western flank.

In addition, sample #6/5 only recovered 100cc of oil and was the last chamber to be filled following extensive sampling and pressure drawdown and therefore this oil may not be representative of the reservoir fluids. Visual inspection of the dead crude from the reservoirs at 2522 m TVDSS and 2545 m TVDSS also indicates that they are very similar in appearance which throws further doubt on the validity of the preserved sample. As a sensitivity, an oil gradient of 0.833 psi/m (which is the gradient from the oil reservoir at 2545 m TVDSS) would yield an OWC with the original aquifer pressure at 2629.7 m TVDSS, which does not conflict with the Turrum-4 data. Both interpretations are detailed in Figure 5a.

2. The well-site core description sheets for Core 4 (2526.8-2544.8 m MDRKB) in Turrum-5 reports the start of oil fluorescence around 2518 m TVDSS and this has been interpreted to be a potential gas-oil-contact. The data from the well-site core description sheets is as follows:

Core depth (m MDRKB)	Core shift (metres)	Core Depth (m TVDSS)	Fluorescence Description
2538.65	+3.4	2517.05	0% fluorescence
2539.65	+3.4	2518.05	"pinpoint" fluorescence
2540.65	+3.4	2519.05	80% fluorescence

As can be seen from Figure 5a, using pretest #1/49 and oil gradients of 1.0 psi/m and 0.833 psi/m, the interpreted gas-oil contacts lie above 2518 m TVDSS. This has two potential explainations:

a) Pretest #1/49 is slightly supercharged and the actual reservoir pressure is lower.

b) Pretest #1/49 is valid and either the core fluorescence is not a gas-oil indicator or the gas and oil systems are not in communication.

If the core fluorescence is a gas oil indicator, then the gas-oil contact could be assessed to lie at 2518 m TVDSS ± 1 metre. Forcing the oil gradients of 1.0 psi/m and 0.833 psi/m through 2518 m TVDSS results in OWC's with the original aquifer at 2664.9 m TVDSS and 2623.1 m TVDSS respectively. Figure 5b details this interpretation.

The UV photographs of the slabbed core will aid in identifying the actual fluorescence start depth.

As can be seen from above, the MDT data does not aid in confirming if the gas and oil systems are in communication.

Figure 5c shows the intersection of the oil gradients with the original aquifer pressure and the table below summarises the interpretations.

Anchor point	Oil Gradient	GOC	OWC
	(psi/m)	(m TVDSS)	(m TVDSS)
Pretest #1/49	1.0	2512.4	2672.1
Pretest #1/49	0.833	2507.5	2629.7
Core fluorescence @ 2518.0 m TVDSS	1.0	2518.0	2664.9
Core fluorescence @ 2518.0 m TVDSS	0.833	2518.0	2623.1

Due to the poor quality and conflicting data no definitive interpretation can be made for the reservoir at 2522 m TVDSS.

The reservoir at 2545 m TVDSS has an interpreted oil gradient of 0.833 psi/m, between pretests #1/52 and #1/51, and this yields an oil-water contact with the original aquifer pressure at 2621.1 m TVDSS. Log analysis indicates a gas-oil contact at 2543.0 m TVDSS but there is no pressure data to confirm this. Sample #S2/7 recovered oil with an API of 43.2 degrees.

Preliminary log analysis indicates that pretest #1/53 is most probably in a hydrocarbon system. A light gas gradient of 0.25 psi/m would yield a gas-water contact with the original aquifer pressure at 2590.1 and an oil gradient of 0.833 psi/m would yield an oil-water contact with the original aquifer pressure at 2624.8 m TVDSS.

6.0 Figure 6 - Turrum-5 MDT 2570-2650 m TVDSS Interpretation

Figure 6 demonstrates the interpretation for the lower Turrum oil system. As can be seen from Figure 6 there would appear to be two reservoirs at a very similar pressure - the pressure difference between the reservoirs is only 2.22 psi. A more likely interpretation is that the reservoir system is common and that the upper reservoir, which is slightly better quality, is more drawn down than the lower reservoir.

Based on the maximum drawndown aquifer pressure (pretest #1/66), the maximum interpreted oilwater contact (at 2596.59 m TVDSS) is slightly shallower than the log analysis oil on rock depth (at 2598.0 m TVDSS). This discrepancy is probably caused by using the incorrect aquifer pressure related to this oil reservoir. It is recommended that the lowest proven oil depth of 2598.0 m TVDSS is used as the hydrocarbon-water contact.

As can be seen from Figure 6, the aquifer below 2600 m TVDSS is in variable communication to the Gippsland aquifer. In general the deeper sections appear to be in better communication than the shallower sections.

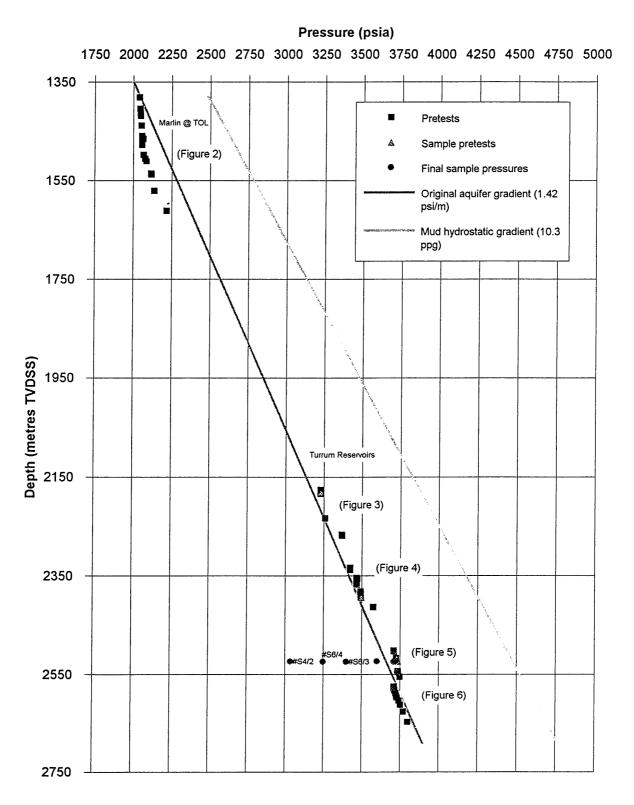
7.0 Turrum-5 MDT Sampling

I

The MDT attempted to capture twenty eight (28) samples in six (6) runs. However, due to problems with the MDT power supply, telemetry system, bottle operation and the low permeable reservoirs, the sampling was relatively unsuccessful. Out of 28 attempted samples; 7 samples returned measurable hydrocarbons, 7 samples were empty, 7 samples returned mud filtrate, 3 samples were unsuccessful due to tool failure, 2 samples were not obtained because the probe set was unsuccessful, 1 sample could not be taken because of tool plugging and 1 sample was aborted because the OFA indicated only filtrate.

Sample #2/7 captured 100cc of oil at 2545.5 m TVDSS. The gas volume associated with this oil was too small to measure and the oil volume too small to obtain an accurate API gravity. The average oil density was measured by weighing the volume of oil recovered. This resulted in a calculated oil density of 0.81 g/cc which yields an API gravity of 43.2 degrees.

Sample #2/8 successfully sampled 121.4 cuft of gas at 2576.5 m TVDSS. The reported CO_2 concentration in the gas sample is 10 MOL%.


Run #6 successfully demonstrated the presence of hydrocarbons in the reservoirs at 2545 m TVDSS and 2523 m TVDSS.

At 2545 m TVDSS, the MDT pump out module pumped 60 litres from the reservoir and then captured two 1 gallon chambers of oil (samples #6/1 and #6/2). The total time to capture this oil from tool set to tool retract was 1 hour and 36 minutes. The oil recovered has an API gravity of 42 degrees and a GOR of 1248.7 scf/stb. The reported CO₂ concentration is 10 MOL%.

At 2523 m TVDSS, the 12 gallon chamber (sample #6/3) was used as a dump chamber to flush the mud filtrate from the formation, the MDT pump out module then pumped approximately 4 litres of fluid and then two 2-3/4 gallon chambers of oil were captured (samples #6/4, #6/5). The total time to capture this oil from tool set to tool retract was 11 hours and 7 minutes. The oil recovered has an API gravity of 41 degrees and a GOR of 504 scf/stb. The reported CO₂ concentration varies between 5 MOL% and 20 MOL% and demonstrates the inadequacies of the MDT for sampling critical fluid concentrations.

Sample #6/5 was preserved and sent to Core Laboratories in Perth for further analysis.

Table 1, attached with the MDT fluid sampling sheets, summarises the MDT fluid sampling.

Figure 1 - Turrum-5 MDT - Full Pressure Dataset

•

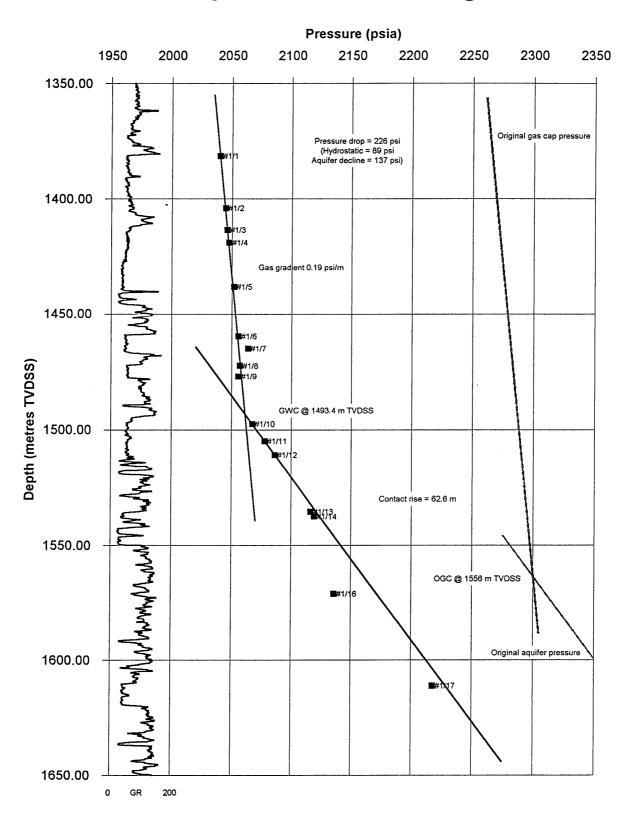


Figure 2 - Turrum-5 MDT - MARLIN @ TOL

.*

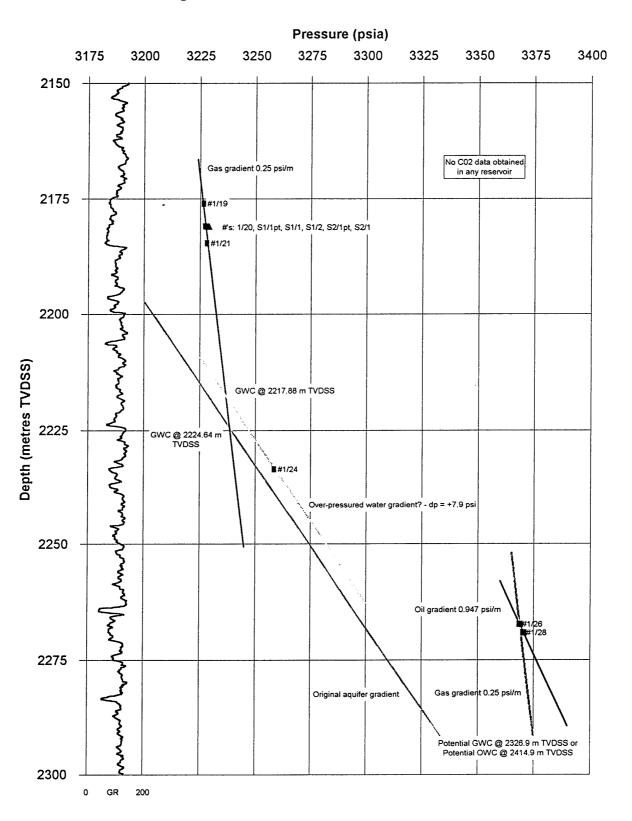


Figure 3 - Turrum-5 MDT - 2150-2300 m TVDSS

.*

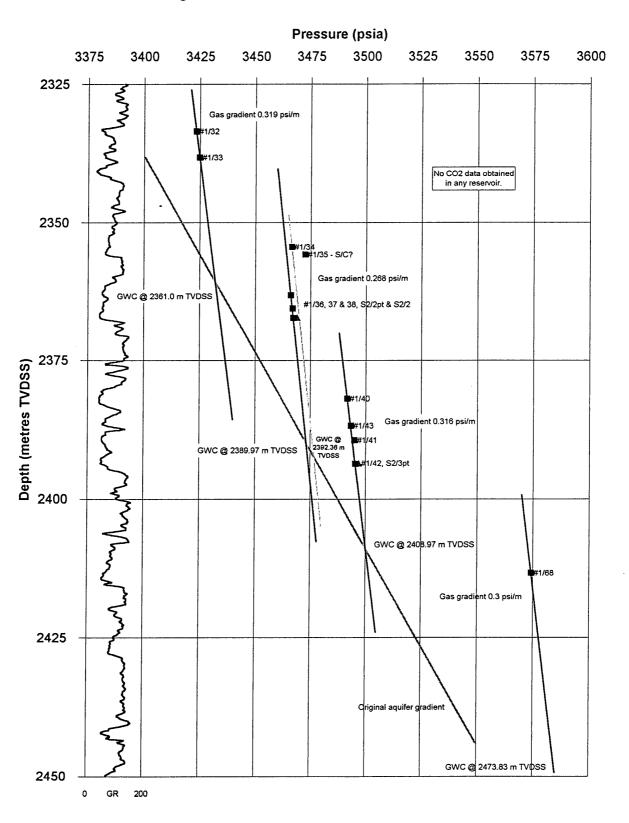


Figure 4 - Turrum-5 MDT - 2325-2450 m TVDSS

N/R^a

.*

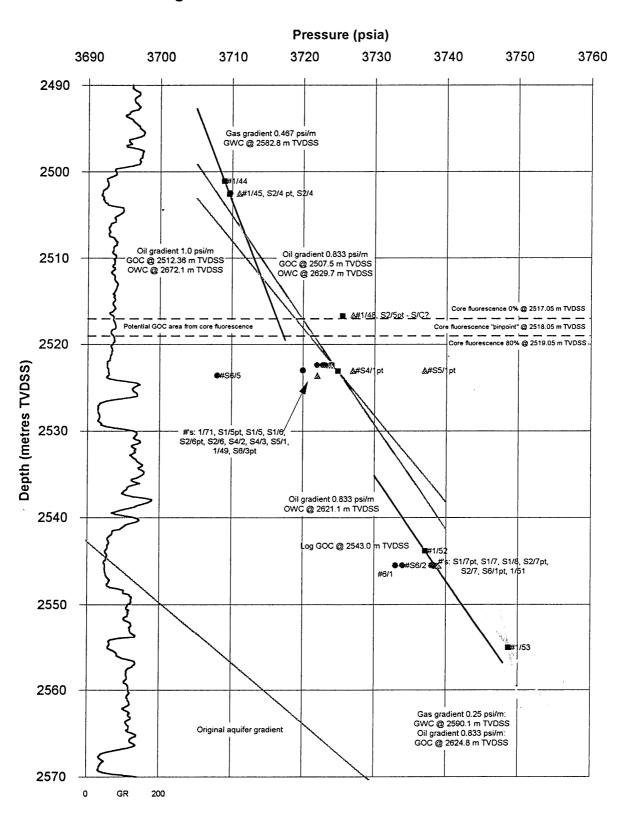
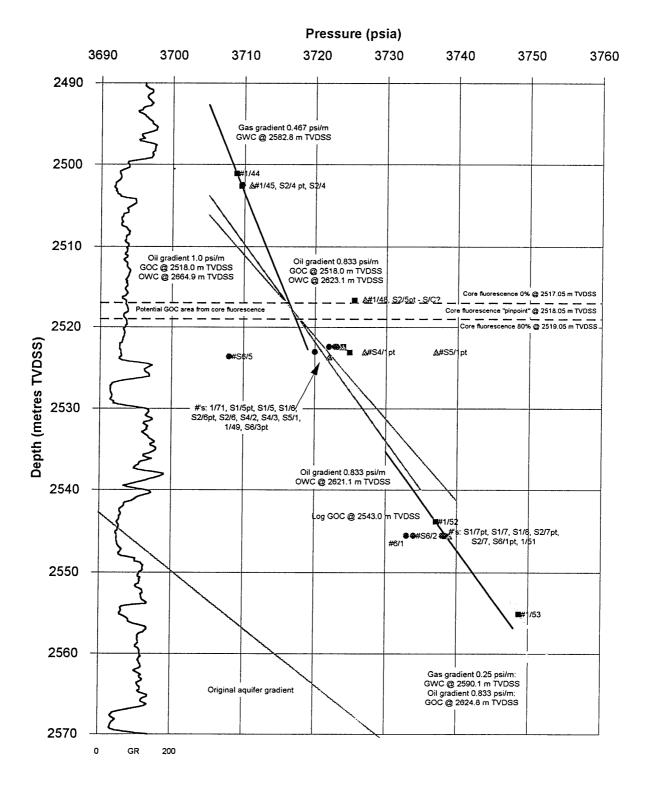



Figure 5a - Turrum-5 MDT - 2490-2570 m TVDSS

.*

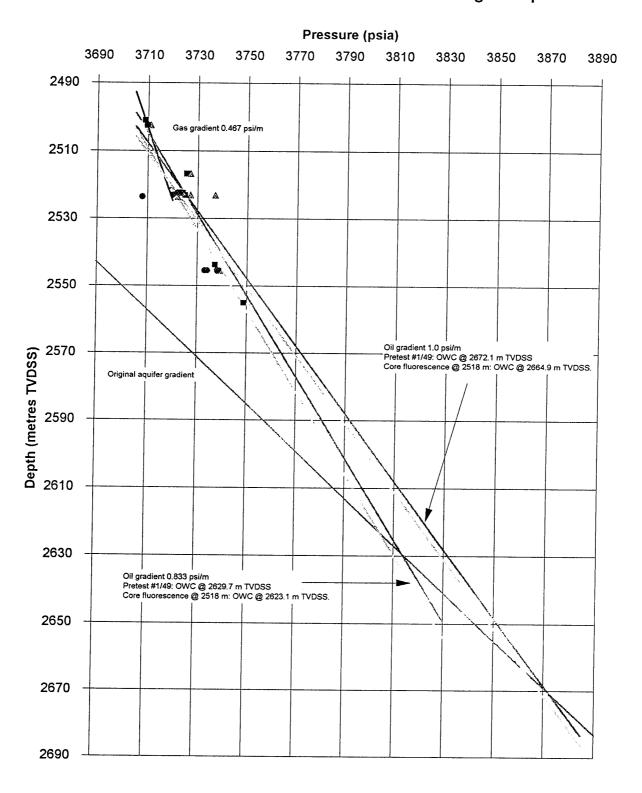


Figure 5b - Turrum-5 MDT - 2490-2570 m TVDSS. Alternative interpretation matching core fluorescence @ 2518.0 m TVDSS.

•

A'8+

(MTS/ResTech/T5_MDTF5.XLS/1/02/96)

Figure 5c - Turrum-5 MDT - 2490-2570 m TVDSS. Depth scale extended to show OWC intersections with original aquifer.

.*

I

I

I

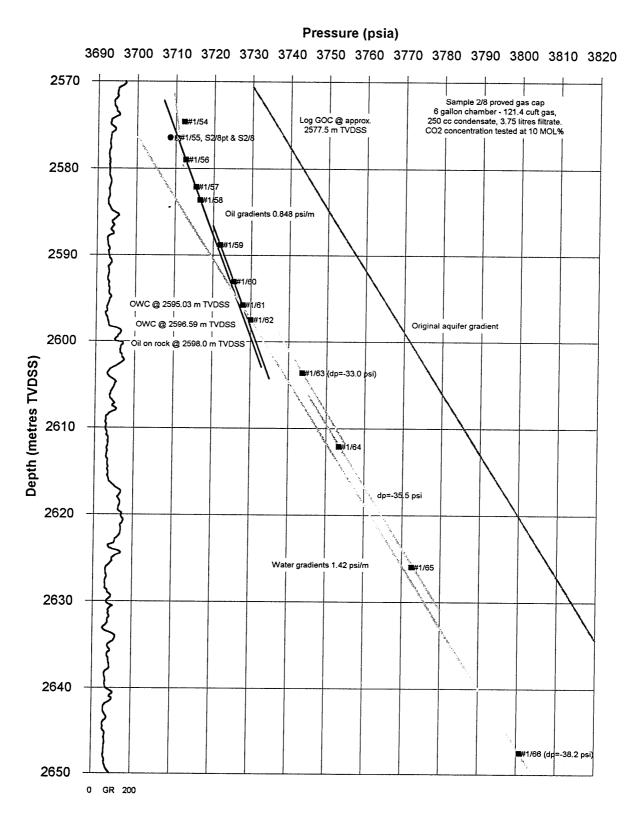


Figure 6 - Turrum-5 MDT - 2570-2650 m TVDSS

A/R**

.*

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$]	ESSO AUS	STRALIA	LTD - PRESS	URE]	DATA FO	RM			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Well													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					13-Sep-95									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, RFT)		Schlumberger MD7	[· · · · · · · · · · · · · · · · · · ·	
Pressure units (sein psi) PSIA Temperature units (degl ² , degC) degC Converting including inc							······						• • • • • • • • •	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			sia, psig)		PSIA				legF, de	gC)				
Number i serve i	Run-	Seat	De	pth	Initial	Time	Minimum						Delta	Comments
$ \begin{array}{ $	Num	ber	m MDRKB	m TVDSS	Hydrostatic	Set	Flowing	Pressure					1	s
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		P=Pretest			Pressure	(HH:MM)	-							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		S=Sample			PPg			PPg		(141.1111)	110350		(101101.55)	and Fluid Type.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										·		IIg		20cc pretests set
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/1		1406.5	1381.5	2482	4:14	410.1	2040.0	72.7	4.19	2481		05:00	2000 prefests set
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Р			10.4					1.1.2	2101	10.4	05.00	MD/00-10.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		*						0.5		· · · · · · · · · · · · · · · · · · ·	1	10.4		MD/CP=12.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1/2		1429.1	1404.1	2521	4:29	2040.8	2044.6	73.0	4.32	2521		03.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Р			10.4		20.010		15.0	4.52	2521	10.4	03.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		·										10.4		MD/CP=1494.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1/3		1438.6	1413.6	2537	4:37	2023 1	2046 1	73 4	4.41	2536		04:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Р			the second s			i	75.4	4.41	2550		04.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		•			1010							10.3		MD/CP=175.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1/4		1444.1	1419.1	2547	4.45	2040 5	2047 7	72.5	1.10	2546		02.00	
I/5 I 463.4 1438.4 2580 4:53 2036.6 2051.7 73.8 4:57 2580 04:00 MD/CP=425.2 1/6 1484.6 1459.6 2617 5:04 2051.2 2055.6 74.4 5:09 2617 05:00 MD/CP=425.2 1/6 1484.6 1459.6 2617 5:04 2051.2 2055.6 74.4 5:09 2617 05:00 MD/CP=426.7 1/7 1490.0 1465.0 2627 5:13 2052.8 2063.7 74.9 5:21 2626 08:00 Slow buildup but apparently good pt. MD/CP=149.6 1/7 1490.0 1465.0 2627 5:13 2052.8 2056.9 75.3 5:30 2640 05:00 MD/CP=149.6 1/8 1497.5 1472.5 2640 5:25 2054.6 2055.6 75.7 5:37 2648 03:00 MD/CP=37067.3 1/9 1502.1 1477.1 2648 5:34 2055.4 2055.6 75.7 5:37 2648 03:00 MD/CP=37067.3 MD/CP=37067.3 10.3 MD/CP=37067.3		P				+5	2040.5		13.5	4.48	2546			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· ·			10.4			8.3				10.3		MD/CP=520.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/5		1463.4	14384	2580	4.52	2026 6	2051 7	72.0	4.67				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1105.1	1450.4		4.55	2030.0		/3.8	4:57	2580		04:00	
P Image: Construction of the constru					10.3			8.2				10.3		MD/CP=425.2
P Image: Construction of the constru	1/6		14846	1450 6	2617	5.04	0051.0	00555						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/0		1464.0	1459.0		5:04	2051.2		74.4	5:09	2617		4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Р			10.3			8.1				10.3		
P Indian	1 /7		1400.0	14650	0.007									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1//	r	1490.0	1405.0		5:13	2052.8		74.9	5:21	2626		4	
P Image: None of the state		P			10.3			8.1				10.3		MD/CP=149.6
P Image: None of the state	1 /0		1.407.5											
1/9 1502.1 1477.1 2648 5:34 2055.4 2055.6 75.7 5:37 2648 03:00 1/10 1522.6 1497.6 2685 5:48 2067.0 2067.3 76.2 5:51 2684 03:00	1/8		1497.5	1472.5		5:25	2054.6		75.3	5:30	2640		05:00	
1/9 1502.1 1477.1 2648 5:34 2055.4 2055.6 75.7 5:37 2648 03:00 MD/CP=37067.3 1/10 1522.6 1497.6 2685 5:48 2067.0 2067.3 76.2 5:51 2684 03:00 MD/CP=37067.3 -		Р			10.3			8.1				10.3		MD/CP=795.6
P 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 1/10 1522.6 1497.6 2685 5:48 2067.0 2067.3 76.2 5:51 2684 03:00														
1/10 1522.6 1497.6 2685 5:48 2067.0 2067.3 76.2 5:51 2684 03:00	1/9		1502.1	1477.1	2648	5:34	2055.4	2055.6	75.7	5:37	2648		03:00	
1/10 1522.6 1497.6 2685 5:48 2067.0 2067.3 76.2 5:51 2684 03:00		Р			10.3			8.0				10.3		MD/CP=37067.3
	1/10		1522.6	1497.6	2685	5:48	2067.0	2067.3	76.2	5:51	2684		03:00	
6.0 10.3 MD/CP=25031 0		Р			10.3			8.0				10.3		MD/CP=25031.0

ŝ

XX 7 11					E550 AU	STRALIA	LTD - PRESS	URE	DATA FO	RM			
Well TURRUM-5						Page			2 of 8				
Date Tool Type (MDT, RFT)				13-Sep-95	Geologist-Engineer			Mike Scott					
		<u>, RFT)</u>		Schlumberger MD7	<u>ſ</u>		KB (metres):		······	25	······································		
Gauge T				CQG			Probe type			Long nose			
		sia, psig)		PSIA			Temperature units (legF, de	gC)	degC	······		
Run-			pth	Initial	Time	Minimum	Formation	Temp	Time	Final	Delta	Comments	
Nurr	nber	m MDRKB	m TVDSS	Hydrostatic	Set	Flowing	Pressure	r	Retract	Hydrostatic	Time	1 1	
	P=Pretest			Pressure	(HH:MM)	Pressure			(HH:MM)	Pressure		Including Test Quality	
	S=Sample			PPg	、,		PPg) and Fluid Type.	
	· · · · · · · · · · · · · · · · · · ·						PPg		•	PP	g		
1/11		1530.0	1505.0	2697	5:54	2077.5	2077.7	76.4	c ca				
	Р		100010	10.3	5.54	2077.5		76.4	5:57	2697	03:00		
	<u> </u>			10.5			8.0			10.	3	MD/CP=40138.5	
1/12		1536.0	1511.0	2707	6.01	0004.0							
1/12	Р	1550.0	1511.0		6:01	2084.3	2086.1	76.6	6:05	2707	04:00		
	P			10.3			8.0			10.	3	MD/CP=4406.3	
1/12		1560.5	1.50.5.5										
1/13		1560.5	1535.5	2751	6:11	2067.6	2116.4	76.9	6:14	2751	03:00		
	Р			10.3			8.0			10.	3	MD/CP=143.7	
1/14		1562.6	1537.6	2754	6:17	2118.9	2119.3	77.1	6:20	2754	03:00	1	
	Р			10.3			8.0			10.		MD/CP=36390.6	
										10.	, 		
1/15		1573.0	1548.0	2773	6:24	414.3	_	77.2	6:27	2773	03:00	Aborted - tight coal bed	
	Р			10.3			[11.2	0.27				
										10.	3	MD/CP=0	
1/16		1596.1	1571.1	2812	6:33	2121.8	2136.0	77.7	6.26				
	Р			10.3	0.55	2121.0		11.1	6:36	2812	03:00		
	<u> </u>			10.5			7.9			10.	3	MD/CP=497.3	
1/17		1636.3	1611.3	2883	<i>.</i>								
		1050.5	1011.5		6:42	2216.9	2217.7	78.6	6:45	2883	03:00		
	Р			10.3			8.0			10.	3	MD/CP=7281.5	
1/10		01000										Aborted - tight	
1/18		2196.0	2171.0	3859	7:34	384.0	-	91.4	7:37	3859	03:00	5	
	Р			10.3			-			10.		MD/CP=0	
												10cc pretests set	
1/19		2201.0	2176.0	3868	7:42	2866.6	3227.0	92.6	7:47	3868	05:00	roce protests set	
	Р			10.3			8.6			10.		MD/CP=11.9	
										<u> </u>	<u></u>	WID/CF-11.9	
1/20		2206.0	2181.0	3877	7:50	3215.5	3227.6	93.0	7:53	3877	02.00	20cc pretests set	
	Р			10.3		J J.J	8.6	95.0	1.55		03:00		
h	l			10.5	I		8.6			10.3		MD/CP=582.0	

N.R.

ESSO AUSTRALIA LTD - PRESSURE DATA FORM

					ESSO AUS	STRALIA	LTD - PRESS	URE	DATA FO	RM			
						Page			3 of 8				
Date				13-Sep-95	Geologist-Engineer			Mike Scott					
Tool Type (MDT, RFT)				Schlumberger MD	Γ		KB (metres):			25			
Gauge Ty				CQG			Probe type			Long nose		•	
Pressure				PSIA			Temperature units (legF, de	gC)	degC	84		
Run-			pth	Initial	Time	Minimum	Formation	Temp	Time	Final	Delta	Comments	
Num	ber	m MDRKB	m TVDSS	Hydrostatic	Set	Flowing	Pressure	-	Retract	Hydrostatic	1	Including Test Quality	
	P=Pretest			Pressure	(HH:MM)	Pressure			(HH:MM)	Pressure		and Fluid Type.	
	S=Sample			PPg			PPg			PPg	(and France Type.	
							······································		· ·				
1/21		2209.6	2184.6	3883	7:57	3182.0	3228.5	93.2	8:00	3883	03:00		
	Р			10.3			8.6			10.3		MD/CP=165.5	
							······			10.5	<u> </u>	Aborted - tight	
1/22		2221.6	2196.6	3904	8:06	293.3	-	92.9	8:09	3904	03:00	riorica - tight	
	Р			10.3			-			10.3	05.00	MD/CP=0	
										10.5		Aborted - tight	
1/23		2236.3	2211.3	3930	8:15	311.2	-	93.2	8:18	3929	03:00	Aborted - tight	
	Р			10.3					0110	10.3	05.00	MD/CP=0	
										10.3		10cc pretests set	
1/24		2258.5	2233.5	3969	8:26	3231.6	3259.0	94.2	8:30	3969	04:00	Tocc prefests set	
	Р			10.3			8.5		0.50	10.3	04.00	MD/CP=255.7	
					······································				·····	10.3		Aborted - tight	
1/25		2290.9	2265.9	4025	8:36	441.1	_	95.2	8:46	4025	10:00	Aborted - tight	
	Р			10.3				, <u>, , , ,</u>	0.10	10.3	10.00	MD/CP=0	
							I		······································	10.5	<u> </u>	MD/CP=0	
1/26		2292.2	2267.2	4028	8:50	3273.5	3368.8	95.3	8:53	4028	03:00		
	Р			10.3			8.6	22.5	0.55	10.3	03.00		
				I			0.0			10.3		MD/CP=65.4	
1/27		2294.1	2269.1	4032	8:57	2576.1	_	95.4	9:01	4032	04:00	Lost seat	
	Р			10.3		2070.1		75.4	9.01	4032			
				10.5			I			10.3		MD/CP=n/a	
1/28		2294.1	2269.1	4031	9:00	2688.0	3370.6	95.6	9:08	4021	00.00		
	Р			10.3	2.00	2000.0		93.0	9:08	4031	08:00		
				10.3			8.6			10.3		MD/CP=9.1	
1/29		2299.6	2274.6	4041	9:14	272.1		05.0	0.10			Aborted - tight	
	Р	2477.0	2217.0		9.14	273.1	-	95.9	9:18	4041	04:00		
		·		10.3				 	·····	10.3		MD/CP=0	
1/30		2332.0	2307.0	4091	0.27	207.7			_			Aborted - tight	
1150	Р	2332,0	2307.0		9:27	307.7	-	95.6	9:32	4091	05:00		
L	P			10.3			·			10.3		MD/CP=0	

ESSO AUSTRALIA LTD - PRESSURE DATA FORM

it an

Well						ESSU AU	ALIA	LTD - PRES	SURE .	DATA FO	RM			
Date		······		TURRUM-5	; 			Page				of	8	
	- 0.07			13-Sep-95				Geologist-Engine	er		Mike Scott			
Tool Typ		, RF1)		Schlumberge	er MD]	<u>r</u>		KB (metres):			25			
Gauge Ty		·····		CQG				Probe type			Long nose			
Pressure				PSIA				Temperature units	s (degF, de	gC)	degC			
Run-			pth	Initial		Time	Minimum	Formation	Temp	Time	Final		Delta	Comments
Num	ber	m MDRKB	m TVDSS	Hydrosta		Set	Flowing	Pressure		Retract	Hydrosta	tic		Including Test Quality
	P=Pretest			Pressur	e	(HH:MM)	Pressure			(HH:MM)	Pressur			and Fluid Type.
	S=Sample				PPg			PP	g	. ,	1	PPg	(and Field Type.
										·	I			Aborted - tight
1/31		2333.6	2308.6	4101		9:36	381.1	-	95.9	9:40	4101		04:00	Aborted - tight
	Р			l l	10.3				-			10.3	04.00	
								I		······································	I	10.5		MD/CP=0
1/32		2358.6	2333.6	4144		9:47	3418.5	3423.4	96.9	9:50	4144		03:00	
	Р			. [10.3			8.5		2.50	4144 [10.3	03.00	
								0.5				10.3		MD/CP=939.2
1/33		2363.3	2338.3	4153		9:54	3415.7	3424.9	97.3	9:58	4153		04:00	
	Р			ſ	10.3			8.5		2.58	4155		04:00	
											I	10.3		MD/CP=162
1/34		2379.4	2354.4	4181		10:03	1736.7	3466.5	98.0	10:16	4101		10.00	Tight sand but
	Р			Г	10.3	10105	1750.7	8.5		10.16	4181 Г		13:00	apparently good pt.
				<u>l</u>	10.5			8.5			I	10.3		MD/CP=0.5
1/35		2380.8	2355.8	4184		10:20	1423.5	3472.5	98.5	10.24		1		Tight sand -
	Р			L I	10.3	10.20	1425.5			10:34	4184		14:00	potential seal leak
					10.5			8.6	_			10.3		MD/CP=0.5
1/36		2388.2	2363.2	4197		10:41	2100.2	24663						
	Р	2000.2	2505.2	۲, ۱۶۲	10.3	10.41	3190.3	3466.1	99.0	10:46	4197		05:00	
	· · ·			L	10.3			8.5				10.3		MD/CP=18.5
1/37		2390.6	2365.6	4202		10.54		•						
	Р	2390.0	2305.0	4202 F		10:54	3100.4	3466.9	99.4	10:57	4202		03:00	
l	Р				10.3			8.5				10.3		MD/CP=14.4
1/38		2202.2	2267.2	1005										Final hydrostatic not
1/38		2392.3	2367.3	4205		11:01	3464.1	3467.2	99.7	11:05	n/a		04:00	observed-operator error
	Р				10.3			8.5			Г	######		MD/CP=n/a
1/20											······			Point 1/38 re-done
1/39		2392.3	2367.3	4205		11:10	3464.7	3467.2	99.8	11:14	4205		04:00	
l	Р				10.3			8.5	7		Г	10.3		MD/CP=1491.3
					T									
1/40		2406.9	2381.9	4230		11:20	3347.4	3491.7	99.8	11:23	4230		03:00	
	Р				10.3			8.5	-		ſ	10.3		MD/CP=51.2
												10.0		JIL

ESSO AUSTRALIA LTD - PRESSURE DATA FORM

Well				TURRUM-5			LID - PRESS	UNE	DATATO				
Date				13-Sep-95	<u> </u>		Page			5 of		3	
Tool Typ	<u>• 0 001</u>	DET)					Geologist-Engineer			Mike Scott			
Gauge Ty		, KF I)		Schlumberger MD	L'		KB (metres):			25			
				CQG			Probe type			Long nose			
Pressure				PSIA			Temperature units (degC			
Run-			pth	Initial	Time	Minimum	Formation	Temp	Time	Final	Delta	Comments	
Num	ber	m MDRKB	m TVDSS	Hydrostatic	Set	Flowing	Pressure		Retract	Hydrostatic	Time	Including Test Quality	
	P=Pretest			Pressure	(HH:MM)	Pressure			(HH:MM)	Pressure	(MM:SS) and Fluid Type.	
	S=Sample			PPg			PPg		. ,		PPg	,	
1/41	Р	2414.3	2389.3	4242	11:28	3441.5	3495.1	100.1	11:33	4243	05:00	MD/CP=96.7	
1/42	Р	2418.6	2393.6	4251	11:38	3492.0	3495.4	100.6	11:42	4251	04:00	MD/CP=1235.2	
1/43	Р	2411.7	2386.7	4239	11:46	3485.4	3493.4	100.7	11:49	4239	03:00	MD/CP=516.4	
1/44	P	2526.1	2501.1	4438	12:17	3584.6	3708.9	103.9	12:21	4437	04:00	MD/CP=37.4	
1/45	Р	2527.6	2502.6	4440	12:25	3654.9	3709.6	104.1	12:29	4439	04:00	MD/CP=87.3	
1/46	Р	2534.1	2509.1	4451	12:32	1932.7	-	105.0	12:40	4451	08:00	Aborted - supercharged MD/CP=0.3	
1/47	Р	2538.5	2513.5	4458	12:44	1717.8	-	104.8	12:50	4458	06:00	Aborted - tight MD/CP=2.5	
1/48	Р	2541.7	2516.7	4464	12:54	3462.8	3725.5	106.1	12:58	4464	04:00	MD/CP=26.2	
1/49	Р	2548.1	2523.1	4476	13:02	3694.4	3724.9	106.8	13:06	4476	04:00	MD/CP=123.1	
1/50	Р	2568.3	2543.3	4511	13:12	1754.3	-	107.1	13:16	4511	04:00	Aborted - tight MD/CP=53.0	

ž

ESSO AUSTRALIA LTD - PRESSURE DATA FORM

					ESSU AUX		LTD - PRESS	URE .	DATA FO	RM			
Well			·····	TURRUM-5			Page				of	8	
Date				13-Sep-95			Geologist-Engineer			Mike Scott			
Tool Typ		, RFT)		Schlumberger MD	T		KB (metres):			25			· · · · · · · · · · · · · · · · · · ·
Gauge T				CQG			Probe type			Long nose			
Pressure				PSIA			Temperature units (legF, de	gC)	degC			
Run-		De		Initial	Time	Minimum	Formation	Temp	Time	Final		Delta	Comments
Num	ıber	m MDRKB	m TVDSS	Hydrostatic	Set	Flowing	Pressure	-	Retract	Hydrosta			Including Test Quality
	P=Pretest			Pressure	(HH:MM)	Pressure			(HH:MM)	Pressur			and Fluid Type.
	S=Sample			PPg			PPg		()		PPg	(101101.00)	and I fuld Type.
	-			<u> </u>					<u></u>	<u> </u> l	rrg		
1/51		2570.6	2545.6	4515	13:24	3702.5	3738.6	108.5	13:28	4515		04:00	
	Р			10.3	1	010210	8.5	100.5	15.20		10.3		
	.						0.5			<u> </u>	10.3		MD/CP=127.6
1/52		2568.8	2543.8	4512	13:31	3663.8	3737.1	109.0	13:34	4512		03:00	
	Р			10.3	15.51	5005.0	8.5	109.0	15.54	4312			
	I			10.5			6.5			<u> </u> 1	10.3		MD/CP=21.5
1/53		2580.1	2555.1	4532	13:41	3610.9	3748.7	109.7	12.44	4522			
	Р	2500.1	2555.1	10.3	15.41	5010.9		109.7	13:44	4532		03:00	
	· ·			10.3			8.5			<u> </u>	10.3		MD/CP=38.5
1/54		2599.7	2574.7	4566	13:51	2358.8	3712.3	111.0	10.55				
1131	Р	2377.1	2574.7	10.3	15.51	2338.8		111.0	13:57	4566		06:00	
	P			10.3			8.4				10.3		MD/CP=3.2
1/55		2601.6	2576.6	4569	14.01	0.000							
1755	r	2001.0	2370.0		14:01	3679.1	3710.4	111.7	14:04	4569		03:00	
	Р			10.3			8.4				10.3		MD/CP=214.9
1/50		2604.0	0.570.0										
1/56		2604.0	2579.0	4574	14:09	3562.9	3712.7	112.4	14:14	4574		05:00	
ļ	Р			10.3			8.4				10.3		MD/CP=33.9
1/57		2607.1	2582.1	4579	14:18	3598.8	3715.4	113.0	14:22	4579		04:00	
	Р			10.3			8.4			[10.3		MD/CP=40.5
1/58		2608.6	2583.6	4582	14:26	3478.4	3716.5	113.6	14:31	4582		05:00	
	Р			10.3			8.4			[[10.3		MD/CP=22.3
							<u></u>			1			
1/59		2613.8	2588.8	4591	14:36	3503.0	3721.9	113.9	14:40	4591		04:00	
	Р			10.3	1		8.4			l	10.3		MD/CP=18.7
										lI	10.5		WID/CP=18./
1/60		2618.1	2593.1	4599	14:45	3295.7	3725.5	114.5	14:50	4598		05:00	
	Р			10.3		5275.1	8.4	114.5	14.50	4398 r		00:00	
L	<u> </u>			L 10.5	L		8.4				10.3		MD/CP=14.6

ESSO AUSTRALIA LTD - PRESSURE DATA FORM

2 T

·····			· · · · · · · · · · · · · · · · · · ·		E550 AU	MALIA	LTD - PRESS	URE	DATA FO				
Well				TURRUM-5			Page				of	8	
Date				13-Sep-95			Geologist-Engineer			Mike Scott			
Tool Typ		, RFT)		Schlumberger MD	Г		KB (metres):			25			
Gauge T	· •			CQG			Probe type			Long nose			
Pressure				PSIA			Temperature units (legF, de	gC)	degC			
Run-	Seat	De		Initial	Time	Minimum	Formation	Temp	Time	Final		Delta	Comments
Num	ıber	m MDRKB	m TVDSS	Hydrostatic	Set	Flowing	Pressure		Retract	Hydrostat	ic	Time	Including Test Quality
	P=Pretest			Pressure	(HH:MM)	Pressure			(HH:MM)	Pressure			and Fluid Type.
	S=Sample			PPg	1		PPg		, ,	г	PPg	, í	<i></i>
1/61		2620.8	2595.8	4604	14:54	3548.9	3727.9	115.0	14:57	4604		03:00	
	Р			10.3			8.3			Г	10.3		MD/CP=38.2
1/62		2622.5	2597.5	4607	15:02	3395.3	3730.0	115.3	15:05	4607		03:00	
	Р			10.3		5575.5	8.3	115.5	15.05	Г Т	10.3	05.00	MD/CP=14.6
1/63		2628.6	2603.6	4619	15:10	2434.6	3743.6	115.6	15:14	4619		04:00	
	Р			10.3			8.4			ſ	10.3	01.00	MD/CP=3.4
1/64		2637.1	2612.1	4633	15:21	3707.3	3753.4	116.0	15:24	4633		03:00	
	Р			10.3			8.4			<u> </u>	10.3		MD/CP=91.7
1/65	Р	2651.0	2626.0	4658	15:33	3634.0	3772.6	116.6	15:36	4658		03:00	
	<u>р</u>			10.3			8.4			l	10.3		MD/CP=36.6
1/66	Р	2672.5	2647.5	4695	15:44	3508.6	3800.8	117.2	15:48	4695 Г		04:00	
	P			10.3			8.3			<u> </u> l	10.3		MD/CP=20.1 Aborted - tight
1/67		2711.1	2686.1	4762	15:56	1317.1	-	118.6	16:01	4762		05:00	Aborted - tight
	Р			10.3			-			Γ	10.3		MD/CP=0
1/68		2438.3	2413.3	4284	18:31	2937.7	3574.2	102.1	18:37	4284		06:00	20cc pretests set
	Р	2150.5	2113.5	10.3	10.51	2751.1	8.6	102.1	18.57	4204	10.3	00.00	MD/CP=11.2
1/69		2475.1	2450.1	4348	18:46	1276.1		104.0	10.54	12.15	:	00.00	Aborted - supercharged
1/09	Р	2473.1	2450.1	4348	18.40	12/0.1		104.2	18:54	4347	10.3	08:00	MD/CP=1.0 ·
	-									1			Aborted - tight
1/70	Р	2545.1	2520.1	4469	18:58	761.8	⁻	106.5	19:07	4469 Г	10.0	09:00	
		L	l	10.3	<u> </u>	L		L			10.3		MD/CP=0

Ner

ESSO AUSTRALIA LTD - PRESSURE DATA FORM

						2000 AUS	INALIA	LID - PKES	SURE .	υατά γυ	KM			
Well				TURRUM-5				Page			8	of	8	
Date				13-Sep-95				Geologist-Enginee	r		Mike Scott			······
Tool Typ	e (MDT	, RFT)		Schlumberg	er MD]	[KB (metres):			25			·
Gauge Ty	pe			CQG				Probe type			Long nose			
Pressure	units (p	sia, psig)		PSIA				Temperature units	(degF, de	gC)	degC			
Run-S	Seat	De	pth	Initial		Time	Minimum	Formation	Temp	Time	Final		Delta	Comments
Num	ber	m MDRKB	m TVDSS	Hydrosta	tic	Set	Flowing	Pressure		Retract	Hydrosta	atic	Time	Including Test Quality
	P=Pretest			Pressur	e	(HH:MM)	Pressure			(HH:MM)	Pressu	re		and Fluid Type.
	S=Sample				PPg			PPg				PPg	ſ` ´	J J J J J J J J J J J J J J J J J J J
														10cc pretests set
1/71		2547.4	2522.4	4473		19:11	3619.9	3724.0	107.9	19:15	4473		04:00	
	Р				10.3			8.6				10.3		MD/CP=63.5

ESSO AUSTRALIA LTD - PRESSURE DATA FORM

ð, en

۰.

Run/Sample	Depth (m MDRKB)	Depth (m TVDSS)	Sample Size	Expected Fluid	Result
1/1	2206.0	2181.0	450cc		250cc filtrate
1/2	2206.0	2181.0	450cc	gas	450cc filtrate
1/2			450cc	gas	
1/3	2548.0	2523.0		oil	Probe set unsuccessful
1/4	2548.2	2523.2	(not used) 450cc	oil	Probe set unsuccessful
1/4	2348.2	2323.2	(not used)	011	Probe set unsuccessful
1/5	2547.4	2522.4	450cc	oil	450cc filtrate
1/6	2547.4	2522.4	450cc	oil	Chamber empty
1/7	2570.5	2545.5	450cc	oil	Trace gas and filtrate
1/8	2570.5	2545.5	450cc	oil	Chamber empty
2/1	2206.0	2181.0	450cc	gas	Laboratory reported
0/0	2202.2		(preserved)		chamber empty
2/2	2392.2	2367.2	450cc	gas	Laboratory reported
2/2			(preserved)		chamber empty
2/3	2418.5	2393.5	450cc	gas	Tool plugged no sample
0/4			(not used)		obtained
2/4	2527.5	2502.5	450cc	gas	Laboratory reported
0.15			(preserved)		chamber empty
2/5	2541.6	2516.6	not used	gas	OFA indicated only filtrate -
216					no sample attempted
2/6	2547.4	2522.4	450cc	oil	Chamber empty
2/7	2570.5	2545.5	1 gallon	oil	0.7 cuft gas, 100cc oil, 3 litres filtrate
2/8	2601.5	2576.5	6 gallon	gas	121.4 cuft gas, 250cc condensate, 3.75 litres filtrate
2/9	2620.7	2595.7	2-3/4 gallon (not used)	oil	Tool failed - POOH
3/1	2548.1	2523.1	6 gallon (not used)	oil	Packer failure - POOH
4/1	2548.0	2523.0	6 gallon	oil	19 litres filtrate
4/2	2548.0	2523.0	2-3/4 gallon	oil	9.6 litre filtrate
4/3	2548.0	2523.0	Not reported	oil	
		2523.0			Chamber empty
5/1 5/2	2548.0		12 gallon	oil	36 litres filtrate + oil scum
	2570.5	2545.5	2-3/4 gallon (not used)	oil	Tool failure - POOH
5/1	2570.5	2545.5	1 gallon	oil	10.1 cuft gas, 1.25 litres oil, 1.25 litres filtrate
5/2	2570.5	2545.5	1 gallon	oil	1.5 litres oil, 1.5 litres filtrate
5/3	2548.6	2523.6	12 gallon	oil	2.5 cuft gas, 38 litres filtrate + oil scum
5/4	2548.6	2523.6	2-3/4 gallon	oil	11.9 cuft gas, 3.75 litres oil, 4.5 litres filtrate
5/5	2548.6	2523.6	2-3/4 gallon (preserved)	oil	Laboratory volumes: 100cc oil, 250cc filtrate

TABLE 1 - TURRUM-5 MDT FLUID SAMPLE SUMMARY

•

A/101

		ell: Turrum-5		
Run/seat number	A. S:	ample Identification	1/1	• 1/2
Sample depth		m mdrkb	2206.0	2206.0
Pretest volume		CC	20cc	20cc
Chamber size		cc/litre/gallon	450cc	450cc
Chamber serial number		#	(1) AA485	(2) AA 487
Probe type			LONG NOSE	LONG NOSE
Choke size			4 x 20/1000 ths	4 x 20/1000 ths
	В.	Sampling History		
Date		dd/mm/yy	13/9/95	13/9/95
nitial hydrostatic		psia	3879.0	
Tool Set		hh:mm	17:53	
Pretest start		hh:mm	17:55	
nitial formation pressure	(pretest)	psia	3228.0	
Pretest end		hh:mm	17:56	
Pretest duration		hh:mm	0:01	
Pumpout start		hh:mm		
Pumpout end		hh:mm		
Pumpout duration		hh:mm		
Pumpout volume		litres		
DFA indication		colour		
nterpreted fluid at OFA	· · · · · · · · · · · · · · · · · · ·	-		·····
Maximum resisitivity at pr	obe	ohm-m		
Chamber open		hh:mm	17:57	18:03
Vinimum sampling press	ure	psia	2949.4	2937.7
inal formation pressure		psia	3228.0	3227.8
Seal chamber		hh:mm	18:02	18:08
Chamber fill time		hh:mm	0:05	0:05
Tool retract		hh:mm		18:11
Final hydrostatic		psia		3879.0
Total time		hh:mm		0:18
	C. Sample Downh	ole Temperature And		
At sample depth (AMS)		degC	94.6	95.9
Rm@sample depth (AMS		ohm-m	0.04	0.04
		le Recovery At Surfa	a de la casa de la cas	<u> Pranting Carried Andrea</u>
Surface opening pressure	3	psig	800	0
Volume gas	<u> </u>	cuft	TSTM	0
Volume oil/condensate		litres		-
/olume water/filtrate		litres	250cc	450cc
		operties Measured C	Dn-Site	alita di esperato a la site e
Gas via chromatograph	C1	ppm		· ····
	C2	ppm		
· · · · · · · · · · · · · · · · · · ·	C3	ppm		
	C4	ppm		
	C5	ppm		
	C6+	ppm		·····
	CO2	%		
Dil/Condonanta	H2S	ppm		@
Dil/Condensate	API @ degC	degrees	@	
	Colour Fluorescence			
	GOR or CGR	cuft/bbl or mmscf/bbl		
	Pour point	degC		
Vater/Filtrate	Rmud @ degC	ohm-m@degC	0.102 @ 18	0.102 @ 17
Valen nidale	K+ ion calculated from KCL%	ppm	23500	23800
			38000	36000
		loom I		
	Chlorides titrated	ppm DPM		Not used
	Chlorides titrated Tritium	DPM	Not used	
	Chlorides titrated Tritium pH		Not used 7.5	Not used 6,35 Filtrate
	Chlorides titrated Tritium pH Type	DPM	Not used	6.35
mud @ deaC	Chlorides titrated Tritium pH Type	DPM Filtrate Properties	Not used 7.5 Filtrate	6.35 Filtrate
	Chlorides titrated Tritium pH Type F. Mu	DPM d Filtrate Properties ohm-m@degC	Not used 7.5	6.35
(+ ion calculated from KC	Chlorides titrated Tritium pH Type F. Mu	DPM d Filtrate Properties ohm-m@degC ppm	Not used 7.5 Filtrate 0.096 @ 21 26400	6.35 Filtrate 0.096 @ 21 26400
(+ ion calculated from KC Chlorides titrated	Chlorides titrated Tritium pH Type F. Mu	DPM d Filtrate Properties ohm-m@degC	Not used 7.5 Filtrate 0.096 @ 21	6.35 Filtrate 0.096 @ 21
K+ ion calculated from KC Chlorides titrated IH	Chlorides titrated Tritium pH Type F. Mu	DPM d Filtrate Properties ohm-m@degC ppm ppm	Not used 7.5 Filtrate 0.096 @ 21 26400 35500 9	6.35 Filtrate 0.096 @ 21 26400 35500 9
K+ ion calculated from KC Chlorides titrated H	Chlorides titrated Tritium pH Type F. Mu	DPM d Filtrate Properties ohm-m@degC ppm ppm DPM	Not used 7.5 Filtrate 0.096 @ 21 26400 35500	6.35 Filtrate 0.096 @ 21 26400 35500
(+ ion calculated from KC Chlorides titrated H ritium	Chlorides titrated Tritium pH Type F. Mu	DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration	Not used 7.5 Filtrate 0.096 @ 21 26400 35500 9 Not used	6.35 Filtrate 0.096 @ 21 26400 35500 9 Not used
Rmud @ degC (+ ion calculated from KC Chlorides titrated H Tritium Reported mud weight	Chlorides titrated Tritium pH Type F. Mu	DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg	Not used 7.5 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3	6.35 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3
(+ ion calculated from KC hlorides titrated H ritium reported mud weight salculated hydrostatic	Chlorides titrated Tritium pH Type F. Mu CL% G. G	DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg psia	Not used 7.5 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3 3872	6.35 Filtrate 0.096 @ 21 26400 35500 9 Not used
(+ ion calculated from KC Chlorides titrated H ritium Reported mud weight Calculated hydrostatic	Chlorides titrated Tritium pH Type F. Mu CL% G. G H. Rerr	DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg	Not used 7.5 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3 3872	6.35 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3 3872
K+ ion calculated from KC Chlorides titrated H Tritium Reported mud weight Calculated hydrostatic	Chlorides titrated Tritium pH Type F. Mu CL% G. G	DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg psla arks and Comments	Not used 7.5 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3 3872	6.35 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3 3872

(MTS/ResTech/T5_S112.XLS/19/12/95)

A. e.-

		ell: Turrum-5		
	A. Sa		1/3	+
Run/seat number		#/# m mdrkb	1/3 2548.0	<u>1/4</u> 2548.2
Sample depth Pretest volume		CC	2346.0 20cc	2040.2 20cc
Chamber size		cc/litre/gallon	2000 450cc	450cc
Chamber serial number		#	Not used	Not used
Probe type		- //	LONG NOSE	LONG NOSE
Choke size	***		4 x 20/1000 ths	4 x 20/1000 ths
		Sampling History		
Date		dd/mm/yy	13/9/95	13/9/96
nitial hydrostatic	· · · · · · · · · · · · · · · · · · ·	psia	4474.0	4475.0
Fool Set		hh:mm	19:19	19:36
Pretest start		hh:mm	19:23	19:37
nitial formation pressure	(pretest)	psia		
Pretest end		hh:mm		
Pretest duration		hh:mm		
Pumpout start		hh:mm		
Pumpout end		hh:mm		
Pumpout duration		hh:mm	0:00	0:00
Pumpout volume		litres		
OFA indication		colour		
nterpreted fluid at OFA	•			
Maximum resisitivity at pr	ODE	ohm-m		
Chamber open		hh:mm		
Minimum sampling press	ure	psia		
Final formation pressure		psia		· · · · · · · · · · · · · · · · · · ·
Seal chamber Chamber fill time		hh:mm hh:mm	0:00	0:00
Cool retract		hh:mm	0.00	0.00
Final hydrostatic		psia		
Total time		hh:mm		
	C. Sample Downho		Resistivity	Least and the second
At sample depth (AMS)	of oumpie Dominic	degC	108.9	110.8
Rm@sample depth (AMS)	3)	ohm-m	0.04	0.04
		e Recovery At Surface		
Surface opening pressur		psig		M
/olume gas	<u> </u>	cuft		· · · · · · · · · · · · · · · · · · ·
Volume oil/condensate		litres		
/olume water/filtrate	· · · · · · · · · · · · · · · · · · ·	litres		
	E. Sample Pro	operties Measured O	n-Site	
Gas via chromatograph	C1	ppm		
9	C2	ppm		
·····	СЗ	ppm		
	C4	ppm		
	C5	ppm		
<u> </u>	C6+	ppm		
	CO2	%		
	H2S	ppm		
Dil/Condensate	API @ degC	degrees	@	@
	Colour			
	Fluorescence			
	GOR or CGR	cuft/bbl or mmscf/bbl		
	Pour point	degC		
Vater/Filtrate	Rmud @ degC	ohm-m@degC	@	@
	K+ ion calculated from KCL%	ppm	· · · ·	
	Chlorides titrated	ppm		
	Tritium	DPM		
	pH	. <u> </u>		
	Туре			
	F. Muc	Filtrate Properties		
mud @ degC	21.0/	ohm-m@degC	0.096 @ 21	0.096 @ 21
(+ ion calculated from KC	JL%	ppm	26400	26400
hlorides titrated		ppm	35500	35500
H			9 Not used	9 Not used
ritium		DPM	Not used	Not used
	G.G.	eneral Calibration	40.0	40.0
eported mud weight		ppg	10.3	10.3
		psia	4472	4472
		arks and Comments		
alculated hydrostatic	General	arks and Comments	Sample	
Calculated hydrostatic	General	arks and Comments	Sample Probe set unsuccessful	specific Probe set unsuccessful

(MTS/ResTech/T5_S134.XLS/19/12/95)

. ...

		Vell: Turrum-5		
	A. :	Sample Identification	1/5	1/6
Run/seat number Sample depth		#/# m mdrkb	2547.4	1/6 2547.4
Pretest volume		CC	20cc	20cc
Chamber size		cc/litre/gallon	450cc	450cc
Chamber serial number	• • • • • • • • • • • • • • • • • • •	#	(5) AA479	(6) AA478
Probe type			LONG NOSE	LONG NOSE
Choke size			4 x 20/1000 ths	4 x 20/1000 ths
	B	. Sampling History		iye an olekara, da falaka ang
Date		dd/mm/yy	13/09/95	13/09/95
nitial hydrostatic		psia	4473.0	
fool Set		hh:mm	19:43	
Pretest start		hh:mm	19:44	
nitial formation pressure	(pretest)	psia	3723.6	
Pretest end		hh:mm	19:46	
Pretest duration		hh:mm	0:02	0:00
Pumpout start		hh:mm		
Pumpout end		hh:mm		
Pumpout duration		hh:mm	0:00	0:00
Pumpout volume		litres		
DFA indication		colour		
nterpreted fluid at OFA		-		
Aaximum resisitivity at pr	obe	ohm-m		
Chamber open		hh:mm	19:47	19:53
Ainimum sampling pressu	Ire	psia	2003.2	3421.6
inal formation pressure	······································	psia	3722.8	3723.1
Seal chamber		hh:mm	19:52	19:55
Chamber fill time		hh:mm	0:05	0:02
ool retract		hh:mm		19:56
inal hydrostatic		psia		4473.0
fotal time		hh:mm		0:13
	C. Sample Down	hole Temperature And		동안 가슴에 가는 것 같았
At sample depth (AMS)		degC	111.0	111.3
Rm@sample depth (AMS)		ohm-m	0.05	0.05
		ole Recovery At Surface		
Surface opening pressure		psig	25	0
/olume gas		cuft	0	0
/olume oil/condensate		litres	0	0
/olume water/filtrate		litres	450cc	0
그는 것 지원 관계 관련했다.		roperties Measured On	-Site	이다. 동생님, 집안 안 다 가봐?
as via chromatograph	C1	ppm		
	C2	ppm		
	C3	ppm		
	C4	ppm		
	C5	ppm		
	C6 +	ppm		
	1000			
	C02	%		
	H2S	ppm		
il/Condensate	H2S API @ degC		@	@
il/Condensate	H2S API @ degC Colour	ppm	@	@
il/Condensate	H2S API @ degC Colour Fluorescence	ppm degrees	@	Q
il/Condensate	H2S API @ degC Colour Fluorescence GOR or CGR	ppm degrees cuft/bbl or mmscf/bbl	@	@
	H2S API @ degC Colour Fluorescence GOR or CGR Pour point	ppm degrees cuft/bbl or mmscf/bbl degC		
	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC	0.099@19	@ @
	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL%	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm	0.099@19 24700	
Dil/Condensate Vater/Filtrate	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm	0.099@19 24700 37000	
	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm	0.099@19 24700 37000 Not used	
	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm	0.099@19 24700 37000 Not used 7.4	
	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM	0.099@19 24700 37000 Not used	
/ater/Filtrate	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM	0.099@19 24700 37000 Not used 7.4 Filtrate	@
Vater/Filtrate mud @ degC	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM degrees degrees ohm-m@degC	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21	@ 0.096 @ 21
Vater/Filtrate mud @ degC + ion calculated from KC	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM dFiltrate Properties ohm-m@degC ppm	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400	@ 0.096 @ 21 26400
Vater/Filtrate mud @ degC + ion calculated from KC hlorides titrated	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM degrees degrees ohm-m@degC	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500	@ 0.096 @ 21 26400 35500
Vater/Filtrate mud @ degC + ion calculated from KC hlorides titrated H	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM degC intrate Properties ohm-m@degC ppm ppm	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500 9	@ 0.096 @ 21 26400 35500 9
Vater/Filtrate mud @ degC + ion calculated from KC hlorides titrated H ritium	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu CL%	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM degC ohm-m@degC ppm ppm DPM DPM DPM DPM	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500	@ 0.096 @ 21 26400 35500
/ater/Filtrate mud @ degC + ion calculated from KC hlorides titrated H	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu CL%	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM degC ohm-m@degC ppm ppm DPM DPM ppm ppm ppm DPM General Calibration	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500 9 Not used	@ 0.096 @ 21 26400 35500 9 Not used
/ater/Filtrate mud @ degC + ion calculated from KC hlorides titrated H ritium eported mud weight	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu CL%	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM ohm-m@degC ppm ppm DPM DPM DPM ppm	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3	@ 0.096 @ 21 26400 35500 9 Not used 10.3
/ater/Filtrate mud @ degC + ion calculated from KC hlorides titrated H	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mo CL% G. 4	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM ohm-m@degC ppm DPM ohm-m@degC ppm DPM ohm-m@degC ppm ppm DPM General Calibration ppg psia	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500 9 Not used	@ 0.096 @ 21 26400 35500 9 Not used
/ater/Filtrate mud @ degC + ion calculated from KC hlorides titrated -I ritium eported mud weight	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu CL% G. 4 H. Rer	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM ohm-m@degC ppm ppm DPM DPM DPM ppm	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3 4471	@ 0.096 @ 21 26400 35500 9 Not used 10.3 4471
/ater/Filtrate mud @ degC + ion calculated from KC hlorides titrated -I ritium eported mud weight	H2S API @ degC Colour Fluorescence GOR or CGR Pour point Rmud @ degC K + ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mo CL% G. 4	ppm degrees cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM ohm-m@degC ppm DPM ohm-m@degC ppm DPM ohm-m@degC ppm ppm DPM General Calibration ppg psia	0.099@19 24700 37000 Not used 7.4 Filtrate 0.096 @ 21 26400 35500 9 Not used 10.3	@ 0.096 @ 21 26400 35500 9 Not used 10.3 4471

A.

Г

Pumpout volume			0:00	0:00
Pumpout duration Pumpout volume		hh:mm	0:00	0.00
OFA indication		litres		0.00
Interpreted fluid at C	DFA -	-		
Maximum resisitivity Chamber open	at probe	ohm-m		
Minimum sampling p	Dressure	hh:mm	20:06	20:08
Final formation press	sure	psia	3240.6	3734.5
Seal chamber		psia hh:mm	3738.2	3788.2
Chamber fill time		hh:mm	20:07 0:01	20:09
Tool retract Final hydrostatic		hh:mm	0.01	0:01 Not recorded
Total time		psia		Not recorded
	C Sample Davis	hh:mm		
At sample depth (AM	C. Sample Down	Incle Temperature And		
Rm@sample depth (ÁMS)	degC	112.0	112.0
		ohm-m	0.03	0.03
Surface opening pres	D. Sam		ce	0.00
olume gas		psig	1500	0
olume oil/condensat	e	cuft	TSTM	0
olume water/filtrate		litres	Not	0
	E. Sample I	Properties Measured O	Not recorded	0
as via chromatograp	ph C1	ppm	181891	
	C2	ppm	68798	
	C3	ppm	53533	
	C4 C5	ppm	28461	
	C5 C6+	ppm	4767	
	C02	ppm %	N/A	
· · · · · · · · · · · · · · · · · · ·	H2S	% ppm	4%	
	API @ degC	degrees	0	
l/Condensate			(~) (@
I/Condensate	Colour		@	
I/Condensate	Colour Fluorescence			
I/Condensate	Colour Fluorescence GOR or CGR	cuft/bbl or mmscf/bbl		
	Colour Fluorescence GOR or CGR Pour point	cuft/bbl or mmscf/bbl degC		
	Colour Fluorescence GOR or CGR Pour point Rmud @ degC	cuft/bbl or mmscf/bbl degC ohm-m@degC	 	
I/Condensate	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL%	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm		@
	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm		
	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL%	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm		
	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm		
ater/Filtrate	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM		
ater/Filtrate	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM	@	@
ater/Filtrate	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM	@ 	0.096 @ 21
ater/Filtrate	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM d Filtrate Properties ohm-m@degC	@ 	@ 0.096 @ 21 26400
ater/Filtrate ud @ degC ion calculated from P prides titrated	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mu	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM d Filtrate Properties ohm-m@degC ppm ppm	@ 	@ 0.096 @ 21 26400 35500
ater/Filtrate	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc KCL%	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM d Filtrate Properties ohm-m@degC ppm ppm	@ 	@ 0.096 @ 21 26400 35500 9
ud @ degC on calculated from P prides titrated	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc KCL%	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM DPM DPM	@ @ 0.096 @ 21 26400 35500 9	@ 0.096 @ 21 26400 35500
ater/Filtrate ud @ degC ion calculated from P prides titrated um	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc KCL%	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM DPM DPM ppm	@ 0.096 @ 21 26400 35500 9 Not used 10.3	@ 0.096 @ 21 26400 35500 9 Not used
ud @ degC on calculated from P orides titrated	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc KCL% G. G.	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM d Filtrate Properties ohm-m@degC ppm ppm DPM DPM eneral Calibration ppg psia	@ 0.096 @ 21 26400 35500 9 Not used	@ 0.096 @ 21 26400 35500 9 Not used 10.3
ud @ degC on calculated from P orides titrated	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc KCL% G. Go H. Rema	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM DPM DPM ppm	@ 0.096 @ 21 26400 35500 9 Not used 10.3	@ 0.096 @ 21 26400 35500 9 Not used
ater/Filtrate ud @ degC on calculated from P prides titrated um	Colour Fluorescence GOR or CGR Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc KCL% G. G.	cuft/bbl or mmscf/bbl degC ohm-m@degC ppm ppm DPM DPM d Filtrate Properties ohm-m@degC ppm ppm DPM DPM eneral Calibration ppg psia	@ 0.096 @ 21 26400 35500 9 Not used 10.3	@ 0.096 @ 21 26400 35500 9 Not used 10.3 4512

(MTS/ResTech/T5_S178.XLS/19/12/95)

ĺ

A 2-

		Well: Turrum-5		
Dun /aaat		. Sample Identification		
Run/seat number		#/#	2/1	2/2
Sample depth Pretest volume	••••••••••••••••••••••••••••••••••••••	m mdrkb	2206.0	2392.2
Chamber size			20cc	20cc
Chamber serial number		cc/litre/gallon	450cc	450cc
Probe type		#	(2) AA162	(3) AA192
Choke size			MARTINEAU 4 x 20/1000 ths	MARTINEAU 4 x 20/1000 ths
		B. Sampling History	4 x 20/1000 (iis	4 x 20/1000 ths
Date	••••••••••••••••••••••••••••••••••••••	dd/mm/yy	14/09/95	14/09/95
Initial hydrostatic		psia	3888.0	4211.0
Tool Set		hh:mm	2:44	3:19
Pretest start		hh:mm	2:46	3:20
Initial formation pressure	(pretest)	psia	3229.0	3469.0
Pretest end		hh:mm	2:47	3:21
Pretest duration		hh:mm	0:01	0:01
Pumpout start		hh:mm	2:48	3:22
Pumpout end Pumpout duration		hh:mm	3:00	3:25
	· · · · · · · · · · · · · · · · · · ·	hh:mm	0:12	0:03
Pumpout volume		litres	8.2	2.9
Interpreted fluid at OFA		colour	RED	GREEN/PURPLE
Maximum resisitivity at p	rohe	ohm-m	GAS	OIL + FILTRATE
Chamber open		hh:mm	22	22
Minimum sampling press	ure	nn:mm	3:01 3211.7	3:26
-inal formation pressure		psia	3211.7	3464.2
Seal chamber		hh:mm	3:04	3468.1
Chamber fill time		hh:mm	0:03	3:28 0:02
Fool retract		hh:mm	3:06	3:29
inal hydrostatic		psia	3886.0	4211.0
Total time		hh:mm	0:22	0:10
en de la defensión	C. Sample Down	nhole Temperature And		0.70
At sample depth (AMS)		degC	97.3	101.4
Rm@sample depth (AMS)	J	ohm-m	0.04	0.04
	D. Sam	ple Recovery At Surfa	Ce	
Surface opening pressure		psia	T	
/olume gas		cuft		
olume oil/condensate		litres		
/olume water/filtrate		litres		
		Properties Measured O	n-Site	
as via chromatograph	C1	ppm		
······································	C2	ppm		
	C3	ppm		
	C4	ppm		
	C5	ppm		
	C6 +	ppm		
	CO2	%		
il/Condensate	H2S API @ degC	ppm	<u>_</u>	
in condensate	Colour	degrees	@	@
	Fluorescence			
	GOR or CGR			
	Pour point	degC	<u> </u>	
/ater/Filtrate	Rmud @ degC	ohm-m	@	
	K + ion calculated from KCL%	ppm	<u></u>	@
	Chlorides titrated	ppm		
	Tritium	DPM		······································
	pH	1		
	Туре		L	
		ud Filtrate Properties		
nud @ degC		ud Filtrate Properties	0.096 @ 21	0.096.@ 21
+ ion calculated from KC	F. M	ud Filtrate Properties ohm-m ppm	0.096 @ 21	0.096 @ 21
+ ion calculated from KC	F. M	ohm-m ppm	26400	26400
+ ion calculated from KC nlorides titrated 1	F. M	ohm-m		26400 35500
+ ion calculated from KC nlorides titrated 1	F. M	ohm-m ppm	26400 35500	26400 35500 9
nud @ degC + ion calculated from KC nlorides titrated 1 itium	F. M	ohm-m ppm ppm	26400 35500 9	26400 35500
+ ion calculated from KC hlorides titrated 1 itium ported mud weight	F. M	ohm-m ppm ppm DPM	26400 35500 9 Not used	26400 35500 9 Not used
+ ion calculated from KC hlorides titrated I itium	F. M	ohm-m ppm ppm DPM General Calibration	26400 35500 9	26400 35500 9
+ ion calculated from KC hlorides titrated t itium ported mud weight	F. M 2L% G. (ohm-m ppm ppm DPM General Calibration	26400 35500 9 Not used 10.3	26400 35500 9 Not used 10.3
+ ion calculated from KC hlorides titrated t itium ported mud weight	F. M CL% G. (H. Ren <i>General</i>	ohm-m ppm ppm DPM General Calibration ppg psia	26400 35500 9 Not used 10.3	26400 35500 9 Not used 10.3 4199

A.

		Vell: Turrum-5		
	A. 9	Sample Identification		
Run/seat number		#/#	2/3	2/4
Sample depth Pretest volume		m mdrkb	2418.5	2527.5
Chamber size			20cc	20cc
Chamber serial number		cc/litre/gallon #	450cc Not used	450cc
Probe type		#	MARTINEAU	(5) AA160 MARTINEAU
Choke size			4 x 20/1000 ths	4 x 20/1000 ths
	В	. Sampling History	4 X 20/1000 uis	
Date		dd/mm/yy	14/09/95	14/09/95
Initial hydrostatic		Ipsia	4257.0	4447.0
Tool Set	· · · · · · · · · · · · · · · · · · ·	hh:mm	3:43	4:01
Pretest start	······································	hh:mm	3:45	4:03
Initial formation pressure	(pretest)	psia	3497.0	3711.0
Pretest end		hh:mm	3:47	4:04
Pretest duration		hh:mm	0:02	0:01
Pumpout start	· · · · · · · · · · · · · · · · · · ·	hh:mm	3:48	4:04
Pumpout end		hh:mm	3:52	4:08
Pumpout duration		hh:mm	0:02	0:04
Pumpout volume		litres	2.3	4.1
OFA indication		colour	GREEN/BLUE	GREEN/PURPLE
nterpreted fluid at OFA	_	-	OIL+FILTRATE	OIL+FILTRATE
Maximum resisitivity at p	robe	ohm-m	22	22
Chamber open	· · · · · · · · · · · · · · · · · · ·	hh:mm	-	4:10
Vinimum sampling press	sure	psia	-	3709.0
inal formation pressure		psia	-	3709.0
Seal chamber		hh:mm	-	4:14
Chamber fill time		hh:mm	-	0:04
Fool retract	·····	hh:mm	3:52	4:15
inal hydrostatic		psia	4257.0	4445.0
Total time	· · · · · · · · · · · · · · · · · · ·	hh:mm	0:09	0:14
	C. Sample Downh			
At sample depth (AMS)		degC	100.6	106.7
Rm@sample depth (AMS	5)	ohm-m	0.04	0.04
		le Recovery At Surfa		0.01
Surface opening pressur		psia		the second s
/olume gas	•	cuft		
/olume oil/condensate		litres		
/olume water/filtrate		litres		
	F. Sample P		Dn-Site	l National and the second
Gas via chromatograph	C1	ppm	JII-3116	<u>a Navadi i sa Navadi</u> I
sus via oniomatograph	C2	ppm		
	 C3	ppm		
	C4	······································		
••••••••••••••••••••••••••••••••••••••	C5	ppm ppm		
	 C6+			
	C07	ppm %		
	H2S			
Dil/Condensate		ppm		
- Condensale	API @ degC Colour	degrees	@	@
·····	Fluorescence GOR or CGR			
	Pour point	cuft/bbl or mmscf/bbl		
/ater/Filtrate	Rmud @ degC	degC		
	K+ ion calculated from KCL%	ohm-m	@	@
	Chlorides titrated	ppm		
		ppm		
	Tritium	DPM		
	pH Type	+		
an a	Type	d Filtrate Properties		
mud @ degC	r. Mu		0.000 @ 01	0.000 0.01
+ ion calculated from KC	N1 0/	ohm-m	0.096 @ 21	0.096 @ 21
+ ion calculated from KC	/L /U	ppm	26400	26400
Hiorides litrated		ppm	35500	35500
ritium			9 Naturad	9
		DPM	Not used	Not used
	na se deserva esta de la compañía de la California de la California de la California de la California de la Cal	eneral Calibration		landele en
			10.3	10.3
eported mud weight		ppg		
eported mud weight alculated hydrostatic		psia	4245	4436
eported mud weight alculated hydrostatic	H. Rem		4245	4436
eported mud weight alculated hydrostatic	H. Rem General	psia	4245 Sample s	4436
eported mud weight alculated hydrostatic	H. Rem General 2/3.	psia	4245	4436

Į

		/ell: Turrum-5		
Run/coat number	A. S	ample Identification		+
Run/seat number Sample depth		#/#	2/5	2/6
Pretest volume		m mdrkb	2541.6	2547.4
Chamber size			20cc	20cc
Chamber serial number		cc/litre/gallon	450cc	450cc
	······································	#	Not used	(6) AA193
Probe type Choke size			MARTJNEAU	MARTINEAU
B		Compling History	4 x 20/1000 ths	4 x 20/1000 ths
Date	D.	dd/mm/yy	14/09/95	14/09/95
Initial hydrostatic		psia	4471.0	4480.0
Tool Set		hh:mm	4:20	
Pretest start		hh:mm	4:20	4:35 4:36
nitial formation pressure (pretest)		psia	3727.0	3724.0
Pretest end		hh:mm	4:23	4:38
Pretest duration		hh:mm	0:01	0:02
Pumpout start		hh:mm	4:23	4:38
Pumpout end		hh:mm	_	
Pumpout duration			4:29	4:45
Pumpout volume		hh:mm litres	<u>0:06</u> 2.9	0:07
OFA indication				4.7
Interpreted fluid at OFA		colour	BLUE	BLUE
		-	FILTRATE	FILTRATE
Maximum resisitivity at pr	UDE	ohm-m	0.03	0.03
Chamber open		hh:mm	18	4:45
Minimum sampling press	ure	psia	-	3048.3
Final formation pressure		psia	-	3722.0
Seal chamber		hh:mm	-	4:52
Chamber fill time		hh:mm	-	0:07
Tool retract		hh:mm	4:30	4:53
Final hydrostatic		psia	4470.0	4480.0
Total time		hh:mm	0:10	0:18
	C. Sample Downh	ole Temperature And	I Resistivity	
At sample depth (AMS)		degC	110.0	112.0
Rm@sample depth (AMS		ohm-m	0.03	0.03
	D. Samp	le Recovery At Surfa	ce	ter de la companya d La companya de la comp
Surface opening pressure	•	psia		Chamber empty
/olume gas		cuft	······	
Volume oil/condensate		litres		·
Volume water/filtrate		litres		· · · · · · · · · · · · · · · · · · ·
	E. Sample Pr		n-Site	
Gas via chromatograph	IC1	ppm		<u> </u>
<u> </u>	C2	ppm	······	
	C3	ppm		
	C4	ppm		
	C5	ppm		
·········	C6+			
······································	C02	ppm		
···· · · · · · · · · · · · · · · · · ·	H2S	%		·
Dil/Condensate		ppm		
Jucondensale	API @ degC	degrees	@	@
	Colour	+		
	Fluorescence			
	GOR or CGR	cuft/bbl or mmscf/bbl		
Votor/Eiltr-t-	Pour point	degC		
Vater/Filtrate	Rmud @ degC	ohm-m	@	@
	K+ ion calculated from KCL%	ppm		
	Chlorides titrated	ppm		
	Tritium	DPM		· · · · · · · · · · · · · · · · · · ·
	рН			
	Туре			
	F. Mu	d Filtrate Properties	a an an an an an Arabana.	in the second
mud @ degC		ohm-m	0.96 @ 21	0.96 @ 21
+ ion calculated from KC	L%	ppm	26400	26400
hlorides titrated		ppm	35500	35500
Н			9	9
ritium		DPM	Not used	Not used
an a	G. G	eneral Calibration	aga atta a sa	· · · · · · · · · · · · · · · · · · ·
eported mud weight		ppg	10.3	10.3
alculated hydrostatic		psia	4461	4471
	H Pom	arks and Comments		1 1 1 1
			<u></u>	oncoife
	General		Sample :	
		-	Sample aborted	Sample attempted
			only water indicated	even though OFA=blu

(MTS/ResTech/T5_S256.XLS/20/12/95)

-

8. a.

		ell: Turrum-5		
Run/seat number	A. S	ample Identification	2/7	•
Sample depth		m mdrkb	2570.5	2601.5
Pretest volume		cc	20cc	20cc
Chamber size		cc/litre/gallon	1 Gallon	6 Gallon
Chamber serial number		#	MRSC-BB90	MRSC-BB22
Probe type	· · · · · · · · · · · · · · · · · · ·		MARTINEAU	MARTINEAU
Choke size			4 x 20/1000 ths	4 x 20/1000 ths
Date		Sampling History	1.4/00/05	14/00/05
Initial hydrostatic		dd/mm/yy psia	14/09/95 4520.0	<u>14/09/95</u> 4573.0
Tool Set		hh:mm	4:59	5:23
Pretest start		hh:mm	5:01	5:23
Initial formation pressure	(pretest)	psia	3738.6	3710.4
Pretest end		hh:mm	5:02	5:26
Pretest duration		hh:mm	0:01	0:03
Pumpout start Pumpout end		hh:mm hh:mm	5:02	5:26 5:30
Pumpout duration		hh:mm	0:09	0:04
Pumpout volume			9.4	4.1
OFA indication		litres colour	BLUE	RED
nterpreted fluid at OFA		-	FILTRATE	GAS
Maximum resisitivity at pr	obe	ohm-m	0.03	22
Chamber open		hh:mm	5:13	5:30
Minimum sampling press	ure	psia	514.8	677.9
Final formation pressure Seal chamber		psia	3738.0	3708.6
Seal Chamber Chamber fill time		hh:mm hh:mm	5:16 0:03	5:38 0:08
Fool retract		hh:mm	5:18	5:40
Final hydrostatic		psia	4520.0	4575.0
Total time	······································	hh:mm	0:19	0:17
	C. Sample Downh	ole Temperature An	d Resistivity	
At sample depth (AMS)		degC	114.0	116.0
Rm@sample depth (AMS		ohm-m	0.03	0.03
		le Recovery At Surfa		
Surface opening pressure	Э	psig	1475	1925
Volume gas		cuft	0.7	121.4
Volume oil/condensate Volume water/filtrate		litres	100cc (oil)	250cc (cond)
	E. Sample Pr	litres roperties Measured (3 On Site	3.75
Gas via chromatograph		ppm	TSTM	188817
ouo via onromatograph	C2	ppm	1011	61923
	C3	ppm		32654
	C4	ppm		12115
	C5	ppm		1720
	C6+	ppm		-
	CO2	%		10%
2:1/0	H2S	ppm		0
Dil/Condensate	API @ degC	degrees	0.81g/cc @ 25	49.15 @ 60deg F
	Colour Fluorescence		LT BRN YELLOW/STRAW	CLR-LT BRN BL/WHITE
	GOR or CGR	cuft/bbl or mmscf/bbl	1113	0.07732
	Pour point	degC	22.2	>0
Vater/Filtrate	Rmud @ degC	ohm-m@degC	0.111@19	0.110@16
······································	K+ ion calculated from KCL%	ppm	17500	16900
	Chlorides titrated	ppm	36000	35500
	Tritium	DPM	Not used	Not used
	pH		6.45	6
	Туре	d Filtrote Drevent	Filtrate	Filtrate
mud @ docC	F. Mu	d Filtrate Properties	0.000 @ 04	0.006 @ 04
tmud @ degC + ion calculated from KC	N 94	ohm-m@degC	0.096 @ 21 26400	0.096 @ 21 26400
hlorides titrated		ppm ppm	35500	35500
H		- rr	9	9
ritium		DPM	Not used	Not used
	G. G	eneral Calibration		
eported mud weight		ppg	10.3	10.3
alculated hydrostatic		psia	4512	4566
	H. Rem	arks and Comments		· · · · · · · · · · · · · · · · · · ·
	General		Sample	
			API too small to	Incomplete sample
	AUR 1444		measure	moomplete dample

(MTS/ResTech/T5_S278.XLS/18/01/96)

Al Rose

Ì

		Well: Turrum-5		~~~
D	<u>the construction of the definition of the second second</u>	Sample Identification	<u> </u>	• • • • • • • • • • • • • • • • • • •
Run/seat number		#/#	2/9	/
Sample depth		m mdrkb	2620.7	
Pretest volume		cc	20cc	
Chamber size		cc/litre/gallon	2-3/4 Gallon	
Chamber serial number		#	MRSC-DB68	
Probe type			MARTINEAU	
Choke size			4 x 20/1000 ths	
	영상 영화 이 동안에 동생 이 같이 다 못했어?	B. Sampling History		지수 동네 가장 것 가장 것 같은 것을
Date		dd/mm/yy	14/09/95	
Initial hydrostatic	······································	psia	4610.0	
Tool Set		hh:mm	5:46	
Pretest start		hh:mm	5:47	
Initial formation pressure	(pretest)	psia	5:55	
Pretest end		hh:mm		
Pretest duration		hh:mm		
Pumpout start		hh:mm		
Pumpout end		hh:mm		
Pumpout duration		hh:mm	0:00	1
Pumpout volume		litres		1
OFA indication		colour	1	+
Interpreted fluid at OFA		-	†	
Maximum resisitivity at p	robe	ohm-m		
Chamber open		hh:mm		-
Minimum sampling pressure		psia		
Final formation pressure		psia		
Seal chamber		hh:mm		
Chamber fill time		hh:mm	0:00	
Fool retract		hh:mm	0.00	
inal hydrostatic		psia		
Fotal time		hh:mm		
	C. Sample Dowr	nhole Temperature And	Pasistivitu	
	C. Sample Dowr		Resistivity	
At sample depth (AMS)		degC		
Rm@sample depth (AMS)		ohm-m		
		ple Recovery At Surfac	e	Alexandra ang ang ang ang ang ang ang ang ang an
Surface opening pressure		psig		
Volume gas		cuft		
Volume oil/condensate		litres		
/olume water/filtrate	-	litres		
	E. Sample I	Properties Measured On	n-Site	
Gas via chromatograph	C1	ppm		T
	C2	ppm		
	СЗ	ppm		
	C4	ppm		<u>+</u>
	C5	ppm		+
	C6+	ppm		
	C02	%		+
	H2S			+
Dil/Condensate	API @ degC	ppm		<u> </u>
moundensate		degrees	@	
	Colour			
	Fluorescence			<u> </u>
	GOR or CGR	cuft/bbl or mmscf/bbl		<u> </u>
	Pour point	degC		
Vater/Filtrate	Rmud @ degC	ohm-m@degC	@	
····	K + ion calculated from KCL%	ppm		
	Chlorides titrated	ppm		
	Tritium	DPM		
	pH			
	Туре			
	F. M	ud Filtrate Properties		
mud @ degC		ohm-m@degC	0.096 @ 21	1
+ ion calculated from KC	L%	ppm	26400	
hlorides titrated	······································	ppm	35500	
H	<u></u>		9	
ritium		DPM	Not used	
	c	General Calibration	1101 4364	Length of the state was the state of the sta
eported mud weight	.		10.3	
		ppg	10.3	
alculated bydroctatio		psia	4600	L
alculated hydrostatic				
alculated hydrostatic		marks and Comments		
	General	marks and Comments	Sample	specific
alculated hydrostatic pol failed after 2/9 - pooh	General	marks and Comments	<i>Sample</i> Aborted tight	specific

Ĩ

	W	ell: Turrum-5		
and the state of the state of the	A. S	ample Identification		(مىلىق• ئەرىمە ئەر _{مە} رە
Run/seat number		#/#	3/1	
Sample depth		m mdrkb	2548.1	
Pretest volume		cc	20cc	
Chamber size		cc/litre/gallon	6 Gallon	
Chamber serial number		#	Not used	
Probe type			MARTINEAU	· · · · · · · · · · · · · · · · · · ·
Choke size			4 x 20/1000 ths	
ala wa walati ni Jeri wa Tani ana manina.	В.	Sampling History	an nakalari na shekara inga salara inga s	an a chuir i cuitean a
Date		dd/mm/yy	14/09/95	
Initial hydrostatic	· ·····	psia	4489.0	
Tool Set		hh:mm	11:08	
Pretest start		hh:mm	11:10	
Initial formation pressure	(protect)	psia	11.10	
Pretest end	(pretest)	hh:mm	11:12	
Pretest duration		hh:mm	0:02	· · · ·
			0.02	
Pumpout start Pumpout end		hh:mm		
		hh:mm	0.00	
Pumpout duration	· · · · · · · · · · · · · · · · · · ·	hh:mm	0:00	
Pumpout volume		litres		
OFA indication		colour		
Interpreted fluid at OFA	•	-		
Maximum resisitivity at pr	robe	ohm-m		
Chamber open	·····	hh:mm	11:12	
Minimum sampling pressure		psia		
Final formation pressure				
Seal chamber				
Chamber fill time	······	hh:mm hh:mm		
Fool retract		hh:mm		
Final hydrostatic		psia		
Total time		hh:mm		
in a shekarar ƙwa	C. Sample Downh	ole Temperature An	d Resistivity	
At sample depth (AMS)		degC	<u> </u>	
Rm@sample depth (AMS	5)	ohm-m		
and a second second second	D. Samp	le Recovery At Surfa	ace	ระวง แห่งสามระดีมีรีกว่าได้
Surface opening pressure		psig		······································
Volume gas		cuft		
Volume oil/condensate		litres		
Volume water/filtrate		litres		
	E. Sample Pr	operties Measured (On-Site	
Coo via abromotograph				
Gas via chromatograph		ppm		
	C2	ppm		
	СЗ	ppm		
	C4	ppm		
	C5	ppm		
	C6+	ppm		
	CO2	%		
	H2S	ppm		
Oil/Condensate	API @ degC	degrees	@	
	Colour	-		
	Fluorescence			
	GOR or CGR	cuft/bbl or mmscf/bbl	·····	
		1		
		degC.		
N/ator/Filtrate	Pour point	degC		
Water/Filtrate	Pour point Rmud @ degC	ohm-m@degC	@	
Water/Filtrate	Pour point Rmud @ degC K+ ion calculated from KCL%	ohm-m@degC ppm	@	
Water/Filtrate	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated	ohm-m@degC ppm ppm	@	
Water/Filtrate	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium	ohm-m@degC ppm	@	
Water/Filtrate	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH	ohm-m@degC ppm ppm	@	
Water/Filtrate	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type	ohm-m@degC ppm ppm DPM	@	
	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH	ohm-m@degC ppm ppm DPM	@	
	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type	ohm-m@degC ppm ppm DPM Filtrate Properties		t Laghadaan ee
Rmud @ degC	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mud	ohm-m@degC ppm DPM Filtrate Properties ohm-m@degC		
Rmud @ degC <+ ion calculated from KC	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mud	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm	0.096 @ 21 26400	
Rmud @ degC <+ ion calculated from KC Chlorides titrated	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mud	ohm-m@degC ppm DPM Filtrate Properties ohm-m@degC	0.096 @ 21	
Rmud @ degC <+ ion calculated from KC Chlorides titrated oH	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Mud	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm	0.096 @ 21 26400 35500 9	
Rmud @ degC <+ ion calculated from KC Chlorides titrated 5H Fritium	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM	0.096 @ 21 26400 35500	
Rmud @ degC <+ ion calculated from KC Chlorides titrated oH Fritium	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration	0.096 @ 21 26400 35500 9 Not used	
Rmud @ degC <+ ion calculated from KC Chlorides titrated oH Fritium Reported mud weight	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg	0.096 @ 21 26400 35500 9 Not used 10.3	
Rmud @ degC <+ ion calculated from KC Chlorides titrated oH Fritium	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc CL% G. G	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg psia	0.096 @ 21 26400 35500 9 Not used 10.3 4472	
Rmud @ degC (+ ion calculated from KC Chlorides titrated oH Fritium Reported mud weight	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc CL% G. G	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg	0.096 @ 21 26400 35500 9 Not used 10.3 4472	
Rmud @ degC <+ ion calculated from KC Chlorides titrated oH Fritium Reported mud weight	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc CL% G. G H. Rem	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg psia	0.096 @ 21 26400 35500 9 Not used 10.3 4472	
Rmud @ degC (+ ion calculated from KC Chlorides titrated DH Fritium Reported mud weight Calculated hydrostatic	Pour point Rmud @ degC K+ ion calculated from KCL% Chlorides titrated Tritium pH Type F. Muc CL% G. G	ohm-m@degC ppm DPM d Filtrate Properties ohm-m@degC ppm ppm DPM eneral Calibration ppg psia arks and Comments	0.096 @ 21 26400 35500 9 Not used 10.3 4472	

(MTS/ResTech/T5_S312.XLS/19/12/95)

Ĵ

Mrsn.

	W	ell: Turrum-5		
an an an an an Albar, an an Albar, an an an Albar, an	A. Sa	ample Identification		a a teal te
Run/seat number		#/#	4/1	4/2
Sample depth		m mdrkb	2548.0	2548.0
Pretest volume		cc	20cc	20cc
hamber size		cc/litre/gallon	6 Gallon	2 3/4 Gallon
hamber serial number		#	Not reported	Not reported
Probe type (Long nose, M	IARTINEAU)		MARTINEAU	MARTINEAU
Choke size	<u></u>		4x20/1000 ths	4x20/1000 ths
a	В.	Sampling History	a la definicação de la competência	
Date		dd/mm/yy	14/09/95	14/09/95
nitial hydrostatic		psia	4487.0	
ool Set		hh:mm	13:42	
Pretest start		hh:mm	13:43	
nitial formation pressure	(pretest)	psia	3727.0	
Pretest end		hh:mm	13:44	
Pretest duration		hh:mm	0:01	0:00
umpout start		hh:mm		
Pumpout end		hh:mm		
Pumpout duration		hh:mm		
umpout volume		litres		······································
DFA indication		colour		
nterpreted fluid at OFA		-		
faximum resisitivity at pr		ohm-m		
		hh:mm	13:48	14:18
Chamber open		psia	1008.0	194.0
Ainimum sampling press	116			3035.0
inal formation pressure		psia	Not reported	14:47
Seal chamber		hh:mm	14:18	0:29
Chamber fill time		hh:mm	0:30	0.29
ool retract		hh:mm		
inal hydrostatic		psia		0.00
otal time		hh:mm		0:00
	C. Sample Downh			
t sample depth (AMS)		degC	108.0	108.0
Rm@sample depth (AMS)	ohm-m	0.04	0.04
	D. Samp	le Recovery At Surfa	Ce	<u>ing an an an an the th</u>
Surface opening pressure		psig	425	145
/olume gas		cuft	-	-
/olume oil/condensate		litres	-	-
/olume water/filtrate	· · · · · · · · · · · · · · · · · · ·	litres	19	9.6
	E, Sample Pr	operties Measured O	n-Site	an tha an tha shiring a
Bas via chromatograph	IC1	ppm		
	C2	ppm		
	C3	ppm		
	C4	ppm		
	C5	ppm		
	C6+	ppm		
	C02	%		
	H2S	ppm		
il/Condensate	API @ degC	degrees	@	@
	Colour			
	Fluorescence			
	GOR or CGR	cuft/bbl or mmscf/bbl		
·····	Pour point	degC		
/ater/Filtrate	Rmud @ degC	ohm-m@degC	0.110 @ 21	0.108 @ 22
	K+ ion calculated from KCL%	ppm	17,200	17,800
	Chlorides titrated	ppm	37,000	37,000
	Tritium	DPM	Not used	Not used
······	pH		6.4	6.35
	Туре		Filtrate	Filtrate
	F. Mu	d Filtrate Properties		and the second
mud @ degC		ohm-m@degC	0.096 @ 21	0.096 @ 21
+ ion calculated from KC	:L%	ppm	26400	26400
hlorides titrated		ppm	35500	35500
H	· · · · · · · · · · · · · · · · · · ·	1°	9	9
ritium		DPM	Not used	Not used
	<u> </u>	eneral Calibration		
			10.3	10.3
eported mud weight		ppg		
alculated hydrostatic		psia	4472	4472
	H. Rem	narks and Comments	e a casa da ser e se	<u>an an a</u>
	General		Sample	specific
ump out inoperable				

(MTS/ResTech/T5_S412.XLS/19/12/95)

AV Rem .

ļ

	W	ell: Turrum-5		
an an an the state of the state of the	A. S	ample Identification	<u></u>	
Run/seat number		#/#	4/3	
Sample depth		m mdrkb	2548.0	
Pretest volume		cc	20cc	
Chamber size	······································	cc/litre/gallon	Not reported	ļ
Chamber serial number		#	Not reported	
Probe type	····		MARTINEAU	
Choke size			4 x 20/1000 ths	
		Sampling History	1 4 4 100 105	i stan pinan an an talah karataka T
Date		dd/mm/yy	14/09/95	
Initial hydrostatic		psia hh:mm		
Pretest start		hh:mm		1
Initial formation pressure	(pretest)	psia		· · · · · · · · · · · · · · · · · · ·
Pretest end	(precest)	hh:mm		
Pretest duration		hh:mm	0:00	
Pumpout start	······································	hh:mm		
Pumpout end		hh:mm		
Pumpout duration		hh:mm	0:00	
Pumpout volume		litres		
OFA indication		colour		
nterpreted fluid at OFA		-		
Maximum resisitivity at pr	obe	ohm-m		
Chamber open		hh:mm	14:50	
Vinimum sampling press	ure	psia	1130.0	
Final formation pressure		psia	3720.0	
Seal chamber		hh:mm	14:51	·····
Chamber fill time		hh:mm	0:01	
Tool retract		hh:mm	14:57	
Final hydrostatic		psia	4481.0	
Total time		hh:mm		l
	C. Sample Downh			na an a
At sample depth (AMS) Rm@sample depth (AMS		degC ohm-m	108.0	
				L
	D. Samp			an sector di Labora, B. Colo E
Surface opening pressure Volume gas	3	psig cuft	125	
Volume gas		litres		
Volume water/filtrate		litres	******	
	E Sample Pr	operties Measured (In Site	
Gas via chromatograph	C1	ppm	JII-JIIC	ing a sub-sector da procesa d'accade <u>s.</u> I
Sas via chironialogiaph	C2	lppm		
	C3	ppm		
	C4	ppm	· · · · · · · · · · · · · · · · · · ·	
••• ···· ······	C5	ppm		
······································	C6+	ppm	· · · · · · · · · · · · · · · · · · ·	
	CO2	%	······································	
••••••••••••••••••••••••••••••••••••••	H2S	ppm		
Dil/Condensate	API @ degC	degrees	@	
	Colour		X	
	Fluorescence			
	GOR or CGR	cuft/bbl or mmscf/bbl		
	Pour point	degC		
Vater/Filtrate	Rmud @ degC	ohm-m@degC	@	
	K+ ion calculated from KCL%	ppm		
	Chlorides titrated	ppm		
	Tritium	DPM		
	рН			
	Туре			
	F. Mu			
mud @ degC		ohm-m@degC	0.096 @ 21	
(+ ion calculated from KC	CL%	ppm	26400	
hlorides titrated		ppm	35500	
H			9 Naturad	
ritium		DPM	Not used	
in an	G. G	eneral Calibration		
eported mud weight		ppg	10.3	
alculated hydrostatic		psia	4472	
	H. Rem	arks and Comments		
	General		Sample	specific
hamber 4/3 plugged - no	General		Sample Final flowing pressure =3091 psia	specific

(MTS/ResTech/T5_S43.XLS/19/12/95)

1

A.

		Vell: Turrum-5		
	Α. \$	Sample Identificatio		• • • • • • • • • • • • • • • • • • •
Run/seat number		#/#	5/1 2548.0	5/2
Sample depth Pretest volume		m mdrkb	2548.0 20cc	2570.5 20cc
Chamber size		CC	12 Gallon	2000 2 3/4 Gallon
Chamber serial number		cc/litre/gallon #	Not reported	Not used
Probe type (Long nose, M			MARTINEAU	MARTINEAU
Choke size	JARTINEAU)		4 x 20/1000 ths	4 x 20/1000 ths
	В	. Sampling History		
Date		dd/mm/yy	15/09/95	15/09/95
Initial hydrostatic		psia	4481.0	
Tool Set		hh:mm	15:36	
Pretest start		hh:mm	15:36	
Initial formation pressure	(pretest)	psia	3737.0	
Pretest end		hh:mm	15:37	
Pretest duration	retest duration		0:01	0:00
Pumpout start		hh:mm hh:mm		· · · · · · · · · · · · · · · · · · ·
Pumpout end		hh:mm		
Pumpout duration		hh:mm	0:00	0:00
Pumpout volume		litres		
OFA indication	······································	colour	1	
Interpreted fluid at OFA	· · · · · · · · · · · · · · · · · · ·			
Maximum resisitivity at pr	obe	ohm-m	1	
Chamber open		hh:mm	15:42	
Minimum sampling press	ure	psia	164.0	
Final formation pressure	· · · · · · · · · · · · · · · · · · ·	psia	3097.0	
Seal chamber		hh:mm	18:50	
Chamber fill time	*****	hh:mm	3:08	0:00
Tool retract		hh:mm	0.00	0.00
Final hydrostatic		psia		
Total time		hh:mm		0:00
		nole Temperature A	nd Resistivity	
At sample depth (AMS)		degC	110.0	
Rm@sample depth (AMS)	2)	lohm-m	0.04	
initia sample deptir (Alvic		ole Recovery At Sur		
Surface opening pressure			500	
	3	psig	500	
Volume gas Volume oil/condensate	· · · · · · · · · · · · · · · · · · ·	cuft litres		
Volume oil/condensate		litres	Trace oily scum 36	
volume watermitate	E Cample B	roperties Measured	+ -	
			I On-Site	digit ya angila di sangila.
Gas via chromatograph		ppm		
	C2	ppm		
	C3	ppm		
	C4	ppm		
	C5	ppm		
	C6+	ppm		
	CO2	%		
	H2S	ppm		
Oil/Condensate	API @ degC	degrees	@	@
	Colour	ļ	BROWN	
	Fluorescence		BLUE/WHITE	····
	GOR or CGR	cuft/bbl or mmscf/bbl		
	Pour point	degC		
Vater/Filtrate	Rmud @ degC	ohm-m@degC	0.114 @ 22	@
	K+ ion calculated from KCL%	ppm	18,300	
	Chlorides titrated	ppm	37,000	
	Tritium	DPM	-	
	рН		6.1	
	Туре		Filtrate	
	F. Mı	id Filtrate Propertie		
Rmud @ degC		ohm-m@degC	0.096 @ 21	0.096 @ 21
K+ ion calculated from KC	:L%	ppm	26400	26400
Chlorides titrated		ppm	35500	35500
эΗ			9	9
Fritium		DPM	Not used	Not used
Washington - Berlin Mark	G. (General Calibration		and the second
Reported mud weight		ppg	10.3	10.3
Calculated hydrostatic		psia	0	0
	general and the state of the state of the Rom	narks and Commen		
	General H. Rer		Sample	specific
Qualt nowar august he the	a tolomoto, I ant nontruban a 11-	20		
50 volt power supply haltin chamber 5/1. Pooh at 5/2.	ng telemetry. Lost seat when sealin	ng	Lost seat when sealing chamber.	Tool would not seat. POOH.

Al/ Revi

ľ

Į

		ell: Turrum-5		
	A. Si	ample Identification	6/1	6/2
Run/seat number			2570.5	2570.5
Sample depth Pretest volume		m mdrkb	20rc	20cc
	· · · · · · · · · · · · · · · · · · ·	CC	1 Gallon	1 Gallon
Chamber size		cc/litre/gallon		
Chamber serial number	4	#	Not reported MARTINEAU	Not reported MARTINEAU
Probe type (Long nose, M	lartineau)			
Choke size		Sampling History	4 x 20/1000 ths	4 x 20/1000 ths
Date	В.	dd/mm/yy	16/09/95	16/09/95
	· · · · · · · · · · · · · · · · · · ·		4514.0	10/08/85
Initial hydrostatic	······································	psia	15:45	
Tool Set		hh:mm	15:45	
Pretest start	/	hh:mm		
Initial formation pressure	(pretest)	psia	3739.0	
Pretest end		hh:mm	15:48	0.00
Pretest duration		hh:mm	0:02	0:00
Pumpout start		hh:mm	15:49	
Pumpout end		hh:mm	16:54	0.00
Pumpout duration		hh:mm	1:05	0:00
Pumpout volume		litres	60	
OFA indication		colour	NOT REPORTED	ļ
nterpreted fluid at OFA			NOT REPORTED	
Maximum resisitivity at pr	obe	ohm-m	NOT REPORTED	
Chamber open		hh:mm	16:55	17:08
Minimum sampling press	ure	psia	1949.0	2182.0
Final formation pressure		psia	3733.0	3734.0
Seal chamber		hh:mm	17:07	17:19
Chamber fill time		hh:mm	0:12	0:11
Tool retract		hh:mm		17:21
Final hydrostatic		psia		4514.0
Total time		hh:mm		1:36
	C. Sample Downh	ole Temperature An	d Resistivity	
At sample depth (AMS)		degC	88.0	94.0
Rm@sample depth (AMS)	ohm-m	0.05	0.05
<u> </u>		e Recovery At Surf	ace	
Surface opening pressure		psig	1725	Seal failed
Volume gas		cuft	10.1	Not available
Volume gas		litres	1.25	1.5
Volume water/filtrate		litres	1.25	1.5
volume water/mitate	E. Sample Pr	operties Measured	On Site	1
dia anti-anti-anti-anti-anti-anti-				n and the second s
Gas via chromatograph		ppm	62006	
	C2	ppm	31474	
	C3	ppm	15907	
	C4	ppm	1974	
	C5	ppm	129	
	C6+	ppm	-	
	CO2	%	10%	
	H2S	ppm	0	
Dil/Condensate	API @ degC	degrees	41.7 @ 15.5	41.7 @ 15.5
	Colour		GRN/BRN	GRN/BRN
	Fluorescence		PALE YELLOW	PALE YELLOW
	GOR or CGR	cuft/bbl or mmscf/bbl	1248.7	-
	Pour point	degC	21	-
Vater/Filtrate	Rmud @ degC	ohm-m@degC	0.127 @ 17	0.127 @ 17
	K+ ion calculated from KCL%	ppm	16900	16900
	Chlorides titrated	ppm	34000	34000
	Tritium	DPM	Not used	Not used
	рН		6.0	6.0
	Туре		Filtrate	Filtrate
		Filtrate Properties		
mud @ degC		ohm-m@degC	0.109 @ 19	0.109 @ 19
+ ion calculated from KC	L%	ppm	21480	21480
hlorides titrated	<u></u>	ppm	34500	34500
H		IFF''''	9.1	9.1
ritium	·····	DPM	Not used	Not used
		eneral Calibration		1101 4364
operad must we take	G, G		10.2	10.2
eported mud weight		ppg	10.3	10.3 4512
alculated hydrostatic		psia	4512	4012
je stanov se		arks and Comments		
	General		Sample	specific
		and the second		
			Final sample pressure =3349	Final sample pressure =3238

(MTS/ResTech/T5_S612.XLS/20/12/95)

		ell: Turrum-5		
Run/seat number	A. S	ample Identification	6/3	6/4
		m mdrkb	2548.6	2548.6
Sample depth Pretest volume		CC	20cc	2348.9 20cc
Chamber size		cc/litre/gallon	12 Gallon	2 - 3/4 Gallon
Chamber serial number		#	Not reported	Not reported
Probe type (Long nose, N	(artineau)		MARTINEAU	MARTINEAU
Choke size			4 x 20/1000 ths	4 x 20/1000 ths
	B.	Sampling History		
Date		dd/mm/yy	16/09/95	17/09/95
nitial hydrostatic		psia	4468.0	
Tool Set		hh:mm	17:38	
Pretest start		hh:mm	17:38	
nitial formation pressure	(pretest)	psia	3722.0	
Pretest end		hh:mm	17:40	
Pretest duration		hh:mm	0:02	0:00
Pumpout start		hh:mm		0:22
Pumpout end		hh:mm		0:44
Pumpout duration	Pumpout duration		0:00	0:22
Pumpout volume	······································	hh:mm litres		3.57
OFA indication		colour		Not reported
nterpreted fluid at OFA		-		Not reported
Maximum resisitivity at pr	obe	ohm-m		Not reported
Chamber open		hh:mm	17:40	0:45
Minimum sampling press	ure	psia	175.0	278.0
inal formation pressure		psia	3399.0	3248.0
Seal chamber		hh:mm	0:21	3:25
Chamber fill time		hh:mm		2:40
Fool retract		hh:mm		
Final hydrostatic		psia		
Total time		hh:mm		0:00
an an an an Anna Airte	C. Sample Downh	ole Temperature And	d Resistivity	a katala da katala
At sample depth (AMS)		degC	95.0	103.0
Rm@sample depth (AMS	6)	ohm-m	0.04	0.04
	D. Samp	le Recovery At Surfa	ice	
Surface opening pressure)	psig	825	1525
Volume gas		cuft	2.5	11.9
Volume oil/condensate		litres	Trace oil scum	3.75
Volume water/filtrate		litres	38	4.5
a kan serata si	E. Sample Pi	operties Measured C	Dn-Site	
Gas via chromatograph	C1	ppm	37167	20577
¥	C2	ppm	6706	2020
	C3	ppm	2071	783
	C4	ppm	444	200
	C5	ppm	3	15
· · · · · · · · · · · · · · · · · · ·	C6+	ppm		-
	CO2	%	20%	12%
· · · · · · · · · · · · · · · · · · ·	H2S	ppm	0	-
Dil/Condensate	API @ degC	degrees	TSTM	40.9 @ 15.5
	Colour		GRN/BRN	GRN/BRN
	Fluorescence		PALE YELLOW	PALE YELLOW
	GOR or CGR	cuft/bbl or mmscf/bbl	TSTM	504.6
	Pour point	degC	TSTM	24
Vater/Filtrate	Rmud @ degC	ohm-m@degC	0.131 @ 20	0.126 @ 20
	K+ ion calculated from KCL%	ppm	18100	17500
	Chlorides titrated	ppm	33540	34000
	Tritium	DPM	•	-
	pH		6.3	6.1
······································	Туре		Filtrate	Filtrate
		d Filtrate Properties		
Rmud @ degC		ohm-m@degC	0.109 @ 19	0.109 @ 19
(+ ion calculated from KC	2L%	ppm	21480	21480
hlorides titrated		ppm	34500	34500
Н		- <u> </u>	9.1	9.1
ritium		DPM	Not used	Not used
	G. G	eneral Calibration		
Reported mud weight		ppg	10.3	10.3
Calculated hydrostatic		psia	4473	4473
	H. Ren	narks and Comments		
	General]	Sample s	specific
			Final sample pressure	Final sample press
inal pressure for 6/3 & 6				

(MTS/ResTech/T5_S634.XLS/19/12/95)

A. 801

.

		ell: Turrum-5		
	A. 5			atta da se sedara 🗰
Run/seat number	······································	#/#	6/5	1
Sample depth		m mdrkb	2548.6	•••••••••••••••••••••••••••••••••••••••
Pretest volume		cc	20cc	· ·,
Chamber size		cc/litre/gallon #	2 - 3/4 Gallon DA -16	
Chamber serial number Probe type (Long nose, N	Antinonul	#	MARTINEAU	
Choke size	varuneau)		4 x 20/1000 ths	
	В.	Sampling History		
Date	~ .	dd/mm/yy	17/09/95	
Initial hydrostatic		psia	11100100	
Tool Set		hh:mm		
Pretest start		hh:mm		······································
nitial formation pressure	(pretest)	psia		······
Pretest end	N	hh:mm		
Pretest duration		hh:mm	0:00	0:00
Pumpout start		hh:mm	3:25	
Pumpout end		hh:mm	3:28	
Pumpout duration		hh:mm	0:03	0:00
Pumpout volume		litres	0.5	
OFA indication		colour	Not reported	······
nterpreted fluid at OFA		-	Not reported	
Maximum resisitivity at pr	obe	ohm-m	Not reported	
Chamber open		hh:mm	3:28	
Ainimum sampling press	ure	psia	681.0	
inal formation pressure	· · · · · · · · · · · · · · · · · · ·	psia	3708.0	
Seal chamber		hh:mm	4:45	
Chamber fill time		hh:mm	1:17	0:00
Fool retract		hh:mm	4:45	
Final hydrostatic		psia	Not reported	0.00
lotal time		hh:mm	11:07	0:00
	C. Sample Downh			
At sample depth (AMS)		degC	10.3	
Rm@sample depth (AMS		ohm-m	0.04	
		· · · · · · · · · · · · · · · · · · ·	face	n di Caratania. M
Surface opening pressure	<u>}</u>	psig	· · · · · · · · · · · · · · · · · · ·	
Volume gas Volume oil/condensate		cuft		
Volume oil/condensate		litres litres	+	
volume water/miliate	E Comple D			
No vie ebremeteerenk		operties Measured	Un-Site	ya da basarat terili. T
Gas via chromatograph	C1 C2	ppm		
	C3	ppm ppm		
	C4 C5	ppm ppm		
	C6+	ppm		
	C02	%		
	H2S	% ppm	<u> </u>	
Dil/Condensate	API @ degC	degrees	@	
AN OUNDERSALE	Colour	lachices	· · · · · · · · · · · · · · · ·	@
	Fluorescence	+	·	
	GOR or CGR	cuft/bbl or mmscf/bbl		······
······································	Pour point	degC		1
Vater/Filtrate	Rmud @ degC	ohm-m@degC	@	<u>@</u>
	K+ ion calculated from KCL%	ppm	<u>├₩</u> ├	
	Chlorides titrated	ppm	<u> </u>	
	Tritium	DPM	<u> </u>	
******	pH		<u> </u>	
	Туре		<u> </u>	
		d Filtrate Properties	ranes feren de la constante de	
mud @ degC		ohm-m@degC	0.109@19	<u>@</u>
+ ion calculated from KC	CL%	ppm	21480	
hlorides titrated	- <u></u>	ppm	34500	
H		- pre:::	9.1	
ritium		DPM	Not used	· · · · · · · · · · · · · · · · · · ·
	G. G	eneral Calibration		
eported mud weight		ppg	10.3	
alculated hydrostatic		psia	4473	0
	H Pam	arks and Comment		
	General		Sample spe	cific
	General		Sample preserved.	0110
			Final pressure = 2478.	
			1 i iliai pressure - 2470. [

(MTS/ResTech/T5_S65.XLS/20/12/95)

APPENDIX 4

K

ŀ

APPENDIX 4

A/ 10~

ť

TURRUM 5

Core Analysis

ROUTINE CORE ANALYSIS REPORT of *TURRUM NO. 5* for *ESSO AUSTRALIA LIMITED* by ACS LABORATORIES PTY LTD 22nd March, 1996

Esso Australia Limited 360 Elizabeth Street MELBOURNE VIC 3000

Attention: A. Mills

REPORT: 002-232 - WELL NAME: TURRUM NO.5

CLIENT REFERENCE:

Contract No. 2710080 RFS No. 5

MATERIAL:

Core Plugs

LOCALITY:

Gippsland Basin VIC-L-3

WORK REQUIRED:

Routine Core Analysis

Please direct technical enquiries regarding this work to the signatory below under whose supervision the work was carried out.

Alfach.

W J (Bill) DERKSEMA Laboratory Supervisor on behalf of ACS Laboratories Pty. Ltd.

ACS Laboratories Pty. Ltd. shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall ACS Laboratories Pty. Ltd. be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

Address:

P.O. Box 396, Chermside, Qld. 4032 Australia Telephone: 61 7 3350 1222 Facsimile: 61 7 3359 0666 E-mail: acs.bris@b022.aone.net.au

ACS Laboratories Pty. Ltd. ACN: 008 273 005

CONTENTS

PAGE

LOGI	STICS	1
INTRO		1
STUD	YAIMS	1
1.	SAMPLE EXTRACTION	2
2.	SAMPLE DRYING	2
3.	OVERBURDEN AIR PERMEABILITY	2
4.	OVERBURDEN HELIUM INJECTION POROSITY	2
5.	APPARENT GRAIN DENSITY	3
6.	ABSOLUTE GRAIN DENSITY	3

PLOTS

POROSITY vs PERMEABILITY AT OVERBURDEN CROSSPLOT

CORE PLOTS

22nd March, 1996

Esso Australia Limited 360 Elizabeth Street MELBOURNE VIC 3000

Attention: A. Mills

FINAL DATA REPORT - ROUTINE CORE ANALYSIS

REPORT: 002-232 WELL NAME: TURRUM NO. 5

LOGISTICS

346 core plugs were delivered to ACS Laboratories, Brisbane on 17th December, 1995. The plugs (including vertical plugs) arrived stored in vials and consisted of 48 plugs from Core No. 1, 82 plugs from Core No. 2, 42 plugs from Core No. 3, 79 plugs from Core No. 4, 17 core plugs from Core No. 5 and 78 plugs from Core No. 6.

INTRODUCTION

The following report includes tabular data of permeability to air, helium injection porosity and density determinations. Data presented graphically includes a core log plot of the above and a porosity versus permeability to air plot.

Analysis commenced after pilot study on Turrum No. 6.

STUDY AIMS

The analyses were performed with the following aims:

1. To provide overburden air permeability, helium injection porosity and density data.

Samples were prepared and analysed as follows:

1. SAMPLE EXTRACTION

Cleaning was performed in a soxhlet system using a refluxing azeotropic solvent of 3:1 chloroform: methanol. This technique was utilised such that the samples and the condensing solvent were not exposed to heating elements and therefore at room temperature. Cleaning continued until tests for oil (fluorescence under UV light) and salt (silver nitrate precipitation) showed negative.

2. SAMPLE DRYING

After cleaning, all plugs were dried in a controlled humidity environment at 50°C and 50% relative humidity. The plugs were stored in an airtight plastic container and allowed to cool to room temperature before analysis.

3. OVERBURDEN AIR PERMEABILITY

The plugs are placed in a heavy duty Hassler sleeve. The assembly is loaded into a thick walled hydrostatic cell capable of withstanding the simulated reservoir overburden stress. The overburden pressure used, as supplied by Esso, was 3750 psi for Cores 1 and 2 and 4250 psi for Cores 3, 4, 5 and 6.

During the measurement a known air pressure is applied to the upstream face of the sample, creating a flow of air through the sample. Permeability for each sample is then calculated using Darcy's Law through knowledge of the upstream pressure and flow rate during the test, the viscosity of air and the plug dimensions.

4. **OVERBURDEN HELIUM INJECTION POROSITY**

Overburden Helium Injection Porosities are determined indirectly by the following method.

The apparent grain volume of each sample was measured by expansion of helium into the sample loaded in a matrix cup. The grain volume is derived by application of Boyle's law. The bulk volume of the sample is determined by mercury immersion. The sample is then loaded into a hydrostatic cell where the pore volume reduction, from ambient to the applied overburden stress is determined by measuring changes in the helium pressure within the pore space and applying Boyle's law. The reduction in the bulk volume is assumed to be equivalent to a reduction in the pore volume. Grain volume remains constant.

5. **APPARENT GRAIN DENSITY**

The apparent grain density is determined by dividing the weight of the plug by the grain volume determined from the helium injection porosity measurement.

6. **ABSOLUTE GRAIN DENSITY**

A plug offcut, uncleaned and oven dried, is used for this measurement. The sample is crushed to approximately grain size or a little coarser and the granular material weighed. The volume of the grains is determined by pyconometry. By this means the actual density of the grains is determined.

On completion of the analysis the plug samples were re-wrapped in gladwrap and tissue, and are presently stored at ACS Laboratories for possible future studies.

We have enjoyed working for Esso look forward to working with you in the near future.

END OF REPORT

ACS LABORATORIES PTY. LTD.

ACN: 008 273 005 Petroleum Reservoir Engineering Data

Î

OVERBURDEN ANALYSIS FINAL REPORT

	Overburden Pr	essure:	Core 1& 2 Core 3,4,5 &	3750 psi 6 4250 psi	
Company Well Field Core Int.	ESSO AUSTRALIA LTD. TURRUM # 5 TURRUM C#1: 2197.00 - 2205.30m C#2: 2205.50 - 2222.80m C#3: 2508.50 - 2526.80m	C#5: 2	526.80 - 2543.50m 544.80 - 2549.80m 568.00 - 2586.50m	Date File Location ACS Lab. Analyst	6-Feb-96 002 - 232 Vic - L - 3 Brisbane - 002 WJD, IJM

Sample	Depth	Permeability	Porosity	Grain De	ensity	Remarks
number		to Air		Calculated	Absolute	
	(meters)	(millidarcys)	(percent)	(g/cm ³)	(g/cm ³)	
1	2197.04	1.07	11.5	2.66	2.69	C#1
3	2197.20	0.05	7.4	2.64	2.64	
5	2197.40	2.57	13.9	2.67	2.66	
7	2197.60	1.70	13.7	2.69	2.68	
9	2197.81	8.31	14.4	2.69	2.68	
11V	2197.89	0.03	11.9	2.67	2.66	Vertical
13	2198.05	20	16.1	2.68	2.68	
· 15	2198.20	2.51	11.8	2.67	2.66	
17	2198.38	5.02	13.8	2.67	2.67	
19	2198.60	0.58	9.3	2.66	2.66	
21	2198.81	1.96	12.7	2.66	2.65	
· 23V	2198.89	0.20	11.3	2.70	2.69	Vertical
25	2199.00	0.02	4.1	2.73	2.72	
27	2199.20	< 0.01	2.7	2.74	2.74	
29	2199.40	< 0.01	3.2	2.75	2.76	
31	2199.60	< 0.01	2.6	2.74	2.75	
35V	2199.88	0.03	10.6	2.69	2.67	Vertical
37	2200.00	0.50	11.4	2.72	2.72	
39	2200.20	0.58	12.7	2.70	2.69	
41	2200.40	0.31	11.7	2.71	2.70	
43	2200.60	0.09	9.3	2.66	2.67	
45	2200.73	0.13	8.4	2.65	2.66	
47V	2200.88	0.14	12.2	2.70	2.71	Vertical
49	2201.00	0.82	12.8	2.70	2.69	
51	2201.18	0.13	8.1	2.64	2.63	
53	2201.40	0.39	11.4	2.67	2.66	
55	2201.60	9.77	16.0	2.66	2.65	
57	2201.73	3.23	15.6	2.67	2.68	
59V	2201.89	3.19	15.7	2.66	2.66	Vertical
61	2202.00	15	16.6	2.67	2.68	
63	2202.20	68	19.2	2.65	2.68	
65	2202.40	15	14.1	2.63	2.64	

Sample number	Depth	Permeability	Porosity	Grain Density		Remarks
		to Air		Calculated	Absolute	
	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm ³)	
67	2202.60	282	19.3	2.63	2.65	
69	2202.70	27	17.5	2.63	2.66	
73	2203.01	408	20.8	2.66	2.64	
75	2203.20	82	15.3	2.64	2.63	
77	2203.40	573	20.9	2.65	2.66	
79	2203.60	14	14.5	2.64	2.67	
81	2203.75	226	18.9 •	2.65	2.64	
83V	2203.89	392	22.8	2.65	2.65	Vertical
85	2204.05	93	17.8	2.68	2.68	Vertical
87	2204.20	828	23.1	2.66	2.64	
89	2204.36	1470	25.0	2.66	2.65	
91	2204.56	56	16.4	2.66	2.66	
93	2204.86	552	21.9	2.66	2.66	
95	2205.01	844	22.6	2.66	2.65	
97	2205.01	85	13.9	2.66		
99V	2205.19	0.76	13.9		2.66	D#1.37
101	2205.25	0.76 434		2.67	2.66	B#1 Vert.
101			19.5	2.65	2.66	C#2
105	2205.80	193	18.9	2.61	2.58	
	2206.00	596	21.5	2.67	2.66	
107	2206.22	311	19.2	2.67	2.68	
109V	2206.31	32	20.8	2.66	2.66	Vertical
111	2206.40	437	20.4	2.66	2.65	
113	2206.60	1221	24.0	2.66	2.66	
115	2206.80	488	21.8	2.68	2.70	
117	2207.00	298	20.0	2.64	2.66	
119	2207.20	425	20.9	2.65	2.67	
121V	2207.31	4.28	18.9	2.66	2.68	Vertical
123	2207.40	170	20.0	2.65	2.66	
125	2207.60	1005	22.9	2.65	2.65	
127	2207.76	232	20.5	2.63	2.62	
139	2208.80	0.01	6.3	2.61	2.61	
141	2209.00	0.02	6.9	2.66	2.65	
143	2209.20	0.03	7.4	2.67	2.70	
147	2209.40	0.07	9.1	2.67	2.67	
149	2209.60	0.01	7.9	2.62	2.63	
151	2209.80	0.01	8.6	2.63	2.62	
153	2210.00	0.01	6.9	2.65	2.69	
155	2210.15	0.03	9.0	2.64	2.67	
57V	2210.26	0.01	7.5	2.63	2.66	Vertical
159	2210.40	0.02	7.1	2.62	2.62	
161	2210.60	0.01	5.2	2.60	2.61	
163	2210.80	< 0.01	5.7	2.54	2.58	
165	2211.00	< 0.01	4.4	2.31	2.36	
167	2211.16	< 0.01	4.5	2.28	2.37	
173	2211.60	< 0.01	4.3	2.10	2.24	
175	2211.80	< 0.01	4.0	2.24	2.18	
177	2212.00	< 0.01	4.6	2.19	2.25	
179	2212.20	< 0.01	4.4	2.16	2.25	
183	2212.45	< 0.01	3.7	2.07	2.12	

Ĩ

Sample number	Depth	Permeability	Porosity	Grain D	ensity	Remarks
	(meters)	to Air (millidarcys)		Calculated	Absolute	
			(percent)	(g/cm^3)	(g/cm^3)	
185	2212.60	< 0.01	4.1	2.07	2.11	
193	2213.20	< 0.01	3.9	2.09	2.12	
195	2213.40	< 0.01	3.6	2.18	2.22	
197	2213.60	< 0.01	4.1	2.21	2.25	
199	2213.80	< 0.01	3.5	2.18	2.24	
201	2214.00	< 0.01	2.0	2.05	2.11	
203	2214.17	< 0.01	1.8	2.13	2.19	
211	2214.80	< 0.01	4.2	2.47	2.48	
213	2214.96	0.02	6.0	2.28	2.35	
215	2215.20	< 0.01	4.4	2.42	2.42	
217V	2215.26	< 0.01	4.7	2.34	2.38	Vertical
221	2215.60	< 0.01	5.2	2.28	2.31	Vertical
223	2215.80	< 0.01	4.0	2.38	2.38	
225	2215.80	0.01	4.0 6.2	2.38	2.38	
223	2216.40	< 0.01	5.8	2.30	2.38	
233	2216.40	< 0.01	4.8	2.34	2.45	
235	2216.85	< 0.01	3.8	2.40	2.35	
237	2217.00	< 0.01	5.5	2.41	2.47	
239	2217.20	< 0.01	4.7	2.41	2.58	
241V	2217.26	< 0.01	3.6	2.45		Ventinel
243	2217.20	0.17	5.1	2.40	2.48	Vertical
249	2217.45	0.02	5.0	2.43	2.50	VF
251	2218.00	0.02	5.6	2.43	2.45	
253V	2218.20	< 0.04	5.4	2.44	2.44	X <i>I</i> =
255	2218.20	0.03	5. 4 6.7	2.40	2.46	Vertical
257	2218.40	0.03	6.6	2.45	2.50	
259	2218.80	0.03	5.4		2.48	
261	2218.80	0.03	9.5	2.55	2.57	
263	2219.00	0.04		2.62	2.63	
265V	2219.13	< 0.03	10.2 9.2	2.62	2.64	T 7 1
267	2219.31			2.62	2.62	Vertical
269	2219.40	0.33	13.4	2.63	2.62	
20)	2219.00	0.12 0.73	11.4	2.62	2.63	
273	2219.80	0.73	13.0 5.4	2.65	2.65	
275	2220.00	0.01	5.4 5.9	2.53	2.56	
275 277V	2220.20	<0.02	5.9 7.4	2.51	2.53	V
279	2220.20	0.01	7.4 6.4	2.50	2.54	Vertical
281	2220.40	< 0.01	6.4 5.9	2.53	2.52	
281	2220.80			2.56	2.59	
285 285	2220.80	< 0.01	5.4	2.57	2.61	
285 287		< 0.01	5.5	2.59	2.47	
287 189V	2221.20	< 0.01	5.8	2.61	2.61	.
.89 v 291	2221.26	< 0.01	5.2	2.58	2.56	Vertical
	2221.40	< 0.01	5.4	2.59	2.60	
293 205	2221.60	< 0.01	6.2	2.60	2.59	
295	2221.80	< 0.01	5.3	2.60	2.63	
297	2222.00	< 0.01	6.1	2.60	2.61	
299	2222.15	< 0.01	6.1	2.62	2.62	
01V	2222.24	< 0.01	7.0	2.63	2.64	Vertical
303	2222.40	< 0.01	5.4	2.61	2.64	B#2

002 - 232 Turrum No. 5

Î

ility	Sample Depth	Porosity	Grain Density		Remarks
r	number	-	Calculated	Absolute	
cys)	(meters)	(percent)	(g/cm^3)	(g/cm^3)	
.01	319 2509.40	1.6	2.44	2.49	C#3
.01	321 2509.60	1.4	2.50	2.56	
.01	327 2510.20	0.5	2.54	2.60	
.01	333 2510.60	1.8	2.59	2.60	
.01	335 2510.80	1.1	2.59	2.62	
.01	341V 2511.25	2.9	2.66	2.81	Vertical
.01	343 2511.40	4.2 •	2.64	2.65	
.01	345 2511.60	3.0	2.62	2.65	
.01	349 2512.00	1.0	2.57	2.63	
.01	353V 2512.30	0.7	2.56	2.59	Vertical
.01	407 2516.80	0.6	2.59	2.59	
.01	441 2519.60	0.9	2.47	2.49	
	463 2521.40	17.6	2.65	2.64	
	465 2521.64	19.2	2.65	2.65	
22	467V 2521.70	7.9	2.66	2.66	Vertical
	469 2521.80	13.9	2.65	2.65	
	471 2522.00	14.5	2.65	2.65	
	473 2522.20	16.6	2.66	2.66	
	475 2522.40	14.0	2.65	2.65	
	477 2522.60	15.4	2.65	2.64	
	479V 2522.65	17.3	2.65	2.65	Vertical
	481 2522.80	17.4	2.65	2.66	
	483 2523.00	18.3	2.65	2.66	
	485 2523.20	11.9	2.65	2.66	
	487 2523.40	18.5	2.64	2.65	
	489 2523.60	20.1	2.66	2.65	
	491V 2523.65	20.1	2.64	2.66	Vertical
	493 2523.80	21.8	2.64	2.64	
	495 2524.00	21.7	2.64	2.65	
	497 2524.20	22.6	2.64	2.66	
	499 2524.40	22.1	2.65	2.65	
	501 2524.60	22.5	2.65	2.65	
	503V 2524.70	22.2	2.65	2.65	Vertical
	505 2524.80	21.9	2.65	2.66	
	507 2525.00	21.5	2.65	2.65	
	509 2525.20	20.5	2.65	2.65	
95	511 2525.40	9.4	2.62	2.62	
	513 2525.60	18.4	2.64	2.64	
	517 2525.75	12.9	2.63	2.63	
13	519 2526.00	8.8	2.66	2.65	
)7	523 2526.40	8.5	2.66	2.66	
10	525 2526.60	8.1	2.67	2.67	
12	527 2526.80	8.4	2.68	2.67	B#3
01	529V 2526.86	7.9	2.67	2.66	C#4 Vert.
6	531 2527.00	12.0	2.66	2.69	
30	533 2527.25	9.7	2.66	2.67	
)5	535 2527.41	3.8	2.74	2.71	
53	565 2529.80	10.0	2.66	2.69	
4	567 2529.97	6.4	2.66	2.65	

Sample number	Depth	Permeability	Porosity	Grain Density		Remarks
	(meters)	to Air (millidarcys)		Calculated	Absolute	
			(percent)	(g/cm^3)	(g/cm^3)	
569	2530.21	3.80	12.7	2.66	2.65	
571	2530.41	1.21	11.6	2.66	2.67	
573	2530.59	0.52	10.5	2.67	2.70	
575V	2530.70	0.42	12.9	2.67	2.68	Vertical
577	2530.80	1.97	10.5	2.65	2.63	
579	2531.00	7.05	13.3	2.66	2.69	
581	2531.20	2.03	12.5 •	2.66	2.66	
583	2531.40	1.10	10.9	2.67	2.65	
585	2531.60	1.62	12.5	2.66	2.66	
587V	2531.70	0.03	8.2	2.68	2.68	Vertical
589	2531.80	0.05	7.3	2.68	2.67	
591	2532.00	0.61	9.9	2.66	2.64	
593	2532.20	0.59	11.0	2.67	2.71	
595	2532.20	8.20	11.0	2.66	2.68	
595 597	2532.40	0.03	5.8	2.59	2.63	
599V	2532.00	0.11	12.0	2.67	2.69	Vertical
601	2532.70	6.92	14.3	2.66	2.67	
603	2532.80	0.17	10.0	2.67	2.67	
60 <i>5</i>	2533.20	0.09	7.8	2.67	2.68	
605 607	2533.40	0.02	5.6	3.00	2.97	
607 609	2533.59	0.18	10.4	2.69	2.71	
615	2535.59	0.85	12.0	2.67	2.67	
617	2534.00	0.55	12.6	2.65	2.68	
619	2534.20	0.09	7.9	2.67	2.69	
		0.05	6.2	2.60	2.65	
621	2534.60 2534.70	0.02	9.3	2.67	2.66	Vertical
624V 625	2534.70	0.12	8.8	2.66	2.65	vertical
623 627	2535.00	0.33	10.4	2.66	2.67	
629	2535.00	0.17	9.8	2.67	2.72	
631	2535.20	0.78	11.5	2.66	2.72	
633	2535.40	0.21	10.1	2.67	2.69	
635V	2535.00	0.09	10.1	2.67	2.67	Vertical
		0.09	8.5	2.68	2.69	vertical
637 639	2535.80 2536.00	1.23	11.7	2.08	2.69	
639 641	2536.00	1.23	11.7	2.66	2.68	
641 643	2536.20	0.58	9.9	2.67	2.66	
64 <i>3</i> 645	2536.45	0.53	10.3	2.67	2.67	
653	2537.30	0.33	9.3	2.66	2.67	
655	2537.30	0.22	9.5 6.1	2.69	2.69	
657	2537.40	< 0.04	3.2	2.09	2.09	
659V	2537.68	5.25	15.0	2.66	2.65	Vertical
661	2537.80	11	13.0	2.66	2.65	Fortical
663	2537.80	1.78	14.0	2.67	2.67	
665			12.2	2.66	2.66	
	2538.20	22	15.9	2.66	2.67	
667	2538.40	41				Vamiaal
671V	2538.68	0.98	13.9	2.66	2.67	Vertical
673	2538.80 2539.00	0.30 0.29	9.9 10.4	2.67 2.67	2.68 2.66	
675		0.20	104	161	2 00	

002 - 232 Turrum No. 5

Sample	Depth	Permeability	Porosity	Grain Density		Remarks
number	- r f	to Air		Calculated	Absolute	
number	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm ³)	
679	2539.40	0.05	6.9	2.68	2.67	
681	2539.60	0.12	9.5	2.68	2.66	
683V	2539.67	0.10	11.2	2.67	2.67	Vertical
685	2539.80	0.25	10.2	2.67	2.68	
687	2540.00	1.54	12.0	2.66	2.65	
689	2540.20	0.43	10.5	2.68	2.65	
691	2540.20	0.65	9.7 •	2.74	2.75	
693	2540.40	3.29	12.4	2.66	2.66	
695V	2540.67	0.16	10.6	2.66	2.67	Vertical
697	2540.80	0.27	9.6	2.66	2.68	
699 699	2541.00	0.33	8.6	2.68	2.68	
		0.37	9.7	2.67	2.68	
701	2541.20	0.03	6.7	2.68	2.70	
703	2541.34	0.03	6.9	2.69	2.71	
705	2541.60	0.07	12.6	2.65	2.67	Vertical
707V	2541.67	0.79 1.74	11.7	2.66	2.65	
709	2541.80	1.74	11.7	2.66	2.66	
711	2542.00		6.4	2.65	2.67	
713	2542.15	0.13	11.2	2.66	2.66	
717	2542.60	1.25	8.2	2.68	2.70	
721	2542.80	0.14	8.2 10.7	2.67	2.66	
723	2543.00	0.86	9.5	2.68	2.68	
725	2543.20	0.19	9.3 8.8	2.08	2.68	B#4
727	2543.40	0.08		2.70	2.75	C#5
729	2544.85	4.78	13.3 13.0	2.71	2.74	00
731	2545.00	8.68		2.75	2.68	
733	2545.20	64	16.3 17.3	2.66	2.65	
735	2545.40	105	17.3	2.66	2.66	Vertical
737V	2545.46	112	18.2	2.60	2.67	, or trour
739	2545.60	24		2.67	2.66	
741	2545.80	21	14.3	2.66	2.65	
743	2546.00	192	17.8	2.65	2.68	
745	2546.20	574	18.4	2.63	2.66	
747	2546.37	86	16.7	2.67	2.65	Vertical
750V	2546.52	55	17.3	2.66	2.67	, citical
751	2546.60	59	16.1	2.67	2.67	
753	2546.80	777	18.1	2.67	2.67	
755	2547.00	120	16.8	2.68	2.65	
757	2547.20	6.58	12.9		2.65	
759	2547.40	0.48	8.8	2.66	2.00	B#5 Vert.
761V	2547.47	0.04	9.2	3.05		C#6 Vert.
763V	2568.04	4.91	16.5	2.67	2.62	
765	2568.20	68	16.1	2.66	2.66	
767	2568.40	43	16.2	2.66	2.65	
769	2568.60	50	16.2	2.65	2.65	
771	2568.80	202	18.1	2.66	2.65	*7 * 1
773V	2568.92	105	18.8	2.66	2.67	Vertical
775	2569.00	47	15.2	2.68	2.67	
777	2569.20	27	15.8	2.66	2.66	
779	2569.40	192	18.9	2.66	2.64	

Sample	Depth	Permeability	Porosity	Grain De		Remarks
number	·	to Air		Calculated (g/cm ³)	Absolute	
			(meters) (millidarcys) (percent)		(g/cm ³)	
781	2569.60	3.20	12.2	2.67	2.78	
783	2569.80	68	16.9	2.66	2.66	
785V	2569.91	5.13	11.8	2.67	2.69	Vertical
787	2570.00	376	10.6	2.70	2.65	
789	2570.14	21	13.1	2.59	2.58	
807	2571.80	0.15	0.9	2.49	2.54	VF
809V	2571.91	< 0.01	1.7	2.51	2.53	Vertical
811	2572.00	< 0.01	3.0 •	2.59	2.60	
813	2572.22	< 0.01	3.6	2.62	2.60	
815	2572.40	< 0.01	3.4	2.60	2.61	
817	2572.60	< 0.01	2.7	2.59	2.59	
823	2573.00	< 0.01	3.0	2.62	2.61	
825	2573.20	0.01	3.0	2.64	2.64	
825	2573.80	< 0.01	1.4	2.83	2.82	
835	2574.00	< 0.01	1.1	2.80	2.82	
835	2574.20	0.01	1.5	2.64	2.63	
841	2574.60	< 0.01	1.4	2.60	2.62	
843	2574.80	< 0.01	1.8	2.62	2.61	
847	2575.00	0.02	2.2	2.62	2.62	VF
851	2575.40	0.19	2.5	2.60	2.61	VF
860	2575.40	97	18.3	2.62	2.64	
860 862	2576.35	24	15.9	2.62	2.60	
862 864	2576.55	0.33	11.2	2.68	2.67	
866V	2576.68	0.03	9.9	2.67	2.62	Vertical
868	2576.80	42	16.8	2.66	2.68	
870	2577.00	40	17.1	2.65	2.65	
872	2577.24	8.41	15.6	2.67	2.66	
874V	2577.27	0.03	9.3	2.69	2.65	Vertical
876	2577.40	39	15.9	2.66	2.66	
878	2577.55	17	15.0	2.72	2.69	
882V	2577.90	0.05	9.6	2.67	2.69	Vertical
884	2577.98	0.08	7.9	2.66	2.64	
886	2578.20	0.03	5.5	2.67	2.66	
888	2578.43	0.09	8.6	2.67	2.68	
892	2578.80	2.57	4.1	2.65	2.64	VF
896	2579.00	0.07	1.5	2.56	2.58	VF
904	2579.80	< 0.01	2.7	2.65	2.64	
906V	2579.87	< 0.01	2.5	2.63	2.60	Vertical
908	2580.00	< 0.01	4.0	2.67	2.64	
910	2580.20	< 0.01	3.4	2.64	2.62	
912	2580.20	< 0.01	3.0	2.63	2.61	
916	2580.40	< 0.01	3.8	2.67	2.67	
918V	2580.80	< 0.01	4.5	2.66	2.63	Vertical
918 V 920	2581.00	<0.01	3.8	2.64	2.64	
920 922	2581.00	<0.01	4.4	2.66	2.67	
922 924	2581.20	0.01	4.1	2.65	2.64	
924 926		0.10	2.3	2.63	2.65	VF
926 930V	2581.60	<0.01	3.2	2.65	2.65	Vertical
JUV	2581.88	~0.01	3.0	2.64	2.65	

Ņ

Sample	Depth	Permeability	Porosity	Grain De	ensity	Remarks
number		to Air		Calculated	Absolute	
	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm^3)	
934	2582.20	< 0.01	4.2	2.67	2.69	
936	2582.40	< 0.01	2.8	2.63	2.66	
938	2582.60	< 0.01	2.4	2.60	2.62	
940	2582.80	< 0.01	3.5	2.67	2.69	
942V	2582.88	< 0.01	2.7	2.63	2.64	Vertical
944	2583.00	< 0.01	3.3	2.64	2.65	
946	2583.20	< 0.01	3.3	2.63	2.64	
952	2583.80	< 0.01	3.9	2.65	2.65	
954V	2583.88	< 0.01	3.2	2.64	2.67	Vertical
958	2584.20	< 0.01	1.3	2.80	2.78	
960	2584.40	< 0.01	1.1	2.76	2.76	
962	2584.60	< 0.01	3.2	2.65	2.69	
966V	2584.88	< 0.01	2.8	2.65	2.64	Vertical
968	2585.00	0.01	3.1	2.65	2.65	
970	2585.20	< 0.01	2.7	2.65	2.64	
972	2585.40	0.01	1.6	2.61	2.63	
974	2585.60	0.03	3.0	2.63	2.63	VF
978V	2585.90	< 0.01	3.6	2.64	2.60	Vertical
980	2586.00	< 0.01	3.8	2.64	2.64	
982	2586.20	0.06	2.1	2.58	2.60	B#6, VF

VF = Vertical Fracture; C# = Top of Core; B# = Bottom of Core

ACS LABORATORIES PTY. LTD. shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client or any other person or company, resulting from any information or interpretation given in this report. In no case shall ACS LABORATORIES PTY. LTD. be responsible of consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

ACS LABORATORIES PTY. LTD.

ACN: 008 273 005

Petroleum Reservoir Engineering Data

OVERBURDEN ANALYSIS FINAL REPORT

Overburden Pressure:	Core 1& 2
	Core 3.4.5 &

Core 1& 2 3750 psi Core 3,4,5 & 6 4250 psi

Company	ESSO AUSTRALIA LTD.		Date	6-Feb-96
Well	TURRUM # 5		File	002 - 232
Field	TURRUM		Location	Vic - L - 3
	C#1: 2197.00 - 2205.30m C#2: 2205.50 - 2222.80m C#3: 2508.50 - 2526.80m	C#4: 2526.80 - 2543.50m C#5: 2544.80 - 2549.80m C#6: 2568.00 - 2586.50m	ACS Lab. Analyst	Brisbane - 002 WJD, IJM

Sample	Depth	Permeability	Porosity	Grain De	Contraction of the local data and the local data an	Remarks
number	-	to Air		Calculated	Absolute	
	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm^3)	
11V	2197.89	0.03	11.9	2.67	2.66	C#1
23V	2198.89	0.20	11.3	2.70	2.69	
35V	2199.88	0.03	10.6	2.69	2.67	
47V	2200.88	0.14	12.2	2.70	2.71	
59V	2201.89	3.19	15.7	2.66	2.66	
83V	2203.89	392	22.8	2.65	2.65	
99V	2205.25	0.76	16.2	2.67	2.66	
109V	2206.31	32	20.8	2.66	2.66	C#2
121V	2207.31	4.28	18.9	2.66	2.68	
157V	2210.26	0.01	7.5	2.63	2.66	
217V	2215.26	<0.01	4.7	2.34	2.38	
241V	2217.26	<0.01	3.6	2.46	2.48	
253V	2218.26	<0.01	5.4	2.46	2.46	
265V	2219.31	<0.01	9.2	2.62	2.62	
277V	2220.26	<0.01	7.4	2.50	2.54	
289V	2221.26	<0.01	5.2	2.58	2.56	
301V	2222.24	<0.01	7.0	2.63	2.64	
341V	2511.25	<0.01	2.9	2.66	2.81	C#3
353V	2512.30	<0.01	0.7	2.56	2.59	
467V	2521.70	0.22	7.9	2.66	2.66	
479V	2522.65	116	17.3	2.65	2.65	
491V	2523.65	1300	20.1	2.64	2.66	
503V	2524.70	2840	22.2	2.65	2.65	
529V	2526.86	0.01	7.9	2.67	2.66	C#4
575V	2530.70	0.42	12.9	2.67	2.68	
587V	2531.70	0.03	8.2	2.68	2.68	
599V	2532.70	0.11	12.0	2.67	2.69	
624V	2534.70	0.02	9.3	2.67	2.66	
635V	2535.70	0.09	10.2	2.67	2.67	
659V	2537.68	5.25	15.0	2.66	2.65	
671V	2538.68	0.98	13.9	2.66	2.67	
683V	2539.67	0.10	11.2	2.67	2.67	
695V	2540.67	0.16	10.6	2.66	2.67	
707V	2541.67	0.79	12.6	2.65	2.67	
737V	2545.46	112	18.2	2.66	2.66	C#5
750V	2546.52	55	17.3	2.66	2.65	

Sample Depth		Permeability Porosity		Grain De	ensity	Remarks
number	(meters)	to Air (millidarcys)	(percent)	Calculated (g/cm ³)	Absolute (g/cm ³)	
761V	2547.47	0.04	9.2	3.05	2.98	B#5
763V	2568.04	4.91	16.5	2.67	2.62	C#6
773V	2568.92	105	18.8	2.66	2.67	
785V	2569.91	5.13	11.8	2.67	2.69	
809V	2571.91	< 0.01	1.7	2.51	2.53	
866V	2576.68	0.03	9.9	2.67	2.62	
874V	2577.27	0.03	9.3	2.69	2.65	
882V	2577.90	0.05	9.6 🖌	2.67	2.69	
906V	2579.87	< 0.01	2.5	2.63	2.60	
918V	2580.87	< 0.01	4.5	2.66	2.63	
930V	2581.88	< 0.01	3.2	2.65	2.65	
942V	2582.88	< 0.01	2.7	2.63	2.64	
954V	2583.88	< 0.01	3.2	2.64	2.67	
966V	2584.88	< 0.01	2.8	2.65	2.64	
978V	2585.90	<0.01	3.6	2.64	2.60	

VF = Vertical Fracture; C# = Top of Core; B# = Bottom of Core

ACS LABORATORIES PTY. LTD. shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client or any other person or company, resulting from any information or interpretation given in this report. In no case shall ACS LABORATORIES PTY. LTD. be responsible of consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

ACS LABORATORIES PTY. LTD.

ACN: 008 273 005 Petroleum Reservoir Engineering Data

OVERBURDEN ANALYSIS FINAL REPORT

	Overburden Pro	essure:	Core 1& 2 Core 3,4,5 & 6	3750 psi 4250 psi	
Company Well Field Core Int.	ESSO AUSTRALIA LTD. TURRUM # 5 TURRUM C#1: 2197.00 - 2205.30m C#2: 2205.50 - 2222.80m C#3: 2508.50 - 2526.80m		0 - 2543.50m 0 - 2549.80m	Date File Location ACS Lab. Analyst	6-Feb-96 002 - 232 Vic - L - 3 Brisbane - 002 WJD. IJM

Sample	Depth	Permeability	Porosity	Grain De	ensity	Remarks
number		to Air		Calculated	Absolute	
	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm^3)	
1	2197.04	1.07	11.5	2.66	2.69	C#1
3	2197.20	0.05	7.4	2.64	2.64	
5	2197.40	2.57	13.9	2.67	2.66	
7	2197.60	1.70	13.7	2.69	2.68	
9	2197.81	8.31	14.4	2.69	2.68	
13	2198.05	20	16.1	2.68	2.68	
15	2198.20	2.51	11.8	2.67	2.66	
17	2198.38	5.02	13.8	2.67	2.67	
19	2198.60	0.58	9.3	2.66	2.66	
21	2198.81	1.96	12.7	2.66	2.65	
25	2199.00	0.02	4.1	2.73	2.72	
27	2199.20	< 0.01	2.7	2.74	2.74	
29	2199.40	< 0.01	3.2	2.75	2.76	
31	2199.60	< 0.01	2.6	2.74	2.75	
37	2200.00	0.50	11.4	2.72	2.72	
39	2200.20	0.58	12.7	2.70	2.69	
41	2200.40	0.31	11.7	2.71	2.70	
43	2200.60	0.09	9.3	2.66	2.67	
45	2200.73	0.13	8.4	2.65	2.66	
49	2201.00	0.82	12.8	2.70	2.69	
51	2201.18	0.13	8.1	2.64	2.63	
53	2201.40	0.39	11.4	2.67	2.66	
55	2201.60	9.77	16.0	2.66	2.65	
57	2201.73	3.23	15.6	2.67	2.68	
61	2202.00	15	16.6	2.67	2.68	
63	2202.20	68	19.2	2.65	2.68	
65	2202.40	15	14.1	2.63	2.64	
67	2202.60	282	19.3	2.63	2.65	
69	2202.70	27	17.5	2.63	2.66	
73	2203.01	408	20.8	2.66	2.64	
75	2203.20	82	15.3	2.64	2.63	
77	2203.40	573	20.9	2.65	2.66	

number to Air Calculated (meters) (millidarcys) (percent) (g/cm ¹) 79 2203.60 14 14.5 2.64 81 2203.75 226 18.9 2.65 85 2204.20 828 23.1 2.66 89 2204.36 1470 25.0 2.66 91 2204.56 56 16.4 2.66 93 2204.86 552 21.9 2.66 95 2205.01 844 22.6 2.66 97 2205.02 131 19.5 2.67 101 2205.60 434 19.5 2.67 103 2206.00 596 21.5 2.67 104 2206.00 121 24.0 2.66 113 2206.60 1221 24.0 2.66 114 2207.00 298 20.0 2.64 119 2207.76 232 20.5 2.63 <tr< th=""><th>ensity</th><th>Remarks</th></tr<>	ensity	Remarks
792203.601414.52.64812203.7522618.92.65852204.059317.82.68872204.2082823.12.66912204.36147025.02.66932204.3655221.92.66942205.0184422.62.66952205.0184422.62.66972205.198513.92.611012205.6043419.52.651032206.0059621.52.671072206.2231119.22.661132206.60122124.02.661132206.60122124.02.661132206.60122124.02.651232207.4017020.02.651242207.2042520.92.651252207.60100522.92.651272207.7623220.52.631392208.800.016.32.611412209.000.026.92.661432209.200.037.42.671492209.600.017.92.621512209.800.016.92.651552210.150.039.02.641632210.400.027.12.621612210.600.015.22.60163 <td< th=""><th>Absolute</th><th rowspan="2"></th></td<>	Absolute	
79 2203.60 1414.5 2.64 81 2203.75 226 18.9 2.65 85 2204.05 93 17.8 2.66 87 2204.20 828 23.1 2.66 91 2204.36 1470 25.0 2.66 93 2204.36 552 21.9 2.66 94 2205.01 844 22.6 2.66 95 2205.01 844 22.6 2.66 97 2205.19 85 13.9 2.61 101 2205.60 434 19.5 2.65 103 2205.80 193 18.9 2.61 105 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.66 113 2206.60 1221 24.0 2.66 114 2207.00 298 20.0 2.64 115 2206.80 488 21.3 2.68 117 2207.00 298 20.0 2.65 123 2207.40 170 20.0 2.65 124 2207.20 425 20.9 2.65 125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.20 0.03 7.4 2.67 142 2209.60 0.01 7.9 2.62 151 2209.80 0.01 $5.$	(g/cm^3)	
81 2203.75 226 18.9 2.65 85 2204.05 93 17.8 2.68 87 2204.36 1470 25.0 2.66 89 2204.36 55 21.9 2.66 91 2204.36 552 21.9 2.66 93 2204.36 552 21.9 2.66 95 2205.01 844 22.6 2.66 97 2205.19 85 13.9 2.67 101 2205.60 434 19.5 2.65 103 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.67 111 2206.60 1221 24.0 2.66 113 2206.60 1221 24.0 2.66 114 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 124 2207.76 232 20.5 2.63 125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 144 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 6.5 2.63 <trr< td=""><td>2.67</td><td></td></trr<>	2.67	
85 2204.05 93 17.8 2.68 87 2204.20 828 23.1 2.66 89 2204.36 1470 25.0 2.66 91 2204.36 552 21.9 2.66 93 2204.86 552 21.9 2.66 97 2205.19 85 13.9 2.67 101 2205.60 434 19.5 2.65 103 2205.80 193 18.9 2.61 105 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.67 111 2206.40 437 20.4 2.66 113 2206.60 1221 24.0 2.66 115 2206.00 298 20.0 2.65 123 2207.40 170 20.9 2.65 123 2207.40 170 20.0 2.65 127 2207.76 232 20.5 2.63 139 2208.30 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 144 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 7.1 2.62 151 2209.80 0.01 5.7 2.54 165 2211.16 0.01 4.3 2.10 <tr< td=""><td>2.64</td><td></td></tr<>	2.64	
87 2204.20 828 23.1 2.66 89 2204.36 1470 25.0 2.66 91 2204.56 56 16.4 2.66 93 2204.86 552 21.9 , 2.66 95 2205.01 844 22.6 2.66 97 2205.19 85 13.9 2.67 101 2205.60 434 19.5 2.65 103 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.67 111 2206.60 1221 24.0 2.66 113 2206.60 1221 24.0 2.66 113 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 200 2.65 123 2207.40 170 200 2.65 124 2209.20 0.03 7.4 2.67 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.62 151 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 5.7 2.54 165 2210.15 0.01 5.7 2.54 165 2210.00 0.01 4.5 2.28 <td>2.68</td> <td></td>	2.68	
89 2204.36 1470 25.0 2.66 91 2204.86 552 21.9 2.66 93 2204.86 552 21.9 2.66 97 2205.01 844 22.6 2.66 97 2205.19 85 13.9 2.67 101 2205.60 434 19.5 2.65 103 2205.80 193 18.9 2.61 105 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.67 111 2206.60 1221 24.0 2.66 113 2206.60 1221 24.0 2.66 115 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 123 2207.60 1005 22.9 2.65 127 2207.60 1005 22.9 2.65 127 2207.60 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.62 151 2209.80 0.01 6.9 2.65 153 2210.00 0.01 7.1 2.62 151 2209.80 0.01 5.7 2.54 161 2210.60 0.01 5.7 2.54 152 2210.15 0.01 5.7 2.54 <td>2.64</td> <td></td>	2.64	
912204.565616.42.66932204.8655221.9,2.66952205.0184422.62.66972205.198513.92.671012205.6043419.52.651032205.8019318.92.611052206.0059621.52.671072206.2231119.22.671112206.60122124.02.661132206.60122124.02.661142207.0029820.02.641192207.2042520.92.651232207.4017020.02.651242207.60100522.92.651252207.60100522.92.661432209.200.037.42.671442209.000.026.92.661432209.200.037.42.671492209.600.017.92.621512208.800.018.62.631532210.000.016.92.651552210.150.039.02.641592210.400.027.12.621612210.80<0.01	2.65	
932204.8655221.92.66952205.01 844 22.62.66972205.19 85 13.9 2.671012205.60 434 19.5 2.651032205.00 596 21.5 2.671072206.22 311 19.2 2.661132206.60 1221 24.0 2.661132206.60 1221 24.0 2.661152206.80 488 21.3 2.681172207.00 298 20.0 2.641192207.20 425 20.9 2.651232207.60 1005 22.9 2.651272207.76 232 20.5 2.631392208.80 0.01 6.3 2.611412209.00 0.02 6.9 2.661432209.20 0.03 7.4 2.671492209.60 0.01 7.9 2.621512209.80 0.01 8.6 2.631532210.00 0.01 6.9 2.661552210.15 0.03 9.0 2.641592210.40 0.02 7.1 2.621612210.60 0.01 5.7 2.54 1652211.00 <0.01 4.4 2.31 1672211.16 <0.01 4.5 2.28 1732211.60 <0.01 4.5 2.28 1752211.60 <0.01 4.5 <	2.66	
952205.0184422.62.66972205.198513.92.671012205.6043419.52.651032205.8019318.92.611052206.0059621.52.671072206.2231119.22.671112206.4043720.42.661132206.60122124.02.661152206.8048821.82.681172207.2042520.92.651232207.4017020.02.651242207.60100522.92.651252207.60100522.92.651272207.7623220.52.631392208.800.016.32.611412209.000.026.92.661432209.200.037.42.671472209.400.079.12.651532210.000.016.92.651552210.150.039.02.641592210.400.027.12.621612210.600.015.22.601632210.80 <0.01 5.72.541652211.00 <0.01 4.42.311672211.16 <0.01 4.52.281732211.60 <0.01 4.52.281742210.00 <0.01 4.42.16 </td <td>2.66</td> <td></td>	2.66	
972205.198513.92.671012205.60 434 19.52.651032205.8019318.92.611052206.0059621.52.671072206.2231119.22.671112206.40 437 20.42.661132206.60122124.02.661152206.8048821.82.681172207.0029820.02.641192207.2042520.92.651232207.4017020.02.651252207.60100522.92.651272207.7623220.52.631392208.800.016.32.611412209.000.026.92.661432209.200.037.42.671472209.400.079.12.671492209.600.017.92.621512209.800.018.62.631532210.150.039.02.641592210.400.027.12.621612210.600.015.72.541652211.00<0.01	2.65	
101 2205.60 434 19.5 2.65 103 2205.80 193 18.9 2.61 105 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.67 111 2206.40 437 20.4 2.66 113 2206.60 1221 24.0 2.66 115 2206.60 1221 24.0 2.66 115 2206.60 1221 24.0 2.66 117 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 147 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 5.7 2.54 165 2211.00 0.01 5.7 2.54 165 2211.00 0.01 4.4 2.31 167 221.60 0.01 4.7 2.28 173 221.60 0.01 4.7 2.28 173 221.80 0.01 4.6 2.19 </td <td>2.66</td> <td></td>	2.66	
103 2205.80 193 18.9 2.61 105 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.67 111 2206.40 437 20.4 2.66 113 2206.60 1221 24.0 2.66 115 2206.80 488 21.8 2.68 117 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.64 159 221.040 0.02 7.1 2.62 161 2210.80 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.1 2.07 193 2212.20 <0.01 4.1 2.07 193 221.20 <0.01 4.2 2.18 177 2212.00 <0.01 4.2 2.18 <	2.66	C#2
105 2206.00 596 21.5 2.67 107 2206.22 311 19.2 2.67 111 2206.40 437 20.4 2.66 113 2206.60 1221 24.0 2.66 115 2206.80 488 21.8 2.68 117 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 221.15 0.03 9.0 2.64 159 221.040 0.02 7.1 2.62 161 221.060 <0.01 4.4 2.31 167 221.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 221.260 <0.01 4.6 2.19 </td <td>2.58</td> <td>02</td>	2.58	02
107 2206.22 311 19.2 2.67 111 2206.40 437 20.4 2.66 113 2206.60 1221 24.0 2.66 115 2206.80 488 21.3 2.68 117 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 147 2209.40 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 <0.01 4.5 2.28 173 2211.60 <0.01 4.5 2.28 175 2211.80 <0.01 4.6 2.19 179 2212.20 <0.01 4.1 2.07 193 2213.20 <0.01 3.7 2.07 195 2213.40 <0.01 3.5 2.18	2.66	
1112206.4043720.42.661132206.60122124.02.661152206.8048821.32.681172207.0029820.02.641192207.2042520.92.651232207.4017020.02.651252207.60100522.92.651272207.7623220.52.631392208.800.016.32.611412209.000.026.92.661432209.200.037.42.671472209.400.079.12.671492209.600.017.92.621512209.800.016.92.651552210.150.039.02.641592210.400.027.12.621612210.600.015.72.541652211.00<0.01	2.68	
1132206.60122124.02.661152206.8048821.82.681172207.0029820.02.641192207.2042520.92.651232207.4017020.02.651252207.60100522.92.651272207.7623220.52.631392208.800.016.32.611412209.000.026.92.661432209.200.037.42.671472209.400.079.12.671492209.600.017.92.621512209.800.018.62.631532210.000.016.92.651552210.150.039.02.641592210.400.027.12.621612210.600.015.72.541652211.00<0.01	2.65	
1152206.8048821.32.681172207.0029820.02.641192207.2042520.92.651232207.4017020.02.651252207.60100522.92.651272207.7623220.52.631392208.800.016.32.611412209.000.026.92.661432209.200.037.42.671472209.600.017.92.621512209.800.018.62.631532210.000.016.92.651552210.150.039.02.641592210.400.027.12.621612210.600.015.22.601632210.80 <0.01 4.42.311672211.16 <0.01 4.42.311672211.16 <0.01 4.52.281732211.60 <0.01 4.42.161832212.20 <0.01 4.42.161832212.45 <0.01 3.72.071852212.60 <0.01 4.12.071932213.20 <0.01 3.62.181972213.60 <0.01 3.52.182012214.00 <0.01 3.52.182012214.00 <0.01 3.52.182012214.00 <0.01 3		
117 2207.00 298 20.0 2.64 119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.60 <0.01 4.5 2.28 173 2211.60 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.40 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 $2.$	2.66	
119 2207.20 425 20.9 2.65 123 2207.40 170 20.0 2.65 125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.40 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2	2.70	
123 2207.40 170 20.0 2.65 125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.40 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2.18 201 2214.00 <0.01 2.05	2.66	
125 2207.60 1005 22.9 2.65 127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.5 2.28 173 2211.20 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2.18 201 2214.17 <0.01 1.8 2.13	2.67	
127 2207.76 232 20.5 2.63 139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.5 2.24 177 2212.00 <0.01 4.6 2.19 179 2212.20 <0.01 4.1 2.07 183 2212.45 <0.01 3.7 2.07 185 2212.60 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2.18 201 2214.17 <0.01 1.8 2.13	2.66	
139 2208.80 0.01 6.3 2.61 141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2212.00 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.20 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.65	
141 2209.00 0.02 6.9 2.66 143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2212.20 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2212.60 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2.18	2.62	
143 2209.20 0.03 7.4 2.67 147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.40 <0.01 3.9 2.09 195 2213.40 <0.01 3.5 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.61	
147 2209.40 0.07 9.1 2.67 149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.60 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.20 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 3.5 2.18 197 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.65	
149 2209.60 0.01 7.9 2.62 151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.20 <0.01 3.6 2.18 197 2213.40 <0.01 3.6 2.18 197 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.70	
151 2209.80 0.01 8.6 2.63 153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.6 2.19 177 2212.00 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.20 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 3.5 2.18 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.67	
153 2210.00 0.01 6.9 2.65 155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2212.60 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 1.8 2.13	2.63	
155 2210.15 0.03 9.0 2.64 159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.0 2.24 177 2212.00 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.60 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 1.8 2.13	2.62	
159 2210.40 0.02 7.1 2.62 161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.0 2.24 177 2212.00 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.20 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.69	
161 2210.60 0.01 5.2 2.60 163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.0 2.24 177 2212.00 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2212.60 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.67	
163 2210.80 <0.01 5.7 2.54 165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.0 2.24 177 2212.00 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2213.20 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.62	
165 2211.00 <0.01 4.4 2.31 167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.0 2.24 177 2212.00 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2212.60 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.61	
167 2211.16 <0.01 4.5 2.28 173 2211.60 <0.01 4.3 2.10 175 2211.80 <0.01 4.0 2.24 177 2212.00 <0.01 4.6 2.19 179 2212.20 <0.01 4.4 2.16 183 2212.45 <0.01 3.7 2.07 185 2212.60 <0.01 4.1 2.07 193 2213.20 <0.01 3.6 2.18 197 2213.60 <0.01 4.1 2.21 199 2213.80 <0.01 3.5 2.18 201 2214.00 <0.01 2.0 2.05 203 2214.17 <0.01 1.8 2.13	2.58	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.36	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.37	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.25	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.25	
1852212.60<0.014.12.071932213.20<0.01	2.12	
1932213.20<0.013.92.091952213.40<0.01	2.11	
1952213.40<0.013.62.181972213.60<0.01	2.12	
1972213.60<0.014.12.211992213.80<0.01	2.22	
1992213.80<0.013.52.182012214.00<0.01	2.25	
2012214.00<0.012.02.052032214.17<0.01	2.24	
203 2214.17 <0.01 1.8 2.13	2.11	
	2.19	
211 2214.80 <0.01 4.2 2.47	2.48	
211 2214.80 <0.01 4.2 2.47 213 2214.96 0.02 6.0 2.28	2.48	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.35	

Sample	Depth	Permeability	Porosity	Grain D	ensity	Remarks
number		to Air		Calculated	Absolute	
	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm^3)	
221	2215.60	< 0.01	5.2	2.28	2.31	
223	2215.80	< 0.01	4.0	2.38	2.38	
225	2216.03	0.01	6.2	2.30	2.38	
231	2216.40	< 0.01	5.8	2.34	2.45	
233	2216.60	< 0.01	4.8	2.40	2.35	
235	2216.85	< 0.01	3.8	2.47	2.47	
237	2217.00	< 0.01	5.5 •	2.41	2.38	
239	2217.20	< 0.01	4.7	2.45	2.50	
243	2217.45	0.17	5.1	2.43	2.50	VF
249	2218.00	0.02	5.0	2.43	2.45	
251	2218.20	0.04	5.6	2.44	2,44	
255	2218.40	0.03	6.7	2.45	2.50	
257	2218.60	0.03	6.6	2.46	2.48	
259	2218.80	0.03	5.4	2.55	2.57	
261	2219.00	0.04	9.5	2.62	2.63	
263	2219.00	0.05	10.2	2.62	2.64	
267	2219.40	0.33	13.4	2.63	2.62	
269	2219.60	0.12	11.4	2.62	2.63	
271	2219.80	0.73	13.0	2.65	2.65	
273	2220.00	0.01	5.4	2.53	2.56	
275	2220.20	0.02	5.9	2.51	2.50	
279	2220.40	0.01	6.4	2.53	2.52	
281	2220.60	< 0.01	5.9	2.56	2.59	
283	2220.80	< 0.01	5.4	2.57	2.61	
285	2221.00	< 0.01	5.5	2.59	2.47	
287	2221.20	< 0.01	5.8	2.61	2.61	
291	2221.40	< 0.01	5.4	2.59	2.60	
293	2221.60	< 0.01	6.2	2.60	2.59	
295	2221.80	< 0.01	5.3	2.60	2.63	
297	2222.00	< 0.01	6.1	2.60	2.61	
299	2222.15	< 0.01	6.1	2.62	2.62	
303	2222.40	< 0.01	5.4	2.61	2.64	
319	2509.40	< 0.01	1.6	2.44	2.49	C#3
321	2509.60	< 0.01	1.4	2.50	2.56	
327	2510.20	< 0.01	0.5	2.54	2.60	
333	2510.60	< 0.01	1.8	2.59	2.60	
335	2510.80	< 0.01	1.1	2.59	2.62	
343	2511.40	< 0.01	4.2	2.64	2.65	
345	2511.60	< 0.01	3.0	2.62	2.65	
349	2512.00	< 0.01	1.0	2.57	2.63	
407	2516.80	< 0.01	0.6	2.59	2.59	
441	2519.60	< 0.01	0.0	2.47	2.49	
463	2521.40	452	17.6	2.65	2.64	
465	2521.64	4438	19.2	2.65	2.65	
469	2521.80	22	13.9	2.65	2.65	
471	2522.00	30	14.5	2.65	2.65	
473	2522.20	74	16.6	2.66	2.66	
475	2522.40	13	14.0	2.65	2.65	
477	2522.60	43	15.4	2.65	2.64	

Sample	Depth	Permeability	Porosity	Grain D	ensity	Remarks
number	iber to Air		Calculated	Calculated Absolute		
(meters)	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm^3)	
481	2522.80	218	17.4	2.65	2.66	
483	2523.00	157	18.3	2.65	2.66	
485	2523.20	85	11.9	2.65	2.66	
487	2523.40	598	18.5	2.64	2.65	
489	2523.60	1340	20.1	2.66	2.65	
493	2523.80	4933	21.8	2.64	2.64	
495	2524.00	4958	21.7 •	2.64	2.65	
497	2524.20	5770	22.6	2.64	2.66	
499	2524.40	3012	22.1	2.65	2.65	
501	2524.60	5150	22.5	2.65	2.65	
505	2524.80	3058	21.9	2.65	2.66	
505 507	2525.00	3445	21.5	2.65	2.65	
509	2525.20	2086	20.5	2.65	2.65	
511	2525.20	0.95	20.5 9.4	2.62	2.62	
513	2525.60	1508	18.4	2.64	2.64	
513	2525.00	109	12.9	2.63	2.63	
519	2525.75	0.13	8.8	2.66	2.65	
523	2526.00 2526.40	0.13	8.3 8.5	2.66	2.65	
525	2526.60	0.10	8.1	2.67	2.67	
525 527	2526.80	0.10	8.4	2.68	2.67	
531	2520.80	6.26	12.0	2.66		C#4
533	2527.00	0.20	9.7		2.69	C#4
535	2527.25		3.8	2.66	2.67	
565	2529.80	0.05 0.53	5.8 10.0	2.74 2.66	2.71	
567	2529.80	1.14	6.4	2.66	2.69 2.65	
569	2529.97	3.80	12.7	2.66	2.65	
571	2530.21	1.21	11.6	2.66	2.63	
573	2530.41	0.52	10.5	2.67	2.07	
577	2530.80	1.97	10.5	2.65	2.63	
579	2531.00	7.05	13.3	2.66	2.69	
581	2531.00	2.03	12.5	2.66		
583	2531.20		12.5		2.66	
585	2531.40	1.10 1.62	10.9	2.67 2.66	2.65 2.66	
589	2531.80	0.05	7.3	2.68	2.66 2.67	
591	2532.00	0.61	7.3 9.9	2.68	2.67	
593	2532.00	0.59	9.9 11.0	2.66		
595 595	2532.20	8.20	11.0		2.71	
595 597			5.8	2.66	2.68	
601	2532.60	0.03		2.59	2.63	
601 603	2532.80	6.92	14.3	2.66	2.67	
	2533.00	0.17	10.0	2.67	2.67	
605 607	2533.20	0.09	7.8	2.67	2.68	
607 600	2533.40	0.02	5.6	3.00	2.97	
609	2533.59	0.18	10.4	2.69	2.71	
615	2534.00	0.85	12.0	2.67	2.67	
617	2534.20	0.55	10.6	2.65	2.68	
619	2534.40	0.09	7.9	2.67	2.69	
621	2534.60	0.05	6.2	2.60	2.65	
625	2534.80	0.12	8.8	2.66	2.65	
627	2535.00	0.33	10.4	2.66	2.67	

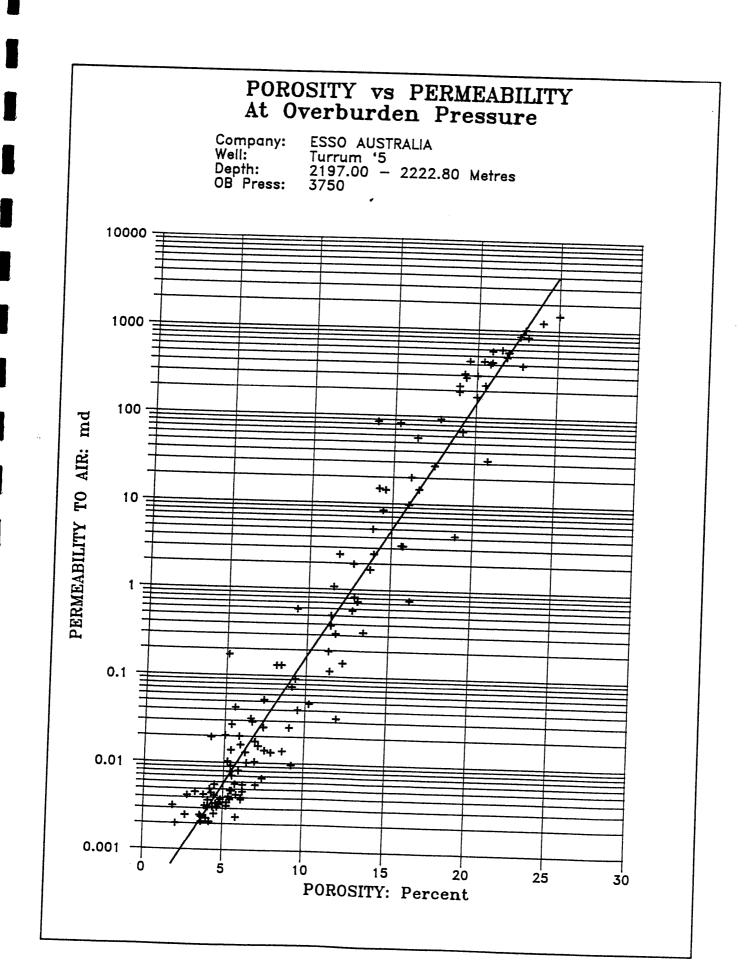
\$

Sample number	Depth	Permeability	Porosity	Grain De	ensity	Remarks
		to Air (millidarcys)	(percent)	Calculated	Absolute	
	(meters)			(g/cm^3)	(g/cm^3)	
629	2535.20	0.17	9.8	2.67	2.72	
631	2535.40	0.78	11.5	2.66	2.71	
633	2535.60	0.21	10.1	2.67	2.69	
637	2535.80	0.09	8.5	2.68	2.69	
639	2536.00	1.23	11.7	2.67	2.69	
641	2536.20	1.10	11.5	2.66	2.68	
643	2536.45	0.58	9.9 •	2.67	2.66	
645	2536.60	0.53	10.3	2.67	2.67	
653	2537.30	0.22	9.3	2.66	2.67	
655	2537.40	0.04	6.1	2.69	2.69	
657	2537.60	< 0.01	3.2	2.71	2.71	
661	2537.80	11	14.0	2.66	2.65	
663	2538.00	1.78	12.2	2.67	2.67	
665	2538.20	22	16.0	2.66	2.66	
667	2538.40	41	15.9	2.66	2.67	
673	2538.80	0.30	9.9	2.67	2.68	
675	2539.00	0.29	10.4	2.67	2.66	
677	2539.20	0.12	9.3	2.68	2.67	
679	2539.40	0.05	6.9	2.68	2.67	
681	2539.60	0.12	9.5	2.68	2.66	
685	2539.80	0.25	10.2	2.67	2.68	
687	2540.00	1.54	12.0	2.66	2.65	
689	2540.20	0.43	10.5	2.68	2.65	
691	2540.40	0.65	9.7	2.74	2.75	
693	2540.60	3.29	12.4	2.66	2.66	
697	2540.80	0.27	9.6	2.66	2.68	
699	2541.00	0.33	8.6	2.68	2.68	
701	2541.20	0.37	9.7	2.67	2.68	
703	2541.34	0.03	6.7	2.68	2.70	
705	2541.60	0.07	6.9	2.69	2.71	
709	2541.80	1.74	11.7	2.66	2.65	
711	2542.00	1.52	11.7	2.66	2.66	
713	2542.15	0.13	6.4	2.65	2.67	
717	2542.60	1.25	11.2	2.66	2.66	
721	2542.80	0.14	8.2	2.68	2.70	
723	2543.00	0.86	10.7	2.67	2.66	
725	2543.20	0.19	9.5	2.68	2.68	
727	2543.40	0.08	8.8	2.70	2.68	
729	2544.85	4.78	13.3	2.71	2.75	C#5
731	2545.00	8.68	13.0	2.75	2.74	
733	2545.20	64	16.3	2.67	2.68	
735	2545.40	105	17.3	2.66	2.65	
739	2545.60	24	14.9	2.69	2.67	
741	2545.80	21	14.3	2.67	2.66	
743	2546.00	192	17.8	2.66	2.65	
745	2546.20	574	18.4	2.65	2.68	
747	2546.37	86	16.7	2.67	2.66	
751	2546.60	59	16.1	2.67	2.67	
753	2546.80	777	18.1	2.67	2.67	

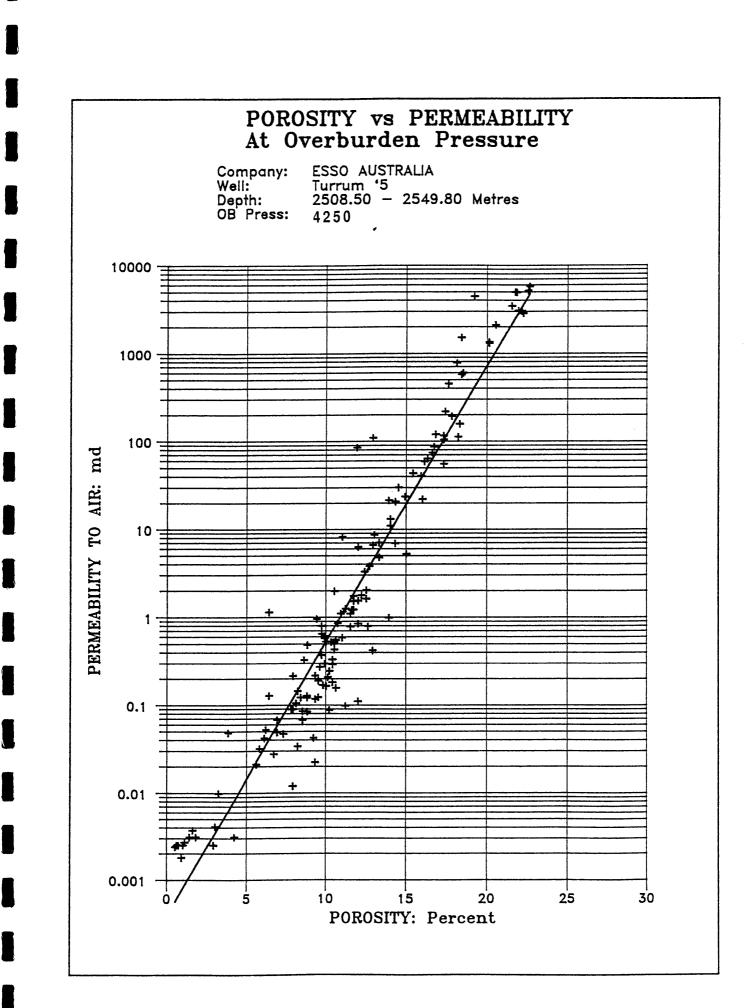
Sample	Depth	Permeability	Porosity	Grain D	Remarks	
number	to Air		Calculated	Absolute		
	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm ³)	
755	2547.00	120	16.8	2.68	2.67	
757	2547.20	6.58	12.9	2.66	2.65	
759	2547.40	0.48	8.8	2.66	2.66	
765	2568.20	68	16.1	2.66	2.66	C#6
767	2568.40	43	16.2	2.66	2.65	CHU
769	2568.60	50	16.2	2.65	2.65	
771	2568.80	202	18.1	2.66	2.65	
775	2569.00	47	15.2	2.68	2.67	
777			15.2	2.66	2.66	
	2569.20	27				
779	2569.40	192	18.9	2.66	2.64	
781	2569.60	3.20	12.2	2.67	2.78	
783	2569.80	68	16.9	2.66	2.66	
787	2570.00	376	10.6	2.70	2.65	
789	2570.14	21	13.1	2.59	2.58	
807	2571.80	0.15	0.9	2.49	2.54	VF
811	2572.00	< 0.01	3.0	2.59	2.60	
813	2572.22	< 0.01	3.6	2.62	2.60	
815	2572.40	< 0.01	3.4	2.60	2.61	
817	2572.60	< 0.01	2.7	2.59	2.59	
823	2573.00	< 0.01	3.0	2.62	2.61	
825	2573.20	0.01	3.0	2.64	2.64	
831	2573.80	< 0.01	1.4	2.83	2.82	
835	2574.00	< 0.01	1.1	2.80	2.82	
837	2574.20	0.01	1.5	2.64	2.63	
841	2574.60	< 0.01	1.4	2.60	2.62	
843	2574.80	< 0.01	1.8	2.62	2.61	
847	2575.00	0.02	2.2	2.62	2.62	VF
851	2575.40	0.19	2.5	2.60	2.61	VF
860	2576.20	97	18.3	2.62	2.64	
862	2576.35	24	15.9	2.62	2.60	
864	2576.55	0.33	11.2	2.68	2.67	
868	2576.80	42	16.8	2.66	2.68	
870	2577.00	40	17.1	2.65	2.65	
872	2577.24	8.41	15.6	2.67	2.66	
876	2577.40	39	15.9	2.66	2.66	
878	2577.55	17	15.0	2.72	2.69	
884	2577.98	0.08	7.9	2.66	2.64	
886	2578.20	0.03	5.5	2.67	2.66	
888	2578.43	0.09	8.6	2.67	2.68	
892	2578.80	2.57	4.1	2.65	2.64	VF
896	2579.00	0.07	1.5	2.56	2.58	VF
904	2579.80	< 0.01	2.7	2.65	2.64	· •
908	2580.00	<0.01	4.0	2.67	2.64	
910	2580.00	<0.01	3.4	2.64	2.62	
912	2580.20	<0.01	3.0	2.63	2.61	
912 916	2580.40	<0.01	3.8	2.63	2.67	
910 920			3.8			
	2581.00	< 0.01		2.64	2.64	
922	2581.20	< 0.01	4.4	2.66	2.67	
924	2581.40	0.01	4.1	2.65	2.64	

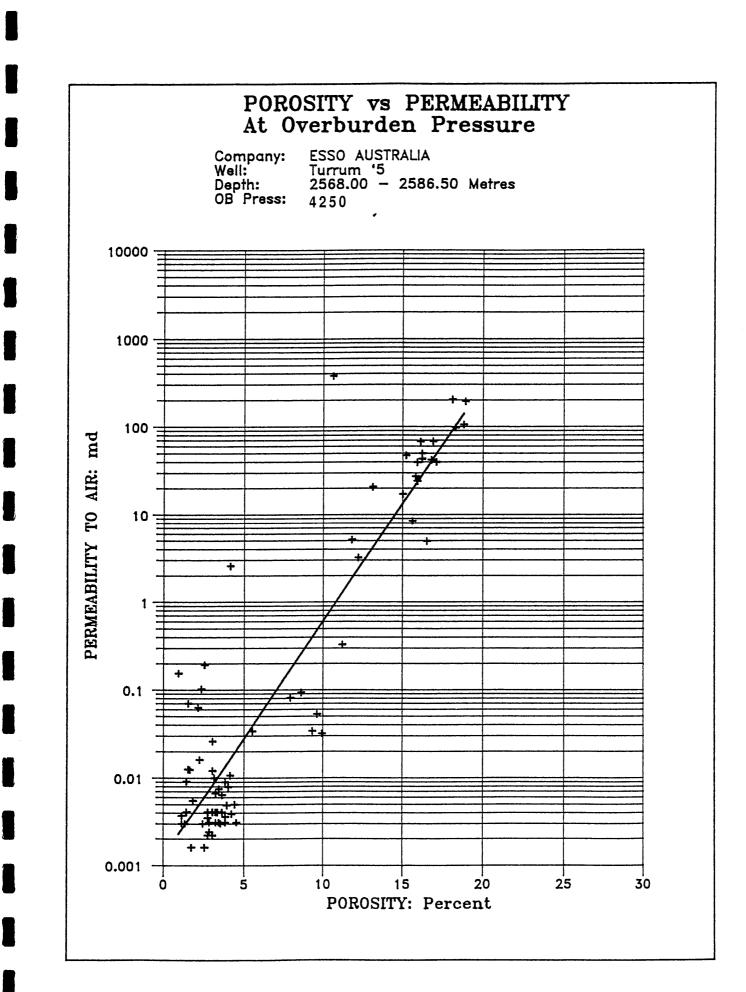
Sample	Depth	Permeability	Porosity	Grain D	ensity	Remarks
number		to Air		Calculated	.Absolute	
	(meters)	(millidarcys)	(percent)	(g/cm^3)	(g/cm`)	
926	2581.60	0.10	2.3	2.63	2.65	VF
932	2582.00	< 0.01	3.0	2.64	2.65	v 1
934	2582.20	< 0.01	4.2	2.67	2.69	
936	2582.40	< 0.01	2.8	2.63	2.66	
938	2582.60	< 0.01	2.4	2.60	2.62	
940	2582.80	< 0.01	3.5	2.67	2.69	
944	2583.00	< 0.01	3.3 •	2.64	2.65	
946	2583.20	< 0.01	3.3	2.63	2.63	
952	2583.80	< 0.01	3.9	2.65	2.65	
958	2584.20	< 0.01	1.3	2.80	2.03	
960	2584.40	< 0.01	1.1	2.76	2.78	
962	2584.60	< 0.01	3.2	2.65		
968	2585.00	0.01	3.1	2.65	2.69	
970	2585.20	< 0.01	2.7	2.65	2.65	
972	2585.40	0.01	1.6	2.61	2.64	
974	2585.60	0.03	3.0		2.63	
980	2586.00	< 0.01	3.8	2.63	2.63	VF
982	2586.20	0.06		2.64	2.64	
		0.00	2.1	2.58	2.60	VF

1


VF = Vertical Fracture: C# = Top of Core: B# = Bottom of Core

ACS LABORATORIES PTY. LTD. shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client or any other person or company, resulting from any information or interpretation given in this report. In no case shall ACS LABORATORIES PTY. LTD. be responsible of consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.


POROSITY vs PERMEABILITY AT


•

OVERBURDEN CROSSPLOTS

÷.

1

Î

CORE PLOTS

.

This is an enclosure indicator page. The enclosure PE603874 is enclosed within the container PE900858 at this location in this document.

The enclosure PE603874 has the following characteristics: $ITEM_BARCODE = PE603874$ CONTAINER_BARCODE = PE900858 NAME = Core Analysis Plot, 1 of 3 BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Core Analysis Plot, 1 of 3, for Turrum-5 REMARKS = DATE_CREATED = 22/03/96 $DATE_RECEIVED = 29/11/96$ $W_NO = W1145$ WELL_NAME = TURRUM-5 CONTRACTOR = ACS LABORATORIES AUSTRALIA CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603875 is enclosed within the container PE900858 at this location in this document.

The enclosure PE6 ITEM BARCODE		8875 has the following characteristics: PE603875
CONTAINER_BARCODE		
NAME	=	Core Analysis Plot, 2 of 3
BASIN	=	GIPPSLAND
PERMIT	=	VIC/L3
TYPE	=	WELL
SUBTYPE	=	WELL_LOG
DESCRIPTION	=	Core Analysis Plot, 2 of 3, for
		Turrum-5
REMARKS	=	
DATE_CREATED	=	22/03/96
DATE_RECEIVED	=	29/11/96
W_NO	=	W1145
WELL_NAME	=	TURRUM-5
CONTRACTOR	=	ACS LABORATORIES AUSTRALIA
CLIENT_OP_CO	=	ESSO AUSTRALIA LIMITED
(Inserted by DNRE	-	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604590 is enclosed within the container PE900858 at this location in this document.

The enclosure PE	60	4590 has the following characteristics:
ITEM_BARCODE	=	PE604590
CONTAINER_BARCODE	=	PE900858
NAME	=	Core Analysis Plot, 3 of 3
BASIN	=	GIPPSLAND
PERMIT	=	VIC/L3
TYPE	=	WELL
SUBTYPE	=	WELL_LOG
DESCRIPTION	=	Core Analysis Plot, 3 of 3, for
		Turrum-5
REMARKS	=	
DATE_CREATED	=	22/03/96
DATE_RECEIVED	=	29/11/96
W_NO	=	W1145
WELL_NAME	=	TURRUM-5
CONTRACTOR	=	ACS LABORATORIES AUSTRALIA
CLIENT_OP_CO	=	ESSO AUSTRALIA LIMITED
		II'm Couch Minner Doubl

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 5

APPENDIX 5

APPENDIX 5

ť

TURRUM 5

Well Seismic Processing Report: Zero Offset VSP and Geogram

(This appendix despatched 7 March, 1996)

Enclosures

ENCLOSURE 1

.*

TURRUM 5

Post Drill L360 Depth Structure Map

PE900859

This is an enclosure indicator page. The enclosure PE900859 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90	0859 has the following characteristics:
ITEM_BARCODE =	PE900859
CONTAINER_BARCODE =	PE900858
NAME =	Post Drill L360 Depth Structure Map
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	SEISMIC
SUBTYPE =	HRZN_CNTR_MAP
DESCRIPTION =	Post Drill L360 Depth Structure Map
	(Enclosure 1 from WCR vol.2) for
	Turrum-5
REMARKS =	
DATE_CREATED =	11/12/95
DATE_RECEIVED =	29/11/96
W_NO =	W1145
WELL_NAME =	Turrum-5
CONTRACTOR =	Esso Australia Ltd.
CLIENT_OP_CO =	Esso Australia Ltd.
(Inserted by DNRE -	Vic Govt Mines Dept)

ENCLOSURE 2

A. K.

<u>.</u>*

TURRUM 5

Post Drill L500 Depth Structure Map

PE900860

This is an enclosure indicator page. The enclosure PE900860 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90	0860 has the following characteristics:
ITEM_BARCODE =	PE900860
CONTAINER_BARCODE =	PE900858
NAME =	Post Drill L500 Depth Structure Map
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	SEISMIC
SUBTYPE =	HRZN_CNTR_MAP
DESCRIPTION =	Post Drill L500 Depth Structure Map
	(Enclosure 2 from WCR vol.2) for
	Turrum-5
REMARKS =	
DATE_CREATED =	13/02/98
DATE_RECEIVED =	29/11/96
W_NO =	W1145
WELL_NAME =	Turrum-5
CONTRACTOR =	Esso Australia Ltd.
CLIENT_OP_CO =	Esso Australia Ltd.
(Inserted by DNRE -	Vic Govt Mines Dept)

ENCLOSURE 3

ť

TURRUM 5

Synthetic Seismogram

PE900861

l

This is an enclosure indicator page. The enclosure PE900861 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90 ITEM_BARCODE =	0861 has the following characteristics: PE900861
CONTAINER_BARCODE =	PE900858
NAME =	Synthetic Seismogram
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	SYNTH_SEISMOGRAM
DESCRIPTION =	Synthetic Seismogram (Enclosure 3 from
	WCR vol.2) for Turrum-5
REMARKS =	
$DATE_CREATED =$	11/04/96
DATE_RECEIVED =	29/11/96
W_NO =	W1145
WELL_NAME =	Turrum-5
CONTRACTOR =	
CLIENT_OP_CO =	Esso Australia Ltd.
(Inserted by DNRE -	Vic Govt Mines Dept)

ENCLOSURE 4

TURRUM 5

Seismic Inline 1310

PE900862

This is an enclosure indicator page. The enclosure PE900862 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90	0862 has the following characteristics:
ITEM_BARCODE =	PE900862
CONTAINER_BARCODE =	PE900858
NAME =	Seismic Section, Line 310
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	SEISMIC
SUBTYPE =	INTERP_SECTION
DESCRIPTION =	Seismic Trace Section with
	Interpretation, Line 310, (enclosure 4
	of WCR vol.2) for Turrum-5
REMARKS =	
$DATE_CREATED =$	11/04/96
DATE_RECEIVED =	29/11/96
W_NO =	W1145
WELL_NAME =	Turrum-5
CONTRACTOR =	Geoquest Systems, Inc.
CLIENT_OP_CO =	Esso Australia Ltd.
(Inserted by DNRE -	Vic Govt Mines Dept)

ENCLOSURE 5

.*

Were.

TURRUM 5

Stratigraphic Cross Section

PE900 863

ŝį:

This is an enclosure indicator page. The enclosure PE900863 is enclosed within the container PE900858 at this location in this document.

The enclosure PE900863 has the following characteristics: ITEM_BARCODE = PE900863 CONTAINER_BARCODE = PE900858 NAME = Stratigraphic Cross Section BASIN = GIPPSLAND PERMIT = VIC/L3TYPE = WELLSUBTYPE = CROSS_SECTION DESCRIPTION = Stratigraphic Cross Section (enclosure 5 of WCR vol.2) for Turrum-5 REMARKS = DATE_CREATED = 10/07/96 $DATE_RECEIVED = 29/11/96$ $W_NO = W1145$ WELL_NAME = Turrum-5 CONTRACTOR = Esso Australia Ltd. CLIENT_OP_CO = Esso Australia Ltd. (Inserted by DNRE - Vic Govt Mines Dept)

ENCLOSURE 6

.*

TURRUM 5

Structural Cross Section

PE 900864

This is an enclosure indicator page. The enclosure PE900864 is enclosed within the container PE900858 at this location in this document.

The enclosure PE90	0864 has the following characteristics:
ITEM_BARCODE =	PE900864
CONTAINER_BARCODE =	PE900858
NAME =	Structural Cross Section
BASIN =	GIPPSLAND
PERMIT =	VIC/L3
TYPE =	WELL
SUBTYPE =	CROSS_SECTION
DESCRIPTION =	Structural Cross Section (enclosure 6
	of WCR vol.2) for Turrum-5
REMARKS =	To accompany Turrum-5 & Turrum-6 WCR's
$DATE_CREATED =$	21/06/96
DATE_RECEIVED =	29/11/96
W_NO =	W1145
WELL_NAME =	Turrum-5
CONTRACTOR =	Esso Australia Ltd.
CLIENT_OP_CO =	Esso Australia Ltd.
(Incorted by DNPF	Via Cout Minog Dont)

(Inserted by DNRE - Vic Govt Mines Dept)

ATTACHMENTS

ATTACHMENT 1

14 m.

.*

TURRUM 5

Composite Well Log

PE 600667

This is an enclosure indicator page. The enclosure PE600667 is enclosed within the container PE900858 at this location in this document.

The enclosure PE600667 has the following characteristics: ITEM_BARCODE = PE600667 CONTAINER_BARCODE = PE900858 NAME = Well Completion Log BASIN = GIPPSLAND PERMIT = VIC/L3 TYPE = WELLSUBTYPE = COMPLETION_LOG DESCRIPTION = Well Completion Log (enclosure from WCR vol.2) for Turrum-5 REMARKS = DATE_CREATED = 12/09/95 $DATE_RECEIVED = 29/11/96$ $W_NO = W1145$ WELL_NAME = Turrum-5 CONTRACTOR = Esso Australia Resources Ltd. CLIENT_OP_CO = Esso Australia Ltd.

(Inserted by DNRE - Vic Govt Mines Dept)