

Natural Resources and Environment

AGRICULTURE • RESOURCES • CONSERVATION • LAND MANAGEMENT

WCR - SUMMARY MARLIN-2 (W500)

			GI	PF	SL	ANC		BAS	IN
1 Folio No	2 Referred to	3 Date	Clearing Officer's Initials	1 Folio No.		Referred to	1	Date	4 Clearing Officer's Initials
	>120		Initials		OF	FSH	D F	?F	
ME F	>/38								1
								· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·								
									+
								<u> </u>	
		-	-						
	<u> </u>						_		
									1
					1				
									-
		_				·····			
									-
					+				
									+
									-
		1	-			<u>,, , , , , , , , , , , , , , , , , , ,</u>			
file is to attaching attached (2) REFERR/ complete required (4) and o number in	UMBERS: Each subject paper a be given a consecutive nun officer. Papers must not be rem to a file without approval. AL TO OTHER OFFICERS: Whe s action on the file and furth by some other Officer, please ir n the next vacant line, enter the n Column (1), indicate to whom rded in Column (2) and record	ber by the oved from or n an Officer er action is itial Column relevant folio the file is to	 (3) BRING require (4) an folio n by the date th (4) PUTAV completion 	A UP MAR ed at a late d, on the umber in C action of ne file is re VAY MARK eted the of	RKINGS: Wh or date, the of next vacant Column (1), t ficer's name oquired in Co (INGS: When ficer concern	en action on a officer will initial (line, enter the r hen write "B/U" fo in Column (2) a lumn (3). ALL action on a ed will initial Colu write "P/A" in colum	Column elevant bllowed nd the i file is imn (4)	LOCATION	

EARLIER FILES

LATER FILES

RECORDS DISPOSITION

SPUD - 30-5-66 38° COMPLETED 3-11-66 148° SUSPENDED GAS WELL. 148° 10 GLOMARTI MARLIN-2 ESSO. 500 STEPOUT. 762-2307. deperate Logs 2" and 5" Run 1. V IES 2250 - 5413. 2 2 4 2 n 3. 5346 - 9481 n 🖌 BHCS " 1 . 760 - 2298. 10 6. " 2. 2 5 2250 - 5404 И 5347 - 9471: 2 ... 3. ٠. 5 11 2'' u / . 762 - 2310 (c MLL 2' . 5 61 "2. 3750 - 5413 11 61 5347 - 9480 " 2" 5 ٤, 43. ·. 2" 2251 -5412. "(u / . LL " 2" × C DM. 1 2 2241 - 5411 4 . 5 2" 5342 - 9454. e. " 3. Complete suite 2005 LOG. 080688 L' Lempirebure Log. 2000 - 5265. 20" to 100'. +10 ~ Core Lat, Mudlog. 2320 - 9995. E " " complete Coregraph 470-9475. - Cores Nº1-14. √ Core Descriptions Nº1-13. In Weekely Report Lithological Aummary of Formation . In 11 ✓ Well Completion Report + 2 unrestructer copies < Log 11 11 K Velocity Survey with T.D.C. Foraminiferal Sequence by D. Taylor. Palaeontology Report a " X X Plus revision. Di Palynological Report by L. Stover & a. D. Partridge. X Di Di Testing Data Kat Gest teat demong of wett. Weekly Reports. X S.W.C. Cut 29 Rec. 28 Description Cuttings received into store 15/10/74. 1000 - 9980' T.L. 23/10/73 10 IES R3 5 5346-9481. C.R. 910 C. D.M. KI. 760 - 2241. T.L. 23/10/13. 90 GAL/CILRISSON -5370 no 72 910 record S.W.C. description. Cores received . DQ/

'n.

CONTENTS.....

APPENDIX:

1.0 Well Card

2.0 WCR

- 2.1 Well Details
- 2.2 Stratigraphy
- 2.3 Lithology
- 2.4 Structure
- 2.5 Paleontology
- 2.6 Conclusions

30 Core analysis

- 3.1 letter to ESSO
- 3.2 Downhole Schematic
- 3.3 Description of Cores
- 3.4 Core Analysis results
- 4.0 Velocity Survey
 - 4.1 Proceedures
 - 4.2 Results
 - **4.3 Conclusions**
 - 4.4 Results Tables
 - 4.5 Well Velocity Records
- 5.0 Summary of Results
- 6.0 Paleontology

7.0 Expendature statement

8.0 Reveiw of operations

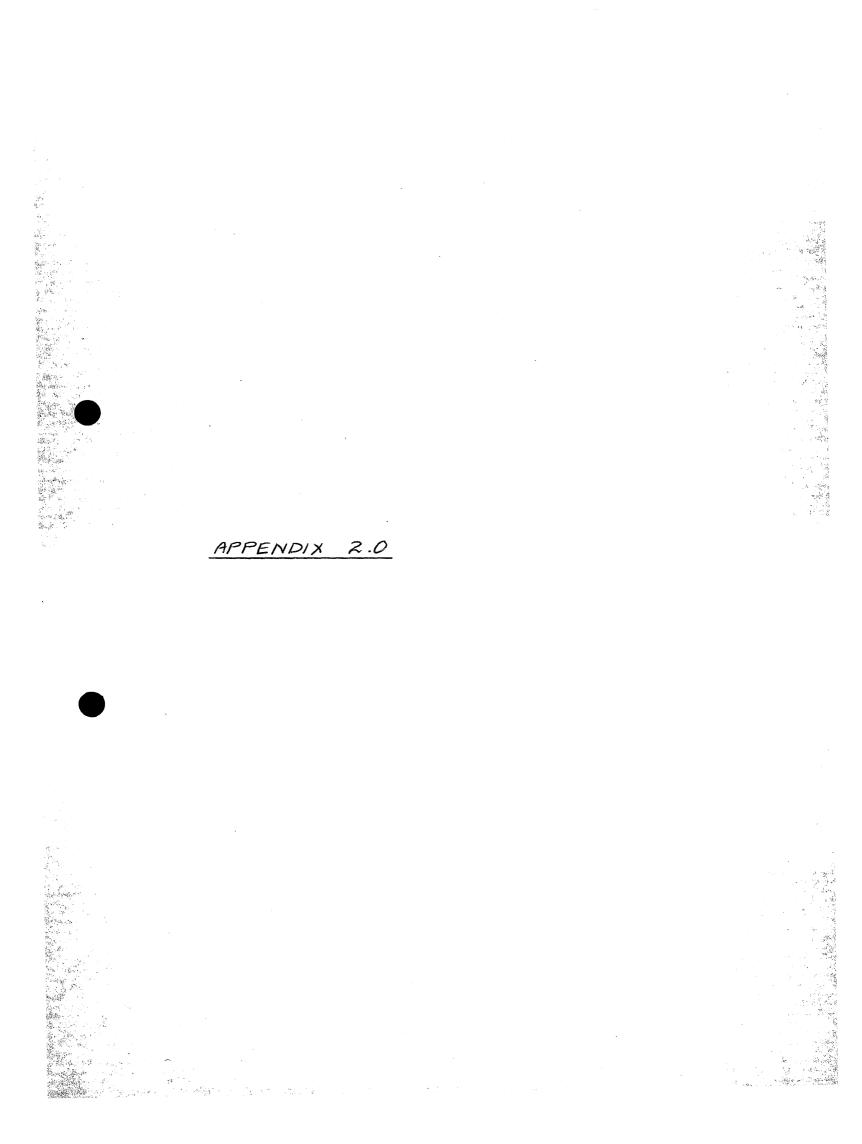
ENCLOSURES:

- 1) Well Completion Log
- 2) Mudlog
- 3) Completion Coregraph
- 4) Time Depth Curve
- 5) Logs and Log Analysis
- 6) Oil Zone Test
- 7) Well Diagram

ne standing Standard Sta Standard Sta

APPENDIX 1.0

uⁱ ž


. Mi

PE906917

This is an enclosure indicator page. The enclosure PE906917 is enclosed within the container PE905639 at this location in this document.

The enclosure PE906917 has the following characteristics: ITEM_BARCODE = PE906917 CONTAINER_BARCODE = PE905639 NAME = Well Card BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELL SUBTYPE = WELL_CARD DESCRIPTION = Well Card for Marlin-2 REMARKS = DATE_CREATED = 3/11/66DATE_RECEIVED = $W_NO = W500$ WELL_NAME = MARLIN-2 CONTRACTOR =CLIENT_OP_CO = ESSO EXPLORATION AUSTRALIA PTY LTD

(Inserted by DNRE - Vic Govt Mines Dept)

RESTRICTED COPY. NOT AVAILABLE FOR 500

WELL COMPLETION REPORT

ESSO MARLIN **E** (EGS - 5).

TYPE OF WELL

First field confirmation well - Marlin oil and gas field.

RELENSE

PURPOSE OF WELL

To confirm the oil and gas columns discovered in Marlin A-1 (EGS-4) and hence, in conjunction with the seismic mapping, the size of the field and its reserves.

WELL STATISTICS Status:

Suspended gas well.

Location:

Latitude 38° 15' 59" S Longitude 148° 10' 45" E Shot Point 1084 - Line ET.61

Water Depth: 198 feet

<u>Spudded:</u> May 30, 1966.

<u>Completed</u>: November 3, 1966.

Total Depth: 10,007 feet

30''	Q	334	feet
20''	Q	760	feet
13-3/8"	Q	2251	feet
9 - 5/8"	Q	5347	feet

Plugs:

Casing:

Drill pipe collars and core barrel left in hole with top of fish at 5334 feet, and bottom at total depth. Perforate through drill pipe and squeeze at the following depths.

8956 to 8961 feet with 200 sks 8245 to 8250 feet with 100 sks 6815 to 6835 feet with 100 sks Normal Plugs 5190 to 5327 feet with 51.5 sks 2115 to 2400 feet with 110 sks 300 to 500 feet with 70 sks

All production perforations squeezed (See testing).

Coring:

1999 1997 1997 Fourteen cores were cut for a total footage of 383 feet and a recovery of 278.5 feet, or 73%. Twenty-nine sidewall cores were cut - twenty-eight recovered.

Mudlogging: Core Lab from 2320 - 10,007 feet, total depth.

Electric Logs:		IES	762 to	o 9841 feet
•		SGRC	760 to	o 9471 feet
		MLL	762 to	o 9480 feet
		CDM	760 to	o 9457 feet 🥙
		LL	2251 to	o 5412 feet
		GR/CCL	3500 to	o 5370 feet
<u>Hydrocarbons</u> :	<u>Interval</u>	Gross	Net	Rating
	4730-5093	363	+298	Gas (test).
	5093 - 5153	60	14	Good oil show (core).
	8053-8058	5	5	Hydrocarbon show (logs) probably gas
. #	8686-8699	13	13	Hydrocarbon show (logs) probably gas
	9033 - 9481	448	26	Oil show? Very tight.
	9865 - 9876	11	?(no E 1	log) Good gas show (mud log).
	9960-9970	10	?(no E 1	log) Good gas show (mud log).
	9980-9995	15	?(No E 1	log) Good gas show (mud log).

During drilling operations below 9500 feet, the three zones shown above had good shows of gas in porous sandstone; the first two cutting the mud and necessitating increases of mud weight to control. At total depth of 10,007 feet, while

MARLINEZ

pulling out to secure for weather, two moorings broke and the ship was blown off location and the drill pipe and marine riser pulled in two. On repositioning the ship over the well, gas was noticed blowing out in the sea, initially over an area of 150 feet in diameter and to a height of four feet. There was also a noticeable oil slick present. This blow diminished in intensity until only about 30 feet in diameter when the well was killed. Although we have no knowledge of the amount, or composition of this gas, it is probably coming from this section drilled below 9500 feet.

Testing:

Zone 1 -	<u>5096-51</u>	<u>.07 feet</u>	- 4 shots/f	oot	
Time	Choke	F.T.P.	Sep.Pres	s. MMCF/D	' Cond.
2 hrs.	111	1127	600	5.76	231 bbl/day
2 hrs.	111	1220	670	6.25	248 bb1/day
Cond.	- 76°	API.	No oil.	No water.	

Zone 2 <u>5147 - 5152 feet</u> - 2 shots/foot Swabbed to 3000 feet. Well not flowing. Bottom hole sampler recovered water of salinity 5300 ppm NaCl. No gas. Attempted to pump in to formation without success. Interval not squeezed.

Zone 3 - 5135-5149 feet - 4 shots/foot (Incl. Zone 2). Swabbed to 3200 feet. Well came in flowing water with slight trace of oil on water in initial stages. On test, well flowed water and some gas without oil. Water rate of 775 bbl/day. Salinity of water 4200 ppm NaCl. No oil. Gas rate 900 cubic feet/hour = 21 MCF/D. Flowing tubing pressure 60-86 psi. Zones 2 and 3 squeezed.

Zone 4 - 5102-5117 feet - 4 shots/foot

Interval squeezed.

Swabbed to 2500 feet without fluid entry. Re-perforated 5102-5117 2 shots/foot. Swabbed to 4500 feet. No fluid entry. Interval not squeezed.

Zone 5 - 5096-5107 feet - 2 shots/foot Well flowed gas. No oil. No water. No H2S. Rate of 6.0 MMCF/D. Condensate 259 bb1/day. 74° API. F.T.P. 1302 psi. Zones 4 and 5 squeezed.

Gas analyses from Zones 1 and 5 show that the gas and condensate have a similar type composition to the analysis of the gas zones tested in A-1, apart from a very small amount (up to 14 ppm) of H_2S (probably from coal) which was not detected in the A-1²well.

STRATIGRAPHY	GE	OLOGY		Predicted
Formation	Top	Bottom	Thickness	Top
Water Pleistocene-Miocene Lakes Entrance Fm. Latrobe Valley Delta Cx. Eocene-Paleocene Gas-Oil Oil-Water Upper Cretaceous	Sea level -198 4260(-4229) 4730(-4699) 4730(-4699) 5093(-5062)? 5153(-5122)? 9033(-9002)	198 4260(-4229) 4730(-4699) T.D. + 9033(-9002)	198 4031 470 5277 + 4303 974+	4590 (+330) 4910 (+180)

LITHOLOGY

No sample returns above 2320 feet.

Gippsland Formation - Miocene

2320-4260 feet Mar1; light grey, soft, fossiliferous, puggy, trace of loose, quartz grains.

Calcareous Mudstone; light grey, soft, fossiliferous, trace of pyrite and glauconite, and few carbonaceous flecks, dense.

MARLIN - 13

Lakes Entrance Formation - Oligocene

4260-4730 feet <u>Calcareous Mudstone</u>; light grey, soft, fossiliferous glauconitic, pyritic; becomes more glauconitic and pyritic near base.

Latrobe Valley Delta Complex - Eocene, Paleocene, Upper Cretaceous 4730-10,007 feet

<u>4730-5500 ft</u>. Interbedded <u>sandstone</u>, <u>siltstone</u>, <u>shale</u>, and <u>coal</u>. <u>Sandstone</u>; dominant. Sand percentage 72%. Light grey, quartzose, very fine granule, mainly medium-coarse, generally poorly sorted, sub-angular to sub-rounded, carbonaceous and micaceous flecks in parts, and generally loose. Kaolinitic matrix in part. Generally good porosity and excellent permeability.

<u>Siltstone</u>; brown grey, dense, carbonaceous, micaceous, non-calcareous.

<u>Shale;</u> brown grey - olive grey, carbonaceous, waxy lustre, fairly hard.

Coal; black with conchoidal fracture.

<u>5500-6800 ft</u>. As for 4730-5500 ft. with <u>Dolomite</u> and <u>Dolomitic sandstone</u> beds. <u>Dolomite</u>; tan-brown-dark-brown, hard.

Dolomitic sandstone; brown, dark brown, dense, tight, fine to medium, mainly fine.

Also increase of clay particles in the sandstone present in this interval, and lower percentage of sand. Sand percentage approximately 42%. Some of the sandstone is calcareous.

<u>6800-9033 ft.</u> Interbedded <u>sandstone</u>, <u>siltstone</u>, <u>shale</u> and <u>coal</u> with thin beds of <u>dolomite</u> and <u>dolomitic sandstone</u>. <u>Sandstone</u>; light grey-medium grey. Made up dominantly of quartz, but also has some lithic fragments and white clay matrix (? weathered feldspar) present in parts, very fine to medium, mainly fine to medium, calcareous, angular-sub-rounded, carbonaceous and micaceous in part. Mostly fairly well compacted with fair to good porosity and poor to fair permeability.

Approximate sand percentages 6800-8510 = 12%; 8510-9033 = 63%.

<u>Siltstone</u>; brown - brown grey carbonaceous and micaceous, grades both into silty sandstone and silty shale.

Shale; brown grey, soft, carbonaceous and micaceous.

Coal; and Dolomite; as above.

<u>9033-10007 ft.</u> Upper Cretaceous; Thinly interbedded <u>mudstone</u>, <u>siltstone</u>, and <u>coal. Mudstone</u> and <u>Siltstone</u>; dominant. <u>Mudstone</u>; dark brown grey, well indurated carbonaceous, micaceous, grades to <u>siltstone</u>; dark brown grey, carbonaceous and micaceous.

> <u>Sandstone</u>; two types; (1) light grey - light brown grey, very fine to coarse, mainly very fine, sub-angular to sub-rounded, fairly well sorted, moderately abundant white to light browngrey clay matrix, sparsely micaceous and carbonaceous. Slightly dolomitic and calcareous in part, hard and slightly lithic in part. Generally fairly tight, with porosity fair and permeability poor. (2) <u>Sandstone-Conglomerate</u>; grey white to light grey - brown grey, fine-pebble (in some places conglomerate), mainly medium to coarse. Sub-angular-rounded, generally poorly sorted, carbonaceous, micaceous and slightly lithic in part. Variable amount of white clay and light brown silty argillaceous matrix. Moderately hard and friable.

MARLIN-2

14

Porosity fair to good and permeability variable from poor to excellent, depending upon sorting and clay matrix. Both sandstone types show oil stain, fluorescence and cut.

Estimated sandstone percentage of interval is approximately 10%.

STRUCTURE

Marlin B-1 well was drilled as a stepout downdip, 3.4 miles southwest of the discovery well, Marlin A-1. The Marlin structure is an asymmetrical feature, partially dependant upon the unconformity at the top of the Latrobe Valley for closure. Structure within the Latrobe Valley forms a southwest plunging nose, and does not conform to the unconformity surface and does not alone afford total closure. The dip on the beds within the Latrobe is greater than the dip on the unconformity surface, and this is responsible for the stratigraphically younger Latrobe section being present immediately below the unconformity in Marlin B-1, compared to Marlin A-1. Seismic dips within the Latrobe in the vicinity of Marlin B-1 are of the order of 2 - 3° to the southwest. This has been confirmed by the dipmeter results.

The unconformity evident on seismic and dipmeter in the Marlin A-1 at 7050 feet (and also the top of the deep Paleocene gas in A-1) is not definitive in this well. On questionable log correlation, it should be present in B-1 around 7450 feet and, although not clear cut, there is some evidence from the dipmeter, of change of dip in the interval 7000-7600 feet.

Below 9033 veet the dipmeter shows a general 3° northwest dip but little is known of the overall structure of this depth.

PALEONTOLOGY

CONCLUSIONS

This is summarised by D.J. Taylor, Victorian Mines Department in a separate report.

Marlin B-1 (EGS-5) confirmed the presence of the Eocene Latrobe gas reservoir discovered in Marlin A-1 (EGS-4).

No oil was produced on test from the section which cores showed to have stain, fluorescence and cut.

 Little is known of the section below 9000 feet which had shows throughout.

ATTACHMENTS

Composite Log Core Lab Mud Log Velocity Survey.

1.

2.

CORE LABORATORIES AUSTRALIA (QLD) LTD.

Petroleum Reservoir Engineering BRISBANE, AUSTRALIA

25 OCTOBER 1966

G.P.O. BOX 664K CABLE: CORELAB PHONE: SKANA 5 3222

ESSO EXPLORATION, AUSTRALIA LTD., G.P.O. BOX 4249 SYDNEY, N.S.W., AUSTRALIA.

ATTENTION: Mr. A. A. Phillips

MARLIN 2

SUBJECT: Core, Mud and Cuttings Analysis Esso Marlin B-1 Well Marlin Field Victoria, Australia

Gentlemen:

A Core Laboratories combination drill cuttings and core analysis unit was present at the site of the subject well during drilling operations from 2,319 feet to the total depth of 10,007 feet. Using standard equipment plus a Programmed Hydrocarbon Detector (Rapid Sampling Gas Chromatograph) the drilling fluid was monitored continuously for hydrocarbon content and the drill cuttings were checked at regular intervals for gas and oil content and lithology. All core analysis was performed by conventional procedures. The results of these operations are shown on the accompanying Grapholog and Coregraph.

Mud gas increases logged 2,319 feet through 4,745 feet come from mudstones and marl. This gas is common in this area and is considered to be of no commercial value.

Good mud and cuttings gas increases were logged 4,745 feet through 5,160 feet with increases in Ethane, Propane and Butane. Some oil fluorescence and staining were logged in the lower part of this zone. This section looks good and merits further testing.

From 5,160 feet to total depth the mud and cuttings gas increases seem to be associated with coals except for the zones discussed below.

Zone 7,370 feet through 7,380 feet had a maximum of 250 units of mud gas and 30 units of Ethane with no increase in the cuttings gas. This appears to come from sandstone or siltstone.

Zone 7,750 feet through 7,850 feet had maximum mud gas readings to 100 units with some Ethane and Propane increases. Cuttings gas readings were low. Although there is coal present, there are also increases in sandstone in this zone.

Zone 8,120 feet through 8,130 feet had maximum gas readings to 125 units with low cuttings gas increases but appears to come from sandstone.

ÉSSO EXPLORATION, AUSTRALIA, LTD. – 2 –

25 OCTOBER 1966

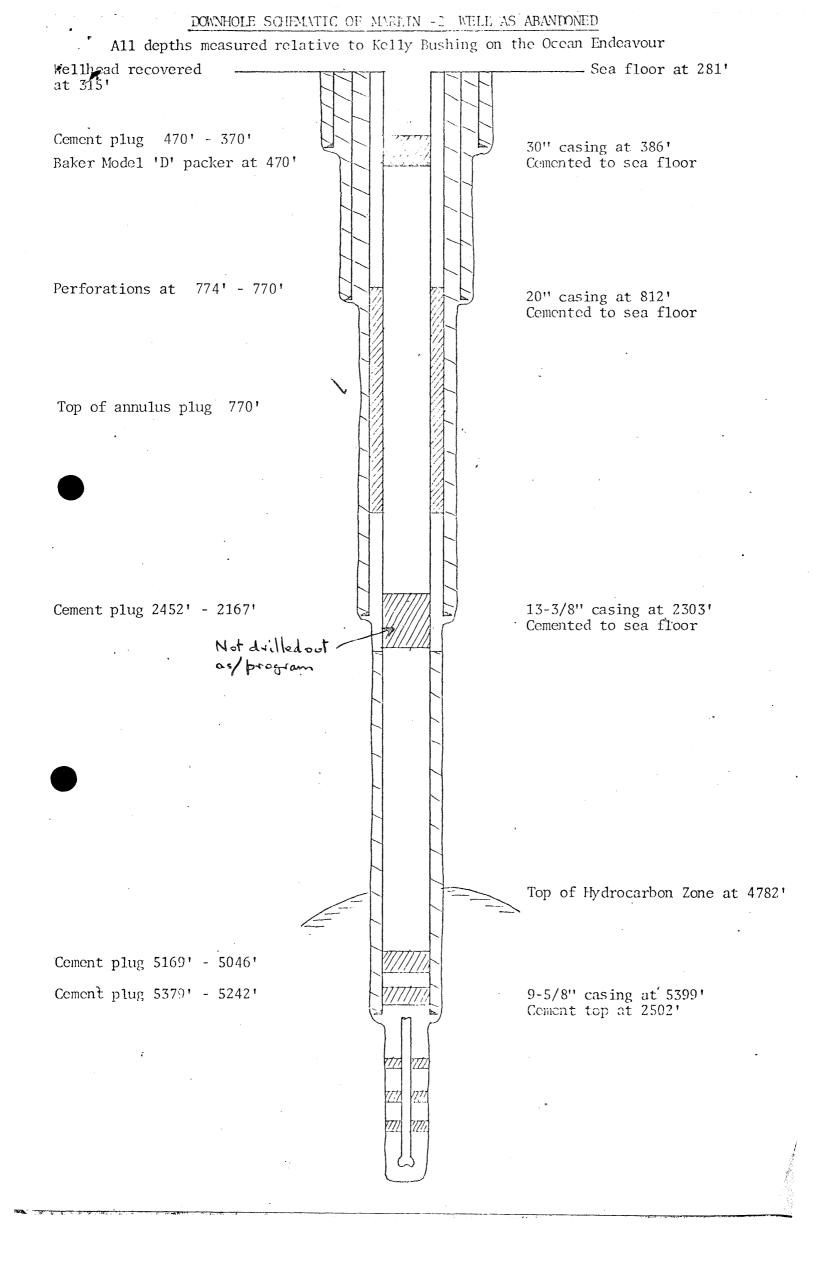
Zone 8,260 feet through 8,275 feet had a maximum of 115 units of mud gas with very slight increases in Ethane and Propane. Cuttings gas increased to a maximum of 45 units. 8,270 feet to 8,275 feet had some faint blue oil fluorescence with a very slight cut.

Zone 8,690 feet through 8,740 feet had mud gas increases to 110 units with some increases in Ethane, Propane and Butane. Cuttings gas readings increased to a maximum of 460 units.

Zone 9,075 feet through 9,865 feet had intermittent sections of fluorescence and gas increases. These should be carefully checked on the electric log.

Zone 9,865 feet through 9,875 feet had mud gas increases to 400 units with good increases in Ethane, Propane and Butane. Cuttings gas increased to 150 units and well tried to blow out at this point.

Zone 9,930 feet through 9,970 feet had off scale mud gas readings with good increases in Ethane, Propane and Butane. Cuttings gas increased to 260 units. Well blew out at this point but was controlled with heavier mud weight.


From about 5,200 feet to total depth there seems to be an abundance of coal in the samples which may or may not be from this section. There are good gas increases in some of these sections and we would suggest careful checking of the logs to determine if this gas is coming from coal or sandstone.

We sincerely appreciate the opportunity to have been of service and trust that the information furnished in this report and during drilling operations has assisted the evaluation of this well.

> Very truly yours, CORE LABORATORIES AUSTRALIA (QLD) LTD.

be Bell adams

JOE B. MC ADAMS, RESIDENT MANAGER.

	toget of 8 6/
	/27
	4. MARLIN - 2
DESCRIPTION	•
•	
<u>Core No. 1</u> .	
4790 - 4820	Cut 30 ft. Rec. 23 ft.
• •	Good odour, no fluorescence or cut.
4790 - 4796	Sandstone, quartzose, light brown, medium-coarse,
	fairly well sorted, rounded to sub-rounded, slightly
	argillaceous, pyritic in part, some coal in matrix,
· · ·	friable, excellent porosity-permeability.
4796 - 4799	Coal.
4799 - 4801	Shale, mottled light brown, medium light grey laminae. Thin carbonaceous laminae.
4800 - 4801	Sandstone, light grey, fine, poor sorting, sub-rounded
	to sub-angular. Thin carbonaceous and shale laminae,
	carbonaceous grains. Good porosity but permeability fair to poor.
4801 - 4806	Shale as above, thin sst. laminae.
4806 - 4813	Sandstone as above, becoming very fine - argillaceous and micaceous; numerous shale laminae.
Core No. 2.	4900 - 4930 ft. Cut 30 ft. Rec. 4 ft.
	Sandstone, as above, coarse to very coarse;
	excellent porosity and permeability. Good odour. No fluorescence or cut.
	NO ILUOIESCENCE OF CUL.
Core No. 3.	5,013 - 5,043 ft. Cut 30 ft. Rec. 10 ft.
5013 - 5014	Sandstone, light grey, loosely consolidated, crumbly,
•	medium-coarse, poor sorting, sub-angular to sub-
•	rounded, altered felspar, trace glauconite, some carbonaceous material. Good but small patches light
r.	yellow fluorescence.
5014 - 5017	As above, medium to granule.
5017 - 5018	As above, very fine to granule, white kaolinite in
	matrix.
5018 - 5023	As for 5,013 - 5,014 ft.
JJTC - J023	
Core No. 4.	5,085 - 5,106 ft. Cut 21 ft. Rec. 21 ft.
5085 - 5101	Coal
5101 - 5105	Siltstone; banded light brown=light grey, some pyrite, micaceous, argillaceous.

.

continued ...

Δ

•

MARLIN-2 5,106 - 5,136 ft. Cut 30 ft. Rec. 30 ft. Coal Shale, brown-grey, well compacted, carbonaceous, good odour when broken, dull yellow fluorescence, yellow cut. Sandstone, fine-coarse, kaolinitic matrix, trace felspar grains, friable, soft, strong odour, goldbright yellow fluorescence; yellow-white cut, lenses have porosity to 30%. Good permeability. Sandstone as above, minor kaolinitic matrix, good porosity and permeability (estimate 30%). Good odour, bright yellow fluorescence and cut. .Silty shale, brown grey, fissile, carbonaceous, coaly streak. Siltstone, argillaceous, firm, chocolate-brown grey, thin lenses oil-stained sandstone. Good odour, gold-yellow fluorescence. Sandstone, brown-grey, fine-medium. Very poorly sorted, argillaceous, carbonaceous matrix, spotted gold fluorescence, good odour, oil-stained. Porosity 10-12% estimate. Grades into tight clay choked sandstone. No porosity. Siltstone as 5113 - 5115 ft. No porosity. Coal.

5118.0 - 5119.0 C

5117.0 - 5118.0

Core No. 5.

5106 - 5106.5

5106.5 - 5107

5107 - 5110

5110. - 5111.7

5111.7 - 5113.0

5113.0 - 5115.0

5115.0 - 5117.0

5119.0 - 5120.0 Siltstone.

5120.0 - 5121.5 Coal.

5121.5 - 5130.0 Siltstone as above, very argillaceous.

5130.0 - 5133.0 Coal.

5133.0 - 5136.0

Mudstone, brown-grey, dense, non-calcareous.

Coring rate - 4.0 min./ft.

3078 81 MARLIN-2 127

CORE DESCRIPTION

CORE NO.6:	5136-5160 ft. Cut 24 it. Rec. 24 ft.
5136-5137	Shale, olive-grey, hard fissile, calcareous waxy lustre. Good odour, good bright cut.
5137-5143	Silty shale as above, some grey-brown. Good odour and cut. Few pieces slickensided.
5143-5145.5	Shale, olive grey.
5145.5-5155	Mudstone, olive grey, well compacted.
5155-5159	Siltstone, light grey - brown; argillaceous, very hard, sand lenses in latter 2 ft. are oil stained.
5159-5160	Sandstone, light grey, very fine, silty, argillaceous, irregular oil stains. Good odour, bottom 6" grades to medium/coarse sandstone, crumbly, friable, minor kaolinitic matrix. Good odour and stain. Porosity estimate 30%, excellent permeability.
	All sand/shale interfaces have oil staining and fluorescence.

CORE NO.7:

5160-5190 ft. Cut 30 ft. Rec. 3 ft.

Sandstone, light grey, medium to granule, fairly well sorted, sub-angular to wellrounded, white kaolinitic matrix - grey felspare grains. Sparse carbonaceous grains little mica. Porosity and permeability good. No odour, no fluorescence, no cut. No apparent dip.

9/21 MARLIN-2

4.

のあれた

ないと、などの

-19,

9326-9356 ft.	Core No.8 - (see detail) Cut 30 ft. Recovered 30 ft.
9356-9385 ft.	Core No.9 - (see detail) Cut 29 ft. Recovered 23.5 ft.
9385-9415 ft.	Core No.10 (" ") Cut 30 ft. Recovered 30 ft.
9415-9445 ft.	Core No.11 (" ") Cut 30 ft. Recovered 30 ft.
9445-9475 ft.	Core No.12 (" ") Cut 30 ft. Recovered 30 ft.
CORE DESCRIPTIONS:	
Core No.8 - Cut	30' - Recovered 30' - 9326-9356'
9326-9327.5 ft.	Shale, d.grd.br.gr. carb. sparsely mic. abundant plant remains. Hard, massive.
9327.5-9329 ft.	Shale, irregular slump mass, fragments of sandstone and siltstone. Shale as above. Siltstone gr.white to l.br. argillaceous, v.f. sandy, mic. carb. Sandstone is gr white, quartzose, silty v.ff., subang subround, f.w.s. sparsely micaceous. Slightly dolomitic. Mod. abundant white- l.br. clay matrix. Por. fair, Perm. poor. Massive. When broken, faint hydrocarbon odour and taste.
9328-9334 ft.	Sandstone, minor laminae and lenses. Shale (as above). Sst. is gr.white-l.br. quartzose, v.f. to f., subangsubround., f.w.s., sparsely mic., carb. Slightly dolomitic. Mod. abundant white-l.br. clay matrix. Very weak. Gold fluorescence. Throughout - faint hydrocarbon odour and taste.
9334-9347 ft.	Shale, irregular slump mass of siltstone and sandstone. Streaks and fine laminae to thin beds of black brittle coal. Massive slumped, irregular fracture, gas has filled by coal. Coal bleeds gas.
9347-9353 ft.	Slumped mass siltstone, sandstone and shale As above.
9353-9356 ft.	Sandstone as 9329-9334 ft Thin bedded micro cross-bedded with band- ing fine carb. material. Sandstone has faint hydrocarbon odour and taste. Banded bright gold fluorescence, instant cut.
Come Mei O Cut 20	
9356-9359.5 ft.	ft Recovered 23.5' - 9356-9385' Shale, fine irregular masses sandstone, siltstone as above.
 n an	

MARLIN - 2

9359.5-9361.5'

9361.5-9367.5'

Thin interbedded sandstone, shale as above. On breaks. Hydrocarbon odour speckled fluorescence. taste;

Sandstone, laminae shale siltstone and coal. Two types of sandstone, main part dominant fine gr. l.gr.-l.gr. white, very fine to medium, as described. Cross bedding, slumping, rare worm burrows. 9362 - patches bright gold fluorescence

inst. cut. 9365-9366 - weak dull gold fluorescence. Carbonaceous shale break at 9362 ft. has similar hydrocarbon odour and taste.

As for 5359.5-5361.5'. 9367.5-9370.5'

As for 5361.5-5367.5. Scattered fluores-9370.5-9373.5' cence noted but not strong nor instant cut.

As for 9356-9359.5'. 9373.5-9376.5'

9376.5-9379.5' Shale d. gr. - d. br. as described.

First 15 ft. cut quickly and may have lost sandy facies at top.

Core No.10 - Cut 30 ft. - Recovered 30' - 9385-9415'

Shale, fine irregular masses siltstone, 9385-9390 ft. sandstone. Sst. gr. white as above. v.f.-f. generally slumped. Siltstone and shale as described. Weak speckled dull gold fluorescence, small bright patches assoc. with calcareous matter.

Thinly interbedded sandstone, shale -9390-9394 ft. slumped type sst. Fluorescence as above, small bright patches fair hydrocarbon odour and taste.

> Sandstone, minor laminae and lenses of sil stone, streaks of carb. material and coal. Grey-white - l.gr., quartzose f.-m. angular subround, f.w.s. trace mic. carb. Slightly lithic in part; moderately abundant white-l.gr. clay matrix. Por. fair, perm. poor. Speckled fluorescence minor bright gold fluor. and cut. Gradually coarser at depth : predominantly medium at base, few coarse quartz granules

Shale, minor irregular lenses and masses 9399-9415 ft. of sandstone and siltstone as above. Sst. is minor but has patches bright gold blue white fluorescence, and cut.

9394-9399 ft.

MARLIN-2

Core No.11 - C	ut 30' - Recorded 30' - 9415-9445'
بع	
9415-9425.5'	Shale, minor irregular masses siltstone, sandstone. Streaks/laminae of coal as above. Sandstone is v.ff. Weak dull gold fluorescence. At 9425 ft., coal shows even, very bright fluorescence - coal lens bleeding gas.

9425.5-9430'

type of show and associated with carbonaceous streaks.

Shale, carb. streaks., minor thin interbeds and laminae coal bleeding gas.

Sandstone as 9425.5-9430.

Shale as 9415-9425.5.

Sandstone, minor interbedded shale and siltstone, dom. v.f.-f., minor f.-m. grained. Slumped cross-bedded. <u>Same</u>

9434-9436'

9436-9444'8"

9430-9434'

9444 * 8"-9445 '

Conglomerate. Coarsely sandy and granular, fine pebble quartz conglomerate. Variable white clay - 1.br. silty argillaceous matrix. Moderately hard, friable. Por. v.good, Perm. variable poor-v.good, depending on sorting and clay matrix. Good hydrocarbon odour and taste. No fluorescence.

K.A. Rowell

MELBOURNE BMH:LAF 23rd August, 1966.

12/21

4.

9876-9903 ft. Core No.13 (see detail) Cut 27 ft. Recovered 20 ft.

CORE DESCRIPTIONS:

14 A A

Core No.12	- Cut 30' - Recovered 30' - 9445-9475'
9445-9455 ft	Dark grey shale, minor irregular nodules, as previously described. <u>Very weak</u> spotted dull yellow fluorescence.
9455-9458 ft	. Interbedded and laminated sandstone/shale. Minor amount weak spotted fluorescence.
9458-9460 ft	. Sandstone, minor laminae shale as above. Spotted dull gold and blue white fluorescen
9460-9461 ft	. Interbedded sandstone and shale as for 9455-9458.
9461-9469 ft	. Sandstone, two variations. Light grey quartzose, slightly calcareous, medium to coarse, angular to sub-rounded granule quartz sand and fine quartz pebble conglom- erate. Matrix micaceous and carbonaceous, slightly lithic. Hard. Por. Fair to good,
	perm. poor. Remainder as previously described. Bright blue white fluorescence 6" bands at 9463', 9465', 9466'. Spotted blue white to gold fluorescence throughout. Good odour and taste.
9469-9471 ft	 Interbedded shale and sandstone as for 9455-9458'.
9471- 9472 ft	. Sandstone as in 9461-9469 with scattered speckled blue white fluorescence.
9472-9474 ft	. Interbedded shale and sandstone.
9474-9475 ft	. Sahel as for 9445-9455.
Core 13 - (Cut 27 ft Recovered 20 ft 9876-9903'
9876-9879 ft	<u>Mudstone</u> , dark brown -grey, indurated, strongly carbonaceous, micaceous, strong H2S smell.
9879-9881 ft.	bands and inclusions of sandstone light brow
•	to grey, very fine, moderately well sorted, very hard, slightly dolomitic and possibly silaceous cement in parts, argillaceous matrix, irregular carbonaceous streaks. Porosity and permeability low. Spotty yellow fluorescence in carbonaceous streaks giving yellow cut.
9881-9885 ft.	<u>Mudstone</u> and irregular discontinous coal streaks up to 3/4", plant impressions and occasional sand.

MARLIN-2

5.

9885-9887 ft. Mudstone to siltstone, to sandstone. Sandstone light brown to grey, very fine to coarse, angular to subrounded, very hard and tight, with carbonaceous flecks and streaks. Layers up to 4" thick. Por. and perm. very low. Spotty shows as above.

<u>Mudstone</u> as above and coal streaks, plant remains and occasional siltstone. 9887-9896 ft.

. . :

CORE LABORATORIES. INC.

Petroleum Reservoir Engineering

DALLAS, TEXAS

CORE ANALYSIS RESULT

RE-NAMED

· (13. 1933) Page No.

Marsha .

2

5 da .	Company	ESSO	EXPL	PRATIO	. AUST	RALIA	Formation_		File FL115-7L	
								CONVENTIONAL	Date Report 23 JUNE	66
		EGS-4					- •	idxp 20-SPERSI	Analysts TH, BY, RS	
							31'KB 1			

SAND - SO SHALE - SH	DOLOMITE-DOL CHERT-CH	ANHYDRITE - ÅNHY CONGLOMERATE - CONG	SANDY-SDY Shaly-Shy	/ MÉ	NE-FN DIUM-MED	CRYSTALLINE - X GRAIN - GRN	GRAY-GY LAMINATION-LAM VERY-V/
LIME-LM	GYPSUM - GYP	FOSSILIFEROUS - FOSS	LIMY - LMY	RESIDUAL	SATURATION	GRANULAR - GRN	
SAMPLE NUMBER	DEPTH FEET	PERMEABILITY MILLIDARCYS	POROSITY PER CENT	OIL	TOTAL WATER	DENS.	SAMPLE DESCRIPTION AND REMARKS
	· · · · · · · · · · · · · · · · · · ·						X
1. 1	4792	8850	29.1		55.6	2.22	SSIVY FRIABLE
2	4795	10350	34.0	0	51.1	2.18	12 FT
3	4794	· · · · · · · · · · · · · · · · · · ·	¥	*	*	*	NOT SUITABLE FOR ANALYSIS
	4795	9550	33.6	0	50.6	2.13	SSIAS ABOVE
5	4796	10350	28.0	7 🜒	60.7		92 93
6	4800	*	*	*	*	*	80% SHALE
7	4801	8.4	22.0		60.3	2.22	HD BRN SILTY VEGRN SS
8	4892	*	*	. *	*	*	80% SHALE
9	4805	*	¥	*	*	*	50% SHALE
10	4806	*	*	¥	÷	*	12 17
11	4807	7.1	14.6	۲	83.0	2.56	50% SHALE
12	4808	17.0	14.9	•	78.0	2.28	60% SHALE
13	4809	5.9	23.4	0	65.0	2.40	50% SHALE
14	4810	.5	16.2	0	85.0	2.28	17 14
15	4811	*	*	¥	*	*	90% SHALE
16	4812	11.0	27.0	0	70.5	3.10	25% SHALE
170	4901	*	*	¥	*	*	COAL
18	4902	2090	25.9	0	61.8	2.22	SSIVY FREABLE, BRN
19	4903	3580	36.0	0	63.3	-	11 11
20	4904	5100	26.9	õ	55.6		11 11

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES. INC.

MARLIN-2 Page No. 203

2----

Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company ESSO EXPLORATION, AUSTRAL IA Formation		File FL115-7L
Well GIPPSLAND SHELF NO. 5 Core Type	CONVENTIONAL	Date Report 14 Aug 66
Field E. G. S. NO. 4 Drilling Flu	id XP20-SPERSENE	
XXXXX VICTORIA State AUST. Fley 31' KB I		-

- Lithological Abbreviations

SAND SD SHALE - SH LIME - LM	DOLOMITE - DOL CHERT - CH GYPSUM - GYP	ANHYDRITE - ANHY CONGLOMERATE CONG FOSSILIFEROUS - FOSS	SANDY - SU Shaly - Shi Limy - LMY	Y	FINE FN MEDIUM MED COARSE CSE	CRYSTALLINE - XL GRAIN - GRN GRANULAR - GRNL	GRAY-GY LA	ACTURED - FRAC MINATION - LAM YLOLITIC - STY	SLIGHTLY-SL/ VERY-V/ WITH-W/			
SAMPLE	DEPTH	PERMEABILITY	POROSITY		AL SATURATION CENT PORE		SAMPLE DESCRIPTION					
NUMBER	FEET	MILLIDARCYS	PER CENT	OIL	TOTAL WATER	DENS.	AND REMARKS					
30	9331	₀46	15 .7	0	64.4	2 .18	HARD CARD. S	s				
31	9333	1.1	13.1	0	71.0	2° 35	11					
32	9338	。32	23.6	0	71.0	2.35	11					
33	9354	1.3	18.4	0	42.6	2.26	SS W/SH & Co	AL LANI	No			
34	9355	.46	21.1	0	37.2	2° 29	27		•			
35	9361	.32	13.8	0	71.0	2.19	tf					
36	9364	.60	15.0	0	62.0	2.32	49	Se				
37	9365	3.30	15.0	0	68.0	2.28	12					
38	9370	.46	13.1	0	74.6	2.21	¥2	•				

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

MARLIN-2

/67 /27 Page No **30 / 3**

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS, TEXAS

CORE ANALYSIS RESULTS

Company ESSO EXPLORATION, AUST	RAL I A _{Formation}	File FL115-7L
Well GIPPSLAND SHELF NO. 5		Date Report 15 Aug 66
Field E. G. S4	Drilling Fluid XP20-SPERSENE	Analysts' TH,RS
COUNTY VICTORIA State AUST.	Elev. 31° KB Location	

Lithological Abbreviations

SAND 5D Shale-Sh Lime-Lm	GOLOMITE-DOL CHERT-CH GYPSUM-GYP	ANHYDRITE ANHY Conglomerate cong Fossiliferous foss	SANDY SU Shaly-Sh Limy-Lmy	ч ме	E FN DIUM-MED ARSE-CSE	GRYSTALLINE XU Grain Grn Granular Hrni	N BROWN BRN PRACTURED FNAC SLIGHTLY.SL/ GRAY GY LAMINATION LAM VERY.V/ VUGGY VGY STYLOLIFIC.STY W.TH.W/	
SAMPLE	DEPTH	PERMEABILITY MILLIDARCYS	POROSITY		SATURATION		SAMPLE DESCRIPTION	
NUMBER	FEET	MILLIDARCIS	PERCENT	01L	TOTAL WATER	DENS.	AND REMARKS	
39	9392	.46	12.7	0	5 6.6	2.19	SS:HARD W/CARB STRKS	
40	9396	.29	14.0	0	57.2	2.22	11	
	9397	1.30	16.9	0	44.4	2.20	ŧŧ	
42	93 98	<u>。90</u>	17.0	0	50 .0	2.23	**	
43	9399	°46	15.8	0	50°0	2.31	n	
44	9427	.46	13.1	0	6 9。5	2.42	88	
45	9461	5.20	14.6	0	63.7	2.32	11	
46	9462	7.40	26.6	1.3	65.7	2.20	SS:GY-WHITE CRS GRN	
47	9465	11.0	18.0	1.9	53.9	2.20	f9	
48	9466	10.0	17.0	。9	47°1	2.21	· •	
49	9471	<0.01	13.4	1.1	62.8	2.45	SHLY	1

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas of other mineral well or said in connection with which such report is used or relied upon.

4.0 APPENDIX

ţ.

Will Marine Lorence and

MARLIN -2.

VELOCITY SURVEY

MARLIN ESSO

by

P.E. Towey

A. INTRODUCTION

Esso Australia contracted Western Geophysical Co. to perform the velocity survey. Under the contract, Western agreed to furnish the following :

- (1) <u>Instruments</u>
 - a. SSC Model GCE101 Pressure Sensitive Well Geophones
 - b. Twelve SIE GA-11 Amplifiers, Input Switching and Power Supply
 - c. Western 30 Channel Camera
 - d. Three 12 volt Batteries and Charger
 - e. Portable Developing System
 - f. Two 300 volt Blasters
 - g. Three Kaar TR 327 CB Radios
 - h. Two RC-5 Remote Control Units for Shooters Radio
 - i. Two TA-12 Break amplifier units
 - j. Adequate spare parts
- (2) One Marine Shooter
- (3) One Licensed Shooting Boat

All equipment and personnel assembled on June 26, 1966 and the survey was made on the 29th of June.

B. SURVEY PROCEDURES

Weather was good during the survey, but some noise was experienced one time break trace due to antenae faults.

(1) Shot Positioning

The orientation of the Glomar was E-W during the survey. Buoys were positioned 1000 feet on the north side and 500 feet and 1000 feet on the south, in a line running N-S, passing through the well site.

(2) Well Geophone Positioning

All depth measurements were made using the Schlumberger depth indicator. To minimize rig noise due to heavy swells the marine riser was disconnected from the derrick floor and lowered to the casing top. The Schlumberger cable was clamped with a T-Bar device which rested on the casing top at each geophone depth in an attempt to de-couple from the rig movement.

C. RESULTS

Nine shots were made at four different levels. Three were made at 2969 feet, the shallowest position, two at an offset off 1000 feet and one at 500 feet offset.

The quality of the records were considered to be good in seven cases and fair in two. Copies of the records are included below.

The final check shot times and integrated sonic curve are considered to be in good agreement as is shown by the error chart of figure I.

D. <u>CONCLUSIONS</u>

٢

and the second second

and the second second

1.1

The velocity survey was successful in tying the integrated Sonic Log into absolute time values.

, ti

FIGURE I

Average Vertical time from Velocity Survey	T Check Shots	T Sonic	Diff	Interval Depth	Microseconds per foot Error
.386	-		•		
	.206	.198	+.008	1730	+4.6
.592			Ň		
	.039	.039	0	360	0
.631					
	.026	.027	001	260	-3.8
. 657					

the state of the second state where a

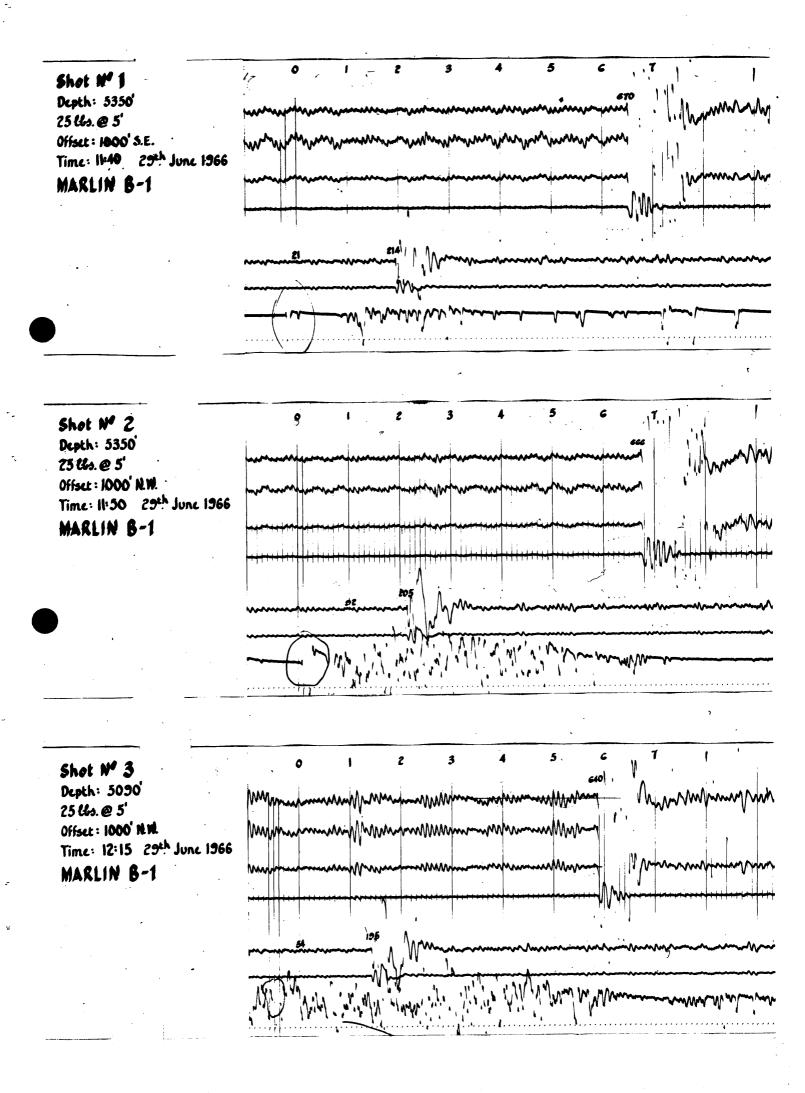
. .

21

		N N		nformation: 1000'	\wedge	tion, Dist 500'		Direction f X 3	rom W	ell	ESSO		ORATION A INC	N Esso	wen Marlin	B-	·]	Elevat (Derrick f 31		38	Coord i 3° 15' 3° 10'		DAT	T	ip, Range County Area or Field Gippsland Shel Level Offshore, Victor	ia
	hothole iumber	Fime of S	Shot	Dgm	Ds	tus	tr	Reading	T Polarity	Grade	Dgs	н	TAN I	Cos i	Tgs	∆sd	<u>∆sd</u> V	Tgđ	T gd Average	Dgd	Δ D gd	∆Tgđ	Vi Interval Velocity	V a Average Velocit y	Elevation We.	∐ ∆¦md
1	2	13.	45	3000	6	.001	.110	.395	D	G	2963	550	.186	.983	.388	6		.389						1	Ds Elevation Datum Plane	+
T	3	13.	35	3000		.001			D	F		1070	.361	.941	.386	6			.386	2969				1	Elevation Shot	
	1	13.	25	3000	6	.001	.207	.406	D	F	2963	1035	.349	.944	.382	6	.001	.382			1730	.206	8398	7691		
											•									1	1700		0020			
	1	12.		4730				.602	D			1035		.976	.588		.001	.589	.592	4699			1	7938		
	3	12.	45	4730	6	.001	.221	.609	D	G	4693	1105	.235	.974	.593	6	.001	.594		ļ	360	.039	9231	1	S Dgm Dgs	Dgd
_					L	0.00	0.5.5				5050	1005		077				(20)	601	5050			1	8017		
_	3	12.		5090			1		D				.217	.977	.631		.001		.631	5059	-					
Ц	1	12.	15	5090	6	.001	.195	•640	D	G	5053	975	.193	.982	.628	6	.001	.629			260	.026	10000]		
									_																Dgm = Geophone depth measured from well elevation	 on
	1	11		5350	6			.666	D			1025		.982	.654		.001		,657	5319				8096	Das = " " " shot "	
	3	11.	40	5350	6	.001	<u>-214</u>	.670	D	G	5313	1070	.201	.980	.65.7	6	.001	.658			-				Dgd = 1 1 1 datum 1	
										-									•					<u>}</u>	Ds = Depth of shot	
												+													De = Shothole elevation to datum plane	
_					ļ															<u> </u>					H = Horizontal distance from well to shotpoint	
4																					-L				S = Straight line travel path from shot to well geo	ophone
		•				 				_															tus = Uphole time at shotpoint	
											-			<u>-</u> -										-	T = Observed time from shotpoint to well geophone.	
_																					-		-		tr = " to reference geophone.	
																	$\left \right $			1	-				Δe = Difference in elevation between well & shotpo Δsd = """ shot & datum	
\neg																					·			-	∆sd = Ds-De	
-							+		-												 			-	Dgs = Dgm - Ds $\pm \Delta e$; tan i = $\frac{H}{Dr}$	
-												- <u>}</u>	<u>}</u>	+										_	Dgs Tgs = cos i T= Vert. travel time from shot elev. to ge	
-						+	+	1				+		1						1				-	$T_{gd} = T_{gs} \pm \frac{\Delta sd}{V} = " " datum plane"$	u
						1			-	+		+								-		<u> </u>		-	Dgd = Dgm - ∆md	
								+			ł									-	 		┨────	-	$V_i = \text{Interval velocity} = \frac{\Delta D g d}{\Delta T g d}$	
					1		+					1	1	1],		+	-	Va = Average = <u>Dgd</u>	
-				, ,			1	-			1	1	1											-	Tgd Surveyed by:	
					1	1		-				1									}			-		
					1	1	1	1				1											+		Weathering Data -	
					1	1	1	1		1				1									+	-	meuting builds	
		A				1	1	1			1													-L	-	
					1	1	1	1													<u></u>	· · · ·				
				•	1	1	1				1											<u> </u>		-1	Casing Record	
					1.	1															<u> </u>			<u></u>		<u>`</u>

1

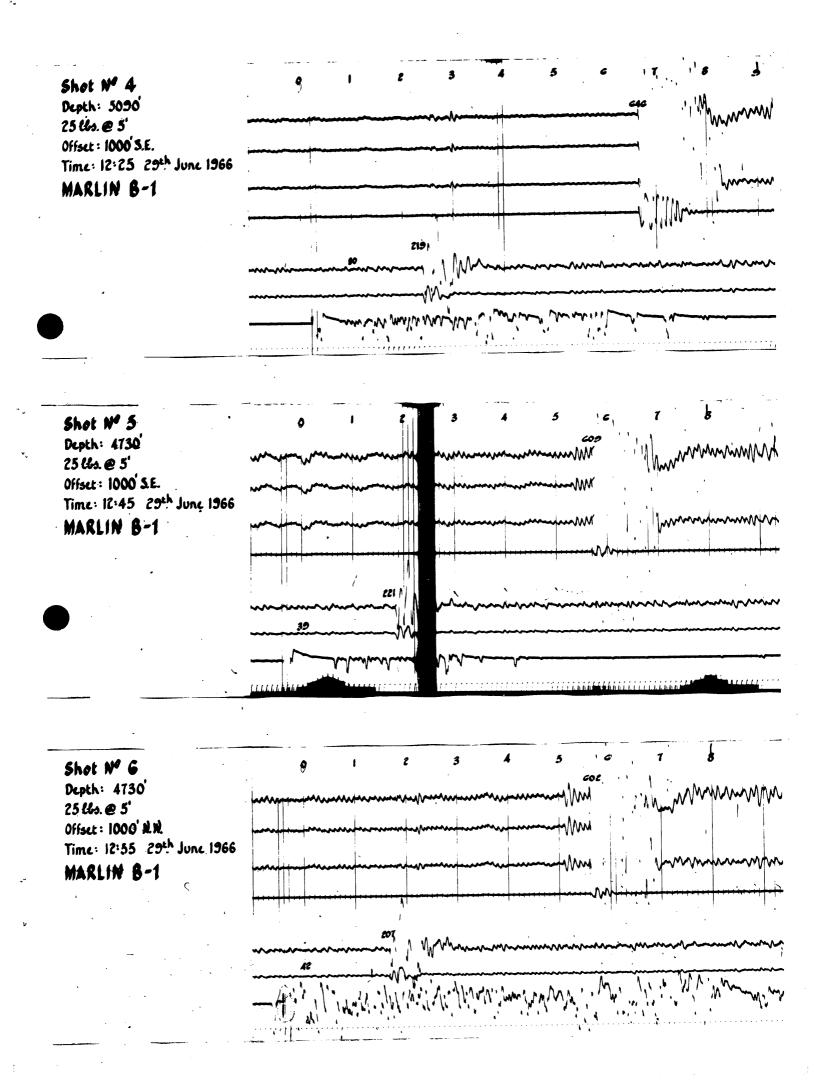
• _{"0}"


~ I

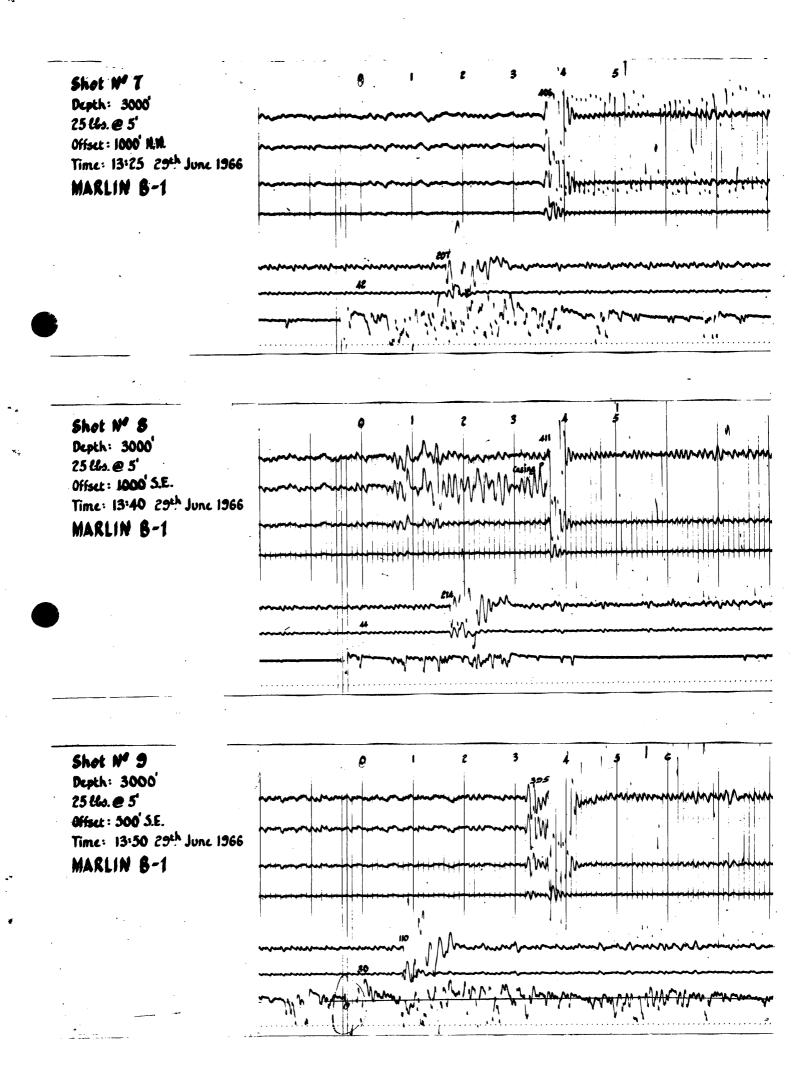
. . . .

ESSO MARLIN B-1

24/27


WELL VELOCITY RECORDS

ESSO MARLIN B-1


22/21

WELL VELOCITY RECORDS

ESSO MARLIN B-1

WELL VELOCITY RECORDS

23/27

APPENDIX 5.0

いた

S.

ingen o Vielen Vielen

and the second

1.9 129 12. g

INCORPORATED IN NEW SOUTH WALES G.P.O. BOX 4047 SYDNEY 2001 * TELEPHONE 236 2911 (AREA CODE 02) ESSO HOUSE, 127 KENT STREET, SYDNEY, NEW SOUTH WALES TFLEGRAMS "ESSO" * CABLES "ESSOEAST" TELEX: AA 120549 FAX: GP111 02 236 5085

ESSO AUSTRALIA LTD

SYDNEY 10th March, 1988

YOUR REF:

6650/10 RMR/js OUR REF

Marlin Preliminary SUBJECT Depth Intervals

15 MAR 1988

PETROLEUM DIVISION

Attention: Brij Agrawal

Department of Industry,

P.O. Box 173,

Dear Sir,

Technology and Resources,

EAST MELBOURNE VIC. 3002.

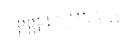
MARLIN-Z.

Please find enclosed preliminary depth intervals of hydrocarbon and water sands for all, but six (6), of the Marlin exploration and production wells. The results are being reviewed and any corrections passed on to you.

The intervals for wells A5 and A16 should be used with caution as they are being re-surveyed to check for depth discrepancies that have arisen.

The results were compiled for porosity, water saturation and fluid content using the log suites. Wells; F18, A11, A12, A13, A15 and A22 are not included because of their limited log suites. The depth intervals for these wells are being prepared and will follow.

Yours faithfully.


S.A. REECKMANN PRODUCTION GEOLOGY MANAGER

Encl:

3480F/55

TABLE 5.0

MARLIN-2

١

SUMMARY OF RESULTS

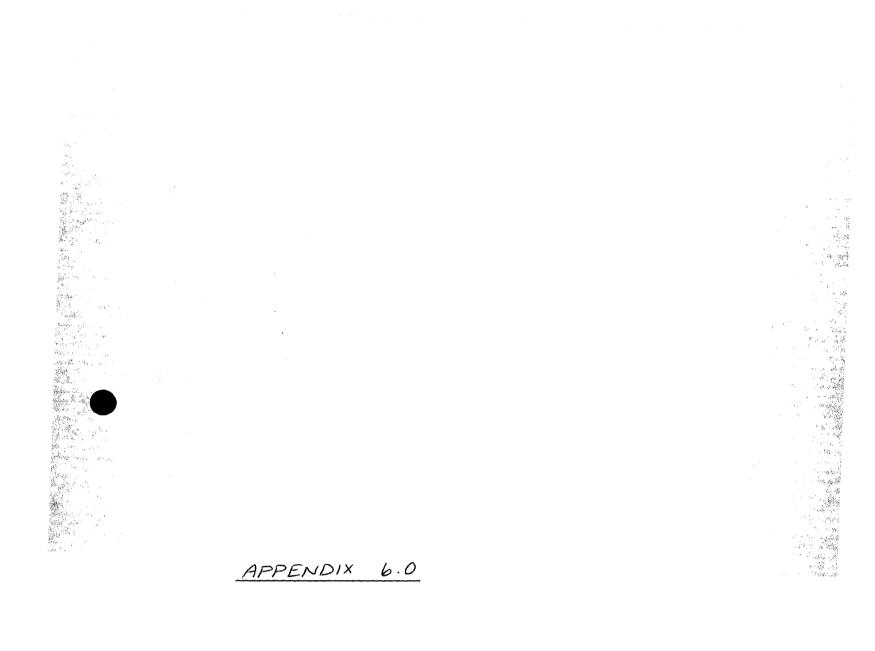
Interval Evaluated: 1400-2891 (m MDKB)

Depth Int (m MDKB) KB=9.5m ((m MDSS)	Sand ¹ Unit	Gross Thickness (m)	Net ^{**} Thickness (m)	Porosity ^{**} Average	зwe ^{**} Average	Fluid Content
1440.50-1467.50	1431.00-1458.00	N-1.1.1	27.00	20.00	0.23+0.07	0.20+0.05	Gas
1467.50-1494.50	1458.00-1485.00	N-1.1.2	27.00	23.25	0.28+0.04	0.10+0.03	Gas
1495.00-1507.25	1485.50-1497.75	N-1.1.3	12.25	10.75	0.25+0.03	0.14 <u>+</u> 0.04	Gas
1507.50-1545.00	1498.00-1535.50	N-1.2	37.50	35.75	0.22 <u>+</u> 0.06	0.21 <u>+</u> 0.05	Gas
1568.00-1589.00	1558.50-1579.50	N-1.3	21.00	21.00	0.28 <u>+</u> 0.04	0.16+0.04/	Oil/
						1.00	Water
	OWC @ 1571m MD	KB based on	IES log res	ponse and c	ore 6 and CST	shows.	
1595.25-1612.75	1585.75-1603.25	N-1.4	17.50	17.00	0.25 <u>+</u> 0.05	1.00	Water
1613.75-1615.00	1604.25-1605.50		1.25	1.00	0.27 <u>+</u> 0.03	1.00	Water
1631.50-1649.25	1622.00-1639.75	N-1.5.2	17.75	17.75	0.28 <u>+</u> 0.03	1.00	Water
1653.50-1677.00	1644.00-1667.50	·	23.50	22.75	0.24 <u>+</u> 0.05	1.00	Water
1705.00-1708.50	1695.50-1699.00		3,50	0.25	0.11 <u>+</u> 0.00	1.00	Water
1711.25-1713.25	1701.75-1703.75		2.00	0.75	0.14 <u>+</u> 0.02	1.00	Water
1717.50-1719.50	1708.00-1710.00		2.00	2.00	0.17 <u>+</u> 0.02	1.00	Water
1721.25-1721.75	1711.75-1712.25		0.50	0.50	0.14+0.01	1.00	Water
1737.75-1741.75	1728.25-1732.25		4.00	3.75	0.22 <u>+</u> 0.05	1.00	Water
1743.25-1749.00	1733.75-1739.50	M-1.3	5.75	4.50	0.23 <u>+</u> 0.05	1.00	Water

Depth In (m MDKB)	terval (m MDSS)	Sand ^l Unit	Gross Thickness (m)	Net ^{**} Thickness (m)	Porosity ^{**} Average	Swe ^{**} Average	Fluid Content
KB=9.5m	(31')			(1117			
1751.50-1754.50	1742.00-1745.00		3.00	2.75	0.19+0.03	1.00	Water
1756.25-1761.75	1746.75-1752.25		5,50	5.25		1.00	Water
1766.75-1768.00	1757.25-1758.50		1.25	0.25	_ 0.12+0.00	1.00	Water
1777.50-1777.75	1768.00-1768.25		0.25	0.25		1.00	Water
1792.50-1794.00	1783.00-1784.50		1.50	1.50	0.15+0.02	1.00	Water
1799.00-1800.25	1789.50-1790.75		1.25	1.00	_ 0.14 <u>+</u> 0.02	1.00	Water
1810.00-1810.75	1800.50-1801.25		0.75	0.75	0.13+0.01	1.00	Water
1819.00-1822.25	1809.50-1812.75		3.25	2.00	0.15+0.01	1.00	Water
1835.25-1836.75	1825.75-1827.25		1.50	0.50	0.15+0.02	1.00	Water
1845.00-1853.00	1835.50-1843.50		8.00	6.50	0.21 <u>+</u> 0.04	1.00	Water
1861.75-1865.25	1852.25-1855.75		3.50	1.00	0.11+0.00	1.00	Water
1883.75-1884.75	1874.25-1875.25	•	1.00	0.75	0.15+0.02	1.00	Water
1889.25-1898.00	1879.75-1888.50		8.75	2.75	0.12+0.02	1.00	Water
1903.25-1906.00	1893.75-1896.50		2.75	1.25	0.12+0.02	1.00	Water
1924.25-1925.50	1914.75-1916.00		0.75	0.75	0.12+0.01	1.00	Water
1941.00-1943.25	1931.50-1933.75		2.25	2.00	0.18+0.05	1.00	Water
1947.75-1953.75	1938.25-1953.75		6.00	2.00	0.15+0.03	1.00	Water
1975.75-1977.00	1966.25-1967.50		1.25	1.00	0.14+0.02	1.00	Water
1997.25-2000.00	1987.75-1990.50		2.75	1.50	0.13 <u>+</u> 0.02	1.00	Water
2010.25-2011.75	2000.75-2002.25		1.50	0.25	0.11+0.00	0.27+0.07	Hyd? Indet

,

Depth In (m MDKB)	terval (m MDSS)	Sand ¹ Unit	Gross Thickness	Net ^{**} Thickness	Porosity ^{**} Average	Swe ^{**} Average	Fluid Content
KB=9.5m		OUTC	(m)	(m)	Weruge	meruge	
2036.50-2037.75	2027.00-2028.25		1.25	0.50	0.12 <u>+</u> 0.01	1.00	Water
2071.75-2072.75	2062.25-2063.25		1.00	0.25	0.10 <u>+</u> 0.00	1.00	Water?
2076.50-2078.25	2067.00-2068.75		1.75	0.50	0.11 <u>+</u> 0.00	1.00	Water
2124.50-2126.25	2115.00-2116.75		1.75	0.50	0.15 <u>+</u> 0.02	1.00	Water
2169.75-2177.25	2160.25-2167.75		7.50	1.00	0.11 <u>+</u> 0.01	1.00	Water
2213.25-2214.25	2203.75-2204.75		1.00	0.25	0.11 <u>+</u> 0.00	1.00	Water
2218.25-2220.25	2208.75-2210.75		2.00	1.00	0.14 <u>+</u> 0.01	0.21 <u>+</u> 0.05	Hyd? Indet.
2224.25-2227.75	2214.75-2218.25		3.50	1.00	0.11 <u>+</u> 0.00	1.00	Water
2239.00-2240.75	2229.50-2231.25		1.75	0.25	0.11 <u>+</u> 0.00	1.00	Water
2243.75-2245.25	2234.25-2235.75		1.50	0.25	0.11 <u>+</u> 0.01	0.27 <u>+</u> 0.07	Hyd? Indet.
2248.25-2250.25	2238.75-2240.75		2.00	0.25	0.12 <u>+</u> 0.01	0.24-0.06	Hyd? Indet.
2254.50-2257.75	2245.00-2248.25	•	3.25	2.75	0.14 <u>+</u> 0.03	1.00	Water
2264.25-2270.75	2254.75-2261.25		6.50	5.00	0.11 <u>+</u> 0.01	1.00	Water
2282.75-2284.25	2273.25-2274.75		1.50	0.75	0.12 <u>+</u> 0.01	1.00	Water?
2289.25-2292.75	2279.75-2283.25		3.50	0.50	0.10 <u>+</u> 0.00	0.28 <u>+</u> 0.07	Hyd. Indet.
2301.75-2303.50	2292.25-2294.00		1.75	1.50	0 . 15 <u>+</u> 0.02	1.00	Water
2310.50-2313.25	2301.00-2303.75		2.75	1.00	0.13 <u>+</u> 0.02	1.00	Water
2330.25-2336.00	2320.75-2326.50		5.75	0.75	0.11 <u>+</u> 0.01	1.00	Water
2360.75-2365.25	2351.25-2355.75		4.50	2.50	0.12 <u>+</u> 0.01	1.00	Water
2389.50-2395.75	2380.00-2386.25		6.25	1.75		0.25+0.06	Hyd. Indet.


			- 4 -				
Depth Int (m MDKB) KB=9.5m ((m MDSS)	Sand ^l Unit	Gross Thickness (m)	Net ^{**} Thickness (m)	Porosity ^{**} Average	Swe ^{**} Average	Fluid Content
399.50-2401.25	2390.00-2391.75		1.75	0.75	0.13+0.02	0.22+0.06	Hyd. Indet.
402.00-2403.25	2392.50-2393.75		1.25	0.75	0.13 <u>+</u> 0.01	1.00	Water
405.00-2409.00	2395.50-2399.50		4.00	1.25	0.12+0.01	1.00	Water
419.50-2426.75	2410.00-2417.25		7.25	2.25	0.13+0.01	1.00	Water
428.00-2433.75	2418.50-2424.25		5.75	4.00	0.14+0.02	1.00	Water
453.25-2460.75	2443.75-2451.25		7.50	2.00	0.15+0.04	0.20+0.05	Hyd. Indet.
470.25-2476.25	2460,75-2466,75		6.00	2.00	0.12+0.01	0.23+0.06	Hvd? Indet.

2399.50-2401.25	2390.00-2391.75	1.75	0.75	0.13+0.02	0.22+0.06	Hyd. Indet.
2402.00-2403.25	2392.50-2393.75	1.25	0.75	0.13+0.01	1.00	Water
2405.00-2409.00	2395.50-2399.50	4.00	1.25	0.12+0.01	1.00	Water
2419.50-2426.75	2410.00-2417.25	7.25	2.25	0.13+0.01	1.00	Water
2428.00-2433.75	2418.50-2424.25	5.75	4.00	0.14 <u>+</u> 0.02	1.00	Water
2453.25-2460.75	2443.75-2451.25	7.50	2.00	0 . 15 <u>+</u> 0.04	0.20 <u>+</u> 0.05	Hyd. Indet.
2470.25-2476.25	2460.75-2466.75	6.00	2.00	0.12 <u>+</u> 0.01	0.23 <u>+</u> 0.06	Hyd? Indet.
2483.75-2486.25	2474.25-2476.75	2.50	0.25	0.11 <u>+</u> 0.00	0.27 <u>+</u> 0.07	Hyd. Indet.
2510.75-2513.50	2501.25-2504.00	2.75	2.00	0.14+0.02	1.00	Water
2519.75-2523.25	2510.25-2513.75	3.50	0.00	0.07 <u>+</u> 0.02	0.43 <u>+</u> 0.09	Hyd? Indet.
2573.25-2576.00	2563.75-2566.50	2.75	1.00	0.12 <u>+</u> 0.01	0.24-0.06	Hyd? Indet.
2579.25-2580.50	2569.75-2571.00	. 1.25	0.25	0.10+0.00	0 . 29 <u>+</u> 0.07	Hyd? Indet.
2595 . 75 - 2619 . 00	2586.25-2609.50	23.25	0.00	0.06 <u>+</u> 0.02	1.00	Water
2647.25-2663.50	2637.75-2654.00	16.25	6.75	0.12 <u>+</u> 0.01	0.23 <u>+</u> 0.06	Hyd. Indet.
2669.25-2703.75	2659 . 75 - 2694.25	34.50	3.75 ***	0.11 <u>+</u> 0.00	1.00	Water
2705.00-2719.75	2695.50-2710.25	14.75	0.00****	0.06 <u>+</u> 0.02	1.00	Water
2720.25-2728.50	2710.75-2719.00	8.25	0.00	0.05 <u>+</u> 0.02	1.00	Water
2729.00-2736.75	2719.50-2727.25	7.75	2.00	0.11 <u>+</u> 0.01	1.00	Water
2738.00-2741.75	2728.50-2732.25	3.75	0.75	0.10 <u>+</u> 0.00	1.00	Water
2743.25-2745.50	2733.75-2736.00	2.25	1.50	0.10 <u>+</u> 0.00	1.00	Water '
2746.25-2755.50	2736.75-2746.00	9.25	3.50	0.12+0.02	1.00	Water

	•		- 5 -				
Depth Interval (m MDKB) (m MDSS) KB=9.5m (31')		Sand ^l Unit	Gross Thickness (m)	Net ^{**} Thickness (m)	Porosity ^{**} Average	Swe ^{**} Average	Fluid Content
788.25-2789.75	2778.75-2780.25		1.50	0.50	0.11+0.01	1.00	Water
802.75-2807.75	2793.25-2798.25		5.00	2.25		0.27 <u>+</u> 0.07	Hyd? Indet.*
309.50-2813.00	2800.00-2803.50		3,50	0.25	0.11+0.01	0.27+0.07	Hyd? Indet.*
315.75-2817.25	2806.25-2807.75		1.50	0.00***	0.07 <u>+</u> 0.03	0.44+0.09	Hyd? Indet.*
818.75-2826.75	2809.25-2817.25		8.00	1.00	0.14+0.02	1.00	Water?
335.75-2838.25	2826.25-2828.75		2.50	0.25	0.10 <u>+</u> 0.00	1.00	Water
860.00-2862.50	2850.50-2853.00		2.50	0.75	0.12+0.01	0.24+0.06	Hyd? Indet.*
880.75-2883.75	2871.25-2874.25		3.00	1.50		0.22+0.06	Hyd? Indet.*

Note: Mudlog gas indicates significant amounts of hydrocarbon bearing sands are present from 2891.50m to 3050m MDKB(TD). Section unlogged due to blow out.

- * A zone not previously recognized as being hydrocarbon bearing.
- ** Net porosity Thickness, Porosity Average and Swe Average refer to zones with calculated porosities in excess of 10%.
- *** Porosity Average and Swe Average refer to all porous zones since fracturing may man 10% porosity cut off does not apply.
- (1) Sand Unit nomenclature as per <u>Marlin Field Post Development Report 1986</u> B. Crowther. Internal Report, Esso Australia Ltd.

and the second second n 1995 - J. Brazona Mathana anna an Anna an Anna an Anna an Anna an Anna Mathana anna an Anna a en de la companya de la comp

BASIN GIARSLAND BASIN WELL NAME MARLIN-2 BY <u>David 713 VIDR</u> BY <u>David 713 VIDR</u> DAVE <u>20 April 1971</u> BLEV. <u>+31</u>

Fora	m Zonules		1 5		,	٤.,	ş §
		Highest Data	Quality	2 Way Time	Lowest Data	Quality	2 Way Time
	Alternate B	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)					
n and and and and	^B <u>Alternate</u> C <u>Alternate</u>	2019 (1977), 2019), 207 (2019), 207 (2019), 207 (2019), 2019), 2019), 2019 2019 (1981), 2019, 2019), 2019 (2019), 2019, 2019), 2019 2019 (2019), 2019, 2019, 2019, 2019, 2019, 2019), 2019			2800	3	
in some of the rate of the rat	0 Alternate	2900	3		3500	3	
	D2 Alternate E Alternate	2600	3				
WICCENE	P Alternate						
n an	G Alternate H ₁ Alternate	4100			4300	3	
and the second sec	H ₂ Alteroate	<u>4400</u> 4600	3		-4500 -4780	3	
EN	I Alternate		1999 - 1979 - 2019 - 2019 - 2019 1997 - 2019 - 2019 - 2019 1997 - 2019 - 2019 - 2019 1997 - 2019 - 2019 - 2019 - 2019			0.000 - 000	
OL LGOCENE	J Alternate		2011 - B. A. (2010) - C. (2010			**************************************	
	J <u>2 Alternate</u> K <u>Alternate</u>	а манала та каланата каканана примат калата на на на Па манала така какана на на Кака планата кака и манала практи прима на	andre and family and an and	U.S. NONROLLAND			
EOC.	Pre K	5/05	2		5/60	2. 2.	

COMMENTS: No conventional or sidewall cores in sequence down to 4730 - thus low reliability.

Note: If highest or lowest date is a 3 or 4, then an alternate 0, 1, 2 highest or lowest data will be filled in if control is available.

If a sample cannot be interpreted to be one zonule, as apart from the other, no entry should be made.

0 SWC or Core - Gomplete assemblage (very high confidence).
1 SWC or Core - Almost complete assemblage (high confidence).
2 SWC or Core - Close to zonule change but able to interpret (low confidence).
3 Cuttings - Complete assemblage (low confidence).
4 Cuttings - Incomplete assemblage next to uninterpretable or SWC with depth suspicion (very low confidence).

Date Rovied

 $\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} e^{i \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^2} e^{-i \frac{$

BASIN	GIPPSL	AND			DAT	Έ				¥	
WELL	NAME MARLIN	1-2			ELE	VATION	-+31fe	et_	/7		
		HI	GHEST	DATA	<u></u>		LOW	EST 1	DATA		• • • • • • • • • • •
AGE	PALYNOLOGIC ZONES	Preferred Depth	Rtg.	Alternate Depth	Rtg.	2 way time	Preferred Depth	Rtg	Alternate Depth	Rtg.	2 wa time
-JIC- IO.	<u>P</u> . <u>tuberculatus</u>									Ι	
	U. <u>N. asperus</u>										
	M. <u>N.</u> asperus										[
	L. N. asperus									<u> </u>	
NE	P. asperopolus	<i>48</i> 02	1				5/58	1			
EOCENE	U. <u>M. diversus</u>										
	M. <u>M. diversus</u>										
	L. <u>M. diversus</u>										
E	U. <u>L. balmei</u>	7402	1				7790	1			
EO	L. <u>L. balmei</u>	8055	1				8670	1			
PALEO	T. longus	9387	1				3 884	1			
	<u>T. lilliei</u>										
LEOUS	<u>N. senectus</u>										
	<u>C. trip./T.pach</u>	-									
CRFL.	<u>C</u> . <u>distocarin</u> .			·							
	<u>T. pannosus</u>								•		
EAF	RLY CRETACEOUS										
RI	E-CRETACEOUS										
	<i>T.D.</i>	10,007									
COMME	ENTS: <u>Wetze</u> <u>Ersena</u>	agellate <u>liella ho</u> <u>ckia cr</u>	2011 2011 2011	es <u>orpha Zo</u> a <u>bulata</u>	Zon	7- e 8.	402(i) — 276(2) [779 dou	0(1) btful]		
RATIN	1; SWC or pollen 2; SWC or and/or 3; CUTTING pollen 4; CUTTING micropl	and microp CORE, <u>GOOE</u> or microp CORE, <u>POOF</u> microplank S, <u>FAIR CC</u> or microp S, <u>NO CONF</u> ankton.	CONF CONF CONF CONF CONF CONF CONF CONF	on. IDENCE, as IDENCE, as NCE, assem n, or both E, assembla	sembla sembla blage age w	age with age with with zo ith non-	n zone spec n non-diagn one species -diagnostic	ies c ostic of e spon	of spores spores, either spo res, polle	and polle re an n and	n d /or
	Also, if an en better confide	try is giv	vena	3 or 4 con	fiden	ce ratir if possi	ng, an alte ble.	rnate		th a	
	RECORDED BY: Z.	FS				DATE /	Dec. 197	Ι.		2	

- 1

FORM No 8 315 17/72

			an - 9

APPENDIX 7.0

二百 金属 金

修

EXPENDITURE STATEMENT - SEPTEMBER 30, 1966

PETROLEUM EXPLORATION PERMIT NO.38

Lease Rent

\$5,290

Geophysical

Airborne Magnetometer

Marine Seismic -

	Haemex	\$185,664	
	Esso	654,498	\$840,162
•			

Drilling

Barracou	ta A-l	\$2,366,388	
	B-1	595 , 229	
Cod A-1		1,217,718	
Marlin	A-l	1,889,202	
. /	B-1	1,687,709	\$7,756,246
			• • •

Geological etc.

Geological Studies -		
Haemex	\$36,056	
Esso	47,941	
Geophysical Interpre- tation	19,569	
Laboratory Expenses	26,447	\$130,013

\$8,731,711 ========

MELBOURNE BMH:LAF (\[15.12.66.]

`.			TESTING	אייז איז MA	RLIN B-1					
Zone	Interval	Perforation Density	Packer Setting	Flow Duration	Choke 64"	Wellhead Pressure	Gas Rate	Fluid Rate	2 Fluid Gravity	
		-		Hrs.		'p.s.i.g.	MMCF/D	BBls/ MMCF	at 60 P	
		1								•
1.	5096-5107	4 shots/ft.	4960 & 4980 ft.	4	32	1127- 1220	5.76- 6.25	40	76	
2.	5147	2 shots/ft.	4950 ft.	· · · · · ·	No	fluid entry			 Second and the second a	
3.	5135-5149 5147-5152	4 shots/ft. 2 shots/ft.	4950 ft.			60-86	.021	775 BWPD*		
4.	5102-5117 5102-5117	4 shots/ft.2 shots/ft.	4950 ft.		No	fluid entry				-
5.	5096-5107	2 shots/ft.	4950 ft.	2.25	n.a.	1302	6. 0	40	74	
•			*	Water Salini		o.p.m. NaCl.	-	· · · · · · · · · · · · · · · · · · ·		
All_te	ests Latrobe	Valley Reservior			4 -					• *
		· ·	· · · ·							
			· ·							
a a secondaria de la composición de la Transmissione de la composición de la co							• • • • • • •		· · · · · · · · · · · · · · · · · · ·	
							÷		•	

nte ste plan je k فأفأ باداع درويتكم تهتك الالات in e pri 2 april 2 - 2 - 2 1.1 TESTING DATA ··· · MARLIN A-1 ----

.

i î ș Prestata

١.

.

ATTACHMENT 1

يهو مدور بعد الدار ديلون و

	Zone	Interval	Perforation Density	Packer Setting	Flow Duration Hrs.	Choke 64 Pos	,Wellhead Pressure p.s.i.g.	Gas Rate MMCF/D	Fluid Rate Bbls/ MMCF	Fluid Gravity at 60°F
							•	· · ·		
	1	7406-7466	4 shots/ft.	7 15 0	2.2	44.5	1650	10.9	-38.7	62
	· · ·	& 7514-7574 Upper Cretaceous							- - -	
-	2	5122-5137 Latrobe V. Coal Measures (oil zone)	2 shots/ft.	5089	3.0	58	900	1.07	1182 BOPD	51-53
, ,	3 •	5069-5077 Latrobe V. Coal Measures (tight gas zc		4930	6.08	29	684	1.9	25.7	76.8
	4.	4532-4552 Latrobe V. Coal Measures (gas zone)	2 shots/ft.	4472	2.0	42	713	4.6	26.2	72.2
	4.	4532-4552 (as above)	4 shots/ft.	4472	1.0	61	1275	8.3	57.6	74
	5.	4532-4552 & 4562-4582 Latrobe V.	4 shots/ft. 2 shots/ft.	4472	2.17	64	1448	10.2	44.6	72.7
	an An Anna an Anna Anna Anna Anna Anna A	Coal Measures (gas zone)	;				· · · · ·			

The Eastern Bass Strait seismic survey commenced on February 14 and the original programme in the Gippsland Basin (Permits 38 and 39) was completed in early April. Following the drilling of the Marlin A-1 well an additional programme of approximately 230 miles was shot during the period May 29 to June 24. These lines provided necessary data on several prospects in addition to adding control on all sides of the Marlin Field.

The total programme completed in the Permit Area was 807 miles during the survey. The total mileage of seismic shot in the study of the Gippsland Basin, i.e. Permits 38 and 39, is approximately 2,770 miles being equally divided between single-fold reconnaissance and six-fold C.D.P. detailed shooting.

Future Programme

The failure of Marlin B-1 well to prove or disprove the oil zone in the Latrobe Valley reservoir has required the drilling of an additional step-out well, Marlin C-1, and this is expected to commence before the expiry date. This well is scheduled to 5800 feet and authorisation to drill has been received from the Department. Prior to our knowledge of the need to drill Marlin C-l, application had been made and authorisation granted for the drilling of Halibut A-1 well, a wildcat location approximately This will 10 miles southeast from the Marlin Field. probably be the next exploratory well drilled by Esso under our agreement in the Gippsland Basin. Several prospects at the Eocene unconformity (Latrobe Valley) level, have been outlined by the recent seismic shooting and several leads will need to be followed by drilling or by additional shooting in the near future.

MELBOURNE BMH:LAF 14th December, 1966.

q,

MINES PETROLEUM ACT - SECTION 70(b)

REPORT OF OPERATIONS PETROLEUM EXPLORATION PERMIT NO.38

The Marlin A-1 well was completed on April 10 and following drilling of the wild-cat location in the Bass Basin the Marlin B-1 step-out well was drilled to 10,007 ft. At this depth the well was lost due to a combination of blowout and weather conditions. Drill pipe, collars and core barrel were cemented in the hole with the top of the fish at 5334 feet. This allowed normal production testing of the Latrobe Valley reservoir.

Results of the two wells in the Marlin Field may be summarized:

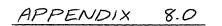
LOGISTICS

	Marlin A-1	Marlin B-1
Water Depth	197 feet	198 feet
Spud Date	December 5, 1965	May 30, 1966
Completed	April 10, 1966	November 3, 1966
Total Depth	8485 feet	10,007 feet
Status Status	Suspended gas and oil well.	Suspended gas well.

STRATIGRAPHY

Formation Top	Marlin A-1	Marlin B-1
Miocene	Sea Floor	Sea Floor
Lakes Entrance Formation	-4229 ft.	-4229 ft.
Latrobe Valley	-4491 ft.	-4699 ft.
Upper Cretaceous	-8439 ft. (Depth sub-sea)	-9002 ft.

TESTING DATA


(See Attachments 1 and 2).

HAEMATITE EXPLORATIONS PTY. LTD. REVIEW OF OPERATIONS DECEMBER 1966 Marlin PERSONNEL <u>Management</u> K.A. Rowell General Manager. **Technical** DILT B.M. Hopkins Supt. Geological (Petroleum) R.J. Foster Petroleum Engineer G.H. Hosking · Draughsman Gas Study Group - from May, 1965 W. M. Lonie Assist. General Manager, Raw Materials and Exploration G. D. Stephenson Planning & Development Officer, B.H.P. Co. M. Hunt Chief Combustion Engineer. A.I.S. Pty. Ltd. **Consultants** Lewis G. Weeks Consultant Geologist, U.S.A. Lyman C. Reed Consultant Geologist, U.S.A. James A. Clark Petroleum Engineer, U.S.A. James A. Flanagan Legal Consultant, U.S.A. Malcolm C. Baker Consultant Geophysicist, U.S.A. D.R. McCord & Petroleum Management Consultants Associates U.S.A. (Commenced 1.1.1966). Data Analysis Inc. Well Log Interpretation, Brisbane. 1944 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 -**Contractors**

Aero Service Ltd., Ramsgate, N.S.W.

Western Geophysical Co. of America, Los Angeles, U.S.A.

United Geophysical Corporation, Brisbane, Q'ld.

.

. *8* 78

i ja Sela Sela Kolo Alabargi

can.

HAEMATITE EXPLORATIONS PTY. LTD.

REVIEW OF OPERATIONS - DECEMBER 1966

PERSONNEL

Management

K.A. Rowell

Marlin B

General Manager.

Technical

B.M. Hopkins R.J. Foster G.H. Hosking Supt. Geological (Petroleum) Petroleum Engineer Draughsman

Raw Materials and Exploration.

Planning & Development Officer,

¢.

Assist. General Manager,

Chief Combustion Engineer,

Gas Study Group - from May, 1965:

W. M. Lonie

G. D. Stephenson

M. Hunt

<u>Consultants</u>

Consultant Geologist, U.S.A. Lewis G. Weeks Consultant Geologist, U.S.A. Lyman C. Reed Petroleum Engineer, U.S.A. James A. Clark James A. Flanagan Legal Consultant, U.S.A. Consultant Geophysicist, U.S.A. Malcolm C. Baker D.R. McCord & Petroleum Management Consultants U.S.A. (Commenced 1.1.1966). Associates Data Analysis Inc. Well Log Interpretation, Brisbane.

B.H.P. Co.

A.I.S. Pty. Ltd.

<u>Contractors</u>

Aero Service Ltd., Ramsgate, N.S.W.

Western Geophysical Co. of America, Los Angeles, U.S.A.

United Geophysical Corporation, Brisbane, Q'ld.

MINES PETROLEUM ACT - SECTION 70(b)

REPORT OF OPERATIONS PETROLEUM EXPLORATION PERMIT NO.38

The Marlin A-1 well was completed on April 10 and following drilling of the wild-cat location in the Bass Basin the Marlin D-1 step-out well was drilled to 10,007 ft. At this depth the well was lost due to a combination of blowout and weather conditions. Drill pipe, collars and core barrel were cemented in the hole with the top of the fish at 5334 feet. This allowed normal production testing of the Latrobe Valley reservoir.

Results of the two wells in the Marlin Field may be summarized:

LOGISTICS

		Marlin A-l	Marlin B-1
-	Water Depth	197 feet	198 feet
1	Spud Date	December 5, 1965	May 30, 1966
	Completed	April 10, 1966	November 3, 1966
	Total Depth	8485 feet	10,007 feet
	Status	Suspended gas and oil well.	Suspended gas well.

STRATIGRAPHY

Formation Top	Marlin A-1	Marlin B-I	
Miocene	Sea Floor	Sea Floor	
Lakes Entrance Formation	-4229 ft.	-4229 ft.	
Latrobe Valley \subset Complex	-4491 ft.	-4699 ft.	
 Upper Cretaceous	-8439 ft.	-9002 ft.	
	(Depth sub-sea)		

TESTING DATA

(See Attachments 1 and 2).

The Eastern Bass Strait seismic survey commenced on February 14 and the original programme in the Gippsland Basin (Permits 38 and 39) was completed in early April. Following the drilling of the Marlin A-1 well an additional programme of approximately 230 miles was shot during the period May 29 to June 24. These lines provided necessary data on several prospects in addition to adding control on all sides of the Marlin Field.

The total programme completed in the Permit Area was 807 miles during the survey. The total mileage of seismic shot in the study of the Gippsland Basin, i.e. Permits 38 and 39, is approximately 2,770 miles being equally divided between single-fold reconnaissance and six-fold C.D.P. detailed shooting.

Future Programme

The failure of Marlin 🔂 well to prove or disprove the oil zone in the Latrobe Valley reservoir has required the drilling of an additional step-out well, Marlin C-1, and this is expected to commence before the expiry date. This well is scheduled to 5800 feet and authorisation to drill has been received from the Department. Prior to our knowledge of the need to drill Marlin C-1, application had been made and authorisation granted for the drilling of Halibut A-1 well, a wildcat location approximately 10 miles southeast from the Marlin Field. This will probably be the next exploratory well drilled by Esso under our agreement in the Gippsland Basin. Several prospects at the Eocene unconformity (Latrobe Valley) level, have been outlined by the recent seismic shooting and several leads will need to be followed by drilling or by additional shooting in the near future.

MELBOURNE BMH:LAF 14th December, 1966.

inska filovo enemente filovo kana enero enerosta postoj enerosta postoj enerosta enerosta enerosta enerosta enerosta enerosta enerosta enerosta enerost				e de sebre en anno 2000 de la compañía de la compañ De la compañía de la c	e al al deple de la coloria de la coloria. No de la coloria de la deple de la coloria de la colori No de la coloria de la colori		und hör na son andrägen upper at 1995 och son andrägen at 1995 och son fränktigen at sin at 1996 och son fränktigen at sin at 1996 och son fränktigen at sin at sin at te son at 1996 och son fränktigen at sin at te son at	a an international and a second s International and a second s	TACHMENT	 Statistics and statistics and statiste and statistics and statistics and statistics and statistics
				TESTING	DATA – MAR	LIN A-1	A Line A Line A Line A Line A Line A Line A Line A Line A Line A Line	n (1997) (1997) (1997) National (1997) (1997) (1997) National (1997) (1997) (1997) (1997) National (1997) (1997) (1997) (1997) National (1997) (1997) (1997) (1997) National (1997) (1997) (1997) (1997) (1997) National (1997)	And a second secon	 The second second
gen Hanger († 111) 19. generation - Angeleine 19. generation - Angeleine							an an an Araba. An Araba		ು ಸಿಕ್ಕೆ ಗೋಷ್ಠ ಪ್ರಾಣಕ್ರಿ ಕಾರ್ಯಕ್ರಮ ಕಾರ್ಯಕ್ರಮ ಕಾರ್ಯಕ್ರಮ	energy a second se
	Zone	Interval	Perforation Density	Packer Setting	Flow Duration Hrs.	Choke 64ths	Wellhead Pressure p.s.i.g.	Gas Rate MMCF/D	Fluid Rate Bbls/ <u>MMCF</u>	Fluid Gravity at 60°F
• • • • • • • • • • • • • • • • • • •	1	7406-7466	4 shots/ft.	7150	2.2	44.5	1650	10.9	38.7	62
•		& 7514-7574 Upper Cretaceous							۰ ۲	
•	2	5122-5137 Latrobe V. Coal Measures (oil zone)	2 shots/ft.	5089	3.0	58	900	1.07	1182 BOPD	51-53
	3	5069-5077 Latrobe V. Coal Measures (tight gas zo		4930	6.08	29	684	1.9	25.7	76.8
	4.	4532-4552 Latrobe V. Coal Measures (gas zone)	2 shots/ft.	4472	2.0	42	713	4.6	26.2	72.2
	4.	4532–4552 (as above)	4 shots/ft.	4472	1.0	61	1275	8.3	57.6	74
	5.	4532-4552 &	4 shots/ft.	4472	2.17	64	1448	10.2	44.6	72.7
	an a	4562-4582 Latrobe V. Coal Measures (gas zone)	2 shots/ft.	, in the second se	a a transmission a sub- transmission a sub- na anna a transmission a sub- a a transmission		n an	an ta Marina da sa sa sa		

				TESTING	DATA - MA	RLINE			Amm a rear and a second	- C
	Zone	Interval	Perforation Density	Packer Setting	Flow Duration Hrs.	Choke 64"	Wellhead Pressure 'p.s.i.g.	Gas Rate MMCF/D	Fluid Fluid Rate Gravity BBls/ at 60 MMCF	
	1.	5096-5107	4 shots/ft.	4960 & 4980 ft.	4	32	1127- 1220	5.76- 6.25	40 76	••••••••••••••••••••••••••••••••••••••
	2. 3.	5147	2 shots/ft.	4950 ft.		No	fluid entry			
	3.	5135-5149 5147-5152	4 shots/ft. 2 shots/ft.	4950 ft.		•	60-86	•021	775 BWPD*	
	4.	5102-5117 5102-5117	4 shots/ft. 2 shots/ft.	4950 ft.		No	fluid entry			
	5.	5096-5107	2 shots/ft.	4950 ft.	2.25	n.a.	1302	6. 0	40 74	
			•	- * '	Water Salinit	ty 4200 F	.p.m. NaCl.	• •		
	<u>All te</u>	sts Latrobe	Valley Reservior	-	• • • •					• *
				• . •					• • • • • • •	
		ر به مراجع المراجع الم مراجع المراجع ال	алан (тарай) (т Селон (тарай) (т			۰.			na se en	
: - 	y septembries april and a source of the second s								 A second to be a second	

EXPENDITURE STATEMENT - SEPTEMBER 30, 1966

PETROLEUM EXPLORATION PERMIT NO.38

Lease Rent

\$5,290

Geophysical

Airborne Magnetometer

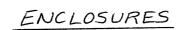
Marine Seismic -

Haemex \$185,664 Essò

\$840,162

654,498

Drilling


Barracou	ita A-l	\$2,366,388	
	B-1	595,229	
Cod A-1		1,217,718	
Marlin	A-1	1,889,202	
	B-1 J	1,687,709	\$7,756,246

Geological etc.

		*
Geological Studies -		
Haemex	\$36,056	
Esso	47,941	
Geophysical Interpre- tation	- 19,569	
Laboratory Expenses	26,447	\$130,013
	•	· · · · · · · · · · · · · · · · · · ·

\$8,731,711

MELBOURNE BMH:LAF ph 15.12.66.

Sec. Sec.

25900059900000

PE601516

This is an enclosure indicator page. The enclosure PE601516 is enclosed within the container PE905639 at this location in this document. 2523

The enclosure PE601516 has the following characteristics: ITEM BARCODE = PE601516CONTAINER_BARCODE = PE905639 NAME = Well Completion Log BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELL SUBTYPE = COMPLETION_LOG DESCRIPTION = Well Completion Log (enclosure from Well Summary) for Marlin-2 REMARKS = $DATE_CREATED = 03/11/1966$ DATE_RECEIVED = W_NO = W500 WELL_NAME = Marlin-2 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$

(Inserted by DNRE - Vic Govt Mines Dept)

PE601517

This is an enclosure indicator page. The enclosure PE601517 is enclosed within the container PE905639 at this location in this document.

The enclosure PE601517 has the following characteristics: ITEM_BARCODE = PE601517 CONTAINER_BARCODE = PE905639 NAME = Corelab Grapholog Core Laboratories BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELL SUBTYPE = MUD_LOG DESCRIPTION = Corelab Grapholog (enclosure from Well Summary) for Marlin-2 REMARKS = $DATE_CREATED = 25/09/1966$ DATE_RECEIVED = $W_NO = W500$ WELL_NAME = Marlin-2 CONTRACTOR = CORE LABORATORIES INC CLIENT_OP_CO = ESSO

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604013 is enclosed within the container PE905639 at this location in this document.

The enclosure PE604013 has the following characteristics: ITEM_BARCODE = PE604013 CONTAINER_BARCODE = PE905639 NAME = Completeion Coregraph BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Completion Coregraph (from Well Summary) for Marlin-2 REMARKS = $DATE_CREATED = 15/08/66$ DATE_RECEIVED = $W_NO = W500$ WELL_NAME = MARLIN-2 CONTRACTOR = CORE LABORATORIES INC. CLIENT_OP_CO = ESSO EXPLORATION AUSTRALIA INC.. (Inserted by DNRE - Vic Govt Mines Dept)

PE905640

This is an enclosure indicator page. The enclosure PE905640 is enclosed within the container PE905639 at this location in this document.

The enclosure PE905640 has the following characteristics: $ITEM_BARCODE = PE905640$ CONTAINER_BARCODE = PE905639 NAME = Time Depth Curve BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Time Depth Curve (enclosure from Well Summary) for Marlin-2 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W500$ WELL_NAME = MARLIN-2 CONTRACTOR = CLIENT_OP_CO = ESSO EXPLORATION AUSTRALIA INC..

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604014 is enclosed within the container PE905639 at this location in this document.

The enclosure PE604014 has the following characteristics: ITEM_BARCODE = PE604014 CONTAINER_BARCODE = PE905639 NAME = Computer Generated Logs and Log Analysis BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELLSUBTYPE = WELL_LOG DESCRIPTION = Computer Generated Logs and Log Analysis (enclosure from Well Summary) for Marlin-2 REMARKS = DATE_CREATED = $DATE_RECEIVED = 8/06/88$ $W_NO = W500$ WELL_NAME = MARLIN-2 CONTRACTOR =CLIENT_OP_CO = ESSO EXPLORATION AUSTRALIA INC..

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE905641 is enclosed within the container PE905639 at this location in this document. The enclosure PE905641 has the following characteristics: ITEM_BARCODE = PE905641 CONTAINER_BARCODE = PE905639 NAME = Oil Zone Tests Diagram BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Oil Zone Tests Diagram (enclosure from Well Summary) for Marlin-2 REMARKS = DATE_CREATED = 17/10/66DATE_RECEIVED = $W_{NO} = W500$ WELL_NAME = MARLIN-2 CONTRACTOR =CLIENT_OP_CO = ESSO EXPLORATION AUSTRALIA INC.. (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE905642 is enclosed within the container PE905639 at this location in this document.

The enclosure PE905642 has the following characteristics: ITEM_BARCODE = PE905642 CONTAINER_BARCODE = PE905639 NAME = Well Diagram BASIN = GIPPSLAND PERMIT = PEP/38TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Well Diagram (enclosure from Well Summary) for Marlin-2 REMARKS = DATE CREATED = DATE_RECEIVED = $W_{NO} = W500$ WELL_NAME = MARLIN-2 CONTRACTOR = CLIENT_OP_CO = ESSO EXPLORATION AUSTRALIA INC..

(Inserted by DNRE - Vic Govt Mines Dept)