

ESSO AUSTRALIA LTD.

SUBSIDY REPORT

COBIA-1, VICTORIA, AUSTRALIA

ΒY

W. THRELFALL J. BLACK D. McEVOY

> Esso Australia Ltd. November 1972.

¥.

- I. SUMMARY Drilling
 Geological
- INTRODUCTION II.

TTT	LIGT T	HISTORY
III.	WELL	HISLORI

- (1) General Data
- Drilling Data (2)
- (3) Location
- (4) Sampling
- (5) Logging & Surveys(6) Testing
- IV. GEOLOGY

Summary of Previous Work
 Regional Geology

(3) Stratigraphic Table(4) Stratigraphic Description

- (5) Structure
- (6) Hydrocarbon Occurrence(7) Revelance to Geological Concepts(8) Porosity and Permeability
- REFERENCES V.
- VI. ENCLOSURES

Refer to attached Folder

APPENDICES.

I.	Palynological Report
II.	Palaeontological Report
III.	Oil, Gas and Water Analysis
IV.	Description of Well Cuttings Samples
V.	Description of Conventional and Sidewall Cores and Core Analysis
VI.	List and Interpretation of Wireline Logs and Surveys
VII.	Test Data.

I <u>SUMMARY</u>

649 Cobra - 1

(1) Drilling

Cobia-1 was drilled to a T.D. of 8511' by Global Marine's floating rig "Glomar Conception". The rig commenced operations on August 3, 1972. The well was spudded on August 4, 1972 and completed on August 27, 1972. Total rig time was 23.5 days.

Casing was set at 737' (20" in 26" hole) and 2756' (10½" in 13½" hole).

The well was plugged over the intervals 7950'-7530', 2850' - 2520' and 550' - 350'. The well head and pile joint were shot off and pulled to surface.

(2) <u>Geological</u>

Miocene to Recent marls, limestones and mudstones were drilled to -7290' and were underlain by impervious Oligocene fossiliferous mudstones and marls to -7782'. At this depth the top of the Latrobe Group was encountered within 30' of prediction. The Latrobe Group was composed of Lower Eocene and Paleocene sandstones, shales and coals.

At the top of the Latrobe Group, beneath the Gurnard Formation, a gross oil column of 74' was discovered having 18' of net effective and another 16' of possible net effective sandstone reservoir above the oil-water contact at -7866'.

II INTRODUCTION

The Cobia-1 well was designed to test a low relief anticlinal feature on the top of the Latrobe Group located to the west of the Mackerel Field and south-west of the Halibut Field.

A seismic time map to the top of the Latrobe Group over the feature exhibits no closure. However, when the interpreted average velocities to that mapped horizon are used to calculate depths, the resulting structure map shows a closed, broad anticlinal feature having approximately 110' of relief.

As the crest of the feature lay directly under the Kingfish-Halibut 20' pipeline the well was located down-dip, to the west, outside a 2,500' safety corridor.

III WELL HISTORY

- 3 -

649. 1 Colia - 1.

- (1) <u>General Data</u> (i) <u>Well Name and Number</u> Cobia-1
 - (ii) <u>Operator and Address</u> Esso Exploration and Production Australia Inc., c/- Price Waterhouse Nominees (Victoria) Pty. Ltd., The National Mutual Centre, 447 Collins Strect, MELBOURNE. VICTORIA. 3000.
 - (iii) Title Holder and Address
 Hematite Petroleum Pty. Ltd.,
 459 Little Collins Street,
 MELBOURNE. VICTORIA. 3000.
 - (iv) <u>Petroleum Title</u> Petroleum Production Licence Vic. L/5
 - (v) <u>District</u> A.M.G. Zone 55
 - (vi) <u>Location</u> Latitude 38[°] 27' 26.75" S. Longitude 148[°] 17' 01.27" E.
 - (vii) Elevation (a) -239' Seafloor (b) + 32' KB
 - (viii) Total Depth 8511'
 - (ix) <u>Spud Date</u> August 4, 1972
 - (x) Date T.D. Reached August 24, 1972
 - (xi) Date of Completion August 27, 1972
 - (xii) <u>Rig Released</u> August 27, 1972
 - (xiii) Drilling Time Total Drilling time 23.5 days (actual time on bottom 7.5 days)
 - (xiv) <u>Status</u> Plugged and abandoned
 - (xv) <u>Total Cost</u> \$858,000
- (2) Drilling Data
 - (i) <u>Name and Address of Drilling Contractor</u> Global Marine A/Asia Pty. Ltd.
 380 Lonsdale Street, MELBOURNE. VICTORIA. 3000

Drilling Plant (ii)Make: National 1625 Diesel Electric Type: Rated Capacity with 25000 ft. with 5" drill pipe drill pipe used: Motors: General Electric (X2) Caterpillar (X8) Make: Diesel Electric D398 V12 Diesel Type: 752 DI x 2 8720 Intermittent BHP: 6800 Consinuous

(iii) Derrick Make:

Built by Continental EMSCo. using a Global Marine Design(142) Standard type with travelling block guide rails. 1,000,000 lb. Rated Capacity:

(iv) Pumps

Type:

Make:	National x 2
Type:	N1300
Size:	1300 HP each
Pump Motors	-
Make:	General Electric
Type:	DC Electric
BHP:	752 - 2 per pump

- (v)Blowout Preventer Equipment Vetco/Shaffer/Cameron/Hydril Make: 3 Cameron, 1 Shaffer ram-type Preventers Type: l Shaffer, l Hydril bag-type Preventer. 16%" for 5" drill pipe Size: 1500; 5000 psi working pressure API Series:
- (vi) Hole Sizes & Depths Conductor Hole: 26" @ 802' KB Surface Hole: 13³/⁴ @ 2829' KB Exploration Hole:9-7/8'' @ 8511' KB

(vii)	Casing	& Liner Cemer	nting Details		
	Size	Weight	Grade	Range	Depth Set
	20"	91.5 lb/ft.	X-52 LP	3	737' KB
	10칼''	40.5 1b/ft.	J55	3	2756' KB

	20''	10월"
Position of Float Collar	N/A	Top of Bottom Jt.
Position of Float Shoe	Bottom of String	Bottom of String
No. of Centralizers	6	10
Position of Centralizers	Top and Bottom of Bottom Joint Top of 2nd Joint Free on 4th,5th 6th Joints	Top and Bottom of lst Joint One on every 2nd Joint over 16 Joints total
No. of Scratchers	Nil	Nil
Position of Scratchers	-	-
Cement used	1135 sx	530 sx
Top of Cement	Sea Floor	1500' est.
Method used (plug, multi-stage, etc.)	N/A	N/A

(viii)Drilling Fluid

Type: Lignosulphonate Fresh Water Average Weight: Mud 9.7 ppg Brief Details of Treatment, average weekly analysis:

Mud pumped over shale shaker and through de-sander and de-silter. Thinning accomplished by addition of fresh water, Q-Broxin and CC16.

WT.	FV.	WL.	F/CAKE	pH.	SAND
9.7	47	5.2	1/32	9.5	Nil

..../5

List of Types and quantity of Mud materials and chemicals consumed: Barytes

Barytes	1650 sx
Gel	650 sx
Caustic	4300 lb
Lignosulphona	te 240 sx
Lignite	100 sx

Nitrate added to the mud system was used as tracer indicating filtrate recovery on formation testing. From 7100', the desired concentration of nitrate was maintained in the range 120-180 PPM using 51b of commercial pellet fertilizer per 100 bbls of mud.

- (ix) <u>Water Supply</u> Barry's Beach tap water transported by workboats.
- (x) <u>Perforation & Shooting Record</u> Nil

(xi) (a) <u>Plugging Back Cementation Jobs</u>

	⊥	۷.	3.
Length and Type of plug:	420'	330'	200'
	15.6 ppg	15.6 ppg	15.6 ppg
No. of Sacks used:	253 sx .	184 sx	95 sx
Methods used:	Displacement	through drill	pipe
Whether plug job was			
satisfactorily tested:	Yes	Yes	Yes

(b) <u>Squeeze Cementation Job</u> Nil

(xii) Fishing Operation

Nil

(xiii)Side-tracked Hole Nil

(3) Location

(i) Site Investigations Carried out

Due to proximity of the Kingfish-Halibut pipeline to the recommended wellhead location, a survey of the pipeline including the use of sidescan sonar, was carried out by workboats and the pipeline buoyed off by divers. Only then was the drillship permitted to run anchors outside a 2500' safety corridor.

- (ii) Anchoring Methods 10 x 30,000 lb. anchors were laid by workboats in a $40^{\circ}/80^{\circ}$ pattern on an average radius of 1800 ft.
- (iii) Transportation

1. Helicopters from Longford

- 2. Workboats from Barry's Beach and Lakes Entrance
- (4) <u>Sampling</u> (i) Di

Ditch Cuttings

From 850' 6 sets of washed and dried samples every 10' to T.D. 1 set of unwashed, bagged samples every 10', 1 canned sample every 100'. All samples were lagged and caught off a standard shale shaker by Baroid Mud-logging personnel under the supervision of an Esso Wellsite geologist.

A set of washed and dried samples was: taken for Hematite, Vic. Mines, Bureau of Mineral Resources and Bureau of Mineral Resources - Subsidy Section. Esso retained 2 sets, 1 for palaeontological processing and the other for storage. - 6 -

(ii) Coring

Core No.	Interval Cored	Footage Cut	Recovery in Feet	Recovery %
1	7840! - 78455	5 ¹ 2	5 ¹ 2	100
2	78452'- 7882'	36 ¹ 2	3612	100
3	7881' - 7911'	30	17	57
4	7911 ' - 7925'	14	13	93
	TOTAL	86	72	84%

N.B. The 13' of core lost in Core #3 was probably recovered in Core #4 as indicated by the Oil/Water Contact in Core #4. Cores 1, 2 and 3 should be adjusted up 7 ft. to fit the ISF log. Core #4 should be adjusted upward 20 ft.

For a full description of each core see Appendix V.

(iii) Sidewall Sampling

Sidewalls were taken by Schlumberger wireline device. 30 cores from one gun were attempted and 28 recovered.

Depth	Recovered	Depth	Recovered
8390'	Fragments	· 7836'	1"
8270'	No recovery	7830'	1_11 21 3_11
8150'	3211	. 7821'	3-11
8085'	111	7817 '	3211
8012'	1211	7810 '	118"
7960'	12"	7800'	11/8"
7930'	111	7790'	12"
7920'	5/8"	7780 '	138"
7912'	1"2"	7770'	138"
7904'	5/8"	7760'	13."
7892'	270 L'''	7750'	1"
7884'	1 '' 2 1 '' 2	7740	1 ³ 8''
7876 '	1"	7730'	1 ³ 8''
7862		7720'	1눈''
7854'	1 11 2 3 11 2	7710'	138''

All samples were retained by Esso for palaeontological processing. Any residue or unused portions were placed in storage. For full descriptions see Appendix V.

(5)

Logging & Surveys

(i) Electric Logging

Log	Interval	Scale
ISF-SCT FDC-CNL-GR-CAL	2773 - 8425' 7600 - 8431' (GR to 372')	2" & 5" 2" & 5"
HDT	7600 - 8430'	2" & 5"

Copies of all logs are in Enclosure IV.

(ii) Penetration Rate & Gas Logging

Full records of penetration rates, chromatographic gas analysis and total gas measurements were made from 850' to T.D. Shale densities, "d" exponent value and drillability measurements were made from 4075' to T.D. (see Enclosure II).

(iii) Deviation Surveys

The HDT continuous dipmeter run at total depth indicates deviation reached to be 1° at 8300' on an azimuth of 205°. (See Enclosure V).

2 de la

(

- 7 -

- (iv) <u>Temperature Surveys</u> Temperatures were recorded by Schlumberger during bottom hole logging. Maximum temperatures reached are recorded on each log. A maximum BHT of 210^o was reached on the HDT log 14 hours after breaking circulation.
- (v) Other Well Surveys A velocity survey was conducted at total depth. (See Enclosure V).
- (6) <u>Testing</u>

(i) Formation Testing

A total of five formation tests were made using Schlumberger's Formation Interval Tester. All were successful in recovering fluids from the formation and recording accurate pressures by the use of dual Amerada gauges.

Summary of depths and fluid recoveries:

Depth	Recovery
7903 '	Formation water and filtrate
7896'	Oil
7854'	Oil and filtrate
8210'	Formation water and filtrate
8095'	Formation water and filtrate
	7903' 7896' 7854' 8210'

Detailed test results are tabulated in Appendix VII and Enclosure III.

(ii) Production Testing

No production tests were carried out.

IV <u>GEOLOGY</u>

(1) Summary of Previous Work

Exploration for oil and gas in the Gippsland Basin has been in progress since 1924 when oil and gas shows were encountered during the drilling of a water well near Lakes Entrance. A large number of wells were subsequently drilled by government agencies and private firms, all of which met with discouraging results, (K.A. Richards, B.M. Hopkins, 1969).

The modern exploration phase commenced onshore in 1954, when geophysical methods were used to delineate drilling targets. None of those prospects drilled encountered significant hydrocarbon accumulations.

Offshore exploration began in 1960, when the Broken Hill Pty. Ltd. conducted an aeromagnetic survey over their offshore lease. In 1962 Hematite Petroleum (a wholly owned subsidiary of B.H.P.) shot 1005 miles of single-fold, analog seismic data.

In 1964, an agreement between Esso and B.H.P. was ratified for the exploration of the Gippsland Basin. Later that year Esso conducted the "EG" seismic survey (722 miles) and on June 5, 1965 completed the first Gippsland offshore well as a gas discovery (Barracouta-1, previously known as EGS-1).

Subsequent Esso/BHP seismic surveys are as follows:

1966	ET Survey
1967	EX Survey
	EC Survey
1968	EH Survey
	G69A Survey
1969	G69A Survey
	G69B Survey
1970	G69B Survey
	G70A Survey
1971	G71A Survey
	G71B Survey
1970	G69B Survey G69B Survey G70A Survey G71A Survey

Including the initial discovery, the drilling program to date has totalled 45 exploratory and stepout wells.

(2) Regional Geology

The Gippsland Basin occupies a portion of onshore Tasmania and South East Australia. Sedimentation has been continuous in some part of the basin from early Cretaceous to Recent time.

The Lower Cretaceous lacustrine and fluviatile greywackes of the Strzelecki Formation were deposited within an east-west rift system, the north and south boundaries of which were created by the limits of extensional faulting.

Upper Cretaceous through Eocene rocks (the Latrobe Group) represent a continuation of the lacustrine-fluviatile environment except that the quartz sandstones are more mature and develop better reservoir characteristics. From early Paleocene through Eocene, the nonmarine depositional environment had a laterally equivalent marginal marine and marine edge, primarily in the southeast portion of the basin. A substantial portion of the Eocene depositional patterns are attributed to a complex system of channel cut and fill and associated marine incursions, (E.A. James, P.R. Evans, 1971).

Rocks of Oligocene age are mainly fine grained marine mudstones which had slow depositional rates. The site of coarse clastic deposition was confined to the hinterland along a narrow zone in the Yallourn Valley in the north west portion of the onshore Basin area.

.../9

Sedimentation during Early Miocene was similar to that of the Oligocene whereas very rapid deposition of marls, bryozoal-skeletal limestones and calcarenites occurred during Late Miocene through Pliocene. Submarine channelling and gross scour and fill features dominate the depositional characteristics and the resulting bedding configuration. The loading effect of this rapid deposition resulted in severe isostatic adjustment of the central to eastern portion of the offshore Gippsland Basin, with considerable tilting and change of the original Basin form.

Major oil and gas deposits have been discovered in the basin, most of which are found in either anticlinal culminations or combined anticlinal paleotopographic closures at the top of the Latrobe Group.

The Cobia feature is located in the eastern central portion of the basin where the Lower Eocene reservoir sands at the top of the Latrobe Group represent marginal marine environments. In this area, oil accumulations have been discovered in Kingfish to the south-west, Halibut to the north, and Mackerel to the east.

(3) Stratigraphic Table

The stratigraphy encountered in Cobia-l is summarised in the following table:

AGE	FORMATION	FM.	TOP · ·	SUBSEA DEPTH	THICKNESS
	WATER	32'	(KB)	SEA LEVEL	239'
PLIO-PLEISTOCENE	-	271'	(SEA FLOOR)	- 239'	500 ' A ppr
MIOCENE	GIPPSLAND	?		?	7000' Appr
OLIGOCENE	LAKES ENTRANCE	7322'		-7290'	492'
	LATROBE GROUP	7814'		-7782'	697 ' +
	GURNARD FORMATION	7814 '	•	-7782'	10'
EOCENE	UNDIFFERENTIATED				
	LATROBE	7824 '		-7792'	132'
. PALEOCENE		7956 '		-7924'	555 ' +

(4) <u>Stratigraphic Description</u>

<u>Gippsland Formation (? - 7322'; approx. 7000')</u> 850' - 2840' <u>Limestone</u> - grey and brown, loosely consolidated with foraminifera and shell fragments, sandy in part. 2840' - 5960' <u>Marl</u> - grey-white, soft to firm, fossiliferous, trace glauconite and pyrite, minor interbeds of brown, dense limestone. 5960' - 7322' <u>Marl</u> - as above. <u>Shale</u> - grey, soft to firm, calcareous, fossiliferous, traces of pyrite and glauconite.

The contact with the underlying Lakes Entrance Formation is tentatively placed at 7322' and is based on seismic and log correlation. No distinct lithological change is evident from the cutting analysis (Appendix IV). This section is identical to that penetrated to 7260' in Halibut-1.

Lakes	Entrance	Formation (7322' - 7814'; 492')
7322'	- 7680'	Shale - grey, soft to firm, bentonitic, trace pyrite and
		fine grained sand.
7680 '	- 7814'	<u>Marl</u> - as above <u>Shale</u> - grey, silty, micaceous, fossiliferous, traces of fine grained sand, very glauconitic at base.

Log and seismic correlations between Cobia-1 and Halibut-1 shows that Cobia-1 penetrated about 260 feet more Lakes Entrance Formation than Halibut. Most of this extra section is missing by onlap onto the flanks of the Halibut structure.

```
Latrobe Group (7814' - 8511'; 697' +)

<u>Gurnard Formation</u> (7814' - 7824' 10')
```

7814' - 7824' <u>Siltstone</u> - grey-green, and olive green, very argillaceous with disseminated sand grains and abundant glauconite and pyrite <u>Undifferentiated Latrobe</u> 7824' - 8511' <u>Shale</u> - grey, silty <u>Siltstone</u> - tan, firm, very glauconitic <u>Sandstone</u> - white to tan, very fine to coarse grained, occasionally glauconitic and pyritic in part.

Coal - minor interbeds, black, brittle, conchoidal fractures.

../

The Latrobe Group encountered at Cobia-1 is taken to include 10 ft. of Gurnard Formation (between 7814' and 7824'). Palynology and palacontology places this greensand in the Early Oligocene (Appendix 1 and II), suggesting a reworking of Latrobe sands during the Oligocene transgression.

The early Eocene section penetrated extends to 7956', and is almost identical in thickness to the Eocene age sediments encountered in Halibut-1. The remaining interval to T.D. (8511') is a typical Latrobe sand, shale and coal sequence of Paleocene age.

(5) Structure

The Cobia-1 well confirmed the pre-drill structural prognosis. Mapped in seismic time Cobia does not exist as a separate feature, but appears as a nose of the Halibut-Flounder anticline. Lateral lithology changes in the overlying Miocene section produce a relatively low average velocity to the Latrobe in an area between Halibut and Tailor. The use of these velocities in converting seismic times to depth results in Cobia appearing as a closed high with approximately 110' of vertical relief and an areal closure of approximately 4.3 sq. miles.

The location of the Kingfish-Halibut oil pipeline prevented the Cobia-1 well from being drilled on the crest of the structure; therefore, the well was drilled somewhat off-structure to allow mooring clearance for the drilling vessel.

(6) Hydrocarbon Occurrence

A 74 ft. oil column, from the base of the Gurnard Formation (7824') to the oil-water contact (7898'), was discovered in the Cobia-1 well. If this contact extends over the area of the Cobia closure, the feature is full to structural spill-point. However, the oil-bearing sands in Cobia-1 do not appear to be continuous with sands in either Halibut or Mackerel and appear to be of a depositional type which is typically of limited areal extent. Hydrocarbon pooling would appear to be contemporaneous with that at both Mackerel and Halibut.

Of the 74' gross oil column, 18' is interpreted as net effective reservoir and a further 16' as possibly effective. The latter 16' is regarded as being a poor reservoir, probably having very low productivity.

Despite the fact that the well was drilled off the crest of the structure (approximately 30' downdip), the thin effective oil column, the possible lack of reservoir continuity and small areal extent severely downgrade the commercial potential of the Cobia feature. More velocity analyses and seismic interpretation will be undertaken to determine if further drilling is justified.

(7)

Relevance to Geological Concepts

Existing concepts of the geological history of the Gippsland Basin require no alteration on the basis of the section penetrated at Cobia. The lithology and age of sediments drilled were anticipated.

The well encountered a thin interval of Gurnard Formation at the top of the Latrobe Group which was previously unknown in the immediate area. This formation is, however, widespread in other parts of the Gippsland Basin, generally on the flanks of structures and in topographic lows.

(8) Porosity and Permeability

The Miocene and Oligocene sections have virtually no effective porosity or permeability except for a thin unit at approximately 4300' - 4400' consisting of slightly porous skeletal limestone.

The Latrobe section contains sandstones with excellent porosity and permeability (see Appendix III and Appendix V).

James, E.A., Evans, P.R., "The Stratigraphy of Offshore Gippsland Basin, Australia", APEA March, 1971.

Richards, K.A., Hopkins, B.M., "Exploration in the Gippsland, Bass & Otway Basins, Australia", ECAFE, 1969.

. . VI ENCLOSURES:

İ

- a) Structure on Top Latrobe (Pre drill) b) Cross Section A-A' (Tailor-Cobia-Halibut) (Pre drill)
 - c) Structure on Top Latrobe (Post drill)
 - d) Cross Section A-A' (Tailor-Cobia-Halibut) (Post drill)
- and composite log. a) Completion log b) Rock Log II
 - c) Baroid PPM Gas Chromatograph log

 - d) Baroid ADT loge) Baroid "d" exponent/drillability log
- III Amerada Pressure Charts
- a) ISF-SCT 2" & 5" IV b) FDC-GR-CNL-CAL 2" & 5"
- a) HDT 5" V
 - Arrow Plot 1.5' step 5"
 Arrow Plot 2.5' step 2" & 5"
 Arrow Plot 9' step 5"

 - b)
 - b) Velocity Survey Time-Depth Curvec) Formation Interval Test Log

VI Well History Chart Appendix 1

THE PALYNOLOGY

OF COBIA-1

GIPPSLAND BASIN

by

A.D. Partridge

Palaeontological Report 1972/17

October, 1972

THE PALYNOLOGY OF COBIA-1

SUMMARY

The following spore-pollen zones are identified in Cobia-1:

Zone	Depth in Feet	Age			
Proteacidites tuberculatus	7817	Early Oligocene			
Malvacipollis diversus	7821 - 7882	Early Eocene			
Lygistepollenites balmei	8012 - 8150	Paleocene			

COMMENTS

The palynology does not indicate any time break between the <u>L</u>. <u>balmei</u> and Lower <u>M</u>. <u>diversus</u> Zones. The samples referred to the <u>L</u>. <u>balmei</u> Zone are from near the top of the zone, while the Lower <u>M</u>. <u>diversus</u> section appears to represent the oldest portion of the zone.

The <u>L</u>. <u>balmei</u> Zone is only identified in two samples. The presence of the dinoflagellate <u>Wetzeliella homomorpha</u> in both samples and the rare occurrence of <u>Cupanieidites orthoteichus</u> and <u>Tricolporites paenestriatus</u> in the higher sample at 8012 feet suggest that only the upper part of the zone has been penetrated.

The <u>Malvacipollis diversus</u> Zone contains assemblages which are fairly well preserved but are of low diversity. The assemblages are dominated by the pollen <u>Proteacidites grandis</u> but contain few other key species. The lack of other key forms indicates that the section in Cobia-1 represents the oldest portion of the <u>M. diversus</u> Zone. The sample at 7821 feet contains a good <u>M. diversus</u> Zone assemblage without the presence of any younger fossil to suggest that it could be a reworked assemblage. The palynology data therefore indicates that the unconformity at the top of the Latrobe Group in Cobia-1 is between the <u>P. tuberculatus</u> Zone at 7817 feet and the <u>M. diversus</u> Zone at 7821 feet.

The <u>Proteacidites</u> tuberculatus Zone is identified by the presence at 7817 feet of the spore <u>Cyatheacidites</u> annulatus, associated with Oligocene dinoflagellate.

APPENDIX 2

FORAMINIFERAL BIOSTRATIGRAPHY,

COBIA-1,

GIPPSLAND BASIN

BY

D.J. Taylor

10th October, 1972

<u>_</u>

ĺ

FORAMINIFERAL BIOSTRATIGRAPHY, COBIA-1 - GIPPSLAND BASIN

by David Taylor

October 10, 1972

Thirteen side wall cores were submitted for examination from a short interval between 7821 and 7710 feet. No fauna was found in the side wall core at 7821 feet. As yet no rotary cuttings have been examined from the well.

BIOSTRATIGRAPHY

The biostratigraphic zonation is that proposed by Taylor (1966) for the off-shore Gippsland Basin. Certain refinements to the scheme are in accordance with the New Zealand planktonic foraminiferal zonation as outlined by Jenkins (1971).

The earliest fauna found is that in a "greensand" at 7817 feet, where <u>Globigerina</u> <u>angioporoides</u> is present without associated planktonic species. Such a fauna can be no younger than Zone J and is probably no older. Immediately above, at 7810 feet, <u>G. angioporoides</u> is associated with <u>G. euapertura</u> indicating the upper part of Zone J which is the equivalent of Jenkins (1971) <u>G. angioporoides</u> Zone. The highest appearance of <u>G. angioporoides</u> at 7790feet marks the top of Zone J.

At 7780 feet the association of <u>G</u>. <u>euapertura</u> and <u>Globorotalia</u> <u>opima</u> <u>opima</u> is diagnostic of Zone I and this association persists to 7720 feet.

<u>Globigerina woodi woodi</u> makes its initial appearance at 7710 feet where it is associated with <u>Globoquandrina</u> praedehiscens and <u>Globorotalia</u> continuosa. This fauna represents the base of Zone H and the <u>G</u>. woodi woodi Zone of Jenkins (1971).

The samples examined are all from the Oligocene, if current opinions by Jenkins (1970; non 1971) are valid.

ENVIRONMENT

The faunas in sidewall cores from 7810 to 7710 feet are dominated by planktonic foraminifera. The percentage of planktonics in the foraminiferal fauna ranges from 95% to 98%. Obviously the sediment was a globigerinid ooze and probably deep water. The benthonic fauna includes such forms as <u>Melonis</u> <u>pompiliodes</u>, <u>Osangularia bengalensis</u>, <u>Discammina compressa</u> and <u>Avelophragmium</u> spp. (Bandy, 1960). These species are deep water indicators and support the contention for a deep water origin of the sediment.

Appendix I

SAMPLES EXAMINED

COBIA-1

Sample	Depth (in feet)	Zone
SWC 19	7817 *	P. tuberculatus
SWC 18	7821 *	<u>M</u> . <u>diversus</u>
SWC 17	7830 *	M. diversus
SWC 16	7836 *	Indeterminant (Very poor preservation)
Core-1	7842 (Coal)	M. diversus
Core-1	. 7845₺	M. diversus
Core-2	7876 *	M. diversus
SWC 13	7876 (Coal)	M. diversus
Core-3	7882 *	M. diversus
Core-3	7894	Barren
SWC 9	7912	Barren
SWC 8	7920	Barren
SWC 6	7960	Barren
SWC 5	8012	L. <u>balmei</u>
SWC 3	8150	L. balmei
SWC 1	8390	Barren
	a.	

* Dinoflagellates present

SPORE-POLLEN & DINOFLAGELLATE

DISTRIBUTION CHART

COBIA-1

	7	_	õ	99	N	152	6	6 (coal)	7862	2	0
	78/	782	783	783	784	784	787	787	786	80/	8/2
Aglaoreidia qualumis								•	• • •		
Araucariacites australis		•	۲				-				
Baculatisporites disconformis						r .				0	
Banksieaeidites elongatus						•	i i i				٢
Cupanieidites orthoterchus		۲	2							0	
Cyatheacidites annulatus			5	· ·	· • ··			•			
Cyathidites splendens		۲			· · ·	÷	۲			0	
Dilwynites granulatus	۲	۵	0				•		0		
D. tuberculatus	+ :		۲		• •	н Т. • С	÷ .	۲		4 -	
Foveotriletes palaequetrus	. 0										
Gleicheniidites cercinidites		۲	8	0			0				
Haloragacidites harrisii	6	6	3	0	۲	۲	0	0	0	6	
Ilexpollenites anguloclavatus			0					•			•
Latrobosporites crassus						· · · ·	6				
Lygistepollenites balmei					-					0	6 6
L. florinii		0	6		۲	0	9	٢			0
Malvacipollis diversus		*	0							6	
M. subtilis	• •					6	•	(0		0
Myrtaceidites parvus		۲	0				0				
Nothofagidites deminutus	0			1							
N. emarcidus	•	0	0	а :		0					
N. falcatus	۲				,						
N. flemingii	0	8	0			0			۲		
N. brachyspinulosus			۲	1. <u>1</u> . 4				۵		11	٥
Periporopollenites polyoratus		0	0	•		0			-	-l-; .	
Phyllocladidites mawsonii		0	0			٨			0		۵
Podosporites anarticus		· .	6	1		8					
Podosporites microsaccatus			۲		0	0		0	6		0
Polycolpites langstonii								. :			6
Proteacidites adenanthoides			۲	۲	٥		۲	۲			an in a di Animatin ang ang ang ang ang ang ang ang ang an
P. annularis			٢			۲	1				
P. grandis		۵	0		ø	۲	6		0		
P. incurvatus						0	,				
P. obscurus						:	۲				
P. tenuiexinus		0		0		6	:		11 [€] 11 4 11 1 1 1	•	0
Rugulatisporites mallatus					_	t. K	-			۲	
Simplice pollis meridianus			8		()	0	0	1.1. 			
Stereisporites antiquisporites	6					4	0				i i i i i i i
S. (Tripunctisporis) spp.		6					• •	 			1
Tricolpites phillipsii			-			• 🕲		· · · ·		•	
Verrucosisporites kopukuensis	0		0							0	
Cyclonephelium retiintextum						1			· · · · ·	۲	1
Deflandrea dartmooria		0	۲			•				· · · ·	
D. obliquipes			•			۲					
Diphyes colligerum			•				· ·	د در در ا مرکز در د	and the second secon	۲	,
Epicephalopyxis indentata		0		•		·	4		1. 1 1		
Hystrichokoploma rigaudae								مينا لم محمد ا			
Hystrichosphaera spp.	6			•			٩	:		0	s
Lingulodinium machaerophorum	6									*	1
			·	•						·	
Operculodinium centrocarpum											

 \bigcirc

1

C

BANDY,O.L. 1960 - 21st. Intern. Geol. Congress, 22; 7 - 19.
JENKINS, D.G. 1970 -Rev. Espan. Micropaleont.,
JENKINS, D.G. 1971 -N.Z. Geol. Surv. Paleont. Bull. 42.
TAYLOR, D.J. 1966 - Appendix in Comm. Aust. Petrol. Search Subsidy Acts Publ. 76.

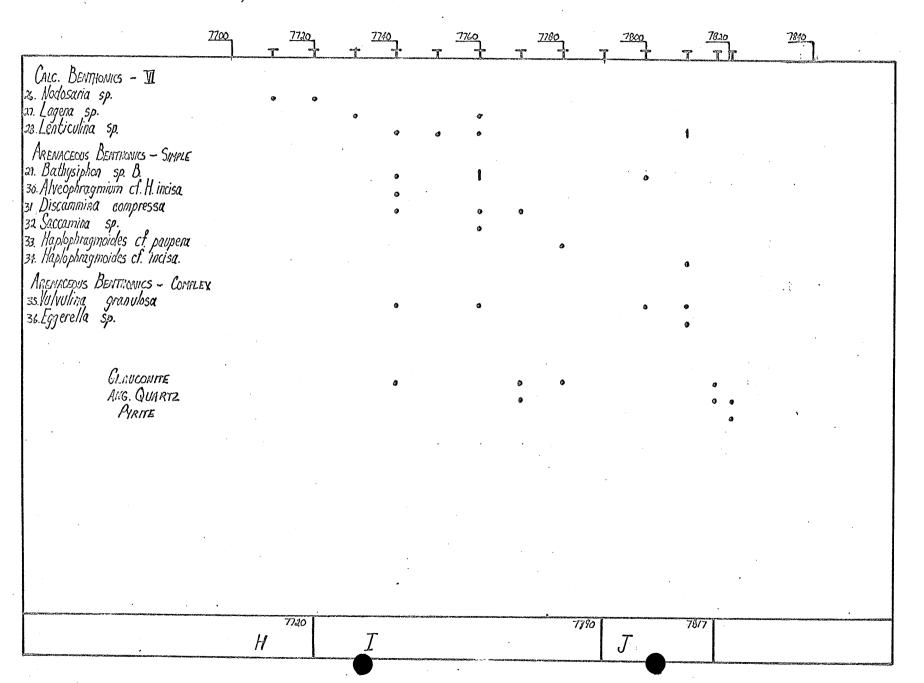
Key to two foraminifera distribution sheets

T = sidewall cores at: - 7710'; 7720'; 7730; 7740; 7750'; 7760'; 7770'; 7780'; 7790'; 7800';7810';7817'; 7821' (No foraminiferal fauna).

No rotary cutting or conventional cores were submitted for examination.

. = 1-20 specimens 1 = over 20 specimens COBIA-1

Sheet 1 of a sheets


.

COBIA-1

	7700	<u> </u>	<u>77.20</u>	:: : :::::::::::::::::::::::::::::::::	<u>7</u> ; T	×0 	e r)	7760		7780		<u>7800</u>	<u> </u>	7840 7 17 ·	784	8]	
Римктони сь Globigerina apertuna Globigerina woqdi		1									·					•	
Infinecian bulloides		1	(1	ł	I	1									
loborotalia opima continuosa Noboquadrina praedehiscens Nobigerina evapertura		9 0	1	1		1		1									
lobigerina evapertura		•	l		ţ	i	ŧ	1	i	ł	ł	1	9				
Veborotalia opi <i>n</i> z opima Vebigerina tri/ocularis				ļ	1	ł	1	1		1		<u>_</u> 1			,		•
Isloquadrina advena Globigerina anzi porsieks Globorotalia sp. (indeterminate,)						9) 9	1	1	I	- -		
Calc. BENTHONICS - I Cibicides thigra		3		e .		÷											
Cibicides retulgen s Gyrsidinoides zelandic a Melonis , pompiliode s					9	0	9	ġ	. Q	9		9	•	م يەرب			
Melonis pompiliodes Osangularia bengalensis Cibicides Karreriformis Cibicides pseudoungerianus	;		·			9		3 0	ø					•	2		
ALC. BENTHOLIKS-II Chilostometh ovoideq			ć														
Sphaeroidina bulloide s Globocassidulina minuta Pullenia sp.					3		0	3			1						
ALC. BENTHONIGS - I	•			•			·		•	·	·		-				
Bolivina sp. Euvvigcrina maynei				•		9		•						•			
₩\$~}\$\$\$\$\$#\$`\$		unanan ayyan Manan yoo ay a	7720	[terretaria, en agosta ana	NURBER GIVEN		*****		7	1790		7	817	di wila ini komunik di wasi menjasa katala ka	D ISAMPANYA MAMPANYA	9-C91-W-19-C71C2034/28

Sheet 2 of 2 sheets

COBIA-1.

COBIA-1

Appendix 3

OIL, GAS AND WATER

ANALYSIS

COBIA-1

GIPPSLAND BASIN

October, 1972

Х

Oil, Gas and Water Analyses

No production tests were run in Cobia-1. However, wellsite analyses of fluids recovered from 5 Formation Interval Tests in the Latrobe were performed. A Nitrate ion (NO₃⁻) level of 100 to 140 ppm was maintained in the drilling mud to assist in differentiating filtrate from formation water.

ì

FIT #1 @ 7903'

					Į.
	Properties	a)	Main chamber	<u>water</u>	C1 17,000 ppm, NO ₃ 43 ppm (By titration) Rrf (filtered) 0.218 @ 68 ⁰ F, C1 19,000 ppm
	•	b)	Segregator .	<u>water</u>	C1 19,400 ppm, NO ₃ 20 ppm (By titration) Rrf (filtered) 0.230 @ 64 ⁰ F, C1 19,400 ppm
•	FIT # 2 @ 7896'		Martin - handhain	•	
	Properties	a)	Main chamber	gas .	ppm (Baroid Chromatograph)
					C1 C2 C3 C4 C5 H2S 180M 50M 30M 50M 18M 100
-	• •	•		<u>oil</u>	42.7° API @ 60°F, pour point 56°F GOR 500
•	·			<u>water</u>	C1 ⁻ 8,500 ppm, NO ₃ ⁻ 90 ppm (By titration) Rrf (filtered) 0.556 @ 68 [°] F, C1 ⁻ 7000 ppm
	•	b)	Segregator	not op analys	ened. Kept for laboratory
	FIT #3 @ 7854'			•	
	Properties	a)	Main chamber	gas	ppm (Baroid Chromatograph) Cl C2 C3 C4 C5 H2S 120M 180M 200M 240M 12M 90
				<u>oil</u>	44°API @ 60°F, pour Point 53°F, GOR 9000
2	ŭ			<u>water</u>	Cl ⁻ 7000 ppm, NO_3^- 60 ppm (by titration) Rrf (filtered) 0.485 @ $68^{\circ}F$ Cl ⁻ 8000 ppm
		b)	Segregator	not ope	ened. Kept for laboratory analysis
	FIT #4 @ 8210'				•
• •		a)	Main Chamber	water	dumped without making any measurements
		b)	Segregator	<u>water</u>	C1 17,300 ppm, NO ₃ 25 (by titration) Rrf (filtered) 0.249 @ 63 [°] F, C1 ⁻ 17,500 ppm.
·	FIT # 5 @ 8095' Properties	a)	Main chamber	<u>water</u>	Rrf (filtered) 0.270 @ 68° F Cl 17,000 ppm NO ₃ - not available.
	•	b)	Segregator -	none us	sed. Main Chamber only.
	•				

Analysis of F.I.T. tests of Cobia No. 1 Gippsland Basin. Nitrate in Drilling mud 168 ppm.

FIT	Devel		Ch	romatog	raph				00	<u>C1</u> .			
<u>No.</u>	Depth	c ₁	с ₂	c ₃	с ₄	с ₅	<u>S.G.</u>	<u>H₂S</u>	<u>CO</u> 2		A.P.I. Pour <u>No</u> 3 Gravity Point		
1	7903'		NO	GAS			1.03	-	-	17M		43ppm	
2	7896'	180M	50M	30M	50M	18M	1.00	100+	3600	8500	43.6@70° 56°	90ppm	
3	7854'	120M	180M	200M	240M	12M	1.01	90	5000+	7000	44 @60 [°] 53 [°]	60ppm	
					•								
				С	hromatog	graph	analysis c	f sidewa	all core	s, Cob	ia No. l		
•		Core	No.		Depth		c ₁	с ₂	c3	с ₄	c ₅		
		1(C		7904		-	-	-	-	_		

11	7892	1500	200	1200	3M	4M
12 ·	7884	-	. -	-	-	-
13	7876	1200	TR	1800	600	TR
14	7862	1000	TR	TR	200	100
15	7854	600	200	300	600	300
16	7836	3500	9000	4500	10M	6M
17	7830	-	·	-	-	-
18	7821	-	-	-	-	-
19	70.00	-	- .	-	-	
20	7810	-	-	-	_	
1						

TR 100 300 6M

1000 ppm M =

Appendix 4

DESCRIPTION

WELL CUTTINGS SAMPLES

COBIA-1

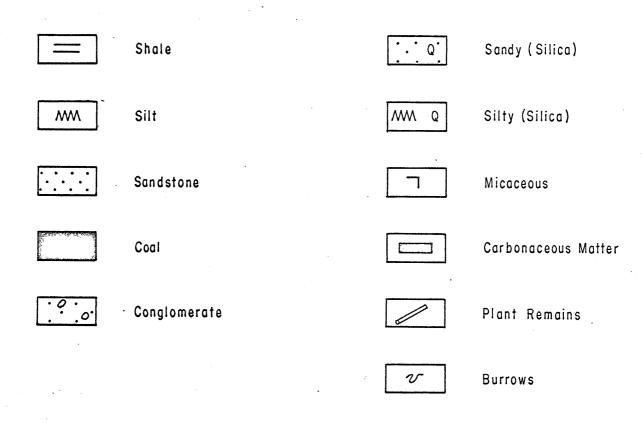
GIPPSLAND BASIN

August,1972

Appendix 5

DESCRIPTION OF CONVENTIONAL

AND SIDEWALL CORES &


CORE ANALYSIS

COBIA-1,

GIPPSLAND BASIN

October, 1972.

s Sharp Contact

g: Gradational Contact

,

· · · · ·

••••

ESSO STANDARD OIL (AUSTRALIA) LTD.

يند. برمان

: . .

CORE DESCRIPTION

Core No.

								WELL: COBIA 1
								ecovered 5 ¹ / ₂ ft., (100 %) Fm.Latrobe
it T	'YF)e	<u> </u>	-1	9	, Bit Siz	.e. 8- 15/32" in	., Desc. by J. Black Date 22 August, 1972
Co	rit	pth 1g F n./i	Rate		Graphic (1" = 5')	Shows	Interval (ft.)	Descriptive Lithology
5	10)	784			65	7840'-41' SILTST	ONE: Brown, sandy, very pyritic, micaceous,
╇	\rightarrow	-+			<u></u>			hard, indurated, with subr. coarse qtz.
+	+	-+				₩	· · ·	grains, tight
Αv.	Co	re r	ate /FT			<	7841'-41'10" SHA	LE: Tan, silty, micaceous, laminated, with
-	-			1/1	- <u>-</u>	***		carbonaceous fragments, very hard and
╈	┥	-{	845	12				indurated
							7841'10"-42'9" C	OAL: Black, conchoidal fracture, light
	_		_				7842'9" - 45'6"	SHALE: Dark brown, silty, hard, well indurate
╋	+	-		_				micaceous with large carbonaceous wood
+	╉			-			.	fragments.
╞	+	-		_				
┢	+							
		Ţ,						
			_					
╞	+	-		_				
-	╉	+		-				
_	_		_			ſ		
		-		_		Γ		
	+	+	+	-		ſ		
	T					F		
						ľ		
	╇			_		ľ		
-	╉	-+-		-		F		
						Ť	40 - 74 - 64 - 64 - 64 - 74 - 64 - 64 - 64	
ļ	-		\rightarrow	_		F		
	╋			-		F	· · · · · · · · · · · · · · · · · · ·	
	+	+		-		F		
	T							
	+-			_		F		
	╀╴		+	-		F		
AN	RI	<u> </u>	Ba	ir:	rel jammed			
	<u> </u>				Full diame	ter cor	e for BMR	
					ps for pal			
				-1	part			
			-					

ESSO STANDARD OIL (AUSTRALIA) LTD. CORE DESCRIPTION

Core No. 2

				:	WELL: CO	BIA 1
Interval Cored.	7845'6''-82	ft., Cut	ft., Recovered.	36'6''	(<u>100</u> %)	m. Latrobe
Bit TypeC-2	2 , B	it Size8-15/32"	in., Desc. L	y J. Mebberson	Date	22 August 1972

Depth & Coring Rate (min./ff.)	Graphic (1" = 5')	Shows	Interval (ft.)	Descriptive Lithology
5 10 7845'			7845'6" - 48'6" SHALE:	Grey-brown, indurated, hard,
		₩-		occasionally silty, abundant wood
		€€€		fragments, micaceous
	тт	≪- <u>-</u> _	7848'6"-59' SILTSTONE:	Grey-brown, indurated, hard, heavily
7850'	~~~ γ 	≪-		mottled and burrowed with sand filled
				burrows, laminated, occ. carbonaceous
	VM			patchy white fluorescence and cut.
	M v M			Occ. bleeding oil. tite 3" coal at ba
7855	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	/////	«	7859'-66'6" SAND:	Brown-grey, vfg to coarse, firm to
	m v			friable, quartzose, occ. silty, massi
	v MM	44-		Good white fluorescence, cut and lt.
7860'	• • • • •	<u>*</u>		bn. residue. Good porosity. Basal
	••••••	₭		foot (1') with shale bands up to l_2^{\downarrow} "
	•••••			
		€	7866'6"-71' SHALE & COAL:	Shale - laminated, grey to black,
7865'	•••••			micaceous, abundant carb. plant remai
	<u> </u>			firm to hard.
		€€−		Basal l' of coal - black, brittle
7870'				
		\$ *	7871'-79' I'BEDDED SAND &	
	MM 2	~~ A	SILTSTONE:	Generally siltstone shaley in parts,
+	···· /////////////////////////////////			brown to grey, laminated, burrowed,
7875'	^{WW}v	≪		scattered coarse qtz. grains
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	-	Sand: up to 4" thick bands,gen.a.a.
	v mi	***	· · · ·	slightly firmer. Good fluorescence
Av. Core Rate 5 MIN/FT.	wi v	≪-		cut & residue. Fair porosity
7880'			7879'-82' SHALE:	Carbonaceous, grey to black, laminated
	—l	≪-		micaceous, indurated, coaly at base.
7832'		233		
		Γ		
MARKS: <	4" full o	core to	EPRCo. for analysis	
≪	4" full d	core to	BMR for subsidy	
****	Overburde	en samp	le	
	Palaeonto			
	******	ĭ		· · · · · · · · · · · · · · · · · · ·
		·····		
				·

# ESSO STANDARD OIL (AUSTRALIA) LTD.

.

•

÷

•

# CORE DESCRIPTION

Core No. 3

	WELL: COBIA 1
Interval Cored 7881 -7911 ft., Cut 30 ft., Recovered 17	
Bit Type <u>C-22</u> , Bit Size <u>8-15/32</u> " in., Desc. by J	. Mebberson Date 23 August 1972

Depth & Coring Rate (min./ft.)	Graphic (1" = 5')	Shows	Interval (ft.)	Descriptive Lithology
O 5 10 7881'			7881' - 83'6" SHA	ALE: grey to black, laminated, very abt. carb
		₩-		plant fragments, micaceous, indurated,
<b>}</b>		s <del>(((</del>		hard to fissile, thin coals at top of
7885'	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≪- ↑		base.
	² / ₁	≪-	7883'6"-88'6" SILTST	CONE: Very sandy, dark brown, scattered coarse
				to medium sr. qtz grains (abundance
	° W ° W	9 9		increasing downwards). Carbonaceous,
7890'	$\cdot \cdot \cdot \cdot \dots$	÷ 0		firm, faint laminae, occ. burrows.
┣━┿━┼╾┼╾┦	· · · · · · · · · · · · · · · · · · ·	<del>.</del>		Spotty fluorescence, weak cut. Becomes
	· · ·	*		sandy towards base & bleeds oil $ar{c}$ white
	MM · e MM	g 💶		fluor, fair cut & odour.
7895'	~~~° ~~~~			
	~~~:°* ~~~	≪	7888'6"-93' SAND:	Very silty, qtz, white to brown, poorly
7898'	M.ºow	<u></u>		sorted, coarse to very fine grained with
	Λ			silty matrix. Bleeding oil, friable to
7900'				hard. Good cut, fluor. & pale brn.
			- -	residue. Poor porosity
7905'	V		7893'-98' SILTSTONE	: Very sandy in parts. Light brown, sl.
	\wedge			carbonaceous, few scattered coarse qtz.
	. / \	ļ		grains. Firm to hard, occ. indurated.
Av. Core rate		ļ		Bleeding oil in sandy parts with white
7910'	/	· · ·		fluor. cut and lt. bn residue.
7911'	\	ļ		
		Ļ	7898'-7911' NO RECOVE	CRY
┠╾┼╾┼╾┥		ļ		
		Ļ	······································	
		ļ		
	<u> </u>			
REMARKS: ←	EPRCo.	T	op of core #3 adjust	ted up l' after trip in hole to core
~~~	BMR			
****	Overburde	en		
	Palaeonto	ology		
•				
••••••••••••••••••••••••••••••••••••••				

			and a standard with the second structure and standard structure and standard structures and standard structures	

ESSO STANDARD OIL (AUSTRALIA) LTD. CORE DESCRIPTION

Core No. 4

				WELL:	COBIA 1	•••••••••••••••••••••••••••••••••••••••
val Cored 7911' - 25' ft.,	Cut14	Recovered 1	<u>3</u>	(93	%) Fm. Lat	trobe
TypeC-20 Bit Si	ze	in., Desc. by J.	Mebberson	Da	10 23 Aug	gust 1972.

.....

.....

(min./ft.)	Graphic (1" = 5')	Shows	Interval (ft.)		Descriptive Lithology			
4 6 7911'			7911'-16'	SAND:	Quartzose, vfg to coarse, brown, poorly			
		≪-			sorted, very silty, firm to hard. Bleeding			
	· · · · · · · · · · · · · · · · · · ·				oil, good even white fluorescence, cut &			
7915		«- U			residue. Probable poor porosity, relativel			
		<		****	tite.			
		«						
		≪- ⊕	7916'-29'	SAND:	Silty, vfg to coarse, very coarse in top 2			
7920'	••••	«			decreasing median grain size downwards.			
v. Core rate	• • • • •	(Well rounded, friable at top becoming firm			
-3 MIN /FT.	• • • • •	< ¦ ∣			towards base. Spotty white fluor. and wea			
7924	• • • •				cut becoming weaker and more scattered			
7925'	$\geq <$	ç			downwards. Porosity in top 2' good but fai			
				1	to poor at base. Oil-water contact at 791			
			······		with residual hydrocarbons below this.			
					with residual hydrocarbons berow this.			
			7924 '- 25' N	O DECOVED	V			
			7924 - 25 N	J RECOVER	1			
					······			
	,							

			N.B. The dr	iller doe	s not believe he cut 14' of core, and think			
			the re	covery is	what was lost from core no. 3.			
╾┼╾┼╾┦								
	1							
	[***				
	t ringed	for	later saturat	ion				
← 4''	full core	for w	vater saturat	ion				
← 4" ← BM	full core R		vater saturat	ion				
← 4" ← BM	full core		vater saturat	ion				
← 4" ← BM	full core R		pater saturat	ion				

COBIA-1

The following simulated overburden core analyses were performed by Core Laboratories, Inc. off the well site.

SAMPLE	DEPTH	PERMEABILITY MILLIDARCYS HORIZONTAL VERTICAL		POROSITY	RESIDUAL SATURATION			PROBABLE	OVERBURDEN
NUMBER	FEET			PERCENT	OIL % Volume % Pore		Total Water % Pore	PRODUCT ION	PRESSURE
······································				<u> </u>					
Core No. 3	· .								
1	.7864 ¹ 2	62		13.8					4325 PSIG.
2	7891	489		18.7					4350 PSIG.
Core No. 4				•					
3	7913	715		20.1	7.0	56.1			4350 PSIG.
4	7915	484	•	18.6	10.5	49.5			4350 PSIG.
5.	7917	[′] 387		19.2	0.0	82.0			4350 PSIG.
6	7921	508	-	22.5	0.0	80.5			4350 PSI G
7	7924	123		19.7	0.0	61.2			4350 PSIG.

NOTE: (1) Due to friable material all plugs were drilled using liquid Nitrogen. They were then jacketed in lead tubes with screens placed on the ends.

(2) All samples were extracted for 6 days using Toluene Solvent.

(3) Overburden Pressure simulated by formula:-

Net Overburden Pressure = .55 depth.

This formula assumes that the formation fluid pressure is normal.

Appendix 6

LIST AND INTERPRETATION

OF WIRELINE LOGS AND SURVEYS

COBIA-1,

GIPPSLAND BASIN

October, 1972

The following logs and wireline services were performed by Schlumberger in Cobia-1:

1. ISF-SCT (Spherically focused Induction-Sonic Combination tool) 5" & 2" scales 8425 - 2773'

2. FDC-CNL-GR-CAL (Combination Density Neutron with Gamma Ray and caliper) 5" & 2" scales FDC-CNL 8431-7600', Cal 8431-2773'

- GR 8431- 372' HDT (Four-Arm High Resolution Dipmeter) 5" - 100' scale on Monitor log 8430 - 7600'. Interpretation logs of HDT tapes
- Monitor log 8430 7600'. Interpretation logs of HDT tapes by Data Analysis 2" & 5" in 1.5, 2.5' and 9' step intervals
- Velocity Survey Six levels taken between -7783' and -2968' (See Time - Depth Curve Enclosure IV)
- 5. Shot 30 CST's and recovered 28 in interval 8390' 7710'.

6. FIT's at 7903, 7896, 7854, 8210 and 8095'.

3.

The next page gives R.B. King's analysis of the oil bearing section of Latrobe. All of the Latrobe sands below the oil/water contact are wet. Log response for Cobia-1 in the Latrobe and the younger marine Lakes Entrance and Gippsland Fm's are typical of the area.

WELL LOG ANALYSIS REPORT

F

Form R 167 6/70 Page 1

Victoria ELEV. 32' KB REMARKS Possibly two very thin permeable streak Pyritic sand with some permeability Shaly sand, probably not effective Shaly sand, probably not effective Tight sand, possible effective Shaly sand, possibly effective Shaly sand, possibly effective Oil productive """"""""""""""""""""""""""""""""""""
Possibly two very thin permeable streak Pyritic sand with some permeability Shaly sand, probably not effective Shaly sand, probably not effective Tight sand, possible effective Shaly sand, possibly effective Shaly sand, possibly effective Oil productive """" """" """"" """"
Pyritic sand with some permeability Shaly sand, probably not effective Shaly sand, probably not effective Tight sand, possible effective Shaly sand, possibly effective Shaly sand, possibly effective Oil productive """"" """"" """""" """"""""
Shaly sand, probably not effective Shaly sand, probably not effective Tight sand, possible effective Shaly sand, possibly effective Oil productive """"" """"" """""" """"""""""
Shaly sand, probably not effective Tight sand, possible effective Shaly sand, possibly effective Shaly sand, possibly effective Oil productive """"" """" """"" """"" w/possible water cut
Tight sand, possible effective Shaly sand, possibly effective Shaly sand, possibly effective Oil productive """"" """" """" """" """" w/possible water cut
Shaly sand, possibly effective Shaly sand, possibly effective Oil productive """" """" """" """" w/possible water cut
Shaly sand, possibly effective Shaly sand, possibly effective Oil productive """" """" """" """" w/possible water cut
Shaly sand, possibly effective Oil productive """" """" """" """" """" w/possible water cut
Oil productive """ """ """ """ w/possible water cut
" " " " " " " " w/possible water cut
" " " " " " w/possible water cut
" " " w/possible water cut
" " " w/possible water cut
" w/possible water cut
w/possible water cut
Formation water productive
Formation water productive
LOGS:
ISF - BHC, FDC - C GR

Appendix 7

TEST DATA

COBIA-1,

GIPPSLAND BASIN

October, 1972

X

List and description of tests and Interpretation of Test Results

Five FIT tests were performed in Cobia-1 by Schlumberger using, in addition to Schlumberger pressure gauges, dual Amerada gauges with rated capacities . of 0 - 10,250 and 0- 11,800 PSIG. these gauges were run on the FIT tool and interpreted by Agnew - GO - Western, Ltd.

Note: All depths are ISF depths. (Mud Properties Rmf. 0.469 @ 63°F, C1 8500 ppm, NO3 168 ppm).

FIT #1 @ 7903'

Recovered: Scum of oil (Main Chamber)22100 cc water

(Segregator) 2000 cc water with no oil scum.

Properties: Water Cl 17000 ppm, NO₃ 43 ppm. (By titration) (Main Chamber)Rrf (filtered) 0.218 @ 68°F, Cl 19000 ppm.

(Segregator) Water Cl 19400 ppm, NO 20 ppm, (by titration) Rrf (filtered) 0.23 @ 64 F, Cl 19400 ppm.

Pressures: Schlumberger Agnew (Dual Ameradas)

Sampling Pres sure	3510 psi.	3399 psi, 3391 psi.
Final Shut -in	3510 psi.	3399 psi, 3391 psi.
Hydrostatic	4220 psi.	4136 psi, 4133 psi.
Sampling Time Shut-in Time	12 min. 2 min.	en e

FIT. # 2 @ 7896'

58 cf gas. Recovered: (Main Chamber)18,200 cc Oil. 1400 cc Water (filtrate)

(Segregator) # 24 not opened.

Properties: Gas	c ₁	с ₂	с _з	с ₄	с ₅	H ₂ S
(Main Chamber)(ppm)	180M	50M	30M	50M	18M	100
	•	•				

Oil 42.7° API @ 60°F, Pour Point 56°F, GOR 500.

Water Cl 8500 ppm, NO 90 ppm (by Titration) Rrf (filtered) 0.556 @ 68°F, Cl- 7000 ppm.

(Segregator) Not opened.

Pressures: Schlumberger

radas.)

Sampling Pressure	3109 psi
Final Shut-in	.3415 psi
Hydrostatic	4133 psi
Sampling Time	5 min.
Shut-in Time	10 min.

·	Agnev	<u>v (Du</u>	al Ame	erada
		psi,	3105 3409 4127	psi
	•			

FIT #3 @ 7854'

Recovered: 30 cf Gas (Main Chamber) 500 cc Oil 17,700 cc Water (Filtrate) (Segregator) # 4 not opened.

FIT # 3 @ 7854'

Properties:	Gas	c ₁	c ₂	с _з	с ₄	с ₅	H ₂ S
(Main Chamber))(ppm)	120M	180M	200M	240M	12M	90
· · · · ·	Oil	44° API	@ 60°F,	Pour Poi	nt 53°F,	GOR	9000
Water Cl 7000 ppm, NO 60 ppm (By Titration) Rrf (filtered) 0.485 @ 68°F Cl 8000 ppm					on) opm.		

(Segregator) Not opened.

Pressures:

Schlumberger

Agnew	(D	ua	11	Am	e	r	а	d	а	s)
	_								-	_	

Sampling Pressure Final Shut-in Hydrostatic	1400 3390 4100	psi psi	3362	psi, psi, psi,	3378	psi
Sampling Time	9.5	min			•	
Shut-in Time	1	min				•

FIT # 4 @ 8210'

Recovered: 22100 cc Water (Main Chamber)

(Segregator) 2000 cc Water

<u>Properties</u>: Dumped without making any measurements (Main Chamber)

(Segregator) Water Cl 17300 ppm, NO₃ 25 ppm, (By titration) Rrf (filtered) 0.249 @ 63 F, Cl 17,500 ppm.

Pressures: Schlumberger

Agnew (Dual Ameradas)

	Sampling Pressure Final Shut-in Hydrostatic Sampling Time	3420 psi 3420 psi 4190 psi 8 min.	3563	psi,	3555 3567 4279	psi
	Shut-in Time	3 min.				

<u>FIT $\# 5 \oplus 8095'$ (Run without segregator)</u>

Recovered: 22100 cc Water (Main Chamber)

Properties: Water Cl NA ppm, NO NA ppm (By Titration) not measured Rrf. (filtered) 0.27 @ 68 F, Cl 17,000 ppm.

5 min.

3 min.

Pressures:

Schlumberger

Sampling Time

Shut-in Time

Sampling Pressures 3460 psi Final Shut-In 3520 psi Hydrostatic 4220 psi

> дос 114

Agnew (Dual Ameradas) 3442 psi, 3433 psi 3489 psi, 3482 psi 4210 psi, 4206 psi

Remarks:

	FIT			\cdot
	#1	Q	7903	
	# 2	Q	7896 '	
	# 3 [`]	Q	7854 '	
	#4	Q	8210'	
• ·	#5	@	8095'	u u

Interpretation of Test Water Productive Oil with possible water cut Tight, but oil productive Water productive Water productive

AGNEW-GO-WESTERN PTY. LTD. 582 St. Kilda Road Melbourne, Victoria 3004

ESSO AUSTRALIA LIMITED

COBIA

COBIA No. 1 August 25, 1972

Purpose: Obtain subsurface pressures with Amerada gauges run in tandem with Schlumberger Formation Interval Tester.

TOOLS USED:

5. W

1 AMERADA 11,800 PSI ELEMENT SERIAL NO. 8282 12 HOUR CLOCK 1 AMERADA 10,250 PSI ELEMENT SERIAL NO. 8757 3 HOUR CLOCK

F.I.T. TEST No. 1 @ 7903'

HOUR S	ELAPSED TIME	PSIG 11,800	PSIG 10,250	REMARKS
1425		4145	4131	Start to run in hole Set Packer - Hydrostatic
01525	0 2 4	339 1 3391	3399 3309	OPEN TOOL
	6 8	3391 3391	3399 3399	
	10 12 13	3391 3391 3391	3399 3399 3399	CHAMBER FILLED
	14 15	3415 3427	3426 3426	SEAL CHAMBER AND OPEN SEGREGATOR
•	16 17	3427	3426	Seal segregator Unseat packer
1600		4133	4136	HYDROSTATIC Out of hole

F.I.T. TEST No. 2 @ 7898'

OIOURS	ELAPSED <u>TIME</u>	PSIG <u>11,800</u>	PSIG 10,250	REMARKS
1 655		4127	4121	Start to run in hole Hydrostatic
1803 1804	0	4161	7121	Set Packer
	0 2	3105	3109	OPEN TOOL
	4 •5	3105 3105	3109 3109	CHAMBER FILLED
-	6 8	3403 3409	3415 3415	
	10 15	3409 3409	3415 3415	SEAL CHAMBER AND OPEN SEGREGATOR
	16	3409	3415	OLAL UNAMBER AND OPEN SEGREGATOR
	18 20	3409 3409	3415 3415	SEAL SEGREGATOR
1845	21	3421	3420	Unseat packer – pseudo shut-in Out of hole

OPERATOR: LARRY MURPHY

AGNEW-GO-WESTERN PTY. LTD. 532 St. Kilda Road Melbourne, Victoria 3004

ESSO AUSTRALIA LIMITED

COBIA

COBIA No. 1 August 25, 1972

PURPOSE: OBTAIN SUBSURFACE PRESSURES WITH AMERADA GAUGES RUN IN TANDEM WITH SCHLUMBERGER FORMATION INTERVAL TESTER.

TOOLS USED: 1 AMERADA 11,800 PSI ELEMENT SERIAL NO. 8282 12 HOUR CLOCK 1 AMERADA 10,250 PSI ELEMENT SERIAL NO. 8757 3 HOUR CLOCK

F.I.T. TEST No. 3 @ 7854"

HOURS	ELAPSED <u>TIME</u>	PSIG <u>11,800</u>	PSIG 10,250	REMARKS
2000 2050 2051	0	4096	4089	Start to run in hole Hydrostatic – set packer Open tool
	2 3 4	 1256 1287	50 1206 1233	Fire shape charge
	6 8 10	1360 1440 3360	1297 1334 3320	
	11 12	3378 339 7	3362 3389	SEAL CHAMBER AND OPEN SEGREGATOR
	13 14	3397	3389	Seal segregator Unseat packer
2125				OUT OF HOLE

F.I.T. TEST No. 4 @ 8210'

HOURS	ELAPSED <u>TIME</u>	PSIG <u>11,800</u>	PSIG 10,250	REMARKS
C2215 2303	0	4279	4268	START TO RUN IN HOLE Hydrostatic – set packer Open tool
	2 4 6 8	3555 3555 3567 3567	3557 3557 3563 3563	CHAMBER FILLED
	10 11 12	3567 3567 3567	3563 3563 3563	SEAL CHAMBER AND OPEN SEGREGATOR
2350	13 14	3567 3567	3563	SEAL SEGREGATOR Unseat packer Out of hole

OPERATOR: LARRY MURPHY

AGNEW-GO-WESTERN PTY. LTD. 582 St. Kilda Road Melbourne, Victoria 3004

ESSO AUSTRALIA LIMITED COBIA	COBIA No. 1 August 26, 1972
Purpose: Obtain subsurface pressures with Schlumberger Formation 1	NITH AMERADA GAUGES RUN IN TANDEM NTERVAL TESTER.
Tools Used: 1 Amerada 11,800 psi element 1 Amerada 10,250 psi element	Serial No. 8282 12 Hour clock Serial No. 8757 3 Hour clock

F.I.T. TEST No. 5 @ 8095'

HOURS	ELAPSED <u>TIME</u>	PSIG 11,800	PSIG 10,250	REMARKS .
0035 0125 0126	0	4206	4210	Start to run in hole Hydrostatic – Set packer Open tool
	1 2 3	3433 3433 3433	3442 3442 3442	
	4 5 6 7	3433 3482 3482 3482	3442 3489 3489 3489	CHAMBER FILLED
0215	8	3482	3439	Seal chamber Unseat packer Out of hole

OPERATOR: LARRY MURPHY

