

PETROLEUM DIVISION

·

ROUTINE CORE ANALYSIS REPORT of HALIBUT NO. 2 for ESSO AUSTRALIA LTD by ACS LABORATORIES PTY LTD 1 8 AUG 1995 20 July, 1995

Esso Australia Ltd 360 Elizabeth Street MELBOURNE VIC 3000

Attention: A. Mills

REPORT: 002-214 - WELL NAME: HALIBUT NO. 2

CLIENT REFERENCE: C

Contract No. 2710080 RFS No. 5

MATERIAL:

Core Plugs

LOCALITY:

Gippsland Basin

WORK REQUIRED:

Routine Core Analysis

Please direct technical enquiries regarding this work to the signatory below under whose supervision the work was carried out.

Per

W J'(Bill) DERKSEMA Laboratory Supervisor on behalf of ACS Laboratories Pty. Ltd.

ACS Laboratories Pty. Ltd. shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall ACS Laboratories Pty. Ltd. be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report.

Address:

P.O. Box 396, Chermside, Qld. 4032 Australia AC Telephone: 61 7 3350 1222 Facsimile: 61 7 3359 0666

CONTENTS

PAGE

LOG		1
INTR		1
STU	DY AIMS	1
1.		2
2.	SAMPLE DRYING	2
3.		2
4.	OVERBURDEN HELIUM INJECTION POROSITY	2
5.	APPARENT GRAIN DENSITY	3
6.	ABSOLUTE GRAIN DENSITY	3

PLOTS

-

POROSITY vs PERMEABILITY CROSSPLOTS	10
CORE PLOT	13

20 July, 1995

Esso Australia Ltd 360 Elizabeth Street MELBOURNE VIC 3000

Attention: A. Mills

FINAL DATA REPORT - ROUTINE CORE ANALYSIS

REPORT: 002-214 WELL NAME: HALIBUT NO. 2

LOGISTICS

246 core plugs were delivered to ACS Laboratories, Brisbane on 19 May 1995. The plugs (including vertical plugs) arrived stored in vials and consisted of 34 plugs from Core No. 1, 108 plugs from Core No. 2 and 104 plugs from Core No. 3.

INTRODUCTION

The following report includes tabular data of permeability to air, helium injection porosity and density determinations. Data presented graphically includes a core log plot of the above and a porosity versus permeability to air plot.

STUDY AIMS

The analyses were performed with the following aims:

1. To provide overburden air permeability, helium injection porosity and density data.

Samples were prepared and analysed as follows:

1. SAMPLE EXTRACTION

Plugs from Core Nos. 1, 2 and 3 were extracted initially in a Soxhlet with toluene solvent, followed by solvent Soxhlet extraction using 3:1 chloroform/methanol, providing a second clean to remove any remaining oil and salt. core plugs were removed and checked under ultraviolet light to ensure all hydrocarbons had been removed.

2. SAMPLE DRYING

After cleaning, all plugs were dried in a controlled humidity environment at 50°C and 50% relative humidity. The plugs were stored in an airtight plastic container and allowed to cool to room temperature before analysis.

3. OVERBURDEN AIR PERMEABILITY

The plugs are placed in a heavy duty Hassler sleeve. The assembly is loaded into a thick walled hydrostatic cell capable of withstanding the simulated reservoir overburden stress. The overburden pressure used, as supplied by Esso, was 4100 psi.

During the measurement a known air pressure is applied to the upstream face of the sample, creating a flow of air through the sample. Permeability for each sample is then calculated using Darcy's Law through knowledge of the upstream pressure and flow rate during the test, the viscosity of air and the plug dimensions.

4. OVERBURDEN HELIUM INJECTION POROSITY

Overburden Helium Injection Porosities are determined indirectly by the following method:

The apparent grain volume of each sample was measured by expansion of helium into the sample loaded in a matrix cup. The grain volume is derived by application of Boyle's law. The bulk volume of the sample is determined by mercury immersion. The sample is then loaded into a hydrostatic cell where the pore volume reduction, from ambient to the applied overburden stress is determined by measuring changes in the helium pressure within the pore space and applying Boyle's law. The reduction in the bulk volume is assumed to be equivalent to a reduction in the pore volume. Grain volume remains constant. Where samples are sleeved, corrections are made to account for the weight and volume of sleeves and screens.

5. **APPARENT GRAIN DENSITY**

The apparent grain density is determined by dividing the weight of the plug by the grain volume determined from the helium injection porosity measurement.

6. **ABSOLUTE GRAIN DENSITY**

A plug offcut, uncleaned and oven dried, is used for this measurement. The sample is crushed to approximately grain size or a little coarser and the granular material weighed. The volume of the grains is determined by pyconometry. By this means the actual density of the grains is determined.

On completion of the analysis the plug samples were re-wrapped in gladwrap and tissue, and are presently stored at ACS Laboratories for possible future studies.

We have enjoyed working for Esso and look forward to working with you in the near future.

END OF REPORT

Company ESSO AUSTRALIA LTD. Well HALIBUT No.2

 Core Interval
 Core 1: 2350.00-2356.60m

 Core Interval
 Core 2: 2410.00-2428.50m

 Core Interval
 Core 3: 2428.50-2447.00m

Overburden Pressure

Sample		Permeability		Grain I		
Number	Depth	to Air	Porosity	Calculated	Absolute	Remarks
	(meters)	(milliDarcy's)	(percent)	(g/cm ³)	(g/cm ³)	
1 R	2350.06	1.12	12.5	2.77	2.75	C#1 Slvd
3 R	2350.20	0.49	10.7	2.76	2.79	Sleeved
5 R	2350.40	0.16	11.3	2.84	2.89	
7 R	2350.61	0.35	11.5	2.86	2.84	
9 R	2350.80	0.07	8.6	2.77	2.78	
11 V	2350.95	0.06	10.1	2.76	2.75	Slv-Vert
13 R	2351.13	4192	17.6	2.69	2.67	Sleeved
14 R	2351.20	4665	18.5	2.68	2.65	Sleeved
16 R	2351.40	3237	17.1	2.70	2.66	Sleeved
20 R	2351.60	8244	19.2	2.70	2.67	Sleeved
25 R	2351.80	3037	16.5	2.75	2.67	Sleeved
27 V	2351.95	1.94	15.2	2.64	2.64	Slv-Vert
28 R	2352.06	11601	16.4	2.68	2.64	Sleeved
32 R	2352.25	12738	19.7	2.66	2.65	Sleeved
36 R	2352.40	5659	18.4	2.64	2.63	Sleeved
41 R	2352.60	508	14.7	2.64	2.63	Sleeved
46 R	2352.80	7827	17.9	2.64	2.62	Sleeved
48 R	2353.04	0.09	8.3	2.64	2.64	Sleeved
54 R	2353.25	1452	11.9	2.64	2.64	Sleeved
58 R	2353.40	8361	18.8	2.65	2.63	Sleeved
65 R	2353.65	15.6	12.4	2.63	2.62	Sleeved
69 R	2353.80	0.12	12.3	2.64	2.64	
73 R	2354.08	4918	16.6	2.66	2.62	Sleeved
76 R	2354.20	0.01	6.1	2.65	2.64	
81 R	2354.40	0.05	7.4	2.64	2.64	
86 R	2354.60	7097	18.7	2.64	2.62	Sleeved
91 R	2354.80	3.44	13.4	2.65	2.62	Sleeved
93 V	2354.95	0.05	13.0	2.61	2.62	Slv-Vert
94 R	2355.07	0.23	12.6	2.64	2.63	
97 R	2355.17	0.12	12.3	2.63	2.62	
02 R	2355.40	7199	16.8	2.69	2.66	Sleeved
05 R	2355.60	3106	14.7	2.65	2.63	Sleeved
07 R	2355.80	0.19	10.3	2.66	2.64	
12 R	2356.20	9183	23.4	2.66	2.65	B#1 Slvd
20 R	2410.08	587	20.3	2.65	2.63	C#2
23 R	2410.20	1364	21.6	2.65	2.63	
28 R	2410.39	1385	22.3	2.64	2.62	
33 R	2410.60	4852	22.7	2.64	2.62	
38 R	2410.82	615	22.2	2.65	2.64	
40 V	2410.95	1114	24.4	2.64	2.62	Vertical
41 R	2411.03	2507	25.3	2.64	2.62	
45 R	2411.25	1256	23.6	2.65	2.63	

Company ESSO AUSTRALIA LTD. Well HALIBUT No.2
 Core Interval
 Core 1: 2350.00-2356.60m

 Core Interval
 Core 2: 2410.00-2428.50m

 Core Interval
 Core 3: 2428.50-2447.00m

Overburden Pressure

Sample		Permeability		Grain Density		
Number	Depth	to Air	Porosity	Calculated	Absolute	Remarks
	(meters)	(milliDarcy's)	(percent)	(g/cm ³)	(g/cm ³)	
150 R	2411.40	851	22.6	2.64	2.62	
152 R	2411.60	3003	23.5	2.65	2.63	
154 R	2411.80	6252	20.8	2.66	2.65	
156 V	2411.95	3824	20.4	2.65	2.64	Vertical
157 R	2412.03	3119	18.0	2.65	2.63	
161 R	2412.25	4725	18.3	2.66	2.65	
165 R	2412.40	16873	22.4	2.66	2.64	
169 R	2412.55	16410	21.9	2.65	2.63	
74 R	2412.80	14558	21.3	2.67	2.64	
176 V	2412.95	16793	22.9	2.65	2.64	Vertical
177 R	2413.04	12974	22.0	2.65	2.63	
181 R	2413.20	17308	22.6	2.66	2.63	
185 R	2413.40	17072	18.5	2.66	2.64	
189 R	2413.60	15997	18.4	2.66	2.64	
194 R	2413.80	18268	20.8	2.66	2.64	
196 V	2413.95	16344	18.4	2.66	2.64	Vertical
197 R	2414.03	17419	21.2	2.66	2.66	
199 R	2414.20	17540	21.5	2.66	2.65	
201 R	2414.40	17759	21.2	2.66	2.64	Sleeved
203 R	2414.60	14362	20.0	2.65	2.63	Sleeved
205 R	2414.80	5622	16.3	2.65	2.64	Sleeved
207 V	2414.95	2559	13.4	2.64	2.64	Vertical
208 R	2415.04	4195	14.6	2.65	2.63	
210 R	2415.20	3857	15.8	2.65	2.64	
212 R	2415.40	6917	16.9	2.65	2.64	
214 R	2415.60	8004	16.7	2.65	2.64	
584 R	2415.95	< 0.01	3.4	2.70	2.75	C#2 Ver
585 R	2416.07	< 0.01	4.4	2.70	2.70	
587 R	2416.20	0.01	5.3	2.71	2.71	
589 R	2416.40	0.05	7.0	2.69	2.67	
591 R	2416.60	< 0.01	7.5	3.01	3.15	
218 R	2416.80	0.18	10.6	2.68	2.66	
593 V	2416.95	7.41	16.9	2.68	2.72	Vertical
220 R	2417.04	19.3	17.0	2.68	2.66	
222 R	2417.20	0.74	11.8	2.66	2.65	
224 R	2417.40	3.66	13.3	2.66	2.64	
226 R	2417.60	0.07	8.2	2.65	2.62	
228 R	2417.80	0.03	8.2	2.70	2.67	
230 V	2417.95	0.07	10.2	2.69	2.69	Vertical
231 R	2418.03	0.40	11.5	2.68	2.67	
233 R	2418.20	0.07	9.1	2.71	2.66	
237 R	2418.40	0.08	9.7	2.72	2.70	

CompanyESSO AUSTRALIA LTD.WellHALIBUT No.2

 Core Interval
 Core 1: 2350.00-2356.60m

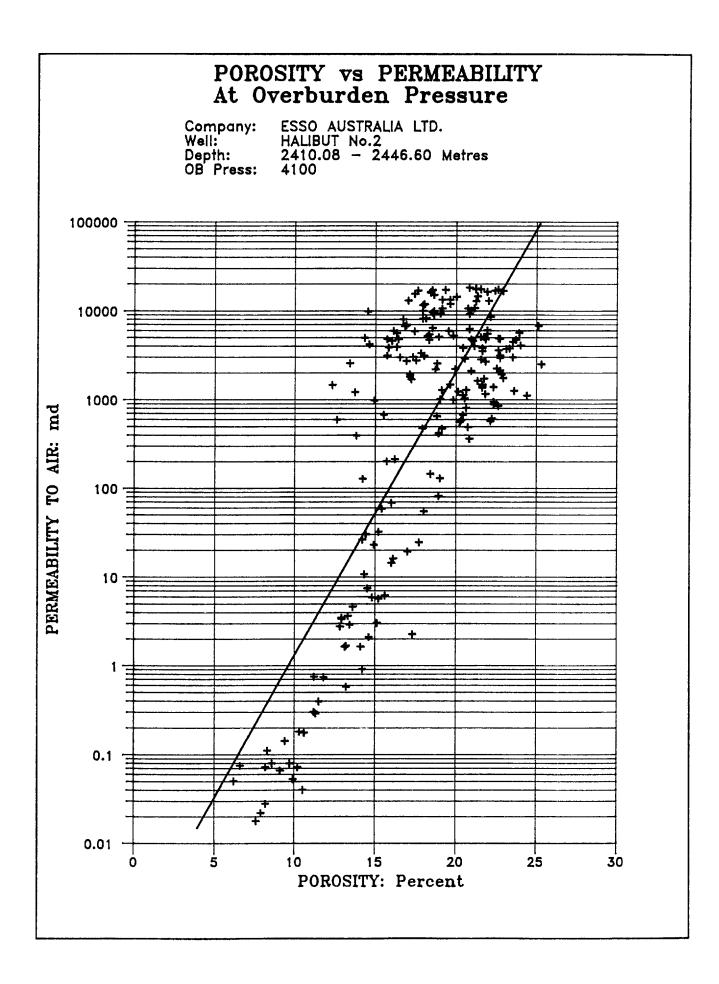
 Core Interval
 Core 2: 2410.00-2428.50m

 Core Interval
 Core 3: 2428.50-2447.00m

Overburden Pressure

		Permeability		Grain I		
Number	Depth	to Air	Porosity	Calculated	Absolute	Remarks
	(meters)	(milliDarcy's)	(percent)	(g/cm ³)	(g/cm ³)	
242 R	2418.60	1.68	13.2	2.70	2.66	
244 R	2418.80	0.18	10.3	2.65	2.63	
246 V	2418.95	1.64	14.1	2.64	2.62	Vertical
247 R	2 419.03	68.5	16.0	2.65	2.63	
249 R	2419.20	0.29	11.3	2.66	2.63	
251 R	2419.40	130	19.0	2.65	2.62	
253 R	2 419.60	58.3	15.4	2.66	2.63	
255 R	2419.80	32.1	15.2	2.66	2.63	
257 V	2419.95	0.57	13.2	2.65	2.62	Vertical
258 R	2420.03	4.63	13.6	2.65	2.64	
260 R	2420.20	26.3	14.2	2.66	2.64	
262 R	2420.35	2192	18.7	2.65	2.63	
266 R	2420.55	1155	21.8	2.67	2.66	
270 R	2420.80	421	18.9	2.69	2.71	
272 V	2420.95	0.91	14.2	2.70	2.69	Vertical
273 R	2421.03	23.0	14.9	2.73	2.71	
275 R	2421.20	1281	19.1	2.68	2.66	
275 R 277 R	2421.40	5680	23.9	2.65	2.64	
279 R	2421.60	6806	25.1	2.65	2.63	
281 R	2421.80	2115	22.7	2.65	2.64	
283 V	2421.95	1473	19.6	2.65	2.64	Vertical
285 V 284 R	2422.03	1917	22.8	2.64	2.62	
286 R	2422.20	3126	22.7	2.65	2.65	
292 R	2422.45	2934	22.7	2.65	2.65	
294 R	2422.60	3720	23.1	2.64	2.64	
296 R	2422.80	4745	23.7	2.64	2.64	
298 V	2422.95	361	20.8	2.65	2.64	Vertical
299 R	2423.04	213	16.2	2.67	2.66	
301 R	2423.20	4459	23.5	2.64	2.63	
303 R	2423.40	2229	22.5	2.65	2.64	
305 R	2423.60	3757	23.3	2.66	2.64	
307 R	2423.80	3587	22.6	2.65	2.63	
	2423.80	4078	24.0	2.64	2.62	Vertical
309 V		1464	21.6	2.65	2.62	· critical
310 R	2424.03	1740	22.9	2.65	2.61	
312 R	2424.20		19.8	2.65	2.61	
314 R	2424.40	994		2.63 2.67	2.65	Vertical
320 V	2424.95	0.02	7.6		2.63	verticar
321 R	2425.03	0.05	6.2	2.62	2.62	
323 R	2425.20	0.08	8.6	2.64 2.66	2.62	
325 R	2425.40	0.05	9.9 7.0			
327 R	2425.60	0.02 0.03	7.9 7.4	2.62 2.63	2.64 2.61	VF

CompanyESSO AUSTRALIA LTD.WellHALIBUT No.2


 Core Interval
 Core 1: 2350.00-2356.60m

 Core Interval
 Core 2: 2410.00-2428.50m

 Core Interval
 Core 3: 2428.50-2447.00m

Overburden Pressure

Sample		Permeability		Grain I		
Number	Depth	to Air	Porosity	Calculated	Absolute	Remarks
	(meters)	(milliDarcy's)	(percent)	(g/cm ³)	(g/cm ³)	
331 V	2425.95	< 0.01	6.8	2.63	2.61	Vertical
332 R	2426.04	7.46	14.5	2.63	2.62	
334 R	2426.20	202	15.7	2.63	2.62	
336 R	2426.40	951	22.3	2.63	2.62	
341 R	2426.60	54.6	18.0	2.63	2.63	
343 R	2426.80	145	18.4	2.63	2.63	
345 V	2426.95	24.5	17.7	2.63	2.63	Vertical
346 R	2427.04	1231	20.1	2.64	2.63	
348 R	2427.20	1689	17.2	2.64	2.63	
350 R	2427.40	652	18.8	2.58	2.57	VF
352 R	2427.60	676	15.5	2.61	2.62	
354 R	2427.80	30.1	14.4	2.64	2.63	
356 V	2427.90	16.0	16.1	2.64	2.64	Vertical
357 R	2428.00	5.89	14.8	2.62	2.60	
359 R	2428.19	491	20.7	2.65	2.64	
361 R	2428.35	81.4	18.9	2.66	2.66	B#2
365 R	2428.80	.11	8.3	2.67	2.66	C#3
369 R	2429.22	.30	11.2	2.66	2.66	
373 V	2429.45	2.27	17.3	2.64	2.63	Vertical
374 R	2429,60	886	22.3	2.65	2.63	
376 R	2429.80	571	22.1	2.65	2.64	
881 R	2430.00	807	20.6	2.64	2.65	
384 R	2430.20	1031	20.5	2.64	2.64	
388 V	2430.45	< 0.01	3.9	2.58	2.61	Vertical
389 R	2430.60	472	19.1	2.64	2.65	
391 R	2430.80	1117	20.4	2.64	2.63	
393 R	2431.00	1626	21.3	2.64	2.63	
395 R	2431.20	2.90	13.4	2.66	2.64	
97 R	2431.40	3.48	12.9	2.63	2.63	
399 V	2431.45	2.10	14.6	2.65	2.66	Vertical
400 R	2431.60	2.77	12.8	2.65	2.64	
02 R	2431.80	14.3	16.0	2.65	2.64	
404 R	2432.00	1.63	13.1	2.65	2.64	
106 R	2432.20	.08	6.6	2.62	2.64	VF
408 R	2432.40	475	17.9	2.54	2.57	Coaly
410 V	2432.45	1015	19.0	2.60	2.59	Vertical
411 R	2432.60	1395	21.6	2.60	2.62	
413 R	2432.80	1719	21.7	2.63	2.71	
415 R	2433.00	3801	21.6	2.63	2.64	
417 R	2433.20	2885	20.5	2.63	2.65	
419 R	2433.40	2669	21.8	2.64	2.64	
421 V	2433.45	2834	21.5	2.64	2.63	Vertical

CORE PLOT

CompanyESSO AUSTRALIA LTD.WellHALIBUT No.2

 Core Interval
 Core 1: 2350.00-2356.60m

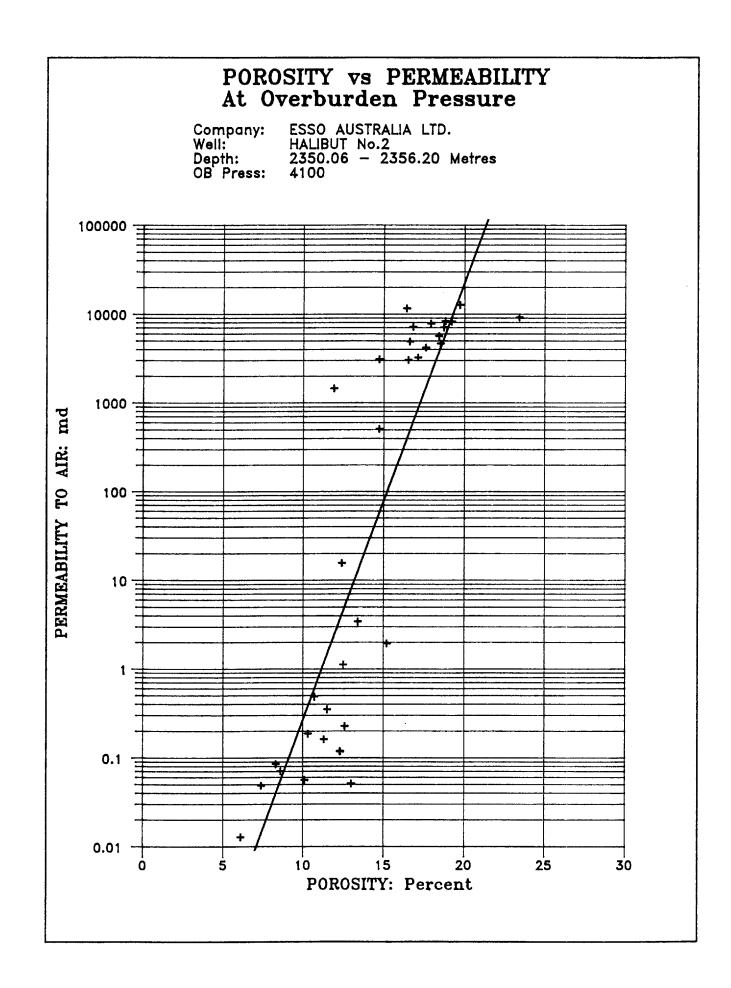
 Core Interval
 Core 2: 2410.00-2428.50m

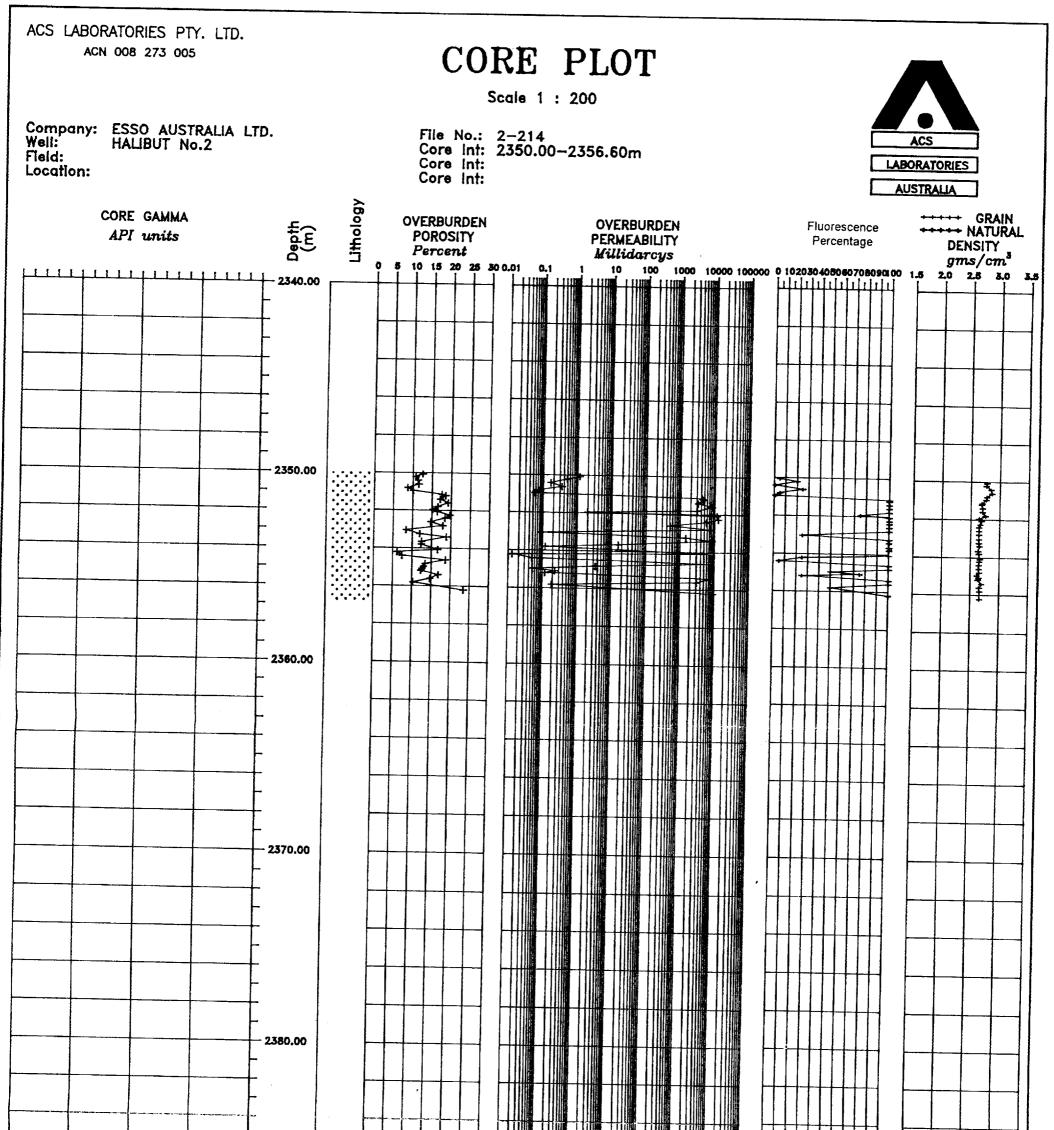
 Core Interval
 Core 3: 2428.50-2447.00m

Overburden Pressure

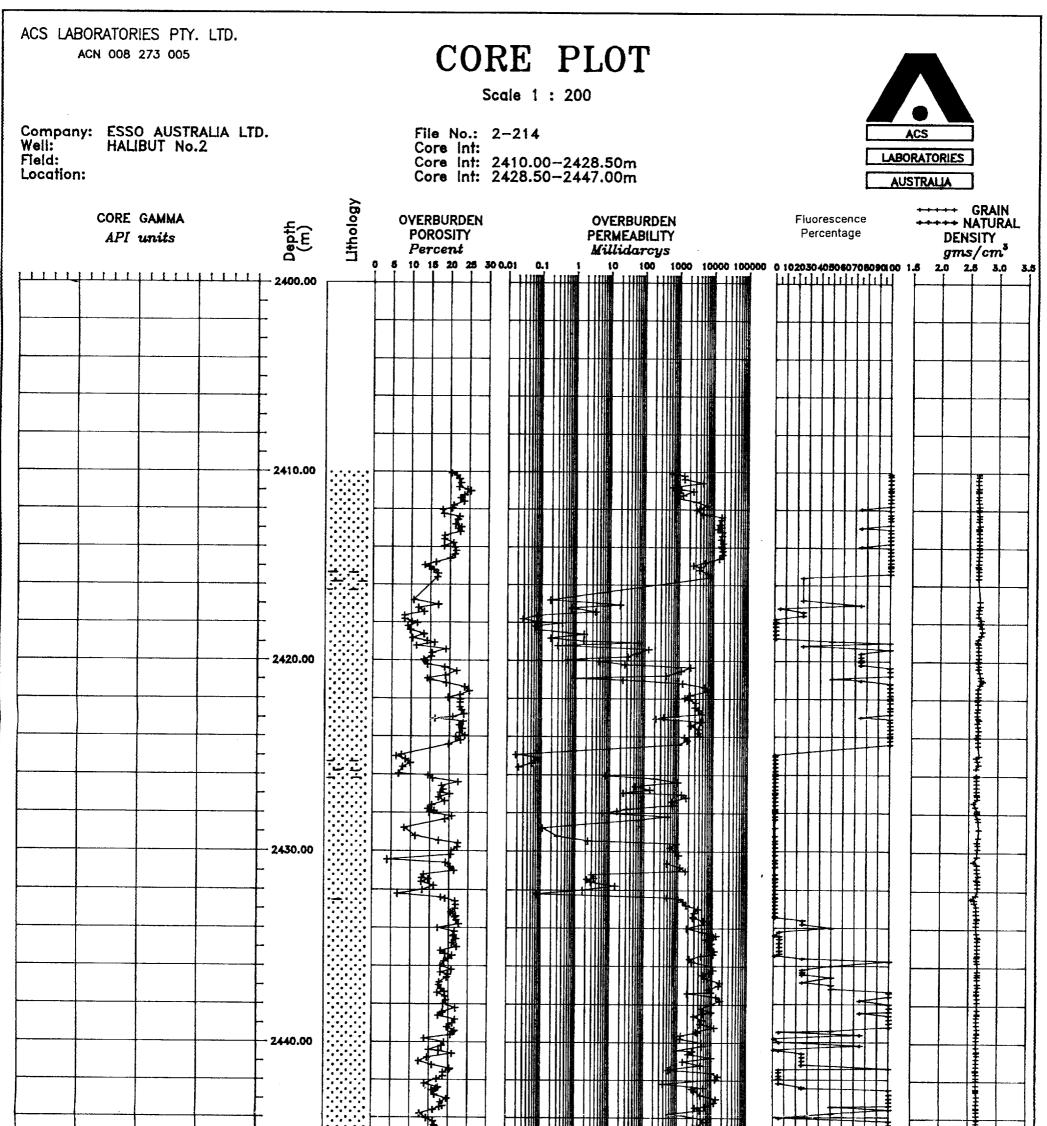
Sample		Permeability		Grain I		
Number	Depth	to Air	Porosity	Calculated	Absolute	Remarks
	(meters)	(milliDarcy's)	(percent)	(g/cm ³)	(g/cm ³)	
22 R	2433.60	5507	21.9	2.63	2.62	
27 R	2433.80	4900	22.6	2.63	2.61	
29 R	2434.00	1800	17.1	2.63	2.63	
31 R	2434.20	5062	21.5	2.64	2.64	
33 R	2434.40	12866	21.2	2.65	2.65	
35 V	2434.45	10723	21.1	2.66	2.64	Vertical
36 R	2434.60	6071	21.9	2.65	2.64	
38 R	2434.80	9236	20.8	2.65	2.64	
40 R	2435.00	8595	22.1	2.65	2.64	
42 R	2435.20	11520	17.9	2.65	2.64	
44 R	2435.36	10615	19.1	2.65	2.64	
48 V	2435.45	4769	20.9	2.64	2.64	Vertical
49 R	2435.60	2193	19.9	2.64	2.64	
51 R	2435.75	2543	18.8	2.65	2.64	
55 R	2436.00	9991	17.9	2.66	2.65	
57 R	2436.20	10614	20.7	2.65	2.64	
59 R	2436.34	8170	17.9	2.65	2.65	
63 V	2436.45	5237	19.8	2.65	2.64	Vertical
64 R	2436.60	5925	19.5	2.65	2.66	
68 R	2436.85	16837	17.6	2.65	2.65	
70 R	2437.00	15507	17.4	2.66	2.67	
72 R	2437.20	8244	18.1	2.64	2.66	Sleeved
74 V	2437.35	9309	19.0	2.64	2.64	Vertical
75 R	2437.40	1908	17.1	2.64	2.65	
77 R	2437.60	13362	19.1	2.65	2.64	
79 R	2437.80	17205	19.3	2.65	2.64	
81 R	2438.00	9120	18.6	2.65	2.63	
83 R	2438.20	4771	21.8	2.65	2.63	
85 R	2438.40	9593	18.5	2.65	2.64	
87 R	2438.45	5424	18.3	2.65	2.64	Slv-Vert
88 R	2438.60	3007	17.3	2.64	2.63	
90 R	2438.80	5099	21.7	2.64	2.64	
92 R	2439.00	4599	21.0	2.64	2.64	
94 R	2439.20	11906	19.6	2.65	2.62	
96 R	2439.40	3496	21.6	2.65	2.64	
98 R	2439.45	3968	21.1	2.65	2.64	
99 R	2439.60	1280	20.6	2.64	2.64	
01 R	2439.80	1211	13.7	2.64	2.62	
03 R	2440.00	5084	18.9	2.64	2.64	
05 R 05 R	2440.18	5198	18.2	2.64	2.65	
07 R	2440.18	973	14.9	2.65	2.66	
09 V	2440.40 2440.45	2749	17.5	2.64	2.66	Vertical

Company ESSO AUSTRALIA LTD. Well HALIBUT No.2
 Core Interval
 Core 1: 2350.00-2356.60m


 Core Interval
 Core 2: 2410.00-2428.50m


 Core Interval
 Core 3: 2428.50-2447.00m

Overburden Pressure


Sample		Permeability		Grain I	Density	
Number	Depth	to Air	Porosity	Calculated	Absolute	Remarks
	(meters)	(milliDarcy's)	(percent)	(g/cm ³)	(g/cm ³)	
510 R	2440.60	2096	20.9	2.65	2.63	
512 R	244 0.80	9841	14.5	2.64	2.64	
514 R	2441.00	1455	12.3	2.64	2.63	
516 R	2441.20	4786	15.7	2.64	2.64	
518 R	2441.40	671	20.4	2.63	2.64	
520 V	2441.45	558	20.2	2.63	2.63	Vertical
522 R	2441.60	9998	18.6	2.64	2.64	
523 R	2441.80	15082	18.6	2.64	2.63	
525 R	2441.95	12998	17.0	2.64	2.64	
527 R	2442.20	394	13.8	2.64	2.63	
529 R	2442.40	5896	17.4	2.64	2.65	
531 V	2442.45	2711	16.9	2.64	2.63	Vertical
532 R	2442.55	3111	15.7	2.64	2.62	
536 R	2442.80	4787	16.4	2.65	2.65	
538 R	2443.00	13347	19.6	2.65	2.65	
540 R	2443.20	11865	18.0	2.64	2.65	
542 R	2443.40	6402	18.5	2.64	2.63	
544 V	2443.45	3310	17.8	2.64	2.64	Vertical
545 R	2443.60	4589	16.0	2.63	2.63	
547 R	2443.80	594	12.6	2.64	2.65	
549 R	2444.03	4952	14.3	2.65	2.65	
551 R	2444.20	5959	16.1	2.64	2.65	
553 R	2444.40	3904	16.3	2.64	2.64	
555 V	2444.45	2986	16.5	2.64	2.65	Vertical
556 R	2444.60	6681	16.8	2.65	2.64	
558 R	2444.80	10064	20.9	2.64	2.63	
560 R	2445.00	127	14.2	2.65	2.65	
562 R	2445.20	0.14	9.4	2.62	2.62	
564 R	2445.40	6.20	15.6	2.62	2.63	
566 V	2445.45	3.04	15.1	2.59	2.62	Vertical
567 R	2445.60	3.37	12.9	2.61	2.62	
569 R	2445.80	5.72	15.2	2.63	2.64	
575 R	2446.20	10.7	14.3	2.62	2.61	
577 R	2446.40	0.75	11.2	2.60	2.60	
579 V	2446.45	0.04	10.5	2.66	2.68	Vertical
580 R	2446.60	< 0.01	4.3	2.67	2.66	

POROSITY vs PERMEABILITY CROSSPLOT

2400.00

		A A A A A A A A A A A A A A A A A A A	「11111日」(1111日)(11月時間)(11月1日)	
				4
2460.00				
	2450.00			