

Attachment to WCR
Final Well Report
Basker South-I

1 4 MAY 1984 FINAL WELL REPORT

SHELL DEVELOPMENT (AUSTRALIA) PTY LTD

BASKER SOUTH NO. 1

OFFSHORE, VICTORIA

NOVEMBER - DECEMBER 1983

by

EXPLORATION LOGGING OF AUSTRALIA INC

The information, interpretations, recommendations, or opinions contained herein are advisory only and may be rejected. Consultant does not warrant their accuracy or correctness. Nothing contained herein shall be deemed to be inconsistent with, nor expand, modify or alter Consultant's obligation of performance as provided for in a written agreement between the parties, or, if none, in Consultant's most recent price list.

** W.

do:

ite :

CONTENTS

•		Page No.
I.	INTRODUCTION	1
	a. Well and Rig Data	. 1
	b. Prognosis	2
II.	DRILLING AND ENGINEERING SUMMARY	5
III.	GEOPRESSURE ENGINEERING	15
	a. Formation Pore Pressure	15
	b. Formation Overburden Pressure	17
	c. Formation Fracture Pressure	18 :
IV.	GEOLOGY AND SHOWS	19
٧.	EVALUATION AND TESTING	33
	a. Logging	33 3
	b. Testing	34
VT.	CONCLUSTONS	3 6- 37.

A. DATA ACQUISITION AND ANALYSIS METHODS

B. DE MANUAL PLOTS

900

ଲାଫ ଜିଲ୍ଲ**ଖ**

- i. Well Progress Log
- ii. Drilling Data Pressure Log
- iii. Temperature Data Log
 - iv. Wireline Data Log

3253 38111

v. Pressure Evaluation Log

C. COMPUTER PRINTS AND PLOTS

i. Drilling Data Printout

709 - 3420 metres

- ii. Drilling Data Plots
 - (a) 1:2000 ROP-LITHOLOGY-WOB-PUMP PRESSURE & FLOW-RPM AVERAGE & MAXIMUM*TORQUE-\$/M & \$/M INST.
 - (b) 1:2000 ROP-DXC & TREND-LITHOLOGY-TOTAL GAS-ESTIMATED PORE PRESSURE & ECD-TEMPERATURE IN & OUT. 30 Tests?

D. MORNING GEOLOGICAL ENGINEERING REPORTS

Coroletion Tit

Reached Total

Vary point

CARRY - CARRY

- E. WEEKLY GEOLOGICAL ENGINEERING REPORTS
- F. HYDRAULICS ANALYSES

Crew. Log

Fins W

- G. LAG DATA PRINTOUT
- H. FORMATION EVALUATION LOG

I. INTRODUCTION

APPENDICES

Well and Rig Data

Company:

Shell Development (Australia) Pty Ltd

Operator For:

TNT (20%), News (20%), Crusader (15%) and

Mincorp (5%).

Well Name:

Well Progress to on the West Progress to the West P

Location:

Gippsland Basin (Exploration Permit Vic P19), Officers Victoria Austral@isquell (1)

Offshore Victoria, Australia da di

Position:

Latitude:

380 19 11.40 South

Wire inn Data

gn Fil

1125 KEY 627) 06.10

Longitude:

148° 41' 21.56" East

Well Type:

Expendable Exploration Appraisal Well

Rig:

Semi-submersible drilling rig "Nymphea".

Rig Operator:

Foramer

RKB-MSL:

25 metres

3 30ARAVERKB2Seabed:

264 metres

:estimateD PORE

23rd November 1983.

0000:1

Total Depth:

3420 metres

Reached Total Depth:

24th December 1983.

Completion Status:

Plugged and Abandoned ...

Exlog Unit No .:

216, GEMDAS X

Crew, GEMDAS:

T Janowicz, D New

Crew, Logging:

*J Ashworth, *H Hadlow, R Henning to york

Final Well Report by:

T Janowicz

b. <u>Prognosis</u>

Basker South No. 1 was an expendable exploration appraisal well drilled to test the hydrocarbon potential of the Upper Cretaceous sandstones of the Gippsland Basin similar to those which contain hydrocarbons in Basker No. 1.

south No 1 include

Exploration Logging of Australia Inc provided GEMDAS (Geological and Engineering Monitoring and Data Analysis Service), Formation Logging and Pressure Evaluation Services on Basker South No. 1 from the start of the 12½" hole at 709 metres to Total Depth at 3420 metres. In addition to formation evaluation and conventional mud logging, automatic real time data monitoring, recording and pressure and drilling analyses were carried out. Continuous evaluation of pressures and drilling progress provided an aid in ensuring that drilling continued efficiently and with maximum safety to personnel, the rig and equipment. The Operator was continuously advised as to the status of these analyses and the results stored on disks. The printouts and plots of the results of these services are contained in the appendices to this report.

For details of the computer programs and the theory of pressure evaluation methods used, refer to the <u>Program Information Book</u> (MS-144) and the <u>Pressure Log Manual</u> (MS-156). Both are available from Exploration Logging.

As an aid to formation and pressure evaluation, certain items of <a href="mailto:size:new-alian:mailto:size:ne

were a CO₂ detector, an autocalcimeter and a microscope with an ultra-್ರಾಣ್ಯ ಸ್ವಾರ್ಡ್ ಕ್ರಾಂಡ್ ಸ್ಟ್ರಾನ್ ಕ್ರಾಂಡ್ ಸ್ಟ್ರಾನ್ ಕ್ರಾಂಡ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ಟ್ರಾನ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ಟ್ ಸ್ಟ್ಟ್ಟ್ ಸ್ಟ್ಟ್ಟ್ ಸ್ಟ್ಟ್ಟ್ ಸ್ಟ್ಟ್ಟ್ ಸ್ಟ್ಟ್ ಸ್ಟ್ಟ್ಟ್ ಸ್ಟ್ಟ್ಟ್

ದಾರಿ Less ನೀಕ ನಿರ್ವಹಣೆಗಳು ಮಾರ್ಡಿಕರು ನಿರ್ದಹಣೆಗಳು ಮಾರ್ಡಿಕರು ನಿರ್ದಹಣೆಗೆ ಮಾರ್ಡಿಕರು ನಿರ್ದಹಣೆಗಳು ಮಾರ್ಡಿಕರು ನಿರುದಿಕರು ನಿರುದಿಕರು ನಿರುದಿಕರೆಗಳು ನಿರುದಹಣೆಗಳು ಮಾರ್ಡಿಕರು ನಿರುದಿಕರು ನಿರುದಿಕರು

ntal hydrocarbons

of the Ginns, it

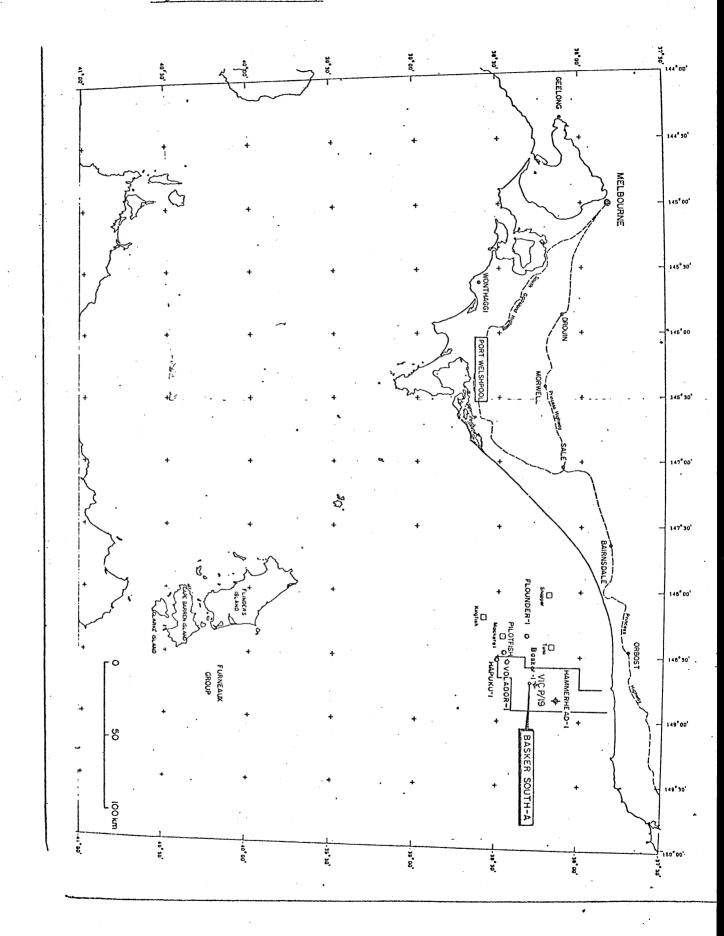
.2 of restable other wells drilled in the vicinity of Basker South No. 1 include

Hapuku No. 1, Volador No. 1, Hammerhead No. 1 and Basker No. 1 (see specifical) 2004 retenuiqual Figure 1, Location Map). Data from Basker No. 1 was used for corresponding to the second retenuity and lation purposes and to establish probable overburden gradients and

lation purposes and to establish probable overburden gradients and to establish probable overburden gradients and to establish probable overburden gradients and

pore pressure gradients before data from Basker South No. 1 was:

All parts (All the stand of test) to continue available.


ort oar or fittibe 16/01 - 000 50 ี่มแก้ "ธอห,อ ฮร์ต์ ad political tolored. Soci Contriv La .veibrait 30 978 395 U ಾ⊝. thrust the bit s tao. en i iz morat beriti ide 13 -1 11 \ __ \ ל מועל לכעל THEO ENVIRONMENTS OF PARTY maily his also ons seems a putting ser and bhe result i river as and plats of the re 3711 Builts of these sens s gendates this rep

For condits of the program of theory of pressure evaluation metabolism.

Obtain metabolism

Obtain metabolis

Figure 1. Location Map

II. DRILLING AND ENGINEERING

Basker South No. 1 was drilled to a total depth of 3420 metres in 32 days from spudding, using a total of 14 bits. These consisted of seven tooth bits, six insert bits and one stratapax type bit. These bits drilled from spud (264 metres below RKB) to 3420 metres, a distance of 3156 metres, in a total of 327.5 hours (on bottom), at an overall average rate of penetration of 9.6 metres per hour.

Table 1 (Bit Data), Table 2 (Hydraulics Data), Appendix C. i. (Drilling Data Printout) and Appendix C. ii. (Drilling Data Plots) provide a complete record of the drilling parameters used.

All significant drilling breaks and any unexplained changes in pit volume were flow checked. No flow from the well was noted from any of these checks.

36", 26" and $17\frac{1}{2}$ " Hole Sections. 264 to 709 metres.

Basker South No. 1 was spudded at 10.30 hours on 23rd November 1983, with a 36" hole opener which jetted from 264 to 266 metres and drilled from 266 to 316 metres. Deviation at 316 metres was 0.5 degrees. Four joints of 310 lb/ft 30" casing were run to 311 metres and cemented with 15 metric tonne Class G at 1.54 sg and 14 metric tonne Class G at 1.95 sg which was displaced with 4.3 cubic metres seawater.

Run #1 (NB#1) a SMITH DSJ 26" drilled cement, the shoe and washed the 36" pocket.

ofidw balle

Run #2 (NB#2), SMITH SDGH 12.25" with 3 x 20 jets drilled a pilot hole to

Deviation at 500 metres was 0.5 degrees. A survey at 706 metres was a

sime a sister fours

*Run #3 (RRB#1), SMITH DSJ 26" with 3 x 20 jets opened the 12.25" pilot hole to 26".

bebire.

Thirty-six joints of VETCO LS 133 lb/ft 20" casing were then run to 700 metres.

This was cemented with 81 metric tonne Class G with 2% calcium chloride and 3% bentonite at 1.49 sg, tailed by 26 metric tonne Class G mixed with seawater, at a slurry density of 1.92 sg.

. - 15. No dran was re-

After running the riser and BOP, Run #4 (NB#3), SMITH DSJ 17.5" with 3 x 6 fees drilled cement, the shoe and 3 metres of new formation to 709 metres where an FIT was conducted. The formation broke down at an imposed pressure of 500 psi with an 1.03 sg mud. This corresponds to a formation fracture gradient of 1.52 sg, equivalent mud density.

5 11 157

Run

Almost the entire 12½" hole section (except for 3.5 metres drilled while milling junk prior to running the 9-5/8" casing) was drilled using one Diamant Boart bit with a turbodrill. In two runs, it drilled 1545 metres in 85.8 hours on bottom at an overall average rate of penetration of 18 metres per hour.

Deviatio. * 50 / 1

Run #5 (NB#4), DIAMANT BOART LX27HS 12.25" with TFA 1.05 square inches was run with a NEYRFOR T2A turbodrill. It drilled to 1847 metres in 52.4 hours at an average rate of penetration of 21.7 metres per hour where it was tripped to retrieve a stuck survey tool. Surveys at 956 (941), 14145 (1130), 1393 (1378), 1630 (1615) and 1847 metres (1832 metres) yielded deviations of 2, 1.5, 2, 2.5 and 3 degrees respectively. No drag was evident during a 5 stand wiper trip at 1630 metres or while tripping at 1847 metres. The bit was rerun and continued drilling to 2254 metres averaging 12.2 metres per hour over the interval 1847 to 2254 metres. A survey at 2047 metres gave a deviation of 4.5 degrees. No drag was recorded during a wiper trip to the shoe at 1915 metres to replace the kelly due to a washout. Again no drag was evident while tripping the bit at 2254 metres to run wireline logs and 9-5.8" casing. No flow was observed from a flow check at 2224 metres.

Wireline logs were run as follows:

DLL-MSFL-GR-SP-Ca1

2249 to 699 metres

LDL-GR-Cal

2251 to 699 metres

LSS-GR

2248 to 699 metres

CST

5 26W

(shot 51, lost 5, empty 1)

2270 to 099 metres

Rerun #6 (RRB#2), SMITH SDGH 12.25" drilled 3.5 metres to 2257.5 metres while milling junk and cleaning the hole prior to running the 9-5/8" casing. Drag of 30 tonnes was recorded when initially pulling the bit. After reaming back to bottom and pumping a high viscosity slug, no drag was encountered when pulling the bit to surface.

166 joints of N80 47 lb/ft 20" casing were run to 2249 metres. The casing was cemented with 70 metric tonnes Class G with 3% bentonite, at 1.48 sg and 3.25 metric tonnes Class G with 0.2% HR-7, at 1.90 sg.

2409 methes

i ation of ≨ 5

of partem fills

15 mir 1628;

8½" Hole Section. 2257.5 to 3420 metres.

The $8\frac{1}{2}$ " hole section was drilled using 10 bits. These drilled 1162.5 metres to appring a total of 222.2 hours (on bottom) at an average rate of penetration of $\frac{1}{2}$ 5.2 metres per hour.

After testing the stack, Run #7 (NB#5), SMITH SVH 8.5" with 3 x 16 jets of drilled cement, the shoe and new formation to 2261 metres. The hole deviation at 2261 metres (2260 metres) was 7 degrees.

Following a Gyro survey, Run #8 (NB#6), SMITH SDGH 8.5" with 3 x 14 jets an average drilled to 2288 metres, a distance of 27 metres in 4.5 hours at an average grate of penetration of 6 metres per hour.

A formation integrity test conducted at 2288 metres reached an EMD of 1.82 sg without achieving formation breakdown. No drag was encountered during the trip.

Run #9 (NB#7), SMITH FDGH 8.5" with 10, 10, 11 jets drilled to 2372 metres, a distance of 84 metres in 7.1 hours at an average rate of penetration of 11.8 metres per hour. No flow was in evidence during flow checks at 2295 and 2343 metres. The survey at 2372 metres (2370 metres) yielded a deviation of 7.25 degrees.

Run #10 (NB#8), SMITH FDGH 8.5" with 10, 10, 11 jets drilled to 2409 metres a distance of 37 metres in 8 hours at an average rate of penetration of 4.6 metres per hour. The hole deviation at 2409 metres (2407 metres) was 7.5 degrees. No drag was recorded while tripping the bit.

Run #11 (NB#9), SMITH F2 8.5" with 10, 10, 11 jets drilled to 2590 metres, a distance of 181 metres in 17.3 hours at an average rate of penetration of 10.3 metres per hour. No flow was seen during a flow check at 2443 metres.

No drag was encountered during a three stand wiper trip at 2513 metres to retrieve a survey. Deviation at 2513 metres (2512 metres) was 7.75 degrees.

No flow was seen during a flow check at 2443 metres. Deviation at 2590 metres (2588 metres) was 7.75 degrees. No drag was seen while tripping the bit.

Run #12 (NB#10), SMITH F2 8.5" with 10, 10, 11 jets drilled to 2828 metres, a distance of 238 metres in 34 hours at an average rate of penetration of 7 metres per hour. At 2685 metres returns were circulated for 15 minutes, a survey dropped and a three stand wiper trip made to retrieve the survey.

Follow

5 M 28

Deviation at 2685 metres (2683 metres), was 6.75 degrees N57°E. Deviation at 2828 metres (2818 metres) was 5.75 degrees N68°E.

Run #13 (NB#11), SMITH F3 8.5" with 10, 10, 11 jets drilled to 2999 metres, a distance of 171 metres in 39.3 hours at an average rate of penetration of 4.4 metres per hour. Trip gas from 2828 metres was 0.015%. Up to 28 tonne drag was encountered from the first 12 stands while tripping the bit at 2999 metres. Hole deviation at 2999 metres (2989 metres) was 5 degrees $N60^{\circ}E$.

Run #14 (NB#12), VAREL 537, 8.5" with 10, 10, 11 jets drilled to 3189 metres, a distance of 190 metres in 45.3 hours at an average rate of penetration of 4.2 metres per hour. Trip gas from 2999 metres was 0.08%. Deviation at 3189 metres (3176 metres) was 3.5 degrees N28^oE.

Run #15 (NB#13), SMITH F3 with 10, 10, 11 jets drilled to 3341 metres, a distance of 152 metres in 37.5 hours at an average rate of penetration of 4 metres per hour. Returns were circulated at 3212 metres with no shows. An increase in cavings and a decrease in Dxc trend suggested an increase in pore pressure from 3240 metres to a maximum 1.07 sg EMD at 3280 metres, then decreasing to a normal 1.01 sg by 3310 metres. The hole deviation at 3341 metres (3329 metres) was 3 degrees.

Run #16 (NB#14), SMITH F3 with 10, 10, 11 jets drilled to Tctal Depth at 3420 metres, a distance of 71 metres in 24.8 hours at an average rate of penetration of 3.2 metres per hour. Trip gas from 3341 metres was 1.2%. Hole deviation at 3420 metres (3408 metres) was 2.5 degrees).

Overpull of 15 tonnes and 8 tonnes was recorded over the intervals 3224 to 3196 metres and 3196 to 3167 metres during a 15 stand wiper trip at 3420 metres. No drag was observed when pulling out of the hole to run wireline logs.

Wireline logs were run as follows:

DLL-MSFL-Cal-GR-SP

LDL-CNL-Cal-GR

HDT

Velocity Survey.

Following a wiper trip from which 0.8% trip gas was observed, wireline logs, RFT x 2, and CST (1 gun) were run.

Only formation water and a small volume of gas were recovered from the RFTs.

The hole was plugged and abandoned as a dry hole.

SHEET NO. _

DATA RECORD BIT

RUN	BIT DATA					BIT RUN									
#	BIT # ::	MFR	TYPE	SIZE	IADC CODE	JET SIZES	START DEPTH	DRILLED metres Hours		AVERAGE ROP	WOB	RPM	PUMP PRES\$URE	SPM/GPM	IADC EIT CONDITIO
1	NB 1	SMITH	DSJ	26	1115			DRILL	CEMENT						110
2	NB 2	SMITH	SDGH	12½	1355	20 20 20	316	390	16.0	24.3	5	100	2000	68/1287	120
3	RR 1	SMITH	DSJ	26	1115	20 20 20	316	390	3.5	111	5	75	2300	85/1597	2 2 0
4	NB 3	SMITH	DSJ	17½	1115	16 16 16	706	3	3.5	DRILL	CEMENT	AND CLEA	N HOLE		110
5	NB 4	DIAMANT BOART	LX27HS	12½		TFA 1.05	709	1138	52.4	21.7	. 4	650	3500	200/3164	
RR5	RR 4	11 17	Lx27HS	12 1/4		TFA 1.05	1847	407	33.4	12.2	5-10	660	3800	201/3179	40% WOR
6	RR 2	SMITH	SDGH	12 ¹ ⁄ ₄	1355	20 20 20	2254	WIPER '	TRIP -	REAM F	OR JUN	ζ.			120
7	NB 5	SMITH	SVH	8½	2255	16 16 16	2257.5	3.5	4.4	0.8	5	70	990	78/1488	8 4 4
8	NB 6	SMITH	SDGH	81/2	1355	14 14 14	2261	27	4.5	6.0	6	60	1470	85/1617	2 2 2
9	NB 7	SMITH	FDGH	8½	1375	10 10 11	2288	84	7.1	11.8	8	, 60	2440	75/1423	3 2 4
.0	NB 8	SMITH	FDGH	8½	1375	10 10 11	2372 *	37	8.0	4.6	6-12	65	2490	75/1423	3 2 4
.1	NB 9	SMITH	F2	8½	5275	10 10 11	2409	181	17.3	10.5	15.5	55	2650	77/1461	2 3 4
.2	NB10	SMITH	F2	8 ¹ ₂	5275	10 10 11	2590	238	34.0	7.0	16.5	65	2590	76/1442	5 5 8
3	NB11	SMITH	F3	8½	5375	10 10 11	2828	171	39.3	4.3	15	65	2580	76/1445	460
4	NB12	VAREL	537	81/2	5372	10 10 11	2999	190	45.3	4.2	15	55-65	2740	77/1463	3 5 0
.5	NB13	SMITH	F3	8 ¹ 2	5375	10 10 11	3189	152	37.5	4.0	15	60	2610	75/1427	2 4 0
6	NB14	SMITH	F3	81/3	5375	10 10 11	3341	79	24.8	3.2	16	60	2640	75/1423	2 2 0
							and with the desired to the second participation of the second se								
													2		
					·								*		

EL P/N 18430 MAY 1

TABLE 2. HYDRAULICS DATA: BASKER SOUTH NO. 1

BIT NO.	INTERVAL	JETS	MUD WEIGHT sg	ECD sg	PV/YP	SPM	FLOW 1/min	PUMP PRESS psi	BIT LOSS psi	%	AN RISER m/min	INULAR DP	VELOCIT DC	CRIT	NOZZLE VEL. m/sec	IMPACT FORCE kg	BIT POWER HP
4 RR4	1847.0-2254.0	1111 000 - 1	1.06-1.09	1.08-1.10 1.10-1.11	11/10 7/11	200	3164 3179	3500 3800	543 548	16 14	20.9	49.9 50.2	_	78.8 83.9	78.9 79.3	46 1 466	265 269
RR2	"Hole Section 2254.0-2257.5 2257.5-2261.0 2261.0-2288.0 2288.0-2372.0 2372.0-2409.0 2409.0-2590.0 2590.0-2828.0 2828.0-2999.0 2999.0-3189.0 3189.0-3341.0 3341.0-3420.0	10 10 11	Ream for J 1.11 1.10 1.11 1.10 1.11 1.11 1.11 1.1	1.13 1.14 1.15 1.14 1.14 1.14 1.15 1.17	11/10 13/13 15/16 15/16 15/14 15/14 16/12 14/11 17/1 16/1	85 75 75 77 77 70 77 70 70 70 70 70 70 70 70 70	1617 1423 1423 1461 1442 1445 1445 1463	2610	2035 2036 2119 2028	38 55 81 77 76 76 76 76	7.5 7.5 7.7 7.6 7.6 7.6 7.7 8 7.7	61. 59.	2 94.9 4 95.1 2 96.4 6 93.9	142.7 133.3 133.3 126.9 134.	92.6 149.3 149.3 153.1 151.4 9 151.7 6 154.4 5 149.7	409	87 188 434 431 470 452 454 478 446 441

13-

TABLE 3. SURVEY RESULTS: BASKER SOUTH NO. 1

SURVEY DEPTH metres	TOOL DEPTH metres	DEVIATION deg. C	AZIMUTH	VERTICAL DEPTH metres	BHT Deg. C (Template)
218	281	misrun *	* _ *	5 es é	× •
316	316	0.5	-	316.0	-
500	500	0.5		500.0	_
706	706	0.75	-	706.0	-
956	941	2.0	-	940.9	37 - 43
1145	1130	1.5	-	1129.8	37 - 43
1193	1378	2.0	-	1377.7	37 - 43
1630	1615	2.5	-	1614.5	37 - 43
1847	1832	3.0	-	1831.3	37 - 43
2047	2032	4.5	•	2030.0	43 - 48
2254	2239	7.5	-	2236.7	48 - 54
2261	2260	7.0	-	2258.5	48 - 54
2372	2370	7.25	-	2368.6	48 - 54.
2409	2407	7.25	-	2402.3	54 - 60
2513	2511	7.75	-	2506.4	60 - 65
2590	2588	7.75	-	2582.7	60 - 65
2685	2683	6.75	N57 ⁰ E	2677.1	60 - 65
2828	2818	5.75	N68 ⁰ E	2811.3	65 - 71
2999	2989	5.0	N60 ⁰ E	2981.6	65 - 71
3189	3176	3.5	N28 ⁰ E	3168.0	71 - 76
3341	3329	3.0	N41 ^O E	3320.8	71 - 76
3420	3408	2.5	N35 ⁰ E	3399.8	71 - 76

III. GEOPRESSURE ENGINEERING

a. Formation Pore Pressure

During the drilling of Basker South No. 1, the following parameters were monitored as an aid in estimating pore pressures: bulk density, mud temperature, Dxc, gas values, hole problems, cavings and cuttings properties.

Of these, bulk density was the least useful, due to the often hydrated nature of the clays (See Appendix G, Lag Data Printout.) Mud temperature data (see Appendix B. iii, Temperature Data Log) was also difficult to interpret due to the heat loss in the riser and the effects of injecting "fresh mud" into the system when boosting the riser while drilling the 12.25" hole. The small volume of the active system meant that the addition of new mud or water also had a significant effect on mud temperature. Despite these problems, the other monitored parameters were sufficiently accurate to allow very reliable qualitative evaluation of pore pressure changes and fair quantitative estimations of the amount of change.

On the basis of data from Basker No. 1, the normal pore pressure gradient was estimated to be 1.03 sg EMD in the marine post Latrobe Group sediments. The estimated normal pore pressure for the freshwater sediments of the Latrobe Group was 1.01 sg EMD.

No evidence of abnormal pore pressure was seen in the post Latrobe Group sediments.

Pore pressure through the Latrobe Group sediments seemed normal excepting for the interval 3240 to 3280 metres where an increase in cavings and a decrease in Dxc trend suggested an increase in pore pressure. However RFT pressure measurements show a pore pressure gradient of 1.02 sg EMD in this zone. Thus the Dxc shift and cavings increase are probably due to lithological changes.

b. Formation Overburden Pressure

Formation density data from Basker No. 1 corrected for the different water depth was processed to give an overburden gradient curve for Basker South No. 1. As density data became available from wireline logs, this data was used to obtain the final overburden pressure gradient. (See Appendix B. v., Pressure Evaluation Log.)

c. Formation Fracture Pressure

Formation integrity tests were performed after drilling out of the 20" and 9-5/8" shoes. From these tests, the following results were obtained:

Depth metres	Mud Weight sg	Gauge Pressure psi	Fracture Pressure Gradient sg EMD		
709	1.03	500	1.52		
2288	1.10	2300	1.82		

The test at 2288 metres was not taken to "leak off".

The Exlog constant effective stress ratio method was used to estimate fracture pressures while drilling and gave reasonable agreement with observed fracture pressures. It is evident from these results, (see Appendix B. v., Pressure Evaluation Log), that the fracture pressures in Basker South No. 1 were significantly higher than the mud weights used (maximum 1.13 sg), thus no lost circulation problems were experienced.

IV. GEOLOGY AND SHOWS

During the drilling of Basker South No. 1, samples were collected every ten metres from 709 metres to the base of the 12½" hole at 2257 metres, and at three metres intervals from 2257 to 3420 metres (Total Depth).

Returns were generally good, but the sticky and often dispersive nature of the Gippsland Marls made the collection of sufficient sample difficult in some sections of the $12\frac{1}{4}$ " hole.

Two 500 g bags of unwashed and one 500 g bag of washed samples were collected. The washed sample was used for lithological description, fluorescence analysis, calcimetry and density analysis, and after air drying, was divided into four set (BMR, VDME, SDA and wellsite). In addition to the regular samples, spot samples were taken as required for more detailed lithological interpretations. The outputs from the desander and desilter were also regularly checked.

Excellent control was provided by Basker No. 1, and the sequence was close to prognosis.

An Exlog Autocalcimeter was used to determine carbonate compositions (Calcite/Dolomite) and results are contained in Appendix G, Lag Data Printout.

An ultra-violet microscope was of considerable value in observing details of fluorescence and cut.

GIPPSLAND LIMESTONE (Middle Miocene Pliocene) 710 metres (first returns) to 1945 metres

The Gippsland Limestone consisted of a sequence of marine marl and calcarenite.

710 to 1310 metres

The lithclogy in this section was dominantly a marl with minor calcarenite.

Rates of penetration varied from 6.5 to 60 metres per hour and averaged

25 metres per hour. Gas values were from 0.08% to 0.5%. No shows.

The marl was very light to medium grey and light green grey, very soft to occasionally firm, sticky, dispersive, very fossiliferous with foraminifera and echinoderms, trace pyrite, glauconite and carbonaceous material.

The calcarenite was very light to medium grey, to buff, firm to moderately hard, very fine to fine grained, subangular to subrounded, poorly to moderately well sorted, friable to brittle and commonly very argillaceous with a trace of calcareous cement; foraminifera were very common with a trace of pyrite, glauconite and carbonaceous detritus.

1310 to 1600 metres

The dominant lithology in this section was marl with interbedded calcarenite increasing in amount, up to 50% of the samples. Rates of penetration through this section varied from 17.5 to 40 metres per hour and averaged 30 metres per hour. Gas ranged from 0.06% to 0.5%. No shows.

Marl - as above.

The calcarenite was light grey to buff, firm to occasionally moderately hard, friable to brittle, very fine to fine grained subangular to rounded, moderately well sorted with up to 30% calcilutite matrix. Foraminifera were common with traces of pyrite, glauconite and carbonaceous detritus and very rare lithic clasts.

1600 to 1945 metres

The dominant lithology in this section was again marl with thin beds of calcarenite. Rates of penetration ranged from 12 to 35 metres per hour and average 25 metres per hour. Gas ranged from 0.04% to 0.45% and there were no shows.

The marl was light grey to light green grey, very soft to soft, occasionally sticky, dispersive, and occasionally silty. Foraminifera were less abundant than above, becoming rare, with traces of pyrite, glauconite and carbonaceous detritus.

The calcarenite was as above.

LAKES ENTRANCE FORMATION (Middle Miocene - Oligocene). 1945 to 2210 metres.

The transition from the Gippsland Limestone to the Lakes Entrance formation was not very marked, though a gradual decrease in rate of penetration did occur towards the base along with a decrease in the amount of carbonate material in the marl, grading to calcareous claystone.

The rate of penetration through this formation averaged 13 metres per hour and varied from 4 to 35 metres per hour. Gas values ranged from 0.01 to 0.28%.

1945 to 2080 metres

Marl was the dominant lithology in this section with very minor calcarenite.

The marl was light grey to grey to light green grey, very soft to soft, sticky, moderately to very dispersive, an increase in small foraminifera was noted with traces of pyrite and glauconite.

The calcarenite was grey to buff to light brown-grey, occasionally green-grey, firm to moderately hard, very fine, subangular to rounded grains, moderately well sorted, with argillaceous matrix and calcareous cement. It had a trace of foraminifera, pyrite and galuconite and occasional lithic fragments.

This section drilled at 25 to 36 metres per hour, averaging 30 metres per hour. Gas values ranged from 0.04 to 0.30%. No shows.

2080 to 2210 metres

This interval was dominated by claystone with minor marl interbeds. The marl was as above.

Claystone: light grey to green grey, occasionally light green, firm to moderately hard, blocky to subfissile, calcareous, becoming less calcareous

towards the base of the interval. Large and small foraminifera were common to very common, traces of glauconite and good traces of pyrite and carbonaceous detritus were also present.

At the base of this interval the claystones became slightly silty with traces of very fine subrounded quartz grains.

The gas values over this interval dropped to 0.02% to 0.06% and the drill rates ranged from 4 to 11 metres per hour averaging 7 metres per hour.

FLOUNDER FORMATION (Eocene). 2210 to 2254 metres.

The Flounder formation was marked by an increase in siltstone and appearance of very fine to fine sandstone. A corresponding drop in carbonate content determined by the autocalcimeter was also a feature of this formation.

Drill rates increased through this section, ranging from 6 to 30 metres per hour and averaging 20 metres per hour. The gas values remained low ranging from 0.02 to 0.06%. No gas shows.

2210 to 2254 metres

Claystone was as above.

Siltstone: medium to dark grey, occasionally grey brown, soft to firm, occasionally brittle, blocky to subfissile and micromicaceous in part, very argillaceous.

The sandstone was predominantly loose clear quartz grains, angular to subrounded, very poorly to poorly sorted, with silty and argillaceous matrix. There was abundant glauconite, common pyrite and a trace of black carbonaceous nodules. There was no visible porosity.

LATROBE GROUP (Palaeocene - Cretaceous)(Santonian).

2254 to 3420 metres (Total Depth).

The Latrobe group consisted of a sequence of mainly interbedded sandstones and siltstones with minor claystones, shales and coal. The sandstone elements becoming generally thinner and less common with depth. At 3358 to 3387 metres weathered volcanics were encountered and were tuffaceous in nature. The almost complete alteration of the volcanics to clay minerals made any attempt to determine the nature of the material impractical.

Hydrocarbon shows within this group were of a very poor nature and commonly restricted to a very few grains within a particular sample and were associated very closely to the presence of very thin coal seams.

The top of the Latrobe Group was indicated by the occurence of clean sandstones coincidental with an increase in the rate of penetration.

2254 to 2410 metres

The lithology of this section was dominantly sandstone with thin beds of siltstone and claystone. Rate of penetration varied from 2.5 to 50 metres per hour. The sandstones drilled at the faster rates, averaging about 20 metres per hour.

Gas values were extremely low, from a trace to 0.015%. There were no shows.

The sandstones were clear to white to light grey, consisting of dominantly unconsolidated loose quartz sand to friable, ranging in size from fine to very coarse. They were very poorly sorted to moderately well sorted and roundness varied from angular to subrounded, occasionally being well rounded, sphericity ranging from elongated to spherical. Traces of argillaceous to silty matrix and traces of siliceous and pyritic cement were present, pyrite becoming very abundant in parts. Glauconite was very common in this section and porosity was very good.

The siltstone was light to medium grey-brown to medium grey-green, soft to moderately hard, occasionally hard, subfissile to blocky, very argillaceous, common very fine quartz sand, common glauconite and pyrite, micromicaceous in part with occasional carbonaceous detritus, poorly to moderately calcareous.

The claystone was very light grey to medium grey, soft to firm, silty with occasional very fine quartz grains, trace of glauconite.

2410 to 2451 metres

This section was dominated by claystone with thin interbedded sands and siltstone.

Drill rates ranged from 2 to 25 metres per hour, averaging 15 metres per hour. Gas values remained very low from trace to 0.015%. No shows.

Claystone: light grey to medium grey and olive grey, very soft to firm, dispersive to very dispersive, occasionally blocky, very silty, common to abundant very fine quartz grains and good trace of carbonaceous detritus, trace of pyrites.

Siltstone as above.

The sandstone was clear to translucent white, loose quartz grains, fine to coarse, angular to subrounded, poorly sorted, slight trace of siliceous cement, good trace pyrite cement, occasionally calcite cement, rare traces of glauconite.

2451 to 2564 metres

This interval consisted of sandstone with occasional thin beds of glauconitic claystone. Drill rates varied from 4 to 40 metres per hour, averaging 15 metres per hour. Gas values were still extremely low, ranging from a trace to 0.02%. No shows.

Sandstone, clear to translucent yellow, unconsolidated loose quartz sand to friable, fine to coarse, predominantly medium grained. The grains were angular to subrounded to occasionally well rounded larger grains and sorting was moderate to well sorted. Both pyrite and glauconite were very abundant.

20 to 40% of the sandstone was fine to medium, hard to very hard, angular to subrounded, moderately well sorted with strong pyritic cement and common siliceous cement. Glauconite was abundant with rare lithic clasts and carbonaceous detritus.

The claystone was grey-green, soft, sticky, dispersive with very abundant glauconite and commonly silty and micromicaceous with good trace of carbonaceous detritus.

2564 to 2672 metres

This interval consisted of siltstone and shales with interbedded sandstone. Coal seams of up to 0.5 metres thick were also present.

Penetration rates were 1 to 50 metres per hour, averaging 8 metres per hour, the faster rates being through coal seams. Gas values were again low, ranging from 0.02% to 0.08%. No shows.

The sandstones were as above with an argillaceous matrix in part.

The siltstones were grey-brown to light brown, firm to moderately hard, blocky to subfissile, very argillaceous with abundant carbonaceous detritus and had a trace of very fine quartz sand.

The shale was dark grey-brown to black, hard to very hard, and carbonaceous, grading to siltstone in part.

2672 to 2723 metres

This interval was 100% sandstone. Rate of penetration was 3.5 to 21 metres per hour, averaging 7 metres per hour. Gas values were extremely low ranging from a trace to 0.015%.

The sandstone was clear to white, hard to very hard, medium to coarse grained, occasionally very coarse with angular to subangular grains with high sphericity. The sand was moderately well sorted with common strong dolomite cement and a trace of siliceous cement, there was also a good trace of pyrite increasing with depth. The sandstone was non porous to very slightly porous.

Up to 90% of the sandstone in this interval had moderately bright yellow-orange mineral fluorescence.

2723 to 3248 metres

This interval consisted of a thick section of interbedded sandstones, siltstones, shale and coal, with occasional claystone. Penetration rates were 10 to 15 metres per hour, averaging 10 metres per hour in the sandstones and 2 to 8 metres per hour in the siltstones and claystones.

Gas values from the sandstones were low ranging from 0.04% to 0.02%; gas values from the coals and carbonaceous siltstones ranged between 0.2% and 2.0%.

Extremely poor shows, i.e., one or two grains per sample of washed cuttings were seen at 2868 metres and from 3105 metres to 3202 metres in thin sandstone beds.

The sandstone had pale to dull, yellow to gold fluorescence, giving a slow streaming dull to pale cut fluorescence.

The sandstones in this section varied in thickness from 1 metre to a maximum of 6 metres; interbedded with siltstones and coals. These sandstones consistently drilled from 10 to 12 metres per hour, occasionally reaching 15 metres per hour.

The sandstones in the thinner beds were generally clear to white to light grey, friable to moderately hard, very fine to medium grained, occasionally coarse. Occasionally fining upwards sequences could be determined from drill rates and samples. The sand grains were subangular to subrounded, slightly spherical to spherical and moderately well sorted. There was a good trace to common dolomitic cement, a trace of siliceous cement and a trace of argillaceous matrix. Traces of pyrite and lithic clasts were also seen. Porosity was very poor.

The sandstones in the thicker beds were typically white to light grey, loose to friable quartz sand, medium to coarse grained, dominantly medium, very angular to subangular, moderately well sorted and spherical. They had a trace of silica cement and a trace of argillaceous matrix, with also traces of pyrite and carbonaceous detritus; porosity being generally fair to good.

Coal was typically very dark brown to black, hard, brittle, subvitreous, subconchoidal fracture, occasionally being argillaceous. The coals were 1 metre thick maximum and generally much thinner and grading to carbonaceous shale.

Shale was dark brown to black, hard, occasionally brittle, fissile, earthy in part and very carbonaceous.

Claystone was grey to light brown, soft, dispersive, occasionally blocky, traces of silt with common carbonaceous detritus, grading to siltstone in part.

Siltstone was grey-brown to light to medium brown, firm, occasionally moderately hard, commonly having an argillaceous matrix and micromicaceous in part; commonly having carbonaceous detritus with a trace of very fine sand and a trace of finely disseminated pyrites.

3248 to 3368 metres

This interval was dominated by siltstones with thin shales and very thin sandstones interbeds. Very thin coals were also present.

Penetration rates ranged from 10 to 15 metres per hour in sandstones to 2 to 5 metres per hour in siltstones and shales.

Gas values ranged from 0.04% to 2.0%, the peaks coming from coals and carbonaceous siltstones.

The shows in this section were from thin sands of less than 1 metre at 3300, 3312 and 3323 metres and consisted of very few grains of the sample having spotted pale blue fluorescence, giving a slow streaming to crush cut pale fluorescence.

The sandstones in this section were typically white to light grey, moderately hard to very hard, occasionally friable, very fine to medium grained, dominantly fine, being very angular to subangular and well sorted grains. There was common dolomitic cement, very common strong silica cement and common pyrite cement. There was also common argillaceous matrix with a trace of carbonaceous detritus. The sands were generally nonporous to very slightly porous.

Siltstones were grey-brown to dark brown, firm to moderately hard, blocky, occasionally subfissile, commonly argillaceous with abundant carbonaceous detritus and grade in part to carbonaceous shale.

The shales were dark brown-grey to black, hard to very hard, subfissile to fissile, earthy lustre, have a trace to occasionally common silt with abundant carbonaceous detritus and grade in part to coal.

The coal was as above.

3368 to 3395 metres

This interval was dominated by weathered volcanics of indeterminate origin.

The most obvious feature of this section was the clay residue left from the volcanics which from the poor samples was determined to be tuff. There were few very thin sands between the volcanics.

Drill rates were 2 to 3 metres per hour in the volcanics and 4 to 7 metres per hour in sands. Gas values were 0.015% to 0.1%.

The top of the volcanics was seen by the presence of chert or chert-like rock which was translucent white to translucent grey to translucent light brown. It was very hard, having a pearly lustre and conchoidal fracture, cryptocrystalline containing finely disseminated pyrites.

The clay was white and occasionally light green, very soft and amorphous.

The intact volcanics were light to medium grey to white, moderately hard to hard, brittle, had acicular crystals in a cryptocrystalline groundmass with common quartz and feldspar inclusions; vitreous in part with occasional amygdales.

The thin sandstones were as above.

3395 to 3420 metres (Total Depth)

This interval was sandstone with siltstones. The rate of penetration for this section ranged from 2 to 6.5 metres per hour. Gas values ranged from 0.02% to 0.5%.

The siltstones were as above.

The sandstones were white to light grey, very fine to medium grained but dominantly fine grained, hard to very hard, very angular to angular and poorly to moderately sorted. Commonly had lithic clasts and a strong silica cement becoming recrystallised orthoquartzite; cryptocrystalline, microcrystalline; pyrite is common and the porosity nil to trace.

V. EVALUATION AND TESTING

a. Wireline Logging

Wireline logs were run as follows:

Depth Driller metres	Logs Run	Interval Logged metres
2254	DLL-MSFL-GR-SP-Cal	699 - 2249
	LDL-Cal-GR	699 - 2251
	LSS-GR	699 - 2248
	CST (Shot 51, Lost 5, Empty 1	1)
		,
3420	DLL-MSFL-GR-SP-Cal	2245 - 3414
	LDL-CNL-Ca1-GR	2245 - 3417
	BHC-GR /CBL-VDL	2245 - 3417
	HDT	
	Velocity Survey	
	RFTs	
	CST (Shot 51, Lost 7, Empty 1)

Data from sonic, resistivity and density logs were plotted for pore pressure analysis and the results shown in Appendix B. v., Wireline Data Log.

b. <u>Testing</u>

Two Repeat Formation Tests (RFTs) were run giving the following results:

RFT No. 1 Pressure Measurements

Depth metres	Permeability	Final Build Up Pressure		Corrected Mud Hydrostatic Pressure	
1116 01 63		psi:	EMD sg	psi	EMD sg
2340.0	good	3337	1.005	3782	1.139
2536.0	good	3614	1.005	4085	1.136
2651.5	good	3781 ,	1.005	4272	1.136
2803.2	tight				
2804.2	good	3999	1.005	4513	1.135
2907.7	good	4155	1.007	4681	1.135
2932.0	good	4194	1.008	4719	1.135
2971.0	good	4255	1.009	4781	1.135
3034.0	very good	4350	1.011	4880	1.134
3111.5	good	4467	1.012	5002	1.133
3151.5	poor	4524	1.012	5062	1.132
3177.6	very good	4568	1.014	5105	1.133
3215.5	poor	4615	1.012	5161	1.132
3231.0	very good	4645	1.014	5189	1.132
3258.8	good	4686	1.014	5231	1.132
3267.7	tight	4733	1.021	5243	1.131
2367.7	tight	4733	1.021	5242	1.131
3382.2	good	4854	1.012	5414	1.129

RFT No. 2

Sample Recovery from 3231 metres.

Upper Chamber. 22.7 litre capacity

0.9 scf gas

21 litres dirty water, 1.025 sg, 31,700 ppm NaCl,

Res = 0.219 ohm-metres at 21° C.

Lower Chamber. 10.4 litre capacity

0.7 scf gas

9.5 litres clean water, milky fluorescence, 1.015 sg, 31,700 ppm NaCl,

Res = 0.228 ohm-metresat 19° C.

VI. CONCLUSIONS

Experience from the previous wells (Volador, Basker and Bignose) contributed to efficient drilling practices, resulting in fast drill rates and considerable savings in rig time costs.

An example was the use of a turbodrill and Stratapax type bit to drill the entire 12½" hole, through the relatively uniform lithologies of the Gippsland Limestone and the Lakes Entrance Formation.

Another example of a cost efficient practice was the elimination of the $17\frac{1}{2}$ " hole and 13-3/8" liner, made possible by the rapid drilling of the Gippsland Limestone and Lakes Entrance Formation.

The choice of SMITH F2 and F3 type bits in the 8½" hole section is most suited to the lithologies encountered and requires no change.

The mud weights used in the $8\frac{1}{2}$ " section, at 1.11 sg to 1.13 sg were somewhat excessive in view of the formation pore pressure of 1.01 sg and resulted in suppression of drill races and subdued gas values. Consideration should be given to using a centrifuge with the mud cleaning system to enable the mud weight to be maintained as low as possible. The polymer mud system kept the hole in good condition and restricted hole problems to a minimum.

Hydraulics for the well were generally good with flow rates in the $8\frac{1}{2}$ " section giving 70 to 80% pressure loss across the bit.

No significant hydrocarbon accumulations were encountered in the prospective reservoir formations of Basker South No. 1 and the well was plugged and abandoned as a dry hole.

APPENDICES

A. DATA ACQUISITION AND ANALYSIS METHODS

В. MANUAL PLOTS

- i. Well Progress Log
- ii. Drilling Data Pressure Log
- iii. Temperature Data Log
- iv. Wireline Data Log
- Pressure Evaluation Log ٧.

COMPUTER PRINTS AND PLOTS C.

- i. Drilling Data Printout 709 - 3420 metres
- ii. Drilling Data Plots
 - (a) 1:2000 ROP-LITHOLOGY-WOB-PUMP PRESSURE & FLOW-RPM AVERAGE & MAXIMUM TORQUE-\$/M & \$/M INST.
 - (b) 1:2000 ROP-DXC & TREND-LITHOLOGY-TOTAL GAS-ESTIMATED PORE PRESSURE & ECD-TEMPERATURE IN & OUT.
- D. MORNING GEOLOGICAL ENGINEERING REPORTS
- E. WEEKLY GEOLOGICAL ENGINEERING REPORTS
- F. HYDRAULICS ANALYSES
- G. LAG DATA PRINTOUT
- Н. FORMATION EVALUATION LOG

APPENDIX A

DATA ACQUISITION AND ANALYSIS METHODS

APPENDIX A

DATA ACQUISITION AND ANALYSIS METHOD

	,			PAGE
Α.	PORE I	PRESS	SURE EVALUATION	Al
	I. I	PRE-I	DRILLING	Al.
	:	1.	Offset Well Data	Al
•	2	2.	Seismic Information	Al
	II. I	DRILI	LING	А3
		1.	Drilling Parameters: ROP/Drilling Exponents	A3
		2.	Gas	A4
		3.	Cuttings Analysis	A 6
			(a) Shale Density (b) Shale Factor (c) Cuttings Physical Character	A6 A7 A9
÷		4.	Mud Properties	Al0
			(a) Flowline Temperature (b) Resistivity/Conductivity	A10 A13
		5.	Borehole Condition	Al4
		6.	Verification by Wireline Logs	A14
			(a) Acoustic (b) Resistivity (c) Others	Al4 Al5 Al5
В.	PORE	PRES	SSURE QUANTIFICATION	A16
c.	OVERE	BURDE	N PRESSURE DETERMINATION	Al8
D.	FRACI	TURE	PRESSURE DETERMINATION	A19
Ε.	REFEI	RENCE		A21

APPENDIX A

DATA ACQUISITION AND ANALYSIS METHODS

A. PORE PRESSURE EVALUATION

I. Pre-Drilling

1. Offset Well Data

Whenever available, offset well data are examined to predict and evaluate pore pressure prospects in the new well. Information that can be useful is available from seismic profiles; wireline logs, especially acoustic and resistivity logs, with bottom hole temperature data; FIT, DST, and Well Kick (if any) and mud logs; daily drilling reports, including bit record, mud properties used, and remarks concerning borehole stability; and the geopressure evaluation and completion reports.

2. Seismic Information

Pore pressure prediction using seismic data primarily focuses on the interpretation of detailed velocity analyses made possible by Common-Depth-Point (CDP) recording methods. The velocity analyses are performed with velocity scan increments (50ft/sec) and output intervals in the time domain (10 milliseconds). Based on such analyses, RMS (Root Mean Square) velocity values at a series of record times (i.e. two-way travel times) may be identified. The sequence of interpreted RMS velocity-time data pairs obtained from a velocity analysis may then be recomputed to interval transit time (ITT) using Dix's (1955) formula (see figure 1).

Figure 1

Where $Vint_n = ITT$ for reflecting horizon n, ft/sec. $V_n = RMS$ velocity for layer n, ft/sec. $V_{n-1} = RMS$ velocity for layer (n-1), ft/sec. $t_n = Two$ -way time to layer n, sec. $t_n = Two$ -way time to layer (n-1), sec.

 $1/Vint_n \times 10^6 = ITT$, microseconds eq. 2

The ITT when plotted with depth will produce a "synthetic acoustic log" which can be readily compared with that derived from the wireline acoustic log. The ITT plots show that velocity increases exponentially with depth in normallycompacted sediments. The "normal compaction trend" through the shale points which form a linear trend on the plot can be identified. Any departure from this normal trend is caused by the presence of geopressured formations and/or gross changes in lithology. There is no accurate way to separate shale from other lithologies when using seismic velocity data. Therefore since the influence of these other lithologies can adversely affect the interpretation of a seismic pressure plot, all available geologic and other subsurface information should be integrated into the evaluation. The accuracy of ITT plots will also depend upon the quality of the seismic data, and the use of high resolution seismic data will enhance the prediction of a shallow geopressured interval.

II. Drilling

1. Drilling Parameters: ROP and Drilling Exponents

Exploration Logging utilizes the Kelly Height system to calculate the rate of penetration. The system responds to the hydrostatic pressure variation of a sensing device and a Kelly chamber located near the Kelly swivel. The Kelly Height variations recorded on a time chart allows computation of the rate of penetration.

When the drilling variables (bit type, bit size, weight on bit, rotary rpm, mud hydraulics, mud rheological properties) are held constant in a uniform lithology, the rate of penetration will be determined by formation compaction characteristics and differential pressure. The rate of penetration would decrease uniformly with depth as compaction of shale increased. On entering a geopressure transition zone in shale, increasing porosity due to decreased compaction, and decreasing differential pressure across the bottom will cause an increase in the rate of penetration. A marked reduction in drilling rate is often observed at the top of a transition zone, possibly caused by a lithology difference in the so called "cap rock".

Maintaining constant drilling variables is not always possible; various formulae have been proposed in the attempts to resolve the problem of normalizing drill rate. Jorden and Shirley's (1968) formulation allows control of most of the drilling variables and has proven very successful in most areas.

$$d = \frac{\log \frac{R}{60N}}{\log \frac{12W}{10^3 D}}$$

Where d = drilling exponent (dimensionless)

R = Rate of Penetration, ft/hr.

N = Rotary Speed, RPM

W = Weight on Bit, klbs

D = Bit Diameter, inches

The d-exponent will increase as the depth, compaction and differential pressure across bottom increase in normally pressured homogeneous shale. Upon entering a geopressured zone, the compaction and differential pressure will decrease, which is reflected by a decrease in the d-exponent.

Differential pressure is dependent upon mud weight as well as formation pressure. Rehm and McClendon (1971) proposed the correction to allow for mud weight.

$$Dxc = d \times \frac{Weq}{ECD}$$

Where Dxc = corrected d-exponent

d = d exponent

Weq = normal pore pressure gradient

(Equivalent Mud Weight, ppg)

ECD = Effective Circulating Density, ppg

Any negative deviation of the Dxc from a normal trend (based on clean shale points) may be indicative of an increase in pore pressure.

Exlog introduced Nx and Nxb to account for ROP variations due to tooth wear/efficiency (based on Bourgoyne and Young's (1973) model), mud hydraulics, and lithology. A plot of Nxb with depth then serves as an indication of formation pressure changes at the bit.

2. Gas

The drilling mud continuously passes through the gas trap situated at the flowline, and the gas extracted is pumped to the logging unit to be analysed by the catalytic or flame ionisation gas detector. The amount of gas is expressed as "gas unit". Exlog's gas detectors are calibrated with a mixture of 1% methane in air to read 50 units, i.e. 1 unit is 200 ppm, according to API standards for mud logging.

The volume of gas released from a drilled formation is dependent upon the porosity, permeability, gas saturation, and differential pressure. Gas magnitude is relative when gas is being used as a measure of differential pressure. Low permeability formations with low gas saturation, and high permeability formations with low gas saturation, are both likely to yield only low background gas.

Background gas is the total drilled gas resulting primarily from the unit volume of formation cut by the drill bit, i.e. liberated gas. A continued increase of background gas indicates a higher formation porosity and/or a higher hydrocarbon saturation in the available pore space. Thus if lithology, permeability rate, rate of penetration, gas saturation, and mud density are given due consideration, then an increasing background gas may indicate increasing pore pressure. The background gas after a gas peak should be compared with the background gas prior to the peak. A higher background gas after a peak than that before the peak may suggest an underbalanced hole condition.

Produced gas, i.e. gas produced into the drilling fluid from a specific zone in response to formation pressure that exceeds the opposing effective hydrostatic pressure (e.g. connection gas, swab gas, and trip gas), are also important factors to consider in pore pressure analysis. Their presence indicates a near balanced hole condition for permeable hydrocarbon bearing formations, and that at least some degree of effective permeability is present.

Connection gas results from momentary underbalance due to pump shutdown, and/or pipe movement while making a pipe connection. Negative differential pressure caused in part by the loss of annular pressure drop during periods of no circulation and in part by the swabbing action of drilling string, could lead to feeding into the borehole of formation fluid.

Swab gas is that gas produced by a formation due to underbalance caused by the upward movement of the drillstring. This may be accompanied by pump shutdown (e.g. during connections and trips) or not. There are two types of swabbing, one being the piston type (some part of the drill string acting as a plunger in the borehole) and the other being the frictional type (friction between moving drill string and annular mud inducing a slight lifting force in annular mud column).

Trip gas is produced gas caused by the loss of annular pressure drop during pump shutdown by swabbing the entire hole (influenced by the speed of tripping out the drill string), lowering of hydrostatic head (if the hole is not kept full), and the period of non-drilling operations while making a trip. It also is a measure of the degree of static balance in the borehole, but its utility is less because time interval is a significant factor in round trips when compared to connections.

3. Cuttings Analysis

(a) Shale Density

The compaction of sediments through applied overburden pressure and diagenetic process is largely a function of dewatering. The exclusion of water with compaction will result in a decrease in primary porosity and an increase in bulk density, generally with depth. With normal compaction, bulk density typically ranges from 1.7 to 2.7 gm/cc and shows a steady rate of increase with depth. Anomalies from this normal compaction trend may be due to mineralogy, e.g. siderite, dolomite, and calcitic shales exhibit higher than normal values. Sandy, silty shales and soft wet clays will produce further variations.

Geopressure in homogeneous claystone/shale sections is indicated by a constant or decrease in density with depth reflecting a higher than normal porosity and fluid content. "Cap rocks" of higher than normal density may be present above this zone of geopressure. Two methods of shale density determination commonly used by Exlog at the wellsite are:

- (i) Single-solution shale density kit (Density Gradient Method) which consists of a column of variable density solution fluid (bromoform and neothene) in which beads of known density are suspended. A calibration curve of density versus depth is prepared. Shale cuttings immersed in the column will sink to the level at which their density is the same as the fluid; density is then read off from the calibration curve.
- (ii) Multi-solution shale density kit ("sink or float" method) which consists of a set of liquids of varying densities. By placing a piece of shale in such a liquid, its density can be determined when it either sinks or floats through the liquid.

(b) Shale Factor

Smectite is the principle component of clay during normal sedimentation. This is a flocculated sheet silicate which has a large capacity to absorb and retain water between the individual molecular sheets and between the flocculate particles. With burial and continual compaction, smectite will undergo diagnesis due to increasing temperatue and pressure. Ionic exchange occurs and structured water becomes liberated to the pores. Providing that the hydraulic conductivity is sufficiently high to remove this water, compaction will continue. The outer layers of water bonded to the clay particles may next be removed as smectite alters diagnetically with depth to mixed-layer clays and finally, to illite. This alteration involves compaction of pore spaces, orientation of particles and reduction in interlayer and intraparticle area, thereby reducing the total area available for chemical adsorption. If the hydraulic conductivity is insufficient to remove the liberated water as it is flushed, then at depth the clays will be geopressured and of a "younger" diagenetic age.

Illite or kaolinite may be deposited as the primary clays. As non-swelling clays they have very little intraparticle water. These clays dewater by loss of interparticle water through compaction. Again, if the hydraulic conductivity of the clays is lower than that required to efficiently flush the water, then these clays will be geopressured. Non-swelling clays, as stated above, are geometrically more compact than their swellable counterparts and therefore originally contain less sites for chemical adsorption of free ions.

Shale factor is a measure of the cation capacity of clays. Cation exchange capacity will decrease as clays convert from smectite to illite. Therefore, geopressured zones generated by restricted diagenesis due to inefficient dewatering mechanism, will theoretically show an increase of the shale factor due to the increased porosity and hence larger surface areas of cation exchange. If illite and kaolinite were the primary clays, the shale factor would be low initially. In geopressured sections of such clays, the shale factor may show no increase whatsoever. Hence in sections of mature, reworked clays, shale factor may be of little use in the detection of geopressures.

Also, in geopressure zones caused by dehydration, i.e. water released to the pore spaces has been unable to escape fast enough and resulting in a pore pressure increase, the shale factor will decrease since the smectite has been converted to illite. Therefore shale factor may not be a useful geopressure indicator; this is also the case when geopressure was generated by tectonic forces and aquathermal pressuring other than compaction disequilibrium.

The method of shale factor determination used by Exlog at the wellsite is as follows:

- 1. dry samples in oven;
- 2. pulverise the sample to fine powder with mortar and pestle;
- 3. Seive powdered sample through 80-mesh seive;
- 4. weight 0.5 gm of the powder & add this to a solution of distilled water acidified with a few drops of 5N Sulphuric acid in the blendor metal measuring cup;

- heat solution to boiling on the hot plate, stirring continuously and titrate with methylene blue solution until end-point is reached this occurs when the halo of pale turgoise around a blue dye spot on filter paper occurs;
- 6. calculate the shale factor:

Shale Factor
$$= -\frac{100}{\text{sample wt, gm}} \times \text{volume x methylene blue solution}$$

Where volume = volume of methylene blue used when end-point was reached, ml

7. If clay is calcareous, and calcimetries are also being run, shale factor may be corrected for carbonate content (assuming clay matrix is of same density as the carbonate matrix).

True shale factor =
$$\frac{100}{100 - C_a \cos 3}$$
 x apparent shale factor

Note that the shale factor as measured at the wellsite will not give values corresponding to actual chemical cation exchange capacity. This is due to impurities in the sample, variations in methodology, experimental errors, and the fact that the methylene blue dye (used in the titration) is a very large molecule and thus cannot be adsorbed in interlayer sites.

(c) <u>Cuttings Physical Character</u>

Cuttings over shale shaker are continuously monitored for any indication of geopressure. Cuttings for normally pressured shales are generally small, semi-flat and rounded edges, while cuttings from a geopressure zone drilled underbalanced are typically larger, angular edges, flat, splintery, and often as jagged and elongated concave, curved samples. The quantity of cuttings often increases while drilling underbalanced

because the formation explodes into the wellbore. Cavings are also produced by stress relief mechanism, characteristically blocky and varying in size tremendously, depending on the formation characteristics.

4. Mud Properties

(a) Flowline Temperature

Heat flow is generated radially from the earth's core with a constant heat flux across any depth increment. For any given area, the geothermal gradient is usually assumed to be constant. While this may be true for the average gradient across normally pressured formations, geopressured formations have exhibited abnormally high geothermal gradients. The top of a geopressured zone will be marked by a sharp increase in geothermal gradient due to the higher than normal porosity and fluid content of the formation which reduces the thermal conductivity. The seal above geopressured zones may exhibit a decrease in the geothermal gradient due to the insulating effect of the geopressured zone below and/or due to the greater thermal conductivity at the abnormally compacted seal rock.

The temperature of the drilling fluid at the flowline may reflect the geotemperature, and the recording of flowline temperature is a practical method of determining temperature gradient. However, many variables must be accounted for, including the mixing, treatment and addition of new cooler mud into the circulatory system, pump rate, lag time, ambient temperature, lithology, solid content of mud (weighing material), penetration rate, casing size, and the length of marine riser. Exlog uses a dual temperature probe system with sensors at the flowline and suction pit - surface effects may be removed if lagged differential temperature is plotted.

Returns are often circulated prior to pulling each bit, and after significant drilling breaks. A plot of these circulated returns temperatures usually provides a better approximation of the geothermal gradient than that obtained from the flowline temperature over the bit run. As with the standard method, recent mud additions can have a serious effect upon the circulated returns temperatures.

A plot of maximum temperature on regaining circulation after a period of downtime can also closely approximate geothermal trends. After a trip, mud temperature will reach a maximum on bottoms-up. Monitoring these peaks may aid geothermal trend interpretations.

Another method of obtaining geothermal gradient between hole deviation survey runs is the use of Temp Plates. These are self-adhesive sensors containing thermetically sealed heat-sensitive elements which change chemical structure at given calibrated temperatures. When exposed to the new rated temperature, the indicator turns from pastel grey to black. The Temp Plates are attached to the survey tool. A record of downhole survey temperatures can therefore be kept. It has been found that this method more closely reflects the true geothermal gradient, although recorded temperature values are lower than true values.

Maximum bottom-home temperatures recorded during wireline log runs at the same depth can be utilized to estimate the true formation temperature. By use of a modified Horner Plot, a method adapted from Horner's bottom-hole pressure plots (Fertl & Wichmann, 1977), it is possible to estimate true bottom hole temperatures. The method requires maximum recorded bottom hole temperature on each logging run, and information concerning circulating time (tk = hours) and time since circulation stopped (dt, hours). The recorded data may then be plotted on semilogrithmic paper, with temperature on the linear coordinate and one dimensionless time factor, dt on the semilog abscissa.

			•
LCG RUN #	TIME SINCE CIRCLN. (dt)	MEASURED B.H.T.	dt tk+dt
1	4.00	210.00	.500
2	7.83	225.00	.662
3	11.17	231.00	.736

CIRCULATION TIME (tk) = 4.00 hours

HCKNER - FERTL NETHOD

BOTTOM HOLE TEMPERATURE = 247.46DEGREES

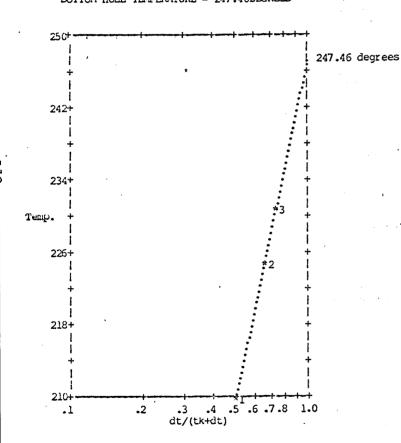
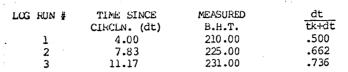



Figure 2

CIRCULATION TIME (tk) = 4.00 hours

NWACHUKWU METHOD

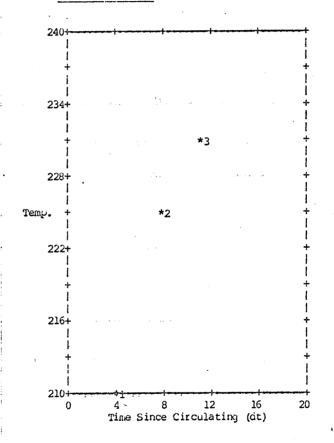


Figure 3

USING LCG RUNS 1 , 2 AND 3 BOTTOM HOLE TEMPERATURE = 248.89DEGREES A straight line joining the plotted points is extrapolated to the temperature axis and true bottom hole static temperature is read off (figure 2). The method fails if circulation and the addition of new, cool mud into the system occurs between log runs.

Nwachukwu (1976) proposed a mathematical method, utilizing a modified Lachenbruch-Brewer (1959) equation, to calculate true static bottom hole temperature when three bottom hole temperatures are available from logging runs (figure 3). True bottom hole temperature, $T_{\rm f}$, is solved by:

$$T_{f} = \frac{(t_{2} - t_{1}) + ((T_{1} t_{1}) - (T_{2} t_{2}))}{T_{2} - T_{1}} = T_{f} = T_{1}$$

where T_1 = recorded BHT, log run 1

 T_2 = recorded BHT, log run 2 T_3 = recorded BHT, log run 3

 t_1 = time since circulation stopped, log run 1

t₂ = time since circulation stopped, log run 2

 t_3 = time since circulation stopped, log run 3

 $T_f = true static formation temperature$

(b) Mud Resistivity/Conductivity

Dissolved solids in formation water are often correlated to the total chloride concentration of salinity. When conductivity is monitored at the flowline and the mud pits, a conversion is made to chlorides, and the differential, \(\sum \text{Cl}, \) is purportedly an indicator of geopressure. The dissolved solid contents of water in normally pressured shale is known to increase with depth, but shows a decrease in geopressured shale. The trend is similar in normally pressured sands but at a higher concentration than shale waters, while in geopressured sands the dissolved solid concentration of sands pure water approaches that of shale water. Therefore geopressured zones may be detected in the resistivity changes of returning mud, but this will be influenced by the shale/sand ratio of the basin. Moreover, the

use of saline mud system will severely mask small changes caused by fluctuating pore water chemistry.

5. Borehole Condition

Borehole condition has to be used in conjunction with all other data. Increased rotary torque while drilling, drag on trips and connections, occurrence of connection gases, swab gases, quantity and physical character of cuttings, carbide lag versus theoretical lag time are all indicators of hole condition and will tend to indicate the presence of geopressure.

6. Verification of Wireline Logs

(a) Accoustic Log

The acoustic (sonic) log measures the shortest time for a sound wave to travel through rock. The acoustic logging devices consist of acoustic transmitters with a fixed distance from the receivers, thus time is the only variable. The interval transit time can be related to the porosity of the formation.

$$\phi = \frac{dt - dtm}{dtf - dtm}$$

where $\phi = fractional porosity$

dt = transit time of particular formation (from log)

dtm = transit time of matrix

dtf = transit time of pore fluids

The transit times decrease with increasing formation compaction due to burial depth and older geological age. A normal trend can be produced from a plot of clay transit times in normally pressured sections. Geopressured clays will show increasing transit times due to increasing porosity associated with increasing pore pressure.

(b) Resistivity Logs

The resistivity of a rock is the ability of the rock to impede the flow of electric current through rock, and is dependent upon the amount of water, its salinity, and the distribution of the water within the rock's porous network.

Any log producing resistivity curves can be utilized for formation pressure evaluation, but the best logs are the induction and microlog types. A resistivity plot in a normally pressured clay shows an increasing trend with depth caused by compaction that decreases clays porosity which results in less connate water to act as an electrical resistance. The increase in porosity in geopressured clays is reflected by a decrease in resistivity, provided the resistivity of the pore water has not increased.

(c) Other Logs

Other electrical logs, including Spontaneous Potential (SP), Formation Density (FDC), Neutron Logs, have been used for formation pressure plotting.

Quantitative formation pressure evaluation involves the determination of normal trends in normally pressured clay sections, and departure from these trend lines in geopressured clays.

All electrical logs used for formation pressure evaluation should be utilised with the considerations for possible pitfalls and limitations, posed by factors such as borehole conditions, mud salinity, shale hydration, tools calibrations, which are inherent with different logging tools.

B. PORE PRESSURE QUANTIFICATION

Pore pressure quantification can be made from either empirical data such as well kick information, or from pressure parameter data such as seismic data, drilling data (including drilling exponents and shale density), and wireline log data. The quantification of pore pressure from pressure parameter data requires the knowledge of the normal pore pressure for the area, the establishment of a normal shale compaction trend line on a plot of the pressure parameter deviation from normal and abnormal pore pressure which causes such deviation.

The normal pore pressure for all areas can either be assumed to be 8.3-9.0 ppg EMW (Equivalent Mud Weight) on a rank wildcat well, estimated from formation tests data gathered in the area of interest, or calculated from wireline log formation salinity data.

Pressure parameters described above usually increase exponentially with depth in normally pressured clean shales. Thus a "normal compaction trend" can be identified by a best fit line drawn through clean shale points which form a linear trend on the plot when the pressure parameter scale is log and the depth scale is linear. This trend line represents the normal pore pressure and quantification of geopressure can be made by noting the divergence from this trend line. It should be noted that the above mentioned pressure parameters reflect changes in porosity, and hence compaction only, and do not reflect changes in pore pressure from other causes.

The magnitude of pore pressure can be estimated by the use of overlays, calibration curves, rock matrix stress analysis, or variable overburden method. However, the overlays and calibration curves should ideally only be used in the areas where the empirical well data, used to derive the pore pressure versus pressure parameter departure relationships, was obtained. Differences in lithologies, sediment age, pore water density, and overburden, compaction and cementation rates between areas can produce significantly variant departure relationships. Ignoring this can result in invalid and misleading estimations. In a rank wildcat area where no established empirical guides are available, a

technique using rock matrix stress analysis or variable overburden method is therefore preferable.

Overlays and calibration curves can be developed from known pore pressure gradient corresponding to the difference in actual pressure parameter value in geopressured shale from the pressure parameter value on the extrapolated normal trend line. The estimated pore pressure can be determined by:

$$P_f = P_p \times (\frac{Vn}{VO})$$

where P_f = pore pressure at depth of interest, ppg

 P_{p} = normal pore pressure, ppg

Vo = observed pressure parameter value at depth of interest

Vn = pressure parameter value on the extropolated trend line at depth of interest

The matrix stress or Equivalent Depth method assumes that part of the overburden supported by the clay matrix will be constant for clays with the same porosity. More precisely it assumes that the rock matrix stress at a shallow depth point where the pressure parameter value on the parameter normal trend is equal to the pressure parameter value at the depth of interest in the geopressured zone. If overburden gradient and normal pore pressure are known, then pore pressure at any depth of interest can be calculated by:

$$P_{fi} = Di .OBG_i - De (OBG_e - P_{pg})$$

where P_{fi} = formation pore pressure at depth of interest, psi

P_{pq} = normal pore pressure gradient, psi/ft

OBGi = overburden gradient at Di, psi/ft

OBGe = overburden gradient at De, psi/ft

 $D_{i} = depth of interest, ft$

 $D_{e} = normal$, equivalent depth, ft

Geopressure magnitude may also be calculated by variable overburden method from the pressure parameter data using the following equations:

$$P/D = S/D - (S/D - (P/D)n) \times ({}^{RO}/Rn)^{1.2}$$

 $P/D = S/D - (S/D - (P/D)n) \times ({}^{dt}n/dt_0)^{3.0}$
 $P/D = S/D - (S/D - (P/D)n) \times ({}^{dc}o/dc_n)^{1.2}$

where P/D = Formation pressure gradient either normal or geopressured, psi/ft

(P/D)n = Normal water gradient, psi/ft

S/D = Overburden stress gradient, psi/ft

 R_{n} = Shale resistivity from normal line, ohm-metres

R = Shale resistivity from well log, ohm-metres

dt_n = Normal shale travel time, microsecs/ft

dt = Shale travel time from log, microsec/ft

dc = Actual dc from trend time

dc = Actual dc calculated

C. OVERBURDEN PRESSURE DETERMINATION

The overburden pressure at any point in the formation is that pore pressure exerted by the total density of the overlying formations, gravity, and the depth at the point of interest.

$$\int_{0}^{z} \rho dz = \int_{0}^{z} \rho(z) dz$$

where z = depth interval $\rho = bulk$ density

The bulk density of a rock is a function of the density of the rock matrix itself, the density of the bore fluids, and the porosity.

The formation densities are derived from cuttings or, preferably, from the FDC, or Acoustic logs. The average density for each

successive 50 feet interval from surface to total depth is then used to compute overburden gradient. The overburden pressures are referenced from the rig floor, hence in offshore drilling the height of an air gap and depth and density of seawater must be accounted for.

D. FRACTURE PRESSURE DETERMINATION

Fracture pressure is the pressure required to overcome the tensile strength and fluid pressure of a formation at depth. Both empirical and theoretical methods are utilised to determine the fracture pressure of the formation. Empirical data from formation pressure integrity tests and lost circulation are the most reliable. Fracture data from well histories can be very beneficial. The following theoretical models are used:

a) Hubbert and Willis (1957)

b) Mathews and Kelly (1967)

$$\frac{F}{D} = \frac{P}{D} + ki \left(\frac{S-P}{D}\right)$$

c) Eaton (1969)

$$\frac{F}{D} = \frac{P}{D} + \frac{\mu}{1-\mu} \left(\frac{S-P}{D} \right)$$

d) Anderson, et.al (1972)

$$\frac{F}{D} = \frac{P}{D} \left(\frac{1-3\mu}{1-\mu} \right) + \frac{S}{D} \left(\frac{2\mu}{1-\mu} \right)$$

e) Exlog (1980)

$$F = 0 + 0 \frac{\mu}{1 - \mu} + P$$

Where F = fracture pressure

D = depth

S = overburden pressure

P = pore pressure

ki = matrix stress coefficient

 μ = Poisson's Ratio

Ut = superposed horizontal tectonic stress

 ∇_1' = maximum compressive effective stress = S - P

The stress ratios, ki and μ in equation (b) and (c) may be backcalculated with measured formation breakdown ("Leak-off") pressures or taken from curves derived in Gulf Coast. It should be noted that Eaton's Poisson's ratio is not a function of the rock itself but of the regional stress field (i.e. the horizontal-to-vertical stress ratio); Anderson's Poisson's ratio is a function of the shaliness of the sand; Exlog's Poisson's ratio is a function of the rock and the values obtained by sonic testing. Exlog's method also requires a "leak-off" test to calculate the superposed tectonic stress, if present.

With known overburden pressure (from density data) and pore pressure (from drilling and log plots), fracture pressure can thus be predicted for any depth using one of the above equations. However, returns may be lost in vugular or naturally fractured formations regardless of the fracture gradient in the overlying formation.

E. REFERENCES

ANDERSON, R.A., INGRAM, D.S., & ZANIER, A.M., 1972, Fracture Pressure Gradient Determination from Well Logs: SPE Paper 4135

BOURGOYNE, A.T., & YOUNG, F.S., 1973, A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection: SPE-AIME, 6th Conference, Austin, Texas

DIX, G.H., 1955, Seismic Velocities from Surface Measurements: Geophysis, 20 (1): 68-86

EATON, B.A., 1969, Fracture Gradient Prediction and Its Application in Oilfield Operation: J. Pet. Tech., 21: 1353-1360

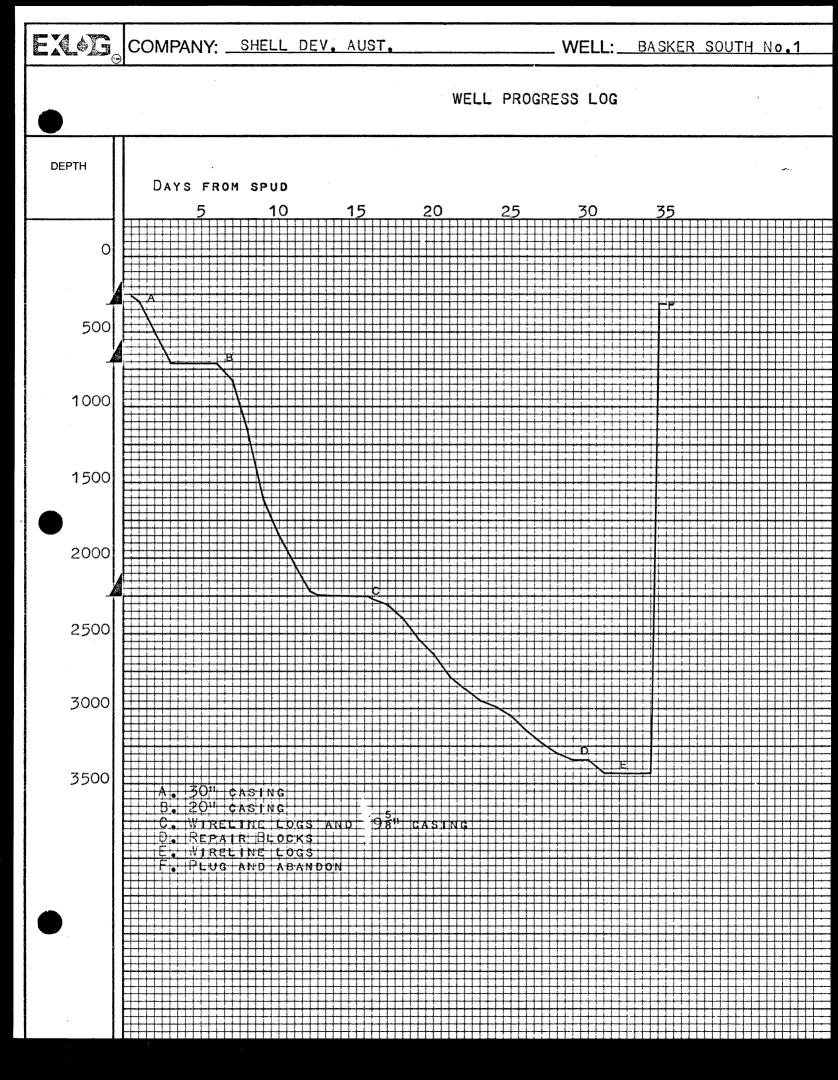
EXLOG, 1980, Pressure Log Manual - Theory and Evaluation of Geopressures: Sacramento, Exploration Logging Manual MS-156, Rev. C, Unpublished.

FERTL, W.H., & WICHMANN, P.A., 1977, How to Determine Static BHT from Well Log Data: World Oil, 175 (1): 105-106

HUBBERT, M.K., & WILLIS, D.G., 1957, Mechanics of Hydraulic Fracturing: Trans. AIME, 210: 153-168

JORDEN, J.R., & SHIRLEY, O.J., 1966, Application of Drilling Performance Data to Overpressure Detection: J.Pet. Tech. 18: 1387-1394.

LACHENBURCH, A.H., & BREWER, M.D., 1959, Dissipation of the Temperature Effect in Drilling a Well in Arctic Alaska: <u>U.S.</u> Ceol. Survey Bull., <u>1083-C:</u> 73-109


MATHEWS, W.R., & KELLY, J., 1967, How to Predict Formation Pressure and Fracture Gradient from Electric and Sonic Logs: Oil & Gas J., $\underline{65}$ (8): 92-106

NWACHUKWU, S.O., 1976, Approximate Geothermal Gradients in Niger Delta Sedimentary Basin: AAPG Bull., 60 (7): 1073-1077

REHM, B., & McCLENDON, R., 1971, Measurement of Formation Pressure from Drilling Data: SPE Paper 3601 - SPE Reprint Series No. 6a, 1973 revision

- i. Well Progress Log
- ii. Drilling Data Pressure Log
- iii. Temperature Data Log
- iv. Wireline Data Log
- v. Pressure Evaluation Log

i. Well Progress Log

ii. Drilling Data Pressure Log

PE602287

This is an enclosure indicator page. The enclosure PE602287 is enclosed within the container PE903478 at this location in this document.

The enclosure PE602287 has the following characteristics:

ITEM_BARCODE = PE602287
CONTAINER_BARCODE = PE903478

NAME = Exlog Mud Log

BASIN = GIPPSLAND

PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Exlog Mud Log (enclosure from Final

Well report--attachment to WCR) for

Basker South-1

REMARKS =

DATE_CREATED = 24/12/83

DATE_RECEIVED = 14/05/84

 $W_NO = W839$

WELL_NAME = Basker South-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Shell Development (Australia) Pty Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

iii. Temperature Data Log

PE602288

This is an enclosure indicator page. The enclosure PE602288 is enclosed within the container PE903478 at this location in this document.

The enclosure PE602288 has the following characteristics:

ITEM_BARCODE = PE602288
CONTAINER_BARCODE = PE903478

NAME = Temperature Data Log

BASIN = GIPPSLAND

PERMIT = VIC/P19 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Data Log (enclosure from

Final Well Report--attachment to WCR)

for Basker South-1

REMARKS =

DATE_CREATED = 31/05/80 DATE_RECEIVED = 14/05/84

 $W_NO = W839$

WELL_NAME = Basker South-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Shell Development (Australia) Pty Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX B

iv. Wireline Data Log

PE602289

This is an enclosure indicator page.

The enclosure PE602289 is enclosed within the container PE903478 at this location in this document.

The enclosure PE602289 has the following characteristics:

ITEM_BARCODE = PE602289
CONTAINER_BARCODE = PE903478

NAME = Wireline Data Pressure Log

BASIN = GIPPSLAND PERMIT = VIC/P19 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Wireline Data Presure Log (enclosure

from Final Well Report--attachment to

WCR) for Basker South-1

REMARKS =

DATE_CREATED = 31/05/80 DATE_RECEIVED = 14/05/84

 $W_NO = W839$

WELL_NAME = Basker South-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Shell Development (Australia) Pty Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX B

v. Pressure Evaluation Log

PE602290

This is an enclosure indicator page. The enclosure PE602290 is enclosed within the container PE903478 at this location in this document.

The enclosure PE602290 has the following characteristics:

ITEM_BARCODE = PE602290
CONTAINER_BARCODE = PE903478

NAME = Pressure Evaluation Log

BASIN = GIPPSLAND PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Evaluation Log (enclosure from

Final Well Report--attachment to WCR)

for Basker South-1

REMARKS =

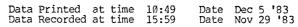
DATE_CREATED = 31/05/80 DATE_RECEIVED = 14/05/84

 $W_NO = W839$

WELL_NAME = Basker South-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = Shell Development (Australia) Pty Ltd


(Inserted by DNRE - Vic Govt Mines Dept)

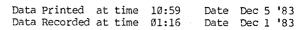
APPENDIX C

- i. Drilling Data Printout
- 709 3420 metres
- ii. Drilling Data Plots
 - (a) 1:2000 ROP-LITHOLOGY-WOB-PUMP PRESSURE & FLOW-RPM AVERAGE & MAXIMUM TORQUE-\$/M & \$/M INST.
 - (b) 1:2000 ROP-DXC & TREND-LITHOLOGY-TOTAL GAS-ESTIMATED PORE PRESSURE & ECD-TEMPERATURE IN & OUT

APPENDIX C

Drilling Data Printout 709 - 3420 metres i.

¢. ;


			L				1			•						baca no	COLUC			13.33			01 23	0.5		
+	F# TIME DE			RQUE I	RPM FO			RTRNS DEPTH		spc grv OUT	FL IN		TEN IN	IP (C)	PVT	T	HIS B	IT hrs		OST		DXC	NX	NXB	ECD	EST FM PR
+																					 †				************	
+	Spud Baske Drill 36"										•		•													1
1	Drill 26"																									1
÷	Clean hole						, , ,		•																	
ĺ	Drill ahead					r boar	TL	X27HS	2.25	" with	a NE	YRFOR I	urboo	irill.	Boost	er pump	on.	1600 1	/min.							į
-	7 1813 7.							709.0											201			.53				1.03 0
1		15.0 15.7						709.0						30.9				-	1453	2997		-54				1.03
1		20.0 12.5 25.0 26.4			43 1.5 56 1.6			709.0 715.4				2345 1834				24942 32716		.6 .8	403 193	1779 1276		.69 .62				1.03 0
i		30.0 23.9			56 2.			717.3				2365		23.1				1.0	226	1031	.051					1.03 D
i		35.0 25.7			54 3.1			719.5				2329				48507		1.2	186	865		.68			1.08	
1	13 2002 7	40.0 41.7	.87	1.75	45 3.4			723.9								53487		1.3	121	747		.57		1.08		
١		45.0 44.0			59 3.9			726.5								57886		1.4	115	659	.071			1.05	1.03	
		50.1 38.2			61 3.4			729.6			3259					63904		1.6	128	599	.081				1.03	
1		55.0 33.0 60.0 30.6			63 4.3 62 3.		201				3271					69676		1.8	156	551		.70		1.05		
ì		65.0 33.6			61 3.6			739.8 745.7				1024 1049				76696 ! 82416 !		1.9 2.1	157 154	514 482	.10	.70 .67		1.08 1.05	1.08	
i		70.0 35.3			63 3.			750.4				1118			-	88212		2.2	142	455		.66	.70		1.08	
i		75.0 24.2			65 3.		80					1270				96245		2.4	231	435		.75	.79	1.06		
1		80.0 25.9			65 3.			762.9				2442				104328		2.7	198	420		.75	.78	1.08	1.03	1.03 D
1		85.0 26.7			65 4.		- 7	770.1				2348				112476		2.9	185	435		.76	.80		1.07	
1		90.1 29.6			64 3.		82					2451				119154		3.0	169			.72			1.08	
1		95.0 37.6 00.0 30.7			63 4.			777.4 781.4				2299 242ø				124374 (130624 (3.2 3.3	137 171	377 355		.63 .73	•68 77		1.03	
i		05.0 30.7 05.0 21.6			63 4.			787.Ø				2359				139679		3.5 3.6	237		.17				1.08	
i		10.2 28.1			56 4.			793.2				2618					101	3.8	189	351		.74	.79		1.08	
1	28 2339 8.	15.0 18.6	.70	2.13	49 4.			800.7			3201	2386					105	4.0	258	347		.80	.87			1.03 D
1		20.1 21.2	.72	1.00	61 5.	1 2 2 9	401	805.0	1.05	1.05	3207	2421	23.6	26.5	70.91	166468	111	4.3	234	343	.211	.83	.88	1.09	1.07	1.03 D
1		ov 30 '83			50.4	40 00	aal	010 5	: ~-		2 * 2 2 2	0.450		~~ ~ .		150015			226							
1		25.1 17.0 30.0 18.1		1.00	52 4.5 51 4.1			812.5 817.6				2459 2440			-	178315 188396	116 121	4.6 4.9	336 269	342 339		.82 .80				1.03 D
1		35.0 11.1		.71	54 4.		- :	825.3				2440				206323	121	5.4	412	345		.91				1.03 D
i		40.1 13.5		.73	56 4.			830.7				2513				220572	131	5.7	394	346		.89				1.03 D
1	34 @207 8	45.1 12.9	.62	.73	48 5.			835.3				2466				237145	135	5.2	377	350		.89				1.0310
1		50.0 11.1		.66	52 5.			840.9				2513				254955	141	6.6	437	353		.96	1.02			1.03 D
1		55.1 11.5		.75	57 5.			847.1				2487				272803	146	7.1	443	358		.94	1.00		1.96	
1		50.0 11.5 55:0 11.8		.91 1.02	53 2. 33 2.			851.8 856.6				2735 3121				289524 305714	151 156	7.5 8.0	426 418	35Ø 353		.78 .7Ø			1.05	1.03 D
1		79.0 13.1		1.07	58 2.			861.2				1947				323832	161	8.4	390	366		.81	-86		1.07	
i		75.0 17.2		1.17	61 2.			865.6				2019				336101	166	8.7	293	354		.73				1.03 D
i		80.0 14.5		.99	57 1.			869.5				2007				350464	171	9.1	363	364		.72				1.0310
1		85.0 21.9		1.06	55 1.			873.3				2038				359218	176	9.3	235	361	.44					1.03 D
1		99.0 10.7		1.08	56 2.			880.1				2124				377878	181	9.8	534	365	.45				1.08	
1		95.0 17.9 33.0 20.9	-	.89 .88	58 3. 49 3.			885.4				2087				388482	185	10.1	279	362	.47				1.03	
1		05.0 20.9 05.0 20.0		.87	38 3.			888.1 891.6				2104			-	399493 4ø8672	191 196	10.4 10.7	249 237	361 358		.72 .68			1.08	
i		10.0 24.4		1.03	61 2.			896.5				2033				417595	201	10.9	206	355	.51				1.09	
i		15.0 11.6			56 1.			903.8				2015				434158	205	11.3	529			.75				
1		20.1 13.2					- :	911.8				2038				449322	211	11.7	398	358		.69				1.03 0
1	50 0914 9	25.0 13.7	.84	1.07	53 2.	/1 31	901	915.7	1.06	1.06	3318	2162	30.1	33.9	8.52	463488	216	12.1	365	358	.55	.78	.83	1.10	1.08	1.03 D
+		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																								

£3

4

Data Printed at time 10:54 Date Dec 5 '83 Data Recorded at time 09:59 Date Nov 30 '83

+																	<u> </u>		u at t		57.55		100 10	OV 30	03		
F#	TI	ME DEPTH m	ROP m/hr		RQUE MAX		FOB AVG		RTRNS DEPTH	MD IN	spc grv OUT	FLO IN	NIM/WC TUO		P (C) OUT	PVT	REVS	THIS B	IT hrs	_	OST T RUN		DXC	NX	NXB	ECD	EST FM PR
51	093	59 930.0	7.94	.84	1.99	61	3.11	3240	923.7	1.06	1.06	3193	2016	30.5	34.5	67.89	488635	221	12.8	597	365	. 591	.93	97	1 10	1 07	1.03ID
	10.		15.5				4.44		926.2				2115				1500951	226	13.1	336	364	.60			1.10		
	134		15.4			55	4.40	3140	929.2	1.06	1.06	3157	2129				514854	231	13.5	326	354		.75				1.03 D
	105		31.1				4.50		931.8			3163	2067	31.2	35.4	69.32	1520984	236		163	36Ø	.62			1.10		
•	111		32.4				4.53		934.3								527164	241	13.8	157	356	.631	.70		1.10		
	112		32.0				4.18		935.9			3175					532951	246	13.9	162	352	.64		.72	1.10	1.09	1.Ø3 D
	122		30.8				3.41		939.8			3155					1540888	251	14.2		350		•52		1.10		1.03ID
	124		37.8 34.4				3.75 3.79		943.9			3162					1545497	256		132	345	.65			1.10		1.03 D
	125		37.5				4.32		949.1 953.5			3159 3165					551243	261	14.5	145	342	.65					1.03 D
	131		42 01	1 13	1 50		3.38		955.8			3180					1556ø39 156ø456	266 271	14.6 14.7	13Ø 123	338	.65					1.03 D
	133	31 985.Ø	24.3	1.09	1.30		2.97		963.2			3175					567802	271	14.7	224	334 332	.671 .681			1.10		1.03 D1
63	134	46 990.0	20.21	.97	1.14		3.21		968.5			3157					574830	281	15.2	235	330	.681				1.09	1.03 D1 1.03 D
64	140	37 995.Ø	22.71	.96	1.94		3.41		977.4			3116					582983	286	15.4	228	329	.691			1.10		1.03 D
65	142	21 1000.0	21.5	•95	1.27	33	2.91	31401	983.4	1.06	1.05	317Ø					591412	291	15.6	224	327	.70					1.03ID
55	144	12 1035.1	22.2	.79			3.18	31701	989.4	1.06	1.05	3193	2052	31.5	35.8	68.21	599813	296	15.9	232	325	.71				1.03	1.03ID
		53 1013.0			1.11		4.07		993.1			3160		31.6	34.0	55.3Ø	605072	301	16.Ø	177	323	.72	.63	.71	1.10		1.03 D
		13 1015.0					4.12		998.4			3180					614536	306	16.3	223	322	.73	.67	.75	1.11	1.08	1.03 D
1 70	152	22 1020.0	32.71	•98	1.46		4.77		1001.2			3154					620111	311		153	319	.74	.61		1.11		1.03 D
		13 1025.0 55 1030.0					3.47 3.11		1007.3			3172					627970	316	16.6	227		.74			1.11		1.03 D
		20 1035.0					2.77		1012.2		1.05	3178 3167					635829	321	16.9	215		.75	.63				1.03 D
		35 1040.0					3.23		1025.2			3172					646794 656176		17.2 17.4	292 254	315 315	.77 .78	.69 .69		1.11		1.03 D
74	170	31 1345.0	17.11	.97	1.13			-			1.05						667293		17.7	312		.791			1.11		1.03 D 1.03 D
75	171	0 1050.0	34.7	.84	1.23		2.74		1033.9			3179					672586			138		.79				1.03	1.03ID
75	172	9 1055.0	32.1	.97	1.30	41	2.75	32901	1037.7	1.05	1.06	3183					578524			159		.80					1.0310
1 77	174	13 1959.0	20.51	.97	1.19	42	2.13	32601	1041.7	1.05	1.05	3205					587428	351	18.3	265		.81					1.03ID
		5 1065.0					3.87		1047.1			3192		33.3	35.2	56.301	695598	356	18.5	203		.82		.73	1.11	1.08	1.03ID
		.5 1070.0					4.29		1051.4			3178					702018			176	306	.831	•55				1.03ID
1 89	183	37 1075.0	23.41	1.07	1.29		3.34		1057.7			3180					710902		18.9	221		.84					1.03ID
		9 1080.1					3.75		1062.8			3172					719332	_	19.1	203		.85			1.11		1.03 DT
		.0 1035.0 2 1090.0					3.74 3.75		1057.6 1072.8			3169 3198					725992			179		.851					1.03 D
		4 1095.0					4.00		1077.5			3178					733599 741386		19.5 19.7	184 205		.851					1.03 Dî
		2 1100.0					3.93		1034.4			3157					750251	391	20.0	205	300 299	.871					1.0310
		6 1105.0					3.68	-	1088.4			3176					759101	396		241		.891		-	1.12		1.03 DT
		9 1110.1					3.64		1095.4			3172				-	769137	401	20.5	263		901			1.12		1.03ID
		3 1115.0					3.76	31701	1093.8	1.06	1.05	3173	2295	33.1	36.5	18.33	777897	406	20.7	226		.91			1.12		1.03 D
		7 1123.0							1105.2			3161	2430				787526	411	20.9	238		.921			1.12		1.03 D
		9 1125.1					3.33		1108.1			3173					795211	416		202		.931					1.03D
1 91	215	9 1137.0	25.01	.93	1.51	58	3.54				1.06						803145	421		195		.941					1.03 D
1 92	221)	9 1135.0	28.61	1.15	1.55				1116.6			3178					809767			178		.95					1.03 D
		1140.0 4 1145.0					3.43		1119.6			3203					815518			147		.951					1.03 D
		trip at						32301	1752.1	T•0/	1.05	2103	2374	33.I .) . / . ·	±0.1/	821090	436	21.8	141	290	.951	•65	.69	1.12	1.09	1.03D
1		e Dec 1		501	vey -	1.0	acy.																				į.
97		1 1150.0		1.25	1.79	61	2.21	32501	1130.1	1.07	1.07	3100	2633	29_8 1	32.5	51.671	826560	441	22.0	145	288	.961	55	•58	1.15	1 10	1.03 D-
		2 1155.2									1.07									343			.59				1.03 D
99	Ø35	3 1160.0	43.71	1.23	1.90	61	2.39	34001	1139.0	1.07	1.07	3133	2558	30.0 3	30.5 5	55.331	839934	451	22.3	113		.991					1.03ID
1103	311	1 1165.1	44.01	1.21	1.93	61	2.62	33101	1142.7	1.07	1.07	3107	2159	29.5	32.2	0.26	843703	456	22.4	119		.93					1.03 D
+			+					+								·											

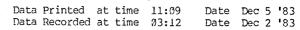
¢ 3

6 3

6 3

+																										
F# TIM	E DEPTH	ROP	TOP	RQUE	RPM	FOB	PUMP	RTRNS	MD	spc gr	v FLO	W/MIN	TEN	MP (C)	PVT	Т	HIS B	IT	co	ST	EST	DXC	NX	NXB	ECD	EST
I	m	m/hr	AVG	MAX	AVG	AVG	PRES	DEPTH	IN	OUT	IN	OUT	IN	OUT		REVS	m	hrs	INST	RUN	TW					FM PR
+																					+					
1101 0116					60	3.24	3380	1144.8	1.07	1.07	3146	2485	29.6	32.2	57.39	845791	461	22.5	83	282	.991	.54	•57	1.15	1.10	1.03 D
1102 0129					63	3.64	3330	1148.2	1.07	1.07	3164	2328	29.2	31.7	59.78	85Ø675	466	22.6	93	280	.991	•56	•59	1.11	1.10	1.03 D
1103 0139						3.60	3430	1151.2	1.07	1.07	3177	2446	29.2	29.5	59.62	854569	471	22.7	110	278]	1.00	•59	.61	1.15	1.10	1.03 D
1104 0152					59	3.45	3470	1154.1	1.07	1.07	3154	2325	28.7	31.3	62.48	859380	476	22.9	126	277]	1.001	.61	.64	1.11	1.11	1.03D
1105 0159	9 1190.0	40.5	1.28	1.80	56	3.67	3450	1158.4	1.07	1.07	318Ø	2427 -	28.7	31.0	62.95	863953	481	23.0	121	275 1	.01	.61				1.03 D
1105 0216					58	3.86	3390	1165.1	1.07	1.07	3168	2383	28.2	30.5	64.55	869397	486	23.1	134	274 1	1.011	.64				1.03 D
1107 0222	2 1200.0	56.3	1.42	1.90		4.08	3430	1170.3	1.07	1.07	3176	2098	28.2	29.4	64.71	872733	491	23.2	88	272 1						1.03ID
1108 0236	6 1205.0	46.2	1.33	2.01	58	3.61	3480	1176.4	1.07	1.07	3174	2091	28.0	30.4	67.41	877036	495	23.3	115	270 1	1.021	.59				1.03 D
1109 0242	2 1210.0	49.61	1.42	1.93	57	4.19	3510	1180.9	1.07	1.07	3176	1961	28.1	29.Ø	67.57	880851	501	23.4	99	259 1	1.02	.59				1.03 D
1110 0257	7 1215.Ø	43.8	1.42	1.90	57	3.80	3510	1185.5	1.07	1.07	3176	2019	28.0	30.6	69.64	885567	506	23.6	120	267 1	L.Ø31	.60				1.03ID
1111 0305	5 1220.0	38.91	1.34	1.82	58	3.91	3200	1190.6	1.07	1.07	3182	1931	28.1	30.6	70.43	890333	511	23.7	130	265 1	1.03	•63	•66	1.16	1.10	1.03 D
1112 Ø320	Ø 1225.Ø	39.2	1.49	1.95	59	3.48	3430	1195.3	1.07	1.07	3146	2028	28.0	30.3	73.13	895496	516	23.8	126	265 1	1.04	.62				1.03 D
1113 Ø328	8 1230.0	37.81	1.45	2.01	60	3.56	3130	1201.9	1.07	1.07	3160	2007	28.0	30.9	73.29	900404	521	23.9	130	263 1	L.051	.63				1.03 D
1114 Ø343	3 1235.0	34.31	1.16	1.71	65	2.93	33601	1208.8	1.07	1.07	3143	2114	27.9	30.4	74.57	905352	526	24.1	145	262 1						1.03D
1115 Ø352	2 1240.0	37.31	1.13	1.69	66	3.11	3210	1212.2	1.07	1.07	3146					911469	531	24.2	137	261 1						1.03 D
1116 0408	6 1245.0	38.4	1.27	1.98	61	3.26		1219.3								916880	536		134	250 1						1.03 D
1117 0423	3 1250.0	31.31	1.21	1.74	62	3.20	3460	1225.3	1.07	1.07	3139						541	24.5	166	259 1						1.03 D
1118 Ø431	1 1255.0	39.41	1.34	2.01	61	2.97	3530	1230.0	1.07	1.07	3195					927922	546	24.7	127	258 1						1.03 D
1119 2447	7 1260.0	33.21	1.15	1.88	63	2.91	3300	1235.4	1.07	1.07	3165					933724	551		151	257 1						1.03ID
1120 0459	9 1265.0	25.0	1.30	1.87	57	3.57		1240.9								941305	556		214	257 1						1.03ID
1121 Ø517	7 1270.0	24.21	1.36	1.97	58	3.46		1248.8					-			948765	561		205	256 1						1.03ID
+ Booster																	502	20.0	2	250 2	,	•	•		1.10	1.0315
1123 Ø528			1.34	1.84	61	3.16	33401	1254.0	1.07	1.07	3150	2730	29.0	31.8	73.13	955507	566	25.4	181	255 1	111	-68	-71	1.12	1.10	1.03 D
1124 Ø546	6 1280.1	27.8	1.45	2.10	61	3.09		1259.9								962705	571		187	255 1						1.03ID
1125 Ø556						3.20		1264.2			3157					963366	576	25.7		254 1	•					1.03ID
1126 0614	4 1290.0	28.91	1.49			3.12		1269.4								975562	581		173	253 1						1.03 D
1127 0625					-	3.47		1274.0			3173					981951	586	26.1		253 1						1.03 D
1128 Ø643						3.58		1279.0			3162					988843	591	26.3		252 1	-					1.03 D
1129 0654						3.39		1284.7			3169					995820	596		191	252 1						1.03 D
1130 0711						3.32		1288.9								2304	601		169	251 1						1.03ID
1131 0719						3.44		1292.8							77.11		606		128	250 1						1.03 D
1132 0735						3.13		1297.6			3155			-		12948	611		145	249 1						1.03 D
1133 0745						3.05		1301.9								19402	616	27.1		248 1						1.03 D
1134 0902						3.43		1307.0								25403	621	27.2		248 1						1.03!D
1135 0911						2.91		1310.4						-		31134	626	-	157	247 1						1.03 D
1136 0828						2.37		1317.1			3150					37761	631		167	247 1		-	-			1.03 D
+ Booster									_ • • •		0200	2.75	3.5.0	54.0	13401	37701	.,,,,	27.0	10,	237 1	,	• 0 4	•05	1.10	1.10	1.0315
1138 Ø849			•	-	64	2.38	34301	1324.3	1.07	1.07	3114	2377	29.9	32.9	81.881	45547	636	27.7	204	246 1	201	- 68	.69	1 13	1 00	1.03 D1
1139 2857						3.37		1327.2			3185					50717	641		139	245 1						1.03ID
140 0916								1334.7								58845	646	23.1		245 1						1.03 0
1141 0925						3.86		1338.2								64678	551		150	244 1						1.03 D
1142 0942						3.70		1344.3								71721	656	28.4	161	244 1						1.03ID
1143 Ø951						4.02		1346.8								76997	651	-	139	244 1						1.03ID
146 1002						2.76		1351.1								77679	666		165	243 1						1.031D
1147 1009						3.95		1356.3								82028	671		122	241 1	-					
1148 1024		-				3.33		1352.1			3146				-	87700	676	-	150	240 1						1.03 D
1149 1034						3.23		1367.5			3153					93764	681	29.0	169	239 1		-				1.03ID
1150 1126																102018	686		206	239 1						1.03 D
+ Survey					50	-• D	2300	-315 D	101		3443	2017	27.0	20.5	14.04	102010	000	49.5	200	239 1	411	•02	• / ±	1.13	T • TW	1.000
1152 1135	5 1400.0	36-41	1.47	2.30	58	2.81	34501	1373.8	1.07	1.07	3148	2070	27 2	31 7	72 021	107191	601	29 /	137	239 1	271	61	63	7 11	3 3α	1.03 D
+											J170	~~~		J + • /		TO / TO T	991		131	299 I		•01	•05	1.14	1.10	1.0310

									L							Data R				1:21	Dat	ic be	GI.	83		
F#	TIME	DEPTH m	ROP m/hr		RQUE MAX		FOB AVG		RTRNS DEPTH			FLOW/MIN	TEI 'IN	MP (C) OUT	PVT	REVS	THIS B	IT hrs		ST E RUN		DXC	NX	NXB	ECD	EST FM PR
1153	1151	1405.0	28.8	1.33	2.35	61	2.49	3390	1379.6	1.07	1.07	3141 2190	27.9	29.7	72.02	1113887	696	29.6	189	238 1.	281	64	66	1 15	1 10	1.03ID
		1410.0					2.48		1384.2			3146 2181				1119862		29.7	161	238 1.						1.03 D
1155	1220	1415.0	28.01	1.40	1.93	62	2.30	3490	1390.6	1.07		3153 1561						29.9	188	237 1.						1.03 D
1156	1233	1420.0	24.31	1.41	2.05	59	2.00					3157 1654				134493		30.1	206	237 1.						1.03 D
1157	1252	1425.1	31.0	1.39	2.05	50	1.48	3280	1402.9	1.07	1.07	3149 1711				140822		30.3	171	237 1.						1.03 D
1158	1303	1430.1	28.21	1.44	2.16	61	1.36	3290	1408.4	1.07	1.07	3157 1536	28.5	30.7	68.05	1147547	721	30.5	198	236 1.				1.14		
		1435.0					1.15					3165 1550	28.8	31.0	65.66	154327	726	30.7	198	236 1.	321	.57	•58	1.15	1.09	1.03 D
		1440.0					1.61		1420.0			3168 1720				1162855	731	30.9	238	236 1.	331	.64	•65	1.14	1.09	1.03 D
		1445.0					1.85		1425.9			3160 1890				17ø369	736	31.1	201	235 1.	341	.64	•65	1.15	1.09	1.03 D
		1450.0							1431.0			3148 1874				177209	741		175	235 1.			•65	1.15	1.09	1.03 D
		1455.0					3.11		1435.4			3169 1926				184432			190	235 1.			.71	1.16	1.10	1.03 D
		1460.0							1440.2			3170 1937				190304	751		173	234 1.						1.03 D
1		1465.1					2.87		1442.8			3172 1874				197104		31.8	167	234 1.		. 65				1.03D
		1470.0					5.20		1449.5			3174 1907				205722	761	32.0	247	234 1.		.77				1.03 D
		1475.0					4.92		1454.0			3162 2006				213767	766		213	234 1.						1.03 D
		1480.0 1485.0					4.67 4.57		1461.2			3160 2355				223225	771	32.5	247	234 1.						1.03 D
		1493.0					4.30		1467.9			3166 2624				232664	776	32.7	248	234 1.						1.03ID
		1495.0					4.65		1473.5 1477.7			3192 2694 3191 2712				242348	781 786	33.0	222 205	234 1.						1.03 D
-		1500.0					4.56		1482.7			3191 2712				250041	791	33.2 33.5	228	234 1. 234 1.						1.03ID
-		1505.0					4.57		1487.5			3192 2595				259334	796	33.7	251	234 1.	- 1					1.03 D
		1510.0							1493.5			3191 2610				280503	991	34.0	286	235 1.						1.03 D
1		1515.0							1500.6			3191 2657				293043	805	34.3	313	235 1.		.82				1.0310
		1520.0					4.46		15%6.4			3187 2566				303537	811	34.6	249	236 1.		.80				1.03 D
		1525.Ø					4.34		1509.3			3183 2621				311560	816		215	235 1.						1.03 D
1178	1910	1530.0	22.5	1.48	2.25	57	4.19		1513.9			3191 2656				321033	821	35.1	228	236 1.				1.16		
1179	1924	1535.0	20.91	1.44	2.24	56	4.04		1516.4			3185 2507				330070	826	35.3	247	235 1.						1.03ID
1180	1947	1540.0	22.31	1.51	2.32	59	4.12	35201	1522.6	1.09	1.39	3181 2491	29.5	31.8	58.93	339900	831	35.5	226	235 1.						1.03ID
1181	2007	1545.0	24.01	1.52	2.21	59	4.27	34801	1527.2	1.09	1.09	3180 2535	29.3	31.7	60.10	349003	835	35.8	213	236 1.	531	.74	.76	1.17	1.10	1.03 D
1132	2017	1550.0	29.81	1.39	2.18	62	3.90	34891	1530.9	1.09	1.09	3173 2486	29.4	31.7	58.98	355377	841	36.0	157	235 1.	531	.70				1.03 D
		1555.Ø					4.24		1534.9			3173 2588				363573	846	35.2		235 1.	541	.72	•73	1.17	1.11	1.03 D
		1550.0					4.08		1533.4			3180 2569				359904	851	35.4		235 1.		•69	.71	1.16	1.11	· 1.93 D
		1555.1					4.24		1542.9			3188 2523				377160	856	36.6		235 1.						1.03 D
		1570.1					5.02		1546.5			3172 2512				393775	851	35.7		234 1.						1.03 D
		1575.Ø							1552.8			3172 2510				391685	866	35.9		234 1.						1.03 D
		1590.0					5.16		1555.6			3178 2589				397974	871		169	234 1.	•					1.03 D
		1585.0							1563.2			3177 2490				405283	876	37.3		234 1.						1.03 D
		1590.0	_						1565.2			3180 2509				411583		37.5		233 1.						1.03 D
		1595.0 1600.0					3.82		1572.6			3184 2496 3180 2499				418725	886 891	37.7		233 1.						1.03 D
		1605.1										3180 2499 3178 2498				426162 434829	891	37.9 38.1	193 207	233 1.· 233 1.·						1.03 0
		1610.0					4.32		1537.8			3177 2517				434529	901		156	232 1.						1.03 D
		1615.0										3187 2562			-	450858	905		281	232 1.						1.03ID
		1523.0							1501.5			3180 2527				462343		38.8	315	233 1.						1.03 D
1		Dec 2						3000		_••	_•.,			/	523		<i></i>	39.0		222 10		,,,	• (///	****		1
1197		1625.0		1.23	1.67	61	3.12	34801	1503.4	1.09	1.09	3170 2476	28.9	31.1	57.55	470758	915	.39.0	214	233 1.	561	. 70	•71	1.18	1.11	1.03 D
		1630.0							1515.9			3251 2470				486801	-		465	234 1.		.83				1.03 D1
+ Sui	cvey a	t 1630r	n = 2.	5 deg																	•	-				į.
1292	Ø225	1535.0	17.41	1.57	2.01	61	3.18	34901	1618.7	1.09	1.09	3157 2397	25.2	30.4	56.92	497129	926	39.7	287	234 1.	681	.76	.77	1.23	1.11	1.03ID
1223	Ø255	1640.0	13.5	1.53	2.01	61	3.71	35401	1625.7	1.09	1.09	3169 3235	28.1	30.6	56.44	511639	931	40.1	389	235 1.	701	.83	.84	1.17	1.11	1.03ID
+			+					+																		


()

0

4.4

\$.)

61

€ **>**

FIRST DEPTH ROP TORQUE REW FOS DEPTH ROP TORQUE REW FOS PRESIDENCE NO OUT NO OUT NO OUT NO OUT ROP REWS N NEW NO NO REWS REWS ROS REWS REWS REWS ROS REWS REWS ROS REWS REWS ROS REWS ROS REWS ROS REWS ROS REWS REWS ROS REWS REWS ROS REWS REWS REWS REWS ROS REWS REWS REWS REWS REWS REWS ROS REWS REWS REWS REWS REWS REWS REWS REWS ROS REWS
March Marc
1255 0337 1659.0 17.311.52 2.07 61 3.87 3559 1653.6 1.99 1.09 3172 3172 29.3 235 1.75 248 496 49.0 29.0 24 20.0 25 1.72 1.00 20 20 20 20 20 20 20 20 20 20 20 20 2
1255 9337 1659.0 17.3 17.5 2.67 61 3.87 3559 1635.8 1.99 1.99 3172 3172 29.3 23.5 1.75 23.6 23.75 3401 1633.6 1.09 1.09 3172 3172 29.3 23.5 24.6 5183.8 23.75 23.75 24.6 1633.6 1.09 1.09 3172 3172 29.3 23.2 24.75 25.8 25.7 23.7 23.7 1.1 1.03 1.02 20.8 24.5 23.7
280 2851 1655.0 28.4 11.49 1.99 62 3.75 34.6 1638.6 1.09 1.09 3.17 3.172 3.172 29.3 32.3 54.69 54.3144 946 40.5 248 236 1.791 76 77 1.23 1.11 1.031 1.288 24.79 1.052
1285 28-41 1.695.0 28-41 1.695 1.695 28-41 1.695 1.6
120 0415 1605.0 18.811.55 2.02 61 4.48 345911643.6 1.09 1.09 3168 2374 29.8 37.3 52.471556133 955 41.5 291 236 1.75 1.81 8.2 11.2 3.111 1.0310 1209 0455 1670.0 23.211.50 2.17 59 4.37 356011652.9 1.09 1.09 3174 1518 38.1 31.7 52.781573867 961 41.8 23 236 1.75 1.7 7.7 61.12 3.111 1.0310 1211 0545 1670.0 23.211.50 2.17 57 4.44 358011652.9 1.09 1.09 3174 1518 38.1 31.7 52.781573867 961 41.8 23 236 1.75 1.7 7.7 76 1.23 1.11 1.0310 1211 0545 1690.0 18.311.57 2.09 59 4.39 345011652.9 1.09 1.09 3142 1382 38.2 33.4 48.171594287 971 42.3 280 237 1.78 1.89 82 1.18 1.10 1.0310 1217 0541 1690.0 14.811.55 2.10 62 4.05 34011655.9 1.09 1.09 3142 1382 38.2 33.4 48.171594287 971 42.3 280 237 1.78 1.89 82 1.18 1.10 1.0310 1217 0541 1690.0 14.811.55 2.20 61 4.02 342011657.5 0 1.09 1.09 3151 1464 31.6 35.4 51.99162297 991 43.0 342 238 1.821 79 .80 1.18 1.10 1.0310 1217 0541 1690.0 14.811.55 2.20 61 4.02 342011657.5 0 1.09 1.09 3151 1464 31.6 35.4 51.99162297 991 43.0 342 238 1.821 79 .80 1.18 1.10 1.0310 1219 0773 1780.9 1.7411.49 2.30 62 3.80 356011689.5 1.09 1.09 3151 1464 31.6 35.4 51.99162297 991 43.0 342 238 1.821 79 .80 1.18 1.10 1.0310 1219 0373 1780.9 17.411.49 2.30 62 3.80 356011689.5 1.09 1.09 3151 1464 31.6 35.4 51.99162297 991 43.0 342 238 1.821 79 .80 1.18 1.10 1.0310 1219 0373 1780.9 17.411.49 1.15 5.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
1209 173 173 173 173 173 173 173 174 175 174 175
1219 6516 1675.6 22.71 1.56 22.71 1.56 22.16 57 4.4 3580 1657.4 1.69 1.09 3176 1513 22.9 34.3 52.47 152865 966 42.0 322 326 1.77 77 79 1.23 1.11 1.63 1.63 1.21 1.63
1211 0545 1693.0 18.311.57 2.09 59 4.39 345911652.9 1.09 1.09 3176 1513 23.9 34.3 52.47 58265 966 42.0 232 236 1.77 .77
221 6688 1585.0 13.511.52 1.98 62 4.05 3438 1655.0 1.99 1.09 3142 1429 31.7 35.1 50.24 568214 576 62.7 359 237 1.08 .05 .05 1.24 1.11 1.031D 1.218 0557 1695.0 18.6 1.49 1.98 61 3.92 3538 1688.0 1.09 1.09 3151 1309 31.8 35.8 554.85 632282 986 33.3 322 339 1.88 .23 1.18 1.031D 1.219 0723 1780.0 17.4 11.49 2.39 2.36 3569 1685.5 1.09 1.09 1.09 3151 1309 31.8 35.8 554.85 632282 986 33.3 322 329 1.83 .88 .89 1.23 1.11 1.031D 1.221 0393 1710.0 18.4 11.59 2.20 59 4.05 3510 1687.2 1.09 1.09 3151 1309 3155 1398 31.59 60.42 656246 1001 44.2 273 239 1.83 .89 .80 1.23 1.11 1.031D 1.221 0393 1710.0 18.4 11.59 2.20 59 4.30 3510 1687.2 1.09 1.09 3155 1785 33.1 35.9 60.42 665246 1001 44.2 273 239 1.85 .79 .81 1.24 1.11 1.031D 1.252 0393 1710.0 18.4 11.59 2.20 59 4.30 3510 1687.2 1.09 1.09 3155 1808 33.2 37.1 71.23 1667976 1006 44.4 306 239 1.85 .74 .75 1.19 1.10 1.031D 1.252 0394 1725.0 0.2211.35 1.08 53 3449 1704.1 1.09 1.09 3155 1808 33.2 37.3 64.39 167518 1011 44.5 233 239 1.85 .74 .77 1.18 1.10 1.031D 1.27 1.09
1217 0644 1690.0 14.8 1.56 2.36 61 4.02 3423 1675.0 1.09 1.09 1.09 3151 1450 31.6 35.5 51.99 1622997 901 43.0 34.2 328 1.81 1.84 1.03 10 1.21 1.03 10 1.22 1.07 1.03 10 1.03
228 6557 1695.0 18.6 1.49 1.98 61 3.92 3589 1680.0 1.09 1.09 3151 1369 31.6 35.8 54.85 63.202 228 239 239 1.83 .80 .80 .80 .123 1.11 1.03 1.221 1783.0 1.00
219 9723 1709.0 17.411.40 2.30 62 3.86 3560 1685.5 1.09 1.09 3151 1786 31.9 36.5 57.08 644253 691 43.6 203 239 1.83 1.09 .80 1.23 1.11 1.03 p
1220 8739 1705.0 15.0 11.55 2.02 62 4.05 3510 11687.2 1.09 1.09 3157 1914 32.5 36.9 55.65 654305 996 43.9 33.2 239 1.84 .33 .84 1.19 1.11 1.03 1.24 1.11 1.03 1.25 1.24 1.11 1.03 1.14 1.11 1.03
1221 0893 1710.0 18.4 1.59 2.20
1224 0329 1715.0 24.0 1.37 1.79 58 4.11 3590 1707.0 1.09 1.09 3134 1712 33.2 37.1 71.23 667976 1006 44.4 336 239 1.85 74 7.7 1.18 1.03 1.05 1.26
1225 0340 1720.0 022.1 1.35 1.80 53 4.35 3440 1794.1 1.09 1.09 3155 1808 33.2 37.3 64.33 675118 1011 44.6 233 239 1.85 .74 .77 1.18 1.10 1.03
1226 0992 1725.1 19.111.38 2.03 57 4.04 3539 1710.6 1.09 1.09 3161 2000 33.5 37.6 72.34 685414 1016 44.8 256 239 1.87 .77 .79 1.19 1.10 1.03 D 1227 0918 1730.0 19.5 1.44 1.97 60 3.95 3520 1714.8 1.09 1.09 3161 193 33.6 33.6 65.98 766730 1026 45.4 288 239 1.88 .77 .78 1.18 1.11 1.03 D 1229 1003 1740.0 14.8 1.32 1.86 61 4.01 3600 1724.4 1.09 1.09 3162 1849 34.2 38.6 65.82 719493 1031 45.7 341 240 1.90 .83 .84 1.19 1.11 1.03 D 1230 1031 1745.0 16.0 1.93 1.88 58 4.08 3440 1732.1 1.09 1.09 3161 1753 34.6 33.2 65.75 7332553 1035 46.1 315 240 1.90 .83 .84 1.19 1.11 1.03 D 1230 1031 1745.0 16.0 1.93 1.88 58 4.08 3440 1732.1 1.09 1.09 3165 2011 34.9 33.5 68.36 746670 1041 46.5 395 241 1.93 .86 .87 1.19 1.11 1.03 D 1231 1035 1750.0 15.9 1.49 2.03 58 4.65 3640 1742.7 1.09 1.09 3153 1783 35.3 38.7 70.43 759833 1046 46.8 318 241 1.95 .83 .85 1.20 1.10 1.03 D 1233 1339 1760.0 16.1 1.59 2.25 57 4.67 3470 1746.2 1.09 1.09 3157 1797 35.3 39.7 70.27 771493 1051 47.1 302 242 1.96 .83 .84 1.19 1.11 1.03 D 1234 1232 1765.0 15.9 1.49 2.03 58 4.05 3640 1746.2 1.09 1.09 3157 1797 35.3 39.7 70.27 771493 1051 47.1 302 242 1.96 .83 .84 1.19 1.11 1.03 D 1234 1230 1760.0 16.1 1.59 2.25 57 4.67 3470 1746.2 1.09 1.09 3157 1797 35.3 39.7 70.27 771493 1051 47.1 302 242 1.96 .83 .84 1.19 1.11 1.03 D 1235 1216 1770.0 23.7 1.67 2.48 60 4.77 3520 1753.2 1.09 1.09 3172 1970 35.4 39.7 72.66 799516 1061 47.6 213 242 1.98 .77 77 77 77 77 77 77 77 77 77 77 77 77
1227 6918 1730 6 1731 6 1731 6 1731 6 1731 7 1731
228 0943 1735.0 17.7 1.40 1.98 60 4.21 3500 1718.6 1.09 1.09 3157 1930 34.0 37.6 65.98 706730 1026 45.4 288 239 1.99 80 81 1.20 1.11 1.03 D 129 1093 1745.0 14.8 1.32 1.86 61 4.01 3600 1724.4 1.09 1.09 3162 1849 34.2 38.6 65.82 719493 1031 45.7 341 240 1.90 83 84 1.19 1.11 1.03 D 1.09 1031 1745.0 16.9 1.39 1.88 84 84 1.19 1.11 1.03 D 1.09 1031 1745.0 16.9 1.99 181 1.03 1.03 1.05 1750.0 13.3 1.41 1.86 57 4.46 3500 1737.0 1.09 1.09 3165 2011 34.9 39.5 68.36 746570 1041 46.5 395 241 1.93 86 87 1.19 1.11 1.03 D 1232 1121 1755.0 15.9 1.49 2.03 58 4.65 3640 1742.7 1.09 1.09 3153 1783 35.3 38.7 70.43 759933 1046 46.8 318 241 1.95 83 85 1.20 1.10 1.03 D 1233 1139 1760.0 16.1 1.55 2.35 59 4.99 3590 1750.4 1.09 1.09 3165 1833 35.3 38.7 70.43 759933 1046 46.8 318 241 1.95 83 84 1.19 1.11 1.03 D 1235 1245 1770.0 23.7 1.67 2.48 60 4.77 3520 1753.2 1.09 1.09 3167 1.0
1229 1003 1740.0 14.8 1.32 1.86 61 4.01 3600 1724.4 1.09 1.09 3162 1849 34.2 38.6 65.82 1719493 1031 45.7 341 240 1.90 83 84 1.19 1.11 1.63 1.03 1.05
1230 1031 1745.0 16.0 1.39 1.88 58 4.08 3440 1732.1 1.09 1.09 3161 1753 34.6 38.2 67.57 732553 1035 46.1 315 240 1.92 .81 .82 1.20 1.10 1.03 1.05
1231 1053 1750 0 13.3 1.41 1.86 57 4.46 3500 1737.0 1.09 1.09 3165 2011 34.9 39.5 68.36 746670 1041 46.5 395 241 1.93 86 87 1.19 1.11 1.03 1.03 1.03 1.03 1.04 1.05
1232 1121 1755.0 15.9 1.49 2.03 58 4.65 3640 1742.7 1.09 1.09 3153 1783 35.3 38.7 70.43 1759833 1046 46.8 318 241 1.95 .83 .85 1.20 1.10 1.03 1.03 1.04 1.05
233 1139 1760.0 16.1 1.59 2.25 57 4.67 3470 1746.2 1.09 1.09 3157 1797 35.3 39.7 70.27 771493 1051 47.1 372 242 1.96 .83 .84 1.19 1.11 1.03 D 1.234 1203 1765.1 19.7 1.65 2.36 59 4.99 3590 1750.4 1.09 1.09 3165 1833 35.5 39.2 72.18 782628 1056 47.4 2.60 242 1.97 .81 .82 1.20 1.11 1.03 D 1.235 1.216 1770.0 23.7 1.67 2.48 60 4.77 3520 1753.2 1.09 1.09 3172 1970 35.4 39.7 72.66 797516 1061 47.6 213 242 1.98 .77 .77 1.19 1.11 1.03 D 1.236 1.243 1775.0 18.4 1.55 2.18 59 4.24 3670 1758.0 1.09 1.09 3175 3110 34.9 38.0 72.50 8130 1780.0 17.8 1.56 2.12 57 4.05 3610 1762.3 1.09 1.09 3175 3110 34.9 38.0 72.50 8130 1.071 48.2 292 242 2.00 .78 .79 1.19 1.11 1.03 D 1.239 1.349 1790.0 13.5 1.56 2.07 59 3.71 3600 1775.9 1.09 1.09 3179 3302 34.5 37.0 72.82 826055 1076 48.6 332 243 2.01 .81 81 1.20 1.11 1.03 D 1.03 D 1.039 1
1234 1203 1765.1 19.7 1.65 2.36
235 1216 1770 0 23.7 1.67 2.48 60 4.77 3520 1753.2 1.09 1.09 3172 1970 35.4 39.7 72.66 793516 1061 47.6 213 242 1.98 77 77 1.19 1.11 1.03 1.03 1.23 1.24 1.25 1.28 1.24 1.25 1.28 1.24 1.25 1.28 1.24 1.25 1.24 1.25 1.24 1.25
1236 1243 1775.0 18.4 1.55 2.18 59 4.24 3600 1758.6 1.09 1.09 3181 2861 35.4 37.9 72.18 802400 1066 47.9 297 242 1.99 79 80 1.20 1.11 1.03 D 1237 1300 1780.0 17.8 1.55 2.12 57 4.05 3610 1762.3 1.09 1.09 1.09 3175 3110 34.9 38.0 72.50 813015 1071 48.2 292 242 2.00 78 79 1.19 1.11 1.03 D 1238 1327 1785.0 15.1 1.61 2.12 59 3.72 3630 1770.9 1.09 1.09 1.09 3179 3302 34.5 37.0 72.82 826055 1076 48.6 332 243 2.01 81 81 1.20 1.11 1.03 D 1240 1423 1795.0 12.4 1.55 2.16 58 3.33 3540 1782.7 1.09 1.09 3183 325 34.0 37.3 37.3 63.12 856255 1086 49.4 405 244 2.04 83 83 1.20 1.10 1.03 D 1.03 D 1241 1445 1809.0 13.2 1.53 2.07 58 3.22 3500 1782.5 1.09 1.09 3183 3409 34.3 37.8 74.09 869944 1091 49.7 366 245 2.06 80 81 1.19 1.10 1.03 D 1243 1544 1810.0 15.5 1.61 2.24 58 3.49 3540 1797.5 1.09 1.09 3171 1984 33.3 37.7 37.04 897242 1101 50.4 329 246 2.09 79 80 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 81 82 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 81 82 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 81 82 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 81 82 1.20 1.11 1.03 D 1245 1.03 D 1245 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
1237 1309 1780 0 1781 1.55 2.12 57 4.05 3610 1762 3 1.09 1.09 3175 3110 34.9 38.0 72.50 81301 1071 48.2 292 242 2.00 .78 .79 1.19 1.11 1.03 D 1238 1327 1785 0 15.1 1.66 2.12 59 3.72 3630 1770 1.09 1.09 1.09 3173 3302 34.5 37.0 72.82 826055 1076 48.6 332 243 2.01 .81 .81 1.20 1.11 1.03 D 1.20 1
1238 1327 1785.0 15.1 1.61 2.12 59 3.72 3630 1770.9 1.09 1.09 3179 3302 34.5 37.0 72.82 826055 1076 48.6 332 243 2.01 .81 1.20 1.11 1.03 D 1249 1423 1795.0 12.4 1.55 2.16 58 3.33 3540 1782.7 1.09 1.09 3183 3325 34.0 37.3 63.12 856255 1086 49.4 405 49.4 405 244 2.04 .83 .83 1.20 1.10 1.03 D 1241 1445 1800.0 13.8 1.57 2.16 58 3.22 3500 1783.0 1.09 1.09 3183 3409 34.3 37.8 74.09 869944 1091 49.7 366 245 2.06 80 .81 1.19 1.10 1.03 D 1242 1516 1805.0 13.2 1.53 2.07 58 3.19 3620 1792.5 1.09 1.09 3179 3557 33.8 38.0 75.52 894687 1096 50.1 377 245 2.07 81 81 1.21 1.10 1.03 D 1243 1544 1810.0 15.5 1.61 2.24 58 3.49 3540 1797.5 1.09 1.09 3171 1984 33.3 37.7 37.04 897242 1101 50.4 329 246 2.08 79 80 1.20 1.10 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1245 1245 1245 1.04 1.03 D 1245 1.04 1.03 D 1.04 1.0
1239 1349 1790.0 13.5 1.56 2.07 59 3.71 3600 1775.9 1.09 1.09 3173 3293 34.3 37.1 77.27 849103 1091 48.9 382 244 2.03 .83 .84 1.19 1.11 1.03 D 1240 1423 1795.0 12.4 1.55 2.16 58 3.33 3540 1782.7 1.09 1.09 3183 3325 34.0 37.3 63.12 856255 1086 49.4 405 244 2.04 .83 .83 1.20 1.10 1.03 D 1241 1445 1800.0 13.8 1.57 2.16 58 3.22 3500 1788.0 1.09 1.09 3185 3409 34.3 37.8 74.09 869944 1091 49.7 366 245 2.06 .80 .81 1.19 1.10 1.03 D 1242 1516 1805.0 13.2 1.53 2.07 58 3.19 3620 1792.5 1.09 1.09 3179 3557 33.8 38.0 75.52 884687 1096 50.1 377 246 2.07 .81 .81 1.21 1.10 1.03 D 1243 1544 1810.0 15.5 1.61 2.24 58 3.49 3540 1797.5 1.09 1.09 3171 1984 33.3 37.7 37.04 897242 1101 50.4 329 246 2.08 79 .80 1.20 1.10 1.03 D 1244 1601 1815.0 17.7 1.63 2.48 61 3.89 3560 1800.5 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1245
1240 1423 1795.0 12.4 1.55 2.16 58 3.33 3540 1782.7 1.09 1.09 3183 3325 34.0 37.3 53.12 856255 1086 49.4 405 244 2.04 83 83 1.20 1.10 1.03 1.04
1241 1445 1800.0 13.8 1.57 2.16 58 3.22 3500 1788.0 1.09 1.09 3185 3409 34.3 37.8 74.09 869944 1001 49.7 365 245 2.06 .80 .81 1.19 1.10 1.03 D 1242 1516 1805.0 13.2 1.53 2.07 58 3.19 3620 1792.5 1.09 1.09 3179 3557 33.8 38.0 75.52 884687 1096 50.1 377 246 2.07 .81 .81 1.21 1.10 1.03 D 1243 1544 1810.0 15.5 1.61 2.24 58 3.49 3540 1797.5 1.09 1.09 3171 1984 33.3 37.7 37.04 897242 1101 50.4 329 246 2.08 .79 .80 1.20 1.10 1.03 D 1244 1601 1815.0 17.7 1.63 2.48 61 3.89 3560 1800.5 1.09 1.09 3180 1963 34.0 40.2 33.55 908014 1105 50.7 290 246 2.09 .79 .80 1.21 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D
242 1516 1805.0 13.2 1.53 2.07 58 3.19 3620 1792.5 1.09 1.09 3179 3557 33.8 38.0 75.52 884687 1096 50.1 377 246 2.07 .81 .81 1.21 1.10 1.03 D 1243 1544 1810.0 15.5 1.61 2.24 58 3.49 3540 1797.5 1.09 1.09 3171 1984 33.3 37.7 37.04 897242 1101 50.4 329 246 2.08 .79 .80 1.20 1.10 1.03 D 1244 1601 1815.0 17.7 1.63 2.48 61 3.89 3560 1800.5 1.09 1.09 3180 1963 34.0 40.2 33.55 908014 1105 50.7 290 246 2.09 .79 .80 1.21 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1246 1815.0 17.7 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1246 1815.0 17.7 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D
1243 1544 1810.0 15.5 1.61 2.24 58 3.49 3540 1797.5 1.09 1.09 3171 1984 33.3 37.7 37.04 897242 1101 50.4 329 246 2.08 .79 .80 1.20 1.10 1.03 D 1244 1601 1815.0 17.7 1.63 2.48 61 3.89 3560 1800.5 1.09 1.09 3180 1963 34.0 40.2 33.55 908014 1105 50.7 290 246 2.09 .79 .80 1.21 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D
244 1601 1815.0 17.7 1.63 2.48 61 3.89 3560 1800.5 1.09 1.09 3180 1963 34.0 40.2 33.55 908014 1105 50.7 290 246 2.09 .79 .80 1.21 1.11 1.03 D 1245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D
245 1627 1820.0 20.1 1.64 2.39 60 5.12 3570 1804.8 1.09 1.09 3171 3780 34.9 39.9 52.94 918904 1111 51.0 252 246 2.10 .81 .82 1.20 1.11 1.03 D
1046 1641 1000 0 01 01 00 0 00 00 00 00 00 00 00
247 1704 1830.1 21.2 1.72 2.49 56 5.57 3690 1812.0 1.09 1.09 3180 3686 34.4 37.3 67.89 937723 1121 51.5 242 246 2.12 .80 .81 1.20 1.11 1.03 D
248 1719 1835.0 18.9 1.73 2.36 57 4.89 3630 1817.3 1.09 1.09 3188 3674 34.1 37.7 67.25 947614 1126 51.8 264 247 2.13 .80 .81 1.21 1.11 1.03 D
1249 1742 1840.1 21.9 1.73 2.36 58 4.93 3600 1821.4 1.09 1.09 3179 3915 34.4 35.6 66.93 957321 1131 52.0 237 247 2.14 78 78 1.20 1.11 1.23 D
250 1753 1845.0 26.3 1.72 2.30 61 4.60 3570 1825.5 1.09 1.09 3180 3717 34.3 37.8 66.93 964420 1136 52.2 190 246 2.15 .74 .74 1.21 1.11 1.63 D
+ Survey at 1847m. Cannot retrieve. Pull out of hole. Survey = 3 deq.
+ RRB#4 (Rerun#5) DIAMANT BOART LX27HS 12.25" with a NEYRFOR turbodrill.
Date Dec 3 '83
1257 0348 1850.1 16.5 1.48 1.99 49 4.08 3630 1847.3 1.09 1.09 3149 2688 27.4 33.8 65.82 6598 3.0 .2 292 1584 2.16 .78 .80 1.23 1.10 1.03 D
1259 0403 1855.0 18.9 1.49 1.90 49 4.48 3640 1847.3 1.09 1.09 3165 3191 29.9 37.4 64.55 16311 8.0 .4 266 767 2.17 .76 .79 1.20 1.10 1.03 D
259 0425 1863.0 20.6 1.48 2.18 49 3.98 3530 1847.3 1.09 1.09 3138 3035 32.4 37.0 65.03 26219 13.0 .7 245 578 2.18 .73 .75 1.24 1.10 1.03 1.03
1260 0442 1865.0 18.3 1.42 1.90 49 4.15 3570 1847.3 1.09 1.09 3140 2920 33.9 38.1 65.03 36236 18.0 1.0 278 493 2.19 75 78 1.20 1.11 1.03 D
1261 0504 1870.0 20.4 1.50 2.01 51 4.75 3700 1851.6 1.09 1.09 3161 4428 35.1 36.0 62.64 46247 23.0 1.3 246 446 2.20 76 78 1.24 1.11 1.03 10
1262 0524 1875.0 26.8 11.54 2.06 51 5.21 3580 1856.0 1.08 1.09 3099 4133 34.8 36.5 66.14 53747 28.0 1.5 189 404 2.21 .72 .74 1.20 1.11 1.03 DT

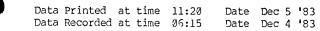
SHE

SHELL DEV. AUST: BASKER SOUTH No.1

(3)

63

63


. (.)

11

8

Data Printed at time 11:14 Date Dec 5 '83 Data Recorded at time 05:37 Date Dec 3 '83

F# TIME DEPTH ROP m m/hr	I TORQUE I AVG MAX	RPM FOB AVG AVG	PUMP RTRNS PRES DEPTH	MD spc gr IN OUT	v FLOW/MIN IN OUT	TEMP (C IN OUT	PVT	REVS		r hrs		ST ES' RUN T			NXB		EST FM PR
+	11 50 2 07	50 5 17	3660 1859.8	1.08 1.09	3176 4459	34.7 36.8	62.32	61825	33.0	1.7		375 2.2			1.24	1.11	1.03 D 1.03 D
1263 Ø537 1380.0 20.6	11 50 2 06	50 5.32	3650 1864.2		3177 4570	34.7 37.2	64.71	70604	38.Ø		233	357 ,2.2			1.24	1 10	1.03ID
1264 Ø551 1885.Ø 21.2 1265 Ø611 1890.Ø 20.3	11 41 2 12	17 4 46	3630 1868.8		3172 4671	34.9 37.1	62.64	78519	43.0		248	341 2.2			1 21	1 10	1.03 D
1265 0624 1895.0 23.3	11 41 7 1 03	47 4.52	3500 1874.4		3172 2735	35.0 37.7	64.55	86437	48.Ø		216	328 2.2	41 • //		1 2/	1 10	1.03 D
1267 0650 1900.0 17.0	11 41 1.84	48 3.62	3580 1881.6	1.08 1.09	3173 2801	35.5 40.0	64.55	98258	53.0		296	327 2.2 326 2.2	51 • /3		1 21	1.10	1.03 DT
1268 Ø716 1935.Ø 17.4	11.40 2.06		3600 1888.2	1.08 1.09	3151 2847	37.0 40.0	58.84	109748	58.0		290	320 2.2	71 • 7.		1.24	1.10	1.03 D
1269 0732 1910.0 19.5	11.41 1.93	48 3.88	3520 1893.9	1.08 1.09	3165 2930	37.4 40.9	63.75	119275	63.0	3.2	249	316 2.2			1.21	1.10	1.03 D
1270 0754 1915.0 20.0	11.46 2.01	49 3.84		1.08 1.09	3152 3047	37.9 40.2	66.62	128622	08.0	3.5	249	310 2.2	J	• • • •			
+ Trip to shoe due to	washout i	n kelly					150.0	1120020	72 a	3.8	330	314 2.2	91 -8	. 81	1.26	1.09	1.03ID
283 1448 1920.0 15.0	11.54 1.71	58 3.51	3570 1917.2		3214 3766	30.9 37.5 34.0 38.6	152.9	1123626	73.0 79.0	4.1		313 2.3			1.21	1.09	1.03ID
1284 1513 1925.0 20.8	11.45 1.88	57 4.40	364011917.2	1.08 1.09	3208 3597	35.1 40.3	151 0	1150056	83 W	4.3		308 2.3		5.75	1.26	1.09	1.03 D
1285 1527 1930.0 22.5	1.471.91	53 4.58	3590 1917.2	2 1.08 1.09	3211 3359	35.1 40.3	1/18 2	1169340	88.0	4.6		306 2.3			1.21	1.10	1.03D
1285 1551 1935.0 20.7	11.45 1.87	54 4.38	364011917.5	1.08 1.09	3197 4929 3199 5253	37.0 38.6	59 14	1179615	93.0		267	304 2.3	31.7	7 .79	1.26	1.10	1.03ID
1287 1637 1940.0 18.5	11.48 1.84	53 4.19	3/00/1921.4		3207 5376	36.8 36.4	58-98	1188201	98.0	5.1	209	301 2.3	4 .7	3 .74	1.21	1.10	1.03 D
1233 1623 1945.0 24.3	11.52 1.98	52 4.53	3/10/1925	1.08 1.09	3218 5418	36.5 38.7	58.35	1195652	103	5.3	199	295 2.3	51.7	3 .74	1.26	1.10	1.03ID
1289 1640 1950.0 25.2	11.52 1.94	52 4.78			3182 5548	36.6 36.6	57.08	202528	108	5.5	175	291 2.3			1.22	1.10	1.0310
1290 1658 1955.0 30.2	211.56 2.09	50 4.51		2 1.08 1.09 5 1.08 1.09	3192 4670	36.5 39.1	57.08	208216	113	5.6	150	284 2.3		6 .67	1.25	1.10	1.03ID
1291 1707 1960.0 33.9	11.53 2.01	50 4.45		2 1.03 1.09	3236 5240	36.7 37.3	57.24	1214510	118	5.8	151	280 2.3		7 .69	1.22	1.10	1.03ID
1292 1724 1965.0 33.7	(11.51 1.88	51 4.99 55 4.86		4 1.08 1.09	3184 5105	36.8 39.5	55.76	1225427	123	6.1	265	280 2.3			1.27	1.10	1.03ID
293 1742 1970.0 19.6) 1	54 4 84		3 1.08 1.09	3198 5010	37.2 39.8	55,12	1233844	128	6.3	205	278 2.3			1.22	1.10	1.03 D 1.03 D
294 1802 1975.0 24.4 295 1811 1980.0 33.1	111 45 1 91	53 4.77		9 1.08 1.09	3230 5207	37.0 39.7	56.12	1239552	133	5.4	156	273 2.3			1.27	1 10	1.03ID
1295 1811 1980.0 33.1	211 22 1 76	53 4,59	360011951.	4 1.03 1.09	3206 4953	37.2 39.4	54.53	247183	138	6.5	189	271 2.4			1 27	1 10	1.03IDT
1295 1830 1935.0 25.0	511.34 1.80	52 5.16		1 1.08 1.09	3030 4409	37.2 39.9	57.87	1254640	143	5.8	191	269 2.4 269 2.4			1 22	1.10	1.03 D
297 1849 1998.8 25.6 298 1986 1995.8 17.6	511.16 1.64		3570 1970	3 1.08 1.09	3200 5083	37.1 40.	54.37	1265477	148	7.1 7.3	319 177	267 2.4			1.27	1.10	1.03 D
1299 1924 2000.0 28.	711.20 1.71	58 4.73	3540[1975.	4 1.03 1.09	3145 4785	37.6 39.9	56.44	1272071	153 158		158	263 2.4			1.22		
1300 1934 2005.0 31.5	511.23 1.52	55 4.78		2 1.03 1.09	3189 4945	37.6 39.9	53.90	12/8954	163	7.8	258	254 2.4			1.27	1.10	1.03 D
301 1957 2010.1 21.	3 1.19 1.65	56 5.14		0 1.08 1.09		37.6 39.5	53.74	12007411	168	8.0	231	263 2.4		8 .79	1.22	1.10	1.03ID
1302 2011 2015.0 21.	5 1.20 1.49	56 4.96	3597 1992.	0 1.08 1.09	3183 4661	37.5 40.				8.2	175	260 2.		0 .70	1.27	1.10	1.0310
1303 2028 2020.0 29.5	9 1.28 1.64	1 55 4.54	3600 1995.	7 1.08 1.08	3175 4780	37.7 40.1 37.5 40.1	5 5 4 7 1	1200678		8.3	147	257 2.		6 .67	1.23	1.10	1.03lD
1304 2037 2025.0 33.5	9 1.31 1.78	5 55 4.28		3 1.08 1.08	3189 4238	37.5 40.	5 53 99	11309070	183	.8.6	377	258 2.		9 .80	1.28	1.10	· 1.031D
1305 2102 2030.0 18.	2]1.24 1.6.	L 54 4.48		6 1.08 1.08		38.0 40.	7 55.17	11332588	188	8.9	317	250 2.	181 .8	.81	1.23	1.10	1.03ID
1305 2121 2035.0 15.	511.22 1.5	5 54 4.11		5 1.08 1.08			4 54.69	344104	193	9.2	3Ø3	261 2.			1.28	1.10	1.03ID
1307 2149 2240.0 16.	7 1.16 1.4	5 56 4.21	L 352012022.	2 1.03 1.08 5 1.08 1.08			1 54.85	355795	198	9.5	310	262 2.	501 -8	34 .84	1.23	1.10	1.03 D
1308 2208 2045.0 16.	011.31 1.6.	1 55 4.93	3 331012020•	J 1.00 1.00	3102 1131	3002											1 4215
+ Survey at 2047m =	4.5 deg		256412432	7 1.08 1.08	3182 4275	34.8 35.	6 59.14	1 364651	. 203	9.8	207	262 2.		76 .76	1.28	1.10	1.03ID
1310 2338 2050.0 24.	411.34 1.0	3 34 3.10 3 55 6 //		9 1.08 1.08			5 51.05	51375763	208	10.1	312	253 2.	521 -8	38 •81	3 1.23	1.10	1.03ID
311 2356 2055.0 17.	011.24 1.0	9 33 0.41	5710120300											^.	7 1 00	1 10	ו מוצא ו
! Date Dec 4 '83	111 27 1 7	5 54 6.6	7 361012042.	1 1.03 1.03	3188 3977	35.9 39.	9 59.94	11386971	. 213		281	264 2.			/ 1.23) 1.33	1 10	1.03 D
312 0020 2050.0 18. 313 0037 2055.0 17.	111.2/ 1.1	g 55 6.8	2 353012046.	3 1.03 1.08	3191 4057	37.7 41.				10.7	281	264 2.			1 1 2	1.10	1.03 D
1314 0103 2070.0 16.	711.20 1.6	3 52 6.3°	2 3570 2052.	8 1.09 1.09	3184 2043	38.1 42.	6 63.4	41409807		11.0	3Ø1	266 2.			1.23	1.10	1.03ID
1315 0124 2075.0 14.	111-14 1-4		0 346012053.	0 1.03 1.08	3183 1917		0.62.19	51423135		11.3	373 380	268 2. 271 2.	581 •	9. 0.	4 1.28	1.10	1.03ID
1316 Ø155 2030.Ø 13.	111.15 2.4		4 352012055.	3 1.08 1.08	3172 1753		4 51.5	3 433573	7 220	11.8		274 2.		94 .9	4 1.23	1.09	1.03 0
1317 0225 2085.0 13.	3 1.14 2.4		2 353012071.	5 1.08 1.08	3157 1965					12.2 12.5		274 2.		31 .8	2 1.28	1.10	1.03ID
318 0242 2090.0 16.	8 1.18 1.5		2 3580 2074.	8 1.08 1.08			5 59.9.	なしなりせつより なしなフラにつく		12.8		275 2.		38 .8	3 1.24	1.10	1.93ID
1319 0309 2095.0 15.	111.15 1.9	Ø 55 5•/	9 3540 2079.	3 1.08 1.08	3178 2035		a 6a 5	71/199/3/0	253	13.1	-	275 2.		8. 8	3 1.29	1.10	1.0310
1320 0327 2100.0 16.	411.20 1.5	3 54 6.1	7 3650 2033.	5 1.08 1.08	3187 1913		ด รว 1	7 1407045 6 1508055		13.6		281 2.		99 .9	9 1.24	1.09	9 1.03lD
			4 356012091.	2 1.03 1.08	3187 1893	41.0 44.	2 32 B	9153673	5 253			290 2.		08 1.0	3 1.24	1.09	9 1.03ID
1321 C404 2105.0 10. 1322 0449 2110.0 5.5	5911.02 1.3	3 55 5.2	6 359312101.	,5 I.VS I.VS	2122 1001	, 92.0 97.		_+					+				+

6.7

+				 																Tille 8)	1).13	Date i)EC 4	03		
F	# TIME	DEPTH	ROP	TOP	RQUE	RPM	FOB	PUMP	RTRNS	MD :	spc gr	v FLO	MTM\INE	THE	1P (C)	ייעם		PHTS B	TT		CT	EST DXC	NX	NXB	ECD	700 1
ĺ		m	m/hr						DEPTH		OUT	IN	•	IN	OUT	FVI	REVS	m m	hrs		RUN		NX	NYB	ECD	EST
÷										***		T14	501	714			17573		111.5	1//21	RUN	IWI				FM PR
132	3 Ø615	2115.0	4.84	-98	2.49	53	8.36	367ai	2110.5	1 00	1 //0	3187	3433	11 1	11 2	66 16	583501	260	15.6	726	200	27217 22	3 00	1 24	1 00	1 0212
	4 Ø654						8.64		2111.5			3186					1608037	273	16.3	715		2.73 1.22				
	5 Ø728						8.68		2114.8								1624757					2.75 1.11				
	6 0750						9.24		2117.6									275		745		2.77 1.14			1.10	
	7 Ø811						9.81		2120.3								638385	278	17.1	755		2.78 1.15	1.15			1.03ID
	8 Ø83Ø						9.00		2121.9								651752	280	17.4	7:2		2.80 1.16				1.03 D
	9 0901						9.46		2124.8								663444	283	17.8	622		2.81 1.10				1.0310
	0921						9.31										679337	285	18.2	849		2.82 1.15				1.03 D
	1 0937						9.75		2127.0 2129.1			32Ø3 3176					591306	288	18.5	666			1.11			1.03ID
	2 0950						9.89										701590	290	18.8	565		2.85 1.09	1.09		1.12	
	3 1011						8.76		2131.1			3180		_	-		709563	293	19.0	427		2.86 1.03				1.03 D
133	4 1033	2142.3	6 79	00	1 26	52	8.82		2132.1			3175					719198	295	19.2	481		2.87 1.02				1.03 D
	5 1048						8.69		2134.9			3215					733022	298	19.6	821		2.88 1.14			1.11	
	5 1104						8.81		2137.2			3228					742546	300	19.9	535		2.89 1.05				
	7 1139						8.62		2140.2			3180				-	752305	3Ø3	20.1			2.90 1.05				1.03ID
_	3 1156								2144.3			3174					770459	3Ø5	20.6			2.92 1.19				
							9.16		2146.7			3177			-		781327	308	20.9	595		2.93 1.10				
	9 1215						8.55		2149.6			3172					792892	310	21.2			2.94 1.10				
	1239						8.43		2151.3			3172					803558	313	21.5	5Ø5	358 2	2.95 1.04	1.04	1.24	1.11	1.03ID
	1 1259						7.93		2153.3			3185					816149	315	21.8	592	350 2	2.96 1.08	1.08	1.24	1.11	1.03ID
	2 1321						8.76		2156.2			3192					829898	318	22.2	742	353 2	2.98 1.13	1.13	1.24	1.11	1.03ID
134.	3 1346	2167.5	5.031	.98	1.21	53	9.23		2159.6			3187					845488	320	22.6	820	357 2	2.99 1.18	1.18	1.24	1.11	1.03 D
	1412						9.11		2162.3			3184					857527	323	22.9	578	369	3.01 1.09	1.38	1.24	1.11	1.03 D
	5 1422						8.89		2163.5			3200		41.2	43.7	31.88	864225	325	23.1	348	359 3	3.01 .99	.93	1.24	1.11	1.03 D
	5 1437						9.08		2165.0			3187		41.2	44.0	32.35	873719	328	23.3	55Ø	370 3	3.02 1.08	1.07	1.24	1.11	1.03ID
	7 1519				-		8.82		2169.7			3197	3272	41.4	43.9	32.83	899399	330	24.0	1554	377	3.05 1.28	1.27	1.24	1.11	1.03ID
	3 1559					-	8.80		2174.4			3185	3144	40.9	44.1	59.8Ø	913102	333	24.4	637	380 3	3.06 1.11	1.10	1.22	1.11	1.03ID
	1617						10.3	35901	2176.3	1.09	1.10	3204	3149	41.1	43.8	46.90	930805	335	24.9	1124	384 3	3.03 1.28	1.26	1.22	1.10	1.03ID
	1658						10.6		2179.8			3192	3105	41.2	43.4	47.54	956245	338	25.5	1448	391 3	3.11 1.38	1.35	1.24	1.10	1.03ID
	1737						10.6		2183.1			3184	3178	41.1	43.5	48.01	980268	349	26.1	1121	397 3	3.13 1.34	1.33	1.25	1.10	1.03ID
	2 1821						10.7	371Ø	2185.0	1.09	1.10	3185	3Ø55	40.1	43.3	50.08	915	343	26.7	1015		3.15 1.31				1.03ID
	3 1846						10.9	37201	2186.6	1.09	1.10	3183	3091	40.5	42.9	50.24	16412	345	27.1	840		3.17 1.26				
354	1 1906	2195.0	7.671	•99	1.33	57	11.0	37901	2187.8	1.09	1.10	3183	3129	40.6	43.1	50.72	28832	348	27.4	653		3.18 1.21		1.25	1.10	
	5 1917						10.1	37201	2188.5	1.09	1.10	3181					35596	350	27.6	369		3.19 1.04				1.03ID
	2005					58	9.67	37901	2192.8	1.09	1.10	3184	3116	40.2	42.7	52.62	51450	353	28.3			3.21 1.33			1.10	
	7 2048						9.85		2198.1			3213					88815	355	29.0			3.24 1.37		1.25	1.10	
1358	3 2121	2205.0	4.50	•98	1.10		9.50	3740	2200.3	1.09	1.10	3187					110370	358	29.6			3.25 1.29			1.10	
	2200						9.60		2202.1			3216					129229	350	30.1			3.28 1.25			1.10	1.03ID
1352	3 2220	2210:0	7.22	1.09	1.45		9.40		2203.6			3178					142281	363	30.4	682		3.29 1.17				1.0310
1361	L 2247	2212.5	5.59	1.09	1.35	57	9.73		2205.6			3174					159163	355		976		3.31 1.24				
1352	2 2312	2215.0	6.02	1.08	1.19	57	10.0		2207.5			3190					174867	358	31.3			3.33 1.23		1.23		1.03 D
	3 2336						9.83		2210.0			3187					184781	370	31.5	492		3.34 1.10			-	1.0315
1354	2347	2223.0	13.3	1.45	1.67	56 9	9.18		2211.1			3194					191776	373	31.7	356		3.34 1.01				1.03 D
	2353						6.49		2211.6			3184					195726	375	31.8	222		3.35 .80	.79			1.03ID
1		Dec 5														1		5.5	J U		100	2.001 .00	• 13	4 6 687	1.10	10000
1368	9218	2225.0	20.41	1.54	2.49	53	3.03	39501	2212.6	1.09	1.10	3154	3178	40.5	41.0	53,281	200901	378	32.0	270	435 3	3.351 .70	.69	1 17	1 10	1.03 DT
	7 ØØ28						2.60		2213.1			3169					203372	380		187		3.351 .70				
	3 0031						2.34		2213.4			3209					205076	383	32.1			3.351 .59	.59 .55			1.03 DT
	0035						1.64		2214.0			3230					203070	385		195		3.36 .55	•55			1.03 D
1379		2235.0					1.61		2214.7			3212					212256	388	32.2	204						1.03 D
								39901	2216.7	1.00	1.10	3207	3015	39 8	41 0 1	74. TJ	218955	30W	32.3	250		3.351 .58				1.03 D
+								+			****	J201		JJ.0		I	210933	390	J4.4	330	42/ 3	3.37 .67	•07	1.19	1.11	1.03 DT

SHELL DEV. AUST: BASKER SOUTH No.1

Data Printed at time 11:24 Date Dec 5 '83 Data Recorded at time 01:08 Date Dec 5 '83

+																									
F# TIME DEPI			••												IT							NX	NXB		EST FM PR
1372 0103 2240	.0 23.0	1.48	1.82	47	3.38	3760	2218.0	1.09	1.10	3181	3233	39.9	38.8	51.35	223047	393	32.6	226	426	3.37	.67	.67	1.18	1.11	1.03 D
1373 Ø117 2242	.5 17.8	1.57	1.91	47	3.27	3910	2220.0	1.09	1.10	3183	3235	39.6	41.8	51.19	228155	395	32.7	288	425	3.371	.71	.71	1.19	1.11	1.03 D
1374 Ø126 2245	.0 16.3	1.49	2.06	48	3.12	38701	2223.7	1.09	1.10	3194	3401	39.5	41.5	50.88	1233889	398	32.8	301	424	3.38	.73	.73	1.18	1.11	1.03 D
1375 Ø144 2247	.5 18.3	1.45	1.84	5Ø	2.97	38401	2227.2	1.09	1.10	3168	3212	39.7	41.1	51.03	1239856	400	33.0	261	424	3.38	.71	.70	1.20	1.11	1.03ID
1376 Ø153 2250	.0 16.9	1.49	1.84	49	3.29	38501	2230.8	1.09	1.10	3172	3215	39.7	41.2	49.60	245399	403	33.2	286	423	3.391	.73	.73	1.18	1.11	1.03 D
1377 0200 2252	.5 20.6	1.49	1.88	49	2.72	39101	2233.2	1.09	1.10	3179	3239	39.1	41.7	48.49	1249928	405	33.3	248	422	3.391	.67	.67	1.20	1.11	1.03 D
+ Pull out at	2254m to	run	logs	and	9 5/8	" casi	ng. Su	rvey :	= 7.5 d	deg.															1

£.3

600

6

€? .

ñ.

€ 8

25,6

ές., ·

This

550

·

Data Printed at time 14:22 Date Dec 21 '83 Data Recorded at time 10:56 Date Dec 8 '83

																								
	ROP TORG	QUE	RPM	FOB	PUMP F	RTRNS		spc gr			TE:		PVT	REVS		IT hrs		COST ST RUN			NX	NXB	ECD	EST FM P
m m,	hr AVG	MAX A	AVG	AVG	PRESIL	EPIN	TIN	001	T1/4		T1A		·						+					
IB#5 (Run#7) SMI1	TH SVH 8.5	5" wi	th 16	.16.	16 jets	s. St	art d	lepth 22	257 . 5π	ı. IA	DC bit	cond	ition '	r8 B4 C	34.									
rill cement and	shoe trac	ck fro	om 22:	224.3m	m.																			
8 1356 2257.5 12	711.14	7.77	51	-75	105012	229.7	.1.09	1.10	1533	952	24.9	26.8	52.62	3859	3.5	1.6	1348	29178	.94!	.64		1.19		
1 1637 2260.0 1.	0611.42 2	2.45	71 4.	-95	98012	2259.7	1.10	1.11	1488	13Ø8	24.7	30.8	51.031	14070	2.5	4.0	6714	10579	1.141	1.55	1.55	1.19	1.12	1.0
B#6 (Run#8) SMI7	H SDGH 8.	.5" w	ith 1	.4,14,	,14 jet	s. S	tart	depth 2	2261m.	IAD	C bit	condi	tion T	2 B2 G2	2.									
Date Dec 9 '8	3				•											_	1100	F 273	gol	1 01	7 06	1 21	1 12	3 0
6 0722 2262.5 4.	58 11.55]	L . 98	46 3	.40	1330 2	.261.0	1.11	1.11	1567	1593			62.64		1.5		1193	5371 2340		.93	1.06	1.19		
7 0739 2265.0 9.	09 1.33 1	L . 56	50 3	. 63	133012	261.0	1.11	1.11	1574	1452			66.93	1753		-	552	1664		.95		1.21		
8 0803 2267.5 9.	78 1.37]	.91	54 3	.85	1400 2	261.0	1.11	1.11	1616	1603			69.16	2713	-	1.4	510	1458			1.13			
9 0836 2270.0 5.	50 1.34 1	.52	59 4					1.11					60.89	434Ø 57Ø2		1.7		1311	501	1 06	1.07	1 12	1 14	1.6
0 0358 2272.5 6.	60 1.31]	L.56	60 4					1.11					53.26	7533			1043				1.17			
1 0929 2275.0 4.	92 1 . 28 1	48	60 4	87	14/012	.269.7	1.11	1.11	1629	1202			52.78	9460		2.8		1226			1.17			
2 1008 2277.5 5.	23 1.29 1	.90	61.5	.14	143012	.272.8	1.11	1.11	1005	1041			51.83			3.4			1 101	1.22	1.22	1.18	1.14	1.0
3 1045 2280.0 3.	9211.23	1.45	61 4	88	1430 2	.275.4	1.11	1.11	1001	TOIN	20.5	20.2	21.121	12071	21 5		670	1161	1 191	1 97	1.06	1 16	1.14	1.0
1 1105 2282.5 7.	68 11.28 1	.49	61 4	83	1440 2	.276.9	1.11	1.11	1605	1584	27.0	30.8	ומכישכ	12021	21.5	4.0		1095						
1121 2285.0 9.	56 11.29 1	L.50	51 5	.16	145012	.278.4	1-11	1.11	1609	15/4	27.1	30.8	21.191	12677	24.0		840					1.16		
3 1152 2287.5 10		.93	60 4	48	147012	.280.0	1.11	1.11	1011	1489	23.5	30.5	ומכ•שכ	15490	20.5	4.4	040	TO 1 T	1.3/1	• 22		1.10	1.12	
eak off test at	2288m.	M		~ 1~					200-	T 3 TV	o bit	aondi	tion m	מס כם	1									
\$47 (Run#9) SMIT	H FDGH 8.	,5" W:	ith i	, שב, ש.	,II jet	.s. 51	tart	aeptn 2	1420	1204	24 E	COURT	EO 00!	62.04 62.01	2.5	.2	340	2864	.051	-93	1.00	1.21	1.13	1.0
2133 2290.0 14					2400 2	.288.0	1.11	1.11	1429	1304	24.5	26.4	20.301	1019			295	1733		.82		1.22		
2139 2292.5 19								1.11					59.301	1301			146	1154	.10			1.21		
2143 2295.0 34								1.11					63.91	1771			205	915	.13			1.22		
2200 2297.5 22					243012	.288.0	1.11	1.11	1430				62.01	2162			213	771		.82		1.22		
2205 2307.1 24	.5[1.44]	1.69	63 4		242012	.288.0	1.11	1.11	1429	1504			60.57	2641		.7		690	-	.89		1.22		
2213 2302.5 18					242012	.288 . Ø	1 10	1.11	1427	1242			69.321	3344			288	554		.89			1.14	
2240 2305.1 18								1.11					64.55	4109		1.1		619		.97		1.19		
2252 2307.5 12	.311.43 1	.63	04 4.		243012	203.5	1 10	1.11	1427	1228			52.801	4938		1.3	427	597			1.03			
2305 2310.0 11					243012	293.0	1 10	1.11	1430	1250			51.85	5840			445	593		1.01		1.13		
2319 2312.5 10				10	244012	2012 5	1 1/	1.11	1423					6801		1.8		575			1.00			
3 2340 2315.0 12					24/012	201 D	1 10	1.11	1423	1269	27 4	30 0	55 171	7581		2.0		559	.521			1.09		
2352 2317.5 13 Date Dec 10		00	00 4.	• OU	240012	204.5	1.10	1.11	1421	1200	2,04	30.0	33.11	7501	27.3			507		•••				
0020 2320.0 5.		61	60 5	. 45	245012	210/1	1 10	1.11	1431	1428	27.6	301.9	52.621	9489	32.0	2.5	839	588	-641	1.22	1.21	1.10	1.13	1.0
0033 2322.5 11					245012	310 4	1 10	1.11	1431	1410	28.1	31.2	52.151			2.7		577			1.04			
0052 2325.0 15			63 5					1.11						11149		2.9	336	565	.73			1.05		
Ø1Ø8 2327.5 9.			64 5.	. 59	241012	318.0	1.10	1.11	1420							3.2		554			1.09			
Ø148 2330.Ø 3.				12	241012	322.9	1.10	1.11	1420	1363	28.7	31.8	59.881	14805	42.0	3.8		610			1.33			
0200 2332.5 13			64 5					1.11			28.6	31.6	50.401	15540	44.5	4.0	400	598			1.01			
0231 2335.0 6.					241012	327.9	1.10	1.10	1420					17129		4.4	1212	609	1.051	1.20	1.19	1.05	1.13	1.0
0245 2337.5 10			64 5					1.10			29.1	32.4	48.81	18026	49.5	4.7	452	602	1.091	1.06	1.05	1.05	1.13	1.0
0251 2340.0 24	.5 1.55 1	84						1.10						18413		4.8	206	583	1.111	.84	.83	1.65		
0255 2342.5 38								1.10						18558		4.8	133	562	1.12	.73			1.13	
0313 2345.0 28			63 4		2430 2				1418					19102		5.0			1.14				1.13	
Ø316 2347.5 38			58 5.					1.10	1420	1347	30.7	33.0	48.17	19331	59.5	5.Ø			1.15				1.13	
0322 2350.0 26				.47	245012	332.7	1.10	1.10	1420	1368	30.8	32.5	47.70	19625	62.0	5.1	188		1.16				1.13	
0343 2352.5 26				.46	2400 2	.333.9	1.10	1.10	1367	1225				20022		5.2	196		1.171			1.07		
0346 2355.0 51	.4 1.52 1	.80	62 4.	-26	2440 2	334.1	1.10	1.10	1415	1338	30.2	31.7	50.881	20203	67.0	5.3			1.18			1.06		
<i>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>		0.4	61 5	10	245012	334.3	1.10	1.10	1419	1389	30.3	32.6		20557		5.4	409	481	1.201	.83	.82	1.07	1.14	1.0
0 0351 2357.5 26	.011.65 1	94	07 2	• "12.	227012																			
0351 2357.5 26 0413 2350.0 7.	.0 1.65 1 01 1.90 2	94 !.18	55 4.	.58	243012	337.3	1.11	1.10	1420	1382	29.2	32.2	46.581	21701	72.0	5.7	796	488]	1.24	1.06	1.05	1.05	1.14	1.0

Data Printed at time 14:27 Date Dec 21 '83
Data Recorded at time 04:37 Date Dec 10 '83

										L							4	Data R	ecorde	d at t	time	04:37	Date	Dec 1	Ø ' 83		
	F#	TIME	DEPTH m	ROP m/hr	TOR			FOB AVG		RTRNS DEPTH		spc gr OUT	v FL IN		TE	MP (C) OUT	PVT	REVS		T		OST		C NX	NXB	ECD	EST FM PR
	1453	0437	2362.5	11.2	11 96 3	2.17	57	4.87	24101	2344 4	1 1 11	1.10	1///8	1301	20.2	31 /	72 501	22624	715	6.Ø	439	400	1.28		7 1 64	1 14	
			2365.0					5.17				1.10						23047		5.1	235		1.29			1.14	1.01 DT
	1455	0456	2357.5	12.3	1.85 2	2.22	59	5.66				1.10			28.3	31.8	77.74	23745	79.5	5.3	657		1.321				1.01(D
			2370.0					6.06	2410	2358.9	1.11	1.10	1415	•1332	29.1	31.8	78.54	24802	82.0	6.6	524	484	1.36 1.6				1.01 D
																		3 B2 G									1
			2372.5 2375.0					4.1/ 3.44				1.11					45.311 46.741				904 728		.09 1.0				1.01 D
			2377.5					4.24				1.11					49.45	4003			986	3483 2327	.16 .9		1.21		1.01 D 1.01 D
			2380.0					5.39				1.11					52.94				2045	2097	.42 1.2		1.20		
			2382.5					5.90				1.11			28.6	30.8	56.12				1774	2003	.61 1.3				
			2385.0					5.51				1.11					-	12753			1774	1917			2 1.24		1.01 D
			2387.5 2390.0					7.87 3.76				1.11						14206			817	1737	.85 1.2		1.25		
			2392.5				65 9					1.11						15952 17097		4.5 4.8	787 677		.94 1.2 01 1.2		1.25		
			2395.Ø				54					1.11						18605		5.2	789		.10 1.3				1.01 D
			2397.5				64	LØ.8	25001	2390.1	1.10	1.11	1431	1342				20148	-		_		.19 1.3				
			2400.0				62]					1.11						22166		6.2			.3011.4				
			2402,5				65 1					1.10						23895					.40 1.4				1.01 D
			2405.0					1.3	249012	2399.8	1.10	1.10	1455	1378	30.5	32.0	18.17	26ø59 27693	33.0								1.01 D
																		27693 B3 G4.	35.5	7.6	887	1251 1	.60 1.4	4 1.42	1.43	1.14	1.01 D
			Dec 11		12 0.5	WIC	JI 10	, , 10 , 1	. عادر د.	3	arc u	spui ze	יווכשו	IALC	DIC C	Onure.	1011 12	D3 G4.									!
			2410.1		1.99 2	.22	6Ø 7	.14	265012	2409.0	1.11	1.11	1480	1631	25.7	19.6	54.691	863	1.1	.2 1	1019	9932	.01 1.2	9 1.30	1.25	1.15	1.01 D
			2412.5				52 8	.Ø3	263012	2409.0	1.11	1.11	1499	1556	25.5	30.1 6	8.36	3527	3.5	1.1 1	17Ø1		.05 1.4				1.01 D
			2415.0				51 1					1.11				31.8		6949		2.1 1							1.011DT
			2417.5				47 1 50 1					1.11				32.6		7615	-	2.4							1.01 D
			2420.0 2422.5				54 1					1.11 1.11				32.9 7 33.1 7		83Ø8 8386					.13 1.1				1.011D 1.011D
			2425.0				54 1					1.11				32.9 7		9514									1.01ID
			2427.5				53 1					1.11						10251		3.2			.17 1.3				1.01 D
			2430.0				59 1	5.1	254012	2418.3	1.10	1.11	1454	1590				11650		3.6	660						1.01 D
			2432.5				62 1					1.11						12799								1.14	1.01 D
			2435.0				56 1					1.11						13991		4.2			.24 1.4				1.01 D
			2437.5 2440.0				57 1 63 1					1.11						14979 : 15932 :		4.5 4.8 1							1.01 D#
			442.5				56 1					1.11						16415		4.9			.28 1.4				1.01 D 1.01 D
			445.0				57 1			433.1			1443					16821		5.0							1.01 D
			447.5				57 1	4.4	249012	437.1	1.10	1.11		1442	32.0	33.0 7	3.511	18445	38.5	5.5							1.01 DT
			450.0				63 1					1.11						19154			376		34 1.3				1.01 D
			452.5				57 1 57 1			440.0			1446					19811			330		.35 1.28				
			455.0				56 1					1.11 1.11				-		20226 4 20764 4		6.0 6.1	251		.35 1.14				1.0110
			460.0				57 13			446.1			1433 1					21164			228		.35 1.10 .37 1.11				
			462.5				58 14					1.11						21540		-	218		38 1.12				
			465.0	-			58 15	5.2	259812	446.8	1.10	1.11	1448 1	525				21969 5		6.5	239		39 1.17				
			467.5				53 15			449.0			1454 1					22656 5		6.7		740 .	40 11.23	1.23	1.35	1.14	1.01 D
			470.0 . 472.5 .				50 19 59 14					1.11 1 1.11 1						23427 6			418		41 1.34				
			472.5 . 475.0 .				56 14					1.11						24312 6 24816 6			512 299		43 1.37				1.0110
į.	507 1	703 2	477.5	18.213	.13 3.	20	58 12	2.5	260012	463.3	1.10	1.11	458 1	466	32.4 3	4.Ø 6	5.93	25473 6	8.5	7.5			45 1.13		1.28	1.14	1.01 D 1.01 D
+				+					+					·									+				

Data Printed at time 10:17 Date Dec 21 '83 Data Recorded at time 17:10 Date Dec 11 '83

£.23

13

()

13

(3)

1.3

1.3

509 510 511 512 513 514 515 516 517 518 519 520 521 Surv	1717 1735 1746 1756 1809 1841 1850 1858 1935 1936 1936 1936 1944 1956 vey at 2150	2482.5 2485.0 2487.5 2490.0 2492.5 2495.0 2497.5 2500.0 2502.5 2507.5 2507.5 2510.0 2512.5 t 2513.0	21.6 20.4 13.5 15.5 10.9 7.53 17.2 17.7 22.5 16.3 27.1 17.4 12.5 n = 7.	3.25 3. 3.28 3. 3.22 3. 3.24 3. 3.19 3. 3.16 3. 3.17 3. 3.27 3. 3.32 3. 3.32 3. 3.28 3. 3.29 3. 3.30 3.	31 5 31 5 32 5 34 6 35 6 28 6 31 6 32 6 34 6 33 5 34 6 31 5 31 5	6 12.8 4 13.5 5 12.7 9 14.6 1 14.6 1 14.6 1 15.4 1 14.7 1 15.2 8 15.0 0 15.2 6 15.4 5 16.0	2590 2465.7 2590 2466.2 2540 2468.9 2580 2470.9 2580 2472.7 2590 2475.5 2560 2483.3 2580 2485.0 2590 2486.7 2600 2488.1 2570 2492.3 2570 2492.3 2570 2492.3	1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.11 1.	11 14 11 13 11 14 11 14 11 14 11 14 11 14	454 1498 482 1270 445 1499 450 1463 451 1515 446 1471 450 1541 453 1471 450 1480	32.4 32.4 32.3 32.3 32.3 32.1 32.1 32.1	34.0 34.2 33.6 34.1 33.2 33.6 33.6	65.98 70.27 65.98 65.66 65.50 65.98	25857 26233 26741 2739Ø 27984 28815 30243 30782	73.5 76.0 78.5 81.0 83.5 86.0		232 256 455 328 498 571	674 659 647 638 628 623 627	.45 1.08 .46 1.09 .47 1.09 .49 1.28 .50 1.25 .51 1.35	1.10 1.09 1.28 1.25 1.35 1.49	1.22 1.19 1.20 1.22 1.25 1.22	1.14 1.14 1.14 1.14 1.14	1.01 D 1.01 D 1.01 D 1.01 D 1.01 D
510 511 512 513 514 515 516 517 518 519 520 521 Surv	1735 1746 1756 1809 1841 1850 1858 1936 1936 1936 1956 2150 22158	2485.0 2487.5 2490.0 2492.5 2495.0 2497.5 2500.0 2502.5 2505.0 2507.5 2512.5 t 2513.0	20.4 13.5 15.5 10.9 7.53 17.2 17.7 22.5 16.3 27.1 17.4 12.5 n = 7.	3.22 3. 3.24 3. 3.19 3. 3.16 3. 3.17 3. 3.27 3. 3.30 3. 3.28 3. 3.29 3. 3.30 3. 3.30 3.	31 5 32 5 34 6 35 6 28 6 31 6 32 6 34 6 31 5 31 5	5 12.7 9 14.6 1 14.6 1 14.6 1 15.4 1 14.7 1 15.2 8 15.0 0 15.2 6 15.4 5 16.0	2540 2468.9 2580 2470.9 2580 2472.7 2590 2475.5 2560 2483.3 2580 2485.0 2590 2486.1 2570 2482.3 2570 2492.3	1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.11 1.	11 12 11 14 11 14 11 14 11 14 11 14 11 14	382 1270 145.1499 150 1463 151 1515 146 1471 150 1541 153 1471 150 1480	32.4 32.3 32.3 32.3 32.1 32.1 32.1	34.2 33.6 34.1 33.2 33.6 33.6	70.27 65.98 65.66 65.50 65.98	26741 27390 27984 28815 30243	76.0 78.5 81.0 83.5 86.0	7.8 8.0 8.2 8.4 8.8	256 455 328 498 571	647 638 628 623 627	.47 1.09 .49 1.28 .50 1.25 .51 1.35 .54 1.49	1.09 1.28 1.25 1.35 1.49	1.19 1.20 1.22 1.25 1.22	1.14 1.14 1.14 1.14 1.14	1.01 D 1.01 D 1.01 D 1.01 D 1.01 D
511 512 513 514 515 516 517 518 519 520 521 Surv	1746 1756 1809 1841 1850 1858 1905 1936 1936 1944 1956 vey at 2150 2150	2487.5 2490.0 2492.5 2495.0 2497.5 2500.0 2502.5 2507.5 2510.0 2512.5 t 2513m 2515.0	13.5 15.5 10.9 7.53 17.2 17.7 22.5 16.3 27.1 17.4 12.5 n = 7.	3.24 3. 3.19 3. 3.16 3. 3.17 3. 3.27 3. 3.30 3. 3.32 3. 3.28 3. 3.29 3. 3.30 3. 3.30 3.	32 5 34 6 35 6 28 6 31 6 32 6 34 5 34 5 31 5	9 14.6 1 14.6 1 15.4 1 15.2 8 15.0 0 15.2 6 15.4 5 16.0	2580 2470.9 2580 2472.7 2590 2475.5 2560 2483.3 2580 2485.0 2590 2486.7 2600 2488.1 2570 2492.3 2570 2492.8	1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.11 1.	11 14 11 14 11 14 11 14 11 14 11 14	145 · 1499 150 1463 151 1515 146 1471 150 1541 153 1471 150 1480	32.3 32.3 32.3 32.1 32.1 32.1	33.6 34.1 33.2 33.6 33.6	65.98 65.66 65.50 65.98	27390 27984 28815 30243	78.5 81.0 83.5 86.0	8.0 8.2 8.4 8.8	455 328 498 571	638 628 623 627	.49 1.28 .50 1.25 .51 1.35 .54 1.49	1.28 1.25 1.35 1.49	1.20 1.22 1.25 1.22	1.14 1.14 1.14 1.14	1.01 D 1.01 D 1.01 D 1.01 D
512 513 514 515 516 517 518 519 520 521 Surv	1756 1809 1841 1850 1858 1905 1930 11944 11956 12150 12150 12150 12150 1	2490.0 2492.5 2495.0 2497.5 2500.0 2502.5 2505.0 2507.5 2510.0 2512.5 t 2513n 2515.0	15.5 10.9 7.53 17.2 17.7 22.5 16.3 27.1 17.4 12.5 n = 7.	3.19 3. 3.16 3. 3.17 3. 3.27 3. 3.30 3. 3.32 3. 3.28 3. 3.29 3. 3.30 3. 3.30 3.	34 6 35 6 28 6 31 6 32 6 34 5 34 6 31 5	1 14.6 1 14.6 1 15.4 1 14.7 1 15.2 8 15.0 0 15.2 6 15.4 5 16.0	2580 2472.7 2590 2475.5 2560 2483.3 2580 2485.0 2590 2486.7 2600 2488.1 2570 2492.3 2570 2492.8	1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1.	11 14 11 14 11 14 11 14 11 14	150 1463 151 1515 146 1471 150 1541 153 1471 150 1480	32.3 32.3 32.1 32.1 32.1	34.1 33.2 33.6 33.6	65.66 65.50 65.98	27984 28815 30243	81.0 83.5 86.0	8.2 8.4 8.8	328 498 571	628 623 627	.50 1.25 .51 1.35 .54 1.49	1.25 1.35 1.49	1.22 1.25 1.22	1.14 1.14 1.14	1.01 D 1.01 D 1.01 D
513 514 515 516 517 518 519 520 521 Surv	1809 1841 1850 1858 1905 1930 1936 1956 1956 1250 1258 1	2492.5 2495.0 2497.5 2500.0 2502.5 2505.0 2507.5 2510.0 2512.5 t 2513n 2515.0	10.9 7.53 17.2 17.7 22.5 16.3 27.1 17.4 12.5 n = 7.	3.16 3. 3.17 3. 3.27 3. 3.30 3. 3.32 3. 3.28 3. 3.29 3. 3.30 3. 3.30 3.	35 6 28 6 31 6 32 6 34 5 34 6 31 5	1 15.4 1 14.7 1 15.2 8 15.0 0 15.2 6 15.4 5 16.0	2590 2475.5 2560 2483.3 2580 2485.0 2590 2486.7 2600 2488.1 2570 2492.3 2570 2492.8	1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.10 1. 1.11 1.	11 14 11 14 11 14 11 14 11 14	151 1515 146 1471 150 1541 153 1471 150 1480	32.3 32.1 32.1 32.1	33.2 33.6 33.6	65.50 65.98	28815 3Ø243	83.5 86.0	8.4 8.8	498 571	627	.51 1.35 .54 1.49	1.35 1.49	1.25 1.22	1.14 1.14	1.01 D
515 516 517 518 519 520 521 Surv	1850 : 1858 : 1905 : 1936 : 1944 : 1956 : 2150 : 2158 : 2158	2497.5 2500.0 2502.5 2505.0 2507.5 2510.0 2512.5 t 2513n 2515.0	17.2 17.7 22.5 16.3 27.1 17.4 12.5 n = 7.	3.27 3. 3.30 3. 3.32 3. 3.28 3. 3.29 3. 3.30 3. 3.30 3.	31 6 32 6 34 5 34 6 31 5 31 5	1 14.7 1 15.2 8 15.0 Ø 15.2 6 15.4 5 16.0	2580 2485.0 2590 2486.7 2600 2488.1 2570 2492.3 2570 2492.8	1.10 1. 1.10 1. 1.10 1. 1.11 1.	11 14 11 14 11 14	150 1541 153 1471 150 1480	32.1 32.1	33.6				-							
516 517 518 519 520 521 Surv	1858 1 1905 1 1930 1 1936 1 1944 1 1956 1 vey at 2150 1	2500.0 2502.5 2505.0 2507.5 2510.0 2512.5 t 2513n 2515.0	17.7 22.5 16.3 27.1 17.4 12.5 n = 7.	3.30 3. 3.32 3. 3.28 3. 3.29 3. 3.30 3. 3.30 3.	32 6 34 5 34 6 31 5 31 5	1 15.2 8 15.0 Ø 15.2 6 15.4 5 16.0	2590 2486.7 2600 2488.1 2570 2492.3 2570 2492.8	1.10 1. 1.10 1. 1.11 1.	11 14 11 14	153 1471 150 1480	32.1		64.391	3 Ø782	88 5	0 0				1 77	1.21	1.14	1.0110
517 518 519 520 521 Surv	1905 2 1930 2 1936 2 1944 2 1956 2 vey at 2150 2	2502.5 2505.0 2507.5 2510.0 2512.5 t 2513n 2515.0	22.5 16.3 27.1 17.4 12.5 n = 7.	3.32 3. 3.28 3. 3.29 3. 3.30 3. 3.30 3.	34 5 34 6 31 5 31 5	8 15.0 Ø 15.2 6 15.4 5 16.0	2600 2488.1 2570 2492.3 2570 2492.8	1.10 1. 1.11 1.	11 14	150 1480	-	34.Ø					290	518	.55 1.23				
518 519 520 521 Surv	1930 : 1936 : 1944 : 1956 : vey at 2150 : 2158 :	2505.0 2507.5 2510.0 2512.5 t 2513n 2515.0	16.3 27.1 17.4 12.5 n = 7.	3.28 3. 3.29 3. 3.30 3. 3.30 3.	34 6 31 5 31 5	Ø 15.2 6 15.4 5 16.0	2570 2492.3 2570 2492.8	1.11 1.				~ 4 ~		31284		9.1	283	629	.55 1.23				
519 520 521 Surv	1936 2 1944 2 1956 2 vey at 2150 2 2158 2	2507.5 2510.0 2512.5 t 2513m 2515.0	27.1 17.4 12.5 n = 7.	3.29 3. 3.30 3. 3.30 3.	31 5 31 5	6 15.4 5 16.0	2570 2492.8		TT T					31669		9.2	225	598	.57 1.14				
520 521 Surv	1944 : 1956 : vey at 2150 : 2158 :	2510.0 2512.5 t 2513n 2515.0	17.4 12.5 n = 7.	3.30 3. 3.30 3.	31 5	5 16.0		1011) -	11 3					32463 32767		9.5 9.5	342 200	596 586	.58 1.25 .59 1.08				
521 Surv	1956 : vey at 2150 : 2158 :	2512.5 t 2513n 2515.0	12.5 n = 7.	3.30 3.										33243		9.7		578	.60 1.22				
+ Sur	vey at 2150 : 2158 :	t 2513n 2515.ø	n = 7			1 16.0								33971		9.9	392	574	.61 1.35				
	2158			75 deg.			,				5202	55.		505.2			032		0.32,2000				
1523		A	15.91	3.09 3.	32 5	7 15.5	2570 2502.4	1.11 1.	11 1	135 1334	31.1	29.1	63.91	34752	106	10.1	324	572	.62 1.24	1.24	1.22	1.14	1.01
	വാഗര വ			3.09 3.		3 16.2	2580 2504.3							35177	108	10.3	264	565	.63 1.19				
				3.03 3.		4 16.4	2570 2505.2							35793			458	561	.64 1.30				
1				3.10 3.		7 16.1	2580 2509.6							36402		10.6	347	556	.66 1.29				
				3.21 3.		9 15.3	2580 2513.1							37257			375	554	.67 1.31				
				3.27 3. 3.23 3.		Ø 15.9 Ø 16.0	2600 2513.4 2600 2517.7							38Ø91 39238	118	11.1	509 708	552 554	.69 1.38				
				3.11 3.		2 16.0	2580 2524.8							41320					.75 1.62				
		Dec 12		J. 11 J.	22 0	2 10.0	230012324.0	TOTT TO	71 L-	200 1000	2701	J1 6 Z	040111	41320	123	12.0	1102	303	./3:1.02	1.01	1.50	1.10	1.0110
•				3.21 3.	36 6	3 16.2	258012529.5	1.11 1.	11 14	154 1285	29.7	31.5	63.751	43048	126	12.4	1172	573	.78 1.67	1.67	1.33	1.14	1.01
				3.34 3.		9 15.5	2580 2530.6							43604			346	568	.80 1.24				
				3.33 3.		Ø 12.9	259012531.3			57 1211	29.8	31.7	63.441	43379	131	12.7	152	550	.801 .99	.98	1.33	1.15	1.01 0
				3.13 3.		7 11.6	2640 2532.3			163 1193				44351		12.8	216	555	.81 1.02				1.0110
				3.19 3.		3 13.1	266012532.6							44633		12.9	187	547	.81 1.03				1.01 0
1				3.21 3.		4 14.0	268012532.7							45951		13.0	303	542	.82 1.13				
				3.17 3. 2.89 3.		5 12.5 6 12.4	2680 2533.5 2620 2535.1							45475 46398	_	13.1 13.4	255 441	537 537	.83 1.09				1.01 0
				3.19 3.		6 13 . 1	262012535.1							46835		13.4	268	533	.84 1.26 .85 1.11				
				3.06 3.		7 14.5	262012533.0				-	-		47797		13.8	746	533	.87[1.37				
				3.22 3.		6 14.2	262012543.3							48259			231	529	.87 1.16		-		
1542	0234	2562.5	18.8	3.11 3.	36 5	5 13.2	2620 2547.7									14.1	272	525	.88 1.12				
1543	Ø242 :	2565.Ø	18.9	2.84 3.	32 5	4 11.6	263012550.0	1.11 1.	11 14	163 1516	29.7	31.3	61.05	49203	156	14.2	251	521	.89 1.07				
				2.92 3.		5 13.2	2640 2551.6				29.7	31.5	60.571	4995Ø	158	14.5	438	520	.93 1.26	1.25	1.19	1.15	1.011
:				3.01 3.		4 14.3	2640 2556.3			164 1503					161	-	568		.92 1.35				
				3.01 3.		4 15.2	2660 2560.9									15.Ø	506		.93 1.35				1.01
				3.16 3.		3 13.3	267012562.3							52242			270	518	.94 1.12				
				2.93 3. 2.89 3.		5 13.3	267012566.7			180 1505				53244		15.5	945	519	.96 1.35				
				2.89 3.		5 14.2 Ø 15.3	2670 2569.1 2600 2572.4							54Ø53 55175		15.7	503 836		.97 1.32				
				2.78 3.		9 14.4								56840		16.6	849		.02 1.47				
			:	2.85 3.		9 14.6	2590 2581.0							57675		16.9	554		.03 1.34				
				2.83 3.			2560 2582.7							58792			697		.05 1.34				
							,11 jets. S																1
559	1730 2	2592.5	2.21	2.22 2.	93 6	Ø 12.5	2510 2590.0	1.11 1.	11 14	131 1770	27.0	31.5	67.251	4347	2.4	1.2	1029	555Ø	.08 1.72	1.73	1.30	1.14	1.0110
560	1747 2	2595.Ø	8.941	2.63 2.	93 6	2 13.4	2540 2590.6	1.11 1.	11 14	134 1505	28.1	32.Ø	66.621	5394	5.Ø	1.5	566	3499	.10 1.37	1.38	1.33	1.15	1.01

561 1810 2597.5 5.660 2.55 2.85 52 14.5 2500 2590.6 1.11 1.11 1435 1475 29.3 32.0 67.25 6800.7 7.82 2590. 1311.49 1.59 1.35 1.15 1.15 1.562 1810 2597.5 5.660 2.55 2.85 62 14.5 2500 2590.2591.2 1.11 1.11 1423 1502 30.1 33.5 70.11 8242 10.0 2.2 651 2121 .1611.44 1.44 1.49 1.15 1.563 1903 2652.5 7.661 2.05 2.5 6.60 2.05 2.5 6.5 6.5 6.00 2.05 2.5 6.5 6.5 6.5 6.00 2.05 2.5 6.5 6.5 6.00 2.05 2.5 6.5 6.5 6.00	 			·	+			·		+								Data	Record	ded at	time	18:10	Da	te 1	Dec 12	2 ' 83'/		
50. 1812 5997. 5. 5.02 599 2.5. 52 59. 59 2.4. 5 2500 2599. 6. 1.11 1.11 1.12 23 1579 50 1.00 2600 7.8 21.29 2.00 1.00 1.00 1.10 1.11 1.11 1.12 23 1599 3.0 2.00 1.00 200 2.00 2.00 2.00 2.00 2.0	 +		m	m/hr	AV	G MAX	AVG	FOB AVG			MD IN											COST ST RU	- EST	DXC	NX	NXB	ECD	EST FM PR
563 1998 2892, 5 7,661,241 2.79 89 14.2 2579 12591, 111 1.11 1423 1592 39 3.4 33.5 79.11 1.22 224 26.5 2.2 661 2121 1.611.44 1.59 1.56 1.15 1.4 1.55 1.55 1.15 1.15 1.15 1.15	1561	1810	2597.5	5.60	12.5	5 2.85				12590.6	1.11	1.11	1435	1475	29.3	32.0	67. 25	1 680	a 7 5	. 10	754	2500	+-					
565 1917 2667, 5 381, 2 3 6 6 7 6 7 7 1 2 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1562	1000	2600.0	7.82	1.2.39	2.85	63		2570	2591.2	2 1.11	1.11	1423	1502		33.5	70.11	824					.131	1.49	1.50	1.36		
585 1955 2807.5 5.3812.29 2.63 68 14.0 5298 1529.2 1.11 1.11 1427 1537 31.3 34.7 64.39 14265 14.9 2.6 598 1522 2.2011.30 1.41 1.42 1.43 1.44 1.47 1.15 1.16 1.6 2020 2802.8 8.5 8.6 2.6 2.6 1.2 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2	1561	1017	2605.0	7.00	12.41	2.79			257Ø	12594.1	1.11	1.11	1425	1590		33.9	65.498						101.	1.44	1.44	1.40	1.15	1.01
2566 2921 2516.0 6 3.26 1.27 2.28 2.59 5 16.0 6 25991 2592.1 1.11 11 1427 1737 32.1 55.1 61.0 1.29 17.5 3.3 1238 1555 .311.0 2.1 1.1 1.1 14.7 1737 32.1 55.1 1.20 17.5 5.1	1565	10/15	2607 5	o.30	12.30	2.60	50		259ø	12596.2	1.11	1.11	1427	1537	31.3	34.7	64.39	1 1048	5 14 q				-18]	1.43	1.44	1.42	1.15	
567 2699 2812, 5 3.9512,30 2.54 59 15.2 2899 1852,5 28	1566	2027	2610.0	2.30	12.25	2.63			2570	12599.4	1.11	1.11	1427	1737	32.1	35.1	61.05	1 12200	2 17 5						1.41	1.43	1.15	1.01
569 1119 2615.0 7.4217.0 7.427.0 7.5 516.2 4.3 188 141. 391.42 2.7 5 515.2 2591 2686.9 1.11 1.11 1431 1549 32.8 35.5 63.28 16932 25.9 4.7 692.1 393 331.6 61.6 61.5 115 1.1 51.6 51.1 51.1 51.	1567	2021	7018°8	3.25	12.30	2.67			2580	2602.1	1.11	1.11	1427	1616	32.6	34.9	62.64	1 13469	2 20 0					1.50	1.56	1.47	1.15	1.01
1669 1142 2517.5 6.5816.71 1.46 25 815.6 258912610.4 1.11 1.11 431 1519 31.3 156.6 3.14 18261 27.5 5.0 47.7 529 1333 351.6 1.6 1.6 1.51 1.15 1.7 7225 2520.8 12.9 12.9 1.2 1.5 1.5 1.5 1.15 1.15 1.7 7225 2520.8 12.9 1.2 1.2 1.1 1.11 1431 1517 331.3 15.6 63.4 1 19261 27.5 5.0 47.7 1285 351.5 1.5 1.5 1.15 1.15 1.15 1.7 7225 2520.8 1.2 1.2 1.2 2.2 2.5 60 15.9 26211.1 1.11 1431 1517 331.3 15.6 63.4 1 19261 27.5 5.0 486 11.2 1.2 2.3 151.5 1.5 1.15 1.15 1.15 1.17 1.17 1.17	568	2110	2012.3	7 40	12.38	2.54			2590	2606.9	1.11	1.11	1430	1546	32.7	34.5	62.96	1 15736	5 22 5	. 43					1,44	1.47	1.15	1.01!
176 2223 2625, 2 5, 512 23 25 60 15, 2 5 250 15, 2 5 250 15, 2 1, 11, 11 1431 15, 3 31, 3 5, 6 6, 14, 4 126, 2 1, 5 5, 6 777 1268 15, 11, 11, 11, 14, 14, 15, 15, 12, 2 1, 15, 11, 15, 11, 15, 11, 17, 17, 17, 17, 17, 17, 17, 17, 17	560	2112	2013 E	7.42	12.41	2.74			2570	12609.1	1.11	1.11	1431	1504	32.8	35.0	63.28	16928	22.J	17					1.66	1.52	1.15	1.01
77. 2228 2822.6 9.5812.28 2.59	570	22/42	2520 0	12 01	12.41	2.03			2580	2610.4	1.11	1.11	1431	1517	33.1	35.6	63.44	18261	27.5	5 0				45	1.46	1.51	1.15	1.01
772 2242 2625, 8	571	2203	2622 6	0 551	12.24	2.54			2620	2611.7	1.11	1.11	1437	152Ø	33.3	35.2	63.91	19221	29.9	5.2			-3311	1.01	1.52	1.51		
772 2342 2627.5 6.6912.25 2.51 62 16.5 262	572	2270	2525 0	5.001	2.20	2.58			2620	2612.9	1.11	1.11	1438	1542	33.4	35.5	63.28	20169	32.5	5.6			*3/17	35	1.35			
74 2333 2630.9 7.9912.38 2.49 6 21.53 259012622.15 1.11 1.11 1427 1587 33.4 35.3 62.961 24258 44.0 6.6 651 1985 1985 11.55 1.55 1.55 1.55 1.55 1.55 1.55 1	573	234V	2627 5	6 601	2.21	2.48			2610	2615.6	1.11	1.11	1442	1518	33.7	35.Ø	63.59	21490	35.0	5 0			4211	. 43	1.43	1.48	1.15	1.01
75 2353 2532.5 7.4312.32 2.81 63 15.1 2580 25224.2 1.11 1.11 1427 1567 33.4 35.5 62.961 2425 48.0 6.6 651 1266 4811.47 1.47 1.51 1.15 1.15 1.15 1.15 1.15 1.15 1.1	574	2223	2630 0	7 001	2.23	2.0I			2620	2618.1	1.11	1.11	1442	158Ø	33.5	34.8	63.12	22886	37.5				4211		1.54	1.49	1.15	1.01
Date Dac 13; 193 78 6939 2535, 9 0, 33612, 35 2, 63 63 14,7 2598 25287 1, 111 1, 111 1425 1559 78 6939 2535, 9 0, 33612, 35 2, 63 63 14,7 2598 2528126281, 1, 111 1, 111 1427 1558 78 6939 2535, 9 0, 33612, 35 2, 69 63 15,5 2528 126281, 1, 111 1, 111 1427 1558 78 6939 2535, 9 0, 33612, 35 2, 69 63 15,5 2528 126281, 1, 111 1, 111 1428 1459 78 6939 2535, 9 0, 33612, 35 2, 69 63 15,5 2528 126281, 1, 111 1, 111 1428 1459 78 6939 2535, 9 0, 33612, 35 2, 69 63 15,5 2528 126281, 1, 111 1, 111 1428 1459 78 6939 2535, 9 0, 33612, 35 2, 69 63 15,5 2528 126281, 1, 111 1, 111 1428 1459 78 6939 2535, 9 0, 33612, 35 2, 69 63 15,5 2528 126281, 1, 111 1, 111 1428 1459 78 6939 2535, 9 0, 33612, 35 2, 69 63 15,5 2528 126281, 1, 111 1, 111 1428 1459 78 79 79 79 79 79 79 79 79 79 79 79 79 79	575	2353	2632.5	7 421	2.30	2.49	62	15.3	25901	2621.5	1.11	1.11	1427	1607	33.4	35.3	62.96	24250	40.0	6-6			4011		1.55	1.52	1.15	1.01
76 @209 2635.6 9.3 2612.35 2.63 63 14.7 2580 [2625.7 1.11 1.11 1423 1552 33.3 36.5 63.91] 26516 45.0 7.2 534 1933 .5211.40 1.40 1.49 1.15 1.0 77 0307 2637.5 7.7612.6 2.66 63 15.5 2520 [2629.2 1.11 1.11 1424 1559 33.6 36.5 65.591 [2648 63.0 7.8 359 935 .5511.40 1.40 1.49 1.15 1.0 93 1.0 92 0442.5 11.2 [2.20 2.70 53 1.7] 2659 [2631.3 1.1] 1.11 1424 1559 33.9 36.6 63.591 [2448 63.0 7.8 359 935 .5511.40 1.40 1.49 1.15 1.0 93 1.0 92 0442.5 11.2 [2.20 2.70 53 1.7] 2659 [2631.3 1.1] 1.11 1424 1539 33.9 36.2 63.75 [2.20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	י כוכ	Date Date	Dog 13	102	2.32	2.81	63	15.1	25801	2624.2	1.11	1.11	1425	1559	33.4	35.5	63.44	25538	42.5				-40 1	40	1.47	1.51	1.15	1.01
77 8037 2637.5 7.76 [2.36 2.68 63 15.5 2520 [2628.1 1.11 1.11 1.407 1.55 1.02	576	7779	2635 M) 361	2 25	2 62	63	14.7	05061											7 6 17	010	1002	. 2011	.48	1.48	1.51	1.15	1.01
78 6048 2649.0 14.6[2.37 2.78 55 16.3 2229[8269] 1.11 1.11 1407 1558 31.6 36.5 65.56] 2767 74.5 7.6 623 1016 1551.48 1.47 1.48 1.15 1.08 1.09 1019 2642.5 11.2[2.20 2.78 53 17.1 2659[2631.3 1.11 1.11 1442 1539 31.9 35.6 63.59] 28448 50.0 7.8 350 93.5 511.28 1.44 1.15 1.08 10159 2647.5 8.92[2.17 2.44 51 18.3 2670[2637.4 1.11 1.11 1442 1539 31.9 35.6 63.59] 28448 50.0 7.8 350 93.5 511.28 1.44 1.15 1.08 10159 2647.5 8.92[2.17 2.44 51 18.3 2670[2637.4 1.11 1.11 1445 1539 31.9 35.6 63.59] 2847.5 8.0 647 958 .5711.36 1.28 1.44 1.15 1.08 10159 2647.5 8.92[2.17 2.44 51 18.3 2670[2637.4 1.11 1.11 1445 1539 31.9 3.59 65.59] 31283 57.5 8.7 599 35.5 11.28 1.44 1.15 1.08 10159 2647.5 8.92[2.17 2.44 51 18.3 2670[2637.4 1.11 1.11 1445 1539 31.9 3.6 26.5 2.59 3.0 60.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	577 <i>(</i>	7837	2033.0	7 761	2.33	2.03			25801	2625.7	1.11	1.11	1423	1552	33.3	36.5	63.91	26516	45.0	7.2	53/	1022	5211	Ara	1 40	1 40		
79 2109 2642.5 11.12.2.20 2.77 55 17.1 2659 2631.3 1.11 1.11 1442 1539 33.9 36.8 63.59! 284.8 58.0 7.8 359 983 5511.28 1.28 1.44 1.15 1.08 80 6131 2645.0 6.8112.21 2.43 50 81.8 2649 2634.7 1.11 1.11 1442 1539 33.9 36.8 63.59! 284.8 58.0 7.8 359 983 5511.28 1.28 1.44 1.15 1.08 10.15 1.08 10.15 2640 2634.7 1.11 1.11 1442 1539 33.9 36.8 63.59! 284.8 58.0 7.8 359 983 5511.28 1.28 1.44 1.15 1.08 10.15 1.08 10.15 2640 2634.7 1.11 1.11 1442 1539 34.0 36.4 63.28 302.8 35.0 8.4 784 947 6011.54 1.54 1.43 1.15 1.08 10.15 1.08 10.15 2640 2634.7 1.11 1.11 1442 1539 34.0 36.4 63.28 30.28 55.0 8.4 784 947 6011.54 1.55 1.08 10.25 265.5 1.11 1.12 2.32 51 16.9 2630 263.5 1.11 1.11 1445 1602 34.0 35.9 65.96! 312.38 57.5 8.7 599 935 6.211.45 1.45 1.44 1.15 1.08 10.25 265.5 1.11 1.12 2.32 5.15 1.09 263.2 1.11 1.11 1445 1632 34.0 35.9 65.96! 312.30 50.0 9.0 495 918 6.311.39 1.39 1.34 1.15 1.08 10.25 265.0 1.10 1.10 1445 1539 34.0 35.9 65.96! 312.30 50.0 9.0 495 918 6.311.39 1.39 1.43 1.15 1.09 10.25 2.11 1.11 1.11 1445 1539 34.0 35.9 65.96! 312.30 50.0 9.0 495 918 6.311.39 1.39 1.43 1.15 1.09 10.25 2.11 1.12 2.32 2.49 51 15.2 2650 12645.8 1.11 1.11 1443 1574 34.1 36.9 62.64 33681 65.0 9.5 313 888 6.651.21 1.21 1.11 1.11 1.11 1445 1572 34.1 36.9 62.64 33681 65.0 9.5 313 888 6.651.21 1.21 1.11 1.11 1.11 1.11 1.11 1.11	578 (RAAR	2037.3 2610 0	14 61	2 37	2.08			25201	2628.1	1.11	1.11	1407	1558	33.6	36.5	65.50	27857	47.5							1.49	1.15	1.01
88 0131 2645.0 6.0112.21 2.43 50 16.5 2649 2654.7 1.11 1.11 1446 1589 34.6 36.46 36.281 32026 55.5 8.0 647 58.9 212.17 2.44 51 18.3 2670 12637.4 1.11 1.11 1446 1589 34.6 36.46 36.281 32026 55.5 8.7 59.9 935 .6211.45 1.54 1.43 1.15 1.0 82 0213 255.0 15.8 12.2 2.2 51 16.9 2630 12643.5 1.11 1.11 1446 1662 34.0 35.9 65.5 01 1.2 2.2 2.2 51 16.9 2630 12643.5 1.11 1.11 1446 1662 34.0 35.9 65.5 01 1.2 2.2 2.2 51 16.9 2630 12643.5 1.11 1.11 1445 1574 34.1 35.7 62.0 13.2 01 1.2 2.2 51 16.9 2630 12643.5 1.11 1.11 1445 1574 34.1 35.9 62.6 01 1.2 41.2 3.2 4.9 51 15.2 2660 12645.8 1.11 1.11 1457 1572 34.1 36.9 62.6 01 1.2 41.2 3.2 4.9 51 15.2 2660 12645.8 1.11 1.11 1457 1572 34.1 36.9 62.6 01 1.2 41.2 3.2 4.9 51 15.2 2660 12645.8 1.11 1.11 1457 1572 34.1 35.9 62.9 01 3206 62.5 9.5 313 888 .66 11.2 1.12 1.14 1.15 1.0 80 0313 2660.0 12.4 12.3 2.4 9 51 15.2 2660 12645.8 1.11 1.11 1457 1572 34.1 35.9 62.9 01 3206 62.5 9.5 313 888 .66 11.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	579	11/40	2642.5	14.01	2.3/	2.70			25901	2629.2	1.11	1.11	1426	1498	33.9	36.Ø	63.59	28448	50.0						1.4/	1.48	1.15	
81 0158 2647.5 8 0.212.17 2.44 51 18.3 2578/123.7.4.11 1.11 1446 1589 34.0 35.4 63.28 3200 55.0 8.4 784 947 7.6911.52 1.54 1.54 1.54 1.51 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	580 0	1131	2042.3	TT. 2	2 21	2.10			26501	2631.3	1.11	1.11	1442	1539	33.9	36.2	63.75	29165	52.5				•3311	-20	1.28	1.44	1.15	1.01
22 0213 2559, 0 9-0712-16 2.35 51 17-1 2640[2640.2 1.11 1.11 1445 1622 34.0 35.9 65.96] 31293 57.5 8.7 599 936 .621.45 1.45 1.45 1.15 1.0 30 0235 2652.5 6.7712.12 2.32 51 16.9 2630[2643.5 1.11 1.11 1446 1622 34.0 35.9 62.96] 3239 60.0 9.0 9.0 495 918 .6311.39 1.39 1.43 1.15 1.0 30 0235 2652.5 0 15.8 12.26 2.51 50 15.8 2640[2644.5 1.11 1.11 1445 1558 34.0 35.9 62.96] 3232 66 2.5 9.3 752 910 .6511.50 1.45 1.15 1.0 30 0230 2655.0 15.8 12.26 2.51 50 15.8 2640[2644.5 1.11 1.11 1445 1572 34.1 36.9 63.91] 34194 67.5 9.6 250 887 .6711.31 1.13 1.14 1.15 1.0 30 0230 2652.5 11.112.27 2.68 51 15.8 2530[2649.3 1.11 1.11 1448 1572 34.1 36.9 63.91] 34194 67.5 9.6 250 887 .6711.31 1.13 1.14 1.15 1.0 30 0240 2655.1 15.112.30 3.28 50 13.5 2610[2651.0 1.11 1.11 1438 1572 34.5 37.2 62.80] 35513 77.5 10.1 13 836 .6611.21 1.21 1.12 1.15 1.0 30 0240 2655.5 1.5 11.2 27 2.68 51 15.8 2530[2649.3 1.11 1.11 1438 1572 34.5 37.2 62.80] 35513 77.5 10.1 13 836 .6711.32 1.32 1.40 1.15 1.0 30 0240 2657.5 10.912.26 2.60 54 14.3 2540[2654.0 1.11 1.11 1437 1559 34.6 37.4 63.44] 36188 75.0 10.3 404 823 .7111.16 1.16 1.15 1.0 30 0240 2657.5 10.912.26 2.60 54 14.3 2540[2654.0 1.11 1.11 1438 1572 34.5 37.2 62.80] 35513 77.5 10.6 459 840 823 .7111.16 1.16 1.35 1.15 1.0 30 0240 2657.5 10.912.26 2.60 54 14.3 2540[2654.0 1.11 1.11 1437 1559 34.6 37.4 63.44] 36188 75.0 10.3 404 823 .7111.16 1.16 1.15 1.0 30 0240 2657.5 10.912.26 2.60 54 16.3 2610[2654.0 1.11 1.11 1438 1540 34.9 35.7 37.6 64.80 10.9 618 809 .7411.43 1.14 1.15 1.0 30 0240 2657.5 5.7412.29 2.64 54 16.3 2610[2671.8 1.10 1.11 1438 1540 34.9 35.7 37.3 64.27 4304 87.5 11.3 1838 30 0257 2657.5 5.7412.29 2.20 2.66 54 16.3 2610[2671.8 1.10 1.11 1454 1540 35.2 38.1 140.2 1.15 1.0 30 0250 2657.5 10.9 12.20 2.66 54 16.3 2610[2671.8 1.10 1.11 1454 1540 35.2 38.1 140.2 14 1.15 1.0 30 0250 265.0 6.80 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	581 <i>(</i>	1150	2043.0	0.011	2.21	2.43			2640	2634.7	1.11	1.11	1446	1588	34.0	36.4	63.28	39269	55. a				6011	• 20	1.35	1.42	1.15	1.01
33 0235 2652. 5 6.77 2.12 2.32 5 16.9 2530 2643. 5 1.1 1.11 1446 1502 34.0 35.5 62.96 32206 62.5 9.5 32.5 3	582 6	1213	2057.3	0.921	2.17	2.44			2670	2637.4	1.11	1.11	1452	1624	34.0	35.9	65.50	31283	57-5				6211	• 54	1.54	1.43	1.15	1.01
36 0245 2555.0 15.812.26 2.51	583 C	1225 (2020.0	0.0/1	2.10	2.35			2640 [2640.2	1.11	1.11	1445	1692	34.0	35.9	62.96	32039	60.0									1.01
25 0331 2657.5 20.12.23 2.49 51 15.2 2660 2645.8 1.11 1.11 143 1574 34.1 36.9 62.64 33681 65.0 9.5 313 88 .661.21 1.21 1.41 1.15 1.0 26 0313 2660.0 12.4 2.35 2.63 51 16.2 2650 2647.1 1.11 1.11 1446 1571 34.3 37.4 62.48 34621 70.0 9.5 313 88 .661.22 1.22 1.44 1.15 1.0 27 0326 2652.5 11.11 2.27 2.68 51 15.2 2650 2647.1 1.11 1.11 1446 1571 34.3 37.4 62.48 34621 70.0 9.5 313 88 .661.22 1.29 1.42 1.15 1.0 24 1.15	584 0	12/15 1	2002.0	0.//].	2.12	2.32			26301	2643.5	1.11	1.11	1441	1558	34.0	36.5	62.961	33206	62.5						1.39	1.43	1.15	1.0111
36 0313 2560.0 12.4 2.36 2.63 51 16.2 2550 2647.1 1.11 1.11 1436 1572 34.1 36.9 63.9 1 34194 67.5 9.6 250 857 6711.31 1.13 1.45 1.15 1.0 87 0325 2552.5 11.1 2.27 2.68 51 15.8 2630 2649.3 1.11 1.11 1446 1571 34.3 37.4 62.48 34821 70.0 9.9 318 852 68 1.29 1.29 1.42 1.15 1.0 818 0349 2655.1 15.1 2.30 3.28 50 13.5 2630 2649.3 1.11 1.11 1438 1573 34.5 37.2 62.80 35513 72.5 10.1 17.1 836 701 3.2 1.49 1.15 1.0 818 0349 2655.1 15.1 2.27 2.68 51 1.5 2630 2649.3 1.11 1.11 1438 1573 34.5 37.2 62.80 35513 72.5 10.1 17.1 836 701 3.2 1.49 1.15 1.0 818 0349 2655.1 15.1 2.20 2.64 54 14.3 2549 2654.0 1.11 1.11 1438 1558 34.8 367.6 56.31 37129 77.5 10.6 459 814 .72 1.29 1.29 1.33 1.15 1.0 10451 2572.5 5748 2.37 2.67 53 16.7 2593 2656.1 1.11 1.11 1438 1450 34.8 37.1 65.03 3968 82.5 11.3 1032 80.0 10.9 618 809 .74 1.43 1.43 1.34 1.15 1.0 818 1605 1605 1605 1605 1605 1605 1605 1605	585 0	1201	2033.0	10.01	2.20	2.51			264013	2644.5	1.11	1.11	1443	1574	34.1	36.9	62.641	33681	65.0				.0511.	•50	1.50	1.45		1.01
37 0326 2562.5 11.1 2.27 2.68 51 15.2 2539 2649.3 1.11 1.11 1434 1571 34.3 37.4 62.48 34821 70.0 9.9 318 852 .68 1.29 1.29 1.42 1.15 1.0 88 0344 2655.1 15.1 2.30 3.28 50 13.5 2639 2649.3 1.11 1.11 1438 1572 34.5 37.2 62.80 35513 72.5 10.1 713 836 .70 1.32 1.32 1.40 1.15 1.0 90 9423 25670.5 10.9 2.26 2.60 54 14.3 2549 2654.0 1.11 1.11 1435 1568 34.6 37.4 63.44 36188 75.0 10.3 404 823 .71 1.16 1.16 1.15 1.15 1.0 10 9423 2570.0 7.74 2.29 2.64 54 15.5 2570 2658.0 1.11 1.11 1438 1563 34.8 36.7 66.03 37129 77.5 10.6 450 814 .72 1.29 1.29 1.33 1.15 1.0 10 10 10 10 10 10 10 10 10 10 10 10 10	586 G	1313 1	2037.3 2668.8	20.11.	2.23	2.49			266012	2645.8	1.11	1.11	1450	1572	34.1	36.9	63.91	34194	67.5			000	.0011.	. 21	1.21	1.41	1.15	1.01
88 0340 2665.1 15.112.30 3.28 50 13.5 2610 2551.0 1.11 1.11 1433 1578 34.5 37.2 62.80 35513 72.5 10.1 713 836 .70 1.32 1.32 1.40 1.15 1.00 89 2404 2667.5 10.9 2.26 2.60 54 14.3 2540 2654.0 1.11 1.11 1433 1578 34.8 36.7 65.03 37129 77.5 10.6 459 80 0423 2570.0 7.74 2.29 2.64 54 15.5 2570 2585.0 1.11 1.11 1438 1563 34.8 36.7 65.03 37129 77.5 10.6 459 810 0451 2572.5 5748 2.37 2.67 53 16.7 2593 2663.6 1.11 1.11 1438 1563 34.8 37.1 65.03 38680 25.5 11.3 10.22 812 0517 2675.0 5.70 2.37 2.70 54 17.8 2580 2666.8 1.10 1.11 1438 1503 34.8 37.1 65.03 38680 26.5 11.3 10.22 812 0517 2675.0 5.70 2.37 2.70 54 17.8 2580 2666.8 1.10 1.11 1438 1503 34.8 37.1 65.03 38680 26.5 11.3 10.22 813 0665 2677.5 4.23 2.20 2.64 54 16.3 2610 2671.8 1.10 1.11 1438 1503 34.8 37.1 65.03 38680 26.5 11.3 10.22 814 0537 2698.0 4.93 2.34 2.67 59 16.5 260 2675.1 1.10 1.10 1438 1464 35.0 38.1 64.23 4340 487.5 12.5 1177 831 .84 1.64 1.64 1.64 1.65 1.69 815 0559 2692.5 6.83 2.60 2.93 58 16.5 260 2675.9 1.10 1.11 1454 1540 35.2 38.1 64.23 4340 487.5 12.5 1177 831 .84 1.64 1.64 1.64 1.65 1.69 816 0714 2685.0 7.49 2.56 2.86 58 16.1 2640 2676.9 1.10 1.11 1451 1519 35.7 38.5 64.39 46849 92.5 13.4 742 833 .90 1.53 1.52 1.51 1.14 1.01 817 050 2595 2699.0 6.59 2.55 2.94 56 15.3 2639 2686.8 1.10 1.10 1.11 1451 1579 34.1 36.7 61.85 49807 100 14.4 747 820 391 1.53 1.52 1.51 1.14 1.01 81 0640 2695.0 6.59 2.51 2.89 57 14.1 2689 2686.3 1.10 1.11 1451 1580 35.1 38.1 61.85 53057 102 14.7 630 391 991 1.33 1.43 1.44 1.40 1.40 1.40 1.40 1.40 1.40 1.40	587 <i>a</i>	332 7	1000 B	12.4[.	2.35	2.63			2650 2	2647.1	1.11	1.11	1446	1571	34.3	37.4	52.481	34821	70 A			057	.0/11.	13	1.13	1.45	1.15	1.01 1
39	188 A	340 1	2002.5	12 114	2.21	2.05		15.8	263012	2649.3	1.11	1.11	1438	1572	34.5	37.2	52.801	35513	72.5				-0011.	29	1.29	1.42		1.01
24 9423 2670.0 7.74 2.29 2.64 54 15.5 2570 2658.0 1.10 1.11 1438 1462 34.9 35.5 65.34 38190 80.0 10.9 618 809 .74 1.43 1.43 1.34 1.15 1.00 10.051 2675.0 5.70 2.37 2.70 54 17.8 2590 2666.8 1.10 1.11 1438 1462 34.9 35.5 65.34 38190 80.0 10.9 618 809 .74 1.43 1.43 1.34 1.15 1.00 10.051 2675.0 5.70 2.37 2.70 54 17.8 2590 2666.8 1.10 1.11 1438 1462 34.9 35.5 65.34 38190 80.0 10.9 618 809 .74 1.43 1.43 1.34 1.15 1.00 10.051 2675.0 5.70 2.37 2.70 54 17.8 2590 2666.8 1.10 1.11 1438 1462 34.9 35.5 65.34 38190 80.0 10.9 618 809 .74 1.43 1.43 1.34 1.15 1.00 11.00 1400 10.051 20.05	89 9	101 2	2667 5	10.112	2.30	3.28			261012	2651.0	1.11	1.11	1435	1558	34.6	37.4	53.44	35188	75.0				7111	.32	1.32	1.40	1.15	1.011
21 0451 2572.5 5:4812.37 2.67 53 16.7 259912633.6 1.11 1.11 1438 1562 34.9 36.5 65.34 38190 80.0 10.9 618 809 .74 1.43 1.43 1.34 1.15 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	190 D	103 3	1007.5 .	100312 7 7110	2.20			14.3	254012	2654.0	1.11	1.11	1437	1559	34.8 3	36.7	55.031	37129	77.5			023	7011	10	1.15	1.35	1.15	1.01
2 0517 2675.0 5.70 12.37 2.70 54 17.8 2580 25665.8 1.10 1.11 1438 1563 34.8 37.1 65.03 39686 82.5 11.3 1032 812 .77 11.57 1.57 1.38 1.15 1.0 130 0505 2677.5 4.23 2.20 2.64 54 16.3 2610 2671.8 1.10 1.11 1438 1446 35.0 38.4 65.18 41125 85.0 11.8 846 814 .80 1.60 1.59 1.42 1.15 1.0 14 0637 2630.0 4.93 2.30 2.54 0.29 35 16.5 2640 2675.1 1.10 1.10 1.10 1453 1464 35.7 37.3 64.87 45204 90.0 13.0 1005 836 .88 1.64 1.63 1.59 1.4 1.15 1.0 1.0 1454 1519 35.7 38.5 64.39 46489 92.5 13.4 742 833 .90 1.53 1.52 1.51 1.14 1.0 1.0 1454 1519 35.9 39.3 64.23 47379 95.0 13.6 751 825 .92 1.49 1.48 1.51 1.14 1.0 1.0 103 2692.5 68.7 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.	91 A	451 1	1672 E	/ • / 4 2 E + 10 10	2.27	2.04			257012	2658.Ø	1.11	1.11	1438	1462	34.9	35.5	55.341	38190	80.0	• •		040	7/11	43	1.29	1.33		
13 8606 2677.5 4.23 2.20 2.64 54 16.3 2610 2671.8 1.10 1.11 1454 1540 35.7 37.3 64.87 45204 90.0 13.0 10.05 1.05 1.05 1.10 1.0 1.0 1453 1464 35.7 37.3 64.87 45204 90.0 13.0 10.05 1.0 1.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	(92 B	517 2	157E 0	7ala	2.3/	2.07			259312	2653.6	1.11	1.11	1438 .	1503	34.8 3	37.1 6	55.031	39686	82.5			010	0/411.	43	1.43	1.34		
1.0	192 a	505 2	.073.0 :	0 - 70 Z	2.3/				2580 2	2666.8	1.10	1.11	1438	1446	35.0 3	88.4	55.181	41125	85.0			017	0//!1.	01	1.57	1.38	1.15	1.0110
1.5 0.559 2632.5 6.83 2.60 2.93 58 16.5 2620 2675.1 1.10 1.10 1.10 1.453 1464 35.7 37.3 64.87 45204 90.0 13.0 1005 836 .88 1.64 1.63 1.55 1.14 1.00 1.00 20714 2685.0 7.49 2.56 2.86 58 16.1 2640 2676.9 1.10 1.11 1454 1519 35.7 38.5 64.39 46489 92.5 13.4 742 833 .90 1.53 1.52 1.51 1.14 1.00 1.00 2072 2687.5 10.4 2.60 2.85 56 16.2 2640 2680.1 1.10 1.11 1451 1514 35.9 39.3 64.23 47379 95.0 13.6 751 825 .92 1.49 1.48 1.51 1.14 1.00 1.00 2095.0 6.95 2.55 2.94 56 15.3 2630 2685.0 1.10 1.10 1.10 1.40 1.56 34.2 37.7 61.85 49807 100 14.4 747 821 .96 1.50 1.49 1.49 1.14 1.00 1.00 2095.0 6.95 2.51 2.89 57 14.1 2680 2680.3 1.10 1.11 1454 1568 34.2 37.7 61.69 50857 102 14.7 630 317 .98 1.41 1.40 1.47 1.14 1.00 1.10 2700.5 13.0 2.00 2.30 54 14.4 2680 2690.0 1.10 1.11 1454 1562 35.1 38.1 61.85 53732 110 15.5 458 801 1.03 1.00 1.14 1.00 1.00 2700.5 13.0 2.00 2.30 54 14.4 2680 2690.0 1.10 1.11 1454 1562 35.1 38.1 61.85 53732 110 15.5 458 801 1.03 1.03 1.29 1.39 1.14 1.00 1.00 2700.5 13.0 2.00 2.30 54 14.4 2680 2690.0 1.10 1.11 1454 1562 35.1 38.1 61.85 53732 110 15.5 458 801 1.03 1.00 1.30 1.20 1.30 1.20 1.30 1.00 1.20 1.30 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.30 1.20 1.	91 a	677 2	590 a	4.2312	2020	2.04			251012	2671.8	1.10	1.11	1454 .	1540	35.2 3	8.1 6	4.231	43494	87.5	-		021	.0011.	เอย	1.59	1.42		
16 0714 2635.0 7.49 2.56 2.86 58 16.1 2640 2676.9 1.10 1.11 1451 1514 35.9 39.3 64.39 46499 92.5 13.4 742 833 .90 1.53 1.52 1.51 1.14 1.01 1.01 1.01 1.01 1.01 1.01 1.0	05 0	550 2	.000.0 e	1.7312	. 54	2.57			264012	675.1	1.10	1.10	1453	1464	35.7 3	7.3	4.871	45204	90.0			026	0011	64	1.64	1.45		1.0110
Survey at 2685m = 6.75 deg. 8 2927 2687.5 10.4 2.60 2.85 56 16.2 2640 2689.1 1.10 1.11 1455 1597 35.3 32.6 62.80 48524 97.5 14.0 478 823 .94 1.38 1.37 1.49 1.14 1.01 1.00 1.00 1.00 1.00 1.00 1.00	95 8	711 2	605.0 C	7 40 In	- 60	2.93		16.5	262012	675.9	1.10	l.11 .	1454	1519	35.7 3	8.5 6	4.391	46489	92.5			030	0011.	59	1.53	1.59	1.14	1.0110
8 2927 2637.5 10.4 2.63 2.85 56 16.2 2640 2680 1 1.10 1.11 1435 1597 35.3 32.6 62.80 48524 97.5 14.0 478 823 .94 1.38 1.37 1.49 1.14 1.01 1003 2692.5 8.09 2.64 3.01 56 14.7 2620 2685.0 1.10 1.10 1404 1556 34.2 37.7 61.69 50357 102 14.7 630 917 .98 1.41 1.40 1.47 1.14 1.01 1100 1005 2697.5 10.5 2.11 2.45 52 14.9 2700 2680	Surv	/14 Z	2505m	- 4914 - 5 7	(• DD	2.80	58 1	16.1	264012	676.9	1.10	l.11			35.9 3	9.3 6	4.23	47379	95.0			033	.9011.	53	1.52	1.51	1.14	1.01 D
9 0950 2690.0 6.59 2.55 2.94 56 15.3 2630 2692.8 1.10 1.10 1436 1557 34.1 36.7 61.85 49807 100 14.4 747 821 .96 1.50 1.49 1.14 1.01 1.01 1.00 1.00 1.00 1.00 1.00	98 0	277 2	697 E 1	- 0.7	o ca	9•													33.0	13.0	/31	023	.9211.	49 .	1.48	1.51	1.14	1.01 D
0 1003 2692.5 8.09 2.64 3.01 56 14.7 2620 2685.0 1.10 1.10 1440 1566 34.2 37.7 61.69 50357 100 14.4 747 821 .96 1.50 1.49 1.49 1.14 1.01 1 1040 2695.0 6.95 2.51 2.89 57 14.1 2680 2695.0 1.10 1.11 1454 1568 34.2 37.7 61.69 50357 102 14.7 630 917 .98 1.41 1.40 1.47 1.01 2 1055 2697.5 10.5 2.11 2.45 52 14.9 2700/2698.4 1.10 1.11 1454 1568 34.8 37.3 63.75 52259 105 15.1 788 817 1.01 1.44 1.40 1.41 1.01 3 1108 2700.0 11.1 2.02 2.30 54 14.4 2680 2690.0 1.10 1.11 1461 1526 35.1 38.1 62.01 500.1 53732 110 15.3 464 809 1.02 1.32 1.31 1.43 1.14 1.01 <td>99 30</td> <td>35/1 2</td> <td>607.J</td> <td>5012</td> <td>. CO</td> <td></td> <td></td> <td>16.2</td> <td>264012</td> <td>680.1</td> <td>1.10 1</td> <td>.11</td> <td></td> <td></td> <td>35.3 3</td> <td>2.6 5</td> <td>2.801</td> <td>48524</td> <td>97.5</td> <td>14 0</td> <td>178</td> <td>922</td> <td>0411</td> <td>20</td> <td>1 27</td> <td></td> <td></td> <td></td>	99 30	35/1 2	607.J	5012	. CO			16.2	264012	680.1	1.10 1	.11			35.3 3	2.6 5	2.801	48524	97.5	14 0	178	922	0411	20	1 27			
1 1040 2695.0 6.95[2.51 2.89 57 14.1 2680]2695.0 1.10 1.11 1450 1568 34.2 37.7 61.69 50357 102 14.7 630 917 .98 1.41 1.40 1.47 1.14 1.01 2 1055 2697.5 10.5 2.11 2.45 52 14.9 2700 2698.4 1.10 1.11 1461 1522 35.1 37.1 62.01 53011 107 15.3 464 809 1.02 1.32 1.31 1.43 1.14 1.01 3 1108 2700.5 13.0 2.04 2.64 53 14.9 2690 2690.0 1.10 1.11 1461 1526 35.1 38.1 61.85 53732 110 15.5 458 801 1.03 1.30 1.29 1.39 1.14 1.01 5114 2705.0 9.47 2.20 2.73 53 15.3 2610 2694.4 1.10 1.11 1434 1506 35.7 37.9 63.91 55307 115 16.0 653 787 1.03 1.30 1.29 1.35 1.14 1.01 1152 2707.5 18.4 2.23 3.00 57 15.3 2630 2694.9 1.10 1.10 1439 1515 35.8 37.9 62.01 55421 120 16.4 408 768 1.08 1.30 1.28 1.29 1.31 1.14 1.01 130 130 1226 2712.5 6.87 2.35 2.67 57 15.7 2630 2699.8 1.10 1.10 1438 1543 35.8 37.9 62.01 56421 120 16.4 408 768 1.08 1.30 1.28 1.29 1.31 1.01 1.01 1.01 1.01 1.01 1.01 1.01	00 10	7.78 2 7.78 2	600 E 0	0.0912	60	2.94		.5.3	263912	682.8	1.10 1	.10	1436 1	1567	34.1 3	5.7 6	1.85	49807				821	0511	38 .	1.3/	1.49	1.14	1.01 D
2 1055 2697.5 10.5 2.11 2.45 52 14.9 2709 2698.4 1.10 1.11 1461 1522 3.1 37.1 62.01 53011 107 15.3 464 809 1.02 1.32 1.31 1.43 1.46 1.14 1.01 1.02 2.00 2.00 54 14.4 2680 2690.0 1.10 1.11 1461 1526 35.1 38.1 61.85 53732 110 15.5 458 801 1.03 1.32 1.31 1.43 1.14 1.01 1.02 1.02 1.03 1.03 1.29 1.39 1.14 1.01 1.02 1.03 1.03 1.03 1.29 1.39 1.14 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	ai 10	340 2	605 M 6	0512	. 54 .	3.01		4./	262012	685.Ø]	l.10 1			1566	34.2 3	7.7 6	1.691	50357	102			917	0011	. שכ	1.49	1.49	1.14	1.011D
3 1108 2700.0 11.1 2.02 2.30 54 14.4 2680 2690.0 1.10 1.11 1461 1522 35.1 37.1 62.01 53011 107 15.3 464 809 1.02 1.32 1.31 1.43 1.14 1.01 4120 2702.5 13.0 2.04 2.64 53 14.9 2690 2691.5 1.10 1.11 1457 1542 35.1 38.1 61.85 53732 110 15.5 458 801 1.03 1.30 1.29 1.39 1.14 1.01 5144 2705.0 9.47 2.20 2.73 53 15.3 2610 2694.4 1.10 1.11 1434 1526 35.7 37.9 63.91 55307 112 15.7 389 792 1.04 1.27 1.25 1.35 1.14 1.01 512 512 512 512 512 512 512 512 512 51	Ø2 10	355 2	607 E 1	0.931Z	. DI .	2.89		4.1	268912	686.3]	1.10 1	.11	1454]	558	34.8 3	7.3 6	3.751	52259	105			017 1	070 11.	41 .	1.40	1.47	1.14	1.01 D
4 1120 2702.5 13.0 2.04 2.64 53 14.9 2690 2691.5 1.10 1.11 1457 1542 35.1 38.1 61.85 53732 110 15.5 458 801 1.03 1.30 1.29 1.39 1.14 1.01 5 1144 2705.0 9.47 2.20 2.73 53 15.3 2610 2694.4 1.10 1.11 1434 1526 35.2 38.5 62.01 54357 112 15.7 389 792 1.04 1.27 1.25 1.35 1.14 1.01 5 1152 2707.5 18.4 2.23 3.00 57 15.3 2630 2694.9 1.10 1.10 1439 1515 35.8 37.2 62.48 55769 117 16.2 268 767 1.05 1.37 1.35 1.35 1.14 1.01 5 120 2712.5 6.87 2.35 2.67 57 15.7 2630 2695.6 1.10 1.10 1438 1543 35.8 37.9 62.01 56421 120 16.4 408 763 1.08 1.30 1.28 1.29 1.15 1.01 1 10 1308 2715.0 6.29 2.28 2.79 57 15.4 2590 2704.9 1.10 1.10 1442 1486 35.9 39.1 61.85 57678 122 16.7 1020 768 1.10 1.50 1.48 1.32 1.15 1.01	33 11	1/18 2	700 0 1	1 112	. TT .	2.45		4.9	270012	588.4 1	.10 1	.11 1		.522	35.1 3	7.1 6	2.011	53011	107			940 1	WOLL.	44 .	1.43	1.45	1.14	1.011D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 11	120 2	702 5 3	3 W12	01	2.50			208012	690.Ø 1	10 1	.11 1	1461 1	.526	35 . 1 3	8.16	1.85	53732	110			801 1	43 1.	32] 30 1	1.27	1.43	1.14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 11 35 11	144 2	705 A O	1712	24 2				269312	691.5 1	.10 1	.11	457 1	.542 :	35.2 3	8.5 6	2.011	54357				702 1	ausite.	שכ מי מכ		1.39	1.14	
7 1204 2710.0 12.7 2.44 2.70 55 15.6 2630 2695.6 1.10 1.10 1439 1515 35.8 37.2 62.48 55769 117 16.2 268 776 1.06 1.19 1.18 1.31 1.14 1.01 3 1226 2712.5 6.87 2.35 2.67 57 15.7 2630 2695.8 1.10 1.10 1438 1543 35.8 37.9 62.0 56421 120 16.4 408 768 1.08 1.30 1.28 1.29 1.15 1.01 3 1238 2715.0 6.29 2.28 2.79 57 15.4 2590 2704.9 1.10 140 1438 1543 35.8 37.9 62.0 56421 120 16.4 408 768 1.08 1.30 1.28 1.29 1.15 1.01 3 1.30 1.30 1.30 1.30 1.30 1.30 1.	35 II	52 2	707 E 1	9 4112	20 2			5.3	201012	594.4 1	.10 1	.11 1	.434 1	.506 (35 . 7 3	7.9 5	3.911	55397				727 1	MELI .	//]	1.25			
3 1226 2712.5 6.87 2.35 2.67 57 15.7 2638 2695.6 1.10 1.10 1438 1543 35.8 37.9 62.01 56421 120 16.4 408 763 1.08 1.30 1.28 1.29 1.15 1.01 1.01 1.01 1.01 1.01 1.01 1.01	77 17	NA 2.	71 <i>0</i> 1 0 1	9 719	100	טש•כ ייים מידים		5.3	2630126	594.9 1	.10 1	.10 1	439 1	515	35.8 3	7.2 6	2.48	55769				776 1	9611.	[/د ت ۱۵				
9 1308 2715.0 6.29 2.28 2.79 57 15.4 2590 2704.9 10 10 142 1486 35.9 39.1 61.85 57678 122 16.7 1020 768 1.10 1.50 1.48 1.32 1.15 1.01	78 12	126 2.	712 5 C	2712	35 7	2010		5.6	2630126	95.6 1	.10 1	.10 1	438 1	543	35.8 3	7.9 6	2.011	56421				760 1	יידונה: יידונה	ו בד	. TQ			
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39 13	38 2	715 A G	2012	00 A	2.07	o/ 15	5./ 2	2030126	99.8 1	.10 1	.10 1	442 1	486	35.9 39	9.1 6.	1.85	57678		16.7 1	a2a	768 1	1011.5	ב מי	28			
1.50 1.50 1.35 1.74 1.61				• 43 Z .	. 20 2		2/ T;	D.4 2	2590127	104.9 1	.10 1	.10 1	431 1	382 - 3	36.1 38	3.4 6.	1.53	59297	125	17.3	738	774 1	13 1 c	ב שכ יינו	.•48 .	1.32	1.15	L.ØIID
									+								-							<u>1</u>	. • DØ .	1.35	1.14	r.01ID

Data Printed at time 10:28 Date Dec 21 '83 Data Recorded at time 13:29 Date Dec 13 '83

F#	TIME	DEPTH m	ROP m/hr		RQUE MAX				RTRNS DEPTH		spc gr OUT	v FLO		TE/ IN	MP (C)	PVT	T	HIS B	IT		ST 	EST TW	DXC	NX	NXB	ECD	EST FM FR
		2717.5					15.3		2710.0								60498		-		772	1.15 1	.47	1.46	1.38	1.14	1.01
1011	1358	2720.0	5.22	12.32	2.51	57	15.8		2712.8										18.1								1.01 1
		2722.5					16.1		2715.3								63934		18.6								1.01
		2725.Ø 2727.6					15.7 15.6		2723.6 2724.]									135	20.3							-	1.01
		2730.0		-					2724.2								70763 71453	137	20.7	374							1.01
		2732.5		•			15.4		2724.4								72602		20.9	374 751							1.01 0
		2735.0					15.8										73958		21.5	648							1.01
		2737.5					16.1		2726.6									147	21.8	595							1.011
		2740.0					15.9		2731.7									150	22.3	700			-				1.01
162Ø	1857	2742.5	6.96	2.12	2.40	60	15.9		2734.5									152	22.7	717							1.01
		2745.0					15.9		2737.0					36.9	37.3	60.73	79277	155	23.0	538							1.011
622	1939	2747.6	6.11	11.73	2.01	63	16.2	2520	2738.6	5 1.11	1.11	1423	1315					157	23.4	789				1.54		1.15	
		2750.0					15.9	2550	2740.8	3 1.11	1.11	1423	1388	35.7	36.4	63.28	81665	160	23.6	429	803	1.53 1	.36	1.33	1.45	1.15	1.01
		2752.6					16.1	2590	27,42.	1.11	1.11	1431	1405	35.3	35.0	61.05	82594	162	23.8	387	798	1.55 1	.32	1.29	1.43	15	1.011
		2755.0					16.3		2743.8								83412	165	24.0	429	792	1.56 1	. 39	1.35	1.41	1.15	1.01
		2757.5		•			15.7		2745.									167	24.2	376	786	1.57 1	34	1.30	1.38	1.15	1.01 1
		2760.0					17.1		2746.2								84842		24.4	35 7							1.01
		2762.5					17.2		2750.7						34.9				24.8	697					1.38		
		2765.0					16.5		2753.1									175	25.1	537							1.01
		2767.5							2755.6									177	25.3	441							1.01
		2770.0							2757.9								89052		25.5	362					1.35		
		2772.5 2775.0					15.8		2761.1									182	25.8	489							1.01
		2777.5					15.4		2761.7 2763.8								90987 91903		26.Ø 26.2	427 460							1.01
		2780.0							2768.4								93392		25.2	725							1.01 0
		2782.5							2772.6								95106			958		-					1.0110
i		Dec 1		12801	****	. 03	13.0	2000	2/120	1 1411	****	1422	1420	32.0	33.1	00.201	92100	192	21.0	950	/50 .	1.// 1	• >0	1.54	1.39	1.10	1.011
637		2785.Ø		1.68	1.98	65	15.4	2590	2777.0	3 1.11	1.11	1438	1487	32.4	33.7	60.261	96644	195	27.4	813	756	1.8011	53	1 49	1.41	1 15	1.01
		2787.5							2779.2								97423	197	27.6	411							1.01
639	0056	2790.0	6.20	1.70	2.35	64	15.4		2781.8								99160	200	28.0	637							1.01
		2792.5					15.4		2782.7								99926	202	28.2	421				-			1.01
		2795.Ø					16.0		2784.3					32.2	33.8	60.10	100990	205	28.5	598							1.01
		2797.5					16.0		2786.8	-				32.2	34.1	59.941	101854	207	28.7	448	743	1.89 1	.38	1.34	1.38	1.15	1.01
		2800.0					15.4		2789.5								103328	210	29.1	598	744	1.92 1	•46	1.41	1.39	1.15	1.0110
		2802.5					16.4		2793.4								104802	212		841	744	1.94 1	•55	1.52	1.41	1.15	1.01 [
		2805.0					16.6		2796.7								105192	215		730		1.97 1					1.61 [
		2807.5					16.4		2799.0								107315	217	30.1								1.01
		2810.0					16.7		2801.5								108895	220	30.5								1.01 0
		2812.5					17.1		2808.4								112593	222		415		2.09 1					1.01
		2815.0					17.8		2809.2								114367	225		857							1.01
		2817.5 2820.0					18.1 18.1		2310.7					-			116292	227	32.5								1.01
		2822.5							2813.2								117193 118336	23Ø 232		353							1.01 0
		2825.0							2818.3									232	33.2 33.5	602 661							1.01 0
									2820.1	1-11	1-11	1454	1564	32.7	35 Ø	56 921	120945	∠30 237	33.0	208 201							1.01 0
NB!	‡11 (I	Run#13)	SMITE	1 F3 8	3.5" v	vith	10.10	1.11 ie	ets. 9	Start	depth	2828m	TAIX	hit	condi	rion T	120943 '4 B6 GØ	231	33.9	090	130 2	C. ZZ I	• 55	1.40	T • 20	1.10	1.01 L
662	1820	2830.0	8.14	1.87	2.12	65	12.8	258/1	2828-0	1 1 11	1.11	1456	1531	25.4	28.3	57.551	970		າ	655	5955	g211	30	1 40	1 33	1 14	1.0110
663	1833	2832.5	11.6	1.86	2.06	65	13.2	2580	2828.0	1.11	1.11	1458	157Ø	25.3	31.2	57.87	1824	4.5			2897						1.01 0
664	1908	2835.Ø	4.17	1.78	1.99	66	13.8	257ø	2828.0	1.11	1.11	1459	179Ø	28.0	31.6	58.83	4171	7.0									1.01
							·											. •									

Fig. The CBETT Row CANCAL NEW FOB PAUR INTENS PAUR INTENS Row The Color	_								+															. 11.2	> 114TD	ECD	EST
Fig.	1 54	MIME	חשמשמ	DOD!	TΥΩE	SOUR	RPM	FOB	PUMP	RTRNS	MD s	spc gr	, FLC	MIM\W	TEM	P (C)	PVT				C(DST	ESTI DXC	NX	MAD		
1665 1956 2837, 5 5,88 1,74 2,01 66 14,0 2530 2832, 1 1,11 1,11 1446 1534 20,0 23,0 6,639 9,5 1,7 19,1 7234 3,11,5 1,8 1,33 1,15 1,6 1,6 1,2 1,3 1,15 1,6 1,6 1,2 1,3 1,15 1,6 1,6 1,3 1,1 1,1 1,4	1 17	TIME		m/hr	2//2	MAY	AVG.								IN	OUT		REVS	m	hrs	INS	r RUN	.1M.l				
1665 297, 237, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	i .		111	III/ III I	AVG	1.0.27	7170																			1 15	1 01101
1665 2217 2842 36 26 11 12 2.08 6 15 2.25 2548 1284 2.11 1.11 1453 1544 31.2 34.3 6.21 7.28	1000	1056	2027 5	E /10	1 7/	2 01	66	14 Ø	25301	2832.1	1.11	1.11	1446	153Ø	29.8	33.8	60.26	6490					.13 1.5/	1.58	1.33	1.15	1 01 10
1886 2011 2012 2015	1005	1956	2037.3	C 07	1 00	2.01	63	75.0	25401	2834.2	1.11	1.11	1453	1544	31.2	34.3	61.21	7867	12.0				.16 1.51	1.51	1.33	1.12	1.0110
1655 2143 2845.8 4.631.79 2.49 63 15.2 2570 237.7 1.11 1.11 1459 1548 33.2 36.4 61.21 1449 1.294 1.294 1.294 1.294 1.15 1.15	1666	2017	2849.0	6.07	1 70	2.03			25501	2835.3	1.11	1.11	1454		32.2	35.1	61.37	9367						1.55	1.33	1.12	1.01(D
1868 2143 2867 5 7,30 11 1 2,66 64 15.5 2589 22849.7 1.11 1.11 1453 15.99 31.6 37,6 59,78 12934 19.5 3.4 799 1418 3291 15.5 1.53 1.15 1.676 2283 2858,0 6,971,179 2.67 56 15.7 2569 22844,9 1.11 1.11 1454 15.99 34.1 37,5 59,6 31.15 1.676 1.273 1.27	1667	2041	2842.5	6.28	1.79	2.13	63		25701	2837.7	1.11	1.11	1450	1548	33.2	36.4	61.21	11434	17.0				.23 1.63	1.64	1.33	1.15	1.0110
1677 2238 2687.0 6.0911.02 2.06 64 15.7 2568 12843.4 1.11 1.11 1453 1569 44.6 37.4 59.0 16.175 24.5 26.2 25.0 16.7 2	1663	2113	2845.0	4.03	7.79	2.01	64		25/01	2037.7	1 11	1 11	1453	1510	33.6	37.0	59.78	12934	19.5	3.4			.26 1.50	1.52	1.33	1.15	1.0110
1872 233 2852, 5 5, 9711, 79 2.07 68 15.7 2579 2284, 9 1.11 1.11 1459 1593 34, 6 37, 4 99, 941 16175 24.5 4.2 81 7 1295 3311.57 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	1669	2144	2847.5	7.30	1.81	2.00	64		25001	2040.7	1 77	1 11	1453		34.1	37.5	59.62	14554	22.0	3.8	1043		.29 1.56	1.58	1.33	1.15	1.0110
1672 2382 2855.6 5.35[1.79 2.07 65 15.7 2560]2867.7 1.11 1.11 1458 1591 34.9 37.0 68.57] 1691 277.6 4.7 948 1265 371.15 1.55 1.33 1.15 1.65 1673 2335 2857.5 6.56]1.89 2.02 66 15.4 2550]2859.3 1.11 1.11 1446 1657 34.8 36.6 68.26 19738 29.5 5.1 746 1231 4.40]1.54 1.55 1.55 1.33 1.15 1.65 1678 2858 285.6 4.10]1.75 2.12 67 15.8 250]2859.3 1.11 1.11 1446 1526 35.1 39.2 61.21] 2635 32.0 5.8 2191 1245 4.61]1.73 1.73 1.33 1.15 1.65 1678 2858 285.6 4.10]1.75 2.12 67 15.8 250]2859.3 1.11 1.11 1446 1526 35.1 39.2 61.21] 2673 77.0 6.9 835 126 5.51]1.78 1.78 1.33 1.15 1.45 1678 285 285 2.10]1.75 2.10 6.15 2.50]2859.5 1.11 1.11 1446 1593 35.1 37.1 61.21] 26737 77.0 6.9 835 1216 5.51]1.78 1.33 1.15 1.45 1678 285 285 285 285 285 285 285 285 285 28	1670	2208	2850.0	6.09	1.82	2.00	64		25501	2043.4	1 11	1 11	1/5/	1568	34.6	37.4	59.94	16175	24.5	4.2	817	1296	.33 1.57	153	1.33	1.15	1.0110
1767 2332 2857.5 6.5611.68 2.82 66 15.4 255812859.3 1.11 1.11 1446 1695 34.8 36.6 68.261 19738 29.5 5.1 746 1231 .4011.54 1.55 1.53 1.15 1.1 1.1	1671	2233	2852.5	5.97	1.79	2.05	64		25/01	2044.9	1 11	1 11	1/5/	1501	34.9	37.0	60.57	18017	27.Ø	4.7	948	1266	.37 1.60	1.61	1.33	1.15	1.01ID
173 283 284 28	1672	23Ø2	2855.0	5.35	1.79	2.07	65		2558	2047.7	1 11	1 11	1470	1605	34 8	36-6	60.26	19738	29.5	5.1	746	1231	.40 1.54	1.55	1.33	1.15	1.01 D
674 6819 2869, 6 3,52 1.71 1,98 68 15.2 \$2528 2894, 3.11 1.11 \$446 1547 \$35.4 \$71.1 \$1.2565 \$34.5 \$4.1 \$1.10 \$243 \$511.70 \$1.70 \$1.33 \$1.15 \$1.676 \$1.20 \$265.2 \$4.181 \$1.75 \$1.20 \$2.20 \$66 15.7 \$2.20 \$265.9 \$5.1 \$1.11 \$1.11 \$448 \$1.587 \$35.1 \$71.1 \$1.21 \$2673 \$71.7 \$0.20 \$1.5 \$1.33 \$1.15 \$1.676 \$1.20 \$2.20 \$2.20 \$2.20 \$2.55 \$1.11 \$1.11 \$448 \$4.84 \$3.68 \$6.89 \$9.7643 \$9.5 \$7.1 \$404 \$1.70 \$571.33 \$1.34 \$1.33 \$1.15 \$1.676 \$201 \$270.0 \$5.531.83 \$2.01 \$51.6 \$2.530 \$2.552.2 \$1.11 \$1.11 \$451 \$1.51 \$3.48 \$3.5 \$5.77 \$6.73 \$3.254 \$4.2.0 \$7.6 \$6.61 \$571.53 \$1.33 \$1.15 \$1.676 \$2.70 \$2.70 \$2.70 \$1.11 \$1.11 \$451 \$1.51 \$3.48 \$3.5 \$5.77 \$6.73 \$3.255 \$4.55 \$1.55 \$1.35 \$1.33 \$1.15 \$1.676 \$2.20 \$2.60 \$7.11 \$1.11 \$450 \$489 \$3.4 \$3.77 \$6.73 \$3.254 \$4.5 \$7.9 \$644 \$1.27 \$6.21 \$4.8 \$4.9 \$1.33 \$1.15 \$1.676 \$2.20 \$2.60 \$2.73 \$1.11 \$1.11 \$450 \$489 \$3.10 \$3.70 \$1.5 \$1.5 \$1.35 \$1.33 \$1.15 \$1.6 \$1.5 \$1.35 \$1.35 \$1.	1673	2336	2857.5	6.56	1.80	2.02	65	15.4	2550	2859.3	1.11	1.11	1440	1002	2440	30.0	00.20	. 23.00									1
1678 1687 2685.2 4.1611.75 2.12 67 15.6 55281285.7 1.11 1.11 1.446 1547 35.2 35.6 34.5 5.4 1109 1243 .5111.70 1.70 1.70 1.70 1.70 1.70 1.70 1.7	1									2054 2			1116	1525	25 1	38 2	61.21	22635	32.0	5.8	2191	1246	.46 1.73	1.73	1.33	1.15	1.01 D
675 6205 2862, 5 4.10 1.75 2.12 67 15.8 2520 2857, 1.11 1.11 1.148 1.569 35.1 37.1 61.21 26737 37.0 6.9 835 1216 5511.59 1.58 1.33 1.15 1.0 676 1212 2865, 6 6.00 1.18 20.22 65 6 15.7 2520 2859, 3.11 1.11 1.148 1.159 34.8 36.8 6 8.9 27648 39.5 7.1 404 1170 7.71 1.33 1.4 1.33 1.15 1.0 677 9211 2872, 5 7.5911.83 2.09 55 16.7 2520 2869, 7.11 1.11 1.15 1.15 1.15 1.15 1.15 1.15	1674	ØØ19	2860.0	3.52	11.71	1.98			25201	2854.3	1.11	1.11	1440	1547	32. Y	27 1	61 21	25055	34.5	5.4	1109	1243	.51 1.70	1.70	1.33	1.15	1.01 D
1676 6122 2865, 0 ⁶ , 6,011, 89 2.20 66 15,6 2538 2869, 231, 11 1.11 1446 1498 34,8 37,5 68,731 29144 42.0 7, 16, 225 1145 6,011,57 1.58 1,33 1.15 1.16 1479 2831 2872, 5 7,581,183 2.00 56 16,7 2538 2869, 23 1.11 1.11 1446 1498 34,8 37,5 68,731 29144 42.0 7, 16, 225 1415 6,011,57 1.58 1.33 1.15 1.16 1479 2831 2872, 5 7,581,183 2.00 55 16,7 2538 2869, 2873, 11 1.11 145 1591 34,8 37,5 68,731 29144 42.0 7, 16, 254 141 1, 6,711,75 1.76 1, 33 1.15 1.16 1489 34,8 37,5 68,731 29144 42.0 7, 16, 254 141 1, 6,711,75 1.76 1, 33 1.15 1.16 1489 34,8 37,5 68,731 2914 42.0 7, 16, 254 141 1, 6,711,75 1.76 1, 33 1.15 1.16 1489 34,8 37,7 68,731 2914 42.0 7, 16, 254 141 1, 6,711,75 1.76 1, 33 1.15 1.16 1489 34,8 37,7 68,731 2914 42.0 7, 16, 254 141 1, 6,711,75 1.76 1, 33 1.15 1.16 1489 34,8 37,7 68,731 2914 42.0 7, 16, 254 141 1, 6,711,75 1.76 1, 33 1.15 1.16 1489 34,5 37,7 68,731 2914 42.0 7, 16, 254 141 1, 6,711,75 1.76 1, 33 1.15 1.16 1489 34,5 37,1 62,3 14,3 14,5 14,5 14,5 14,5 14,5 14,5 14,5 14,5	1675	0055	2862.5	4.10	11.75	2.12	67						1440	1547					37.0			1216			1.33	1.15	1.01 D
1677 0144 2867.5 12.3]1.88 2.63 68 63 2539 2852.2 1.11 1.11 1478 1592 34.8 37.5 68.73 79154 42.0 7.6 925 1154 6611.57 1.58 1.33 1.15 1.16 1679 0211 2870.0 5.531.183 2.09 55 16.7 2539 2852.2 1.11 1.11 1451 1591 34.8 37.5 68.73 79154 42.0 7.6 925 1154 6611.57 1.58 1.33 1.15 1.16 1679 2231 2875.0 5.7511.14 2.06 56 17.6 2529 2868.7 1.11 1.11 1451 1591 34.8 37.5 68.73 3921 44.5 7.9 644 1127 6621.48 1.49 1.33 1.15 1.16 1689 331 2875.0 3.5711.14 2.06 56 17.6 2529 2868.7 1.11 1.11 1471 1478 1471 14	1676	Ø120	2865.2	6.01	1.80	2.20			252ต	2859.5	1.11				37 0	26.0	50 90										1.01 D
1676 0211 2870.0 5.5311.83 2.01 55 16.7 2530 2863.5 1.11 1.11 1455 1958 34.9 37.7 68.73 30251 44.5 7.9 644 1127 6211.48 1.49 1.33 1.15 1.16 1639 2837.5 7.511.74 2.06 55 16.7 2530 2863.5 1.11 1.11 1455 1958 34.9 37.7 68.73 30251 44.5 7.9 644 1127 6211.75 1.76 1.33 1.15 1.16 1639 2837.5 7.511.74 2.06 55 17.4 2500 1286.7 1.11 1.11 1455 1958 34.7 36.5 59.41 32611 47.0 8.6 1555 1141 671.75 1.76 1.33 1.15 1.46 1632 3433 2839.0 3.6711.76 2.09 57 14.9 2600 12875.0 1.11 1.11 1473 1522 34.5 36.8 259.78 36557 52.0 9.8 1455 1145 7411.65 1.65 1.33 1.15 1.46 1632 3433 2839.0 3.6711.76 2.09 57 14.9 2600 12875.0 1.11 1.11 1473 1522 34.5 37.1 62.59 183815 54.5 10.5 1339 1156 7811.65 1.65 1.33 1.15 1.46 1632 3851.7 2825.5 3.711.75 2.01 55 15.3 2590 12878.3 1.11 1.11 1473 1522 34.5 36.8 59.78 36557 52.0 9.8 1455 1145 7411.65 1.65 1.33 1.15 1.46 1635 1.34 1.15 1.46 1635 1.34 1.15 1.46 1635 1.34 1.15 1.46 1635 1.34 1.15 1.46 1635 1.34 1.15 1.46 1635 1.34 1.15 1.46 1.34 1.15 1.46 1635 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.35 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.46 1.34 1.15 1.15 1.46 1.34 1.15 1.15 1.46 1.34 1.15 1.15 1.46 1.34 1.15 1.15 1.46 1.34 1.15 1.15 1.46 1.34 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.1	1677	0144	2867.5	12.3	1.88	2.63	60	15.6	2530	2860.3	1.11	1.11	1446	1498	34.0	30.0	CG 72	27043	42 Ø				6011.57	1.58	1.33	1.15	1.01 D
1679 2031 2872.5 7.58 11.83 2.09 55 16.7 2530 [2865.7 1.11 1.11 1455 1458 34.5 35.1 37.0 60.4 2.051 36.1	1678	0211	2870.0	5.53	1.83	2.01	56		2530	2852.2	1.11	1.11	1451	1501					44.0						1.33	1.15	1.01 D
1689 2817 2875, 0 3.57 1.74 2.06 56 1.76 2520 12868, 7 1.11 1.11 1473 1542 3.47 36.5 59.94 36.257 52.02 9.8 1455 1.45 1	1679	Ø231	2872.5	7.58	1.83	2.09	55	16.7	2530	2863.5	1.11	1.11	1450	1995											1.33	1.15	1.01 D
1681 6352 2877.5 5.7611.79 2.67	1680	0313	2875.0	3.57	11.74	2.06	56	17.6	2520	2868.7	1.11	1.11	1450	1458									7011.52	.1.53	1.33	1.15	1.01 D
1682 9617 2892.5 3.7111.75 2.09 57 14.9 26091287.6 1.1 1.11 1471 1473 1532 34.7 37.1 69.89 38815 54.5 10.5 1399 1556 7811.65 1.66 1.33 1.15 1.16 1.68 1.68 1.10 1.11 1.17 1.47	1681	Ø352	2877.5	5 5.76	11.79	2.67	54	15.4	2590	2872.3	1.11	1.11	1473	1542											1.33	1.15	1.01 D
1683 9517 2832.5 3.7111.75 2.01 55 15.3 2599[2878.1.11.11 1440 1496 34.5 37.1 62.80] 49931 57.0 11.1 142 1159 .8211.64 1.65 1.33 1.15 1.1 1680 345 2835.0 4.3411.78 2.33 55 16.2 2510[2834.3 1.11 1.11 1447 1496 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1498 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 142 1159 .8211.62 1.62 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.7 1408 1161 .8611.62 1.52 1.33 1.14 1.1 1680 34.5 37.1 62.80] 49931 57.0 11.0 114 2.0 1.0 1.0 14.0 14.0 14.0 14.0 14.0 14.0	1682	0433	2880.2	3.67	11.70	2.09	57	14.9	2600	2875.Ø	1.11	1.11	1473	1552	34.5	35.8	59.78	30007	52.0				•				1.01 D
1684 6612 2885,6 4.34 1.18 2.33 55 16.2 2510 2891.3 1.11 1.11 1440 1698 34.5 37.1 61.53 4296 59.5 11.7 1699 11.61 .86 1.62 1.62 1.33 1.14 1.16 1.68 687 68.9 2887,5 4.48 1.81 3.0 57 15.6 2490 2893.4 1.11 1.11 1477 1542 34.4 36.3 61.65 44081 62.0 12.0 722 1142 .88 1.47 1.48 1.33 1.14 1.16 1.68 687 6935 2892.5 2.71 1.32 2.35 57 16.2 2660 2897.7 1.11 1.11 1477 1542 34.6 38.0 61.65 47217 64.5 12.9 1128 1169 .94 1.80 1.80 1.33 1.14 1.16 1.68 9322 2897.6 5.48 1.84 2.14 55 16.1 2550 2892.5 1.11 1.11 1457 1530 35.2 37.6 61.85 49575 66.9 13.6 1113 1177 .98 1.71 1.71 1.73 1.14 1.16 1.68 920 2892.6 551.19 2.26 55 15.5 2660 2893.6 1.11 1.11 1457 1530 35.2 37.6 61.85 49575 66.9 13.6 1113 1177 .98 1.71 1.71 1.73 1.14 1.16 1.16 1.16 1.16 1.16 1.17	1683	9517	2882.5	3.71	11.75	2.01	55	15.3	259Ø	2878.3	1.11	1.11	1471	1478	34.7	37.1	60.89	38813	54.5				•				1.0110
1685 2692 2887.5 4.69 1.81 3.01 57 15.4 2991 2893.4 1.11 1.11 1.17 1.15	1687	9512	2885.6	4 4 34	11.78	2.33	55	16.2	2510	2881.3	1.11	1.11	1440	1896	34.5	37.1	62.80	40931	5/.0			_					1.01 D
1 1 1 1 1 1 1 1 1 1	1685	3640	2887.	5 4.48	11.81	3.01	57	15.4	2490	2383.4	1.11				34.5	37.1	61.53	42955	59.5						1.33	1.14	1.0110
1837 1838 2839.5 2.71 1.82 2.35 57 16.2 2668 2837.7 1.11 1.11 1457 1539 35.2 37.6 61.85 49575 66.9 13.6 1113 1177 .9811.01 1.75 1.33 1.14 1.1689 1838 22897.6 5.48 1.84 2.14 55 16.1 2558 2899.5 1.11 1.11 1457 1559 35.2 37.6 61.85 49575 66.9 13.6 1113 1167 1.01 1.57 1.33 1.14 1.169 1839 2822 2897.6 5.48 1.84 2.14 55 16.1 2558 2899.5 1.11 1.11 1457 1559 35.2 37.6 61.85 49575 66.9 13.6 1113 1167 1.01 1.57 1.33 1.14 1.169 1839 2822 2897.6 5.48 1.84 2.14 55 16.1 2558 2899.5 1.11 1.11 1457 1559 35.2 37.6 61.85 49575 66.9 13.6 1113 1167 1.01 1.15 1.157 1.33 1.14 1.15 1.159 1.15	1686	9710	2897.0	7.31	11.82	2.05	54	15.9	2600	2884.9	1.11	1.11	1477	1542	34.4	35.3	51.05	44081	62.0			_					
1.688 0354 2895.0 4.19 1.84 2.35 57 17.4 2610 2891.0 1.11 1.11 1457 1550 35.2 37.6 61.85 4957.5 68.9 13.6 1167 1.09 11.57 1.57 1.33 1.14 1.1690 9398 2930.0 5.561 1.91 2.26 55 15.5 2560 2893.5 1.11 1.11 1467 1554 35.3 37.2 60.42 51132 69.5 14.1 931 167 1.09 11.57 1.57 1.33 1.14 1.15 1.690 9398 2930.0 5.561 1.91 2.26 55 15.5 2560 2893.6 1.11 1.11 1467 1554 35.4 37.4 59.94 52589 72.0 14.5 87.9 1158 1.041 1.54 1.54 1.33 1.14 1.15	1695	0300	2892	5 2.71	11.82	2.35	57	16.2	2660	12887.7	1.11	1.11	1476	1633	34.6	38.Ø	61.05	47217	64.5	12.9					1.33	1.14	1.0110
1689 8922 2897.6 5.48 1.84 2.14 55 16.1 2559 2892.5 1.11 1.11 1.146 1551 35.4 37.4 59.94 52588 72.9 14.5 879 1158 1.04 1.54 1.54 1.33 1.14 1.	1600	0001	1 2805 (7 4 19	11.84	2.35	57		261Ø	2891.0	1.11	1.11	1457	153Ø	35.2	37.6	51.85	49575	66.9	13.6		11/7					1.01 D
1693 9348 2998.0 5.5511.91 2.26 55 15.5 2650 2898.7 1.10 1.11 1.145 1554 35.4 37.4 59.941 52588 72.0 14.5 2588 72.0	1000	1 4022	20220	5 5 48	11.84	2.14			2550	12892.5	1.11	1.11	1460	1561	35.3	37.2	60.42	51132	69.5	14.1	931	1101	T-8117-21	1 5/	1 22		
691 1029 2902.5 3.64 1.88 2.24 2.24 55 16.2 2640 2896.7 1.10 1.11 1.11 1.146 1.154 1.155 34.8 37.0 60.89 55507 77.0 15.7 901 1.10 1.11 1.15 1.52 1.33 1.14 1.16 1.10 1.	1000	1 0324 1 0010	2007.0	7 5 56	1 01	2 26			2560	12393.6	1.11	1.11	1457	1554	35.4	37.4	59.94	52588	72.0	14.5		1158	1.04 1.54	1.74	1 23	1 1/	1 0110
692 1112 2935.0 5.99 1.83 2.13 55 15.6 2680 2899.8 1.11 1.11 1457 1595 34.8 37.0 60.89 5557 77.0 15.7 918 1162 1.31 1.57 1.55 1.33 1.14 1.16 1.20 1.20 1.15 1.35 1.35 1.14 1.16 1.20 1.20 1.15 1.35 1.35 1.14 1.16 1.20 1.20 1.15 1.35 1.14 1.15 1.20 1.20 1.15 1.35 1.14 1.15 1.20 1.20 1.15 1.35 1.35 1.14 1.15 1.20	1001	1000	3 2000 ei	5 3 64	11.80	2.24	55		2540	12896.7	1.10	1.11	1446	1548	35.Ø	37.5	69.73	54877	74.5	15.2		1100	1.0011.70	1.50	1 33	1 14	1.0110
	1091	1 1023	2 4204. 2 2225 :	g ≒5 QQ	11 83	2.13			2680	12899.8	1.11	. 1.11	1457	1595	34.8	37.0	60.89	55507	77.0	15.7	901	1162	1.1111.53	1.52	1 22	1 1/	1 0110
1694 1299 2910.0 5.53 1.01 2.23 55 15.0 2670 2904.1 1.11 1.11 1465 1576 34.9 37.2 264.55 62316 84.5 17.5 1540 1162 1.21 1.73 1.72 1.33 1.14 1.695 1257 2912.5 3.11 1.83 2.36 55 15.6 2660 2907.7 1.11 1.11 1461 1529 34.7 36.4 67.09 64645 87.0 18.1 1195 1166 1.25 1.63 1.62 1.33 1.14 1.697 1418 2917.5 4.26 1.83 2.21 60 14.9 2590 2911.0 1.11 1.11 1454 1559 34.7 36.9 67.57 66753 39.5 18.7 1152 1166 1.29 1.63 1.62 1.33 1.14 1.698 1442 2920.0 6.26 1.89 2.17 59 14.7 2690 2913.9 1.11 1.11 1454 1559 34.7 36.9 67.57 66753 39.5 18.7 1152 1166 1.29 1.63 1.62 1.33 1.14 1.699 1516 2922.5 4.41 1.82 2.21 60 14.8 2600 2916.7 1.11 1.11 1454 1559 34.7 36.9 67.57 678.52 70264 94.5 19.7 1357 1156 1.35 1.62 1.60 1.33 1.14 1.700 1607 2925.0 3.85 1.80 2.16 61 14.1 2610 2920.8 1.11 1.11 1454 1595 34.7 36.8 65.98 75.370 99.5 21.0 1251 1165 1.43 1.62 1.60 1.33 1.14 1.700 1645 2927.5 3.91 1.79 2.13 61 13.7 2660 2923.0 1.10 1.11 1454 1595 34.7 36.8 65.98 75.370 99.5 21.0 1251 1665 1.43 1.62 1.60 1.33 1.14 1.700 1605 1.25 1.63 1.62 1.60 1.33 1.14 1.700 1.10 1.11 1.1	100	2 1114	2 2007	5 5 67	11 92	2 13	55		2680	2901.9	1.11	. 1.11	1461	1701	34.7	38.2	61.85	58140	79.5	16.2	1028	1155	1.13/1.07	1.50	1 22	1 1/	1 2115
1.00 1.00	169.	3 1144	2 29010	2 2 5 5 7	11 01	2 20	, 55 } 55		2670	12994-1	1.11	1.11	1465	1576	34.9	37.2	63.12	59654	82.0	16.7		1149	1.1011.53	1.02	7.33	1014	1 0715
1.1	169	1 120	7 2910°	E 2.11	11.03	2 36	55		2669	12907.7	1.11	1.11	1465	1545	34.9	37.2	64.55	62316	84.5	17.5	1540		1.2111.73	1.72	1.00	1 14	1 0110
1.00 1.00	169	125	7 2912.	0 0 1C	11.70	2.30	5 50		2598	12911.0	1.11	1.11	1461	1529	34.7	35.4	67.09	1 64645	87.Ø	18.1	1195					1.14	1 0115
1698 1442 2920.0 6.28 1.89 2.17 59 14.7 2690 2913.9 1.11 1.11 1454 1553 34.7 36.8 67.73 68199 92.0 19.1 791 1157 1.31 1.31 1.49 1.33 1.14 1.49	169	5 134.	3 2915.	0 4.10	11 03	2.25	5 60		2500	12012 7	1.10	1.11	1454	1559	34.7	36.9	57.57	1 66753	3 89.5	18.7	1152	1166	1.29 1.63	1.62			
1.16 1.17 1.17 1.17 1.18	169	/ 1418	8 53T/*	J 4.20	11.00	2.21	1 50		2699	12913.0	1.17	1.11	1454	1563	34.7	35.8	57.73	1 68199	92.Ø	19.1	791						
100 1607 2925.0 3.85 1.80 2.16 61 14.1 2610 2920.8 1.11 1.11 1454 1595 34.7 36.8 65.98 75370 99.5 21.0 1251 1165 1.43 1.62 1.60 1.33 1.14 1.00	169	3 144:	2 2920.	0 5.20	11.00	2.1	ו במ		2550	12016	1.11	1.11	1457	1550	34.7	36.7	68.52	1 70264	94.5	19.7	1357						
701 1645 2927.5 3.91 1.79 2.13 61 13.7 2660 2923.0 1.10 1.11 1451 1599 34.7 36.8 65.98 75370 99.5 21.0 1251 165 1.43 1.52 1.60 1.33 1.14 1.1702 1715 2930.0 5.05 1.82 2.06 61 12.7 2680 2924.9 1.11 1.11 1454 1603 34.7 36.9 65.18 77191 102 21.5 957 1162 1.46 1.51 1.49 1.33 1.14 1.1703 1823 2932.5 11.3 1.79 2.32 66 9.19 2560 2928.2 1.10 1.11 1416 1635 34.8 38.6 63.75 78169 104 21.8 570 1150 1.48 1.19 1.17 1.31 1.14 1.1707 1905 2935.0 10.4 1.87 2.13 67 11.4 2670 2929.3 1.11 1.11 1453 1553 35.2 36.6 63.44 80309 107 22.4 522 1144 1.51 1.29 1.27 1.33 1.14 1.1709 1.203 1.204 1.204 1.205 1	169) 1510	6 2922.	5 4.41	11.02	2.42	ו סט		2500	12020 6	1.11	1,11	1454	1595	34.7	35.4	67.73	73002	2 97.Ø	20.4			1.39 1.64	1.62			
701 1645 2927.5 3.91 1.79 2.13 51 13.7 2680 2924.9 1.11 1.11 1454 1603 34.7 36.9 65.18 77191 102 21.5 957 1162 1.46 1.51 1.49 1.33 1.14 1.40	170	9 169	/ 2925.	0 3.85 5 3 65	11.0%	7 2010	י סב בי		2250 7318	12220.0	1 1 10	7 1 11	1451	1589	34.7	35.8	55.98	75370	7 99.5	21.0					1.33		
7/82 1/15 2/30 0 0 0 0 1/15 2/30 0 0 0 0 1/15 2/30 0 0 0 1/30 1/30 1/30 1/30 1/30 1/30	170	1 164	5 2927.	5 3.91	11.00	201	7.0 C		2000 260a	12923.8	1.1	1.11	1454	1603	34.7	35.9	65.18	77191	102	21.5							
707 1935 2935.5 11.3 1.79 2.13 67 11.4 2670 2929.3 1.11 1.11 1453 1553 35.2 36.6 63.44 80309 107 22.4 522 1144 1.51 1.29 1.27 1.33 1.14 1.70 1.95	170	2 171	5 2930.	0 5.05	11.82	2.00	2 20		2559	12028) 1 10	7 1.11	1416	1635	34.8	38.6	63.75	78169	3 104	21.8		1150	1.48 1.19	1.17			
1.14 1.15	170	3 132	3 2932.	5 11.3	311.75	, 2.3	2 00		2500	12220.2	2 1 1	1 1 11	145	1553	35.2	35.6	63.44	80309	9 107		522	1144	1.51 1.29	1.27	1.33		
1709 2045 2940.0 2.70 1.60 1.83 67 14.1 2650 2936.5 1.11 1.11 1453 1582 34.6 36.6 63.91 86961 112 24.0 1810 1170 1.63 1.77 1.74 1.33 1.14 1.1710 2203 2942.5 2.48 1.64 1.95 66 14.1 2650 2939.8 1.11 1.11 1446 1603 34.4 35.7 62.64 91575 114 25.2 2333 1193 1.71 1.79 1.76 1.34 1.14 1.1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.33 1.14 1.1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.33 1.14 1.1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.35 1.14 1.1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.35 1.14 1.1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.35 1.14 1.1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.35 1.14 1.1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.35 1.14 1.18 1.18 1.18 1.18 1.18 1.18 1.18	170	7 193	5 2935.	0 10.4	11.07	2.1	0/		2010 2010	12931	1 1	1 1 11	1450	1592	34.8	37.Ø	64.07	83418	3 109	23.1							
1710 2203 2942.5 2.48 1.64 1.95 66 14.1 2650 2939.8 1.11 1.11 1446 1603 34.4 35.7 62.64 91575 114 25.2 2333 1193 1.71 1.79 1.76 1.34 1.14 1.17 1250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.33 1.14 1.17 1.17 1.250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.35 1.14 1.17 1.17 1.17 1.17 1.17 1.17 1.17	173	8 195	2 2937.	5 3.02	11.78	2 2.1	2 00		2010	12036 6	, +•+. ; 1 1	1 1 11	145	1582	34.6	36.6	63.91	8696	1 112	24.0							
1710 2203 2942.5 2.48 1.64 1.95 66 14.1 2533 2533.6 1.11 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.33 1.14 1. 1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.33 1.14 1. 1711 2250 2945.0 3.16 1.68 1.78 64 14.3 2640 2941.6 1.10 1.11 1446 1553 34.3 35.7 63.28 94551 117 25.9 1566 1201 1.76 1.72 1.69 1.35 1.14 1.	173	9 234	5 2940.	0 2.72	11.68) 1.ď.	5 5/		2000	12030) 1 1.	1 1.11	1446	1603	34.4	35.7	62.64	9157	5 114	25.2	2333						
1711 2250 2945.0 3.1611.68 1.78 64 14.3 2640[2941.6 1.10 1.11 1440 1455 34.2 36 65 50] 96982 119 26.4 917 1195 1.78[1.49 1.46 1.35 1.14 1.	171	Ø 220	3 2942.	5 2.48	11.64	1.9	5 55		2000	122224	. 1 1.	7 T + T T	1/1/10	1552		35.7	63-28	1 9455	1 117	25.9	1566	1231	1.76 1.72	1.59	1.33		
	171	1 225	ø 2945.	Ø 3.16	11.68	3 1.78	3 54		2649	12941.0) 1-1	1 1 13	1440	1 1 1 0 E	34.0	36.0	65.50	9628	2 119		917	1195	1.78 1.49	1.45	1.35		
1712 2317 2947.5 5.62[1.75 2.20 50 13.1 2050[2942.5 1.11 1.11 1.40 1.12 3.1 2050 2044 122 27 0 1971 1195 1.8211.61 1.59 1.38 1.14 1.	171	2 231	7 2947.	5 5.62	211.75	2.2	b 50			12942	1.1.	7 7 9 7 7	1402	1/60		35.8	55.82	9844	4 122				1.82 1.61	1.59	1.38	1.14	1.01
1713 2354 2950.0 3.5011.66 2.74 57 13.3 2650/2944.6 1.10 1.11 1432 1400 34.2 35.5 35.527 35.71	171	3 235	4 2950.	Ø 3.50	11.69	2.7	4 57	13.3	2650	12944.6	1.1	0 1.11	1434	7 1400	24.2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	., 5013									1
1 Pate Dec 16 '83 27 7 1130 1200 1 861 66 1.62 1.35 1.14 1.	1	Dat	e Dec	16 '83	}					10010			3.45	1 1525	21 1	37 6	68 69	110123	1 124	27.7	1130	1200	1.86 1.55	1.62	1.35	1.14	1.01
714 0045 2952.5 3.89 1.61 2.13 63 14.5 2660 2948.7 1.11 1.11 1454 1535 34.4 37.6 58.68 101231 124 27.7 1130 1260 1.06 1.75 1.07 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 1457 1544 34.5 36.9 64.87 102019 127 27.9 431 1185 1.89 1.31 1.27 1.33 1.14 1. 715 0058 2958 2958 2958 2958 2958 2958 2958 29	171	4 004	5 2952.	5 3.89	11.61	2.1	3 63	3 14.5	2662	12948.	/ 1.1.	1 1.11	1454	1 1030	34.4 34.5	31.0	64 2	110223	9 127	27.9	431	1185	1.8311.31	1.27	1.33	1.14	1.01 [
715 0058 2955.0 11.6 1.82 2.12 61 13.7 2660 2949.2 1.11 1.11 145/ 1544 34.5 36.9 64.6/10213 12.	171	5 ØØ5	8 2955.	0 11.6	11.82	2 2.1	2 61	13.7	2660	12949.	2 1.1	1 1.11	145	1 1544	34.5	30.9	04.0	110201									+

Data Printed at time 14:44 Date Dec 21 '83
Data Recorded at time 01:30 Date Dec 16 '83

F# TIME DEPTH ROP TOR	QUE RPM FOR		MD spc gro	/ FLOW/MIN IN OUT	TEMP (C) PVT IN OUT	THIS		COST EST D	KC NX	NXB	ECD	EST FM PR
1716 0130 2957.5 4.69 1.78		262012950.5	1.11 1.11	1457 1462	34.6 37.2 62.16	1104013 12		1183 1.91 1.				
717 0145 2960.0 10.2 1.87			1.11 1.11		34.7 37.3 61.37	1104917 13:	2 28.7 479	1170 1.92 1.			1.14	
1718 0212 2952.5 9.88 1.88		2570 2953.0	1.11 1.11	1443 1471	34.8 36.1 63.91			1160 1.94 1.				1.01 D
719 0245 2965.0 4.57 1.83	2.18 64 13.3	2570 2956.5	1.10 1.11	1442 1447	34.3 35.9 60.42							1.01 D
720 0342 2967.5 2.63 1.65					34.2 36.4 57.71			1172 2.03 1.				1.01 D
1721 0412 2970.0 4.9011.78				1439 1434	34.3 36.4 54.69							1.01 D
1722 0451 2972.5 5.60 1.80		2580 2967.0	1.11 1.11	1445 1493	34.1 36.2 56.44			1167 2.09 1. 1154 2.11 1.				1.01 D
1723 Ø5Ø4 2975.Ø 11.9 1.86		258012967.5	1.11 1.11	1449 1394	34.0 36.5 54.06			1142 2.12 1.	20 1.29			
1724 0517 2977.5 11.8 11.90		2580 2967.9	1.11 1.11	1445 1342	34.1 36.8 53.42 33.8 35.7 56.44			1145 2.16 1.	51 1 17	1.35		1.01 DT
725 Ø516 298Ø.1 4.47 1.78			1.10 1.11	13/0 12/3	34.1 36.6 48.01			1142 2.22 11.			1.14	
1727 0737 2985.0 4.70 1.81			1.10 1.11		34.4 36.1 52.47	•		1146 2.26 1.				1.01 D
1728 0817 2987.5 4.29 1.83			1.10 1.11		34.4 37.4 51.35			1160 2.32 1.				1.01 DT
729 0924 2990.0 3.75 1.79 730 1016 2992.5 2.88 1.65					34.9 38.3 53.90			1169 2.37 1.			1.14	1.01 D
1731 1051 2995.0 4.26 1.80		255012989.8	1.11 1.11	1450 1464	34.9 38.6 58.67			1168 2.41 1.	62 1.57	1.39	1.14	1.01 D
1732 1149 2997.5 2.5511.73	2.29 62 14.4	248012993.7	1.10 1.11	1450 1435	35.5 38.1 64.87	139445 16		1180 2.47 1.			1.14	1.01 D
+ NB#12 (Run#14) VAREL 537	8.5" with 10	.10.11 jets.	Start depth	2999m. IA	DC bit condition	T3 B5 G0.						1
Date Dec 17 '83												
736 0855 3000.0 2.65 2.14	2.24 47 8.55	2650 2999.0	1.11 1.11	1435 1320	23.2 27.8 61.21				44 1.47			
737 0910 3031.0 3.92 2.08	2.21 50 13.8	3 2570 2999.0	1.11 1.11		23.7 30.3 52.16		-		56 1.60			1.01 D
1738 0922 3002.0 5.0412.08	2.25 50 13.9	2550 2999.0	1.10 1.11	1438 1323	24.5 30.9 62.16				49 1.52			1.01 D
1739 0940 3003.0 3.2312.03	2.13 50 14.0		1.10 1.11		25.9 31.8 62.64				63 1.66			1.61 D
1740 0959 3004.0 3.2312.01	2.09 51 13.8		1.10 1.11		27.3 32.2 62.96				62 1.65			1.01 D
1741 1010 3005.0 5.23 2.02			1.11 1.11		27.9 32.8 64.07				51 1.54			1.01 D 1.01 D
1742 1022 3006.0 5.16 1.99				1442 1611	28.6 33.0 64.87				53 1.56 26 1.29			1.01 D
743 1027 3007.0 12.4 2.03			1.11 1.11		28.9 33.0 65.18			2469 .12 1.	52 1.55			
744 1103 3008.0 4.73 1.93			1.10 1.11		30.0 33.7 68.21			2416 .14 1.		1.36	1.14	1.01 D
1745 1126 3009.0 2.71 1.92			1.11 1.11		30.5 34.5 65.34 31.6 35.5 65.03				88 1.91			
1745 1202 3010.0 1.65 1.87			1.11 1.11		32.1 35.6 66.30	•			61 1.65			1.31 D
747 1226 3011.0 2.83 1.84			1.10 1.11		32.4 35.4 68.52			·	53 1.55		1.14	
748 1241 3012.0 4.08 1.89 1749 1302 3013.0 2.82 1.85		:		1449 1434	32.7 35.8 70.75				63 1.66			1.01 D
1759 1317 3014.0 4.12 1.88		-		1442 1447	32.9 35.6 59.95				56 1.58		1.14	1.01 D
1751 1328 3015.0 5.25[1.94			1.11 1.11		33.1 35.0 69.16	•			48 1.51			1.01 D
1752 1343 3016.0 4.04 11.89			1.10 1.11		33.2 35.1 68.84	•		2031 .25 1.	59 1.62	1.40	1.14	1.01 D
1753 1359 3017.0 3.67 1.88			1.11 1.11		33.4 36.6 69.68				53 1.66			1.01 D
1754 1431 3018.0 3.41 1.86			1.11 1.11		33.5 35.4 69.16	•						1.01 DT
1755 1448 3019.0 3.46 1.93		2690 3014.1	1.11 1.11	1455 1432	33.8 35.9 70.11				50 1.63			
756 1501 3020.0 4.59 1.98	2.12 50 14.3		1.11 1.11		34.0 35.8 70.43	•			53 1.55			1.01 D
1757 1519 3021.0 3.46 1.90			1.10 1.11		34.1 36.1 70.75				54 1.65			1.01 D
1758 1537 3022.0 3.16 1.89				1454 1470	34.1 36.6 70.75				57 1.69		1.14	
1759 1552 3323.0 4.13 1.91			1.10 1.11		34.3 36.3 70.75				54 1.56			
760 1603 3024.0 5.39 1.91		•	1.11 1.11		34.4 36.4 70.59 34.5 36.9 59.95	•			47 1.49 56 1.68	1.51	1.14	1.01 D 1.01 D
1761 1622 3025.0 3.20 1.91 1		•		1454 1509	34.6 37.2 69.95				53 1.65			
1762 1639 3026.0 3.46 1.91 1763 1656 3027.0 3.61 1.92			1.11 1.11		34.8 38.3 69.95				52 1.64		1.14	
1764 1726 3028.0 4.46[1.92]				1442 1433	35.2 38.3 69.64				53 1.55			1.01 D
1765 1744 3029.1 3.6211.95					35.6 38.6 68.05	•			55 1.59			1.01 D
1766 1805 3030.0 2.61 1.94					35.7 39.9 69.32			1788 .46 1.			1.14	
767 1827 3031.0 2.87 1.93					36.2 40.0 71.23				54 1.66			
	·					1 .						

Data Printed at time 10:44 Date Dec 21 83
Data Recorded at time 18:49 Date Dec 17:22

5.

£

(;

Data Recorded at time 18:49	9 Date	Dec 17			
F# TIME DEPTH ROP TORQUE RPM FOB PUMP RTRNS MD spc grv FLOW/MIN TEMP (C) PVT THIS RIT COST					
" "WILL AVG AVG AVG PRESIDEPTH IN OUT THE OUTPE THE OUTPE		XC NX	NXB	ECD	EST
TOO 1040 COOK III DIE INST RU	JN TW				FM PR
1/69 1902 3033 0 4 0611 00 2 02 Ar 14 7 064710775 TTTT 1912 1923 30.0 40.1 /2.181 282/4 33 0 0 6 1920 1702	. 4013 5				+
1770 1014 2020 3 120 43 120 2040 3020 4 1411 1411 1446 1424 36 7 40 2 72 021 20004 24 0	49 1.7	70 1.72	1.63	1.14	
1771 1920 3035 0 10 011 97 2 00 45 14 1 2001/3029 3 1-10 1-11 1446 1475 36.8 40.7 72.181 29379 35.0 10 0 983 1740		50 1.52	1.62		1.01 D
1772 1925 3035 g 12 412 g) 2 g0 44 14 2 265615229-5 1-11 1-11 1445 1390 36.9 40.7 72.181 29635 36 g 1g 1 5gg 1715	.51 1.2	1.54	1.69		1.01 D
1773 1929 3037,0 12.712.61 2.69 43 15.5 26/81/3020 3 1.10 1.11 1446 1420 36.9 40.9 72.341 29849 37.0 10.2 401 1679			1.62 1.60		1.01 D
1774 1951 3038 0 7-3212 02 2 14 48 14 0 257013020 1 11 11 1446 1394 37.0 41.0 72.50 30045 38.0 10.3 388 1644	,		1.62		1.01 D
17/5 2018 3039.0 2.3011.92 2.03 50 14.3 265012021 0 1 11 1430 1395 37.2 40.3 72.18 30559 39.0 10.5 962 1625	.53 1.3		1.62		1.01 D
1//6 2034 3040.0 3.62[1.94 2.05 49 14 3 2626[2022 2 1 1 1 1 1 1 1 1 2 2 3 6 1 3 3 6 40.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 1.75	1.62	1.14	1.01 D 1.01 D
1/// 2045 3041.0 5.2711.96 2.12 49 13 0 262012024 7 111 111 1431 1203 37.0 40.4 /5.041 32694 41.0 11.2 1423 1634					1.01 D
1//8 2106 3042.0 2.8811.94 2.07 50 14.8 262012027 4 11 1414 1539 37.7 40.8 /3.931 33238 42.0 11.4 960 1617	.57 1.4				1.01 D
11.5 6465 304340 3-1011-95 7.17 50 10 3 3ECG13G30 4 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.5911.69			1.14	1.01 D
1701 2205 2011-95 2-14 52 13.5 2640/3039.4 1.10 1.11 1438 1300 37 0 40 2 70 421 2022 45 12.0 1007 1020	.61 1.69	5 1.66			1.01 D
1792 2205 345.8 3.95[1.97 2.36 52 14.2 2/20]3040.0 1.11 1.11 1439 1320 37 7.41 3 69 ggl 20075 45 g	.62 1.59	9 1.60	1.65	1.14	1.01ID
1732 2252 2647 2 2.52 1.92 2.17 52 14.5 2690 3041.6 1.11 1.11 1430 1338 37 6 40 6 60 221 2257 1257 1251	.64 1.59			1.14	1.01 D
1734 2375 2344 4 45 11.1 267013042.6 1.11 1.11 1426 1339 37 7 41 3 69 311 30744 40 0 13.0 2119 1614	.65 1.68	8 1.70	1.66	1.14	1.01 D
1705 2209 2000 10.212.02 2.18 46 13.5 267013042.9 1.11 1.11 1427 1336 37 7 40 0 50 251 20000 10.2	.66 1.49		1.64	1.14	1.01 D
1795 2315 2655 # 13.012.02 2.10 46 13.0 268013043.0 1.11 1.11 1429 1339 37 7 41 2 69 521 20215 67 13.5 479 1354	.67 1.25		1.65	1.14	
1787 2339 3951 @ 2*8911 87 3 91 AC 13 0 26001079-6 1-11 1-11 1431 1388 37.9 41.3 68.681 39821 51 Ø 13 6 1214 1552	.67 1.18	3 1.19	1.64		1.31 D
Date Dec 18 '83 2.80 1.87 2.01 46 13.9 2680 3045.3 1.11 1.11 1431 1346 38.0 41.5 69.00 40855 52.0 14.0 2143 1558	.68 1.50		1.62	1.14	1.01 D
1788 0004 3052.0 2.2311 85 1 98 49 13 0 262012046 0 1 12 2	• /1/11.04	1.00	1.63	1.14	1.011D
1789 0923 3053.0 3.1811.89 2 02 47 14 1 262812849 6 1 11 1423 1374 38.2 41.7 69.321 42073 53.0 14.4 2115 1569	.72 1.72	7 1 73	1 65	1.14	1 (1)
1/90 2038 3054.0 4.1311.92 2.05 47 14 0 264012040 0 1 11 1-12 1343 35.4 41.8 69.641 42971 54.0 14.7 1507 1570	.73 1.62	1.63			1.01 D 1.01 D
1/91 0050 3055.0 4.8111.97 2.12 47 14 2 264012050 5 1 11 1-12 1343 33.5 41.9 59.641 43551 55.0 15.0 1249 1563	.74 1.54	1.56	1.64		1.01 D
1/92 0108 3056.0 12.312.00 2.12 46 14.1 266012050 0 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.75 1.50	1.52			1.01 D
1/93 0116 3057.0 14.112.13 2.26 51 13.8 260012051 13.11 1427 1447 30.0 41.2 74.091 44520 57.0 15.3 392 1544	.76 1.26	1.27			1.01 DX
1705 0141 2070 0 00212.09 2.22 52 14.4 207013051.4 1.11 1.11 1427 1305 38 6 41 6 60 051 45272 50 0 15.5 307 1524	.76 1.20		1.62	1.14	1.01ID
1705 0145 3050-0 3.59[2.12 2.26 53 14.2 2670]3052.1 1.11 1.11 1.43[1335 38 6.41 7 78 50] 46076 68 6 15.6 1516 1511	.77 1.44	1.45		1.14	
1707 3010 3000 4 2412.00 2.13 54 14.5 267013053.0 1.10 1.11 1431 1333 38 6 41 7 71 671 47053 61 13.9 1497 1509	.78 1.62		1.60	1.14	
1709 0322 2007 5.0111.95 2.07 54 14.4 26/013054.1 1.11 1.11 1431 1432 38 7 41 0 70 371 47213 60 0	.8011.59			1.14	1.01 D
1700 0000 2000 + 11 2 2000 1303 3.3 1.10 1.11 1431 1439 38 7 41 9 70 501 40400 00 0	.81 1.63	1.64		1.14	1.01 D
1830 9241 3954 0 12 612 07 2 21 5C 12 0 27013055.7 1.11 1.11 1431 1389 38.8 41.7 70.751 48705 64.0 16 6 338 1474	.82 1.49	1.50			1.01 D
1801 0245 3065 a 15 512 1a 2 22 56 13 0 272812856 0 1 11 1 · 11 1443 1299 38 6 41 · 1 71 · 54 49014 65 · a 16 7 445 1450	.83 1.22 .83 1.27			1.14	
1802 0304 3066 0 7 5012 02 2 16 54 12 7 2000 1511 1.11 1446 1295 38.6 41.1 71.701 49231 65.0 16.8 318 1441	.84 1.20			1.14	
1803 0311 3057.0 8.1011.99 2 18 57 13.7 266013050 1.11 1.11 1432 1240 38.5 40.3 72.501 49800 67.0 17.0 490 1433	.84 1 . 40				.01 D
1804 0326 3058 0 3.8811.97 2.22 57 13 2 2660 2050 C 130 1427 1200 33.4 40.6 72.18 50231 67.9 17.1 659 1422	.85 1.39	1.39		l.14 1 l.14 1	
1805 2334 3859 0 7.89 11 96 2 97 56 12 7 265 12 9 265 12	.87 1.58				.01 D
1805 0345 3070.0 5.2711.95 2.09 55 12 9 26/01/2053 6 131 141 1427 1327 38.3 41.6 /2.821 51526 70.0 17.5 538 1437	.87 1.35		1.56	_	.011D
1939 4413 3671. 3.95[1.97 2.07 55 13.4 2640]3062.5 1.11 1.11 1427 1244 38 3 41 1 73 611 50004 70 7 1401	.88 1.47	1.48			.01ID
1970 0407 1970 7 2-13 55 13.4 2530 3064.7 1.10 1.11 1427 1267 38 3 41 5 73 031 5300 72.0		1.57	1.54 1		.0110
1019 0405 2006 4.09 11.93 2.05 54 13.3 2640 3265.6 1.11 1.11 1430 1253 38 2 41 2 74 25 5422 76.5 10.1 1112 1395	.91 1.50	1.50			.01 D
101 650 3074 5 510 2.20 55 13.5 2620 3967.0 1.11 1.11 1427 1243 37 9 41 3 74 351 54077 75 8 10.5 10.5 10.5 10.5	.9211.52	1.52	1.53 1	.14 1	
1010 0507 307 3.57 11.90 2.10 55 13.7 2580 3059.0 1.11 1.11 1438 1286 38 6 41 3 74 601 5000 75 7	.93 1.45	1.46	1.51 1	.14 1	.31 D
1813 0541 3077. 0 4 371 95 2.17 53 14.1 2640 3670.9 1.10 1.11 1427 1267 38.1 41.9 73.931 57343 77.0 19.3 3007	.95 1.6:	1.61	1.53 1		.CIIDT
1814 0601 3078 0 2 9211 04 2 05 12 0 2001 077 1302	.97 1.73	1.74	L.54 1	.14 1.	.31 D
$1815 \ 9623 \ 3979 \ 9 \ 2011 \ 92 \ 93 \ 93 \ 93 \ 93 \ 93 \ 93 \ 93$.93 1.55 .03 1.69	1.55]	1.55 1	.14 1.	.31 ID
1816 9635 3989 9 4 0911 03 0 13 57 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	~~!	1.69 1 1.70 1	50 1	.14 1.	.01 ID
1816 0535 3080.0 4.90 1.93 2.13 57 14.0 2630 3075.5 1.11 1.11 1427 1263 38.9 41.5 70.43 61084 81.0 20.4 977 1395 1.	.03 1.54	1.54 1	58 1	.14 1.	OLID
	+			T.	

Data CordHELAtDEWme 05:42 Date Dec 18 83

F# TIME DEPTH ROI m m/hi	TORQUE				RTRNS DEPTH	MD s	spc grv	/ FLO	MIM/W TUO		P (C) OUT	PVT	REVS	THIS B	IT——		ST RUN		DXC	NX	NXB	ECD	EST FM PR
817 0642 3081.0 7.25			14.0		3075.8								61518										1.01 D
818			13.9 14.3		3076.1 3076.7			1430					62079 62532		20.7 20.8		1379 1	- 7			1.55		1.01 D
1820 0711 3084.0 5.45			14.4		3077.4					_	-		63159		21.0		1365 1				1.52		1.0110
821 0742 3085.0 2.99			14.5		3078.6	-		1431					64446				1373				1.54	1.14	1.01 D
1822 0756 3086.0 4.39	11.95 2.0	9 54	14.2	2640	3079.6	1.11	1.11	1431	1271	39.3	42.9	52.64	65179	87.0	21.6	1091	1370 1	.101	1.57	1.57	1.55	1.14	1.01 D
823 0810 3087.0 4.08		_	14.1		3081.0								65968				1368 1	-		1.57			1.01 D
824 0828 3088.0 3.28			14.0		3083.1			1434				63.91			22.2		1370 1				1.57	1.14	1.01 D
825 Ø847 3Ø89.Ø 3.32 826 Ø901 3Ø90.Ø 3.72	•		14.4		3084.2			1434					67881				1371 I 1371 I					1.14	1.01 D
828			14.1 14.2	7	3084.8 3085.9			1435					68673 69547		23.0		1370					1.14	1.01 D
829 Ø922 3Ø92.Ø 13.2			13.9		3086.1			1431					69792		23.1		1359 1						1.01 D
830 0933 3093.0 5.43			13.8		3086.9			1436					7ø38ø		23.2		1354					1.14	1.01 D
1831 1031 3094.0 5.93	11.95 2.0	2 53	14.3	1	3088.3			1423	1337	40.9	42.4	62.80	71468	95.Ø	23.6		1:56 1			1.47	1.58	1.14	1.01 D
832 1020 3095.0 3.09	11.94 2.0	9 53	14.2	2670	3089.4	1.11	1.11	1420	1265	40.5	44.7	64.71	72466	96.Ø	23.9	1781	1359 1	.221	1.67	1.66	1.59	1.14	1.01 D
833 1038 3096.0 3.1			14.3		3090.4						-		73448				1351 1				1.61		1.01 D
1834 1054 3097.0 3.88			13.8	•	3092.6			1420					74283		24.4		1361 1			1.58		1.14	1.01 D
835 1103 3098.0 6.14 836 1121 3099.0 3.4			13.8 14.1		3093.1 3093.8	, -					-		74785 75734		24.6 24.9		1355 1				1.59		1.01 D
837 1134 3100.0 4.79			13.7		3094.6			1421					76407	101	25.1		1355 I 1352 I				1.59 1.58	1.14	1.01 D
838 1146 3101.0 4.99	:		14.0		3095.2								77955		25.3		1349				1.57		1.01 D
839 1159 3102.0 4.49			13.7		3095.9						-		77795		25.5		1347				1.56		1.01ID
840 1212 3103.0 4.69			13.4		3096.6			1423					78503		25.7		1344			1.52	1.55		1.01 D
841 1243 3104.0 3.2	11.81 1.9	7 48	13.9	2670	3093.5	1.10	1.11	1459	1487	40.8	43.2	75.04	79413	105	26.1	2547	1348	.331	1.61	1.60	1.55	1.14	1.01 D
842 1302 3105.1 3.13	•		14.7		3100.0								8Ø317		26.4		135Ø J				1.57		1.01 D
843 1316 3106.1 4.2			14.3		3101.2					-	-		80979		26.6		1348	-			1.57		1.01 D
1844 1329 3107.0 4.58			14.7		3102.1								81567	108	26.8		1345				1.56		1.0110
845 1340 3108.0 3.43 846 1349 3109.0 8.74			14.9 13.8		3102.9			1453					82076	109	27.0		1345				1.57	_	1.01 D
847 1415 3110.0 2.3	:		15.0		3103.5 3104.8								8251Ø 83732	-	27.2 27.6		1336 I 1343 I					1.14	1.01 D
848 1443 3111.0 2.9	1		14.5		3105.5			1454					84766	112	27.9		1347	-				1.14	1.011D
849 1447 3112.0 13.			14.1		3106.8								84969	113	28.Ø		1339			1.20	1.56		1.01 D
1850 1501 3113.0 15.9	11.93 2.1	6 49	13.5	2710	3107.2	1.10	1.11	1446	1442	41.2	43.2	83.95	85219	114	28.1	36Ø	1331	.42	1.15	1.14	1.58	1.14	1.01 D
1851 1515 3114.0 4.2			14.4		3103.9	-						•	85934		28.3		1329 1				1.58	1.14	1.01ID
1852 1534 3115.1 3.4	•		15.3		3109.7								86864	116	28.6		1332 1			1.64	-	1.14	1.01 D
853			15.5		3110.5								87944	117	29.0		1336 1				1.61		
854			15.3 15.0		3111.7 3113.3								88585 89401	118 119	29.2 29.5		1334 I 1333 I				1.61		1.01 D
855 1629 3119.0 12.			14.8		3113.8								89650	120	29.5		1325 1				1.61	1.14	1.0110
857 1632 3120.0 17.4			14.9		3113.9								89829		29.6		1317 1				1.60		1.0110
858 1635 3121.0 19.3			15.0		3114.1						-		89977		29.7		1308 1					1.14	1.01 D
1863 1704 3123.0 16.4			11.9		3115.2								90767	124			1287 1				1.61		1.01 D
1864 1731 3126.0 7.8			14.4		3115.4					-			91350		30.1	983	1274 1	.521	1.40		1.58	1.14	1.01ID
1865 1742 3127.1 6.0			14.5		3115.8								91910		30.3		1271 1					1.14	1.01 D
866			15.1		3116.9								93292		30.7		1278 1						1.01 D
867 1828 3129.0 3.03 868 1844 3130.0 3.59			15.2 15.5		3120.1								94356		31.1		1281 1			1.69	1.55		1.61 D
869 1907 3131.0 2.7.			16.0		3125.6										31.3		1281 I 1286 I			1.65	1.58 1.60	1.14	1.01 D
870 1937 3132.1 3.13			15.4		3127.9			1398					97576		32.1		1289 1				1.62		1.01 D
871 1956 3133.0 2.6																							1.01 D
ļ.,	+	···																					

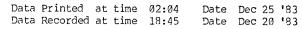
6.3

												1										
F# TIME DEPTH ROP	TORQUE	RPM FOB	PUMP	RTRNS	MD	spc grv	z FLO	V/MIN	TEM	1P (C)	PVT	T	HIS B	IT	C	OST	EST	DXC	NX	NXB	ECD	EST
	AVG MAX			DEPTH	IN	OUT	IN			OUT		REVS	m	hrs		T RUN						FM PR
+	 				~ ~~~					- 		+					+-					+
1872 2022 3134.0 2.31	11.86 2.16	44 14.5	26101	3130.4	1.11	1.11	1415 1	1502	41.0	44.8	75.04	99576	135	32.8	2220	1298	1.65	1.71	1.70	1.66	1.14	1.01 D
1873 2040 3135.1 3.60				3131.1								100372		33.1	1531	1299	1.67	1.57	1.56	1.64	1.14	1.01 D
1874 2055 3136.0 3.44	-			3131.8					41.1	44.9	75.68	101033	137	33.3	1378	1299 1	1.67	1.57	1.56	1.63	1.14	1.01 D
1875 2100 3137.0 13.2	•			3131.9								101234	138	33.4	420	1292	1.68	1.19	1.18	1.64	1.14	1.01 D
1876 2119 3138.0 3.09	•			3132.9			1416 1						139	33.7	1503	1295	1.69	1.65	1.64	1.65	1.14	1.01 D
877 2134 3139.0 2.26				3133.4			1416 1		41.4	44.3	77.27	102769	140	34.0	1661	1297	1.701	1.75	1.74	1.66	1.14	1.01 D
1878 2157 3140.0 3.38	•		:	3134.7			1413 1		-			103788	141	34.4		1299	1.72	1.60	1.59	1.65	1.14	1.01 D
1879 2202 3141.0 13.3				3135.0			1412 1					•	142	34.5	383	1292	1.72	1.16	1.15	1.66	1.14	1.01 D
880 2221 3142.0 11.3	•			3136.6			1446 1			-		104356	143	34.6	440	1288	1.721	1.23	1.22	1.65	1.14	1.01 D1
1881 2233 3143.0 5.07	•			3137.3			1454					104938	144	34.8	2478	1285					1.14	1.01 D
1882 2254 3144.1 2.99				3138.3									145	35.1	1869	1289	1.75	1.70	1.68	1.64	1.14	1.011D
1883 2303 3145.0 6.44				3138.9			1454					106575	146	35.3	802					1.62	1.14	1.01 D
1884 2327 3146.0 2.39	•			3141.3			1456 1					107878	147	35.7		1290			1.75		1.14	1.01 D
1885 2336 3147.0 7.05				3141.4								108339	148	35.8		1287	1.79	1.44	1.42	1.62	1.14	1.01 D
1886 2342 3148.0 9.44	-			3142.4								•	149	35.9	537	1282						
387 2347 3149.0 11.4	•			3142.6			1454						150	36.0						1.62		
1888 2355 3150.0 8.22				3142.9			-47						151	36.1		1271						1.01 D
Date Dec 19 '83	11.90 2.17	J4 14•7	27001	314247	1011		1101	- 12,	1100			, 20,000		0								1
1889 0010 3151.0 3.82	11 08 2 22	53 15.0	27701	3143.7	1.11	1.11	1454 1	1442	41.9	45.9	78.54	110170	152	36.4	894	1272	1.821	1.63	1.61	1.60	1.14	1.01 D
1890 0025 3152.0 11.7				3145.0								•	153	36.5	404				1.19		1.14	
1891 0028 3153.0 17.6	•			3145.0					-			110301	154	35.6	380	1262					1.14	1.01 D
1892 0042 3154.0 9.78	•			3145.1								111176	155	35.7	-	1257			1.24		1.14	1.01 D
1893 0110 3155.0 2.18	•			3147.9								112760		37.2						1.61		1.01 D
1894 0143 3156.0 1.76	-			3150.9			1447 1						157	37.7		1273					1.14	
1895 0205 3157.0 2.65				3154.0								115951		38.1		1277					1.14	
				3154.2			1446						159	38.2						1.63	1.14	1.01 D
896 0213 3158.0 9.01 897 0228 3159.0 3.82				3154.7			1446					117211	160	38.5		1273					1.14	
1898 0247 3160.0 3.14				3155.2									161	39.8		1275					1.14	
1899 0315 3161.1 5.77	•			3156.1								119371	162	39.Ø					1.39		1.14	
1900 0339 3162.0 2.47				3157.8						-		120403	163	39.4					1.64		1.14	
1901 0345 3163.0 10.4				3158.1								120718	164	39.5		1273			1.23		1.14	
1902 0349 3164.0 14.4				3158.4								120954	165	39.6		1268					1.14	1.01 D
1903 0357 3165.0 6.94		-		3158.8			1465					121448	165	39.7					1.34		1.14	1.01ID
1904 0423 3166.0 2.35		-		3150.1			1469					1122944	167		2162	1270					1.14	
1905 0439 3167.0 3.66	•			3161.1								1123859	168	40.4					1.54		1.14	
1906 0502 3168.0 2.53				3163.0								125228	169	40.8		1274			1.65		1.14	
1907 0505 3169.0 14.3				3164.0									170	40.9					1.14		1.14	- :
1908 0529 3170.0 5.66				3165.2									171	41.1						1.57	1.14	1.0110
1909 0543 3171.0 4.19				3165.6									172	41.4		1268	2.071	1.49	1.45	1.55	1.14	1.01 D
1910 0501 3172.0 3.26				3165.7								128197		41.7						1.54	1.14	1.01 D
1911 0615 3173.0 4.51				3167.2									174	41.9		1269						1.31 D
1912 0630 3174.0 3.94				3159.0								129767		42.1		1259					1.14	1.61 D
1913 2638 3175.0 7.47				3169.6			1457					139214	176	42.3						1.51	1.14	1.01 D
1914 0549 3176.0 5.58				3169.8								:	177	42.5		1263					1.14	1.01 D
1915 2722 3177.0 4.42				3170.9								131552		42.7		1262					1.14	
1916 3716 3178.1 4.58				3171.6			1457					132320	179	42.9		1252					1.15	
1917 0720 3179.0 14.5				3171.8			1456		-			132532	189	43.0						1.50		
1918 0734 3180.0 16.9				3172.5					-	-		1132933	181	43.1		1253						1.01[0]
1919 0754 3181.0 2.64				3174.0			1446					1134057		43.4		1255 2	- :			1.51	-	
1920 0819 3182.0 2.61	11.94 2.25																					1.01 D
1,22, 601, 3102.0 2.01	11077 2020	50 15.0																		·		

Data Printed at time 01:53 Date Dec 25 '83 Data Recorded at time 08:33 Date Dec 19 '83

† F# TIME DEPTH ROE	+	DDM FOR		חשטענ	MD	TIT OUT MATERIAL			+						+-					+
	AVG MAX	RPM FOB	PUMP 1 PRES 1		IN OUT	rv FLOW/MIN IN OUT		, ,	PVT	REVS	HIS B m	IT hrs		DST T RUN		DXC	ИX	NXB	ECD	EST FM PR
	+		+												+-					
1921 0833 3183.0 4.56						1446~1358								1259 2	2.2011	.54	1.50	1.53	1.16	1.01 D
1922 0842 3184.0 6.34						1450 1274				135694		44.2		1257 2						
1923 9848 3185.0 9.00						1450 1262			,	137051	186	44.3	-	1253 2				1.50		
1924 0855 3186.0 9.11						1453 1287				137415	187	44.4		1249 2						
1925 0905 3187.0 5.23						1450 1254				138044	188	44.6		1248 2						1.01 D
1926 0930 3188.0 2.55						1450 1235				139427	189	45.0				-				1.31 D
927 1022 3188.6 2.21 5 2033 3190.0 4.76						1457 2538				140285	193	45.3		1254 2						
1 6 2043 3191.0 5.93						1427 148Ø 1438 1412	31.6 2 30.2 3				1.0		3554					1.37		
7 2050 3192.0 8.59	•					1474 1514								6869						1.01 D
8 2056 3193.1 10.9						1446 1441	29.6 3 29.3 3						567 502	4607 3582	-			1.38		1.01 D
1 9 2107 3194.0 5.28						1450 1527	29.4 3	-					646	3050						1.01 D
1 10 2111 3195.1 15.1			- :			1450 1526	29.8 3						352	2599	.05 1					1.01 D
11 2119 3195.0 6.99						1453 1561	30.2 3			2911	-	1.0		2335						1.01 D
1 12 2126 3197.1 9.14						1454 1585	31.0 3		-		8.0	1.1		2109	.07 1			1.39		
13 2138 3198.0 18.2	2 2.05 2.12	65 14.2				1461 1727	31.7 3		-	3563	-	1.2		1911						1.01 D
1 14 2145 3199.0 7.23	3 2.12 2.51	59 14.8				1465 1711	31.9 3		-			1.3		1787	.08 1					1.01 D
1 15 2213 3200.0 9.93	12.10 2.22	55 14.7				1420 1359	32.4 3		-	4451		1.4		1690						1.01 01
1 16 2224 3201,0 4.94	11.98 2.67	51 14.8	2580	3192.6 1	.12 1.12	1420 1350	32.7 3	35.4 6	0.101	5023	12.0	1.6	1029	1632	.10 1	.52	1.55	1.40	1.15	1.01 D
17 2241 3232.0 3.74			25901	3194.3 1	.12 1.12	1421 1380	33.1 3	36.6 5	7.711	5944	13.0	1.9	1450	1692	.12 1	.63	1.65	1.41	1.16	1.01 D
18 2256 3203.0 3.73						1421 1411	33.5 3	37.1 5	6.921	6836	14.0	2.2	1314	1580	.14 1	.65	1.68	1.43	1.16	1.01 D
19 2310 3204.0 4.37	•					1423 1378	33.8 3	37.5 5	7.391	7639	15.0	2.4	1142	1554	.16 1	.60	1.63	1.44	1.16	1.01 D
20 2324 3205.0 4.31						1420 1375	34.2 3			8416	16.0	2.6	1175	1534	.17[1	.63	1.65	1.45	1.16	1.01 D
21 2342 3206.0 3.35						1423 1369	34.2 3			9421		2.9		1525	.2011	•73	1.75	1.44	1.16	1.91 D
22 2359 3207.0 3.67 Date Dec 20 '83		57 16.2	25501	3201.9 1	.12 1.12	1420 1381	34.6 3	38.8 5	1.85	10350	18.0	3.2	1345	1517	.22 1	•69	1.71	1.46	1.15	1.01 D
1 23 0007 3208.0 6.64		57 14.9	25/01	2202 6 1	10 1 10	1400 1000	מר מים		2 41 1	10074	30 G	2.2	000	1 470	0017	477				1 21 -
24 0029 3209.0 4.93						1423 1352 1434 1381		-		10974		3.3		1478	.2311					1.01 D
25 3348 3210.0 3.29						1430 1432				11749 12884		3.6 3.9		1465 1471				1.49		1.01 D
26 0054 3211.0 8.25						1431 1356				13282		3.9 . 4.0								
27 3058 3212.0 15.6						1431 1400				13506		4.1		1331	.28 1			1.48		1.01 D
28 0103 3213.0 12.6						1431 1359				13787		4.2		1340						1.01 D
+ Circulate returns a						1.31 10/5	33,3	,,,,	1.00,	13707	2740	4.2	372	1340	• 27 1	• ~ /	1 • 20	1.40	7.10	1.0110
1 30 0252 3214.0 3.69	11.92 2.15	56 14.4	25801	3213.0 1	.12 1.12	1431 1510	39.5 4	11.3 6	0.261	15408	25.0	4.6	1280	1384	.3211	.62	1.63	1.49	1-15	1.010
1 31 0339 3215.0 3.57	11.83 2.01	56 14.5				1431 1538				16350		4.9		1385				1.51		
32 0315 3216.0 9.28	311.95 2.17	55 13.7	2590	3213.0 1	.12 1.12	1431 1487	39.4 4	11.5 5	9.451	16706	27.0	5.0	495	1355						1.01 D
33 Ø319 3217.0 17.4	12.04 2.24	54 14.3	2590	3213.0 1	.12 1.12	1431 1512	39.4 4	11.5 5	9.461	16892	28.0	5.1	293	1316				1.51		
34 0334 3218.0 16.5						1433 1401	39.2 4	11.1 6	1.37	17256	29.0	5.2	397	1290						1.011D
35 0340 3219.0 10.4						1426 1356	39.2 4	11.2 6	1.37	17588	30.0	5.3.	1593	1262	.36 1	.28	1.30	1.47	1.16	1.31ID
36 0405 3220.0 3.37						1423 1355				19092		5.7	1569	1291	.3911	•55	1.67	1.50	1.15	1.01 D
37 0418 3221.0 4.60						1427 1381				19898		5.9 .		1282						1.31 D
38 0438 3222.1 3.10						1426 1351				21135		6.3		1294	.43 1			1.53		
39 0455 3223.0 3.37						1425 1349				22139		5.5.		1297	.4511					1.01 D
40 0511 3224.0 3.65 41 0523 3225.0 5.17	•					1427 1351				23151		6.8		1300	.48 1					1.01 D
42 0537 3226.0 4.03						1427 1422				23847		7.0		1291	.49 1					1.01 D
43 0601 3227.1 5.94						1427 1713				24701		7.2		1286						1.01 D
44 0619 3228.0 3.03						1431 1362. 1432 1422				25550 26596		7.5 7.8		1287	.52 1			1.57		1.01 D
45 0619 3228.0 3.03					-	1432 1422						7.8		1292 1292	.54 1					1.01 D
46 0634 3229.0 3.45						1435 1398														1.01 D
+						1300 1000	30 • 3 · 4	0		21-133	7D • D	U.W .	T 7 7 14	1421	* 701T	•04	T = 1))	T + OD	T*TD	TANTID

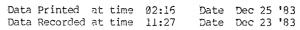
€ }


63

R 3

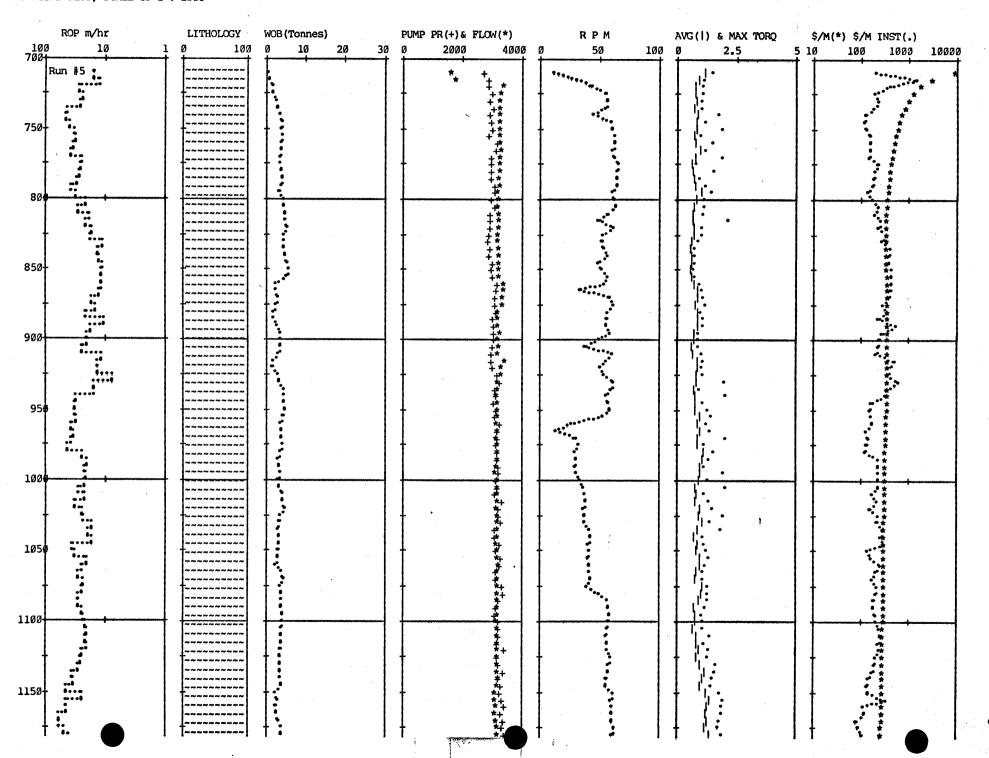
8,3

	میں میں سے سے میں سے میں سے میں سے اس برد سے امر است	46														Data Recorde	ed at	time	06:48	Dat	te D	ec 20	' 83		
	F# TIME DEPTH	ROP	TOR	QUE	RPM	FOB	PUMP	RTRNS	MD :	spc gr	FLOV/	IN	TEMP (C) PV	+- /ጥ (THIS F	3TT		COST	 FST1	DYC	МX	NXB	ECD.	EST
	m	m/hr	AVG	MAX	AVG	AVG	PRES	DEPTH	IN	OUT	IN (ì	REVS m	hrs		ST RUN		DAG	INA	WO	ECO.	FM PR
4			 														······································								
	47 0648 3230.0					14.1	2600	3225.0	1.12	1.12	1435 149					28194 41.0	8.3	1160	1287	.57 1	L•55	1.56	1.60	1.16	1.01D
	48 0702 3231.0					14.2					1435 136					29000 42.0		1198	1285	.5911	L•58	1.59	1.60	1.16	1.01 D.
	49 0719 3232.0					14.2	2540	3227.0	1.12	1.12.	1416 13:					29988 43.0	8.8	1383		.6111	1.63	1.64	1.61	1.16	1.01 D
	50 0725 3233.0 51 0728 3234.0					13.4 13.5	2540	3227.5	1.12	1.12	1416 13					30275 44.0	8.9		1259	.61 1					1.01 D
	52 0743 3235.0					14.7	25701	3227.5	1.12	1.12	1417 132 1435 139					30475 44.9		323	1249				1.61		
ì	53 0757 3236.0					14.2	26101	3220.4	1 12	1 12	1435 138		38.8 41.	3 54.0	71	31322 45.0		1547	1248				1.62		
i	54 Ø816 3237.0					13.6	26301	3230 3	1 12	1 12	1435 126		30.8 42.	1, 55.5 1 60 7	0	32064 47.0			1247	.65 1					1.01 D
i	55 Ø832 3238.0					14.3	26001	3231.4	1.12	1.12	1435 126					32712 47.9 33678 49.0		581	1240	.6611			1.59		
1	56 0850 3239.0					14.3					1435 129		39.7.41	3 68 3	21	34696 50.0	10.2	1433	1244 1247				1.59		
1	57 0910 3240.0	2.951	2.14	2.26	58	14.0					1435 137					35886 51.0	10.5						1.61 1.63		
	58 0928 3241.0				58	14.0	26001	3235.4	1.12	1.12	1435 139		38.8 41.	5 69.4	8	36915 52.0	10.8		1261				1.64		
	59 0946 3242.0					14.1	26001	3237.7	1.12	1.12	1438 138	9 3				37989 53.0	11.1		1265	7611	-66	1.66	1.65	1.16	1.021D
i	60 1010 3243.0					14.2	2610	3239.1	1.12	1.12	1438 143	1 3	38.8 41.	5 70.4	31	39395 54.0	11.5	1899	1279	.79 1			1.67		
1	61 1021 3244.0 5					13.4	26201	3239.5	1.12	1.12	1435 143					40027 55.0	11.7	772	1272	.8011			1.65		
1	62 1026 3245.0 1 63 1042 3246.1					13.5 13.3	20101	3239.8	1.12	1.12	1438 145					40333 55.0	11.8	35 7	1257	.81 1	.27	1.27	1.67	1.15	1.03 D
i	64 1047 3247.0					13.4	25401	3240.5	1.12	1.12	1408 145 1412 140					40797 57.0	11.9	438	1247	.82 1			1.65		
i	65 1052 3248.0					13.6	25301	3240.0	1 12	1 12	1412 140 1409 137	0 3 2 2				41020 58.0	12.0	350	1231	.82 1			1.67		
į	66 1103 3249.0					14.0					1409 137 1438 143					41304 59.0 41899 50.0	12.1		1218	.83 1			1.65		1.03ID
İ	57 1119 3250.0					13.7					1438 142					42783 61.0	12.3 12.5		1213 1216	.84 1			1.63		1.03ID
1	68 1131 3251.0	4.48	1.78	1.87		13.9	2610	3242.8	1.12	1.12	1438 142					43441 62.0	12.7		1216	.85 1			1.52 1.50		1.04 D 1.04 D
1	72 1205 3253.0 2					14.5	26101	3247.1	1.12	1.12	1438 141		9.2 42.9	73.6	11	45386 64.0	13.3						1.60		
- 1	73 1220 3254.0 4					14.2	26101	3248.8	1.12	1.12	1440 137	5 3				46179 65.0	13.6								1.04ID
ļ	74 1234 3255.0 4					13.5	2510	3249.6	1.12	1.12	1439 147	9 3					13.8	1205				1.53			1.05 D
i	75 1259 3256.0 8					13.6	26991	3251.2	1.12	1.12	1439 148					47573 67.0	14.0	883		.9411					1.05 DT
1	76 1310 3257.0 5 77 1318 3253.1 8				59		26101	3251.9	1.12	1.12	1442 153		9.5 41.4	77.5	91	48235 58.0	14.2	987	1211	.95 1	.50	1.50	1.55	1.15	1.05 D
. ;	78 1327 3259.0 8										1443 153						14.3	728		.95 1			1.53	1.16	1.0510
i	79 1335 3260.0 8					-	26201	3252 A	1.12	1 12	1446 149 1446 151	0 3 E 2				49158 70.0	14.4	805		.9711					1.05 D
i	80 1340 3261.0 1					13.4	26231	3253.3	1 12	1 12	1445 151 1446 148					49654 71.0 49912 72.0	14.5 14.7	742 365		.9311					1.0510
1	81 1344 3252.1 1										1446 151						14.7	320		.9911				1.15	1.05 D
1	82 1348 3253.0 1	11.71	1.81 1	.98	56 .	14.2	26331	3254.Ø	1.12	1.12	1446 149	9 3				50382 74.0		362		.99 1				1.16	1.05 D
1	83 1403 3264.0 8				56 .	13.9	26321	3254.9	1.12	1.12	1447 151	3						641	1150 1			1.35			1.07ID
. !	34 1416 3265.0 4	-			55 .	14.4	25301	3255.4	1.12	1.12	1448 159	2 3				51573 76.Ø	15.2		1149 1			1.53		1.15	1.071D
- !	85 1500 3265.0 1				58 .		25001.	3259.6	1.12	1.12	1442 147						15.8	2164	1173 1				1.47		1.3710
1	85 1539 3267.0 6				59 .		25001	3261.5	1.12	1.12	1445 148	7 4					15.9	853	1158 1	.0511.	.45	1.45	1.45	1.15	1.07ID
1	87 1521 3259.0 7 88 1531 3259.0 6				38 . 49 .						1447 145						15.0		1159 1			1.29	1.44	1.15	1.07ID
;	89 1541 3270.0 5				5ø .		2030].	3204.2	1.12	1.12	1459 159						15.2		1155 1			1.39	1.43	1.15	1.6710
i	93 1556 3271.0 3				51	13 0	26201	3254.9	1 12	1.12	1450 150 1450 152						15.4		1154 1			1.43			1.0710
i	91 1612 3272.0 3				52						1430 152 1449 153						15.5		1154 1						1.0710
i	92 1624 3273.0 5				52						1450 158						15.9 17.1		1155 1						1.07 D
1	93 1635 3274.0 5	.531.	1.50 1	.72	52	14.6	25391	3257.4	1.12	1.12	1450 149						17.3		1154 1. 1151 1.			1.48			1.071D
-	94 1659 3275.0 4				50 J	15.1	250013	3269.7	1.12	1.12	1444 150	3 4					17.5		1154 1.						1.071D
!	95 1719 3276.0 2				59]	15.7	262013	3271.4	1.12	1.12	1450 156	7 4:					17.9		1160 1.						1.0715
1	95 1735 3277.0 3	3.72	1.71 1	.82	59 1	15.2	261013	3272.0	1.12	1.12	1439 150	5 4	1.2 44.5	73.93	31 6	51359 88.0	18.1		1161 1.			1.65			1.0710
1	97 1751 3278.0 3				63 1	14.8	2630 3	3273.4	1.12	1.12	446 149						18.4	1329	1163 1.						1.07ID
1	93 1818 3279.0 2	951	1.71 i	. 88 97	69 1	14.9	25401	32/4.9	1.12	1.12	446 152	3 4]	1.5 44.4	72.52	31 6	53915 90.0	18.9	2026	1175 1	2411	0.0	1 70	1 55	1.16	1.67ID
+	99 1834 3280.0 3		/ 1 1	• <i>> 1</i>	00 1	.4.0	2040 3	04/D.B.	1.12	1.12	.443 149	4.	1.6 44.7	72.50	11 6	54871 91.0	19.1	1359	1177 1.	.25 1.	.63	1.52	1.57	1.15	1.37ID
							•													+					

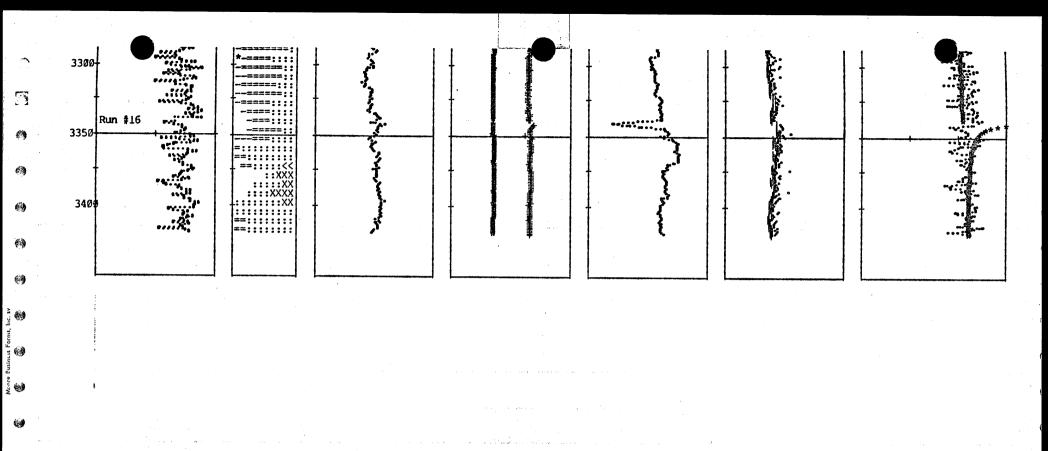

.

1809 2845 2841, P. 5.3811.73 1.97 66 16.7 253813756, 1.12 1.12 1.24 1.55 1.64 45.0 72.581 65533 9.6 19.2 993 1176 1.791 56 1.53 1.6 1.6710 1.02 1.02 2002 2003.0 6.3911.82 1.09 59 15.5 253813757, 9 1.12 1.12 1.04 1.05	F#	TIME DEPTH m	ROP m/hr	TORQUE AVG MAX			PUMP RTRNS PRES DEPTH		spc gr OUT	v FLC IN		TEM IN	IP (C) OUT	PVT	REVS		BIT hrs		OST T RUN		DXC	NX	NXB	ECD	EST FM PR
1922 2923 36.24 36.21 37.25						-											19.3	993	1174 1	.27	1.54	1.52	1.56	1.15	1.07 D
1931 1924 1924 1925 4,998 1,995						-								•				683	1168 1	L.28	1.47	1.45	1.55	1.16	1.07 D
1944 1977 2325-56.4, 0,9911.62 1,91 57 14.6 25691 2322.6, 1.12 1.12 142 291 41.0 41.5 72.18 66877 95.0 20.0 2976 13.5 1.321.1.55 1.5.8 1.15 1.16 1.4710 11.0 1595 3287.0 5.091.1.81 1.99 57 13.9 25691 2322.8 1.12 1.12 143 1494 41.6 45.3 73.291 69379 99.0 20.7 1984 1152 1.341.48 1.47 1.52 1.15 1.16 1.4710 11.0 1595 3287.0 5.091.1.81 1.99 57 13.9 25691 2322.8 1.12 1.12 143 1494 41.6 45.3 73.291 69379 99.0 20.7 1984 1152 1.341.48 1.47 1.52 1.15 1.16 1.4710 11.0 2353 3282.0 3.9911.78 1.16 5.85 1.16 1.17 1.10																									
185 1849 3285.2 4.92 1.68 2.17 58 15.2 2548 13279.5 1.12 1.12 1443 1599 41.7 45.8 72.85 16790 97.9 20.2 1627 1142 1.3311.57 1.55 1.53 1.16 1.4711 1.17 1412 1242 3228.8 3.9711.7 1.18 1.68 31.6 2558 13292.4 1.12 1.12 1442 1445 41.6 45.3 73.29 6.9799 90. 20.4 87.3 1158 1.3111.6 1.6711 1.17 1.18 1.28 1											_							-						1.16	1.07 D
105 1959 1227, 8 5,66 1,81 1,99 259 1399, 3 1,12 1,12 1443 1494 41,6 45,3 74,25 1,90 90, 20, 1185 1,34 1,48 1,47 1,52 1,16 1,471 1,09 233 3289, 8 3,31 1,7 1,65 5,86 1,6 2591 3284, 1,12 1,12 1445 1514 1,46 145, 1,46 45,3 74,25 74,00 90, 20,7 1,96																									
187 2818 3288.8 3.8911.78 1.87 1.86 58 14.6 26811282.4 1.12 1.12 1442 1445 41.6 45.5 74.25 170440 99.0 23.7 1954 1152 1.1511.6 1.48 1.16 1.16 1.16 2233 329.0 3.9711.79 1.06 58 14.9 268913283.3 1.12 1.12 1445 1464 41.5 45.8 74.75 17344 102 21.4 1959 1172 1.4811.76 1.15 1.15 1.15 1.16 1.17 10 111 1228 3292.0 4.611.74 1.83 58 14.9 264913283.3 1.12 1.12 1445 1464 41.5 45.2 88.61 72741 102 21.4 1959 1172 1.4811.76 1.15 1.15 1.15 1.16 1.17 10 111 1228 3292.0 4.6511.79 1.9 1.9 58 15.4 268913287.7 1.12 1.12 1455 1524 41.8 4.6 4.5 74.79 17344 102 21.5 1281 173 1.4211.8 1.67 1.5 1.15 1.16 1.17 10 111 1228 3292.0 4.6711.8 5 2.09 53 31.6 254913283.3 1.12 1.12 1443 1454 24.4 47.7 75.9 17591 140 22.4 5791 171 1.4511.6 1.67 1.5 1.16 1.17 10 111 1228 3292.0 4.6711.8 5 2.09 53 31.6 2.58913298.3 1.12 1.12 1432 1655 42.0 44.7 75.97 18791 140 22.0 5791 171 1.4511.6 1.67 15 1.16 1.47 10 111 124 143 145 145 145 145 145 145 145 145 145 145																									
1808 2933 3289.0. 3.49711.75 1.86																									
1899 2897 3899.8 2.44 1.74 1.83 58 1.49 2.648 1285.3 1.12 1.12 1445 1456 41.5 45.2 68.61 72741 101 21.4 1599 1.72 1.408 1.75 1.75																									
1110 2213 329.0 4.051.1.07 1.99 58 15.7 265913286.7 1.12 1.12 1.452 1.452 41.5 45.3 74.99] 73594 1802 21.6 1281 1173 1.4211.68 1.67 1.19 1.16 1.67101 1112 2151 3293.0 8.06911.82 1.97 98 13.8 269113287.7 1.12 1.12 1.452 1.449 42.8 48.4 7.76.79] 75991 104 22.0 5771 1171 1.4511.51 1.451 1.15 1.67101 1112 2215 3295.0 4.05811.95 2.09 53 1.36 259913289.3 1.12 1.12 1.432 1.452 42.1 43.4 74.7 5.79] 75991 104 22.0 5771 1171 1.4511.51 1.4711.15 1.4711.11 1.12 1.12 1.12 1.12 1.12 1.12 1.1																				-					
1111 2283 3292.4 4.0511.79 1.91 58 15.4 268913287.7 1.12 1.12 1.45 1.56 1.46 1.13 1.76 1.07 1.11 2.11 2.15 1.25 1.26 1.15 1.16 1.16 1.11 2.15 1.25 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28																									
1112 2213 2291. 4 8.6711.62 2.1.97 58 13.8 2610 1288.7 1.12 1.12 1432 1543 42.1 44.7 76.79 175.90 1204 22.5 571 1171 1.4511.36 1.35 1.99 1.16 1.6710 1142 2216 1295. 8 4.6,811.85 2.09 53 13.6 2560 1299.8 1.12 1.12 1432 1545 42.1 44.5 74.9 1.75 1.75 1.20 1.20 115 115 115 1.20 115 115 115 1.20 115 115 115 1.20 115 115 1.20 115 115 115 1.20 115 115 1.20 115 115 1.20 115 115 1.20 115 1.20 115 115 1.20	1111	2128 3292.	0 4.05	11.79 1.91	58 15	.4																			
1113 2263 3294. 0.48711.65 2.09 551 3.6 2596 3299. 3.12 1.12 1432 1542 42.1 43.4 74.25 75723 165 22.1 2795 1169 1.4611.69 1.48 1.67 1.16 1.0610 1115 2221 3295. 0.4611.69 2.13 52 1.3 2.560 3299. 1.12	1112	2151 3293.	0 8.68	11.82 1.97	58 13	8.8							-	•											
1115 2221 3295.0 (0.4611.99 2.13 52 13.2 260813299.8 1.12 1.12 1431 1656 41.9 44.6 71.54) 76388 106 22.4 1085 1.1471.25 1.3 1.49 1.55 1.16 1.6510 1115 2223 3297.0 4.0511.09 2.13 1.3 260813299.1 1.12 1.12 1431 1656 41.9 45.0 72.98) 77456 108 22.8 1351 1.62 1.481.57 1.55 1.57 1.16 1.6510 1117 2252 3293.0 3.7611.0 42.20 53 14.4 261013291.1 1.12 1.12 1435 1535 41.9 45.0 72.98) 77456 108 22.8 1351 1.62 1.481.57 1.55 1.57 1.16 1.6510 1112 2323 3293.0 3.7611.0 42.20 53 14.9 262013293.7 1.12 1.12 1435 1531 42.0 45.8 74.41 78377 109 23.1 1336 1.135 1.159 1.58 1.57 1.16 1.6510 1119 2323 3293.0 3.6 5.911.0 42.23 53 14.9 262013293.7 1.12 1.12 1435 1531 42.0 45.8 74.41 78377 109 23.1 1336 1.135 1.159 1.58 1.57 1.16 1.6510 1120 2339 3301.0 5.611.19 1.22 53 14.9 262013293.7 1.12 1.12 1435 1531 42.0 45.8 74.41 78377 110 23.5 2027 1.173 1.521.77 1.76 1.59 1.16 1.6510 1120 2339 3301.0 5.611.19 2.22 53 14.9 262013293.7 1.12 1.12 1435 1550 42.1 46.2 74.25 18076 112 23.8 842 1.167 1.541.50 1.48 1.57 1.16 1.6510 1120 2339 3301.0 5.611.19 2.22 53 14.9 262013293.4 1.12 1.12 1435 1550 42.1 46.2 74.25 18076 112 23.8 842 1.167 1.541.50 1.48 1.57 1.16 1.6510 1122 20327 3303.0 3.741.18 3.2.97 52 1.4 256013298.4 1.12 1.12 1435 1550 42.1 45.2 74.25 18076 112 23.8 842 1.167 1.541.50 1.48 1.57 1.16 1.6510 1122 20327 3303.0 3.741.18 1.12 1.12 1431 1435 1550 42.1 46.2 74.25 18076 112 23.8 842 1.167 1.541.50 1.48 1.55 1.16 1.6510 1122 20327 3303.0 3.74 0.4031.18 3.2 0.7 55 13.1 261013331.0 1.12 1.12 1431 1435 1.54 1.44 1.44 1.44 1.44 1.44 1.44 1.4						3.6	2590 3289.3	1.12	1.12	1432	1542					_									
1115 2223 3299.0 4.0511.09 2.13 52 13.3 260813299.1 1.12 1.12 1431 1659 41.9 45.0 71.70 176503 107 22.5 402 11.01 1.4711.26 1.25 1.25 1.57 1.16 1.6610 11.17 2252 3299.0 4.0511.02 2.26 53 14.4 261813291.1 1.12 1.12 1435 1518 41.9 45.2 74.41 79733 11.09 23.1 1365 1.163 1.1611.57 1.55 1.57 1.16 1.6610 11.17 2252 3299.0 2.2211.1 82.19 35 14.4 261813292.2 1.12 1.12 1435 1518 42.0 45.8 4.4 11 79733 11.0 23.5 23.7 1373 1.5211.77 1.76 1.59 1.16 1.6510 11.19 2329 3331.0 5.611.19 2.29 53 14.9 262813294.5 1.12 1.12 1435 1514 42.1 45.7 44.1 79733 11.0 23.5 23.7 1373 1.5211.77 1.76 1.59 1.16 1.6510 11.19 2.29 53 14.9 262813294.5 1.12 1.12 1435 1514 42.1 45.2 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0						3.6	2500 3289.8	1.12	1.12	1432	1665						-								
1117 2252 3298.0 3.76.1 1.84 2.05 5 3 14.4 2510 13291.1 1.12 1.12 1435 1595 41.9 45.0 72.981 77455 199 22.1 1.164 1.165 1.165 1.16 1.65 11 118 2228 3299.0 3.76.1 1.84 2.05 131 4.2 2510 13292.1 1.12 1.12 1435 1518 41.9 45.2 74.411 7839.1 199 23.1 1366 1153 1.53 11.51 1.52 11.7 1.6 1.65 11 119 2228 339 3301.0 6.5 61 11.9 1.22 53 14.9 2520 13294.5 1.12 1.12 1435 1514 42.1 45.9 74.57 1809 23.1 1366 1153 1.53 11.7 7.1 1.6 1.65 11 119 2228 339 3301.0 6.5 61 11.9 1.22 53 14.9 2520 13294.5 1.12 1.12 1435 1514 42.1 45.9 74.57 18092.1 111 23.7 754 1170 1.53 11.41 1.40 1.57 1.16 1.65 11 122 2339 3301.0 5.6 61 11.9 1.22 53 14.9 2520 13294.5 1.12 1.12 1435 1550 42.1 46.2 74.57 18092.1 111 23.7 754 1170 1.53 11.41 1.40 1.57 1.16 1.65 11 122 2027 3330.0 3.74 11.83 2.07 52 13.4 2560 13294.5 1.12 1.12 1435 1550 42.1 46.2 74.25 18099 112 23.8 842 1167 1.54 11.50 1.48 1.55 1.16 1.65 11 122 2027 3330.0 3.74 11.83 2.07 52 13.4 2560 1329.4 1.12 1.12 1431 1435 144 144 142.7 44.7 44.51 144 145 145 145 145 145 145 145 145 1							2500 3290.1	1.12	1.12	1431	1650	41.9	45.Ø	71.701	76680	107									
111 222 2399.0 2.21 1.80 1.93 5 14.4 2510 1292.2 1.12 1.12 1435 1510 41.9 45.2 74.411 79387 109 23.1 1365 1163 1.591 1.59 1.58 1.57 1.16 1.6510 1119 2228 3392.0 6.591 1.80 1.39 1.59 1.59 1.16 1.6510 1119 2228 3392.0 6.591 1.80 1.91 2.29 5 14.9 2620 1293.5 1.12 1.12 1435 1551 42.1 45.9 74.57 80241 111 23.7 754 1170 1.5911.1 1.11 1.12							2610 3291.1	1.12	1.12	1435	15Ø5	41.9	45.0	72.981	77456	108	22.8								
119 2328 3339.0 6.90 1.84 2.33												41.9	45.2	74.41	78307	109	23.1	1366							
122 2339 3331.0 5.c111.91 2.29 53 14.9 2620133295.5 1.12 1.12 1435 1550 42.1 46.2 74.25 88079 112 23.8 842 1167 1.541.50 1.48 1.55 1.16 1.051D 122 0327 3332.0 2.8711.83 1.95 54 14.8 261013297.4 1.12 1.12 1435 1550 42.1 46.2 74.25 88079 112 23.8 842 1167 1.541.50 1.48 1.55 1.16 1.051D 122 0327 3332.0 2.8711.83 1.95 54 14.8 261013297.4 1.12 1.12 1445 1441 42.7 43.7 74.25 82921 114 24.5 1350 1175 1.591.56 1.59 1.57 1.16 1.041D 122 0327 3334.0 1.0511.76 1.95 15 13.1 261013331.0 1.12 1.12 1435 1449 42.5 46.0 74.991 84913 115 25.1 2635 1192 1.611.78 1.76 1.59 1.15 1.041D 122 0125 3335.0 2.6711.88 1.99 55 13.1 261013331.0 1.12 1.12 1435 1449 42.5 46.0 74.991 84913 115 25.1 2635 1192 1.611.78 1.76 1.59 1.15 1.041D 122 0125 3335.0 4.0 2.111.86 1.99 55 12.5 260813332.2 1.12 1.12 1431 1449 42.9 46.3 74.25 86597 117 25.5 863 1194 1.6411.40 1.39 1.59 1.15 1.031D 122 0125 3337.0 4.0311.89 2.35 55 12.6 250013333.1 1.12 1.12 1431 1449 42.9 46.3 74.25 86597 117 25.6 863 1194 1.6511.53 1.51 1.57 1.15 1.021D 122 0125 3337.0 4.2511.87 1.99 55 12.6 250013333.7 1.12 1.12 1431 1459 42.9 46.3 74.25 87970 119 26.0 683 1194 1.6511.53 1.51 1.57 1.15 1.021D 123 02239 331.0 2.3511.87 1.99 55 12.6 250013333.7 1.12 1.12 1431 1459 42.9 46.3 74.25 88912 122 25.7 2361 1199 1.7611.54 1.52 1.54 1.16 1.021D 123 02239 331.0 2.3511.87 1.99 55 13.2 260013333.7 1.12 1.12 1438 1439 43.1 45.6 74.25 88912 122 25.7 2361 1199 1.7011.54 1.52 1.54 1.16 1.021D 123 02239 331.0 2.2511.87 1.99 55 13.2 260013333.7 1.12 1.12 1428 1453 43.4 46.7 74.25 18250 122 25.7 2361 1199 1.7011.69 1.67 1.55 1.16 1.021D 123 0230 331.0 2.2511.87 1.99 59 1.20 250013333.7 1.12 1.12 1427 1459 43.3 4.5 6.7 4.25 18250 122 25.7 2361 1199 1.7011.69 1.67 1.55 1.16 1.021D 123 0233 331.0 0.2511.87 1.99 59 1.20 250013339.3 1.12 1.12 1427 1459 43.4 44.7 44.7 44.9 14.9 42.7 44.9 14.9 42.9 44.9 44.9 44.9 44.9 44.9 44.9 4							2620 3293.7	1.12	1.12	1435	1531														1.05 D
Date							2620 3294.5	1.12	1.12	1435							23.7	754	1170 1	.53 1	1.41	1.40	1.57	1.16	1.05ID
121 20329 3322.0 2.6711.88 1.95 54 4.8 251013297.4 1.12 1.12 1445 1461 42.7 47.7 47.25 82921 11 24.5 1356 1175 1.55 1.56 1.57 1.15 1.04 1.12 1.23 10.3 3394.0 1.6811.76 1.67 55 13.1 261013381.0 1.12 1.12 1445 1461 42.7 47.7 47.25 82921 11 24.5 1356 1175 1.5911.56 1.54 1.57 1.16 1.04 1.12	1120			11.91 2.29	53 14	.9	2620 3295.5	1.12	1.12	1435	1550	42.1	46.2	74.25	80796	112									1.05 D
1122 0227 3303.0 3.7411.83 2.07 52 13.4 256913298.4 1.12 1.12 1446 1481 42.7 43.7 74.25 82921 114 24.5 1359 1175 1.5911.56 1.54 1.57 1.16 1.64 D 1124 0125 3305.0 2.6711.80 1.93 55 13.1 260033302.2 1.12 1.12 1435 1449 42.5 45.0 74.09 18913 115 25.1 2635 1192 1.6111.70 1.76 1.59 1.15 1.64 D 1125 3305.0 2.6711.80 1.99 55 13.2 250033302.3 1.12 1.12 1431 1435 43.0 42.6 74.25 86142 115 25.5 2639 1302.1 1.6311.65 1.54 1.57 1.15 1.64 D 1125 3305.0 2.6711.80 1.99 56 12.5 260013302.3 1.12 1.12 1432 1423 42.8 46.2 74.25 86587 117 25.5 953 1194 1.6411.40 1.39 1.59 1.15 1.031D 1127 0158 3307.0 4.0311.80 1.99 56 12.5 260013302.3 1.12 1.12 1431 1449 42.9 46.3 74.25 87587 117 25.5 953 1194 1.6411.40 1.39 1.59 1.15 1.031D 1127 0158 3309.0 3.8911.63 2.02 55 12.0 250013303.2 1.12 1.12 1431 1469 43.0 45.6 74.25 87970 119 25.0 683 1194 1.6511.55 1.51 1.57 1.15 1.021D 1129 0239 3310.0 2.3511.37 1.98 56 13.0 250013303.4 1.12 1.12 1430 1439 43.1 45.6 74.25 87870 119 25.3 1616 1190 1.6711.54 1.52 1.54 1.16 1.021D 1129 0239 3310.0 2.3511.37 1.98 56 13.0 250013305.8 1.12 1.12 1428 1453 43.4 45.7 74.25 92259 122 27.2 25.3 1193 1.6711.59 1.67 1.56 1.16 1.021D 1130 0205 3311.0 2.1411.05 1.93 56 13.2 266013305.8 1.12 1.12 1427 1460 43.6 47.3 74.25 92259 122 27.1 2312 1207 1.7211.72 1.70 1.70 1.59 1.15 1.011D 1132 0341 3313.0 0.21611.89 2.06 57 12.8 259913309.8 1.12 1.12 1427 1407 43.8 44.1 75.84 19291 122 27.5 5.09 1231 1.7411.29 1.57 1.58 1.15 1.011D 1132 0341 3314.0 4.6811.93 2.77 58 12.8 25031330.8 1.12 1.12 1427 1407 43.8 44.1 75.84 19291 122 27.2 27.8 1338 1204 1.7611.50 1.47 1.55 1.15 1.011D 1130 0351 3314.0 4.6811.93 2.77 58 12.8 26301330.8 1.12 1.12 1427 1409 43.3 45.0 74.41 94025 125 27.8 1338 1204 1.7611.50 1.47 1.55 1.15 1.011D 1130 0351 3314.0 4.6811.93 2.77 58 12.8 26301331.0 1.12 1.12 1427 1409 43.4 45.7 74.09 19359 127 22.3 2720 1206 1.7911.60 1.57 1.55 1.15 1.011D 1130 0351 3314.0 4.6811.93 2.77 58 12.8 25001331.0 1.12 1.12 1427 1409 43.7 47.0 74.09 19350 129 2.9 1.1937 1218 1.8111.77 1.70 1.70 1.70 1.70 1.70 1.70 1.7	1121			11 00 1 05	E 4 1 /		261612222																		1
123 123 33340 1.68 1.76 1.87 55 1.1 250 1331 2.1							2010 329/.4	1.12	1.12	1433	1570									•					
124 0.125 3305.0 2.67 1.80 1.93 55 13.1 2609 3302.2 1.12 1.12 143 143 42.7 46.4 74.25 86.142 116 25.5 1822 1197 1.531 1.66 1.69 1.15 1.031 1.12						-														-					
125 0135 3336.0 6.21 1.86 1.99 55 12.5 2500 3302.8 1.12 1.12 1.432 1.423 42.8 46.2 74.25 85.857 117 25.6 853 1.194 1.64 1.40 1.39 1.59 1.15 1.03 D 1.12 0158 3338.0 7.33 1.99 2.35 55 12.6 2500 3303.2 1.12 1.12 1.431 1.455 43.0 46.6 74.25 87970 119 26.0 683 1194 1.65 1.53 1.51 1.15 1.02 D 1.23 3339.0 3.89 1.83 2.02 55 1.26 2500 3303.2 1.12 1.12 1.431 1.455 43.0 46.6 74.25 87970 119 26.0 683 1194 1.65 1.53 1.51 1.15 1.02 D 1.23 1.25 1.24 1.24 1.455 1.							2010[3301.0	1.12	1.12	1435	1449														
126 2152 3337.0 4.03 1.84 1.98 56 12.9 2600 3303.1 1.12 1.12 1.43 1.450 42.9 46.3 74.25 875725 118 25.9 1534 1194 1.65 1.63 1.34 1.55 1.16 1.02 D 1.23 22.3 23.3 23.0 2.35 1.87 1.98 2.55 12.6 2.500 3303.2 1.12 1.12 1.43 1.455 4.3.4 46.6 74.25 875725 118 25.9 1534 1194 1.65 1.63 1.34 1.55 1.16 1.02 D 1.20 2.2													-												
127 9159 3309.0 7.33 1.69 2.35 55 12.6 2500 3303.7 1.12 1.12 1.431 1455 41.0 46.6 74.25 87970 119 25.0 683 1190 1.6611.35 1.34 1.55 1.16 1.02 D 1.29 2293 3310.0 2.35 1.87 1.93 56 12.9 2600 3303.7 1.12 1.12 1428 1463 43.4 46.7 74.25 87870 120 25.3 1616 1190 1.767 1.54 1.55 1.16 1.02 D 1.20																									
123 2213 3339.0 3.89 1.83 2.02 56 12.9 2699 1333.7 1.12 1.12 1439 1439 43.1 45.6 74.25 89312 120 25.3 1616 1199 1.67 1.54 1.52 1.55 1.16 1.02 10 1.03 0.206 3311.0 2.14 1.85 1.93 56 13.2 2609 13304.7 1.12 1.12 1428 1439 43.1 45.6 74.25 99259 121 25.7 2361 1199 1.67 1.54 1.52 1.55 1.16 1.02 10 1.03 0.206 3311.0 2.14 1.85 1.93 56 13.2 2609 13304.7 1.12 1.12 1427 1450 43.6 47.3 74.25 19784 122 27.1 2312 1.207 1.72 1.72 1.70 1.53 1.15 1.02 10 1.03 1.0	1127	Ø158 3308.	7.33	1.89 2.35	55 12																				
129 9239 3310.0 2.35 1.87 1.98 55 13.0 2600 3304.7 1.12 1.12 1428 1433 43.4 46.7 74.25 92250 121 25.7 2361 1193 1.70 1.69 1.67 1.55 1.16 1.92 1.13 0305 3311.0 2.14 1.85 1.93 55 13.2 2600 3306.8 1.12 1.12 1427 1465 43.6 47.3 74.25 91784 122 27.1 2312 1237 1.72 1.72 1.70 1.58 1.15 1.01 1.13 0341 3313.0 10.2 2.00 2.00 57 12.8 2590 3309.8 1.12 1.12 1427 1445 43.8 43.1 77.27 92935 123 27.5 1509 1211 1.74 1.59 1.57 1.58 1.15 1.01 1.13 0341 0																	_								
133																									
131 6335 3312.0 3.33 1.90 2.06 57 12.8 2590 3308.8 1.12 1.12 1427 1495 43.8 43.6 77.27 92935 123 27.5 1509 1211 1.74 1.59 1.57 1.58 1.15 1.01 D 133 3354 3314.0 4.68 1.93 2.07 58 12.8 2600 3309.5 1.12 1.12 1427 1497 43.8 44.1 75.84 93281 124 27.6 508 1205 1.74 1.26 1.24 1.58 1.15 1.01 D 134 3407 3315.0 4.71 1.93 2.14 58 12.7 2590 3310.1 1.12 1.12 1427 1497 43.8 44.1 75.84 93281 124 27.6 508 1205 1.74 1.26 1.24 1.58 1.15 1.01 D 1.15 1.01 D 1.15 3316.0 3.10 1.89 2.06 57 12.6 2500 3310.8 1.12 1.12 1427 1495 43.5 45.2 74.09 94769 126 28.0 1104 1203 1.77 1.49 1.47 1.55 1.16 1.01 D 1.15 1	1130	0306 3311.	3 2.14	1.85 1.93	56 13	.2																			
133 334 3313.0 10.212.00 2.90 59 12.0 2590 3309.2 1.12 1.12 1427 1437 43.8 44.1 75.84 93291 124 27.6 50.8 1236 1.74 1.26 1.24 1.58 1.15 1.91 134 3407 3315.0 4.71 1.93 2.14 58 12.7 2590 3310.1 1.12 1.12 1427 1445 43.5 45.2 74.09 94769 125 27.8 1338 1204 1.76 1.50 1.48 1.55 1.15 1.01 135 3426 3316.0 3.19 1.89 2.06 57 12.6 2590 3310.1 1.12 1.12 1427 1436 43.5 45.2 74.09 94769 126 28.0 1.04 1.05 1.77 1.40 1.55 1.16 1.01 136 3451 3317.0 2.43 1.87 1.98 54 40.0 2590 3310.8 1.12 1.12 1427 1438 43.2 45.7 74.09 95854 127 28.3 27.8 138 1.17 1.70 1.57 1.16 1.01 137 3514 3318.0 2.62 1.68 1.94 56 14.5 2590 3311.7 1.12 1.12 1427 1438 43.9 47.1 74.25 97261 128 28.7 20.6 1.21 1.81 1.72 1.70 1.57 1.16 1.01 138 3537 3319.0 2.53 1.90 2.10 55 14.6 2590 3315.7 1.12 1.12 1427 1438 43.9 47.0 74.09 98553 1.29 29.1 1937 1218 1.83 1.72 1.69 1.58 1.15 1.01 140 3612 3321.0 2.53 1.93 2.05 55 14.1 2590 3316.0 1.12 1.12 1423 1478 43.9 47.1 74.09 10.0453 1.31 2.27 1.09 1.28 1.28 1.15 1.01 141 3550 3322.0 3.05 2.01 2.30 55 14.1 2590 3318.3 1.12 1.12 1427 1448 43.2 45.0 76.31 10.0453 1.31 2.27 1.09 1.58 1.55 1.61 1.15 1.01 142 0708 3322.0 3.05 2.01 2.30 55 14.1 2590 3310.3 1.12 1.12 1427 1448 43.2 45.0 76.31 10.0453 1.31 1.31 1.70 1.57 1.61 1.15 1.01 143 0718 3324.1 6.49 2.11 2.12 2.2590 3310.3 1.12 1.12 1427 1448 43.2 45.0 76.31 10.041 1.33 30.5 1621 1.25 1.64 1.65 1.65 1.61 1.15 1.01 144 0738 3322.0 2.58 2.04 2.25 61 14.7 2590 3321.5 1.12 1.12 1427 1446 43.2 45.0 76.30 10.042 1.33	1131	0335 3312.0	3.33	1.90 2.05	57 12	.8																			
133 3354 3314.0 4.68 1.93 2.07 58 12.8 260 13399.6 1.12 1.12 1427 1449 43.3 45.0 74.41 94025 125 27.8 1338 1204 1.76 1.50 1.48 1.55 1.15 1.01							259013309.2	1.12	1.12	1427	1437														
135 9426 3316.0 3.10 1.89 2.06 57 12.6 2599 3310.1 1.12 1.12 1427 1438 43.2 46.7 74.09 94769 126 28.0 1104 1203 1.77 1.49 1.47 1.55 1.16 1.01 D 1.135 9426 3316.0 3.10 1.89 2.06 57 12.6 2600 3310.8 1.12 1.12 1427 1438 43.2 46.7 74.09 94854 127 29.3 2720 1206 1.79 1.60 1.58 1.55 1.16 1.01 D 1.137 9514 3318.0 2.62 1.86 1.94 56 14.5 2590 3314.0 1.12 1.12 1427 1423 43.7 47.0 74.09 94855 1.29 29.1 1937 1218 1.83 1.72 1.69 1.55 1.16 1.01 D 1.138 9537 3319.0 2.53 1.90 2.10 55 14.6 2590 3315.7 1.12 1.12 1428 1443 43.9 48.8 74.09 94855 1.15 1.01 D 1.139 1.149							2600 3309.6	1.12	1.12	1427	1449	43.3	45.ต	74.41	94025	125									
135 9426 3316.0 3.10 1.89 2.66 57 12.6 250 1316.8 1.12 1.12 1427 1438 43.2 46.7 74.09 95954 127 28.3 2720 1206 1.79 1.60 1.58 1.55 1.16 1.01 D 137 0514 3318.0 2.62 1.86 1.94 56 14.5 250 1314.0 1.12 1.12 1428 1442 43.4 47.1 74.25 97261 128 28.7 2036 1213 1.81 1.72 1.70 1.57 1.16 1.01 D 138 0537 3319.0 2.53 1.90 2.10 55 14.6 250 1314.0 1.12 1.12 1426 1443 43.9 47.0 74.09 99357 130 2.95 1918 1.83 1.72 1.69 1.55 1.16 1.01 D 140 0612 3321.0 2.53 1.93 2.01 55 14.6 250 3315.0 1.12 1.12 1423 1473 43.9 47.1 74.09 100453 131 29.7 1002 1221 1.86 1.49 1.75 1.53 1.15 1.01 D 140 0612 3321.0 2.53 1.93 2.01 55 14.6 250 3315.0 1.12 1.12 1423 1478 43.9 47.0 74.09 1010453 131 29.7 1002 1221 1.86 1.49 1.75 1.59 1.55 1.16 1.01 D 140 0612 3321.0 2.53 1.93 2.01 55 14.6 250 3315.0 1.12 1.12 1423 1478 43.9 47.0 74.09 1010769 132 30.1 2092 1227 1.89 1.73 1.70 1.60 1.15 1.01 D 142 0708 3322.0 3.06 2.01 2.30 56 14.1 2600 3318.3 1.12 1.12 1427 1448 43.2 46.0 76.31 104218 134 30.8 1534 1237 1.92 1.67 1.64 1.62 1.15 1.01 D 144 0733 3325.0 2.58 2.04 2.25 61 14.7 2500 3320.9 1.12 1.12 1427 1446 43.2 45.9 76.00 104919 135 31.0 699 1234 1.93 1.47 1.43 1.60 1.15 1.01 D 144 0733 3325.0 2.58 2.04 2.25 61 14.7 2500 3320.9 1.12 1.12 1425 1448 43.2 46.9 74.72 105029 136 31.3 2409 1237 1.95 1.75 1.72 1.62 1.15 1.01 D 144 0730 3325.0 2.58 2.04 2.25 61 14.7 2500 3320.9 1.12 1.12 1425 1448 43.2 46.9 74.72 105029 136 31.3 2409 1237 1.95 1.75 1.72 1.62 1.15 1.01 D 144 0730 3325.0 2.58 2.04 2.25 61 14.7 2500 3320.9 1.12 1.12 1425 1448 43.2 46.9 74.72 105029 136 31.3 2409 1237 1.95 1.75 1.72 1.62 1.15 1.01 D 144 0730 3325.0 2.58 2.04 2.25 61 14.7 2500 3320.9 1.12 1.12 1425 1348 43.3 45.8 75.20 107346 137 31.7 7727 1241 1.98 1.70 1.67 1.63 1.15 1.01 D 148 0841 3329.0 3.70 2.04 2.16 60 14.5 2500 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 109875 140 32.4 1549 2.00 1.64 1.65 1.61 1.15 1.01 D 148 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 109875 140 32.4 1549 2.02 1.64 1.65 1.61 1.15 1.01 D						-						43.5	45.2	74.09	94769	125	28.0	1104	1203 1	.77 1					
137						-											23.3	2720	1205 1	.7911	1.60	1.58			1.31 D
138 9537 3319.0 2.53 1.90 2.10 55 14.6 2590 3315.7 1.12 1.12 1.425 1434 43.9 46.8 74.09 99327 130 29.5 1918 1223 1.85 1.73 1.70 1.69 1.15 1.01 1.00 1						-											28.7	2035	1213 1	.81 1	1.72	1.70	1.57	1.15	.1.01 D
139 9548 3329.0 5.38 1.93 2.05 55 14.1 2530 3316.0 1.12 1.12 1.12 1423 1473 43.9 47.1 74.09 103453 131 29.7 1032 1221 1.86 1.47 1.58 1.15 1.01							2590 3314.0	1.12	1.12	1427	1423											1.69	1.58	1.15	1.01 D
140 0612 3321.0 2.53 1.93 2.01 55 14.6																									
141 3559 3322.0 3.05 2.01 2.30 55 14.1 2690 3318.3 1.12 1.12 1427 1448 43.7 44.3 74.88 103111 133 30.5 1621 1235 1.91 1.65 1.63 1.61 1.15 1.01 D 142 0708 3323.0 3.22 2.04 2.13 50 14.2 2590 3319.2 1.12 1.12 1427 1418 43.2 46.0 76.31 104218 134 39.8 1534 1237 1.92 1.67 1.64 1.62 1.15 1.01 D 144 0733 3325.0 2.58 2.04 2.25 61 14.7 2590 3320.1 1.12 1.12 1427 1418 43.2 45.9 76.00 104819 135 31.0 509 1234 1.93 1.47 1.43 1.60 1.15 1.01 D 144 0733 075 2.03 2.58 2.04 2.25 61 14.7 2590 3320.9 1.12 1.12 1427 1414 43.2 46.0 74.72 105029 136 31.3 2409 1237 1.95 1.75 1.72 1.62 1.15 1.01 D 145 0759 3325.0 2.86 2.02 2.18 61 14.0 2590 3321.5 1.12 1.12 1425 1448 43.3 45.8 75.20 107346 137 31.7 1727 1241 1.98 1.70 1.67 1.63 1.61 1.01 D 148 0819 3327.0 3.05 2.03 2.21 61 14.1 2.670 3322.6 1.12 1.12 1425 1331 43.3 45.7 76.15 108524 138 32.0 1657 1244 2.00 1.68 1.65 1.61 1.61 1.01 D 148 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 109875 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1							252013316.0	1.12	1.12	1423	1473														
142 0708 3323.0 3.22 2.04 2.13 60 14.2 2590 3319.2 1.12 1.12 1427 1418 43.2 46.0 76.31 10418 134 30.8 1534 1237 1.92 1.67 1.64 1.62 1.15 1.01 D 144 0733 3325.0 2.58 2.04 2.25 61 14.7 2590 3320.1 1.12 1.12 1427 1446 43.2 46.0 74.72 106029 135 31.0 609 1234 1.93 1.47 1.43 1.60 1.15 1.01 D 145 0759 3326.0 2.86 2.02 2.18 61 14.0 2590 3321.5 1.12 1.12 1427 1414 43.2 46.0 74.72 106029 136 31.3 2409 1237 1.95 1.75 1.72 1.62 1.15 1.01 D 146 0819 3327.0 3.05 2.03 2.21 61 14.1 2600 3322.6 1.12 1.12 1425 1331 43.3 45.7 76.15 108524 138 32.0 1657 1244 2.00 1.68 1.65 1.64 1.15 1.01 D 148 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1.15 1.01 D 140 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1.15 1.01 D 140 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1.15 1.01 D 140 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1.15 1.01 D 140 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.65 1.61 1.15 1.01 D 140 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.65 1.61 1.15 1.01 D 140 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.65 1.61 1.61 D 140 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65																									
143 3718 3324.1 6.40 2.11 2.21 60 14.0 2590 3320.1 1.12 1.12 1.427 1446 43.2 45.9 76.00 104819 135 31.0 609 1234 1.93 1.47 1.43 1.60 1.15 1.01 D																									
1144 0733 3325.0 2.58 2.04 2.25 61 14.7 2590 3320.9 1.12 1.12 1427 1414 43.2 46.0 74.72 106029 136 31.3 2409 1237 1.95 1.75 1.72 1.62 1.15 1.01 D 145 0759 3326.0 2.86 2.02 2.18 61 14.0 2590 3321.5 1.12 1.12 1425 1448 .43.3 45.8 75.20 107346 137 31.7 1727 1241 1.98 1.70 1.67 1.63 1.15 1.01 D 146 0819 3327.0 3.05 2.03 2.21 61 14.1 2500 3322.6 1.12 1.12 1425 1331 43.3 45.7 76.15 108524 138 32.0 1657 1244 2.00 1.68 1.65 1.64 1.15 1.01 D 148 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 109875 140 32.4 1549 1240 2.02 1.64 1.50 1.61 1.01 D	1143	Ø718 3324	6.401	2.11 2.21	50 14																				
145 0759 3326.0 2.86 2.02 2.18 6 14.0 2590 3321.5 1.12 1.12 1425 1448 .43.3 45.8 75.20 107346 137 31.7 1727 1241 1.98 1.70 1.67 1.63 1.16 1.01 D 1460 0819 3327.0 3.05 2.03 2.21 6 14.1 2500 3322.6 1.12 1.12 1425 1331 43.3 45.7 76.15 108524 138 32.0 1657 1244 2.00 1.68 1.65 1.64 1.15 1.01 D 147 0826 3328.0 8.41 2.14 2.43 59 13.7 2600 3322.9 1.12 1.12 1427 1382 43.4 45.8 76.31 108950 139 32.1 623 1239 2.01 1.37 1.34 1.62 1.16 1.01 D 148 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 109875 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1.16 1.01 D 140 0841 3329.0 3.70 2.04 2.16																									
1446 Ø819 3327.Ø 3.05 2.03 2.21 61 14.1 2500 3322.6 1.12 1.12 1425 1331 43.3 45.7 76.15 108524 138 32.0 1657 1244 2.00 1.68 1.65 1.64 1.15 1.01 D 1447 Ø326 3328.Ø 8.41 2.14 2.43 59 13.7 2600 3322.9 1.12 1.12 1427 1382 43.4 45.8 76.31 108950 139 32.0 1657 1244 2.00 1.68 1.65 1.64 1.15 1.01 D 148 Ø841 3329.Ø 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 109875 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1.61 D						• .	259013321.5	1.12	1.12			43.2	40.U 45. Q	74 - 74 75 - 29	100029 107216	137 137									
1147 0326 3328.0 8.41 2.14 2.43 59 13.7 2600 3322.9 1.12 1.12 1427 1382 43.4 45.8 76.31 108950 139 32.1 623 1239 2.01 1.37 1.34 1.62 1.16 1.01 D 148 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 108957 140 32.4 1549 1240 2.02 1.64 1.50 1.61 1.15 1.01 D							2600 3322.6	1.12	1.12	1425	1331	43.3	45.7	76-151	102524	138									
1148 0841 3329.0 3.70 2.04 2.16 60 14.5 2610 3324.4 1.12 1.12 1429 1399 43.3 45.8 76.31 109875 140 32.4 1549 1240 2.02 1.64 1.60 1.61 1.15 1.01 n	1147	Ø326 3328.Ø	8.41	2.14 2.43	59 13	.7	260013322.9	1.12	1.12	1427	1382	43.4	45.8	76 311	102950	139									
	148	Ø841 3329.0	3.70	2.04 2.16	60 14	.5	2610 3324.4	1.12	1.12	1429	1399	43.3	45.8	76.311	109875	140									

				9							Data R	scorde	CO OL CIN	e 05:04	Date	060 21	0.5		
F#	TIME DEPTH	: * ROP	TOROUE	RDM	FOR	PUMP RTRNS	MD spc ar	v FLOW/MIN	TEMP (C	ייעם ני		THIS B	TT	ċost	- EST DXC	NX	NXB	ECD	EST
1 "	m m							TUO & NI			REVS			INST RU	•				FM PR
+											+								+
1149	Ø9Ø4 333Ø.	0 2.61	2.03 2.16	60	14.4	250013325.2	1.12 1.12	1424 1356	43.4 45.9	76.63	1111259	141	32.8 20	Ø5 1244	2.05 1.73	1.70	1.63	1.16	1.01 D
	Ø942 3331.				14.3	256013326.9													
1151	1013 3332.	0 1.94	2.00 2.09	61	14.0	259013329.4	1.12 1.12	1423, 1295	43.0 45.6	77.11	1115027	143	33.8 25	90 1253	2.11 1.81	1.77	1,67	1.15	1.01 D
	1035 3333.				13.5	259013330.2	1.12 1.12	1420 1321	42.8 46.0	77.11	1116330	144	34.2 16	55 1267	2.13 1.68	1.64	1.67	1.15	1.01 D
	1111 3334.				13.9	2640 3331.2			42.8 44.5	77.43	1118550	145	34.8 25	58 1279	2.17 1.85	1.81	1.69	1.15	1.01 D
1154	1140 3335.	0 1.94	11.93 2.01	61	15.5	2640 3332.2	1.12 1.12	1435 1323	42.4 44.7	77.74	120357	145	35.3 25	08 1287	2.2011.87	1.83	1.71	115	1.01 D
1155	1200 3335.	Ø 3.13	11.95 2.07	61	15.7	263013333.1	1.12 1.12	1432 1326	42.3 44.9	78.22	121538	147	35.6 16	65 1289	2.22 1.74	1.59	1.71	1.15	1.01 D
1156	1225 3337.	Ø 2.37	1.94 2.05	61	16.Ø	263013333.6	1.12 1.12	1435 1335	42.2 43.9	80.92	123050	148	36.0 21		2.25 1.83				
	1249 3338.					2630 3334.6							36.4 19		2.28 1.83				
						264013336.2			41.9 43.7	82.04	126726	150	37.0 32	97 1310	2.32 1.96	1.91	1.77	1.15	1.Ø1 D
+ NB			I F3 8.5".	10,	,10,11	jets. Star	t depth 334	lm. *											!
1	Date Dec																		1
	2315 3342.					•						1.0		20 12709	•				
	2324 3343.				17.8	2750 3341.0			25.0 30.1	-	1	2.0	.4 6						
						2680 3341.0			25.0 32.3				.6 9						
1722	2353 3345.		2.16 2.41	64	15.9	2640 3341.0	1.13 1.13	1433 1554	26.2 33.6	15.20	2189	4.0	.8 12	35 3962	.05 1.71	1./3	1.41	1.10	1.0110
1120	Date Dec		10 10 0 22	۲.	15.0	264912241 9	1 12 1 12	1400 1777	27 2 26 6	75 01	1 2266	г «	1 1 1 4	21 2446	a711 71	1 72	1 42	1 16	1 0115
	0010 3346.					2640 3341.0			27.2 36.0			5.0	1.1 14						
	0030 3347. 0248 3348.					2670 3341.6 2670 3343.3			29.6 35.1 30.6 35.1			5.0 7.0	1.5 16						
	0107 3349.					2500 3344.4			31.6 35.7				2.0 14						
	0120 3350.				15.8	270013345.3			32.1 35.2			-	2.2 11						
	0200 3351.				15.2	272913347.1			33.1 35.9				2.8 34						
	Ø228 3352.				14.0	2679 3348.5			33.9 38.6				3.2 25						
	Ø236 3353.					2670 3349.3			34.0 39.1				3.3 5						
	0251 3354.				14.4	2570 3359.6			34.8 38.4				3.5 15						
	Ø322 3355.				15.4	2590 3351.1			35.7 39.0				4.1 29						
	0345 3356.				15.0	2670 3351.9			35.2 39.2				4.5 18	87 2277	.39 1.81	1.82	1.45	1.15	1.01[5
	0358 3357.				14.5	269013353.4							4.7 11	45 2234	.4211.64	1.54	1.47	1.15	1.0110
1181	£411 3358.	0 4.79	2.19 2.32	75	14.4	2690 3354.0	1.13 1.13	145%, 1394	35.7 40.1	78.05	19313	17.5	4.9 10	34 2135	.4411.61	1.52	1.49	1.15	1.01ID
1182	3421 3359.	0 6.03	2.20 2.33	74	14.2	269913354.5	1.13 1.13	1459 1390	35.9 49.7	78.05	20052	18.0	5.1 8	64 2069	.4511.54	1.54	1.50	1.15	1.31 D
1183	C429 3350.	9 7.51	2.24 2.37	74	14.5	2700 3354.7	1.13.1.13	1453 1396	35.9 40.8	77.27	20551	19.0	5.2 6						
1184	0457 3361.	0 7.02	2.27 2.40	73	14.8	2790 3355.4	1.13 1.13	1454 1370	37.2 49.9	78.22	21513	20.0	5.5 7						
	Ø518 3352.				15.3	2670 3355.3			37.5 40.7				5.9 18						
	Ø543 3363 .					255913358.7			38.0 41.3				6.3 22						
	0509 3354.				16.2	2550 3350.4			38.2 41.1	-	•		5.7 18						
	0630 3355.				16.1	2650 3351.6							7.9 17						
	2541 3355.					265013352.1			38.5 41.2	-	•		7.2 9						
	3558 3357.					257013352.6			33.5 41.0		-		7.5 15						
-	0715 3359.				16.3	2559 3353.5							7.8 14						
	Ø731 3359.				16.0	2520 3354.0							8.0 11		.7611.56				
	8757 3378.				15.5	2650 3365.1			38.9 40.9		1		8.4 13						
	0315 3371.				15.7	266013366.5			38.9 40.7				8.7 15 8.9 15						
	9834 3372. 9858 3373.					2650 3357.5 2650 3369.0					•		9.3 18						
	9941 3374.				14.9	258013370.6			39.4 42.2				9.8 20						
	1003 3375.				15.8	259013370.5 259013372.0			39.4 42.2				10.2 22						
	1933 3376.					270013373.0									.93 1.81				
					15.7	2710 3373.8	1.13 1.13	1454 1425	39.9 43.4	77.74	1 44459	35.0			1.00 1.76				
1201	1112 3378.	Ø 3.48	2.01 2.33	53	15.7	2700 3374.4	1.13 1.13	1453 1425	40.1 43.9	78.05	45555	37.0	11.3 14		1.03 1.69				


F# TIME DEPTH ROP TORQUE RPM FOB PUMP RTRNS MD sp m m/hr AVG MAX AVG AVG PRES DEPTH IN	grv FLOW/MIN OUT IN OUT	· ·	THIS E	hrs INS	COST EST DXC	:4X	NXB	ECD	EST FM PR
	.13 1454 1429			al after Street Street after spring years 1874 which games always sur-	· · · · · · · · · · · · · · · · · · ·				
The state of the s	.13 1454 1429 .13 1446 1432		16505 20 a		· · · · · · · · · · · · · · · · · · ·				
202 1127 3379.0 3.75 2.07 2.26 62 15.8 2710 3374.9 1.13 1	13 1446 1432		1 490W0 30 W	11.5 1298	1827 1.0511.67	1.67	1.75		1.01
203 1209 3380.0 3.87 2.11 2.32 64 15.8 2680 3376.6 1.13 1		40.7 43.2 77.74	47975 39.0	11.9 1306	1833 1.07 11.67	1.66	1.73	1.17	1.01
204 1221 3381.0 4.91 2.04 2.14 64 15.0 2690 3377.0 1.13 1	.13 1446 1479	40.8 44.2 77.90	48733 40.0	12.1 1049	1810 1.09 1.58				
205 1243 3382.0 2.75 1.91 2.13 65 15.6 2680 3378.4 1.13 1	.13 1450 1453	40.9 44.4 78.06	50162 41.0	12.5 2465	1811 1.12 1.77	1.76	1.73	1.17	1.01
206 1300 3383.0 3.53 1.99 2.28 65 15.8 2680 3379.0 1.13 1	.13 1447 1458	41.1 44.5 78.06	51293 42.0	12.8 1444	1802 1.14 1.70	1.59	1.72	1.17	1.01
07 1305 3334.0 8.99 2.10 2.20 65 16.5 2690 3379.0 1.13 1					1773 1.15 1.45	1.44	1.70	1.17	1.01
38 1315 3395.0 7.19 2.10 2.17 65 16.4 2690 3379.0 1.13 1					1751 1.16 1.51				
39 1324 3386.0 6.56 2.12 2.22 64 16.0 2690 3379.6 1.13 1	.13 1449 1491	41.4 44.9 78.06	52829 45.0	13.2 749	1726 1.17 1.52	1.51	1.66	1.17	1.0
10 1339 3387.0 3.88 2.05 2.22 65 15.9 2690 3380.7 1.13 1	.13 1446 1488	41.5 45.3 78.22	53841 46.0	13.5 2125	1717 1.20 1.69	1.55	1.55	1.17	1.0.
11 1354 3388.0 4.13 2.05 2.16 65 16.3 2680 3381.6 1.13 1	.13 1450 1480	41.7 45.5 78.22	54800 47.0	13.7 1195	1707 1.22 11.68	1.65	1.65	1.17	1.0
12 1441 3389.0 3.48 2.05 2.67 64 16.2 2670 3384.5 1.13 1	,13 1438 1431	41.6 44.3 79.97	55811 47.9	14.2 1582	1730 1.26 1.72	1.70	1.67	1.17	1.0
13 1502 3390.0 2.62 2.06 2.29 66 16.6 2670 3386.7 1.13 1 14 1522 3391.0 3.00 2.04 2.17 67 16.3 2670 3387.8 1.13 1		41.6 45.4 80.13	58257 49.0	14.6 2752	1730 1.29 1.83	1.81	1.69	1.17	1.6
		42.3 46.0 80.45	61204 51.0	15.3 1883					
6 1558 3393.0 4.91 2.04 2.32 67 16.6 2670 3388.7 1.13 1 7 1618 3394.0 4.04 2.04 2.29 62 16.5 2670 3389.8 1.13 1					1720 1.37 1.64			1.17	
8 1636 3395.0 3.26 2.00 2.21 62 16.5 2670 3390.5 1.13 1	13 1449 1474	42.7 46.0 80.77 42.9 46.0 80.92							
9 1655 3396.0 3.23 1.99 2.18 62 17.0 2670 3391.2 1.13 1									
0 1719 3397.0 2.53 1.94 2.14 64 17.8 2710 3392.9 1.13 1	13 1440 1472	43.0 45.9 79.81	00297 00.0	16 0 2007	1715 1 47 1 07	1.74	1 7/	1 17	1.0
21 1750 3398.0 2.57 1.90 2.03 62 17.0 2520 3394.4 1.13 1	13 1435 1337	42.9 44.7 82.20	1 68294 57 A	17 2 1770	1710 1.47(1.07	1 81	1 75	1 17	1.0
2 1823 3399.0 1.85 1.92 2.09 60 16.8 2670 3395.0 1.13 1									
3 1851 3400.0 2.13 1.95 2.05 60 16.9 2660 3397.4 1.13 1									
4 1919 3401.0 2.22 1.94 2.05 60 16.7 2660 3398.1 1.13 1		42.9 46.4 84.42			1755 1.60 1.85				
5 1945 3402.0 2.21 1.90 2.05 60 16.9 2660 3399.0 1.13 1	.13 1449 1311	43.1 46.8 94.10			1763 1.64 1.86				
6 1956 3403.0 6.02 2.00 2.29 59 16.7 2560 3399.3 1.13 1	.13 1450 1303	43.1 46.7 84.10			1748 1.65 1.55				
7 2008 3404.0 4.81 1.99 2.21 59 16.6 2660 3399.8 1.13 1	.13 1453 1310	43.2 45.5 84.26			1735 1.65 1.61		-		
8 2029 3405.0 2.81 1.86 2.05 61 16.9 2660 3400.5 1.13 1	13 1450 1344	43.4 45.2 83.95			1738 1.69 1.79	1.77	1.79	1.17	1.0
9 2047 3405.0 3.16 1.90 2.07 60 16.6 2670 3401.2 1.13 1		43.3 46.2 84.26			1733 1.71 1.74				
0 2105 3407.0 3.32 1.86 2.02 61 17.0 2650 3401.8 1.13 1		43.5 45.9 84.58			1730 1.73 1.75	1.72	1.75	1.17	1.0
1 2148 3409.0 2.35 1.84 1.98 61 16.4 2600 3404.4 1.13 1		43.0 44.6 85.38			1742 1.77 1.83				
2 2209 3409.0 3.01 1.87 2.16 61 15.6 2650 3405.3 1.13 1									_
3 2225 3410.0 3.68 11.92 2.13 60 16.2 2660 3406.5 1.13 1		42.6 45.7 77.9%			1735 1.81 1.68				
4 2243 3411.0 3.25 1.89 2.06 60 16.5 2650 3407.0 1.13 1		42.6 45.6 78.38							
5 2303 3412.0 2.85[1.90 2.07 61 15.5 2660[3407.6 1.13 1 6 2315 3413.0 4.89[1.90 2.09 60 15.8 2670[3403.1 1.13 1		42.7 46.2 79.49		22.2 1750	1731 1.85 1.74				
6 2316 3413.0 4.89 1.90 2.09 60 15.8 2670 3403.1 1.13 1 7 2333 3414.0 2.72 1.88 2.09 61 16.1 2660 3409.2 1.13 1	13 1435 1339	42.7 45.1 79.81	8/115 /2.0	22.4 1013	1720 1.8711.59	1.55	1.70	1.17	1.0
3 2347 3415.0 3.77 1.95 2.24 61 16.1 2670 3409.9 1.13 1		42.8 46.2 79.18	00046 74 0	22.8 3353	1722 1.8911.77	1.74	1.70	1.1/	1.4
Date Dec 24 '83	13 1433 1302	42.9 40.2 /0.00	0.41 64069	22.9 .2022	1709 1.90[1.58	1.04	1.09	1.17	1.5
9 3034 3416.0 3.38 1.93 2.14 61 16.0 2668 3411.0 1.13 1	13 1435 1285	43 9 45 6 78 781	00117 75 0	23 2 1547	1705 1 0211 71	1 67	1 69	1 17	1 0
0 3011 3417.0 8.51 2.04 2.21 61 15.1 2670 3411.2 1.13 1	13 1433 1203	13 0 15 6 70 22	0.0548 76 4	23.2 1347	1601 1 0311 41	1 27	7.00	1.1/ 3 17	1.0
1 0054 3418.0 3.02 1.90 2.18 62 14.9 2640 3413.9 1.13 1	13 1428 1275	42 6 44 5 81 081	92526 77 M	23.3 745	1704 1.97 1.70				
2 0116 3419.0 2.72 1.96 2.14 64 14.6 2650 3414.9 1.13 1	.13 1431 1266	42.4 45.0 81 081	93908 78 0	24 2 1810	1705 1 9911 73	1 70	1.66	1 17	1.0
3 0142 3420.0 2.31 1.98 2.25 65 15.5 2540 3417.0 1.13 1	.13 1431 1242	42.3 45.6 81 24	95590 79 0	24.7 2074	1711 2 0211 02	1 78	1.63	1 17	1 0
D at 3420m.	101 1072	10.0 OI.aZ4	00000	2-10/ 20/4	1111 201/21102	1.70	T . 10	1.1	T • 1)
o at 3420m.									

Run wireline logs: DLL-MSFL-Cal-GR-SP, LDL-CNL-Cal-GR, BHC-GR-CBL-VDL, HDT, Velocity Survey, CST.


APPENDIX C

- ii. Drilling Data Plots
 - (a) 1:2000 ROP-LITHOLOGY-WOB-PUMP PRESSURE & FLOW-RPM AVERAGE & MAXIMUM TORQUE-\$/M & \$/M INST.
 - (b) 1:2000 ROP-DXC & TREND-LITHOLOGY-TOTAL GAS-ESTIMATED PORE PRESSURE & ECD-TEMPERATURE IN & OUT

(a) 1:2000 ROP-LITHOLOGY-WOB-PUMP PRESSURE & FLOW-RPM AVERAGE & MAXIMUM TORQUE-\$/M & \$/M INST.

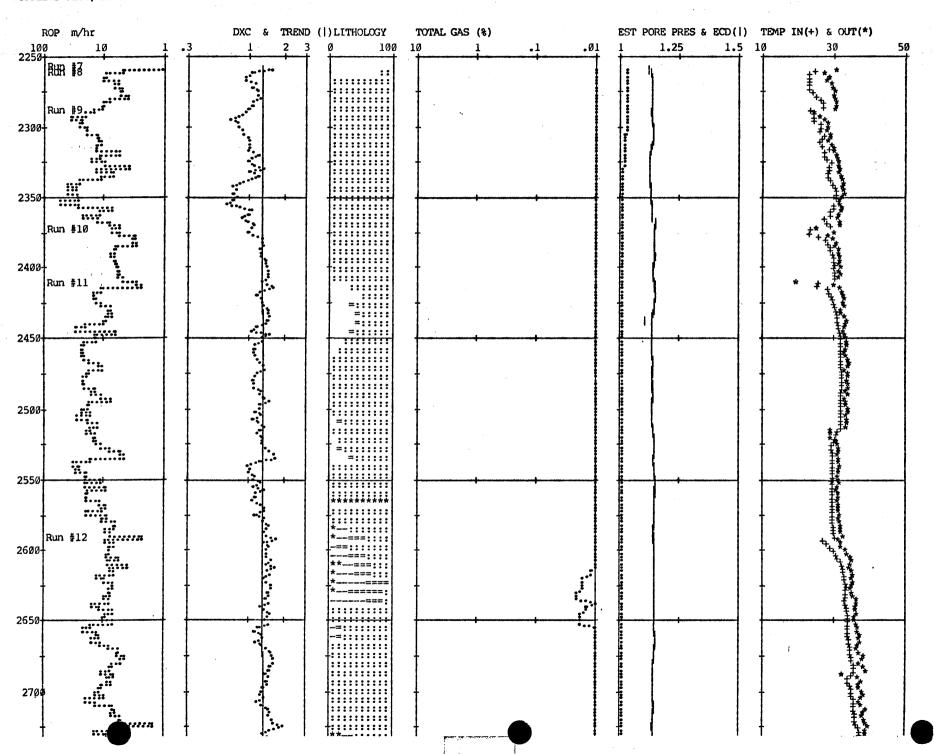
SHELL DEV. AUST: BASKER SOUTH No.1 100 OFFLINE PLOT, SCALE OF 1: 2000 ROP m/hr LITHOLOGY WOB (Tonnes) PUMP PR (+) & FLOW (*) RPM \$/M(*) \$/M INST(.) AVG(|) & MAX TORO 2250 Run 7 100 10 20 3Ø Ø 2000 4000 0 50 100 0 2.5 5 10 100 1000 10000 Run #8 . : : : : : : : : : 4::::::::: Run #9... ::::::::: |::::::::: 230 1:::::::::: 1::::::::: ::::::::::: +:::::::::: 235 **** ******* ::::::::::::: Run #10 |:::::::: :::::::::: ::::::::: 2400-. Run #11 :::::::::::: :::::: ÷... =:::::: =::::: =:::: =::::: 245 ******* :::::::: ::::::::: :::::::::: :::::::::: 2500-. =::::::: ::::::::: =::::::: =::::: :::::::::: ::::::::: 2550-..... **** (Run #12 :::::::::: '--:::::: *--==:::: -==::::::: 2600 --===:::: **--==::: ·---==::: --======: ---===: ::::::::: 265 -=::::::: -=::::::: ::::::::: ::::::::::: ::::::::: ::::::::: ::::::::: 2700 :::::::::

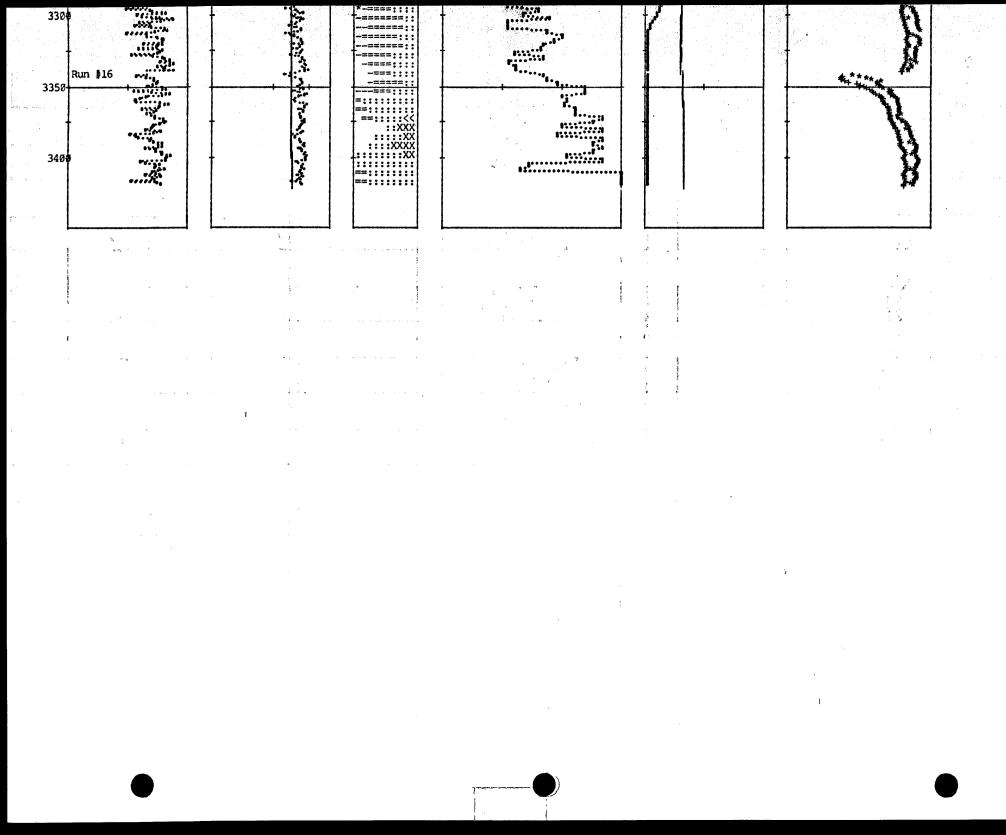
(b) 1:2000 ROP-DXC & TREND-LITHOLOGY-TOTAL GAS-ESTIMATED PORE PRESSURE & ECD-TEMPERATURE IN & OUT

瞬

64

6


1


14

6.0

E#

6

APPENDIX D

MORNING GEOLOGICAL ENGINEERING REPORTS

COMPANY SHELL PET. DEV. WELL BASKER SOUTH *1
DATE TIME TIME O6 °°
DEPTH 884 m LAST REPORT DEPTH
RIG OPERATIONS Brilling Ahead.
REPORT BY T. JANOWICZ REPORT RECEIVED BY D. Slattelee (OPERATOR)
DRILLING REPORT LX 27 HS Bit No.: Run # S Type DIAMANT BOART Size: 124 Jets: TFA 1.05 sq in
Bit No.: Kun # 5 Type DIAMANT BOART Size: 12/0 Jets: 11 17 100 sy m
On Bit: Footage: 178 m Hours: 9-4 ROP: 18-9 m/h WOB: 0-5 tome RPM: 650-600
Pump Press: 3050 ps: SPM: 200 Torque: 6-8 kN:m TBR: 356500 CP I: \$ 363 CP B: \$ 364
HYDRAULICS REPORT
Mud Density In: 1.06 sg Mud Density Out: 1.06 sg ECD: 1.08 sg PV/YP: 12/11
Gels: Salinity: PPM CI Solids: % Hole Volume: 146 m ³ Annular Volume: 132.8 m ³ Tubing Volume: 7.5 m ³ Displaced Volume: 5.7 m ³
Hole Volume: 46 m Annular Volume: 132.8 m Tubing Volume: 7.3 m Displaced Volume: 3.7 m
Carbide Lag-Calculated Lag: 36 minutes Flowrate: 3200 2/min Drillpipe Annular Vel (Max. Dia. Sec.): 25-3 m/min Drillpipe Annular Vel (Open Hole): 66 m/min
Drillpipe Annular Vel (Max. Dia. Sec.): Drillpipe Annular Vel (Open Hole): 23.8 m / max.
Drill Collar Annular Vel (Open Hole): 73.3 m min Critical Vel: 83.8 m min
Pressure Loss System: 2510 psc Pressure Loss Bit: 500 psc % Pressure Loss: 44/1
Nozzel Vel: Jet Impact Force: 459 kg HHP: 266 hp
PRESSURE PARAMETERS
PRESSURE PARAMETERS Drilling Exponent: 0.9 6 0.7 Flowline Temperature: 32 C
Drilling Exponent: Flowline Temperature: 32 C Shale Density: Shale Factor:
Drilling Exponent: 0.9 6 0.7 Flowline Temperature: 32 C
Drilling Exponent: Flowline Temperature: 32 C Shale Density: Shale Factor:
Drilling Exponent: Flowline Temperature: 32 C Shale Density: Shale Factor: Background Gas: Max. Formation Gas: @ Trip Gas: @
Drilling Exponent:
Drilling Exponent:
Drilling Exponent:
Drilling Exponent: O · 9 to O · 7 Flowline Temperature: 32 C
Drilling Exponent: 0.9 to 0.7 Flowline Temperature: 32 C
Shale Density: Shale Factor: Shale Factor: Background Gas: 0.07-0.4% Max. Formation Gas: 0.4% @ 740 m Trip Gas: @ Other Gas: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 4378 39 Min. Estimated Fracture Pressure (Open Hole): 1.52 30 at Shoe Estimated Pore Pressure: 1.03 39 Min. Estimated Pore Pressure (Open Hole): 1.03 39 @ Estimated Fracture Pressure at TD: 1.61 39 Comments:
Drilling Exponent: 0.9 to 0.7 Flowline Temperature: 32 C
Shale Density: Shale Factor: Shale Factor: Background Gas: 0.07-0.4% Max. Formation Gas: 0.4% @ 740 m Trip Gas: @ Other Gas: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 4378 39 Min. Estimated Fracture Pressure (Open Hole): 1.52 30 at Shoe Estimated Pore Pressure: 1.03 39 Min. Estimated Pore Pressure (Open Hole): 1.03 39 @ Estimated Fracture Pressure at TD: 1.61 39 Comments:
Shale Density: Shale Factor: Shale Factor: Background Gas: 0.07-0.4% Max. Formation Gas: 0.4% @ 740 m Trip Gas: @ Other Gas: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 4378 39 Min. Estimated Fracture Pressure (Open Hole): 1.52 30 at Shoe Estimated Pore Pressure: 1.03 39 Min. Estimated Pore Pressure (Open Hole): 1.03 39 @ Estimated Fracture Pressure at TD: 1.61 39 Comments:
Shale Density: Shale Factor: Shale Factor: Background Gas: 0.07-0.4% Max. Formation Gas: 0.4% @ 740 m Trip Gas: @ Other Gas: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 4378 39 Min. Estimated Fracture Pressure (Open Hole): 1.52 30 at Shoe Estimated Pore Pressure: 1.03 39 Min. Estimated Pore Pressure (Open Hole): 1.03 39 @ Estimated Fracture Pressure at TD: 1.61 39 Comments:
Drilling Exponent: 0.9 to 0.7 Flowline Temperature: 32 C Shale Density: Shale Factor: Background Gas: 0.09-0.4% Max. Formation Gas: 0.4% @ 740 m Trip Gas: @ Other Gas: Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: .378 29 Min. Estimated Fracture Pressure (Open Hole): 1.52 30 at Shale Estimated Pore Pressure: 1.0330 Min. Estimated Pore Pressure (Open Hole): 1.0330 @ Estimated Fracture Pressure at TD: 1.6/109 Comments: Ahrongh Marl with up to 10. Cal carefule
Drilling Exponent: 0.9 to 0.7 Flowline Temperature: 32 C Shale Density: Shale Factor: Shale Factor: Max. Formation Gas: 0.4 % @ 740 m Trip Gas: @ Other Gas: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: .378 sg Min. Estimated Fracture Pressure (Open Hole): 1.52 sg at Shale Estimated Pore Pressure: 1.03 sg Min. Estimated Pore Pressure (Open Hole): 1.03 sg Estimated Pore Pressure at TD: 1.61 sg Comments: Manual with up to 10 Cal carenite

, C , V
COMPANY SHELL PET. DEU. WELL BASKER SOUTY - 1
DATE 1/12/83 TIME 0600
DEDTU 1285m LAST BEPORT DEPTH 884m
BIG OPERATIONS Drill Ahead
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR)
DOULING DEDODT
Bit No.: Run #5 Type: DiamANT BOART Size: 12/4" Jets: TFA 1.05 sq in
On Bit: Footage: 576 m Hours: 25.8 ROP: 22-3 m/hr ave. WOB: 0-4 towner RPM: 650
Pump Press: 3310 psi SPM: 199 Torque: -8-1-1 knm TBR: 968455 CP 1: \$ 187 CP B: \$ 255
HYDRAULICS REPORT
Mud Density In: $1.07sa$ Mud Density Out: $1.07sa$ ECD: $1.09sa$ PV/YP: $12/11$
Gels: Salinity:
Hole Volume: 176 m Annular Volume: 157.5 m Tubing Volume: 11.2 m Displaced Volume: 7.4 m
Carbide Lag-Calculated Lag: 9946 Stks - 9946 etks Flowrate: 3142 Lpm
Drillpipe Annular Vel (Max. Dia. Sec.): 16.5 m/min Drillpipe Annular Vel (Open Hole): 65.6 m/min Drill Collar Annular Vel (Open Hole): 75.6 m/min Critical Vel: 85.5 m/min
Pressure Loss System: 2794 psi Pressure Loss Bit: 526 psi % Pressure Loss: 15.9 /o
Nozzel Vel: 78-3 m/sec Jet Impact Force: 446 kg HHP: 954.5 hp
PRESSURE PARAMETERS
Drilling Exponent: 0.6 to 0.8 Flowline Temperature: 33-4°C
Shale Density: Shale Factor: Shale Factor: Background Gas: 0.5% Max. Formation Gas: 0.5% @ 1170 m Trip Gas: 0 @ 1145 m
Background Gas: 0.09 - 0.5 / Max. Formation Gas: 0.5/ @ 11 FOm Trip Gas: @ "45 m
Other Gas: Nic
Other Gas: Tight Hole:
Other Gas: Nic Fill: Tight Hole: Cavings: Est %: Average Size:
Other Gas: Tight Hole: Average Size: Average Size:
Other Gas:
Other Gas:
Other Gas:
Other Gas:
Other Gas: Fill: Tight Hole: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: Estimated Pore Pressure: 1.03sq Min. Estimated Pore Pressure (Open Hole): Estimated Pore Pressure: Max. Estimated Pore Pressure (Open Hole): Survey at bit depth 956 m + 1/45 m = 2 4 12 Wipar hip of 5 stands at 1/45 m - no drag.
Other Gas:

C[AADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
COMPANY Shell Dev. Aust. WELL Basker South -1
DATE 2/12/83 TIME 0600
DEPTH 1683 LAST REPORT DEPTH 1285 m
RIG OPERATIONS Drill Ahead
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR)
DRILLING REPORT
Bit No.: Run #5 Type: D. Boart LX27H3 Size: 124 Jets: TFA 1.05 sq in
On Bit: Footage: 974 m Hours: 42.5 ROP: 22.9 m/Lr WOB: 4 torne RPM: 660
Pump Press: 3500ps: SPM: 200 Torque: 1-1-1-5 Knh TBR: 1601,470 CP 1:\$ 356 CP B:\$ 937
HYDRAULICS REPORT
Mud Density In: 1:09 sq Mud Density Out: 1:09 sq ECD: 1:11 sq PV/YP: 11/10
Gels: Salinity: PPM CI Solids: % Hole Volume: 206-8 m³ Annular Volume: 182-9 m³ Tubing Volume: 14-9 m³ Displaced Volume: 8-9 m³
Hole Volume: 206-8 m Annular Volume: 182-9 m Tubing Volume: 14-9 m Displaced Volume: 87 m
Carbide Lag-Calculated Lag: 11563 stks Flowrate: 3164 l/min
Drillpipe Annular Vel (Max. Dia. Sec.): 20.9 m/min Drillpipe Annular Vel (Open Hole): 60.00 min 49-9 m/min
Drill Collar Annular Ver (Open Hole): 76.1 m/min Critical Vel: 78.8 m/min Pressure Loss System: 2957 psi Pressure Loss Bit: 543 psi % Pressure Loss: 16/6
Pressure Loss System: 2957 psi Pressure Loss Bit: 543 psi % Pressure Loss: 16/6
Nozzel Vel: 78.9 m/pec Jet Impact Force: 461kg HHP: 265 hp
PRESSURE PARAMETERS
Drilling Exponent: 6.7 - 0.85 Flowline Temperature: 34.5 C
Shale Density: Shale Factor: Shale Factor: Background Gas: 606 - 5 1/2 Max. Formation Gas: 0.5 1/2 @ 1320 m Trip Gas: Nic @
Other Gas:
Fill: Tight Hole:
Cavings: Est %: Average Size:
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance: O.181 sg Min. Estimated Fracture Pressure (Open Hole): 1.52 sg & Shot
Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): @
Max. Estimated Pore Pressure (Open Hole): 1.03 ag @ Estimated Fracture Pressure at TD: 2.1 sg
Comments: Surveyo at bit depth 1393 in and 1630 in both = 20
Sstand wife hip 2 1630 y - No drag.
Lithology: Marl with minor Calcarenite
Lithology: Marl with minor Calcarente Pit + 1. 37.5 m² 2. 12.2 m³ 3. 77 m³ 4. 62.7 m Trip. 0

NEU KARIAT ALIA
COMPANY Shell Dev. Aust. WELL Basker South -1
DATE 3/12/83 TIME 06°0
DEPTH 1885 m LAST REPORT DEPTH 1685m
RIG OPERATIONS Drilling ahead.
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. Flink (OPERATOR)
DRILLING REPORT
DRILLING REPORT Bit No.: Rerun # 5 Type: D. Roart LX27HS size: 124 Jets: TFA 1.05 Sq in On Bit: Footage: 38 m Hours: 1.9 ROP: 20m/L WOB: 5 tomus RPM: 650
On Bit: Footage: 30 m Hours: 11 ROP: 20m WOB: 5 CONNUS RPM: 03
Pump Press: 3600 psi SPM: 200 Torque: 1.5 knm TBR: 70604 CP 1:\$ 233 CP B:\$ 357
HYDRAULICS REPORT
Mud Density In: 1.08 sg ECD: 1.10 39 PV/YP: 10/10
Gels: Salinity:
Hole Volume: 476 m Tubing Volume: 166 m Displaced Volume: 46 m
Carbide Lag—Calculated Lag: 60 min / 12 36.8 stks Flowrate: 3164 l/min
Drillpipe Annular Vel (Max. Dia. Sec.): 19.3 m/min Drillpipe Annular Vel (Open Hole): 49.9 m/min
Drill Collar Annular Vel (Open Hole): 76° m min Critical Vel: 79 m min
Pressure Loss System: 3062 psi Pressure Loss Bit: 538 psi % Pressure Loss: 15
Nozzel Vel: 78.9 m/sec Jet Impact Force: 457 Kg HHP: 262hp
PRESSURE PARAMETERS
Drilling Exponent: 0.7-0.8 Flowline Temperature: 36.9 C
Shale Percity:
Shale Density: Shale Factor: Shale Factor: Background Gas: O.1 - O.5 Max. Formation Gas: O.5 @ Trip Gas: D @
Shale Density: Shale Factor: Shale Factor: Background Gas: O·1 - O·5 %, Max. Formation Gas: O·5 % @ 1770 \ Trip Gas: N` @ Other Gas: N`
Shale Density: Shale Factor:
Shale Density: Shale Factor:
Shale Density: Shale Factor:
Shale Density:
Shale Density: Background Gas: 0.1 - 0.5 %, Max. Formation Gas: 0.5% @ 1770m Trip Gas: NU @
Shale Density:
Shale Density: Background Gas: 0.1 - 0.5 %, Max. Formation Gas: 0.5% @ 1770m Trip Gas: Nil @ Other Gas: Nil Fill: None Tight Hole: None Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 163 sq Min. Estimated Fracture Pressure (Open Hole): 1.52 sq at shoe Estimated Pore Pressure: 1.03 sq Min. Estimated Pore Pressure (Open Hole): 1.03 sq @ Max. Estimated Pore Pressure (Open Hole): 1.03 sq @ Estimated Fracture Pressure at TD: 2.1 sq Comments: Pull out at 1847 m to retrieve stuck survey tool. Clean
Shale Density:
Shale Density: Background Gas: 0.1 - 0.5 %, Max. Formation Gas: 0.5% @ 1770m Trip Gas: Nil @ Other Gas: Nil Fill: None Tight Hole: None Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 163 sq Min. Estimated Fracture Pressure (Open Hole): 1.52 sq at shoe Estimated Pore Pressure: 1.03 sq Min. Estimated Pore Pressure (Open Hole): 1.03 sq @ Max. Estimated Pore Pressure (Open Hole): 1.03 sq @ Estimated Fracture Pressure at TD: 2.1 sq Comments: Pull out at 1847 m to retrieve stuck survey tool. Clean
Shale Density: Background Gas: 0.1-0.5 %, Max. Formation Gas: 0.5% @ 1770m Trip Gas: Nil @ Other Gas: Nil Tight Hole: More Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 1.63 sq Min. Estimated Fracture Pressure (Open Hole): 1.52 sq at Shoe Estimated Pore Pressure: 1.03 sq Min. Estimated Pore Pressure (Open Hole): 1.03 sq @ Estimated Fracture Pressure at TD: 2.1 sq Comments: Pull out at 1847 m to retrieve stack survey tool. Clean tip. Renum but and drill ahead
Shale Density: Background Gas: 0.1 - 0.5 %, Max. Formation Gas: 0.5% @ 1770m Trip Gas: Nil @ Other Gas: Nil Fill: None Tight Hole: None Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 163 sq Min. Estimated Fracture Pressure (Open Hole): 1.52 sq at shoe Estimated Pore Pressure: 1.03 sq Min. Estimated Pore Pressure (Open Hole): 1.03 sq @ Max. Estimated Pore Pressure (Open Hole): 1.03 sq @ Estimated Fracture Pressure at TD: 2.1 sq Comments: Pull out at 1847 m to retrieve stuck survey tool. Clean
Shale Density: Background Gas: 0.1-0.5 %, Max. Formation Gas: 0.5% @ 1770m Trip Gas: Nil @ Other Gas: Nil Tight Hole: More Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 1.63 sq Min. Estimated Fracture Pressure (Open Hole): 1.52 sq at Shoe Estimated Pore Pressure: 1.03 sq Min. Estimated Pore Pressure (Open Hole): 1.03 sq @ Estimated Fracture Pressure at TD: 2.1 sq Comments: Pull out at 1847 m to retrieve stack survey tool. Clean tip. Renum but and drill ahead
Shale Density: Background Gas: 0.1-0.5 %, Max. Formation Gas: 0.5% @ 1770m Trip Gas: Nil @ Other Gas: Nil Tight Hole: More Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 1.63 sq Min. Estimated Fracture Pressure (Open Hole): 1.52 sq at Shoe Estimated Pore Pressure: 1.03 sq Min. Estimated Pore Pressure (Open Hole): 1.03 sq @ Estimated Fracture Pressure at TD: 2.1 sq Comments: Pull out at 1847 m to retrieve stack survey tool. Clean tip. Renum but and drill ahead

COMPANY Shell Dev Aust. WELL Basker South I
OOM 700
DATE 4/12/83 TIME 0600
DEPTH LAST REPORT DEPTH LAST REPORT DEPTH
RIG OPERATIONS Drill ahead.
REPORT BY T. SANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR)
DRILLING REPORT
Bit No.: Remn # 5 Type D. Boart Lx27 H3 Size: 12/4" Jets: TFA 1.05 Sg in. On Bit: Footage: 266 m Hours: 15.4 ROP: 17.3 WOB: S-7 Forme RPM: 655
On Bit: Footage: 260m Hours: 13"4 ROP: 17"3 WOB: 5-7 10"M2 RPM: 053
Pump Press: 3570 psi SPM: 202 Torque: 1-1-5 Lymp BR: 536735 CP 1:\$ 822 CP B:\$ 290
HYDRAULICS REPORT
Mud Density In: 1-1 39 Mud Density Out: 1-1 29 ECD: 1-1129 PV/YP: 10/10
Gels: Salinity:
Carbide Lag-Calculated Lag: 13292 stlcs / 62.4 min (boost) Flowrate: 3210 l min
Drillpipe Annular Vel (Max. Dia. Sec.): 21-1 m/min Drillpipe Annular Vel (Open Hole): 50-7 m/min
Drill Collar Annular Vel (Open Hole): 77.3 m/min Critical Vel: 78 m/min
Pressure Loss System: 2990 psi Pressure Loss Bit: 580 psi % Pressure Loss: 16%
Nozzel Vel: 31.1 m/pec Jet Impact Force: 486 Kg HHP: 287
PRESSURE PARAMETERS
Drilling Exponent:Flowline Temperature:
Shale Density: Shale Factor:
Drilling Exponent:
Shale Density: Shale Factor:
Shale Density: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nil @ Other Gas: Nil
Shale Density: Background Gas: 0.06-03/6 Max. Formation Gas: 0.3/6 @ 2020m Trip Gas: Nic @ Other Gas: Nic Tight Hole: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE
Shale Density: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nic @ Other Gas: Fill: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 1.523g at shale Factor: Shale Factor: Average Size: Itin Tight Hole: Average Size: Min. Estimated Fracture Pressure (Open Hole): 1.523g at shale Factor: Itin Gas: Nic @ Itin
Shale Density:
Shale Density: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nic @ Other Gas: Nic Tight Hole: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 147 sg Min. Estimated Fracture Pressure (Open Hole): 1.52sg at Shoe
Shale Pactor: Background Gas: 0.06 - 03% Max. Formation Gas: 0.3% @ 200 Trip Gas: Nil @ Other Gas: Nil Fill: Tight Hole:
Shale Pactor: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nic @
Shale Density: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nil @ Other Gas: Nil Fill: Tight Hole: Cavings: Est %: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 147 sg
Shale Pactor: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nic @
Shale Density: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nil @ Other Gas: Nil Fill: Tight Hole:
Shale Density: Background Gas: 0.06-0.3% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nic @ Other Gas: Nic Fill: Tight Hole:
Shale Density: Background Gas: 0.06-03% Max. Formation Gas: 0.3% @ 2020m Trip Gas: Nil Other Gas: Nil Fill: Tight Hole: Cavings: Est %: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 147 39 Min. Estimated Fracture Pressure (Open Hole): 1.523g at shoe Estimated Pore Pressure: 1.035g Min. Estimated Pore Pressure (Open Hole): 1.035g @ Estimated Pore Pressure at TD: 2.155g Max. Estimated Pore Pressure (Open Hole): 1.035g @ Estimated Fracture Pressure at TD: 2.155g Comments: 1.06 Shoe a 1915 m due to wash in kelly. Hole clean Increase in drull rate out internal 1941-1945m is probable in dicator of Top of Lakes Entrance Jomatics. Survey a 2047m = (2032n) 4/2° Lithology: Marl with trace to 5/6 Clauptone & trace Cal Carente

COMPANY Shell Dev. A wst. WELL Basker South 1 DATE 5/12/83 TIME 06°0 DEPTH 2254 m LAST REPORT DEPTH 2113 m RIG OPERATIONS Pull out of hole. REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR) DRILLING REPORT Bit No.: Rerun #5 Type: D. BOART LX27 HS Size: 12 Li Jets: TFA 1.03 4 m On Bit: Footage: 407 m Hours: 33.4 ROP: 12-2 m/h WOB: 8-10 tomaz RPM: 660 Pump Press: 3850 psi SPM: 201 Torque 0.9-1.5 km TBR: 1255823 CP 1:\$ 248 CP B:\$ 422
DEPTH
DEPTH
RIG OPERATIONS — Pull out of hole. REPORT BY
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR) DRILLING REPORT Bit No.: Rerun #5 Type: D. Boart LX27HS size: 1241 Jets: TFA 1.05 29 in On Bit: Footage: 407 in Hours: 33.4 ROP: 12-2 in WOB: 8-10 towns RPM: 660
DRILLING REPORT Bit No.: Renum #5 Type: D.BOART LX27 HS Size: 12/1" On Bit: Footage: 407 m Hours: 33.4 ROP: 12-2 m/h WOB: 8-10 towns RPM: 660
Bit No.: Renum #5 Type: D. BOART LX27 HS Size: 1241 Jets: TFA 1.05 sq m On Bit: Footage: 407 m Hours: 33.4 ROP: 12-2 m/h WOB: 8-10 towns RPM: 660
On Bit: Footage: 407 m Hours: 33.4 ROP: 12-2 m/L WOB: 8-10 towns RPM: 660
Pump Press: 55 p. S.
HYDRAULICS REPORT ,
Mud Density In: 1:09 sa Mud Density Out: 1:09 sa ECD: 1:10 PV/YP: 7/11
Gels: Salinity:
Gels: Salinity: PPM CI Solids:% Hole Volume: 250.6 m ³ Annular Volume: 219.2 m ³ Tubing Volume: 20.3 m ³ Displaced Volume: 11 m ³
Carbide Lag-Calculated Lag: 13858 Stks / 65.8 min Flowrate: 3179
Drillpipe Annular Vel (Max. Dia. Sec.): 20-9 m/min (boost) Drillpipe Annular Vel (Open Hole): 50-2 m/min
Drill Collar Annular Vel (Open Hole): 76.5 m min Critical Vel: 83.9 m min
3307 548 25
Pressure Loss System: Pressure Loss Bit: 9 Pressure Loss Bit: 9 Pressure Loss: 7 7 Pressure Loss: 7 Pressure L
Pressure Loss System: 3302 psi Pressure Loss Bit: 548 psi % Pressure Loss: 14/0 Nozzel Vel: 466 kg HHP: 269 hp
Nozzel Vel: 79.3 m/occ Jet Impact Force: 466 kg HHP: 269 hp
Nozzel Vel: 79.3 m/scc Jet Impact Force: 466 kg HHP: 269 hp
Nozzel Vel: 79.3 m/sec Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 C Shale Density:
Nozzel Vel: 79.3 m/sec Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 C Shale Density:
Nozzel Vel: 79.3 m/sec Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55-1.25 Flowline Temperature: 41.7 C
Nozzel Vel: 79.3 m/sec Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55-1.25 Flowline Temperature: 41.7 C Shale Density: Shale Factor: Shale Factor: Gas: Shale Factor: Gas: Gas: Gas: Gas: Gas: Gas: Gas: Gas
Nozzel Vel: 79.3 m/scc Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55-1.25 Flowline Temperature: 41.7 C Shale Density: Shale Factor: Shale Factor: Gas: 0.01 - 0.03 Max. Formation Gas: 0.215-2250 Trip Gas: 0.01 - 0.03 Max. Formation Gas: 0.01 - 0.03
Nozzel Vel:
Nozzel Vel:
Nozzel Vel:
Nozzel Vel:
Nozzel Vel: 79.3 m/sc Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 C Shale Density: Shale Factor: Shale Factor: Gas: 0.01 - 0.03 Max. Formation Gas: 0.02 Trip Gas: 0.01 Fill: Tight Hole: Cavings: Est %: Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0.135 39 Min. Estimated Fracture Pressure (Open Hole): 1.52 at Shock Estimated Pore Pressure: 1.03 sq. Min. Estimated Pore Pressure (Open Hole): 1.03 sq. Estimated Fracture Pressure at TD: 2.3 sq. Comments:
Nozzel Vel:
Nozzel Vel: 79.3 m/ac Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 C Shale Density: Shale Factor: Shale Factor: Shale Factor: Max. Formation Gas: 38 @ 245 - 2250 Trip Gas: 6 Other Gas: Nil Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0.135 39 Min. Estimated Fracture Pressure (Open Hole): 1.52 at Shoel Estimated Pore Pressure: 1.0354 Min. Estimated Pore Pressure (Open Hole): 1.0354 @ Estimated Fracture Pressure at TD: 2.3 39 Comments: Top of Florance 2205 m Sulty clauptone Flowh Check & 2224 m. mo flow
Nozzel Vei: 79.3 m/acc Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 C Shale Density: Shale Factor: Shale Factor: Shale Factor: Max. Formation Gas: 30.20 Trip Gas: 6.00 Trip
Nozzel Vei: 79.3 m/ac Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 C Shale Density: Shale Factor: Background Gas: 0.01 - 0.05 Max. Formation Gas: 0.05 Trip Ga
Nozzel Vel: 79.3 m/acc Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 °C Shale Density: Shale Factor: Shale Factor: Background Gas: 0.01 - 0.03 Max. Formation Gas: 1.03 @ 2015 - 2250 Trip Gas: 0.00 Other Gas: Nil Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0.135 39 Min. Estimated Fracture Pressure (Open Hole): 1.52 at shale shall be sh
Nozzel Vei: 79.3 m/acc Jet Impact Force: 466 kg HHP: 269 hp PRESSURE PARAMETERS Drilling Exponent: 0.55 - 1.25 Flowline Temperature: 41.7 C Shale Density: Shale Factor: Shale Factor: Shale Factor: Max. Formation Gas: 30.205 Trip Gas: 6.000 Trip Gas: 70.000 T

		DIC	
	WELL _		ath I
DATE 6/12/83	TIME_	O6 ° °	
DEPTH 2254m	_ LAST REPORT DEPTH	2254 m	
RIG OPERATIONS Prepare to run	,9% casing		
REPORT BY To Janowicz	>	H. FLINK SIGNED	(OPERATOR)
DRILLING REPORT		• •	
Bit No.: Type:			· · · · · · · · · · · · · · · · · · ·
On Bit: Footage: Hours:			
Pump Press: SPM: Torq	ıue:TBR:	CP I:\$	CP B: \$
HYDRAULICS REPORT			
Mud Density In: Mud Density Out:			
Gels: Salinity:	PPM /	CI Solids:	%
Hole Volume: Annular Volume:			
Carbide Lag-Calculated Lag:	Flowrate: _		
Drillpipe Annular Vel (Max. Dia. Sec.):	Drillpipe Annular Vel (C	Open Hole):	
Drill Collar Annular Vel (Open Hole):	Critical Vel: _		
Pressure Loss System: Pressu	ure Loss Bit:	% Pressure Loss:	
Nozzel Vel:	Jet Impact Force:	HHP:	
PRESSURE PARAMETERS			Name (Control of Control of Contr
Drilling Exponent:	Flowline Temperat	ure:	
Shale Density:	Shale Factor:		
Background Gas:Max. Formatic	on Gas: @	Trip Gas:	@
Other Gas:			
Fill: Tight Hole:			
Cavings: Est %:	Average Size:		
ESTIMATED PORE AND FRACTURE			
Kick Tolerance: 0-135 sq	. Min. Estimated Fracture Pressure (Ope	en Hole):	2 sa 2 shoe
Estimated Pore Pressure:	Min. Estimated Pore Pressure (Ope	en Hole):	5g_@
Max. Estimated Pore Pressure (Open Hole): 1.03sc		mated Fracture Pressure	e at TD:
Comments;			
Clean trip out of hole.	L-MSFL-CR-SP-CAL		
	12 - CAL - GR	-	
	5- GR		
	ST.		
M. 1		1 700	. a 3
Pit 1 52.2 m3 2 18 m3	3 7418m3 4 5807	tme Trip 4	+.9m

				1	
COMPANY Shell D	w. Awst.		WELL .	Basker	South 1
DATE 7 Dec 8:	3		TIME	0600	
DEPTH 2254m		LĄST RE	PORT DEPTH	2254m	
RIG OPERATIONS	Running	9% Cas	ing		
REPORT BY T. Jan				H. Flin	(OPERATOR)
DRILLING REPORT					
Bit No.:	Туре:	Size:		Jets:	
On Bit: Footage:	Hours:	ROP:		WOB:	RPM:
Pump Press: SPM:	Too	rque:	TBR:	CP I:\$	CP B:\$
HYDRAULICS REPORT					
Mud Density In:	. Mud Density Out: _		ECD:	PV/Y	P:
Gels:	Salinity:		PPM	CI Solids:	%
Hole Volume:	Annular Volume:	Т	ubing Volume:	Displ	aced Volume:
Carbide Lag-Calculated Lag:			Flowrate: _		
Drillpipe Annular Vel (Max. Dia. Se	ec.):		Drillpipe Annular Vel (0	Open Hole):	
Drill Collar Annular Vel (Open Hole)	:		Critical Vel: _		
Pressure Loss System:	Pres	sure Loss Bit:		% Pressure Loss:	
Nozzel Vel:		Jet Impact I	Force:		HHP:
PRESSURE PARAMETI	ERS				
Drilling Exponent:			Flowline Tempera	ture:	
Shale Density:					
Background Gas:	Max. Forma	tion Gas:	@	Trip Gas:	@
Other Gas:					
Fill:	Tight Hole:				
Cavings: Est %:		<i>F</i>	Average Size:		
ESTIMATED PORE AN					n 61
Kick Tolerance:		Min. Estimated	l Fracture Pressure (Op	en Hole): 1.5	Lsa al shoe
Estimated Pore Pressure:	62500	Min. Estima	ated Pore Pressure (Op	en Hole):	<u> </u>
Max. Estimated Pore Pressure (Op	en Hole):	<u>^</u>	Est	imated Fracture Pr	ressure at TD: 2 · 3 sg
Comments:	trio to b	ottom.	-27 tome	dra on	15then stands
so wash an	mp 10 B	back to	bottom]	Lin hip	on (. The stances
	1	•			-
	· .				
		•			

gemdas logging report no. 9

A STATE OF THE WAY

			, , , , , , , , , , , , , , , , , , , 	
COMPANY Shell Dev. A ust.	WELL _		South	1
DATE 8 Dec '83 -	TIME _	0600		
	REPORT DEPTH _	2254m	····	
RIG OPERATIONS Run In Hole with 8/2	. Bit.			
REPORT BY T. JANOWICZ REPO		H. FLINK SIGNED	(OPE	ERATOR)
DR!LLING REPORT		JOHNED		
Bit No.: Type:	Size:	Jets:		
On Bit: Footage: Hours:	ROP:	WOB:	RPM:	,
Pump Press: SPM: Torque:	TBR:	CP I:\$	CP B:\$_	
HYDRAULICS REPORT				
Mud Density In: Mud Density Out:	ECD:	PV/YP:		
Gels: Salinity:	PPM C	Solids:		%
Hole Volume: Annular Volume:				
Carbide Lag—Calculated Lag:	Flowrate:		77 738 57 736 77 78 78 78 78 78 78 78 78 78 78 78 78	
Drillpipe Annular Vel (Max. Dia. Sec.):		·		
Drill Collar Annular Vet (Open Hole):	Critical Vel:	,		
Pressure Loss System: Pressure Loss Bit	: %	Pressure Loss:		
Nozzel Vel: Jet Imp	oact Force:	HH	P:	
PRESSURE PARAMETERS				
Drilling Exponent:	Flowline Temperatu	re:		
Shale Density:	Shale Factor:			
Background Gas: Max. Formation Gas:			@	
Other Gas:				
Fill: Tight Hole:				
Cavings: Est %:	Average Size:			
ESTIMATED PORE AND FRACTURE PRESS	URE .	.	-it = i	· —
1.0%	nated Fracture Pressure (Oper	I mole):	sailing F1	
Estimated Pore Pressure: Min. E	stimated Pore Pressure (Oper	111016).		<u></u>
Wax. Estimated Fore Fredsure (open Fole).	Estim	nated Fracture Pressu	ire at TD: 🗻 😕	39
Comments: Run and cement 9 % co	wing. Test	stack.		
Break down 84" BAP.	030Mg. 123C	Beach 1		
Makeup 6'2' B.H.A.				
R. J. H with 82 Bit				
		•		

COMPANY Shell Dev. Aust. WELL Basker South 1
DATE 9 Dec 1983 TIME 0600
DEPTH 2261m LAST REPORT DEPTH 2254m RIG OPERATIONS Ruming in hole
RIG OPERATIONS <u>Ruming</u> in hole.
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR)
DRILLING REPORT Bit No.: NB * Skun * 7) Type: SMITH SVH Size: 8½ Jets: 3 × 16 On Bit: Footage: 3.5 m Hours: 4.4 ROP: 0.79 m/h WOB: 5-6towne RPM: 70
On Bit: Footage: S'S M Hours: 47 ROP: O'T/ M/W WOB: S'BIGNAY RPM: 10700
Pump Press: 990 psi SPM: 78 Torque: 1.4kmm TBR: 20565 CP 1:\$ 8986 CP B:\$10709
HYDRAULICS REPORT
Mud Density In: 1-11 sg Mud Density Out: 1-11 sg ECD: 1-13sg PV/YP: 11/10
Gels: Salinity:
Hole Volume: 29.5 m Annular Volume: 482 m Tubing Volume: 17.6 m Displaced Volume: 11.7 m
Carbide Lag-Calculated Lag: 5176stks / 66 min Flowrate: 1488 l/ min
Drillpipe Annular Vel (Max. Dia. Sec.): 7.8 m/min Drillpipe Annular Vel (Open Hole):
Drill Collar Annular Vel (Open Hole): 77.7 m mm Critical Vel: 103.4 m/ mm
Pressure Loss System: 6/2 psi Pressure Loss Bit: 378 psi % Pressure Loss: 38%
Nozzel Vel: 65-3 m/sec Jet Impact Force: 183 kg HHP: 868 hp
PRESSURE PARAMETERS
PRESSURE PARAMETERS
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 °C
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Trip Gas: @ Trip Gas: @
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Trip Gas: @ Trip Gas: @ Other Gas: Nic - Wax. Formation Gas: @ Trip Gas: @ Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas: Nic - Wic - Wax. Formation Gas: Other Gas:
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 99.8 C Shale Density: Shale Factor: Trip Gas: @ Trip Gas: @ Trip Gas:
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Trip Gas: @ Trip Gas: @ Other Gas: Nic - Wax. Formation Gas: @ Trip Gas: @ Trip Gas:
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 99.8 C Shale Density: Shale Factor: Trip Gas: 0
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Trip Gas: Other Gas: Nic - trace Max. Formation Gas: @ Trip Gas: @ Trip Gas: Cavings: Est %: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): Availage Fit Lands
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8°C Shale Density:
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Trip Gas: Other Gas: Nic - trace Max. Formation Gas: @ Trip Gas: @ Trip Gas: Cavings: Est %: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): Availage Fit Lands
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Trip Gas: @ Trip Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Trip Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Min Gas: @ Other Gas: Will - wave Max. Formation Gas: @ O
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Background Gas: NiL - Law Max. Formation Gas: @ Trip Gas: @ Other Gas: NiL Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): FIT Estimated Pore Pressure: 1.03 sq
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density: Shale Factor: Trip Gas: @ Trip Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Trip Gas: @ Other Gas: Nic - wave Max. Formation Gas: Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Nic - wave Max. Formation Gas: @ Other Gas: Win Gas: @ Other Gas: @ Othe
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 99.8°C Shale Density:
PRESSURE PARAMETERS Drilling Exponent: 1.3 Flowline Temperature: 29.8 C Shale Density:
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 29.8 C Shale Density:
PRESSURE PARAMETERS Drilling Exponent: 1.8 Flowline Temperature: 99.8 °C Shale Density: - Shale Factor: - Shale Factor: - Ge Other Gas: Nic - trace Max. Formation Gas: @ Trip Gas: @ Trip Gas: - Ge Other Gas: Nic - trace Max. Formation Gas: @ Trip Gas: - Ge Other Gas: Nic - Trip Gas: - Ge Other Gas:

who will give,

COMPANY Shell Dev. Aust. WELL Basker South 1
DATE 10 Dec 1983 TIME
DEPTH LAST REPORT DEPTH 2261m
RIG OPERATIONS Circulating before tripping bet.
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR)
DRILLING REPORT
Bit No.: Run # 9 Type: SMITH FDGN Size: 81, Jets: 10,10,11
On Bit: Footage: 84 m Hours: 7.1 ROP: 1118 m/h. WOB: 5-8 tome RPM: 55-65
Pump Press: 2440 psi SPM: 75 Torque: 1-4-2 kNm TBR: 26251 CP 1:\$ 861 CP B:\$ 500
HYDRAULICS REPORT
Mud Density In: 1-1129
Gels: Salinity:PPM CI Solids:% Hole Volume: 133.6 m³ Annular Volume: 100.8 m³ Tubing Volume: 20-6 m³ Displaced Volume: 12.2 m³
Hole Volume: 135'6 M Annular Volume: 100'0 M Tubing Volume: 200 M Displaced Volume: 1/202 M Disp
Carbide Lag-Calculated Lag: 5309 stks/71 min Flowrate: 1423 2 min
Drillpipe Annular Vel (Max. Dia. Sec.): 7-49 m/min Drillpipe Annular Vel (Open Hole): 93-61 m/min Critical Vel: 141.8 m/min
Pressure Loss System: 45901 Pressure Loss Bit: 1981 psi % Pressure Loss: 81 Nozzel Vel: 149.3 m/pec Jet Impact Force: 400 kg HHP: 434 hp
Nozzel Vel:
PRESSURE PARAMETERS
Drilling Exponent:Flowline Temperature:
Drilling Exponent: Flowline Temperature: Shale Pensity: Shale Factor:
Drilling Exponent:
Drilling Exponent: Flowline Temperature: Shale Pensity: Shale Factor:
Shale Density: Shale Density: Background Gas: Mic — Local Max. Formation Gas: Other Gas: Nic — Wic — Max. Formation Gas: Other Gas: Other Gas: Flowline Temperature: Shale Factor: Trip Gas: Other Gas: Other Gas:
Drilling Exponent:
Drilling Exponent: Shale Density: Shale Factor: Background Gas: Nic — Lace Max. Formation Gas: Other Gas: Nic — Tight Hole: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: *512 sq Min. Estimated Fracture Pressure (Open Hole): Estimated Pore Pressure: Max. Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): Max. Estimated Pore Pressure (Open Hole): Comments: Comments: Conduct Leak-off test at 2288 m. Dill break at 2291 — upts 35 m/m. Flow Check at 2995 m.— no flow. 2343 m.— mo flow. 1.01 sq 1.02 sq 2463 m.— mo flow. 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.03 sq 2463 m.— Stimated Fracture Pressure at TD: 1.04 sq 256 sq 267 sq 276
Drilling Exponent: Shale Pensity: Background Gas: Nic — Livece Max. Formation Gas: Other Gas: Nic — Tight Hole: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: S12 sy Min. Estimated Fracture Pressure (Open Hole): Estimated Pore Pressure: Min. Estimated Pore Pressure: Min. Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): S12 sy Min. Estimated Pore Pressure (Open Hole): S12 sy Min. Estimated Pore Pressure (Open Hole): S2 d3 m Estimated Fracture Pressure at TD: Comments: Conduct leak-off test at 2288 m. Drill break at 2291m — upto 35 m/hr. Flow check at 2995m — no flow. Sample at 2372m Prior to Impling but
Drilling Exponent: Shale Density: Shale Factor: Background Gas: Nic — Lace Max. Formation Gas: Other Gas: Nic — Tight Hole: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: *512 sq Min. Estimated Fracture Pressure (Open Hole): Estimated Pore Pressure: Max. Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): Max. Estimated Pore Pressure (Open Hole): Comments: Comments: Conduct Leak-off test at 2288 m. Dill break at 2291 — upts 35 m/m. Flow Check at 2995 m.— no flow. 2343 m.— mo flow. 1.01 sq 1.02 sq 2463 m.— mo flow. 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.02 sq 2463 m.— Stimated Fracture Pressure at TD: 1.03 sq 2463 m.— Stimated Fracture Pressure at TD: 1.04 sq 256 sq 267 sq 276
Drilling Exponent: Shale Pensity: Background Gas: Nic — Livece Max. Formation Gas: Other Gas: Nic — Tight Hole: Cavings: Est %: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: S12 sy Min. Estimated Fracture Pressure (Open Hole): Estimated Pore Pressure: Min. Estimated Pore Pressure: Min. Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): S12 sy Min. Estimated Pore Pressure (Open Hole): S12 sy Min. Estimated Pore Pressure (Open Hole): S2 d3 m Estimated Fracture Pressure at TD: Comments: Conduct leak-off test at 2288 m. Drill break at 2291m — upto 35 m/hr. Flow check at 2995m — no flow. Sample at 2372m Prior to Impling but

COMPANY SHELL DEV. AUST. WELL BASKER SOUTH 1
DATE 11 Dec. 1983 TIME 0600
DEPTH LAST REPORT DEPTH
RIG OPERATIONS R.I.H. with J282" new bit
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR
DRILLING REPORT
Bit No.: Run #10 Type: SMITH FDGH Size: 82 Jets: 10, 10, 11
On Bit: Footage: 37 m Hours: 8 ROP: 4-6 m/w. WOB: 6-12 towne RPM: 65
Pump Press: 2490psi SPM: 75 Torque: 2.5-2.9 kN m TBR: 29512 CP 1:\$ 98 CP B:\$ 1262
HYDRAULICS REPORT
Mud Density In: 1-10- sq Mud Density Out: 1-10-sq ECD: 1-14sq PV/YP: 15/16
Gels: Salinity: PPM CI Solids: % Hole Volume: 135 m ³ Annular Volume: 101.6 m ³ Tubing Volume: 20.9 m ³ Displaced Volume: 12.4 m ³
Hole Volume: 155 m Annular Volume: 101.68 Tubing Volume: 20.79 Displaced Volume: 155 mm Carbide Lag-Calculated Lag: 5355 stks 71 mm Flowrate: 1423 L/min
Drillpipe Annular Vel (Max. Dia. Sec.): 7.49 m min Drillpipe Annular Vel (Open Hole): 142.7 m min Drillpipe Annular Vel
Pressure Loss System: 527 psi Pressure Loss Bit: 1963 psi % Pressure Loss: 77
Nozzel Vel: 149.3 m/sec Jet Impact Force: 396 kg HHP: 431 hp
Drilling Exponent:
Shale Density: Shale Factor: Shale Factor
Background Gas: Nil To TRACE Max. Formation Gas: @ Trip Gas: Nil @ 2372m
Other Gas: Nic
Fill: Tight Hole:
Cavings: Est %: Average Size:
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance: 1515 sq Min. Estimated Fracture Pressure (Open Hole): 155 sq in loose sand
Estimated Fore Flessure
Comments: Circulate at 2409m. P.O.O.N. Run In Hole with yew bit
NOW THE MILE MILE OF
LITHOLOGY - Sandstone with trace wilt a clay.
Pit #1, 50, 3m 2, 11.6m 3, 11.5m 4, 65m Trip TANK on 3 at orotho
EL P/N 18429 MAY 198

COMPANY Shell Dev. Aust. WELL Basker South 1
DATE 12 Dec. 1983 TIME 0600
DEPTH LAST REPORT DEPTH
DEPTH 2589 m LAST REPORT DEPTH _2409 m RIG OPERATIONS Drilling ahead
REPORT BY T. JANOWICZ REPORT RECEIVED BY H. FLINK (OPERATOR)
DRILLING REPORT
Bit No.: Run # 11 Type: SMITH F2 Size: 8½" Jets: 10, 10, 11 On Bit: Footage: 180 m Hours: 17-2 ROP: 10.5 m wob: 15-16 towne RPM: 50-60
On Bit: Footage: 180 m Hours: 17-2 ROP: 10.5 m/w WOB: 15-16 town RPM: 50-60
Pump Press: 2650psi SPM: 77 Torque: 1.8-32 kNm TBR: 58422 CP 1:\$ 715 CP B:\$ \(\frac{7}{3} \) CP B:\$
HYDRAULICS REPORT
Mud Density In: 1011 SQ Mud Density Out: 1011 SQ ECD: 1015 SQ PV/YP: 15/14
Gels: PPM CI Solids: %
Hole Volume: 141-4 m ³ Annular Volume: 105-8 m ³ Tubing Volume: 22-6 m ³ Displaced Volume: 13m ³
Carbide Lag—Calculated Lag: S574 stks /72 min Flowrate: 146/ L/ min
Drillpipe Annular Vel (Max. Dia. Sec.): 7.7 m/min Drillpipe Annular Vel (Open Hole): 104.6 m/min
Drill Collar Annular Vel (Open Hole): 96-1 m min Critical Vel: 733-3 m min
Pressure Loss System: Pressure Loss Bit: 7089 psi % Pressure Loss: 77
Nozzel Vel: 153 m/ec. Jet Impact Force: 421 kg HHP: 470 hp
PRESSURE PARAMETERS
PRESSURE PARAMETERS Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C
Drilling Exponent: 1.05 - 1.5 Flowline Temperature: 32.2 °C Shale Density: Shale Factor:
Drilling Exponent: 1.05 - 1.5 Flowline Temperature: 32.2 °C Shale Density: Shale Factor: Trip Gas: NiL @ 2409 m.
Drilling Exponent: 1.05 - 1.5 Flowline Temperature: 32.2°C
Drilling Exponent: 1.05 - 1.5 Flowline Temperature: 32.2 °C Shale Density: Shale Factor: Trip Gas: NiL @ 2409 m.
Drilling Exponent: 1.05 - 1.5 Flowline Temperature: 32.2 °C Shale Density: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL
Drilling Exponent: 1.05 - 1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL Fill: Tight Hole: Average Size:
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Trip Gas: Nic @ 2409m. Other Gas: Nic Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 471 sg Min. Estimated Fracture Pressure (Open Hole): 1.65 sg in loose sand
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 471 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq in loose sand Estimated Pore Pressure: 1.01sq Min. Estimated Pore Pressure (Open Hole): 1.01sq @
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2 °C Shale Density: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 471 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq in Loose sand
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 471 sg Min. Estimated Fracture Pressure (Open Hole): 1.65 sg in Loose Sand Estimated Pore Pressure: 1.01 sg Min. Estimated Pore Pressure (Open Hole): 1.65 sg in Loose Sand Estimated Pore Pressure: 1.01 sg Min. Estimated Fracture Pressure (Open Hole): 1.68 (Sand) Comments: Flow Check at 2443 m - no flow.
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 471 sg Min. Estimated Fracture Pressure (Open Hole): 1.65 sg in Loose Sand Estimated Pore Pressure: 1.01 sg Min. Estimated Pore Pressure (Open Hole): 1.65 sg in Loose Sand Estimated Pore Pressure: 1.01 sg Min. Estimated Fracture Pressure (Open Hole): 1.68 (Sand) Comments: Flow Check at 2443 m - no flow.
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL
Drilling Exponent: 1.05-1.5 Flowline Temperature: 32.2°C Shale Density: Shale Factor: Trip Gas: NiL @ 24.09 m. Other Gas: NiL Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 471 sg Min. Estimated Fracture Pressure (Open Hole): 1.65 sg in loose sand Estimated Pore Pressure: 1.01 sg Min. Estimated Pore Pressure (Open Hole): 1.01 sg @ Max. Estimated Pore Pressure (Open Hole): 1.03 sg @ 2263 m Estimated Fracture Pressure at TD: 1.68 (Sand) Comments: Flow check at 2443 m - no flow Survey at 2513m with 3 stand wifer thip - no dag Flow check at 2543 m - no flow Lithology: Sandstone with 5/o Coal.
Drilling Exponent: 1.05 - 1.5 Flowline Temperature: 32.2 °C Shale Density: Shale Factor: Shale Factor: Trip Gas: NiL @ 2409 m. Other Gas: NiL Fill: Tight Hole: Cavings: Est %: Average Size: Average Size: Min. Estimated Fracture Pressure (Open Hole): 1.65 sq in loose sand Estimated Pore Pressure: 1.01 sq Min. Estimated Pore Pressure (Open Hole): 1.01 sq @ Max. Estimated Pore Pressure (Open Hole): 1.01 sq @ 2263 m Estimated Fracture Pressure at TD: 1.68 (Sand) Comments: Flow check at 2443 m - no flow. Suncy at 2513 m with 3 stand wiper trip - no drag. Flow check at 2543 m - no flow.

$C \setminus \{0\} \setminus \{0\} \setminus \{1\} \setminus $
COMPANY Shell Dev. Aust. WELL Basker South 1
DATE 13 Dec. 1983 TIME 0600
DEPTH LAST REPORT DEPTH 2589m
RIG OPERATIONS Drilling ahead
REPORT BY T. Janowicz REPORT RECEIVED BY H.F. LINK (OPERATOR)
DOULING DEPORT
Bit No.: Run # 12 Type: SMITH F2 Size: 8½ Jets: 10, 10, 11 On Bit: Footage: 87 m Hours: 12.5 ROP: 6.96 m/h WOB: 15-18 towns RPM: 55-65
On Bit: Footage: 87 m Hours: 123 ROP: 6.70 m/W WOB: 15 /8 towne RPM: 33-63
Pump Press: 2650pi SPM: 76 Torque 2.1-2.4 kNm TBR: 43090 CP 1:\$ 1440 CP B:\$ 882
HYDRAULICS REPORT
Mud Density In: 1.10 sq ECD: 1.14 sq PV/YP: 17/16
Gels: Salinity:
Carbide Lag-Calculated Lag: 5685 stks / 75 min Flowrate: 1442 L/min
Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m/min Drillpipe Annular Vel (Open Hole): 60.2 m/min
Drill Collar Annular Vel (Open Hole): 94-9 m min Critical Vel: 147-3 m min
Pressure Loss System: 634 psc Pressure Loss Bit: 2016 psc % Pressure Loss:
Pressure Loss System: 634 psi Pressure Loss Bit: 2016 psi % Pressure Loss: 75 Nozzel Vel: JSI-3 m/pec Jet Impact Force: 407 kg HHP: 448 kp
DDESSLIDE DADAMETERS
DDESSLIDE DADAMETERS
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38.4 C Shale Density: Shale Factor:
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Shale Density: Shale Factor: Background Gas: 01/0-02/0 Max. Formation Gas: @ Trip Gas 36 ppm C1 @ 2590 m
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38.4 C Shale Density: Shale Factor:
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Shale Density: Shale Factor: Background Gas: 01/0-02/0 Max. Formation Gas: @ Trip Gas 36 ppm C1 @ 2590 m
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5
PRESSURE PARAMETERS Drilling Exponent:
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38.4 C Shale Density:
PRESSURE PARAMETERS Drilling Exponent: 1 • - •
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38.4 C Shale Density:
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38.4 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 6pm C1 @ 2590 m Other Gas: Nil Fill: Tight Hole: Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: O. 456 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq m loose Sand Estimated Pore Pressure: 1.01sq Min. Estimated Pore Pressure: (Open Hole): 1.01sq @ Max. Estimated Pore Pressure (Open Hole): 1.01sq @ Max. Estimated Pore Pressure (Open Hole): 1.68 (sand) Comments: Circulate returns and pull out of hole at 2590 m. Run in Run # 12 Smith F2
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38.4 C Shale Density:
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38-4 C Shale Density: Shale Factor: Trip Gas 16 pp.m C1 @ 2590 m Other Gas: Nil Fill: Tight Hole: Average Size: Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0.456 sq Min. Estimated Fracture Pressure (Open Hole): 1.01sq @ 1.01sq @ 1.01sq @ 2.263 m Estimated Fracture Pressure (Open Hole): 1.01sq @ 2.263 m Estimated Fracture Pressure at TD: 1.68 (sand) Comments: Circulate returns and pull out of hole at 2590 m . Rum in Rum # 12 Smirty F2 Flow check at 2642 m - no Plaw.
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38.4 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 6pm C1 @ 2590 m Other Gas: Nil Fill: Tight Hole: Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: O. 456 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq m loose Sand Estimated Pore Pressure: 1.01sq Min. Estimated Pore Pressure: (Open Hole): 1.01sq @ Max. Estimated Pore Pressure (Open Hole): 1.01sq @ Max. Estimated Pore Pressure (Open Hole): 1.68 (sand) Comments: Circulate returns and pull out of hole at 2590 m. Run in Run # 12 Smith F2
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38-4 C Shale Density: Shale Factor: Trip Gas 16 pp.m C1 @ 2590 m Other Gas: Nil Fill: Tight Hole: Average Size: Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0.456 sq Min. Estimated Fracture Pressure (Open Hole): 1.01sq @ 1.01sq @ 1.01sq @ 2.263 m Estimated Fracture Pressure (Open Hole): 1.01sq @ 2.263 m Estimated Fracture Pressure at TD: 1.68 (sand) Comments: Circulate returns and pull out of hole at 2590 m . Rum in Rum # 12 Smirty F2 Flow check at 2642 m - no Plaw.
PRESSURE PARAMETERS Drilling Exponent: 1.1 - 1.5 Flowline Temperature: 38-4 C Shale Density: Shale Factor: Trip Gas 16 pp.m C1 @ 2590 m Other Gas: Nil Fill: Tight Hole: Average Size: Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0.456 sq Min. Estimated Fracture Pressure (Open Hole): 1.01sq @ 1.01sq @ 1.01sq @ 2.263 m Estimated Fracture Pressure (Open Hole): 1.01sq @ 2.263 m Estimated Fracture Pressure at TD: 1.68 (sand) Comments: Circulate returns and pull out of hole at 2590 m . Rum in Rum # 12 Smirty F2 Flow check at 2642 m - no Plaw.

COMPANY Stell Dev. Aust. WELL Basker South DATE 14 Dec 1983 TIME 0600 CO	
DEPTH 2818 m LAST REPORT DEPTH 2674 PRICE PROPERTIONS & Drilling Ahead REPORT BY Landward REPORT RECEIVED BY H. Flink RIGO PERATIONS & Drilling Ahead REPORT BY Landward REPORT RECEIVED BY H. Flink REPORT BY Landward REPORT RECEIVED BY H. Flink REPORT BY Landward REPORT RECEIVED BY H. Flink REPORT BY Landward REPORT REPORT RECEIVED BY H. Flink REPORT BY Landward REPORT RECEIVED BY LANDWARD REPORT RECEIVED BY LANDWARD REPORT RECEIVED BY LANDWARD REPORT RECEIVED BY LANDWARD RECEIVED BY LANDWARD REPORT RECEIVED BY LANDWARD RECEI	
DEPTH 2818 m LAST REPORT DEPTH 267t RIG OPERATIONS \$ Drilling Ahead REPORT BY Sancture Report Received by H-Flink (OPERATOR) BIN 10: Report Fill Sancture Report Received by H-Flink (OPERATOR) BIN 10: Report Fill Sancture Report Received by H-Flink (OPERATOR) BIN 10: Report Fill Sancture Report Fill Sancture Report Received by H-Flink (OPERATOR) BIN 10: Report Fill Sancture Report Fill	DATE 14 Dec 1983 TIME 0600
REPORT BY SUMBLE SHOULD BY SUMBLE SUMBLE REPORT RECEIVED BY SUMBLE SUMBLE REPORT BY SUMBLE SHOULD BY SUMBLE SUMBLE REPORT BY SUBJECT SHOULD BY SUMBLE SUMBLE SUMBLE REPORT BY SUMBLE SHOULD BY SUMBLE	DEPTH 2818 LAST REPORT DEPTH 2677 m
REPORT BY T. Janourcos REPORT RECEIVED BY H. PLANK SIGNAL (OPERATOR) DRILLING REPORT Bit No. Rum #12 Type: SNITH F2 Size: 8½" Jets: 10,10,11 On Bit Footage: 228 m Hours: 32.7 ROP. 7 m/hr WOB: IS-1715mg RPM: 65 Pump Press; 2500 pis SPM: 76 Torque 17-2-6 TBR: 11980 CP 1: \$ 928 CP B: \$ 762 HYDRAULICS REPORT Mud Density In: 1-11 29 Mud Density Out: 1-1129 ECD: 1-15 29 PV/PP: 15/14 Gels: Salinity: PPM CI Solides: PPM CI Solides: Salinity: PPM CI Solides: 13.9 m² Tubing Volume: 24.7 m² Displaced Volume: 13.9 m² Garbide Lag-Calculated Lag: Sal624ths - 77 min Plowrette: 1440 L min Drilipipe Annular Vel (Max. Dia. Soc.): 7.6 m min Drilipipe Annular Vel (Open Holo): 60-2 m min Drilipipe Annular Vel (Open Holo): 94.9 m min Critical Vel: 133-3 m min Pressure Loss System: SSS gri: Pressure Loss Bt: 2035 psi: % Pressure Loss: 75 Nozzel Vel: 15 m / 22	BIG OPERATIONS 3. Drillin Ahead
DRILLING REPORT BR NO: Kum #12 Type: SMiTH F2 Size: 8½" Joh Bit Footage: 228 m Hours: 32.7 ROP: 7 m/hr WOB: IS-17 Longe APM: 65 On Bit Footage: 228 m Hours: 32.7 ROP: 7 m/hr WOB: IS-17 Longe APM: 65 Pump Press; 2590ps: SPM: 76 Torquel-7-2-6 TBR: 116960 CP 1:s 988 CP B:s 762 HYDRAULICS REPORT Mud Density In: 1-11 29 Mud Density Out: 1-1129 ECD: 1/S 29 PV/YF: 15/14 Gels: Salinity: PPMCI Solids: PPMCI S	BEPORT BY T. Janowicz REPORT RECEIVED BY H. PLINK (OPERATOR)
BB NO. Run #12 Type: Smith F2 Size: 82 Jets: 10,10 11 On BIC Footage: 728 m Hours: 32.7 ROP: 7 m/h WOB: 15-17 long RPM: 65 Pump Press 2590 ps SPM: 76 Torquel 7-2.6 TBR: 116960 CP 1: \$ 938 CP B: \$ 762 HYDRAULICS REPORT Mud Density in: 1-112 M Mud Density Out: 1-112 PECD: 1-15 sq PV/YP: 15/14 Gels: PPM CI Solids: PPM	DRILLING REPORT
Pump Press: 2590 ps: 5PM: 76	Bit No.: Run #12 Type: SmiTH F2 Size: 8/2 Jets: 10,10,11
Pump Press: 2590 ps: 5PM: 76	On Bit: Footage: 228 m Hours: 32.7 ROP: 7 m/hr WOB: 15-17 tonne RPM: 65
Mud Density In: 1-11 20 Mud Density Out: 1-11 30 ECD: 1-15 30 PV/YP: 15/14 Gels:	Pump Press: 2590psi spM: 76 Torque -7-2-6 TBR: 16960 CP 1:\$ 988 CP B:\$ 762
Gels: Salinity: PPMCI Solids: " Hole Volume: 149.9 m² Annular Volume: 111.3 m² Tubing Volume: 24.07 m² Displaced Volume: 13.9 m² Carbide Lag-Calculated Lag: \$862stts - 77 min Flowrate: 11442 l min Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m min Drillpipe Annular Vel (Open Hole): 60.2 m/min Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m min Drillpipe Annular Vel (Open Hole): 133.3 m/min Pressure Loss System: \$55 ps.i Pressure Loss Bit: 2035 ps.i % Pressure Loss: 75 Nozzel Vet: 151 m/22 Jet Impact Force: 411 kg HHP: 45.2 hp PRESSURE PARAMETERS Drilling Exponent: 1.3 - 1.7 Flowline Temperature: 33.9 C Shale Pactor: Shale Factor: Background Gas: 12.0 m/22 Max. Formation Gas 80 m @ 2745 m Trip Gas: Niu @ 2 685 h Other Gas: Niu Filt: Tight Hole: Average Size: Average Size: Average Size: 1.0 m/23 m/min. Estimated Prore Pressure (Open Hole): 1.0 sg m/min. Estimated Fracture Pressure at TD: 1.69.3 (Sand) Comments: Survey at 22.6 m m no drag when pulling back 3 stands to retrieve Survey. Luhalcay - Inter badded Sandstone Sulbstone Shale Clauptone unthe standard Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sand	HYDRAULICS REPORT
Gels: Salinity: PPMCI Solids: " Hole Volume: 149.9 m² Annular Volume: 111.3 m² Tubing Volume: 24.07 m² Displaced Volume: 13.9 m² Carbide Lag-Calculated Lag: \$862stts - 77 min Flowrate: 11442 l min Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m min Drillpipe Annular Vel (Open Hole): 60.2 m/min Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m min Drillpipe Annular Vel (Open Hole): 133.3 m/min Pressure Loss System: \$55 ps.i Pressure Loss Bit: 2035 ps.i % Pressure Loss: 75 Nozzel Vet: 151 m/22 Jet Impact Force: 411 kg HHP: 45.2 hp PRESSURE PARAMETERS Drilling Exponent: 1.3 - 1.7 Flowline Temperature: 33.9 C Shale Pactor: Shale Factor: Background Gas: 12.0 m/22 Max. Formation Gas 80 m @ 2745 m Trip Gas: Niu @ 2 685 h Other Gas: Niu Filt: Tight Hole: Average Size: Average Size: Average Size: 1.0 m/23 m/min. Estimated Prore Pressure (Open Hole): 1.0 sg m/min. Estimated Fracture Pressure at TD: 1.69.3 (Sand) Comments: Survey at 22.6 m m no drag when pulling back 3 stands to retrieve Survey. Luhalcay - Inter badded Sandstone Sulbstone Shale Clauptone unthe standard Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sandstone Sand	Mud Density In: 1-11 39 Mud Density Out: 1.1129 ECD: 1.1329 PV/YP: 15/14
Carbide Lag-Calculated Lag: \$862 sths - 77 min Flowrate: 1442 l min Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m/min Drillpipe Annular Vel (Open Hole): 60.2 m/min Drill Collar Annular Vel (Open Hole): 94.9 m/min Drillpipe Annular Vel (Open Hole): 133.3 m/min Pressure Loss System: \$55 psi: Pressure Loss Bit: 2035 psi: % Pressure Loss: 75 Nozzel Vel: 15 m/Rec Jet Impact Force: 411 kg HHP: 452hp PRESSURE PARAMETERS Drilling Exponent: 1.3 - 1.7 Flowline Temperature: 33.9 °C Shale Density: Shale Factor: Shale Factor: Shale Density: Shale Factor: Shale Density: Shale Factor: Wax. Formation Gas 80pp m @ 2745 m Trip Gas: Nit @ 2685 th Other Gas: Nit Tight Hole: Average Size: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0-431 sq Min. Estimated Prer Pressure (Open Hole): 1.65 sq m loose sand Estimated Pore Pressure: 1.01 sq Min. Estimated Pore Pressure (Open Hole): 1.01 sq Max. Estimated Pore Pressure at TD: 1.01 sq Max. Estimated Pore Pressure at TD	Gels: Salinity: PPM CI Solids: %
Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m/min Drillpipe Annular Vel (Open Hole): 60.2 m/min Drill Collar Annular Vel (Open Hole): 94.9 m/min Critical Vei: 133.3 m/min Min Drill Collar Annular Vel (Open Hole): 94.9 m/min Critical Vei: 133.3 m/min Min Drillpipe Annular Vel (Open Hole): 133.3 m/min Min Min Drillpipe Annular Vel (Open Hole): 60.2 m/min Min Min Min Min Min Min Min Min Min M	Hole Volume: 149.9 m Annular Volume: 111.3 m Tubing Volume: 24.67 m Displaced Volume: 13.9 m
Pressure Loss System: SSS gsi Pressure Loss Bit: 2035 psi % Pressure Loss: 75 Nozzel Vel: 151 m/pec Jet Impact Force: 411 kg HHP: 452hp PRESSURE PARAMETERS Drilling Exponent: 1·3 - 1·7 Flowline Temperature: 33.9°C Shale Density: Shale Factor: Shale Factor: Shale Factor: Flowline Temperature: 33.9°C Other Gas: NiL @ 2 685 h Other Gas: NiL	Carbide Lag-Calculated Lag: 5862 stks - 77 min Flowrate: 1442 1 min
Pressure Loss System: SSS gsi Pressure Loss Bit: 2035 psi % Pressure Loss: 75 Nozzel Vel: 151 m/pec Jet Impact Force: 411 kg HHP: 452hp PRESSURE PARAMETERS Drilling Exponent: 1·3 - 1·7 Flowline Temperature: 33.9°C Shale Density: Shale Factor: Shale Factor: Shale Factor: Flowline Temperature: 33.9°C Other Gas: NiL @ 2 685 h Other Gas: NiL	Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m/mm Drillpipe Annular Vel (Open Hole): 60.2 in/mm
Nozzel Vel: ISI M/REC Jet Impact Force: 411 kg HHP: 452hp PRESSURE PARAMETERS Drilling Exponent: 1·3 - 1·7 Flowline Temperature: 33.9°C Shale Density: Shale Factor: Shale Factor: Shale Factor: Trip Gas: NiL @ 2 685 h Other Gas: NiL Fill: Tight Hole: Average Size: Tight Hole: Average Size: Tight Hole: O-431 sy Min. Estimated Fracture Pressure (Open Hole): 1·65 sy m loose sand Estimated Pore Pressure: 1·01 sy Min. Estimated Pore Pressure (Open Hole): 1·01 sy Min. Estimated Pore Pressure (Open Hole): 1·01 sy Min. Estimated Pore Pressure at TD: 1·69 sy Sand) Comments: Survey at 265 m — no drag when pulling back I stands to retrieve survey: Libolary - Interbadded Sandstone Silbstone Shale Clarytone Latter of Size assignal Coals.	Drill Collar Annular Vel (Open Hole): 94.9 m mm Critical Vel: 133.3 m mm
PRESSURE PARAMETERS Drilling Exponent: 1.3 - 1.7 Flowline Temperature: 33.9°C Shale Density: Shale Factor: Shale Factor: Shale Factor: Description of the Gas: NiL © 2 685 h. Other Gas: NiL Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: O-451 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq in loose sand Estimated Pore Pressure: 1.01 sq Min. Estimated Pore Pressure (Open Hole): 1.01 sq Min. Estimated Pore Pressure at TD: 1.69 sq Min. Estimated Fracture Pressure at TD: 1.60 sq Min. Estimated Fracture Pressure (Min. Estimated Fracture	Pressure Loss System: SSS psi Pressure Loss Bit: 2035 psi % Pressure Loss: 75
Drilling Exponent: 1.3 - 1.7 Flowline Temperature: 33.9 C Shale Density: Shale Factor: Shale Factor: Shale Factor: Tight Hole: 2685 G. Wir. 62685 Max. Formation Gas 80pp m @ 2745 m Trip Gas: Nir. @ 2685 G. Wir. 62685 Max. Formation Gas 80pp m @ 2745 m Trip Gas: Nir. @ 2685 G. Wir. Fill: Tight Hole: Average Size: Tight Hole: Average Size: Tight Hole: Average Size: Tight Hole: 620 Min. Estimated Fracture Pressure (Open Hole): 1.65 sg m loose sand Estimated Pore Pressure: 1.60 sg Min. Estimated Fracture Pressure (Open Hole): 1.60 sg m loose sand Estimated Pore Pressure: 1.60 sg Min. Estimated Pore Pressure (Open Hole): 1.60 sg Min. Estimated Pore Pressure at TD: 1.60 sg Min. Estimated Fracture Pressure at TD: 1.60 sg Max. Estimated Pore Pressure at TD: 1.60 sg Max. Estimated Fracture Pressure (Open Hole): 1.60 sg Max. Estimated Fracture Pressure at TD: 1.60 sg Max. Estimated Fracture Pressure at TD: 1.60 sg Max. Estimated Fracture Pressure (Open Hole): 1	Nozzel Vel: 151 m/Rec Jet Impact Force: 411 kg HHP: 432hp
Shale Pensity: Background Gas: Izace Max. Formation Gas 80pp m @ 2745 m Trip Gas: Nic @ 2685 4 Other Gas: Nic Fill: Tight Hole: Cavings: Est %: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: O - 431 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq in loose sand Estimated Pore Pressure: 1.01 sq Min. Estimated Pore Pressure (Open Hole): 1.01 sq @ Max. Estimated Pore Pressure (Open Hole): 2.03 sq @ 22.63 m Estimated Fracture Pressure at TD: 1.69 sq Sand) Comments: Survey at 2685 m - no drag when pulling back 3 stands to retrieve survey. Lithology - Interbedded Sandstone Substane Shale Clauptone with acceptable and Coals.	PRESSURE PARAMETERS
Background Gas: ILACE Max. Formation Gas 80pp m @ 2745 m Trip Gas: NiL @ 2685 4 Other Gas: NiL Fill: Tight Hole: Tight Hole: Average Size: TestIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: O-431 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq in loose sand Estimated Pore Pressure: 1.01 sq Min. Estimated Pore Pressure (Open Hole): 1.01 sq @ Max. Estimated Pore Pressure (Open Hole): 1.63 sq @ 22.63 m Estimated Fracture Pressure at TD: 1.69 sq Sand) Comments: Survey at 2685 m - no drag when pulling back 3 stands to retrieve survey. Lubdang Interbadded Sandstone Sulbstone Shale Claystone with occasional Coals.	Drilling Exponent: 1•3 - 1•4 Flowline Temperature: 53.9 C
Other Gas: NiL Fill: Tight Hole:	Shale Density: Shale Factor: At 2 195
ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: O-431 sq Min. Estimated Fracture Pressure (Open Hole): Estimated Pore Pressure: I-01 sq Min. Estimated Pore Pressure (Open Hole): Max. Estimated Pore Pressure (Open Hole): Comments: Survey at 2685 m — on drag when pulling back I stands to retrieve Survey. Luhology-Interbedded Sandstone Sillstone Shale Claystone with ore assigned and coals.	Background Gas: 12 ACE Max. Formation Gas 80pm @ 2745 m Trip Gas: 1010 @ 2 685 4
ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: O-431 sq Min. Estimated Fracture Pressure (Open Hole): Estimated Pore Pressure: I-01 sq Min. Estimated Pore Pressure (Open Hole): Max. Estimated Pore Pressure (Open Hole): O-431 sq Min. Estimated Pore Pressure (Open Hole): Estimated Pore Pressure (Open Hole): O-431 sq Min. Estimated Pore Pressure (Open Hole): Estimated Fracture Pressure at TD: 1-65 sq in loose sand 1-65 sq in loose sand 1-67 sq Sand) Comments: Survey at 265 m Estimated Fracture Pressure at TD: 1-69 sq Sand) Comments: Survey at 265 m Falling back 3 stands to retrieve survey. Luhday- Interbadded Sandstone Silbstone Shale Clauptone unthough according to the same and coals.	
ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 0-431 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sg in loose sand Estimated Pore Pressure: 1.01 sq Min. Estimated Pore Pressure (Open Hole): 1.01 sq @ Max. Estimated Pore Pressure (Open Hole): 1.69 sq Min. Estimated Pore Pressure (Open Hole): 1.69 sq Sand) Comments: Survey at 265 m - no drag when pulling back 3 stands to retrieve survey. Luhology- Interbedded Sandstone Silbstone Shale Clauptone with occasional coals.	
Kick Tolerance: O-431 sq Min. Estimated Fracture Pressure (Open Hole): Estimated Pore Pressure: Nax. Estimated Pore Pressure (Open Hole): OS SQ Min. Estimated Pore Pressure (Open Hole): Estimated Pore Pressure at TD: 1-69 sy (Sand) Comments: Survey at 2685 m - no drag when pulling back 3 stands to retrieve survey. Lithalang- Interbedded Sandstone Silbstone Shale Clayptone with occasional coals.	
Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): 10159 @ 2263 m	ESTIMATED PORE AND FRACTURE PRESSURE
Max. Estimated Pore Pressure (Open Hole): [-03 sg] @ 2263 m Estimated Fracture Pressure at TD: [-69 sg (sand)] Comments: Survey at 2685 m - no drag when pulling back 3 stands to retrieve survey. Luhday - Interbedded Sandstone Silbtone Shale Claretone unth occassional coals.	Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): 100 30 m 100 32 3 m 100 32
Comments: Survey at 2685 m - no drag when pulling back 3 standate retrieve survey. Lithology- Interbedded Sandatone Siltolone Shale Clauptone with oceassional coals.	Estimated Fore Fressure.
retrieve survey. Luhology-Interbedded Sandstone Silbstone Shale, Clauptone until oceassional coals.	
oceassional coals.	
oceassional coals.	T. 1 0 1 6 0 0 6 - 01 0 00 F
Pet #1, 43 m² 2, 14.7 m² 3, 12 m² 4, 65 i3 m² TRIPTANK, om?	- Cassian Cont.
Pet # 1, 43 m² 2, 14.7 m² 3, 12 m² 4, 65 i3 m² TRIPTANK, om?	
	Pet # 1, 43 m2 2, 14.7 m3 3, 12 m3 4 65 i3 m3 TRIPTANK, om3

COMPANY Shell Dev. Aust. WELL Basker South 1
DATE 15 Dec 1983 TIME 0600
DEPTH LAST REPORT DEPTH LAST REPORT DEPTH
DEPTH LAST REPORT DEPTH 2818 m
REPORT BY T. JANOWICZ REPORT RECEIVED BY D. SATTERLEE (OPERATOR)
DRILLING REPORT
Bit No.: Run # 13 Type: SMITH F3 Size: 8/2 Jets: 10,10,11
On Bit: Footage: 57m Hours: 10.9 ROP: 5.2 m/hr ave. WOB: 16 tome RPM: 55,65
Pump Press: 2590 px SPM: 78 Torque: 1.7-1.9 WmTBR: 40407 CP 1:\$ 1126 CP B:\$ 1155
HYDRAULICS REPORT
Mud Density In: 1-10 to Mud Density Out: 1-10 to ECD: 1-14sq PV/YP: 14/14
Gels: Salinity:
Hole Volume: 1524 m Annular Volume: 120 m Tubing Volume: 250 m Displaced Volume: 140 min Sq 44 stks 777 min Flowrate: 1472 1 min
Drillpipe Annular Vel (Max. Dia. Sec.): Drillpipe Annular Vel (Max. Dia. Sec.): Drillpipe Annular Vel (Open Hole): Drillpipe Annular Vel (Open Hole):
Drillpipe Annular Vel (Max. Dia. Sec.): Drill Collar Annular Vel (Open Hole): 76 85 m/mm Critical Vel: 131.5 m/min
Pressure Loss System: 479: Pressure Loss Bit: 9111 psi % Pressure Loss: 76
Nozzel Vel:
Nozzel Vel:
PRESSURE PARAMETERS Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C
Drilling Exponent: 1.4 – 1.6 Flowline Temperature: 37.3 C
Drilling Exponent: 1.4 – 1.6 Flowline Temperature: 37.3 C
Shale Density: Shale Density: Shale Factor: Background Gas: 7-0166 Max. Formation Gas: 0166 Max. Formation Gas: 0166 Max. Formation Gas: 0166 Max. Formation Gas: 01666
Drilling Exponent: 1.4 – 1.6 Flowline Temperature: 37.3 C
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 0.015% @ 2828 m Other Gas: Nic
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 0.015% @ 2828 m Other Gas: Ni Fill: Tight Hole: Average Size: Average Size:
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 0.015% @ 2828 m Other Gas: Ni Fill: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 422 Sa Min. Estimated Fracture Pressure (Open Hole)! 65 g in Loose Sand.
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Trip Gas. 0.015% @ 2828 m Other Gas: Niu Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 422 Sa Min. Estimated Fracture Pressure (Open Hole)! 65 sg in Loose sand. Estimated Pore Pressure: 1.01sg Min. Estimated Pore Pressure (Open Hole): 1.01sg @ Min. Estimated Pore Pres
Drilling Exponent: 1-4 - 1-6 Flowline Temperature: 37-3 C
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 0.015/5 @ 2828 m Other Gas: Ni Flowline Temperature: 37.3 C Shale Factor: Shale Factor: Trip Gas: 0.015/5 @ 2828 m Other Gas: Ni Fill: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 422 Sa Min. Estimated Fracture Pressure (Open Hole): 1.01sg Min. Estimated Pore Pressure: 1.01sg Min. Estimated Pore Pressure (Open Hole): 1.01sg Min. Estimated Pore Pressure at TD: 1.69 Sand) Comments: Pull aut & hole at 2828 n Drag of up to 38 tonne an 1st eleven stands. All previous connections to the but trip were Clean.
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 0.015/6 @ 2828 m Other Gas: Ni Flowline Temperature: 37.3 C Shale Factor: Shale Factor: Trip Gas: 0.015/6 @ 2828 m Other Gas: Ni Fill: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 422 Sa Min. Estimated Fracture Pressure (Open Hole)! 65 sg in Loose sand. Estimated Pore Pressure: 1.01sg Min. Estimated Pore Pressure (Open Hole): 1.01sg @ Min. Estimated Pore Pressure at TD: 1.69 sand. Comments: Pull art & hole at 2828 n Drag of up to 38 towns an 1st elluren stands. All previous connections to the but trip were clean.
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 (Shale Density: Shale Factor: Shale Factor: Shale Factor: Background Gas: 1.7 - 1016 Max. Formation Gas: 1016 @ 2370 m Trip Gas: 0.015/5 @ 2828 m Other Gas: Ni Trip Gas: 0.015/5 @ 28
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Trip Gas: 0.015/5 @ 2828 m Other Gas: Ni Flowline Temperature: 37.3 C Shale Factor: Shale Factor: Trip Gas: 0.015/5 @ 2828 m Other Gas: Ni Fill: Tight Hole: Average Size: Average Size: STIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 422 Sa Min. Estimated Fracture Pressure (Open Hole): 1.01sg Min. Estimated Pore Pressure: 1.01sg Min. Estimated Pore Pressure (Open Hole): 1.01sg Min. Estimated Pore Pressure at TD: 1.69 Sand) Comments: Pull aut & hole at 2828 n Drag of up to 38 tonne an 1st eleven stands. All previous connections to the but trip were Clean.
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 C Shale Density: Shale Factor: Shale Factor: Shale Factor: Trip Gas: 0.015% @ 2828 m Other Gas: NiL Fill: Tight Hole: Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 422 Sa Min. Estimated Fracture Pressure (Open Hole): 1.65 sg in loose sand. Estimated Pore Pressure: 1.01 sg Min. Estimated Pore Pressure (Open Hole): 1.01 sg @ 2263 n Estimated Fracture Pressure at TD: 1.69 (sand.) Comments: Pull art & hole at 2828 n Drag of up to 38 towns an 1st ellurin stands. All previous connections to the but this were clean. Pun in SMTH F3. Rean 2810 n to 2828 n and drill ahead. Lithology. Interbadded Sanc, Silt clay, Shale and coal.
Drilling Exponent: 1.4 - 1.6 Flowline Temperature: 37.3 (Shale Density: Shale Factor: Shale Factor: Shale Factor: Background Gas: 1.7 - 1016 Max. Formation Gas: 1016 @ 2370 m Trip Gas: 0.015/5 @ 2828 m Other Gas: Ni Trip Gas: 0.015/5 @ 28

	COMPANY Shell Dev. Aust. WELL Basker South 1
	DATE16 Dec 83 TIME
	DEPTH LAST REPORT DEPTH 2885m
	RIG OPERATIONS DRILL 81/2" HOLE WITH NBHIL.
	REPORT BY D. NEW REPORT RECEIVED BY D. SATTERLEE. (OPERATOR)
	DRILLING REPORT
	Bit No.: NB# RUN 13 Type: SMITH F3 Size: 81/2 Jets: 10,10,11
	On Bit: Footage: 152m Hours: 32.5 ROP: 4.7 m/tin WOB: 14-15 RPM: 68
	Pump Press: 2580 SPM: 76 Torque:TBR: 117438 CP I:\$ 424 CP B:\$ 1142
	HYDRAULICS REPORT
·	Mud Density In: 1:11
	Gels: PPM CI Solids: %
	Hole Volume: 155.8m³ Annular Volume: 115.1m³ Tubing Volume: 26.2m³ Displaced Volume: 14.5m³
	Carbide Lag—Calculated Lag: 8 78 min - 79 min Flowrate: 1446 L min
	Drillpipe Annular Vel (Max. Dia. Sec.): 76 M/MIN Drillpipe Annular Vel (Open Hole): 60 4 m/MIN Drill Collar Annular Vel (Open Hole): 951 m/mIN Critical Vel: 126 9 m/mIN
	Pressure Loss System: 544 ps1 Pressure Loss Bit: 2036 ps1 % Pressure Loss: 79%
	Nozzel Vel: 151.7 m. Jet Impact Force: 411 Hg HHP: 454 HP.
:	
	PRESSURE PARAMETERS Drilling Exponent: 1.27(5/5) - 1.80 (SHALE) Flowline Temperature: 36.8°C.
	Shale Density: 1.84 - 1.86 Shale Factor:
	Background Gas: 0.02-0.04 Max. Formation Gas: 0.27 @ 2935 Trip Gas: @
	Other Gas: NIL
	Fill: NIL Tight Hole: NIL
-	Cavings: Est %: MINOR . Average Size:
	ESTIMATED PORE AND FRACTURE PRESSURE
	Kick Tolerance: O:41 S6 Min. Estimated Fracture Pressure (Open Hole): 1.65
	Estimated Pore Pressure: 10156 Min. Estimated Pore Pressure (Open Hole): 101 @ T.D.
	Max. Estimated Pore Pressure (Open Hole): 1.03 @ 2263 m Estimated Fracture Pressure at TD: 1.69 (5/5)
	Comments: PIT No1: 41.8m3 PITNo2: 13.1m3 PIT No3: EMPTY. PIT No4: 64:1m3. TRIP TANH: EMPTY.
6771	I INTERBEDDED SANDSTONE, SILTSTONE CLAYSTONE AND SMALE.
	CARBIDE PUN AT 294/m INDICATES IN GAUGE HOLE.
	APPARMIT FILL AST DILL STATE OF THE PARTY OF
	APPARENT FILL MET ON CONNECTION AT M WAS DUE TO KASING PROTECTOR FALLING OFF DER DRILL PIPE.
	SUGGEST CHECKING ALL PROCTECTORS ON NEXT TRIP.
	·

COMPANY SHELL DEU AUST WELL BASHER SOUTH No.1
DATE 17 TH DEC 1983 TIME 06:00 HRS
DEPTH 2999m LAST REPORT DEPTH 3980 m
RIG OPERATIONS DRILL TO 2999m. CIRC. BTHS UP POON. TEST STACH RIL
REPORT BY DEW REPORT RECEIVED BY GIGNED (OPERATOR)
DRILLING REPORT
Bit No.: NB#11 Run 13 Type: MTC F3 Size: 81/2" Jets: 10, 10, 11
On Bit: Footage: 171 m Hours: 39.3 ROP: 4.3 m / FIR WOB: 15 RPM: 65
Pump Press: 2580 SPM: 77 Torque: 1.65-2:4FBR: 140445 CP 1:\$ 1857 CP B:\$ 1180
HYDRAULICS REPORT
Mud Density In: Mud Density Out: ECD: ECD: PV/YP: 17 (13
Gels:
Hole Volume: 1565 m ³ Annular Volume: 115.5 m ³ Tubing Volume: 26.4 m ³ Displaced Volume: 14.6 m ³
Carbide Lag-Calculated Lag: 78min / 80min Flowrate: 1445 L/MIN
Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m/m/v Drillpipe Annular Vel (Open Hole): 60.3 m/m/v
Drill Collar Annular Vel (Open Hole): 60.3 m lm in Critical Vel: 133.9 m lm in
Pressure Loss System: 544 ps1 Pressure Loss Bit: 2036 ps1 % Pressure Loss: 79%
Nozzel Vel: 151.6 m 1 sec Jet Impact Force: 410 mg HHP: 453 mg
PRESSURE PARAMETERS
Drilling Exponent: 1.51 - 1.78 Flowline Temperature: 38.1
Shale Density: 1.82 - 1.86. Shale Factor:
Shale Density: 1.82 - 1.86. Shale Factor: Background Gas: 0.04 - 0.08 Max. Formation Gas: — Trip Gas: — @ —
Shale Density: 1 · 82 - · 86 . Shale Factor: — Background Gas: 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·
Shale Density: 1.82 - .86 . Shale Factor: Background Gas: 0.04 - 0.08 Max. Formation Gas: —
Shale Density: 1.82 - .86
Shale Density: 1.82 - 1.86 Shale Factor:
Shale Density: 1.82 - 1.86
Shale Density:
Shale Density:
Shale Density: 1.82 - 86 Shale Factor: Background Gas: 0.04 - 0.08 Max. Formation Gas: @ Trip Gas: @ Other Gas: NIL Tight Hole: Max 28T BCTWW 291 M AND 2654 M Fill: NIL Tight Hole: Max 28T BCTWW 291 M AND 2654 M Cavings: Est %: MINOR Average Size: SMBCL ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): 1.65 Estimated Pore Pressure: 0 50 Min. Estimated Pore Pressure (Open Hole): 0 50 Max. Estimated Pore Pressure (Open Hole): 4.07 0.03 @ 12.603 T. DEstimated Fracture Pressure at TD: 6.9 Comments: PIT Vous AT 06:00 WMILE RUNNING TN MOLE PLT #1: 48.5
Shale Density:
Shale Density: 1.82 - 86
Shale Density: 1.82 - 1.86 Shale Factor: Background Gas: 0.04 - 0.08 Max. Formation Gas: - @
Shale Density:
Shale Density:

COMPANY SHELL DEU AUST. WELL BASHER SOUTH NO!
DATE 18 -N DEC. 1983 TIME 06:00 HRS
DEPTH 3078m LAST REPORT DEPTH 2999m
RIG OPERATIONS RIH. DRILL AHEAD WITH NB#12.
REPORT BY D. NEW. REPORT RECEIVED BY(OPERATOR)
DRILLING REPORT
Bit No.: NBHI2 RUNILITYPE: VAREL 537 Size: 81/2 Jets: 10,10,11
On Bit: Footage: 79m Hours: 19:81-185 ROP: 4.0 m / HR. WOB: 14-15T RPM: 55-60
Pump Press: 2640 SPM: 75 Torque: 1.9-2.2 TBR: 59616 CP I:\$ 1247 CP B:\$ 1392
HYDRAULICS REPORT
Mud Density In: 1:10+ Mud Density Out: 1:11-1:09. ECD: 1:14 PV/YP: 14/13.
Gels: Salinity:%
Hole Volume: 159.4 m ³ Annular Volume: 117.3 m ³ Tubing Volume: 27.1 m ³ Displaced Volume: 14.9 m ³
Carbide Lag-Calculated Lag: 80 min - 82 min (6183 5745) Flowrate: 1429 Llmin.
Drillpipe Annular Vel (Max. Dia. Sec.): 7.5 m/m/m Drillpipe Annular Vel (Open Hole): 59.7 m/m/m
Drill Collar Annular Vel (Open Hole): 94 M / M/N Critical Vel: 127 M / M/N
Pressure Loss System: 652 ps 1 Pressure Loss Bit: 1988 ps 1 % Pressure Loss: 75%
Nozzel Vel: 150 0 m/562 Jet Impact Force: 401 hg HHP: 4379 HP
PRESSURE PARAMETERS
Drilling Exponent: 1.20 (5/5) - (.88 (CL/5) Flowline Temperature: 41.6°C
Background Gas: OT = O 3 /6 Max. Formation Gas: Q /6 @ 306 m Trip Gas: O 5 /6 @ 2 11 m
Fill: NIL Tight Hole: NIL
Cavings: Est %: UP TO 20% COAL Average Size: SMALL
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Toloropeo C 577 S.G Min Estimated Erecture Propoure (Open Hole) (2 > (5/5)
Kick Tolerance: 0.399 s.c Min. Estimated Fracture Pressure (Open Hole): (65 (5/5)) Estimated Pore Pressure: 1.01 Min. Estimated Pore Pressure (Open Hole): (0.00 min. Estimated Pore Pressure (Open Hole)): (0.00 min. Estimated Pore Pressure (Open Hole)))
Kick Tolerance: O: 399 5.6 Min. Estimated Fracture Pressure (Open Hole): C 5 (3/5) Estimated Pore Pressure: Nin. Estimated Pore Pressure (Open Hole): C 6 5 (3/5) Min. Estimated Pore Pressure (Open Hole): C 6 5 (3/5) Min. Estimated Pore Pressure (Open Hole): C 6 5 (3/5) Min. Estimated Pore Pressure (Open Hole): C 6 5 (3/5) Min. Estimated Pore Pressure (Open Hole): C 6 5 (3/5) Min. Estimated Pore Pressure (Open Hole): C 6 5 (3/5) Min. Estimated Pore Pressure (Open Hole): C 6 5 (3/5)
Estimated Pore Pressure: 1:01 Min. Estimated Pore Pressure (Open Hole): 1:01 @ Min. Estimated Pore Pressure (Open Hole): 1:70:(5/5) Max. Estimated Pore Pressure (Open Hole): 1:70:(5/5) Comments: PIT No 1:56:2m3 PIT No 2:18:5 m3 PIT No 3: EMPTH
Estimated Pore Pressure: 1.01 Min. Estimated Pore Pressure (Open Hole): 1.01 @ Min. Estimated Pore Pressure (Open Hole): 1.70 (5/5) Max. Estimated Pore Pressure (Open Hole): 1.70 (5/5) Comments: Pt No 1.56 2 m ³ Pt No 2: 18 5 m ³ Pt No 3: Empty Pt No 4: 63 9 m ³ Trip Trip Trip Trip Trip Trip Trip Trip
Estimated Pore Pressure: 1.01 Min. Estimated Pore Pressure (Open Hole): 1.01 @
Estimated Pore Pressure: 1.01 Min. Estimated Pore Pressure (Open Hole): 1.01 @ Max. Estimated Pore Pressure (Open Hole): 1.03 @ Estimated Fracture Pressure at TD: 1.70 (5/5) Comments: PIT No 1:56 2 m ³ PIT No 2: 18 · 5 m ³ PIT No 3: EMPTY PIT No 4:63 · 9 m ³ TRIP TANH · EMPTY HAD TO FUMP 680 5THS TO FILL PRILL PIPE AFTOR RIM (TOTAL CUPACITY OF D. P: 1391 5THS)
Estimated Pore Pressure: 1.01 Min. Estimated Pore Pressure (Open Hole): 1.01 @
Estimated Pore Pressure: 1.01 Min. Estimated Pore Pressure (Open Hole): 1.01 @
Estimated Pore Pressure: 1.01 Min. Estimated Pore Pressure (Open Hole): 1.01 @ Max. Estimated Pore Pressure (Open Hole): 1.03 @ Estimated Fracture Pressure at TD: 1.70 (5/5) Comments: PIT No 1:56.2 m3 PIT No 2: 18.5 m3 PIT No 3: EMPTY PIT No 4:63.9 m3 TRIP TANH: EMPTY HAD TO FUMP 680 5TH5 TO FILL DRILL PIPE AFTOR RIM (TOTAL CMPACITY OF D. P:1391 5TH5) CHANGE IN DXC TROND AND INCREMSING CAS VALUES PROBARD BUE TO INCRMSING CARBONACUOUS MATTOR (COAL IN THE

COMPANY SHELL DEV. AUST. WELL BASHER SOUTH NOL
DATE 1974 DEC 1983. TIME 06:00 FIRS
DEPTH LAST REPORT DEPTH
RIG OPERATIONS DRILL 81/2" HOLE WITH NB#12
REPORT BY D. NEW REPORT RECEIVED BY (OPERATOR)
DRILLING REPORT
Bit No.: NBHI2 RUN 14 Type: VAREL 537 Size: 81/2 Jets: 10, 10, 11
On Bit: Footage: 173 Hours: 41-7 ROP: 4 M/HR. WOB: 13-15 RPM: 50-60
Pump Press: 2780 SPM: 77 Torque: 1.8-2.3 TBR: 128197 CP 1:\$ 2350 CP B:\$ 1270
HYDRAULICS REPORT
Mud Density In: 1 12 Mud Density Out: 1 12 ECD: 1 16 PV/YP: 14/15
Gels: Salinity:
Carbide Lag-Calculated Lag: 5755 - 6301 Flowrate: 1465 4/min
Drillpipe Annular Vel (Max. Dia. Sec.): 7.7 m m Drillpipe Annular Vel (Open Hole): 61.2 m m Drillpipe
Drill Collar Annular Vel (Open Hole): 96.4 in/min Critical Vel: 134.6 m/min
Pressure Loss System: 661 PS1 Pressure Loss Bit: 219 PS1 % Pressure Loss: 76 /6
Nozzel Vel: 154 m 158C Jet Impact Force: 427 hg HHP: 478 HP
PRESSURE PARAMETERS
Drilling Exponent: 1-15cs(s) - (.77(st/s) Flowline Temperature: 47.1°C
Shale Density:1.78Shale Factor:
Background Gas: 0·1·0·2 1/2 Max. Formation Gas: 2·3 1/2 @ 3141 m Trip Gas: @
Other Gas: NIL
Fill: OH CONN AT 3122m Tight Hole: NIL
Cavings: Est %: UP TO 20% COAL Average Size: SMALL
ESTIMATED PORE AND FRACTURE PRESSURE .
Kick Tolerance: 0.387 SG. Min. Estimated Fracture Pressure (Open Hole): 165 SG.
Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): @
Max. Estimated Pore Pressure (Open Hole): 1.03 Sc. @ Estimated Fracture Pressure at TD: 1.74 Sc.
Comments: PIT No1: 860.7m3, PIT No2: 20 3m3 PIT No3: 13.1m3
PIT No.4=63.8m3 TRIP TANK EMPTY.
ANY DOULATION FROM. NORMAL PRESSURE TRUNDS (DXC
GAS EST) DUE TO LITHOLOGICAL VARIATIONS
LITH: SILTSTONE WITH LESSER SANDSTONE THTORISHODS
AND MA COMMON COAL.

COMPANY SHELL DEN AUST WELL BASHER SOUTH NO!
DATE
DEPTH LAST REPORT DEPTH 172m
RIG OPERATIONS C.R. POOH. CHANGE BIT. P.LH AND DRILL AHEAD.
REPORT BY D. NEW. REPORT RECEIVED BY(OPERATOR)
DRILLING REPORT
Bit No.: NB#13 (RUN 15) Type: SMITH F3 Size: 81/2" Jets: 10,10,11
On Bit: Footage: 38m Hours: 7.5 ROP: 5. M/HR WOB: 157 RPM: 55-60
Pump Press: 2570 SPM: 75 Torque: 1.7-2.0 TBR: 25560 CP I:\$ 872 CP B:\$1287
HYDRAULICS REPORT
Mud Density In: 1-12 Mud Density Out: 1-12 ECD: 1-15 PV/YP: 13 / 11
Gels:
Hole Volume: 164.9m3 Annular Volume: 120.9m3 Tubing Volume: 28.5m3 Displaced Volume: 15.5m3
Carbide Lag-Calculated Lag: 5816 (77min) -6368 (85min) Flowrate: 430 L/min
Drillpipe Annular Vel (Max. Dia. Sec.): <u>7・5mlmぃ</u> Drillpipe Annular Vel (Open Hole): <u>59・7 mlmぃ</u>
Drill Collar Annular Vel (Open Hole): 94.0 m / m (Critical Vel: 114.1 m / m ()
Pressure Loss System: 553 psi Pressure Loss Bit: 2017 psi % Pressure Loss: 78%
Nozzel Vel: 150 m 15cc Jet Impact Force: 407 H g HHP: 444 HP
PRESSURE PARAMETERS
Drilling Exponent: 1.13 (5/5) - 1.73 (57/5) Flowline Temperature: 40.8°C
Buch 1.80 sc. Shale Factor:
Background Gas: 0.4-0.8% Max. Formation Gas: 1.9% @ Trip Gas: 0.6% @ 3189 m
Other Gas: NIL
Fill: MINOR Tight Hole: UP TO 25T. DRAG ON TRIP OUT.
Cavings: Est %: NINOR - 70% (CONL) Average Size: SMACL
ESTIMATED PORE AND FRACTURE PRESSURE .
Kick Tolerance: 0.370 sc. Min. Estimated Fracture Pressure (Open Hole): 1-65 sc EMW
Estimated Pore Pressure: 1.0156 EMW Min. Estimated Pore Pressure (Open Hole): 1.01 @
Max. Estimated Pore Pressure (Open Hole): 1.035a @ Estimated Fracture Pressure at TD: 1.74 5 a
$\frac{1}{2}$
Comments: PIT No1: 47.2m3 PIT No2: 15.5m3 PIT No3: 12.5m3
PIT NO 4: 63.3 m3 TRIP TANK EMPTY.
PIT No.4:63.3m3 TRIP TANK EMPTY. NB#12 (RUN14) DRILLED 190m IN 45.3 HRS (ON BOTTOM) AT
PIT NO.4: 63.3 m3 TRIP TANK EMPTY. NB#12 (RUN14) DRILLED 190m IN 45.3 HRS (ON BOTTOM) AT AN AUDRAGE ROP OF 4.2 m/HR
PIT NO.4: 63.3 m3 TRIP TANK EMPTY. NB#12 (RUN14) DRILLED 190m IN 45.3 HRS (ON BOTTOM) AT
PIT NO.4: 63.3 m3 TRIP TANK EMPTY. NB#12 (RUN14) DRILLED 190m IN 45.3 HRS (ON BOTTOM) AT AN AUDRAGE ROP OF 4.2 m/HR
PIT No.4: 63.3 m3 TRIP TANK EMPTY. NB# 12 (RUN14) DRILLED 190m IN 45.3 HRS (ON BOTTOM) AT AN AUDRAGE ROP OF 4.2 m/HR CIRCULATE BOTTOMS UP AT 3212m - No SHOW DRILL AHLAD

COMPANY SHELL DEU AUST WELL BASHER SOUTH No.
DATE TIME TIME O6: 00 HRS
DEPTH 3321m LAST REPORT DEPTH 3227 m
RIG OPERATIONS DRILL 872" HOLE
REPORT BY D. NEW REPORT RECEIVED BY (OPERATOR)
DRILLING REPORT
Bit No.: NB#13 (RUN 15) Type: SMITH F3 Size: 81/2 Jets: 10, 10, 11
On Bit: Footage: 132 m Hours: 29.9 HPS ROP: 4.4 M/HR WOB: 15 RPM: 55
Pump Press: 2590ps1 SPM: 75 Torque: 19-2-4 TBR: 101769 CP 1:\$ 2300 CP B:\$ 1226
HYDRAULICS REPORT
Mud Density In: 1:12
Gels: Salinity:
Hole Volume: 168-3m ³ Annular Volume: 123·1m ³ Tubing Volume: 29·4m ³ Displaced Volume: 15·8m ³
Carbide Lag-Calculated Lag: 5921 (79min) - 6485(66 Mow) rate: 1423 L/min
Drillpipe Annular Vel (Max. Dia. Sec.): 7.5 m/min Drillpipe Annular Vel (Open Hole): 59.4 m/min
Drill Collar Annular Vel (Open Hole): 93.6 m / mr. Critical Vel: 130 m / mr.
Pressure Loss System: 590 ps i Pressure Loss Bit: 2000 ps i % Pressure Loss: 77 %
Nozzel Vel: 149.3m/SEC Jet Impact Force: 404 Hg HHP: 438.7 HP
PRESSURE PARAMETERS
Drilling Exponent: 1:16 (5/5) - 1:82 (SHALE) Flowline Temperature: 47:1°C i3 (LH) Shale Density: 1-78 - 1:74 Shale Factor:
Background Gas: 0.2 - 0.4% Max. Formation Gas: 2.3% @ 3257m Trip Gas:@
Other Gas: NIL
Fill: NIL Tight Hole: NIL
Cavings: Est %: UP TO 40% IN COPL. Average Size: C 10mm.
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance: 0.36 SG. Min. Estimated Fracture Pressure (Open Hole): 1.65 SG. GMW Estimated Pore Pressure: 1.01 - @ 1.02 Sc. Min. Estimated Pore Pressure (Open Hole): 1.01 @
Max. Estimated Pore Pressure (Open Hole): 1.07 sa @ 3290 m Estimated Fracture Pressure at TD: 1.78 sa
Comments: PIT No1: 55.5 m3, PIT No2: 718.8 m3 PIT No 3: 24.6 m3
PIT No 4:63.2 m3 TRIP TANH EMPTY.
THERESED ROP AND GAS AND CAUINGS BETWEEN ABOUT TO
32 gom AND 3300M INDICATE THAT PORE PRESSURE MAY MAUE INCREASED ONER THIS INTERVAL TO AN
ESTIMATED MAXIMUM OF 1-0756. BELOW 3300m
PORE PRESSURG APPEARS TO HAVE RETURNOD TO NORMAL
LITH: SILTSTONE WITH SHALE/COAL TNTDRIGEDS AND OCCASIONAL SANDSTONE.
EL P/N 18429 MAY 1980

COMPANY SHELL DEU AUST WELL BASHER SOUTH No.1
DATE
DEPTH 3341m LAST REPORT DEPTH 3321m
RIG OPERATIONS DRILL TO 3341m. POOH. REPAIR BLOCKS ECT.
REPORT BY D. NEW REPORT RECEIVED BY(OPERATOR)
DRILLING REPORT
Bit No.: NBH13 (Run15) ype: SMITH F3 Size: 81/2 Jets: 10,10,11
On Bit: Footage: 152m Hours: 37.5m ROP: 4.05m/HR WOB: 13-15 RPM: 55-60
Pump Press: 2610 SPM: 75 Torque: 1.9.2.3 TBR: 128690 CP I:\$ 2788 CP B:\$ 1320
HYDRAULICS REPORT
Mud Density In: 1:13 5c Mud Density Out: 1:13 5c ECD: 1:175c PV/YP: 17 / 16
Gels: Salinity:PPM CI Solids:%
Hole Volume: 169m ³ Annular Volume: 123.6 m ³ Tubing Volume: 29.6 m ³ Displaced Volume: 15.9 m ³
Carbide Lag-Calculated Lag: 5944(80min) - 6510 (87min) Flowrate: 1427 L/min
Drillpipe Annular Vel (Max. Dia. Sec.): 7.5 m/min Drillpipe Annular Vel (Open Hole): 59.6 m (min
Drill Collar Annular Ver (Open Hole): 93.9 m / m w Critical Vel: 144.5 m / m w
Pressure Loss System: 582 ps 1 Pressure Loss Bit: 2028 ps 1 % Pressure Loss: 78%
Nozzel Vel: 1949.7m / SEC Jet Impact Force: 409 Fig. HHP: 446 HP.
PRESSURE PARAMETERS
Drilling Exponent: 1.37 - 1.96 Flowline Temperature: 43.7° C.
Shale Density: 1-76 - 1-78 56 Shale Factor:
Background Gas: O 02 - O 1 % Max. Formation Gas: O 92% @ Trip Gas: @
Other Gas: NIL
Fill: NIL Tight Hole: UP TO 31T. DRAG FROM STANDS 3-10.
Cavings: Est %: MINOR Average Size: 5 MALL
ESTIMATED PORE AND FRACTURE PRESSURE .
Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole):
Estimated Pore Pressure: 1.01-1.0256 Min. Estimated Pore Pressure (Open Hole): 1.01 @
Max. Estimated Pore Pressure (Open Hole): 1.07 @ 3300 m Estimated Fracture Pressure at TD: 1.78 se
Comments: PIT Vols (OUT OF HOLE) PIT No1: 47.8 m3, PIT No2: 16.1m3
PIT No 3: 25.0 m3. PIT No 4: 62.7 m3. TRIP TANK: 3.24 m3.
PRESSURE TRENDS HAVE RETURNED TO NORMAL AND PORE
PRESSURE IS NOW ESTIMATED TO BE 1.01 - 1.0256 EMW
· · · · · · · · · · · · · · · · · · ·
TIGHT HOLE ON TRIP OUT POSSIBLY DUE TO STABILIZER BALLIAGE
TIGHT HOLE ON TRIP OUT POSSIBLY DUE TO STABILIZER BALLING UP IN HUD FILTRATE OR DUE TO JUNK (PIPE RUBBERS?).

COMPANY Shell Dev. Aust. WELL Basker South 1
DATE
DEPTH 3364 m LAST REPORT DEPTH 3341 m
RIG OPERATIONS Drilling Ahead.
REPORT BY T. JANOWICZ REPORT RECEIVED BY D. SATTERLEE (OPERATOR)
DRILLING REPORT
Bit No. Run # 16 Type: SMITH F3 Size: 84" Jets: 10,10,11
On Bit: Footage: 23 m Hours: 6.6 ROP: 3.5m/h WOB: 15 Tome RPM:65-75
Pump Press: 2670pi SPM: 76 Torque 2-0-22kNm TBR: 26116 CP 1:\$ 1757 CP B:\$ 1963
HYDRAULICS REPORT
Mud Density In: 1-1339 Mud Density Out: 1-1339 ECD: 1-1739 PV/YP: 17/16
Gels: Salinity:
Hole Volume: 169-8 m ³ Annular Volume: 124 m ³ Tubing Volume: 2918 m ³ Displaced Volume: 16 m ³
Carbide Lag-Calculated Lag: 5968 - 6577 stls Flowrate: 1446 lmin
Drillpipe Annular Vel (Max. Dia. Sec.): 7.6 m/min Drillpipe Annular Vel (Open Hole): 60.2 m/min Drill Collar Annular Vel (Open Hole): 94.9 m/min Critical Vel: 144.8 m/min
Pressure Loss System: 809 psi Pressure Loss Bit: 2065 psi % Pressure Loss: 72
Nozzel Vel: 151-3 m/sec Jet Impact Force: 417 Lg HHP: 459 hp
PRESSURE PARAMETERS
Drilling Exponent: 1.5 - 1.9 Flowline Temperature: 41.4°C
Shale Density: Shale Factor:
Shale Density: Shale Factor:
Other Gas: Nic
Fill: Tight Hole:
Cavings: Est %: Average Size:
FOTIMATED DODE AND EDACTIDE DESCUDE
ESTIMATED PORE AND FRACTURE PRESSURE
Kick Tolerance: 0.35 sq. Min. Estimated Fracture Pressure (Open Hole): 1.65 sq.
Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): 1.65 sg
Kick Tolerance: O-351 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq
Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): 1.65 sg
Kick Tolerance: O-35 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq Estimated Pore Pressure: 1.01sq Min. Estimated Pore Pressure (Open Hole): 1.01sq @ Min. Estimated Pore Pressure (Open Hole): 1.78 sq Min. Estimated Pore Pressure at TD: 1.78 sq
Kick Tolerance: O.35 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq Estimated Pore Pressure: 1.0 sq Min. Estimated Pore Pressure (Open Hole): 1.0 sq @ Min. Estimated Pore Pressure (Open Hole): 1.78 sq @ 3300 m Estimated Fracture Pressure at TD: 1.78 sq Comments: Midnight - 33455 m, 4.5m 1.65 sq
Kick Tolerance: O.35 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq Estimated Pore Pressure: 1.0 sq Min. Estimated Pore Pressure (Open Hole): 1.0 sq @ Min. Estimated Pore Pressure (Open Hole): 1.78 sq @ 3300 m Estimated Fracture Pressure at TD: 1.78 sq Comments: Midnight - 33455 m, 4.5m 1.65 sq
Kick Tolerance: O.35 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq Estimated Pore Pressure: 1.0 sq Min. Estimated Pore Pressure (Open Hole): 1.0 sq
Kick Tolerance: O·35/sa Min. Estimated Fracture Pressure (Open Hole): 1.0/sg @
Kick Tolerance: O.35 sq Min. Estimated Fracture Pressure (Open Hole): 1.65 sq Estimated Pore Pressure: 1.0 sq Min. Estimated Pore Pressure (Open Hole): 1.0 sq @ Min. Estimated Pore Pressure (Open Hole): 1.78 sq @ 3300 m Estimated Fracture Pressure at TD: 1.78 sq Comments: Midnight - 33455 m, 4.5m 1.65 sq

COMPANY Shell Dev. Aust. WELL Basker South 1
DATE
DEPTH 3420 LAST REPORT DEPTH 3364 M
RIG OPERATIONS _ Circulating
REPORT BY T. JANOWICZ REPORT RECEIVED BY D. SATTERLEE (OPERATOR)
DRILLING REPORT
Bit No. Run # 16 Type: SM1TH F3 Size: 8/2 Jets: 10 10 11 On Bit: Footage: 79m Hours: 24-8 hrs ROP: 3.2m/h. WOB: 16 Conne RPM: 65
On Bit: Footage: 79 m Hours: 24.8 km ROP: S.2 m/h. WOB: 16 Corne RPM: 65
Pump Press: 2640 psi SPM: 75 Torque: 18-2-2 kNm TBR: 95590 CP 1: \$ 2074 CP B: \$ 1711
HYDRAULICS REPORT
Mud Density In: 1-13 sg Mud Density Out: 1.13g ECD: 1.16 sg PV/YP: 16/14
Gels: PPM CI Solids:%
Hole Volume: 171.9 ms Annular Volume: 155.7 m Tubing Volume: 30.3 m Displaced Volume: 16.2 m
Carbide Lag-Calculated Lag: 6032 stks - 6608 stks Flowrate: 1423 Umin
Drillpipe Annular Vel (Max. Dia. Sec.): 7.5 m/min Drillpipe Annular Vel (Open Hole): 59.4 m/min
Drill Collar Annular Vel (Open Hole): 93.6 m/min Critical Vel: 134.1 m/min
Pressure Loss System: 777 psc Pressure Loss Bit: 2011 psc % Pressure Loss: 72
Nozzel Vel: 149 m/sec Jet Impact Force: 406 kg HHP: 441 hp
PRESSURE PARAMETERS
Drilling Exponent: 1-6-1-8 Flowline Temperature: 45-5 C
Shale Density: Shale Factor:
Shale Density: Shale Factor: Shale Factor: Background Gas: 625 - 425 / Max. Formation Gas: 425 / @ 3410 m Trip Gas: @
· · · · · · · · · · · · · · · · · ·
Other Gas: * N:C
Fill: Tight Hole: 2167 - 3224 m
Other Gas:
Fill:Tight Hole:
Fill:
Fill:
Fill:
Tight Hole: 2167 - 3224 m. Cavings: Est %: Minor Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 34430 Min. Estimated Fracture Pressure (Open Hole): 1.65ca Estimated Pore Pressure: 1.01sa Min. Estimated Pore Pressure (Open Hole): 1.01sa @ Max. Estimated Pore Pressure (Open Hole): 1.07sa @ 3300 m Estimated Fracture Pressure at TD: 198sa (Tuff) Comments: Midmant - 3416 m 75 m/23.1 hours.
Tight Hole: 2167 - 3224 m. Cavings: Est %: Minor Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 34430 Min. Estimated Fracture Pressure (Open Hole): 1.65cg Estimated Pore Pressure: 1.01sg Min. Estimated Pore Pressure (Open Hole): 1.01sg @ Max. Estimated Pore Pressure (Open Hole): 1.07sg @ 3300 m Estimated Fracture Pressure at TD: 198sg (talf) Comments: Midnight - 3416 m 75m/231 hours. Drill to 3420m. Circulate bottoms up.
Tight Hole: 2167 - 3224 m. Cavings: Est %: Minor Average Size: ESTIMATED PORE AND FRACTURE PRESSURE Kick Tolerance: 34430 Min. Estimated Fracture Pressure (Open Hole): 1.65ca Estimated Pore Pressure: 1.01sa Min. Estimated Pore Pressure (Open Hole): 1.01sa @ Max. Estimated Pore Pressure (Open Hole): 1.07sa @ 3300 m Estimated Fracture Pressure at TD: 198sa (Tuff) Comments: Midmant - 3416 m 75 m/23.1 hours.
Fill:
Fill:
Fill:
Fill:

COMPANY Shell Dev. Aust.						
W/ (1 km	TIME					
DEPTH LAST REPO	ORT DEPTH 3420m					
RIG OPERATIONS						
REPORT BY T. Janowicz REPORT RE	CEIVED BY D. Satterle (OPERATOR)					
DRILLING REPORT						
Bit No.: Size:						
On Bit: Footage: ROP:						
Pump Press: SPM: Torque:	_TBR: CP I: \$ CP B: \$					
HYDRAULICS REPORT						
Mud Density In: Mud Density Out:	•					
Gels:						
Hole Volume: Tubin	ng Volume: Displaced Volume:					
Carbide Lag-Calculated Lag:Flowrate:						
Drillpipe Annular Vel (Max. Dia. Sec.): Drillpipe Annular Vel (Open Hole):						
Drill Collar Annular Vel (Open Hole):	Critical Vel:					
Pressure Loss System:						
Nozzel Vel: Jet Impact Force	e: HHP:					
PRESSURE PARAMETERS						
Drilling Exponent: Flowline Temperature:						
Shale Density:	Density: Shale Factor:					
Background Gas:Max. Formation Gas:	@ Trip Gas: @					
Other Gas:						
Fill: Tight Hole:						
Cavings: Est %: Average Size:						
ESTIMATED PORE AND FRACTURE PRESSURE	115.					
Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole): Setimated Pare Pressure: Min. Estimated Pare Pressure (Open Hole): 1.0120 Min. Estimated Pare Pressure (Open Hole):						
Listifiated Fore Flessure.						
Max. Estimated Pore Pressure (Open Hole): 10/19 @ 152	OO m Estimated Fracture Pressure at TD: 1.98 sg					
Comments: Pull out of hole with Run # 16. Overpull negligible						
Rem Wireline Logo						
<u> </u>						

	^ X			, t A		
COMPANY Shell		WELL _	Basker Sou	ith 1		
DATE		TIME _	0600			
DEPTH 3420 m		ST REPORT DEPTH _	3420 m			
RIG OPERATIONS _	Run RFT.					
REPORT BY T. J	ANOWICZ REPO	ORT RECEIVED BY	D.JATTERLEE SIGNED	(OPERATOR)		
DRILLING REPORT		•				
	Туре:					
_	Hours:					
Pump Press: SP	PM: Torque:	TBR:	CP I:\$	CP B: \$		
HYDRAULICS REPO	RT					
	Mud Density Out:					
Gels:	Salinity:	PPM (Ol Solids:	% _.		
Hole Volume:	Annular Volume:	Tubing Volume:	Displaced Volu	ume:		
Carbide Lag—Calculated Lag:_		Flowrate:				
Drillpipe Annular Vel (Max. Dia. Sec.): Drillpipe Annular Vel (Open Hole):						
	ole):					
Pressure Loss System: Pressure Loss Bit: % Pressure Loss:						
Nozzel Vel:	Jet li	mpact Force:	HHP:			
PRESSURE PARAME	ETERS		***			
	Drilling Exponent: Flowline Temperature:					
Shale Density:	Shale Factor:					
	Max. Formation Gas:			@ 3420h		
Other Gas:						
Fill:	Tight Hole:					
Cavings: Est %:		Average Size:				
ESTIMATED PORE A	AND FRACTURE PRES	SURE				
Kick Tolerance: Min. Estimated Fracture Pressure (Open Hole):						
Estimated Pore Pressure: Min. Estimated Pore Pressure (Open Hole): @						
Max. Estimated Pore Pressure ((Open Hole):	. @ Estim	nated Fracture Pressure at	TD:		
Comments:	7 7 10 10	- · · · · · ·	70			
- wysir	Trip To Bottom	- Trip Out	Clean			
Pun	RFT.					
N		2 4 7 /		· 3.3 _m ?		
Kt 41, 475m		~	1. 600 3 5100	د. ب) د)		
	2, 16.2 m ³	3, 0 m' 4	4, 62 N m3 TRIP) 3 5 5 5 7		

GEMDAS LOGGING REPORT NO. 28

COMPANY	Shell Pet. Der	υ.	WELL _		th 1
	27-12-83		TIME_	06°°	
DEPTH		LAST REPOR	RT DEPTH	3420m	
RIG OPERA	TIONS				
REPORT BY	T. Janowicz	REPORT REC	EIVED BY	D. Satterlee	_(OPERATOR)
DRILLING R	EPORT				
	Type:				
On Bit: Footage: _	Hours:	ROP:		WOB:	_ RPM:
Pump Press:	SPM: 7	Forque:T	BR:	CP I:\$. CP B: \$
HYDRAULIC	S REPORT				
Mud Density In: _	Mud Density Out	•	_ ECD:	PV/YP:	
	Salinity:				
Hole Volume:	Annular Volume:	Tubing '	/olume:	Displaced Volum	me:
Carbide Lag-Cal	culated Lag:		Flowrate: _		
	Vel (Max. Dia. Sec.):				
Dríll Collar Annula	ar Vel (Open Hole):		Critical Vel: _		
Pressure Loss Sy	stem: Pre	essure Loss Bit:		% Pressure Loss:	
Nozzel Vel:		Jet Impact Force:		HHP:	
	PARAMETERS			And the second s	
Drilling Exponent:		F	owline Temperat	ture:	
Shale Density:		S	hale Factor:		
Background Gas:	Max. Forn	nation Gas:	@	Trip Gas:	@
Other Gas:					
Fill:	Tight Hole:				
Cavings: Est %:_		Average	Size:		
ESTIMATED	PORE AND FRACTUR	E PRESSURE	•		
1					
3	ressure:				
Max. Estimated P	Pore Pressure (Open Hole):		Esti	imated Fracture Pressure at	ΓD:
Comments:	Cashelli	0 0			
		line loop	an well	•	
		No.	7		
: <u></u>				,	

APPENDIX E

WEEKLY GEOLOGICAL ENGINEERING REPORTS

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet Št. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963 Telex: AA 92372

SHELL DEV. AUST.

GEOLOGICAL - ENGINEERING REPORT #1

BASKER SOUTH -1

Spud - 2254m

EXLOG UNIT 216

23rd Nov - 5th Dec 1983

Report by T. Janowicz

OPERATIONS SUMMARY

Basker South -1 was spudded at 10.30 hrs 23/11.83 with a 36" hole opener which jetted from 264m to 266m and drilled from 266m to 316m. Deviation at 316m was 0.5 deg. Four joints of 310 lb/ft 30" casing were run to 311m and cemented with 15 metric tonne class G at 1.54sg and 14 metric tonne class G at 1.95sg which was displaced with 4.3m seawater.

Run #1 (NB#1) a SMITH DSJ 26" drilled cement, the shoe and washed the 36" pocket.

Run #2 (NB#2) SMITH SDGH 12.25" with 3x20 jets drilled a pilot hole to 706m in 16 hours at an average ROP of 24.3 m/hr.
Deviation at 500m was 0.5 deg. A survey at 706m was a missrun.

Run #3 (RRB#1) SMITH DSJ 26" with 3x20 jets opened the 12.25" pilot hole to 26".

36 joints of VETCO LS 133 lb/ft 20" casing were then run to 700m. This was cemented with 81 metric tonne class G with 2% calcium chloride and 3% bentonite at 1.49sg, tailed by 26 metric tonne class G mixed with seawater, at a slurry density of 1.92sg.

After running the riser and BOP, Run #4 (NB#3) SMITH DSJ 17.5" with 3x16 jets drilled cement, the shoe and 3m of new formation to 709m where an FIT was conducted. The formation broke down at an imposed pressure of 500psi with an 1.03sg mud. This corresponds to a formation fracture pressure of 1.52sg.

Run #5 (NB#4) DIAMANT BOART LX27HS 12.25" with TFA 1.05 sq in was run with a NEYRFOR T2A turbodrill. It drilled to 1847m in 52.4 hours at an average ROP of 21.7m/hr where it was tripped to retrieve a stuck survey tool. Surveys at 956m (941m), 1145m (1130m), 1393m (1378m), 1630m (1615m) and 1847m (1832m) yielded deviations of 2 deg, 1.5 deg, 2 deg, 2.5 deg and 3 deg. No drag was evident during a 5 stand wiper trip at 1630m or while tripping at 1847m. The bit was rerun and continued drilling to 2254m averaging 12.2m/hr over the interval 1847m to 2254m. A survey at 2047m (2032m) gave a deviation of 4.5 deg. No drag was recorded during a wiper trip to the shoe at 1915m to replace the kelly due to a washout. Again no drag was evident while tripping the bit at 2254m to run wireline logs and 9 5/8" casing. No flow was observed from a flow check at 2224m.

Current operation is tripping the bit.

A Baker International Company

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963 Telex. AA 92372

DRILLING PARAMETERS

Run#	Туре	Jets	Interval metres	Bit m	Hrs	Ave ROP	WOB tonne	RPM s	Torque kNm	T	В	G
1 2 3 4 5	SMITH DSJ SMITH SDGH SMITH DSJ SMITH DSJ DIAMANT BO	3x2Ø 3x16	Drill ceme 316-706 316-706 706-709	ent 390 390 3	16 3.5 Drill	24.3 111 cemen	5	100 75		1 2	1 2 2 1	Ø Ø
5RR	LX27HS DIAMANT BO LX27HS	TFA 1.05 DART	7ø9-1847 1847-2254		52.4 33.4	21.7 12.2	4 10	65Ø 66Ø	<pre>0.5-1.5</pre>	40	18 1	worn

HYDRAULICS

Run#	. 5	5RR
Jets	TFA 1.05	TFA 1.05
Interval (m)	709-1847	1847-2254
Mud density (sg)	1.06-1.09	1.09-1.10
ECD (sg)	1.08-1.10	1.10-1.11
PV/YP	11/10	7/11
Flow rate.(1/min)	3164	3179
Pump pressure (psi)	3500	3850
Average vel (m/min)		
Riser (boost)	20.9	20.9
Pipe-hole	49.9	50.2
Collars-hole	76.1	76.5
Critical	78.8	83.9
Jet velocity (m/sec)	78.9	79.3
Bit press loss (psi/%)	543/16	548/14
Impact force (kg)	461	466
Bit power (hp)	265	269

HOLE CONDITION AND PORE PRESSURE

Good hole condition is indicated by trouble free trips. Current fracture gradient is estimated to be 2.3 sg in argillaceous siltstone.

Normal pore pressure has been assumed to be 1.03sg as measured in surrounding wells. No evidence of abnormal pore pressure has been observed.

EXPLORATION LOGGING OF AUSTRALIA INC. The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963 Telex: AA 92372

GEOLOGY

Formation	Interval	Lithology	Gas
Gippsland Limestone	709-1945m	Marl & minor Calcarenite	0.1-0.4%
Lakes Entrance	1945-221Øm	Marl & minor Calcarenite	0.04-0.36%
Flounder	221Ø-2254m	Argillaceous Siltstone and Silty Claystone	0.02-0.04%

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963 Telex: AA 92372

SHELL DEV. AUST.

GEOLOGICAL - ENGINEERING REPORT #2

BASKER SOUTH -1

2254m - 2533m

EXLOG UNIT 216

5th Dec - 12th Dec 1983

Report by T. Janowicz

OPERATIONS SUMMARY

Wireline logs were run as follows:

DLL-MSFL-GR-SP-Cal 2249m - 699m LDL-GR-Cal 2251m - 699m LSS-GR 2248m - 699m CST (shot 51, lost 5, empty 1)

Rerun #6 (RRB#2) SMITH SDGH 12.25" drilled 3.5m to 2257.5m while milling junk and cleaning the hole prior to running the 9 5/8" casing. Drag of 30 tonnes was recorded when initially pulling the bit. After reaming back to bottom and pumping a high viscosity slug, no drag was encountered when pulling the bit to surface.

166 joints of N80 47 lb/ft 20" casing were run to 2249m. The casing was cemented with 70 metric tonnes class "G" with 3% bentonite, at 1.48sg and 3.25 metric tonnes class "G" with 0.2% HR-7, at 1.90sq.

After testing the stack, Run #7 (NB#5) SMITH SVH 8.5" with 3x16 jets drilled cement, the shoe and new formation to 2261m. The hole deviation at 2261m (2260m) was 7 deq.

Following a Gyro survey, Run #8 (NB#6) SMITH SDGH 8.5" with 3x14 jets drilled to 2288m, a distance of 27m in 4.5 hours at an average ROP of 6 m/hr. A leak off test conducted at 2288m reached an EMG of 1.82sg without achieving formation breakdown. No drag was encountered during the trip.

Run #9 (NB#7) SMITH FDGH 8.5" with 10,10,11 jets drilled to 2372m, a distance of 84m in 7.1 hours at an average ROP of 11.8 m/hr. No flow was in evidence during flow checks at 2295m and 2343m. The survey at 2372m (2370m) yielded a deviation of 7.25 deg.

Run# 10 (NB#8) SMITH FDGH 8.5" with 10,10,11 jets drilled to 2409m, a distance of 37m in 8 hours at an average ROP of 4.6 m/hr. The hole deviation at 2409m (2407m) was 7.5 deg. No drag was recorded while tripping the bit.

Run #11 (NB#9) SMITH F2 8.5" with 10,10,11 jets was run in and is currently drilling ahead. No flow was seen during a flow check at 2443m. No drag was encountered during a 3 stand wiper trip at 2513m to retrieve a survey. Deviation at 2513m (2512m) was 7.75 deg

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963

Telex: AA 92372

DRILLING PARAMETERS

Run#	Туре	Jets	Interval metres	Bit m	Hrs	Ave ROP	WOB tonne	RPM	Torque kNm	T	В	G
6 7 8 9 10	SMITH SDGH SMITH FDGH SMITH FDGH	16,16,16 14,14M14 10,10,11 10,10,11	2254-2257.5 2257.5-2261 2261-2288 2288-2372 2372-2409			per tr 0.8 6 11.8 4.6	ip & m 5 6 8 12	iill ju 70 60 60 65	1.4-1.6	2 3	4 2 2	4 2 4
11	SMITH FDGH	10,10,11	2409-								÷	

HYDRAULICS

Run# Jets	7 16,16,16	8 14,14,14	9 10,10,11	10 10,10,11
Interval (m)	2257.5-2261	• •	2288-2372	2372-2409
Mud density (sg)	1.11	1.10	1.11	1.105
ECD (sg)	1.13	1.14	1.15	1.14
PV/YP	11/10	13/13	15/16	15/16
Flow rate (1/min)	1488	1617	1423	1423
Pump pressure (psi)	990	1470	2440	2490
Average vel (m/min)				
Riser	7.8	8.5	7.5	7.5
Pipe-hole	-		-	
Collars-hole	97.9	106.4	93.6	93.6
Critical	105.4	125	141.8	142.7
Jet velocity (m/sec)	65.3	92.6	149.3	149.3
Bit press loss (psi/%)	612/38	756/55	459/81	527/77
Impact force (kg)	183	279	400	396
Bit power (hp)	87	188	434	431

HOLE CONDITION AND PORE PRESSURE

Except for one case of overpull during a wiper trip prior to running the 9 5/8" casing, no drag has been experienced during any other trips. Carbide lags show the hole to be in gauge.

Upon entering the fresh water sediments of the Latrobe Group Sandstones, the formation pore pressure is assumed to have decreased from 1.03sg to 1.01sg. No evidence of anomylous pore pressure has been sighted.

A leak-off test at 2288m was taken to 1.82sg EMG without formation breakdown but it is felt that this may have been conducted in the more cemented sands at the top of the Latrobe sediments and that the loose sands below 2295m would fracture at an estimated 1.65sg EMG. This estimate is based upon data from the Basker #1, Bignose #1 and Volador #1 wells.

International Company

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963 Telex: AA 92372

GEOLOGY

Formation	Interval	LITHOLOGY	Gas
Flounder	2254-2258m	Argillaceous Siltstone and Silty Claystone	trace - 0.04%
Latrobe Group	2258-241Øm	Sandstone	trace
	2410-2450m	Sandy Claystone	trace
	2450-2533m	Sandstone	trace

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963

Telex: AA 92372

SHELL DEV. AUST.

GEOLOGICAL - ENGINEERING REPORT No.3

BASKER SOUTH No.1

2533m - 3150m

EXLOG UNIT 216

12th Dec - 19th Dec 1983

Report by D. New

OPERATIONS SUMMARY

Continued drilling with NB#9 (run#11) to 2590m where bottoms up were circulated, a survey run and the bit pulled. NB#9 drilled from 2400m to 2590m, a distance of 181m in 17.3hrs (on bottom) at an average rate of penetration of 10.3 m/hr.

After changeing the BHA. due to the build up in deviation NB#10 (run#12), a SMITH F2 was run with the last single being reamed to bottom. At 2585m returns were circulated for 15 min, a survey dropped and a three stand wiper trip made to retrieve the survey. Drilling then continued to 2828m where returns were circulated for 30 min, a.survey dropped and the bit pulled. NB#10 drilled from 2590m to 2828m, a distance of 238m, in 34.0 hrs (on bottom) at an average rate of penetration of 7.0 m/hr.

After successfully testing the BOP's NB\$12 (run 13), a VAREL 537 (F3 equivelent) was run and drilled from 2999m to 3189m, a distance of 190m in 45.3 hrs (on bottom) at an average rate of penetration of 4.2 m/hr.

Hole condition appears to be good with carbide and other lag data indicating an in gauge hole. Tight hole was recorded from the first 11 stands on the trip out at 2828m with a maximum drag of 38 tonnes. On the trip out at 2999m up to 28 tonnes drag was recorded from stands 3-12. This drag was probably due to clay/filter cake balling up round the stabilizers and/or bit. The stiffer BHA used appeared to be successfull in controling the deviation as deviation surveys gave inclinations of 5.75 deg at 2685m, 5.75 deg at 2328m, 5.0 deg at 2989m and 3.5 deg at 3179m. Flow checks were made as necessary with no flow being recorded.

DRILLING PARAMETERS

Bit#/ run#	Туре	Jets	Interval metres	Bit m	Hrs	Ave ROP	WOB tonnes	RPM	Torque kNm	T	В	G
NB#10 NB#11		10,10,11	2409-2590 2590-2828 2828-2999	181 238 171	17.3 34.0 39.3		15 15–16 15	65 65	2.7-3.4 1.4-2.9 1.7-2.4	5	5	3
NB#12	VAREL 537	10,10,11	2999-3189	190	45.3	4.2	15	55–65	1.7-2.6	3	5	Ø

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963 Telex: AA 92372

HYDRAULICS

9	10	11	12
11	12	13	14
10,10,11	10,10,11	10,10,11	10,10,11
2409-2590	2599-2828	2828-2999	2999-3189
1.11	1.11	1.11	1.11-1.12
1.14	1.14	1.14	1.14-1.15
15/14	15/14	16/12	14/15
1461	1442	1446	1465
2650	2590	2580	2780
7.7	7.6	7.6	7.7
		6 0. 4	61.2
		95.1	95.4
		126.9	134.5
		151.7	154.4
2089/77	2035/76	2936/79	2119/76
421	411	411	427
470	452	454	478
	11 10,10,11 2409-2590 1.11 1.14 15/14 1461 2650 7.7 60.9 96.1 133.3 153.1 2039/77	11 12 10,10,11 10,10,11 2409-2590 2590-2828 1.11 1.11 1.14 1.14 15/14 15/14 1451 1442 2650 2590 7.7 7.6 60.9 60.2 96.1 94.9 133.3 133.3 153.1 151.4 2039/77 2035/76 421 411	11 12 13 10,10,11 10,10,11 10,10,11 2409-2590 2590-2828 2828-2999 1.11 1.11 1.11 1.14 1.14 1.14 15/14 15/14 16/12 1451 1442 1446 2650 2590 2580 7.7 7.6 7.6 60.9 60.2 60.4 96.1 94.9 95.1 133.3 133.3 126.9 153.1 151.4 151.7 2039/77 2035/76 2936/79 421 411 411

PRESSURE ANALYSIS

Pore pressure appeared to remain normal at 1.01 sg EMW through this section of hole. The increased gas and shift in DXC were interpreted as being due to increasing amount of coal/carbonaceous material in the section.

The minimum fracture pressure is estimated to be 1.65sg EMW and it is therfore unlikly that the formation will be fractured by the 1.11-1.12 sg mud being used.

GEOLOGY AND SHOWS

Formation	Interval	Lithology	Gas
Latrobe Group	253Ø – 2565 2565 – 2672	Sandstone Interbedded siltstone shale and sandstone with	Trace Trace
	2672-2723 2723-2970	minor coal. Sandstone Interbedded siltstone, claystone and sandstone	Trace Trace-0.28%
	2970-3150	with lesser shale and minor coal. Siltstone with sandstone interbeds and common coal.	

No shows were seen with all the gas comming from coals. Very rare hydrocarbon fluorescence was occasionaly noted and it would appear that the section is water saturated. The virtual complete lack of hydrocarbons may implie a lack of seal, either horizontal or vertical at this depth.

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963

Telex: AA 92372

SHELL DEV. AUST.

GEOLOGICAL - ENGINEERING REPORT #4

BASKER SOUTH -1

3150m - 3420m (TD)

EXLOG UNIT 216

19th Dec - 26th Dec 1983

Report by T. Janowicz

OPERATIONS SUMMARY

Run #15 (NB#13) SMITH F3 with 10,10,11 jets drilled to 3341m, a distance of 152m in 37.5 hours at an average ROP of 4 m/hr. Returns were circulated at 3212m with no shows. An increase in cavings and a decrease in Dxc trend suggested an increase in pore pressure from 3240m to a maximum 1.07sg at 3280m, then decreasing to a normal 1.01sg by 3310m. The hole deviation at 3341m (3329m) was 3 deg.

Run \$16 (NB\$14) SMITH F3 with 10,10,11 jets drilled to TD at 3420m, a distance of 71m in 24.8 hours at an average ROP of 3.2 m/hr. Trip gas from 3341m was 1.2%. Hole deviation at 3420m (3408m) was 2.5 deg. Overpull of 15 tonnes and 8 tonnes was recorded over the intervals 3224m - 3196m

Overpull of 15 tonnes and 8 tonnes was recorded over the intervals 3224m - 3196m and 3196m - 3167m during a 15 stand wiper trip at 3420m. No drag was observed when pulling out of the hole to run wireline logs.

Wireline logs were run as follows: DLL-MSFL-Cal-GR-SP

LDL-CNL-Cal-GR BHC-GR-CBL-VDL

HDT

Velocity Survey

Following a wiper trip from which 0.8% trip gas was observed, wireline logs RFT $\times 2$ CST 1 gun were run.

Only formation water and a small volume of gas were recovered from the RFT's.

The well was determined to be dry and was plugged and abandoned.

DRILLING PARAMETERS

Run#	Туре	Jets	Interval metres	Bit m	Hrs	Ave ROP	WOB tonne		Torque kNm	TBG
15 16	SMITH F3 SMITH F3		3189-3341 3341-3420				15 16	6Ø 6Ø	1.9-2.3 1.8-2.2	

The liability of members is limited Inc. in Nevada, U.S.A.

43 Planet St. Carlisle West Australia 6101

Phone: (09) 361 4437, 361 4963 Telex: AA 92372

HYDRAULICS

Run#	15	16
Jets	10,10,11	10,10,11
Interval (m)	3199-3341	3341-3420
Mud density (sg)	1.13	1.13
ECD (sg)	1.17	1.16
PV/YP	17/16	16/14
Flow rate (1/min)	1427	1423
Pump pressure (psi)	261Ø	2640
Average vel (m/min)		
Riser	7.5	7.5
Pipe-hole	59.6	59.4
Collars-hole	93.9	93.6
Critical	144.5	134.1
Jet velocity (m/sec)	149.7	149
Bit press loss (psi/%)	2028/78	2011/72
.Impact force (kg)	409	406
Bit power (hp)	446	441

HOLE CONDITION AND PORE PRESSURE

Drag of 15 tonnes max. was recorded over the interval 3224-3196m during a wiper trip. However none was observed on pulling out of the hole immediately after the wiper trip. No overpull was observed during connections indicating good hole condition.

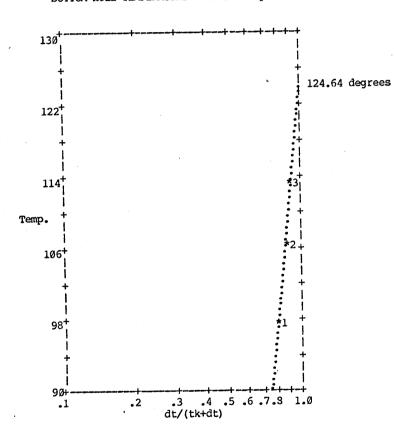
An increase in cavings and a decrease in Dxc trend suggested an increase in pore pressure over the interval 3240m to 3280m, from 1.01sg to an estimated 1.07sg. Over the next 30m, these pressure indicators gradually diminished, indicating a return to normal pore pressure of 1.01sg.

GEOLOGY

Formation	Interval	Lithology	Gas
Latrobe Group	315Ø-337Ø	Siltstone with sandstone interbeds and minor coals	1.8%-0.1%
	3370-3395	Volcanics, sandstone and weathered volcanics	0.1%-0.05%
	3395-3420	Sandstone with some silts.	0.05%-0.01%

APPENDIX F

HYDRAULICS ANALYSES


BOTTOM HO. TEMPERATURE CALCULATION

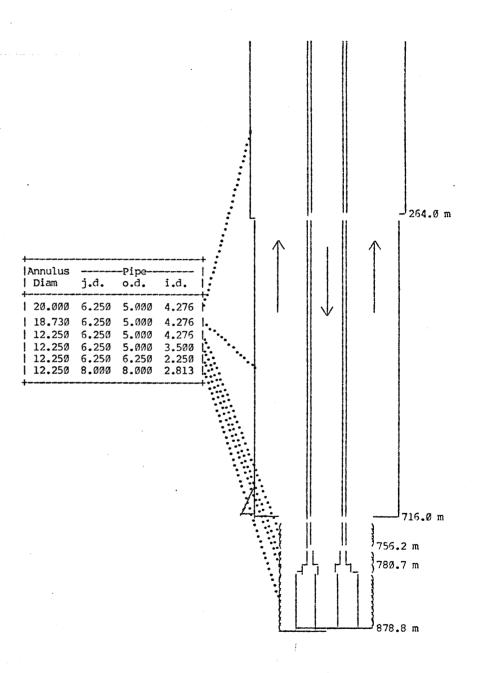
LOG RUN #	TIME SINCE	MEASURED	dt
	CIRCLN. (dt)	B.H.T.	tk+dt
1 2	7.75	98.00	.795
	13.75	107.00	.873
. 3	19.00	114.00	.905

CIRCULATION TIME (tk) = 2.00 hours

HORNER - FERTL METHOD

BOTTOM HOLE TEMPERATURE = 124.64 degrees

PLASTIC VISCOSITY			12.00	СP
YIELD POINT			11.00	1b/cft^2
POWER LAW k			.5476	
POWER LAW n			.6057	
DEPTH			878.8	m
VERTICAL DEPTH			878.8	m
DEPTH OF RETURNS			867.6	m
CUTTINGS BULK DENSITY			2.20	spc grv
MUD DENSITY			1.06	spc grv
ACTIVE SURFACE MUD VO	LUME		139.97	m^3
FLOW RATE			3200	L/min
BOOSTER FLOW			1600	L/min
PUMP PRESSURE			3ø5ø	psi
PUMP L/stk			15.82	L/stk
BIT NOZZLES 1	8;	18,	18, 18	3


+	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
•	Ø.Ø 264.Ø 716.Ø 756.2	264.0 716.0 756.2 780.7	452.Ø 40.2		19.38 50.50	47.60 49.55 66.04 65.04	LAMINAR LAMINAR LAMINAR LAMINAR	• • •
-	780.7 791.0	791.0 878.8	10.3	12.250/ 6.250	56.89	71.97 83.84	LAMINAR LAMINAR	2.7

MUD HYDROSTATIC	1.05	spc	grv
FLOW CONTRIBUTION	.ØØ	spc	grv
CUTTINGS CONTRIBUTION	.Ø3	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.08	spc	grv

SURFACE PRESSURE LOSS	74 psi	NOZZLE VELOCITY	79.8 m/sec
PIPEBORE PRESSURE LOSS	621 psi	HYDRAULIC POWER	266.5 hp
ANNULAR PRESSURE LOSS	5 psi	JET IMPACT FORCE	459 kg
BIT PRESSURE LOSS	540 psi	% OF PRESS LOSS AT BIT	44
TOTAL CALC. PRESS LOSS	1240 nsi		

VOLUMES:	bbl	m^3	Strokes	Minutes @ 202 s	.p.m.
1) Pipe Capacity	47.40	7.54	476	2.4	
2) Pipe Displacement	35.83	5.70	360	1.8	
3) Total Annulus	835.23	132.79	8394	36.3 <- I	AG E
4) Mud in active pits	880.38	139.97	8848	43.7	
Circulation (1) + (3)	882.62	140.33	887ตี	38.7	· E
Hole Volume $(1)+(2)+(3)$	918.45	146.02	9230	45.6	
Total Mud Circulation	1763.01	280.30	17718	82.4	£

B: Time Corrected for Booster Pump Flow

SHELL DEV. AUST: BASKER SOUTH No.1
Date: 1 Dec 83 Time: Ø5:22

HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			12.00	cР
YIELD POINT			11.00	1b/cft^2
POWER LAW k			.5476	
POWER LAW n			.6057	
DEPTH			1271.4	m
VERTICAL DEPTH			1271.1	m
DEPTH OF RETURNS			1249.4	m
CUTTINGS BULK DENSI	TY		2.20	spc grv
MUD DENSITY			1.07	spc grv
ACTIVE SURFACE MUD	VOLUM	Ξ	142.83	m^3
FLOW RATE			3142	L/min
BOOSTER FLOW			Ø	L/min
PUMP PRESSURE			3310	psi
PUMP L/stk			15.82	L/stk
BIT NOZZLES	18,	18,	18, 1	8

FROM	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS psi
.0	264.6		20.000/ 5.000 18.730/ 5.000		47.28 49.22	LAMINAR LAMINAR	.4
716.0	1148.8	3 432.8	12.250/ 5.000	49.59	65.60	LAMINAR	.9 4.6
11148.8	1183.6	10.3			65.60 71.49	LAMINAR LAMINAR	.3
11183.6	1271.4	87.8	12.250/ 8.250	75.63	85.52	LAMINAR	3.1

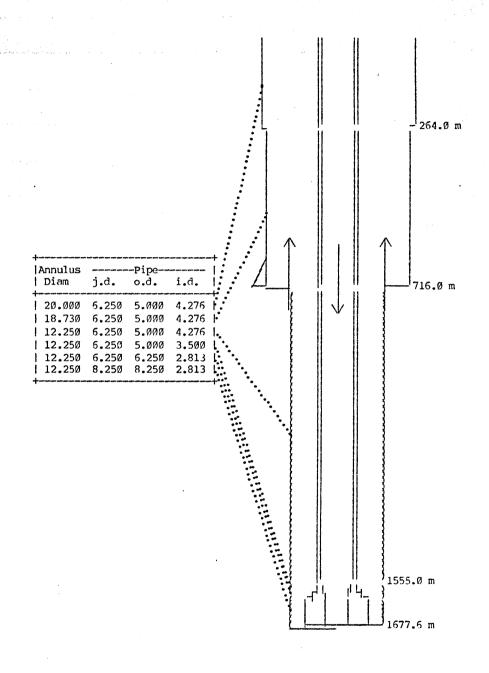
MUD HYDROSTATIC	1.05	spç	grv
FLOW CONTRIBUTION	.01	spc	grv
CUTTINGS CONTRIBUTION	.04	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.09	spc	grv

SURFACE PRESSURE LOSS	72 psi	NOZZLE VELOCITY	78.4 m/sec
PIPEBORE PRESSURE LOSS	720 psi	HYDRAULIC POWER	254.7 hp
ANNULAR PRESSURE LOSS	9 psi	JET IMPACT FORCE	447 kg
BIT PRESSURE LOSS	526 psi	% OF PRESS LOSS AT BIT	40
TOTAL CALC. PRESS LOSS	1327 psi		

VOLUMES:	bbl	m^3	Strokes	Minutes @ 199 s.	p.m.
1) Pipe Capacity	70.37	11.19	707	3.6	
2) Pipe Displacement	46.20	7.35	464	2.3	
3) Total Annulus	989.64	157.34	9946	50.1 <- LA	G
4) Mud in active pits	898.37	142.83	9028	45.5	
Circulation (1) + (3)	1060.01	168.53	10553	53.6	
Hole Volume $(1)+(2)+(3)$	1106.21	175.87	11117	56.0	
Total Mud Circulation	1958.38	311.35	19691	99.1	

a. 1 . 2 4.								1 22
			•					264.Ø m
Annulus		-Pipe		+			\uparrow	
Diam 20.000 18.730 12.250 12.250 12.250 12.250	6.250 6.250 6.250 6.250 6.250 6.250 8.250	5.000 5.000 5.000 5.000 5.000 6.250 8.250	4.276 4.276 4.276 3.500 2.813 2.813					716.Ø m
							}1173	3.8 m 3.3 m
						 t _{4_} 	}1173	3.8 m 3.3 m

PLASTIC VISCOSITY			11.00	cР
YIELD POINT		* *	10.00	lb/cft^2
POWER LAW k			.4939	
POWER LAW n			.6077	
DEPTH			1677.6	m
VERTICAL DEPTH			1677.1	m
DEPTH OF RETURNS			1659.4	m
CUTTINGS BULK DENS	SITY		2.20	spc grv
MUD DENSITY			1.09	spc grv
ACTIVE SURFACE MUI	VOLUMI	3	131.26	m^3
FLOW RATE			3164	L/min
BOOSTER FLOW			800	L/min
PUMP PRESSURE			3500	psi
PUMP L/stk			15.82	L/stk
BIT NOZZLES	18.	18.	18. 18	3


FROM	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
.0 264.0 716.0 11555.0 11579.5 11589.8	1555. 1579. 1589.	Ø 452.Ø Ø 839.Ø 5 24.5 8 10.3	20.000/ 5.000 18.730/ 5.000 12.250/ 5.000 12.250/ 5.000 12.250/ 6.250 12.250/ 8.250	19.17 49.93 49.93 56.25	43.48 45.27 60.41 60.41 65.86 78.85	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.4 .8 8.1 .2 .1 2.8

MUD HYDROSTATIC	1.08	spc	grv
FLOW CONTRIBUTION	.01	spc	grv
CUTTINGS CONTRIBUTION	.02	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.11	spc	grv

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT DESCRIPTIONS	881 psi 13 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE	78.9 m/sec 264.9 hp 461 kg
BIT PRESSURE LOSS TOTAL CALC. PRESS LOSS	543 psi 1511 psi	% OF PRESS LOSS AT BIT	36

VOLUMES:	bbl	m^3	Strokes	Minutes @ 200	s.p.m.	j
1) Pipe Capacity	94.04	14.95	945	4.7		1
(2) Pipe Displacement	55.85	8.88	561	2.8		- 1
(3) Total Annulus	1150.57	182.93	11563	54.6 <-	LAG	В
4) Mud in active pits	825.60	131.26	8297	41.5		- 1
Circulation (1) + (3)	1244.61	197.88	12503	59.4	•	В
Hole Volume $(1)+(2)+(3)$	1300.46	206.76	13069	65.3		1
Total Mud Circulation	2070.21	329.14	20805	100.8		В

B : Time Corrected for Booster Pump Flow

SHELL DEV. AUST: BASKER SOUTH No.1
Date: 3 Dec 83 Time: 05:45

HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			10.00	CP
YIELD POINT			10.00	lb/cft^2
POWER LAW k			.5412	
POWER LAW n			.5850	
DEPTH			1879.7	m
VERTICAL DEPTH			1879.0	m
DEPTH OF RETURNS			1859.6	m
CUTTINGS BULK DENSITY			2.20	spc grv
MUD DENSITY			1.08	spc grv
ACTIVE SURFACE MUD VOL	UMI	Ξ	132.51	m^3
FLOW RATE			3164	L/min
BOOSTER FLOW			500	L/min
PUMP PRESSURE			3600	psi
PUMP L/stk ·			15.82	L/stk
BIT NOZZLES 18	,	18,	18, 1	8

CALCULATED RESULTS:

FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
.0	264.0	264.0	20.000/ 5.000	19.28	44.95	LAMINAR	.4
264.0	715.0	452.0	18.730/ 5.000	19.17	46.71	LAMINAR	.9
716.0	1757.1	1041.1	12.250/ 5.000	49.93	61.40	LAMINAR	10.1
1757.1	1781.6	24.5	12.250/ 5.000	49.93	61.40	LAMINAR	.2
1781.6	1791.9	10.3	12.250/ 6.250	56.25	66.64	LAMINAR	.1
1791.9	1879.7	87.8	12.250/ 8.250	76.15	79.05	LAMINAR	2.8

MUD HYDROSTATIC	1.07	spc	grv
FLOW CONTRIBUTION	.01	spc	grv
CUTTINGS CONTRIBUTION	.Ø2	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.10	SDC	arv

SURFACE PRESSURE LOSS	74 psi	NOZZLE VELOCITY	78.9 m/sec
PIPEBORE PRESSURE LOSS	915 psi	HYDRAULIC POWER	262.4 hp
ANNULAR PRESSURE LOSS	15 psi	JET IMPACT FORCE	457 kg
BIT PRESSURE LOSS	538 psi	% OF PRESS LOSS AT BIT	35
TOTAL CALC DEFCC LOCC	15/11 nci	· ·	

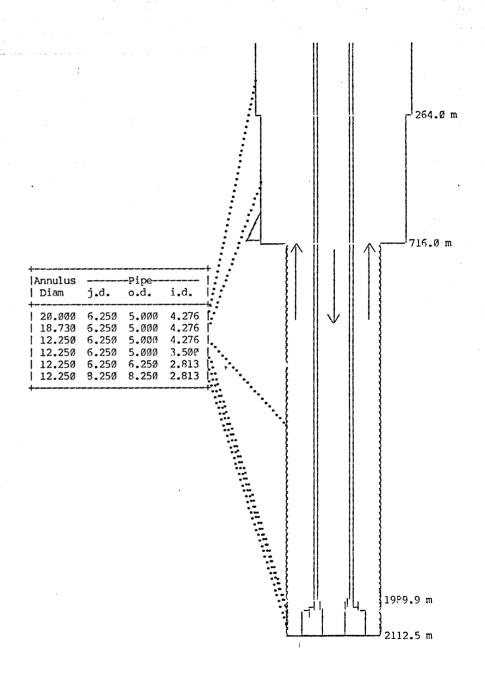
TOTAL	CALC.	PRESS	LOSS	1541	psı
+					

105.81	16 00			
TO 3 • O T	16.82	1063	5.3	1
60.65°	9.64	610	3.0	İ
1230.63	195.65	12368	59.7 <- 1	LAG E
834.09	132.61	8382	41.9	1
1336.45	212.48	13431	65.0	E
1:397.10	222.12	14041	70.2	1
2170.54	345.09	21813	105.9	E
1	1230.63 834.09 1336.45 1397.10	123 Ø. 63 195.65 834. 0 9 132.61 1336.45 212.48 1397.1 0 222.12	1230.63 195.65 12368 834.09 132.61 8382 1336.45 212.48 13431 1397.10 222.12 14041	1230.63 195.65 12368 59.7 <- 1

B : Time Corrected for Booster Pump Flow

¹264.Ø m | Diam | j.d. | o.d. | i.d. |
20.0000	6.250	5.000	4.276			
18.730	6.250	5.000	4.276			
12.250	6.250	5.000	3.500			
12.250	6.250	6.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	2.813			
12.250	8.250	8.250	8.250	2.813		
12.250	8.250	8.250	8.250	2.813		
12.250	8.250	8.250	8.250	8.250	8.250	
12.250	8.250	8.250	8.250	8.250	8.250	
12.250	8.250	8.250	8.250	8.250	8.250	8.250

PLASTIC VISCOSITY		Land of	10.00	CP
YIELD POINT			10.00	lb/cft^2
POWER LAW k			.5412	
POWER LAW n			.5850	
DEPTH			2112.5	m
VERTICAL DEPTH			2111.2	m
DEPTH OF RETURNS			2109.1	m
CUTTINGS BULK DENSI	TY		2.20	spc grv
MUD DENSITY			1.10	spc grv
ACTIVE SURFACE MUD	VOLU	ME	. 132.66	m^3
FLOW RATE			3210	L/min
BOOSTER FLOW			800	L/min
PUMP PRESSURE				psi
PUMP L/stk			15.82	L/stk
BIT NOZZLES	18,	18,	18, 1	3


FROM	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
264.0	716.0 1989.9 2014.5	1273.9 24.5	18.730/ 5.00 12.250/ 5.00 12.250/ 5.00	0 19.44 0 50.66 0 50.66	44.37 46.10 60.61 60.61 65.79	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.5 .9 12.5 .2
12024.8			12.250/ 8.25		78.03	LAMINAR	2.8

MUD HYDROSTATIC	1.10	spc grv
FLOW CONTRIBUTION	.01	spc grv
CUTTINGS CONTRIBUTION	.00	spc grv
EQUIVALENT CIRCULATING DENSITY	1.11	spc grv

SURFACE PRESSURE LOSS	77 psi	NOZZLE VELOCITY	81.1 m/sec
PIPEBORE PRESSURE LOSS	1040 psi	HYDRAULIC POWER	285.8 hp
ANNULAR PRESSURE LOSS	17 psi	JET IMPACT FORCE	485 kg
BIT PRESSURE LOSS		% OF PRESS LOSS AT BIT	34
TOTAL CALC. PRESS LOSS	1713 psi		

VOLUMES:	bb1	m^3	Strokes	Minutes @ 2	Ø3 s.p	.m.	1
Pipe Capacity	119.38	18.98	1200	5.9			1
12) Pipe Displacement	66.19	10.52	665	3.3			1
3) Total Annulus	1322.90	210.32	13295	62.4	<- LAG		В
(4) Mud in active pits	834.41	132.66	8386	41.3		٠	1
Circulation (1) + (3)	1442.28	229.30	14495	58.3			В
Hole Volume $(1)+(2)+(3)$	1508.46	239.83	15160	74.7			- 1
Total Mud Circulation	2276.68	361.96	22880	109.7			В
•							

B : Time Corrected for Booster Pump Flow

SHELL DEV. AUST: BASKER SOUTH No.1
Date: 5 Dec 83 Time: 04:23

HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY			7.00	CP
YIELD POINT			11.00	lb/cft^2
POWER LAW k			.9658	
POWER LAW n			.4739	
DEPTH			2254.0	m
VERTICAL DEPTH			2252.2	m
DEPTH OF RETURNS			2252.8	m
CUTTINGS BULK DENSI	ΓY		2.20	spc grv
MUD DENSITY			1.09	spc grv
ACTIVE SURFACE MUD	VOLUMI	Ξ	118.50	m^3
FLOW RATE			3179	L/min
BOOSTER FLOW			800	L/min
PUMP PRESSURE			3850	psi
PUMP L/stk			15.82	L/stk
BIT NOZZLES	18.	18.	18. 18	3

CALCULATED RESULTS:

FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
	2155.9 2166.2	452.0 1415.4 24.5 10.3	20.007/5.000 18.730/5.000 12.250/5.000 12.250/5.000 12.250/6.250 12.250/8.250	19.26 50.17 50.17 56.52	54.76 56.37 69.32 69.32 73.76 83.90	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	1.2 16.1

MUD HYDROSTATIC	1.09	spc	grv
FLOW CONTRIBUTION	.01	spc	grv
CUTTINGS CONTRIBUTION	.00	spc	grv
EOUIVALENT CIRCULATING DENSITY	1.10	SDC	arv

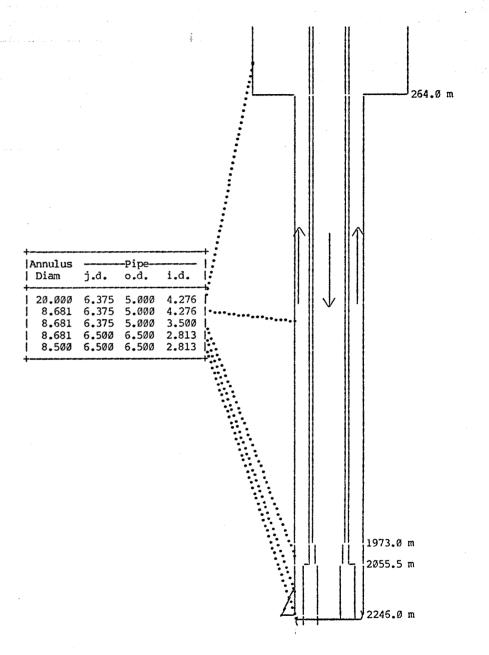
SURFACE PRESSURE LOSS	75 psi	NOZZLE VELOCITY	79.3 m/sec
PIPEBORE PRESSURE LOSS	884 psi	HYDRAULIC POWER	268.7 hp
ANNULAR PRESSURE LOSS	21 psi	JET IMPACT FORCE	466 kg
BIT PRESSURE LOSS	548 psi	% OF PRESS LOSS AT BIT	36 ·
TOTAL CALC. PRESS LOSS	1528 psi		

VOLUMES:	bb1	m^3	Strokes	Minutes @ 201 s.p.	m.
11) Pipe Capacity	127.62	20.29	1283	6.4	
12) Pipe Displacement	69.55	11.06	699	3.5	i
3) Total Annulus	1378.94	219.23	13958	65.8 <- LAG	B
<pre> 4) Mud in active pits</pre>	745.34	118.50	7491	37.3	1
(Circulation (1) + (3)	1506.56	239.52	15141	72.2	В
Hole Volume $(1)+(2)+(3)$	1576.11	250.58	15840	78.8	1
Total Mud Circulation	2251.91	358.02	22631	109.5	B

B : Time Corrected for Booster Pump Flow

d 264.0 m ^J716.0 m |Annulus -Diam j.d. o.d. 20.000 6.250 18.730 6.250 5.000 4.276 5.000 4.276 5.000 4.276 5.000 4.276 5.000 3.500 6.250 2.813 8.250 2.813 | 12.250 6.250 | 12.250 6.250 | 12.250 6.250 12.250 8.250 2131.4 m 2254.Ø m

11.00 CP PLASTIC VISCOSITY 10.00 lb/cft^2 YIELD POINT .4939 POWER LAW k POWER LAW n .6077 2261.0 m DEPTH VERTICAL DEPTH 2258.5 m DEPTH OF RETURNS 2261.0 m 2.20 spc grv CUTTINGS BULK DENSITY 1.11 spc grv 120.08 m^3 MUD DENSITY ACTIVE SURFACE MUD VOLUME 1488 L/min FLOW RATE Ø L/min BOOSTER FLOW 990 psi PUMP PRESSURE 18.98 L/stk PUMP L/stk BIT NOZZLES 16, 16, 16


CALCULATED RESULTS:

FROM.	TO 1	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS psi
0.0 264.0 1972.7 2055.3 2245.8	1973.0 2055.5 2246.0	264.0 1709.0 82.6 190.5 15.0	20.000/ 5.000 8.681/ 5.000 8.681/ 5.000 8.681/ 6.500 8.500/ 6.500	58.31 58.31 88.69	42.91 80.58 80.58 101.48 105.41	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.2 57.6 2.8 17.7

MUD HYDROSTATIC 1.11 spc grv
FLOW CONTRIBUTION .02 spc grv
CUTTINGS CONTRIBUTION 0.00 spc grv
EQUIVALENT CIRCULATING DENSITY 1.13 spc grv

SURFACE PRESSURE LOSS	19 psi	NOZZLE VELOCITY	65.3	m/sec
PIPEBORE PRESSURE LOSS	412 psi	HYDRAULIC POWER	86.8	hp
ANNULAR PRESSURE LOSS	80 psi	JET IMPACT FORCE	183	kg
BIT PRESSURE LOSS	378 psi	% OF PRESS LOSS AT BIT	43	-
TOTAL CALC DEFCC LOCC	889 nei			

VOLUMES:	bbl	m^3	Strokes	Minutes @	78	s.p.m.
1) Pipe Capacity	123.37	19.61	1033	13.2		
2) Pipe Displacement	73.46	11.68	615	7.8		
3) Total Annulus	617.89	98.24	5176	66.0	<	LAG
4) Mud in active pits	755.28	120.08	6327	80.7		
Circulation (1) + (3)	741.25	117.85	6209	79.2		
Hole Volume $(1)+(2)+(3)$	814.71	129.53	6825	87.0		
Total Mud Circulation	1496.53	237.93	12536	159.9		

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 10 Dec 83 Time : 05:43

HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY 15.00 CP YIELD POINT 16.00 lb/cft^2 POWER LAW k .9237 POWER LAW n .5694 DEPTH 2371.7 m VERTICAL DEPTH 2368.4 m DEPTH OF RETURNS 236Ø.6 m CUTTINGS BULK DENSITY 2.20 spc grv MUD DENSITY 1.11 spc grv ACTIVE SURFACE MUD VOLUME 149.18 m³ FLOW RATE , 1423 L/min BOOSTER FLOW Ø L/min PUMP PRESSURE 2440 psi 18.98 L/stk PUMP L/stk BIT NOZZLES 11, 10, 10

CALCULATED RESULTS:

1	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
Ì	0.0 264.0 2073.9 2156.5 2245.8	2073.9 2156.5 2246.0	1809.9 82.6 89.5	8.681/ 5.000 8.681/ 5.000 8.681/ 6.500	55.77 55.77 84.82	62.42 110.98 110.98 136.98 141.80	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	92.9 4.2 12.3

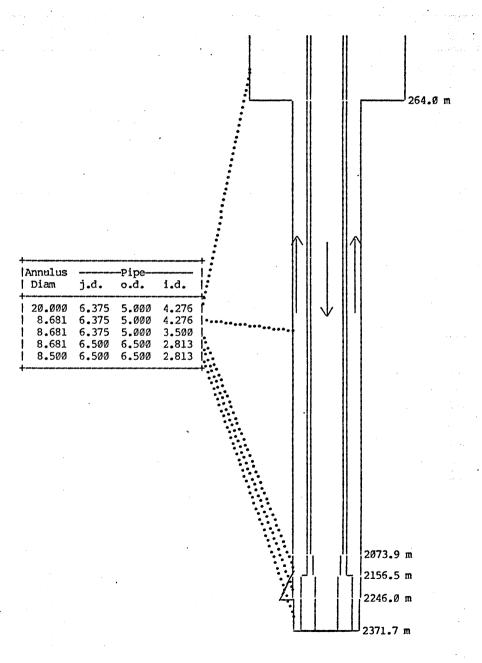
MUD HYDROSTATIC

FLCW CONTRIBUTION

CUTTINGS CONTRIBUTION

EQUIVALENT CIRCULATING DENSITY

1.10 spc grv


.01 spc grv

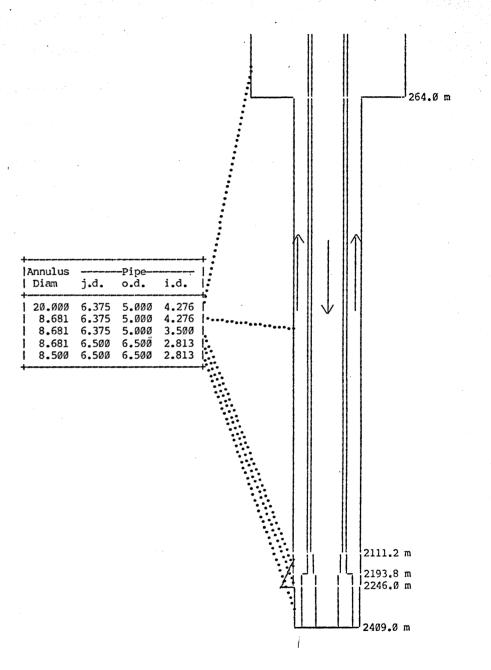
1.15 spc grv

SURFACE PRESSURE LOSS 17 psi NOZZLE VELOCITY 149.3 m/sec PIPEBORE PRESSURE LOSS 431 psi HYDRAULIC POWER 434.5 hp ANNULAR PRESSURE LOSS 131 psi JET IMPACT FORCE . 400 kg BIT PRESSURE LOSS 1981 psi % OF PRESS LOSS AT BIT 77

TOTAL CALC. PRESS LOSS 2560 psi

VOLUMES:	bbl	m^3	Strokes	Minutes @	75	s.p.m.
1) Pipe Capacity 12) Pipe Displacement 13) Total Annulus 14) Mud in active pits Circulation (1) + (3) Hole Volume (1)+(2)+(3) Total Mud Circulation	129.50 76.95 633.76 938.31 763.26 840.21 1701.57	20.59 12.23 100.76 149.18 121.35 133.58 270.53	1085 645 5309 7860 6393 7038 14253	14.5 8.6 70.8 104.8 85.3 93.9 190.1	<-	LAG

core Bosin's Corns,


PLASTIC VISCOSITY	15.00	CP
YIELD POINT	16.00	lb/cft^2
POWER LAW k	.9237	
POWER LAW n	.5694	
DEPTH	2409.0	m
VERTICAL DEPTH	2405.3	m
DEPTH OF RETURNS	2404.4	m
CUTTINGS BULK DENSITY	2.20	spc grv
MUD DENSITY	1.10	spc grv
ACTIVE SURFACE MUD VOLUME	119.94	m^3
FLOW RATE	1423	L/min
BOOSTER FLOW	Ø	L/min
PUMP PRESSURE	2490	psi
PUMP L/stk	18.98	L/stk
BIT NOZZLES 11. 10.	10	

1	FROM m	TO :	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS psi
	0.0 264.0 2111.0 2193.6 2245.8	2111.2 2193.8 2246.0	1847.2 82.6 52.2	20.000/ 5.000 8.681/ 5.000 8.681/ 5.000 8.681/ 6.500 8.500/ 6.500	55.77 55.77 84.82	62.82 111.68 111.68 137.85 142.70	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.4 94.8 4.2 7.2 27.1

MUD HYDROSTATIC	1.10	spc grv
FLOW CONTRIBUTION	.04	spc grv
CUTTINGS CONTRIBUTION	.00	spc grv
FOULTVALENT CIRCULATING DENSITY	1.14	spc arv

SURFACE PRESSURE LOSS	17 psi	NOZZLE VELOCITY	149.3	m/sec
PIPEBORE PRESSURE LOSS	433 psi	HYDRAULIC POWER	430.6	hp
ANNULAR PRESSURE LOSS	134 psi	JET IMPACT FORCE	396	kg
BIT PRESSURE LOSS	1963 psi	% OF PRESS LOSS AT BIT	77	
TOTAL CALC. PRESS LOSS	2547 psi			

VOLUMES:	bb1	m ^ 3	Strokes	Minutes @	75	s.p.m.
1) Pipe Capacity	131.67	20.93	1103	14.7		
2) Pipe Displacement	77.85	12.38	652	8.7		
3) Total Annulus	639.27	101.64	5355	71.4	<-	LAG
4) Mud in active pits	754.40	119.94	6319	84.3		
Circulation (1) + (3)	770.94	122.57	6458	86.1		
Hole Volume $(1)+(2)+(3)$	848.79	134.95	7110	94.8		
Total Mud Circulation	1525.34	242.51	12777	170.4		

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 12 Dec 83 Time : 05:48

HYDRAULICS CALCULATIONS

I	LASTIC VISCOSITY		1	15.00	сP
3	IELD POINT			14.00	1b/cft^2
Į	OWER LAW k			.7089	
I	POWER LAW n			.6015	
I	EPTH			2585.7	m
٦	ERTICAL DEPTH			2580.4	m
I	EPTH OF RETURNS			2580.2	m
(CUTTINGS BULK DENSI	ΓY		2.50	spc grv
ì	NUD DENSITY			1.11	spc grv
2	CTIVE SURFACE MUD '	VOLUM	E	131.31	m^3
I	LOW RATE			1461	L/min
E	BOOSTER FLOW			· Ø	L/min
	PUMP PRESSURE			2650	psi
	PUMP L/stk			18.98	L/stk
E	SIT NOZZLES	11.	10.	10	

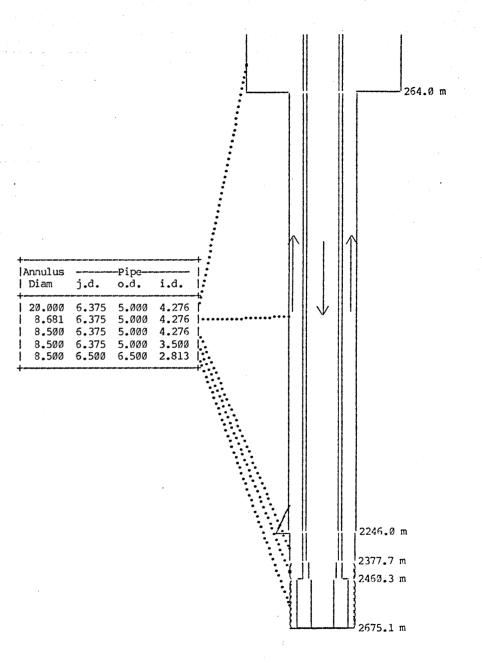
							
FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO	FLOW REGIME	PRESS LOSS
0.0	254.0	264.0	20.000/ 5.000	7.69	54.98	LAMINAR	.3
254.0	2246.0	1982.0	8.681/ 5.000	57.26	102.31	LAMINAR	92.0
2245.8	2287.9	41.9	8.500/ 5.000	0 61.03	104.58	LAMINAR	2.2
2287.8	2370.5	82.6	8.500/ 5.000	0 61.03	104.58	LAMINAR	4.4
2370.4	2585.7	215.2	8.500/ 6.500	96.12	133.31	LAMINAR	33.5

MUD HYDROSTATIC	1.11	spc	grv
FLOW CONTRIBUTION	.04	spc	grv
CUTTINGS CONTRIBUTION	.01	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.15	spc	grv

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS	18 psi 483 psi 132 psi 2089 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	153.3 1 470.4 1 421 1 77	hp
TOTAL CALC. PRESS LOSS	2722 psi	**		

VOLUMES:	bbl	m^3	Strokes	Minutes @	77	s.p.m.
1) Pipe Capacity	141.97	22.57	1189	15.4		
2) Pipe Displacement	82.10	13.05	688	8.9		
3) Total Annulus	665.42	105.79	5574	72.4	<- :	LAG
4) Mud in active pits	825.91	131.31	6918	89.9		
Circulation (1) + (3)	807.39	128.36	6763	87.8		
Hole Volume $(1)+(2)+(3)$	889.49	141.42	7451	96.8		
Total Mud Circulation	1633.30	259.67	13581	177.7		

							264 . Ø m
Annuli Diam 20.00 8.68 8.55 8.55	j.d. 00 6.375 31 6.375 00 6.375 00 6.375	Pipe o.d. 5.000 5.000 5.000 5.000 6.500	i.d. 4.276 4.276 4.276 3.500 2.813	+ : : : : : : : : : : : : : : : : : : :	 		
			,				
						2246.0 m 2287.9 m 2370.5 m 2585.7 m	


PLASTIC VISCOSITY			17.00	CP
YIELD POINT			16.00	lb/cft^2
POWER LAW k			.8166	
POWER LAW n			•5995	
DEPTH			2675.1	m
VERTICAL DEPTH			2669.Ø	m
DEPTH OF RETURNS			2668.Ø	m
CUTTINGS BULK DENSI	YT		2.50	spc grv
MUD DENSITY			1.10	spc grv
ACTIVE SURFACE MUD	VOLUM	E	139.37	m ^ 3
FLOW RATE		•	1442	L/min
BOOSTER FLOW			Ø	L/min
PUMP PRESSURE			2650	psi
PUMP L/stk			18.98	L/stk
BIT NOZZLES	11.	10.	10	

FROM	TO • 1	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO	FLOW REGIME	PRESS LOSS
	2377.7 2460.3	1982.Ø 131.7 82.6	20.000/ 5.00 8.681/ 5.00 8.500/ 5.00 8.500/ 5.00 8.500/ 6.50	56.51 0 60.23 0 60.23	61.00 113.18 115.68 115.68 147.29	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.4 104 7.9 4.9 37.7

MUD HYDROSTATIC	1.10	spc	grv
FLOW CONTRIBUTION	.04	spc	grv
CUTTINGS CONTRIBUTION	.Ø1	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.14	spc	grv

SURFACE PRESSURE LOSS	17 psi	NOZZLE VELOCITY	151.3	m/sec
PIPEBORE PRESSURE LOSS	497 psi	HYDRAULIC POWER	448.1	hp
ANNULAR PRESSURE LOSS	155 psi	JET IMPACT FORCE	407	kg
BIT PRESSURE LOSS	2016 psi	% OF PRESS LOSS AT BIT	75	
TOTAL CALC. PRESS LOSS	2686 psi			

VOLUMES:	bbl	m^3	Strokes	Minutes @	76	s.p.m.
1) Pipe Capacity	147.19	23.40	1233	16.2		
2) Pipe Displacement	84.21	13.39	705	9.3		
3) Total Annulus	678.67	107.90	5685	74.8	<-	LAG
4) Mud in active pits	876.61	139.37	7343	96.7		
Circulation (1) + (3)	825.86	131.30	6918	91.1		
Hole Volume $(1)+(2)+(3)$	910.07	144.69	7623	100.3		
Total Mud Circulation	1702.47	270.67	14261	187.7		

SHELL DEV. AUST.: BASKER SOUTH No.1 Date: 14 Dec 83 Time: 05:60

HYDRAULICS CALCULATIONS

€3.3

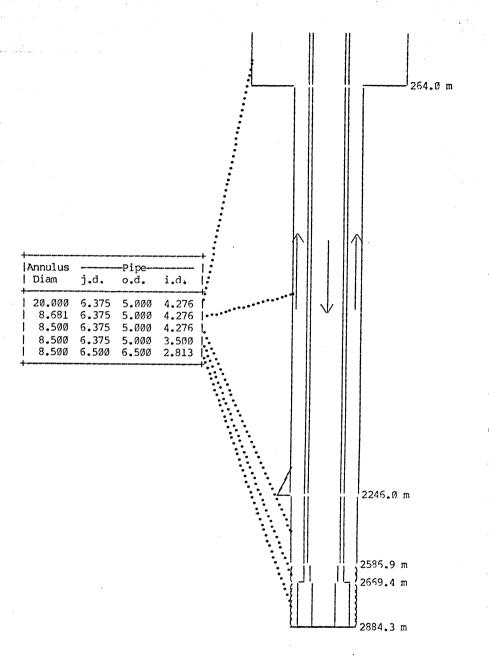
PLASTIC VISCOSITY			15.00	CP	
YIELD POINT			14.00	1b/cft^2	
POWER LAW k			.7089		
POWER LAW n			.6015		
DEPTH			2817.8	m	
VERTICAL DEPTH			2811.0	m	
DEPTH OF RETURNS			2810.8	m	
CUTTINGS BULK DENSIT	Y		2.50	spc grv	
MUD DENSITY			1.11	spc grv	
ACTIVE SURFACE MUD V	OLUM	E	117.71	m^3	
FLOW RATE			1442	L/min	
BOOSTER FLOW			Ø	L/min	
PUMP PRESSURE			2590	psi	
PUMP L/stk			18.98	L/stk	
BIT NOZZLES	11.	10.	10		

FROM	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	Flow Regime,	PRESS LOSS
	2520.4 2602.9	1982.0 274.4 82.6	8.500/ 5.00	56.52 0 50.24 0 60.24	54.98 102.31 104.58 104.58 133.31	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	• • •

MUD HYDROSTATIC	1.11	spc grv
FLOW CONTRIBUTION	.04	spc grv
CUTTINGS CONTRIBUTION	.01	spc grv
EQUIVALENT CIRCULATING DENSITY	1.15	spc grv

SURFACE PRESSURE LOSS	18 psi	NOZZLE VELOCITY	151.3 m/sec
PIPEBORE PRESSURE LOSS	501 psi	HYDRAULIC POWER	452.4 hp
ANNULAR PRESSURE LOSS	144 psi	JET IMPACT FORCE	411 kg
BIT PRESSURE LOSS	2035 psi	% OF PRESS LOSS AT BIT	7 5
TOTAL CALC. PRESS LOSS	2697 psi		•

VOLUMES:	bbl	m^3	Strokes	Minutes @	76 s.p.m.
1) Pipe Capacity	155.50	24.72	1303	17.1	
2) Pipe Displacement	87.64	13.93	734	9.7	
3) Total Annulus	699.78	111.26	5862	77.1	<- LAG
4) Mud in active pits	740.37	117.71	6202	81.6	
Circulation (1) + (3)	855.28	135.98	7164	94.3	
Hole Volume $(1)+(2)+(3)$	942.91	149.91	7898	103.9	
Total Mud Circulation	1595.65	253.69	13366	175.9	


									264 . Ø m
Annulus Diam 20.000 8.681 8.500 8.500	j.d. 6.375 6.375 6.375 6.375 6.500	Pipe	i.d. 4.276 4.276 4.276 4.276 3.500 2.813	+	•••••	<u> </u>	 ***		
			•					2246.0	m
•								2520.4 : 2602.9 : 2817.8 :	m .

PLASTIC VISCOSITY			14.00	CP
YIELD POINT	200	1 5 1 5 1 1 1 1	14.00	lb/cft^2
POWER LAW k			.7577	•
POWER LAW n			.5850	
DEPTH			2884.3	m
VERTICAL DEPTH			2877.0	m
DEPTH OF RETURNS			2879.5	m
CUTTINGS BULK DENS	ITY		2.50	spc grv
MUD DENSITY				spc grv
ACTIVE SURFACE MUD	VOLUM	E	131.02	m^3 ~
FLOW RATE			1472	L/min
BOOSTER FLOW			Ø	L/min
PUMP PRESSURE	•		2590	psi
PUMP L/stk			18.98	L/stk
BIT NOZZLES	11.	10.	10	

FROM	TO 1	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
	2246.0 2586.9 2659.4	82.6	20.000/ 5.000 8.681/ 5.000 8.500/ 5.000 8.500/ 5.000 8.500/ 6.500	57.70 61.49 61.49	56.10 101.95 104.13 104.13 131.50	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.4 91.5 17.9 4.3 32.7

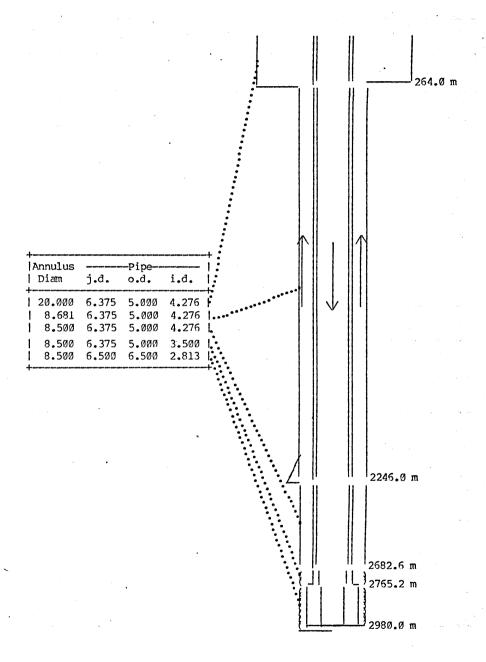
MUD HYDROSTATIC	1.10	spc	grv
FLOW CONTRIBUTION	.04	spc	grv
CUTTINGS CONTRIBUTION	.00	spc	grv
EOUIVALENT CIRCULATING DENSITY	1.14	SDC	arv

VOLUMES:	bb1	m^3	Strokes	Minutes @	78 s.p.m.
l) Pipe Capacity	159.37	25.34	1335	17.2	m e- e- _e e e e e -
2) Pipe Displacement	89.23	14.19	747	9.6	
3) Total Annulus	709.61	112.82	5944	76.6	<- LAG
4) Mud in active pits	824.09	131.02	6903	89.0	
Circulation (1) + (3)	868.99	138.16	7279	93.8	
Hole Volume $(1)+(2)+(3)$	958.22	152.35	8027	103.5	
Total Mud Circulation	1693.08	269.18	14182	182.8	

SHELL DEV. AUST.: BASKER SOUTH No.1
Date: 16 Dec 83 Time: 05:53

HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY	į	16.00	СP
YIELD POINT		12.00	lb/cft^2
PONER LAW k		.5007	
POVER LAW n		.6521	
DEPTH		2980.0	m
VERTICAL DEPTH		2972.1	m
DEPTH OF RETURNS		2970.9	m
CUTTINGS BULK DENSITY		1.90	spc grv
MUD DENSITY		1.11	spc grv
ACTIVE SURFACE MUD VOLUME		121.90	m^3
FLOW RATE		1446	L/min
BOOSTER FLOW		Ö	L/min
PUMP PRESSURE		2580	psi
PUMP L/stk		18.98	L/stk
BIT NOZZLES 11,	10,	10	


CALCULATED RESULTS:

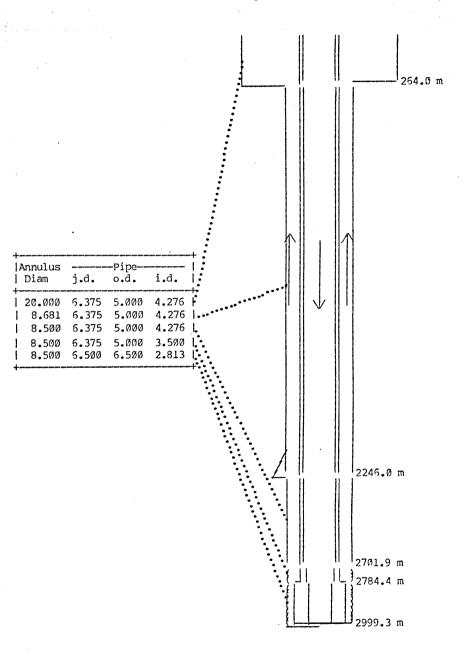
+							
FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
0.0	264.0	264.0	20.000/ 5.000	7.61	46.95	LAMINAR	.3
1 264.0	2245.0	1982.0	8.681/ 5.000	56.67	94.29	LAMINAR	81.7
12245.8	2532.6	436.6	8.500/ 5.000	60.40	96.64	LAMINAR	20.6
12682.5	2755.2	82.6	8.500/ 5.000	69.40	96.64	LAMINAR	3.9
12765.1	2980.0	214.8	8.500/ 6.500	95.13	126 . 96	LAMINAR	31.2
1.							

MUD HYDROSTATIC	1.10	spc	grv
FLOW CONTRIBUTION	.03	spc	grv
CUITINGS CONTRIBUTION	.01	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.14	SDC	arv

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS	18 psi 541 psi	NOZZLE VELOCITY HYDRAULIC POWER	151.7 m/sec 453.9 hp
ANNULAR PRESSURE LOSS	138 psi	JET IMPACT FORCE	411 kg
BIT PRESSURE LOSS TOTAL CALC. PRESS LOSS	2036 psi 2732 psi	% OF PRESS LOSS AT BIT	75

VOLUMES:	bbl	m^3	Strokes	Minutes @	76 s.p.m.
1) Pipe Capacity	164.95	26.23	1382	18.1	
2) Pipe Displacement	91.53	14.55	767	10.1	
3) Total Annulus	723.78	115.07	6053	79.6	<- LAG
4) Mud in active pits	766.73	121.93	6423	84.3	
Circulation (1) + (3)	888.73	141.30	7445	97.7	
Hole Volume $(1)+(2)+(3)$	980.26	155.85	8211	107.8	
Total Mud Circulation	1655.46	263.20	13867	182.0	

noro Byshie's Cornis, Inc. 1


PLASTIC VISCOSITY	17.00	СP
YIELD POINT	13.00	1b/cft^2
POWER LAW k	.5512	
POWER LAW n	.6477	
DEPTH	2999.3	m
VERTICAL DEPTH	2991.2	m
DEPTH OF RETURNS	2998.7	m
CUTTINGS BULK DENSITY	1.82	spc grv
MUD DENSITY	1.11	spc grv
ACTIVE SURFACE MUD VOLUME	135.04	m^3
FLOW RATE	1445	L/min
BOOSTER FLOW	Ø	L/min
PUMP PRESSURE	258Ø	psi
PUMP L/stk	18.98	L/stk
BIT NOZZLES 11. 10.	10	

-	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO	FLOV REGIME	PRESS LOSS
	• .	2246.0 2701.9 2784.4	82.6	20.000/ 5.00 8.681/ 5.00 8.500/ 5.00 8.500/ 5.00 8.500/ 6.50	56.63 56.63 60.35 60.35	50.01 99.76 102.23 102.23 133.93	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.3 88.1 23.2 4.2 33.5

MUD HYDROSTATIC	1.10	spc	grv
FLOW CONTRIBUTION	.04	spc	grv
CUTTINGS CONTRIBUTION	.00	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.14	spc	grv

SURFACE PRESSURE LOSS	18 psi	NOZZLE VELOCITY	151.6	m/sec
PIPEBORE PRESSURE LOSS	551 psi	HYDRAULIC POWER	452.9	hp
ANNULAR PRESSURE LOSS	149 psi	JET IMPACT FORCE	410	kg
BIT PRESSURE LOSS	2034 psi	% OF PRESS LOSS AT BIT	74	
TOTAL CALC. PRESS LOSS	2751 psi			

VOLUMES:	bbl	m^3	Strokes	Minutes 0	76 s.p.m.
1) Pipe Capacity.	166.07	26.40	1391	18.3	
2) Pipe Displacement	92.00	14.63	771	10.1	
3) Total Annulus	725.63	115.52	6ø87	79.9	<- LAG
4) Mud in active pits	849.38	135.04	7115	93.5	
Circulation (1) + (3)	892.70	141.93	7478	98.2	
Hole Volume $(1)+(2)+(3)$	984.70	156.55	8248	108.3	
Total Mud Circulation	1742.08	276.97	14593	191.7	•

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 18 Dec 83 Time : 05:39

HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY	14.00	cP
YIELD POINT	13.00	lb/cft^2
POWER LAW K	.6550	
POWER LAW n	.6027	
DEPTH	3075.8	m
VERTICAL DEPTH	3068.2	m
DEPTH OF RETURNS	3071.7	m
CUTTINGS BULK DENSITY	1.84	spc grv
MUD DENSITY	1.10	spc grv
ACTIVE SURFACE MUD VOLUME	144.30	m^3
FLOW RATE	1429	L/min
BOOSTER FLOW	Ø	L/min
PUMP PRESSURE	2640	psi
PUMP L/stk	18.98	L/stk
BIT NOZZLES 11. 10.	10	•

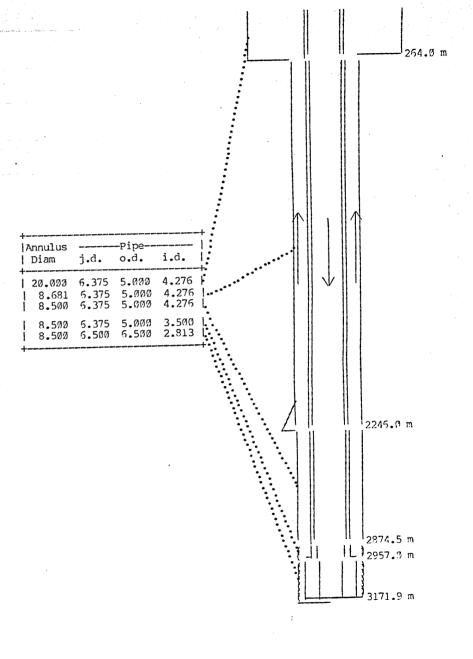
FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
Ø.0	254.0	254.0	20.000/ 5.000	7.52	52.28	LAMINAR	.3
264.0	2245.0	1982.0	8.681/ 5.002	56.01	97.46	LAMINAR	84.4
2245.8	2779.4	533.4	8.500/ 5.000	59.70	99.63	LAMINAR	25.8
2779.2	2352.0	82.6	8.500/ 5.000	59.70	99.63	LAMINAR	4.0
2851.8	3076.8	214.8	8.500/ 6.500	94.03	127.08	LAMINAR	30.7
					, e		

MUD HYDROSTATIC	1.10	spc	grv
FLOW CONTRIBUTION	.03	spc	grv
CUTTINGS CONTRIBUTION	.00	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.14	spc	grv

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS	17 psi 513 psi 145 psi 1988 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	150.0 437.9 401 75	hp
TOTAL CALC. PRESS LOSS	2664 psi			

VOLUMES:	bbl	m^3	Strokes	Minutes @	75	s.p.m.
1) Pipe Capacity	170.59	27.12	1429	19.0		
2) Pipe Displacement	93.86	14.92	786	10.4		
3) Total Annulus	738.10	117.35	6183	82.1	<	LAG
4) Mud in active pits	907.62	144.30	7603	101.0		
Circulation (1) + (3)	908.70	144.47	7612	101.1		
Hole Volume $(1)+(2)+(3)$	1002.55	159.39	8398	111.5		
Total Mud Circulation	1816.32	288.77	15215	202.0		

				•						26	4.0 m
+	nnulus Diam 20.000 8.681 8.500 8.500	j.d. 6.375 6.375 6.375 6.375 6.500	5.000 5.000 5.000 5.000 5.000 5.000	i.d. 4.276 4.276 4.276 4.276 3.500 2.813	+	 •••••		<u> </u>			
				,					2246.0	m	
					•		 	1	2779.4 2852.0 3076.8	m	


PLASTIC VISCOSITY			14.00	cР
YIELD POINT	a a e	1000	15.00	lb/cft^2
POWER LAW k			.8699	
POWER LAW n			.5683	
DEPTH			3171.9	m
VERTICAL DEPTH			3162.6	
DEPTH OF RETURNS			3166.6	m
CUTTINGS BULK DENSI	TY			spc grv
MUD DENSITY				spc grv
ACTIVE SURFACE MUD	VOLUMI	Ξ	150.91	
FLOW RATE				L/min
BOOSTER FLOW				L/min
PUMP PRESSURE			2780	•
PUMP L/stk			18.98	L/stk
BIT NOZZLES	11.	10.	10	

_							
FROM	TO .I	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
0.0 264.0 2245.8 2874.3 2956.9	2246.0 2874.5 2957.0	628.5 82.6		57.41 51.19 51.19	59.35 105.38 107.54 107.54 134.56	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	

MUD HYDROSTATIC	1.12	spc	grv
FLOW CONTRIBUTION	.04	spc	grv
CUTTINGS CONTRIBUTION	.00	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.16	spc	grv

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS TOTAL CALC. PRESS LOSS	18 psi 544 psi 171 psi 2119 psi 2852 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	153.7 m/sec 478.3 hp 427 kg 74
---	--	--	---

VOLUMES:	bhl	m^3	Strokes	Minutes 0	77	s.p.m.
1) Pipe Capacity 2) Pipe Displacement 3) Total Annulus 4) Mud in active pits (Circulation (1) + (3) Hole Volume (1)+(2)+(3) Total Mud Circulation HOLE OUT OF GAUGE: CIRCULATION CORRECTION Corrected Annulus Corrected Hole	176.13 95.14 752.17 949.20 928.30 1024.44 1877.50 FACTOR = 687.00 959.28	28.00 15.29 119.59 150.91 147.59 162.87 298.50 .9298	1475 805 6391 7951 7776 8581 15727 5755 8035	19.1 10.4 81.6 103.0 100.7 111.2 203.8		۰

SHELL DEV. AUST.: BASKER SOUTH No.1 Date: 21 Dec 83 Time: 05:06

HYDRAULICS CALCULATIONS

1

. 9

3

PLASTIC VISCOSITY 12.00 cP YIELD POINT 15.00 lb/cft^2 POWER LAW k 1.0226 POWER LAW n .5335 HTGEC 3320.8 m VERTICAL DEPTH 3310.5 m DEPTH OF RETURNS 3315.8 m CUTTINGS BULK DENSITY 1.78 spc grv MUD DENSITY 1.12 spc grv ACTIVE SURFACE MUD VOLUME 144.10 m³ FLOW RATE 1423 L/min BOOSTER FLOW 0 L/min PUMP PRESSURE 2590 psi PUMP L/stk 18.99 L/stk BIT NOZZLES 10, 10, 11

CALCULATED RESULTS:

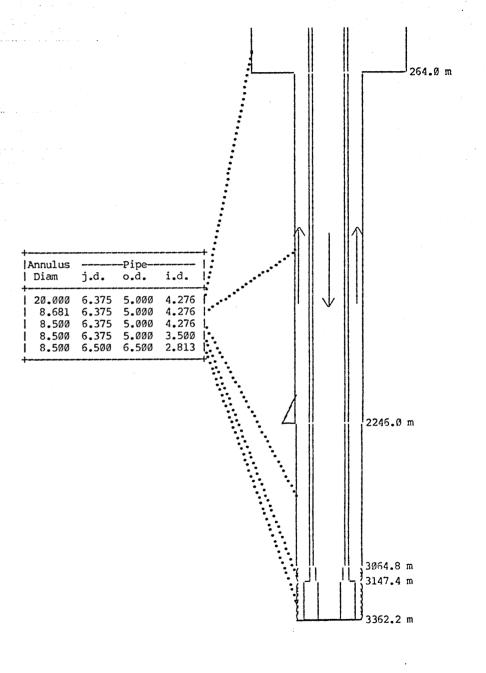
T +	FROM m	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
j		2245.0 3023.4 3105.9	32.5	20.095/ 5.000 8.681/ 5.000 8.590/ 5.000 8.500/ 5.000 8.500/ 6.500	55.78 59.45 59.45	61.84 104.31 106.25 106.25 130.30	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.5 94.0 41.5 4.4 31.7

MUD HYDROSTATIC 1.12 spc grv
FLOV CONTRIBUTION .04 spc grv
CUTTINGS CONTRIBUTION .02 spc grv
EQUIVALENT CIRCULATING DENSITY 1.16 spc grv

SURFACE PRESSURE LOSS 17 psi NOZZLE VELOCITY 149.3 m/sec PIPEBORE PRESSURE LOSS 506 psi HYDRAULIC POWER 438.7 hp . ANNULAR PRESSURE LOSS 172 psi JET IMPACT FORCE 404.kg BIT PRESSURE LOSS 2000 psi % OF PRESS LOSS AT BIT 74 TOTAL CALC. PRESS LOSS 2696 psi

| VOLUMES: bb1 m^3 Strokes Minutes @ 75 s.p.m. || || Pipe Capacity 184.81 29.33 1548 20.5 12) Pipe Displacement 99.72 15.85 335 11.1 13) Total Annulus 774.20 123.09 5485 85.5 <- LAG 14) Mud in active pits 905.36 144.10 · 7592 101.2 |Circulation (1) + (3)959.00 152.47 8Ø33 107.1 | Hole Volume (1)+(2)+(3)1053.73 169.32 8853 118.3 [Total Mud Circulation 1865.37 295.57 15525 203.4 HOLE OUT OF GAUGE: CIRCULATION CORRECTION FACTOR = .9293 Corrected Annulus 705.88 112.38 5921 79.0 <- LAG Corrected Hole 991.43 157.52 8305 110.7

The second secon	
AnnulusPipe Diam j.d. o.d. i.d.	
20.000 6.375 5.000 4.276 F 8.681 6.375 5.000 4.276 F 8.500 6.375 5.000 4.276 F	
8.500 6.375 5.000 3.500 L. 8.500 6.500 6.500 2.813 L.	×3 - 5
	>
	2245.0 m
	923.4 m
- 1	105.9 m
<u>{ </u>	320.8 m


PLASTIC VISCOSITY	17.00	cP
YIELD POINT	16.00	lb/cft^2
POWER LAW k	.8166	
POWER LAW n	•5995	
DEPTH	3362.2	m
VERTICAL DEPTH	3351.7	m
DEPTH OF RETURNS	3357.Ø	m .
CUTTINGS BULK DENSITY	2.50	spc grv
MUD DENSITY	1.13	spc grv
ACTIVE SURFACE MUD VOLUME	147.51	m^3
FLOW RATE	1442	L/min
BOOSTER FLOW	Ø	L/min
PUMP PRESSURE	2670	psi
PUMP L/stk	18.98	L/stk
BIT NOZZLES 10, 1	.0, 11	

FROM	TO I	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
0.0 264.0 2 2245.8 3 3064.8 3 3147.4 3	2246.0 3064.8 3147.4	818.8 82.6	20.000/ 5.000 8.681/ 5.000 8.500/ 5.000 8.500/ 5.000 8.500/ 6.500	56.51 60.23 60.23	59.95 111.24 113.69 113.69 144.76	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.4 104 49.0 4.9 37.7

MUD HYDROSTATIC	1.13	spc	grv
FLOW CONTRIBUTION	.04	spc	grv
CUTTINGS CONTRIBUTION	.00	spc	grv
EQUIVALENT CIRCULATING DENSITY	1.17	spc	grv

SURFACE PRESSURE LOSS PIPEBORE PRESSURE LOSS ANNULAR PRESSURE LOSS BIT PRESSURE LOSS	18 psi 594 psi 196 psi 2065 psi	NOZZLE VELOCITY HYDRAULIC POWER JET IMPACT FORCE % OF PRESS LOSS AT BIT	151.3 459.1 417 72	
TOTAL CALC. PRESS LOSS	2874 psi		.*	

VOLUMES:	bbl	m^3	Strokes	Minutes @	76	s.p.m.
1) Pipe Capacity	187.23	29.77	1568	20.6		
2) Pipe Displacement	100.72	16.01	844	11.1		
3) Total Annulus	780.33	124.06	6537	86.0	<-	LAG
4) Mud in active pits	927.81	147.51	7772	102.3		
Circulation (1) + (3)	967.56	153.83	8105	106.7		
Hole Volume $(1)+(2)+(3)$	1068.28	169.84	8949	117.8		
Total Mud Circulation	1895.37	301.34	15877	209.0		
HOLE OUT OF GAUGE:						
CIRCULATION CORRECTION	FACTOR =	.9298				
Corrected Annulus	712.41	113.26	5968	78.5	<-	LAG
Corrected Hole	1000.36	159.04	8380	110.3		

SHELL DEV. AUST.: BASKER SOUTH No.1 Date: 24 Dec 83 Time: Ø5:19

HYDRAULICS CALCULATIONS

PLASTIC VISCOSITY 16.00 CP YIELD POINT 14.00 lb/cft^2 POWER LAW k .6675 POWER LAW n .6167 DEPTH 3420.0 m VERTICAL DEPTH 3411.7 m DEPTH OF RETURNS 3419.9 m CUTTINGS BULK DENSITY 2.50 spc grv 1.13 spc grv 146.95 m³ MUD DENSITY ACTIVE SURFACE MUD VOLUME FLOW RATE 1423 L/min BOOSTER FLOW Ø L/min PUMP PRESSURE 2640 psi PUMP L/stk 18.98 L/stk BIT NOZZLES 10. 10. 11

CALCULATED RESULTS:

FROM	TO m	LENGTH m	ANNULUS/PIPE in	ANN VELO. m/min	CRIT VELO m/min	FLOW REGIME	PRESS LOSS
0.0 264.0 2245.8 3122.4 3205.0	2246.0 3122.6 3205.2	876.6 82.6	20.000/ 5.000 8.681/ 5.000 8.500/ 5.000 8.500/ 5.000 8.500/ 6.500	55.77 59.44 59.44	53.57 101.94 104.28 104.28 134.11	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	.3 91.5 46.1 4.3 33.7

MUD HYDROSTATIC 1.13 spc grv
FLOW CONTRIBUTION .04 spc grv
CUTTINGS CONTRIBUTION .00 spc grv
EQUIVALENT CIRCULATING DENSITY 1.16 spc grv

SURFACE PRESSURE LOSS 17 psi NOZZLE VELOCITY 149.3 m/sec PIPEBORE PRESSURE LOSS 583 psi HYDRAULIC POWER 441.1 hp ANNULAR PRESSURE LOSS 176 psi JET IMPACT FORCE 406 kg BIT PRESSURE LOSS 2011 psi % OF PRESS LOSS AT BIT 72

TOTAL CALC. PRESS LOSS 2788 psi

VOLUMES:	bb1	m^3	Strokes	Minutes @	75 s.p.m.	,
1) Pipe Capacity	130.59	30.30	1596	21.3		
2) Pipe Displacement	102.11	16.23	855	11.4		
3) Total Annulus	788.88	125.42	6608	88.1	<- LAG	
4) Mud in active pits	924.29	146.95	7742	103.3		
Circulation (1) + (3)	979.47	155.72	8205	109.4		
Hole Volume $(1)+(2)+(3)$	1081.58	171.96	9ø6ø	120.8		
Total Mud Circulation	1903.76	302.67	15947	212.7		
HOLE OUT OF GAUGE:						
CIRCULATION CORRECTION	FACTOR =	.9298				-
Corrected Annulus	720.12	114.49	6ø32	80.5	<- LAG	
Corrected Hole	1012.82	161.03	8484	113.2		

					*				26	4.0
			•							
						r		1		
Annulus Diam	j.d.	Pipe	i.d.	† : :	******	•				
20.000 8.681 8.500 8.500	6.375 6.375 6.375 6.375	5.000 5.000 5.000 5.000	4.276 4.276 4.276 3.500 2.813	† · · · ·	••		$ \downarrow $			
8.500	6.500	6.500	2.813	+						
						/			2246.Ø m	
			•						2246.0 m	
			•							
			٠						3122.6 m	
		•						L)	3205.2 m	

he is Ferins, hie. sv

e;

. .

. 7

توبي

فحة

APPENDIX G

LAG DATA PRINTOUT

SHELL DEV. AUST: BASKER SOUTH No.1 Date: 5 Dec 83 Time: 08:38

LAG DATA PRINT

	1				<u></u>						•	
	FILE	C# DEPTH	BUL! DENS:	ITY	ALC/ DOL	CITHOLOG	Y TOTAL GAS	Cl	C2	C3 ***	iC4	iC5
	<u>'</u>		spc gr	rv	용 		ફ 	ppm	ppm	ppm	ppm	ppm
	1 59 1 60					4 ~~~~~~	1 *TODD	1785	. Ø	Ø	Ø	
	61	J. J. I.				4 ~~~~~~	~ .2200	2213	. ø	Ø		Ø
		305.2			- ,	3 ~~~~~	~1 .2200	2231	Ø		Ø	Ø
	62				1 3	3	-1 .1400	1470	Ø.	Ø	Ø	Ø
	63	990.0		1 64	1 3	} ~~~~~		1470		ø ø	Ø	Ø
	64	995.0		1 64	3	}	1200	1275	Ø		Ø	Ø
	65	1000.0	1.6	1 64	3	3 /~~~~~~	1 .1200		Ø	Ø ·	Ø	Ø
	66	1005.1		1 64	. 3		1000	1275	Ø	Ø	Ø	Ø
	67	1010.0	1.6	1 64				1020	Ø	Ø	Ø	Ø
- 1	68	1015.0	1.6		-	•	1000	1020	Ø	Ø	Ø	øi
-	69	1020.0	1.6		•	•	.1200	1275	Ø	Ø	Ø	Øİ
1	7ø	1025.0	1.6		3	•	1200	1275	Ø	Ø	Ø	ø
- 1	71	1030.0	1.5			:	.1200	1275	Ø	Ø	ø	øi
i	72	1035.0	1.55		3	•	.2900	1912	Ø	ø	ø	Ø 1.
i	73	1040.0	1.55		3	•	.1600	1660	Ø	ø	Ø	ØI
i	74	1045.0	1.55		3	1~~~~~~	.1600	1660	Ø	Ø	Ø	Ø 1.
i	75	1050.0			3	~~~~~~~	.2800	277ø	Ø	ø.	Ø	- •
1	75 76	1055.0	1.55		3		.2800	277Ø	Ø	Ø.	ъ Ø	Ø
1	77		1.55		3	~~~~~~	.2200	2150	ø	Ø		Ø
1		1060.0	1.55		2		.2200	2150	Ø		Ø	Ø
į	78	1065.0	1.55		2		.3000	2903		Ø	Ø	Ø
- [79	1070.0	1.58	59	2		.3000	2903	Ø	Ø	Ø	0
ı	8Ø	1075.0	1.58	59	.2	~~~~~~	.2600	-	Ø	Ø	Ø	Ø
-	81	1080.1	1.58	63	2	~~~~~~~	2500	2577	Ø	Ø	Ø	0 1
1	82	1035.0	1.58	53	2		.2500	2577	Ø	Ø	Ø	Ø
l	83	1090.0	1.58	68	2			2577	Ø	Ø-	Ø	Øİ
1	84	1095.0	1.58	68	2		.2699	2577	Ø	Ø	Ø	øi
1	85	1103.0	1.58	53	4		.2299	2150	Ø	Ø	Ø	Ø
1	86	1105.0	1.58	68	4		.2200	215Ø	Ø	Ø	Ø	ø
ł	87	1110.1	1.55	68		:	.2200	2150	Ø	Ø	Ø	øi
i	88	1115.0	1.55	58	4	~~~~~~	.2200	2150	Ø	Ø	Ø	øi
i	89	1120.0	1.55	65	4	~~~~	.2600	255Ø	Ø	Ø	Ø	0
i	90	1125.1	1.55		5	~~~~~	.26%B	255ø	Ø	Ø	Ø	0 1
i	91	1130.0		65	5		.2400	2495	Ø	Ø	ø	
i	92	1135.0	1.55	65	5	~~~~	.2400	2485	ø	ø	Ø	0
i	93	1140.0	1.55	65	5		.2600	2620	ø	Ø	Ø	Ø Ø
i	94		1.55	65	5		.2530	2629	Ø	Ø	Ø	•
i	94 97	1145.0	1.55	65	5		.2590	2620	ø	Ø	Ø	0
i	93	1150.0	1.55	65	5		.2420'	2491	ø	Ø	Ø	9
1	93 99	1155.2	1.55	55	5	~~~~~	3500	3522	ø	Ø		0
1		1163.0	1.55	65	5	~~~~~	.35001	3522	Ø	g g	Ø	Ø
,	103	1165.1	1.55	65	5	~~~~~~	•503Ø	5000	ß		Ø	Ø
l	101	1170.0	1.55	65	5	~~~~~~	.5000	5000	Ø	Ø	Ø	Ø
!	192	1175.0	1.55	65	5	~~~~~~	.4200	4295	-	Ø	Ø	0
l	103	1180.0	1.55	65	5		.4200	4295 4295	Ø	Ø	Ø	2
١.	104	1185.1	1.55	65	5 i	~~~~~	.3866		Ø	Ø	Ø	0
	105	1190.0	1.55	55	5 1	~~~~~		3920	Ø	Ø	Ø	øi
	136	1195.0	1.58	64	4	~~~~~	.3900	3820	Ø	Ø	Ø	Ø
	107	1200.0	1.58	64	4	~~~~~	•4030	3865	Ø	Ø	Ø	ø
	108	1205.0	1.58	64		~~~~~	.4020	3865	Ø	Ø	3	ø
		1210.0	1.58	58	2	~~~~~	.4500	4330	Ø	Ø	Ø	øĺ
		1215.0			2		•4500	4380	Ø	ø ·	Ø	ØI
		1215.0	1.58	58	2		.3200	3265	ã	3	Ø	
			1.53	58	2		.3200	3265	ø	Ø	Ø	Ø
	112	1225.0	1.58	58	2		.3600	378Ø	Ø	Ø	Ø	9
								-	~	υ	ש	ØI

SHELL DEV. AUST: BASKER SOUTH No.1

Date: 5 Dec 83 Time: 08:43

FILE#	DEPTH	BULK DENSITY		OLOM	LITHOLOGY	TOTAL GAS	C1	C2	C3	iC4	iC5
		spc grv		ક 		용	ppm	ppm	ppm	ppm	ppm
113	1230.0	1.58	58	2	~~~~~	.3600	378Ø	. Ø	Ø	Ø	e
114	1235.Ø	1.58	63	2	~~~~~~	.3600	378Ø	Ø	29	Ø	2
115	1240.0	1.58	60	2	~~~~~~	.3800	378ø	Ø	ø.	Ø	Ø
116	1245.0	1.58	60	2	~~~~~~	.3500	3600	ø	ø	ø	Ø
117	1250.0	1.58	6Ø		~~~~~	.3500	3500	ø	Ø	Ø	2
118	1255.Ø	1.58	62	5	~~~~~~	.3400	3436	Ø	Ø	Ø	2 Q
119	1260.0	1.58	62	5	~~~~~	.3400	3436	Ø	Ø	-	
120	1265.0	1.58	62	5	~~~~~~	.3900	3092		_	Ø	Q
121	1270.0	1.58	62	5	~~~~~~	-		Ø	Ø	Ø	0
123					~~~~~	.3000	3092	Ø	Ø	Ø	Ø
	1275.0	1.58	62	5		.5000	4982	Ø	Ø	Ø	Q
124	1280.1	1.58	62	4	~~~~~~	.5000	4982	Ø	Ø	Ø	Ø
125	1285.0	1.58	62	4		.4800	4800	Ø	Ø	Ø	Q
125	1290.0	1.58	62	4		.4800	4800	Ø	Ø	Ø	Q
127	1295.0	1.55	62	4	~~~~~~	.4307	4800	Ø	Ø	Ø	Q
128	1300.0	1.55	52	4		.4820	4800	Ø	Ø	Ø	9
129	1305.0	1.55	52	4	~~~~~~	.4200	4830	Ø	Ø	Ø	Q
130	1310.0	1.55	62	4	~~~~~	.4200	4830	ø	g	Ø	Q
131	1315.0	1.55	62		~~~~~	.5200	5154	ø	Ø	ø	Q
132	1329.0	1.55	62	4	~~~~~	.5200	5154	Ø	Ø	Ø	2
133	1325.0	1.55	52	4	~~~~~	.5200		-			
134	1330.0	1.55			~~~~~		5154	Ø	Ø	Ø	Q
135			52	- 4		.5207	5154	Ø	Ø	Ø	Q
	1335.0	1.55	55	3		.5200	5154	Ø	Ø	Ø	2
136	1340.0	1.55	55	3	~~~~~	.5200	5154	Ø	Ø	Ø	Q
133	1345.Ø	1.55	55	3		.2400	2405	Ø	Ø	Ø	9
139	1350.Ø	1.57	5ø	3		.2400	2405	Ø	Ø	2	Ø
140	1355.1	1.57	63	3	~~~~~	.4400	4450	Ø	Ø	Ø	2
141	1350.0	1.57	64	2	~~~~~	.4400	4450	Ø	Ø	Ø	Q
142	1365.0	1.57	64	2	~~~~~	.2230	2236	Ø	Ø	Ø	Ø
143	1370.0	1.57	64	2	~~~~~~	.2200	2236	Ø	Ø	Ø	Ø
146	1375.0	1.57	64	2	~~~~~~	.2430	2403	ø	3	g	9
147	1389.0	1.57	56		~~~~~~	.2400	2403	Ø	Ø	ø	2
148	1385.0	1.57	56	2	~~~~~	.2400	2403	Ø	Ø	2	2
149	1390.0	1.57	56	2	~~~~~	.2400	2408	Ø	Ø	Ø	
150	1395.0	1.57	56		~~~~~	2003	2962	Ø	Ø	_	0
152	1400.0	1.58	67		~~~~~			-	_	Ø	0
				3		.2000	2052	Ø	Ø	Ø	Q
153	1405.0	1.58	67	3	~~~~~~	.1800	1700	Ø	Ø	Ø	Ø
154	1410.0	1.58	67	3		.1800	1700	Ø	Ø	Ø	2
155	1415.0	1.58	67	3	~~~~~	.1400	1376	Ø	Ø	Ø	2
156	1420.0	1.58	40	2	~~~~~	.1490	1376	Ø	Ø	Ø	Ø
157	1425.1	1.58	43	2	~~~~~	.1230	1204	Ø	Ø	Ø	0
158	1430.1	1.58	40	2 1	~~~~~~	.1200	1204	Ø	Ø	Ø	C
159	1435.0	1.58	62	3	LL~~~~~	.0500	670	Ø	ø	õ	2
160	1440.0	1.55	62	3	LL~~~~	.0500	67Ø	Ø	Ø	ø	2
161	1445.0	1.55	52		LL	.1200	1238	Ø	Ø	Ø	Ø
162	1450.0	1.55	62			.1200	1238	Ø	ø	Ø	0
163	1455.0	1.55	62	3	~~~~~	.1400	1449	Ø	Ø	Ø	Ø
164	1460.0	1.55	66	4	~~~~~		1449				
165	1465.1				~~~~~	.1490		Ø	Ø	Ø	Ø
		1.55	66		•	.1499	1449	Ø	9	Ø	Ø
166	1470.0	1.55	66		LL	.1200	1135	Ø	Ø	Ø	Ø
167	1475.0	1.55	66		LL~~~~	.0300	78Ø	Ø	Ø	Ø	. Ø
168 169	1489.0	1.55	50		LL~~~~	.0800	780	Ø	Ø	Ø	Ø
	1485.0	1.55	5ø	2 1	L	.1200	1135	Ø	Ø	Ø	Ø

SHELL DEV. AUST: BASKER SOUTH No.1 Date: 5 Dec 83 Time: 08:45

				<i></i>					·····	·		
1	FILE#	DEPTH	BULK	CAL	c/	LITHOLOGY	TOTAL	C1	C2	C3	iC4	iC5
1			DENSITY spc grv		ÕĹOM %		GAS %	ppm	ppm	ppm	ppm	ppm
									•			
!	17Ø	1490.0	1.55	50	2	L		1135	Ø	Ø	Ø	Ø
1	171	1495.0	1.55	50	2	L	.1000	1033	Ø	Ø	Ø	Ø
ļ	172	1500.0	1.55	57	3	L	.1000	1033	Ø	Ø.	Ø	Ø
	173	1505.0	1.55	57		L		826	Ø	Ø	Ø	Ø
-	174	1510.0	1.55	57		LL	-	826	Ø	Ø	Ø	Ø
ı	175	1515.0	1.55	57		LL		774	Ø	Ø	Ø	Ø
	176	1520.0	1.61	62		LLL		774	Ø	Ø	Ø	Ø
!	177	1525.0	1.61	62		LLL		1428	Ø	Ø	Ø	Ø
1	178	1530.0	1.61	62		LLL		1428	Ø	Ø	Ø	Ø !
-	179	1535.0	1.61	62		LLL		165Ø	Ø	Ø	Ø	Ø
	180	1540.0	1.61	69	3	LL	.1600	1650	Ø	Ø	Ø	Ø
ļ	181	1545.0	1.61	69		LL		1978	Ø	Ø	Ø	0 1
ļ	182	1550.0	1.61	69		LLL	.2000	1978	Ø	Ø	Ø	Ø
!	183	1555.0	1.61	69		LLL		1978	Ø	Ø	Ø	Ø
i	184	1563.0	1.55	69	3	LLLLL	.2600	2580	Ø	Ø	Ø	0 1
1	185	1565.1	1.55	5Ø				259Ø	Ø	Ø	Ø	Ø
!	136	1570.1	1.55	6Ø		LLLLL		255Ø	Ø	Ø	Ø	0
ļ	187	1575.0	1.55	45	3	LLLLL	.2600	2550	Ø	Ø	Ø	0
į	198	1580.0	1.55	45	3	LLLL	.2800	2838	Ø	Ø	Ø	0 1
I	189	1585.0	1.55	45	3	LLL	.2899	2838	Ø	0	Ø	Ø Ø
ļ	190	1593.0	1.55	45		LLL		3440	Ø	Ø	Ø	~ :
ŀ	191	1595.0	1.55	45		LL		3440	Ø	Ø	Ø	Ø
1	192	1600.0	1.55	40		LL		2920 2920	Ø	Ø	Ø Ø	Ø 1
1	193	1685.1	1.55	4Ø 4Ø		LL			Ø	Ø		Øi
ŀ	194	1616.0	1.55 1.55			LL	.2400 .2400	2405 2405	Ø	Ø	Ø	
i	195	1615.0 1620.0	1.55	40 45	4	LL		2150	Ø Ø	Ø Ø	Ø Ø	2 2
1	195 197	1625.0	1.55	45		LL	.2103	2150	Ø	Ø	Ø	Ø !
1	198	1630.0	1.55	5ø		~~~~~~		1849	Ø	Ø	0	9 1
1	202	1635.0	1.57	5Ø				1849	Ø	Ø	Ø	øl
1	202	1640.0	1.57	50			.1200	1161	8	4	Ø	0 1
1	203	1645.3	1.57	5Ø			.1200	1161	8	4	Ø	øl
1		1650.0	1.57	44				1805	22	15	g	Ø
1	205 206	1655.0	1.57	44	4			1805	22	15	9	øl
1	237	1650.0	1.57	45	-			1151	8	5	Ø	øl
1	203	1665.0	1.57	45			.1200	1151	8	5	g	øl
1	203	1670.0	1.57	45				1551	5	5	Ø	øl
ŀ	219	1675.0	1.57	45			.1700	1651	5	5	Ø	øi
1	211	1680.0	1.55	45		~~~~~	1000	1031	5	Ø	ø	9 1
1	212	1635.0	1.56	45				1033	Ø	Ø	ø	ø
i	217	1690.0	1.56	45	5		.1000	1033	Ø	Ø	ø	øi
ì	217	1695.0	1.56	45			.1909	1032	Ø	Ø	ø	øi
. 1	219	1700.0	1.55	45				1238	8	4	Ø	ø
1	220	1705.0	1.56	52	3		-	1238	8	4	Ø	ø
1	221	1710.0	1.55	52			.1500	1500	Ø	Ø	Ø	øi
1	224	1715.0	1.56	52			.1500	1500	15	2	Ø	øi
1	225	1720.0	1.55	5Ø		LL	.2200	2270	15	9	Ø	øi
i	225	1725.1	1.55	50	2	LL	.2200 .	2270	15	.9	Ø	øi
i	227	1730.0	1.55	50		L	.2200	2322	15	9	Ø	øi
•	228	1735.0	1.55	52		L		2322	15	9	2	øi
1	229	1749.0	1.55	52		L		2150	22	12	Ø	ø
ì	230	1745.0	1.55	52		L		2150	22	12	ø	øί
,	-50	2. 15.0			-	• '					-	~ '

SHELL	DEV.	AUST:	BASKER	SOUTH	No.1
Date :	: 5	Dec	83 ′	Time :	Ø8:47

235	1750.0 1755.0 1760.0 1765.1	1.53 1.53		g Q		GAS			C3	iC4	iC5
232 233 234 235	1755.Ø 1760.Ø					8	ppm	ppm	ppm	ppm	ppm
233 234 235	1760.0	1 53	52			.1400	1290	9	5	Ø	Ø
234 235			52	4		.1400	1290	9	5	Ø	Ø
235	1766 1	1.53	57	3	•	.3000	2924	40	16 .	Ø	Ø
		1.53	57	3		.3000	2924	40	16	Ø	Ø
236	1770.0	1.53	57	3		.4500	387Ø	68	32	Ø	Ø
	1775.Ø	1.53	57	3		.4690	3370	68	32	Ø	Ø
	1780.0	1.53	54	2	•	.3000	2752	69	32	Ø	Ø
	1785.0	1.53	54	2		.3000	2752	60	32	Ø	Ø
	1790.0	1.53	54		~~~~	.2500	2528	35	15	Ø	Ø
	1795.0	1.53	54	2		.2600	2528	35	15	Ø	Ø
	1863.0	1.55	60	3		.2200	2180	20	8	Ø	Ø
	1805.Ø	1.55	60	3		.2200	2180	20	8	Ø	ø
	1810.Ø	1.55	50	3		.2400	2236	32	15	ø	Ø
	1815.0	1.55	50	3		.2400	2236	32	15	ø	ø
245	1820.0	1.55	60	3		.2600	2400	40	18	ø	ø
246	1825.Ø	1.55	60		~~~~~	.3000	2838	40	20	ø	ø
247	1830.1	1.55	60			.3000	2838	40	20	Ø	Ø
248	1835.0	1.55	65	4		.3000	2838	40	20	Ø	
249	1843.1	1.55	65	4		.1400	1340	22	11	Ø	Ø
250	1845.0	1.55	65	4	L	.1430	1340	22	11		Ø
	1850.1	1.55	76	- 5	[.1000	954	15	7	Ø	0 1
	1855.0	1.55	76		L	.1000	954	15		Ø	Ø
	1860.0	1.55	76		LL	.1000	980		7	Ø	Ø
	1865.0	1.55	76		LL	.1000	98Ø	11 11	4	Ø	Ø
	1870.0	1.57	66		LLL	.1000	1083		4	Ø	Ø
	1875.0	1.57	66	6	LLL	.1000		15	8	Ø	Ø
	1889.0	1.57	66		LL		1093	15	8	3	Ø
	1885.Ø	1.57	66		LL	.1000	1093	15	8	Ø	Ø
	1890.0	1.57	67		LL~~~~~	.1000	1083	15	8	Ø	0
	1895.Ø	1.57	67			.1200	1200	22	10	Ø	Ø
	1930.0	1.57	67		LL	.1200	1200	22	10	Ø	Ø
	1905.0	1.57	67			.1200	1200	22	10	Ø	Ø
	1910.0	1.55	64		L	.1209	1200	22	10	Ø	Ø
	1915.0	1.55				.1800	1764	3Ø	12	Ø	0
			64	2	L	.1800	1704	3Ø	12	3	Ø
	1920.Ø 1925.Ø	1.55 1.55	61		L	.2400	2322	35	15	Ø	Ø
	1925.0	1.55	61		L	.2400	2322	35	15	Ø	Ø
	1935.Ø		61		L	.2600	2500	37	15	Ø	Ø
		1.55	61		L	.2600	2500	37	15	Ø	Ø
	1940.0	1.55	64	3	~~~~~~~	.2200	2150	3Ø	10	Ø	Ø
	1945.0	1.55	54		~~~~~~	.2200	2150	39	10	Ø	Øl
	1950.0	1.52	64		~~~~~~	.2400	2236	40	17	Ø	Øl
	1955.0	1.52	64			.2400	2236	40	17	Ø	Ø
	1953.0	1.52	48		~~~~~	.3200	2924	55	25	Ø	Ø
	1955.0	1.52	48			.3200	2924	55	25	Ø	Øİ
	1970.0	1.52	48			.1800	1720	20	7	Ø	Ø
	1975.0	1.52	48	3		.1800	1720	20	7	Ø	Ø
	1930.Ø	1.52	58	4	~~~~~	.2600	258Ø	3Ø	15	Ø	øi
	1985.Ø	1.52	58	4	~~~~~	.2500	2580	3Ø	15	ø	øi
297	1990.0	1.52	58	4	~~~~~	.3000	2752	30	22	Ø	øi
298	1995.0	1.52	58	4	L~~~~~	.3000	2752	30	22	Ø	Ø
299 2	2000.0	1.52	38		LL	.2600	2580	28	5	Ø	0 1
300 2	2005.0	1.52	38		LL	.2600	258Ø	28	5	2) 2)	Ø

SHELL DEV. AUST: BASKER SOUTH No.1
Date: 5 Dec 83 Time: 08:49

	11.70	DAIA F								49		
	FILE#	DEPTH	BULK DENSITY		OLOM	LITHOLOGY	TOTAL GAS	C1		C3	iC4	iC5
1			spc grv	9	ક		8	ppm	ppm	ppm	. ppm	ppm !
ì	301	2010.1	1.52	38	1	LL~~~~	.2000	1978	12	4	Ø	øl
1	302	2015.0	1.52	38	4	LL	.2000	1978	12	4	Ø	ø
1	3Ø2	2013.0	1.52	46		LL	.3000	3000	25	11 .	ø	ø
1	304	2025.0	1.52	46		LL~~~~	.3000	3000	25	11	Ø	ø
1	305	2023.0	1.49	46		LL~~~~~	.1400	1376	10	3	Ø	őί
1	306	2035.0	1.49	46		LL~~~~~	.1400	1376	10	3	ø	Ø
1	307	2040.0	1.49	40		L	.1800	172Ø	12	5	ø	øi
1	308	2045.0	1.49	40		L	.1800	1720	12	5	Ø	Øİ
ì	310	2050.0	1.49	40			.1400	1376	12	5	Ø	Ø
i	311	2055.0	1.49	40		~~~~~~	.1400	1376	12	5	Ø	Ø
ł	312	2060.0	1.49	3Ø			.1400	1505	50	10	Ø	Ø
i	313	2065.0	1.49	30			.1400	1505	50	1Ø	Ø	Ø
i	314	2070.0	1.49	3Ø	3	~~~~~~	.1690	1634	16	2	Ø	Ø
ì	315	2075.0	1.49	3ø	-	~~~~~~	.1600	1634	16	2	Ø	Øİ
ì	316	2030.0	1.49	26		Li	.0500	620	2	1	Ø	Ø
i	317	2085.0		.26		L	.0600	620	2	1	Ø	øl
i	318	2393.0	1.49	24	1	L	.0700	774	2	1	Ø	Øl
i	319	2095.0	1.49	24		L	.0700	774	2	1	Ø	Øl
i	320	2100.0	1.49	26		~~~~~~	.0700	774	1	Ø	Ø	Øl
i	321	2105.0		25		~~~~~~	.0700	774	1	Ø	Ø	Øl
i	322	2110.0		25		~~~~~	.0200	130	g	Ø	Ø	Ø !
i	323	2115.0	1.49	26	1	~~~~~	.0200	13Ø	Ø	Ø	Ø	Øl
į	324	2120.0	1.49	24		~~~~~~	.0300	3ø9	Ø	Ø	Ø	Ø
į	325	2122.5		24		~~~~~~	.0300	399	Ø	Ø	Ø	Ø
į	325	2125.0		24			.0300	309	Ø	Ø	Ø	Øl
i	327	2127.5	1.49	24	1		.0300	309	Ø	. 2	Ø	Ø
i	328	2130.0	1.49	24	1		.0300	3/19	Ø	. 3	Ø	Ø
1	329	2132.5	1.49	24	1		.0300	3Ø9	ø.	I	Ø	3
1	330	2135.0	1.49	24	1		.0300	3ø9	Ø	Ø	Ø	Øl
į	331	2137.5	1.49	24			.0397	339	Ø	Ø	Ø	øl
	332	2140.0	1.44	14	1		.0500	480	Ø	Я	Ø	Ø
1	333	2142.5	1.44	14		1	.0533	489	Ø	9	Я	0
-	334	2145.0	1.44	14	1		.0500	480	Ø	Ø	Ø	Ø
1	335	2147.5	1.44	14	1		.0500	480	Ø	Ø	ß	Ø
- 1	335	2159.0	1.44	14			.0500	654	Ø	Ø	Ø	Ø
-	337	2152.5	1.44	14			.0500	654	Ø	9	Ø	Ø
ı	338	2155.0		14			.6200	654	Ø	Ø	Ø	Ø
-	339	2157.5		14			. ø509	554	Ø	Ø	Ø	9
	340	2150.9		28		~~~~	.0800	732	Ø	2)	9	9
	341	2162.5		28			.0300	702	Ø	Я	Ø	Ø
	342	2165.7		23			.0807	702	Ø	Ø	3	Ø
	343	2167.5		28		~~~~	.0800	702	Ø	g	Ø	Ø
1	344	2173.0		28			.0820	740	Ø	Ø	Ø	Ø 1
	345	2172.5		23	2		.0300	740	Ø	3	Ø	0
	346	2175.0		28		~~~~	.0800	740	Ø	Ø	Ø	0
	347	2177.5		28		~~~~	.0800	740	Ø	3	3	2 I
	348	2180.3		30		~~~	.0500	516	Ø	Ø	Ø	Ø Ø
	349	2182.5		30		~~~	.0507	516	Ø	Ø	Ø	0 1
	350	2185.0		30		~~~	.0500	516	g	0	Ø	2 1
	351	2187.5		30			.0500	516	Ø Ø	Ø 2	g g	Ø
	352	2190.0		30			.0500	464 464	Ø	Ø	Ø	Ø
	353	2192.5	1.42	3Ø	2		.0500	454	(4)	W	ש	ן ש

SHELL DEV. AUST: BASKER SOUTH No.1
Date: 5 Dec 83 Time: 08:52

FILE#	DEPTH	BULK DENSITY	CAL	OLOM	LITHOLOGY	TOTAL GAS	C1	C2	C3	iC4	iC5
		pc grv		8 		8	ppm	ppm	ppm	, ppm	ppm
354	2195.0	1.42	3Ø	2	~~~~	.0500	464	Ø	Ø	Ø	a
355	2197.5	1.42	30	2		.0500	464	ø	Ø	g	0
355	2200.0	1.42	24	2		.0400	38Ø	ø	Ø	g	Ø Ø
357	2202.5	1.42	24	2		.0400	38ø	Ø	Ø	Ø	Ø Ø
358	2205.0	1.42	24	2	== .	.0400	38Ø	ø	ø	Ø	Ø
359	2207.5	1.42	24	2	==	.0400	38Ø	ø	Ø	Ø	Ø
36ø	2210.0	1.42	24	2	==	.0500	464	Ø	Ø	Ø	Ø
361	2212.5	1.42	24	2	==	.0500	464	Ø	Ø	Ø	Ø
362 363	2215.0	1.42	22	4	====	.0500	464	Ø	Ø	ø	Ø
	2217.5	1.42	24	2	====	.0500	464	Ø	Ø	Ø	Ø
364	2220.0	1.44	7	2	===::	.0803	688	55	2	Ø	Ø
365 366	2222.5	1.44	7	2	===::	.0800	688	55	2	Ø	Ø
367	2225.0	1.44	7	2	===::	.0800	688	55	2	Ø	Ø
368	2227.5	1.44	7	2	===::	.0800	688	55	2	ø	Ø
369	2230.0	1.44	7	3	===:::	.0300	600	2	2	Ø	Ø
359 370	2232.5	1.44	. 7	3	===:::	.0809	600	2	2	Ø	Ø
371	2235.0	1.44	. 7	3	===:::	.0800	600 .	2	2	ø	Ø
372	2237.5	1.44	7	3	===:::	.0829	6 <i>9</i> Ø	2	2	ø	Ø
373	2240.0	1.44	3	1	==::	.0800	6Ø2	15	2	ø	ø
374	2242.5	1.44	3	1	==::	.0803	602	15	2	Ø	Ø
	2245.0	1.44	3	1	==::	.0800	502	15	2	Ø	Ø
	2247.5	1.44	3	1	==::	.0800	692	15	2	ø	Ø
	2250.0	1.44	2	0	=::	.0800	600	15	2	Ø	Ø
311	2252.5	1.44	2	Ø	=::	.Ø8ØØ	600	15	2	Ø	Ø

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 21 Dec 83' Time : 13:23

LAG DATA PRINT

FILE#	DEPTH	BULK DENSITY		OLOM	LITHOLOGY	TOTAL GAS	C1	C2	C3 .	iC4	iC5	CO2	H2S
	;	spc grv	:	용 		ફ 	ppm	ppm	ppm	ppm	ppm	ppm	ppm
398	2257.5	1.45	1	6	::1	.0020	. 34	15	2	Ø	Ø	Ø	Ø
42	2260.0	1.45	1	6	::1	.0020	34	Ø	Ø	Ø	Ø	Ø	Ø
406	2262.5	1.87	1	6	:::::::	.0020	34	Ø	Ø	Ø	Ø	Ø	Ø
407	2265.0	1.87	1	6		.0020	25	Ø	Ø	Ø	Ø	Ø	Ø
408	2267.5	1.87	1	6		.0020	25	Ø	Ø	Ø	Ø	Ø	Ø
409	2270.0	1.87	1	6	::::::	.0080	87	Ø	Ø	Ø	Ø	Ø	Ø
410	2272.5	1.87	1	6	::::::	.0080	87	Ø	Ø	Ø	Ø	Ø	Ø
411	2275.Ø	1.37	Ø	2	::::::	.0040	5Ø	Ø	Ø	Ø	Ø	Ø	Ø
412	2277.5	1.87	Ø	2	:::::::	.0040	50	Ø	Ø	Ø	Ø	. Ø	Ø
413	2280.0	1.87	Ø	2	::::::	0.0000	17	Ø	Ø	Ø	Ø	Ø	Ø
414	2282.5	1.87	Ø	2		0.0000	17	Ø	Ø	Ø	Ø	Ø	Ø
415	2285.0	1.87	Ø		:::::::		16	Ø	Ø	Ø	Ø	Ø	Ø
418	2287.5	1.87	Ø		::::::		17	Ø	Ø	Ø	Ø	Ø	Ø
423	2290.0	1.87	Ø	1	::::::		17	Ø	Ø	Ø	Ø	Ø	9
424	2292.5	1.87	Ø	1	::::::		1	Ø	Ø	Ø	Ø	Ø	Ø
425	2295.0	1.87	Ø	1	:::::::	0.0000	1.	Ø	Ø	Ø	Ø	Ø	Ø
426	2297.5	1.87	Ø	1	1:::::::	Ø.0000	1	0	Ø	Ø	Ø	Ø	Ø
427	2300.1	1.87	Ø	1	:::::::	Ø.0000	1	Ø	Ø	Ø	Ø	Ø	Ø
428	2302.5	1.87	Ø	Ø	:::::::	0.0000	1	Ø	Ø	Ø	Ø	Ø	Ø
429	2305.1	1.87	Ø	Ø	1:::::::	0.0230	2	Ø	Ø	Ø	Ø	Ø	Ø
430	2307.5	1.87	Ø	Ø	1::::::!	0.0300	2	Ø	Ø	Ø	Ø	Ø	0
431	2310.0	1.87	Ø		:::::::		17	Ø	Ø	Ø	Ø	Ø	Q
432	2312.5	1.87	Ø		:::::::		17	Ø	Ø	Ø	Ø	Ø	0
433	2315.0	1.87	Ø	Ø		.0020	25	Ø	Ø	Ø	Ø	Ø	Q
434	2317.5	1.87	Ø			.0220	20	Ø	Ø	Ø	Ø	Ø	Ø
435	2320.0	1.87	Ø			0.0000	17	Ø	Ø	Ø	Ø	Ø	Ø
435	2322.5	1.90	Ø		::::::		9	Ø	Ø	Ø	Ø	Ø	Ø
437	2325.0	1.90	Ø				2	Ø	Ø	Ø	Ø	Ø	Ø
438	2327.5	1.90	Ø	~ '			2	Ø	ø	Ø	ø	Ø	Ø
439	2330.0	1.90	Ø	-			2	g	Ø	Ø	Ø	Ø	Ø
440	2332.5	1.90	ø				2	ø	ø	ø	ø	Ø	Ø
441	2335.0	1.90	Ø	- :			2	Ø	Ø	ø	2	ø	Ø
442	2337.5	1.90	Ø	-			2	Ø	Ø	ø	ø	Ø	g
443	2340.0	1.90	Ø				1	Ø	Ø	Ø	ø	Ø	Ø
444	2342.5	1.90	Ø				1	Ø	Ø	Ø	Ø.	Ø	ã
445	2345.0	1.90	Ø	~ .			ī	Ø	Ø	ø	Ø	ø	Ø
445	2347.5	1.90	2				2	Ø	ø	ø	Ø	õ	Ø
447	2350.0	1.90	ø				2	ø	. Ø	ã	ø	Ø	Ø
448	2352.5	1.90	ø				2	Ø	ø	Ø	Ø	Ø	Ø
449	2355.0	1.90	ø	•		0.0000	2	ø	Ø	Ø	Ø	Ø	Ø
450	2357.5	1.90	Ø	:		0.0000	2	Ø	Ø	ø	ø	Ø	Ø
451	2350.0	1.90	ø	- :		0.0000	2	Ø	ø	ø	ø	ø	Ø
453	2352.5	1.90	Ø				2	Ø	Ø	Ø	Ø	Ø	Ø
454	2365.Ø	1.90	Ø	-	::::::	0.0033	2	Ø	õ	Ø	Ø	ø	ø
455	2357.5	1.90	Ø		::::::	0.0000	ī	Ø	ø	ø	ø	ø	Ø
456	2370.0	1.90	Ø		::::::::		4	Ø	Ø	Ø	Ø	Ø	Ø
450	2372.5	1.90	ø		::::::::		1	ø	Ø	Ø	ø	Ž	Ø
461	2375.0	1.90	ø	- :	::::::::		1	Ø	Ø	Ø	ø	ø	Ø
462	2377.5	1.90	ø			0.0000	1	. ·Ø	Ø	Ø	Ø	Ø	Ø
463	2380.0	1.82	Ø		:::::::::		2	. Ø	Ø	Ø	Ø	Ø	Ø
464	2382.5	1.82	Ø		::::::::	-	2	Ø	Ø	Ø	Ø	Ø	Ø
465	2385.Ø	1.82	Ø	- :	::::::::		2	Ø	Ø	. Ø	Ø	Ø	Ø

4 \$

* 3

FILE#	DEPTH	D117 17									***************************************		
r Trraff		BULK DENSITY		OLOM	LITHOLOGY	TOTAL GAS	C1	C2	C3	iC4	iC5	CO2	H2S
	······	spc grv		용 		&	ppm	ppm	ppm	ppm	ppm	ppm	ppm
466	2387.5		Ø	Ø	:::::::	0.0000	2	Ø	Ø	Ø	Ø	Ø	Ø
467	2390.0		Ø		:::::::!		1	Ø	• Ø	Ø	Ø	Ø	ø
468	2392.5		Ø				1	Ø	Ø .	Ø	Ø	Ø	Ø
469 47ø	2395.0		Ø				1	Ø	Ø	Ø	Ø	Ø	ø
471	2397.5		Ø				2	Ø	Ø	Ø	Ø	Ø	ø
471	2400.0		Ø				3	Ø	Ø	Ø	Ø	Ø	Ø
473	2402.5 2405.0	1.82	Ø		::::::!		3	Ø	Ø	Ø	Ø	Ø	Ø
474	2405.0	1.82 1.82	Ø				3 -	· Ø	Ø	Ø	Ø	Ø	Ø
480	2410.1	1.64	Ø				3	Ø	Ø	Ø	· Ø	Ø	Ø
481	2412.5	1.64	Ø	1	•••••		2	Ø	Ø	Ø	Ø	Ø	Ø
482	2412.3	1.64	Ø	1	*******		2	Ø	Ø	Ø	Ø	Ø	Ø
483	2417.5	1.64	~	1		0.0000	2	Ø	Ø	Ø	Ø	Ø	Ø
484	2420.0	1.64	Ø	1	,	0.0000	2	Ø	Ø	Ø	Ø·	Ø	Ø
	2422.5	1.64	Ø	1			2	Ø	Ø	Ø	Ø	Ø	Ø
486	2425.0	1.64	Ø	1			2	Ø	Ø	Ø	Ø	Ø	Ø
	-2427.5	1.64	Ø	1	=::::::		2	Ø	Ø	Ø	Ø	Ø	Ø
488	2430.0	1.64	Ø	1	=::::::		2	Ø	^ Ø	Ø	Ø	Ø	Ø
489	2432.5	1.64	Ø	1 1	=:::::		2	Ø	Ø	Ø	Ø	Ø	Ø
492	2435.0	1.64	Ø	1	=:::::		2	Ø	Ø	Ø	Ø	Ø	Ø
491	2437.5	1.64	Ø	1 1	=:::::		2	Ø	Ø	Ø	Ø	Ø	Ø
492	2440.0	1.64	Ø	øi	=:::::		2	Ø	Ø	Ø	Ø	Ø	Ø
493	2442.5	1.64	Ø	ø	=:::::		10	Ø	Ø	Ø	Ø	Ø	Ø
494	2445.0	1.62	ø	øi	:::::::	.0050	10 60	Ø	Ø	Ø	Ø	Ø	Ø
495	2447.5	1.62	Ø	øi	::::::	.0050 .0050	6Ø	Ø	Ø	Ø	Ø	Ø	Ø
495	2450.0	1.73	Ø	ø	:::::::	.0050 .0050	6Ø	Ø Ø	Ø	Ø	Ø	Ø	Ø
497	2452.5	1.73	Ø	øi	:::::::	.0050 .0050	6Ø	_	Ø	Ø	Ø	Ø	Ø
498	2455.Ø	1.87	Ø	øi	::::::::	.2050	55	Ø	Ø	Ø	Ø	Ø	Ø
499	2457.5	1.87	Ø	øi	::::::::	.0050 .0050	65	Ø Ø	Ø	Ø	Ø	Ø	Ø
500	2460.0	1.92	Ø	Ø	:::::::	.0050	7ø	Ø	Ø	Ø	Ø	Ø	Ø
531	2462.5	1.92	Ø		::::::::	.0040	42	Ø	Ø	Ø	Ø	Ø	Ø
502	2465.0	1.92	Ø		::::::::	.0020	30	Ø	Ø	Ø	Ø	Ø	Ø
503	2467.5	1.92	Ø				10	Ø	Ø Ø	Ø	Ø	Ø	Ø
	2470.0	1.92	Ø			0.0000	3	Ø	_	Ø	Ø	Ø	Ø
	2472.5	1.92	Ø			0.0000	3	Ø	Ø Ø	Ø	Ø	Ø	Ø
	2475.0	1.92	Ø				3	Ø	Ø	Ø Ø	Ø Ø	Ø	Ø
	2477.5	1.92	Ø	- 1		0.0300	3	Ø	Ø	Ø	Ø	Ø	Ø
	2480.0	1.92	Ø	0 1:		0.0000	ĭ	Ø	Ø	Ø	Ø	Ø Ø	Ø
	2482.5	1.92	Ø	Ø I:	*******	0.0000	1	ø	ø	ø	Ø	Ø Ø	Ø
	2485.Ø	1.92	Ø	0 1:	::::::::	0.0000	1	ø	Ø	Ø	Ø	Ø	Ø
	2487.5	1.92	Ø	Ø I:	:::::::	0.0200	2	ø	ø	Ø	Ø	Ø	0
	2490.0	1.92	Ø	0 1:	********	0.0000	2	Ø	ø	ø	Ø	Ø	Ø
	2492.5	1.92	Ø		:::::::	0.0000	3	Ø	ø	Ø	Ø.	Ø	
	2495.0	1.92	Ø	Ø :	:::::::		3	ø	Ø	Ø	Ø. Ø	Ø	Ø
	2497.5	1.92	Ø	Ø :	:::::::!	3.0000	3	Ø	ø·	Ø	9	Ø	Ø
	2500.0	1.90	Ø		::::::!!	0.0000	3	ø	Ø	Ø	Ø	Ø	
	2502.5	1.90	Ø		:::::::: (3	ø	ø	Ø	.Ø	Ø	Ø
	2505.0	1.90	Ø		=:::::: (0.0000	3	Ø	Ø	ø	Ø	Ø	9 1
	2507.5		Ø		=:::::: (0.0000	3	Ø	ø	Ø	Ø	Ø	Ø 1
	2510.0		Ø			3.0000	3	Ø	Ø	· Ø	Ø	Ø	Ø
	2512.5		Ø		::::::: [3	Ø	Ø	ø	ø	Ø	Ø
JZ3 Z	2515.Ø	1.90	Ø	T	:::::::: [0.0000	w 3	Ø	Ø	Ø	Ø	Ø	αi

SHELL DEV. AUST.: BASKER SOUTH No.1 Date: 21 Dec 83 Time: 13:37

LAG DATA PRINT

FILE#	DEPTH	BULK DENSITY	CAL D	C/ OLOM	LITHOLOGY	TOTAL GAS	Cl	C2	C3	iC4	iC5	CO2	H2S
		spc grv		8 		ક 	ppm	ppm	ppm	ppm	ppm	ppm	ppm
524	2517.5	1.90	Ø	1		Ø.0000.	3	Ø	Ø	Ø	Ø	Ø	Ø
525	2520.0	1.90	Ø	1	:::::::	Ø.Ø00Ø	3	Ø	• Ø.	Ø	Ø	Ø	Ø
526	2522.5	1.90	Ø	Ø	=::::::	0.0000	3	Ø	Ø	Ø	Ø	Ø	Q
527	2525.0	1.90	Ø	Ø	=::::::	0.0000	3	Ø	Ø	Ø	Ø	Ø	Q.
528	2527.5	1.90	Ø	Ø	=::::::	0.0000	3	Ø	Ø	Ø	Ø	Ø	0
529	2530.0	1.64	Ø	1	==:::::	0.0000	4	Ø	Ø	Ø	Ø	Ø	e
53Ø	2532.5	1.64	Ø	1	=:::::	0.0000	4	Ø	Ø	Ø	Ø	Ø	Q
531	2535.0	1.74	Ø	2	=:::::		4 -	Ø	Ø	Ø	Ø	Ø	Q
532	2537.5	1.78	Ø	2			4	Ø	Ø	Ø	· ø	Ø	Q
533	2540.0	1.78	Ø				4	Ø	Ø	Ø	Ø	Ø	Q
534	2542.5	1.78	ø			0.0000	4	ø	ø	Ø	ø	õ	Q
535	2545.1	1.78	Ø				4	ø	Ø	ø	ø	ø	ē
536	2547.5	1.78	Ø				Ā	· ø	Ø	Ø	Ø	ø	é
537 .	2550.0	1.78	Ø		:::::::		4	ø	Ø	Ø	ø	Ø	Q
538	2552.5	1.78	Ø				4	ø	Ø	ø	Ø	ø	2
	2555.0	1.78	ø			.0020	34	Ø	ø	ø	Ø	ã	í
540	2557.5	1.78	ø			.0320	34	ø	Ø	Ø	Ø	Ø	
541	2560.0	1.78	Ø			.0020	30	Ø	Ø	Ø	Ø	Ø	ý
542	2562.5	1.78	Ø			.0020	30	Ø	Ø	2	Ø	Ø	Ý
543	2565.0	1.78	Ø		*****		17	Ø	Ø	Ø	Ø	Ø	Ŷ
544	2567.5	1.78	Ø	(17	Ø	Ø	Ø	Ø	Ø	Ý.
545	2570.0	1.78	Ø				Ø	Ø	Q M	Ø	Ø	Ø	¥
545	2572.5	1.86	Ø		*		17	Ø	Ø	Ø Ø	Ø	Ø	e Q
547	2575.0	1.85	Ø		*::::::		17	Ø Ø	Ø	Ø	Ø	Ø	
548	2577.5	1.86	Ø		*::::::		17	_		-	-	_	0
549	2590.0		Ø	1 1	· · · · · · · · · · · · · · · · · · ·		17	Ø Ø	Ø	Ø	Ø	Ø	6
550	2582.5	1.86 1.86	Ø		*-=:::::	0.0000		-	Ø	Ø	Ø	Ø	8
			_		*:::::	.0020	34	Ø	Ø	Ø	Ø	Ø	2
551 552	2585.Ø 2587.5	1.85 1.85	Ø		*-==:::::	.0080	85	Ø	Ø	Ø	Ø	Ø	Q
553	2590.0	1.86	Ø		*==::::	.0060	65 65	Ø	Ø	Ø	Ø	Ø	2
559	2592.5		Ø		*==::::	.0050	65	Ø	Ø	Ø	Ø	Ø	Q
550	2595.0	1.86 1.86	Ø	Ø	-==::::::	.0100	116	5	2	Ø	Ø	Ø	0
561	2597.5		Ø	~ :	-==::::::	.0100	116	5	2	Ø	Ø	Ø	Ø
562	2590.0	1.86	-		-==::::::	.0100	116	5	2	Ø	Ø	Ø	Q
563	2602.5	1.86	Ø		=::::	.0050	78 70	4	1.	Ø	Ø	Ø	Q
564	2502.5	1.86 1.88	Ø	Ø	==::::	.0050	78 70	4	1	Ø	Ø	Ø	0
555	2607.5		Ø	0 1	===::	.0980	78 70	4	2	Ø	Ø	Ø	Ø
566		1.88	Ø		**==:::	.0080	78	4	2	Ø	Ø	Ø	Ø
566 567	2610.0	1.88	Ø		**==:::	.0380	78	4	2	Ø	Ø	Ø	Ø
	2612.5	1.88	Ø		**==:::	.0080	78	4	2	Ø	Ø	Ø	Ø
568	2615.0	1.88	Ø		*==:::	.0120	130	12	1	Ø	Ø	Ø	Ø
569	2617.5	1.88	Ø		*==:::	.0120	130	12	1	Ø	Ø	Ø	Ø
570	2620.0	1.88	Ø		*	.0160	139	14	1.	Ø	Ø	Ø	Ø
571	2622.6	1.88	2	,	*	.0160	139	14	1	Ø	·Ø	Ø	Ø
572	2625.0	1.83	Ø		*====:!	.0160	174	3	Ø.	Ø	Ø	Ø	Ø
573	2627.5	1.88	Ø	•	*====:	.0163	174	3	Ø	Ø	Ø	Ø	Ø
574	2630.0	1.88	Ø	Ø	=:!	.0200	192	7	Ø	Ø	Ø	Ø	Ø
575	2632.5	1.88	Ø	Ø	:	.0200	192	7	Ø	Ø	Ø	Ø	Ø
576 .	2635.0	1.88	Ø	Ø	==:	.0200	192	7	Ø	Ø	Ø	Ø	Ø
577	2637.5	1.82	Ø	2	==::::	.0060	61	4	Ø	Ø	Ø	Ø	Ø
578	2640.Ø	1.82	Ø	0 1	::::::::	.0140	156	8	Ø	Ø	ø	Ø	ø
579	2642.5	1.82	Ø	0	:::::::	.0140	156	8	Ø	ø	ø	ø	Ø
58Ø	2645.Ø	1.82	Ø	0 1	::::::::	.0180	174	10	Ø	Ø	ē	ø	Ø

SHELL DEV. AUST.: BASKER SOUTH No.1 Date: 21 Dec 83 Time: 13:44

FILE#	DEPTH	BULK DENSITY		LOM	LITHOLOGY	TOTAL GAS	Cl	C2	- C3	iC4	iC5	CO2	H2S
~		spc grv	8 			&	ppm	ppm	ppm	ppm	ppm	ppm	ppr
581	2647.5	1.82	Ø	Ø		.0180	174	10	Ø	Ø	Ø	Ø	(
582	2650.0	1.82	Ø	1	-=:::::	.0180	180	6	Ø	Ø	Ø	Ø	í
583	2652.5	1.82	Ø	1	-=::::::	.0180	18Ø	6	Ø	Ø	Ø	Ø	
584	2655.Ø	1.82	Ø	1		.0040	5Ø	1	. Ø	Ø	Ø	Ø	
585	2657.5	1.82	Ø			.0040	5Ø	ī	Ø	ø	ø	ø	
586	2660.0	1.82	Ø		-=::::::	.0060	70	ī	Ø	Ø	Ø	Ø	
587	2662.5	1.82	ø		-=::::::	.0060	70	i	Ø	Ø	Ø	. Ø	
588	2665.1	2.00	ø		:::::::		2	ø	Ø	Ø	Ø		
589	2667.5	2.00	Ø		:::::::		<u>ئ</u> د د	Ø				Ø	
590	2670.0	2.00	Ø		•				Ø	Ø	Ø	Ø	
591	2672.5	2.00	_		*******		Ø	Ø	Ø	Ø	Ø	Ø	
592	2675.Ø		Ø		*********		Ø	Ø	Ø	Ø	Ø	Ø	
593	2677.5	2.00	Ø		::::::::		Ø	Ø	Ø	Ø	Ø	Ø	
594		2.00	Ø		::::::::		Ø	Ø	Ø	Ø	Ø	Ø.	
	2680.0	2.00	Ø		*********		Ø	Ø	Ø	Ø	Ø	Ø	
595	2682.5	2.00	Ø	3	:::::::!	0.0000	Ø	Ø	Ø	Ø	Ø	Ø	
596	2685.0	2.00	Ø	3	::::::::	0.0000	Ø	Ø	Ø	Ø	Ø	Ø	
598	2687.5	2.00	Ø	3	:::::::	0.0300	Ø	Ø	Ø	Ø	Ø	ø	
599	2690.0	2.00	Ø	3	::::::::	0.0000	Ø	Ø	Ø	Ø	Ø	Ø	
600	2692.5	2.03	Ø		::::::::		Ø	ø	Ø	ø	Ø	Ø	
601	2695.Ø	2.00	Ø	2		0.0000	Ø	ø	Ø	Ø	Ø	ø	
692	2697.5	2.00	Ø		::::::::		ø	ø	ø	Ø	Ø	Ø	
603	2700.0	2.00	Ø		::::::::		3	Ø	Ø				
604	2702.5	2.00	ø		::::::::		3	Ø	Ø Ø	Ø Ø	Ø	Ø	i
625	2705.0	2.00	ø		::::::::		3	Ø	_	-	Ø	Ø	1
605	2707.5	2.00	ø.		:::::::::			-	Ø	Ø	Ø	Ø	(
627	2710.0	2.00	Ø				3	Õ	Ø	Ø	Ø	Ø	Q
628	2712.5	2.00	Ø	- :			3	Ø	Ø	Ø	Ø	Ø	1
639	2715.0	2.33	2				3	Ø	Ø	Ø	Ø	Ø	2
610	2717.5	2.00		- •			4	Ø	· Ø	Ø	Ø	Ø	6
611	2720.0		2		::::::::		4	Ø	Ø	Ø	Ø	Ø	Q
512	2722.5	2.00			:::::::!		4	Ø	Ø	Ø	Ø	Ø	Q
513	2725.0	2.00	2				4	Ø	Ø	Ø	Ø	Ø	Q
514		1.95			=::::::		4	Ø	Ø	Ø	Ø	Ø	e
	2727.6	1.95		2 =	=::::::	0.0303	4	Ø	Ø	Ø	Ø	Ø	Q
515	2730.0	1.95		2 1	**:::::	0.0000	4	Ø	Ø	Ø	Ø	Ø	Q
16	2732.5	1.95	Ø	2 1	**::::	0.0000	4	Ø	Ø	Ø	Ø	Ø	e
17	2735.0	1.95			-=:::::	0.0000	4	Ø	Ø	Ø	Ø	ø	Ø
18	2737.5	1.95	-		=::::::	0.0000	4	Ø	Ø	ø	ø	Ø	Ø
19	2740.0	1.95	Ø	2	===:::::	0.0330	4	Ø	Ø	ø	ø	ø	Ø
20	2742.5	1.95	Ø .	2	===:::::	Ø.0033	4	Ø	Ø	ž	ø	ø.	Ø
21	2745.0	1.76	Ø	2 *	**** =:::	.0280	80	Ø	Ø	Ø	Ø	ø.	Ø
22	2747.6	1.76	Ø :	2	===::::!	3.0000	5	ø	ø	Ø	Ø	Ø	Ø
23	2750.0	1.84	Ø	2 *	*-==::::	0.6339	1	Ø	ø	ø	Ø	Ø	Ø
24	2752.6	1.84	Ø :		*-==::::		ī	Ø	Ø	Ø			
25	2755.0	1.84			-==::::		1	Ø	Ø	-	Ø	Ø	Ø
25	2757.5	1.84			-==::::		1	-		Ø	Ø	Ø	Ø
27	2760.0	1.84		- ,	==:::::			Ø	Ø	Ø	Ø	Ø	Ø
28	2762.5	1.84	-				2	Ø	3	Ø	Ø	Ø	Ø
	2765.0	1.84	-		==::::: (2	Ø	Ø	Ø	Ø	Ø	Ø
	2767.5	1.84			==::::: (2	Ø	Ø.	Ø	Ø	Ø	Ø
	2773.3			7 *	==::::: (J.0329	2	Ø	Ø	Ø	Ø	Ø	Ø
_ `		1.90		3 *	==::::: (0.0000	2	Ø	Ø	Ø	Ø	Ø	2
	2772.5	1.92			==::::: (2	Ø	Ø	Ø	Ø	Ø	Ø
3 5	2775.Ø	1.90	Ø Ø	9 .	-==::::: (3.0000	2	Ø	Ø	Ø	Ø	ø	ø
					, -		-	-		J	<i>1J</i>	W	ש

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 21 Dec 83 Time : 13:50

	FILE#	DEPTH	BULK DENSITY	CALC,	/ LOM	LITHOLOGY	TOTAL GAS	Cl	C2	С3	iC4	iC5	CO2	H2S
ļ			spc grv	8			8	ppm	ppm	ppm	ppm	ppm	ppm	ppm
į	634	2777.5		Ø		-==:::::	-	2	Ø	Ø	Ø	Ø	Ø	ø!
	635.	2780.0		Ø	Ø	-==:::::		4	Ø	• Ø .	Ø	Ø	Ø	Ø
1	635	2782.5		Ø	Ø	-==::::::		4	Ø	Ø	Ø	Ø	Ø	Ø
ļ	637	2785.0		Ø	Ø	=::::		4	Ø	Ø	Ø	Ø	Ø	Ø
!	638	2787.5		Ø		=:::::		. 4	Ø	Ø	Ø	Ø	Ø	Ø
ļ	639	2790.0		Ø	Ø	=::::::		4	Ø	Ø	Ø	Ø	Ø	Ø
- !	640	2792.5		Ø		=::::::		4	. Ø	Ø	Ø	Ø	Ø	ØI
1	641	2795.0		Ø	Ø	-==::::::		4	. Ø	Ø Ø	Ø Ø	. ø	Ø	Ø 1
ı	642	2797.5		Ø	Ø	===::::		4	Ø	Ø	Ø	Ø	Ø	øi
ŀ	643	2800.0		Ø		==::::		4 4	2) 2)	Ø Ø	Ø	Ø	Ø	Ø
1	644 645	2802.5		Ø Ø	Ø 2	==::::		4	2 2	Ø	Ø	Ø	Ø	ØI
1	646	2807.5		29 28	2	==::::: ==:::::		4	Ø	Ø	Ø	Ø	Ø	øl
í	647	2810.0		Ø	2	=:::::		4	Ø	Ø	Ø	Ø	Ø	ø
1	648	2812.5		Ø	2	=:::::		4	Ø	ø	ø	ø	ø	øi
1		2815.0		Ø	2	-==:::::		3	Ø	ø	ø	ø	Ø	Øİ
i	650	2817.5		Ø	2	-==:::::		3	ø	ø	ø	Ø	Ø	Ø
i	653	2820.0		Ø	2			3	ø	Ø	Ø	Ø	Ø	Ø
i	654	2822		Ø	-	-=::::::		3	Ø	Ø	Ø	Ø	Ø	0 1
i	655	2825.0		ø	-	-=::::::		3	Ø	Ø	Ø	Ø	Ø	Øl
į	656	2827.5		ø		-=::::::		3	Ø	Ø	Ø	Ø	Ø	0
į	662	2830.0		1		-==::::::	.0040	40	Ø	Ø	Ø	Ø	Ø	Ø l
į	663	2832.5		1		-==::::::	.0340	40	Ø	Ø	Ø	Ø	Ø	Øl
ĺ	664	2835.0	1.85	1	4	*-==:::::	.0043	40	Ø	Ø	Ø	Ø	Ø	. Ø 1
1	665	2837.5	1.86	1	4	*-==:::::	.0940	40	Ø	Ø	Ø	Ø	Ø	ØI
ĺ	655	2840.0	1.86	1	4	**=::::	.0020	34	Ø	Ø	Ø	Ø	Ø	Ø
ì	667	2842.5		1	4	**=:::::	.0320	34	Ø	Ø	Ø	Ø	Ø	Øl
- !	668	2345.9		Ø		*=::::	.0060	61	Ø	Ø	Ø	Ø	Ø	Ø
- 1	669	2847.5		Ø	. 3	*=::::	.0060	61	Ø	Ø	Ø	Ø	Ø	Ø
ı	670	2850.0		Ø	3	=:::::		15	Ø	Ø	Ø	Ø	Ø	Ø
ĺ	671	2852.5		Ø	3	=::::::		15	Ø	Ø	Ø	Ø	Ø	ØI
1	672 673	2855.0		Ø	3	==:::::	.0030	37 87	Ø	Ø	Ø	Ø	Ø	Ø
1	674	2857.5 2860.0		Ø Ø	3	==:::: -===::::	.0090 0.0000	87 5	Ø Ø	Ø Ø	Ø Ø	Ø Ø	Ø Ø	ØI
1	675	2862.5		Ø	4	-===::::		10	Ø	Ø	2	Ø	Ø	Ø
1	676	2865.0		Ø	4	-===::::	.0040	50	Ø	Ø	Ø	Ø	Ø	øl
	677	2867.5		Ø	4	===:::	.0193	102	Ø	9	Ø	Ø	Ø	Ø
i	678	2870.2		Ø	4	===:::	.0140	158	Ø	Ø	Ø	Ø	Ø	Ø
i	679	2872.5		ø	4	===:::	.0080	85	Ø	Ø	Ø	ø	Ø	øi
i	680	2875.2		ø	4	-===:::	.0020	20	Ø	Ø	ø	ø	ø	Ø
i	681	2877.5		Ø	4	-===:::	.0080	91	ø	Ø	ø	Ø	ø	øi
1	682	2389.0	1.85	Ø	4	* -==:::	.0260	270	Ø	Ø	Ø	Ø	Ø	Ø
1	693	2882.5		Ø	4	* -==:::	.0259	27Ø	Ø	Ø	Ø	Ø	Ø	Ø
i	684	2885.0		Ø	4	-==:::	.0200	209	Ø	Ø	Ø	Ø	Ø	Ø
1	685	2887.5		Ø	2	===:	.0840	818	17	ø ·	Ø	Ø	Ø	9
1	686	2890.0		Ø	2		.0229	231	Ø	0	Ø	Ø	Ø	Ø
1	687	2892.5		Ø	2	====::	.0120	122	Ø	Ø	· Ø	Ø	Ø	Øl
1	688 .	2895.0		Ø	Ø	=====:	.0340	348	Ø	Ø	Ø	Ø	Ø	Ø
1	689	2897.6		Ø	Ø	=====::	.0340	348	Ø	Ø	Ø	Ø	Ø	Ø
į	69ø	2900.0		Ø	Ø	=====::	.0540	540	7	Ø	Ø	Ø	Ø	Ø
1	691	2902.5		Ø		* =====::	.0540	535	6	Ø	Ø	Ø	Ø	Ø !
1	692	2905.0	1.84	Ø	Ø	====:::	.0420	435	Ø	Ø	Ø	Ø	Ø	Ø

SHELL DEV. AUST. : BASKER SOUTH No.1
Date : 21 Dec 83 ' Time : 13:57

LAG DATA PRINT

FILE#	DEPTH	BULK DENSITY	CALC,	/ LOM	LITHOLOGY	TOTAL GAS	C1	.C2	C3	iC4 .	iC5	CO2	H2S
		spc grv	용			ક	ppm.	ppm	ppm	ppm	mgq	ppm	ppm
693	2907.5	1.86	Ø	Ø	======:	.0220	235	Ø	Ø	Ø	Ø	Ø	Ø
694	2910.0	1.86	Ø	Ø	====::::	.6200	213	Ø	Ø.	Ø	Ø	Ø	Ø
695	2912.5	1.86	Ø	Ø	=====::	.0340	348	. Ø	Ø	Ø	Ø	Ø	Ø
696	2915.0	1.86	Ø	Ø	======::	.0340	348	Ø	Ø	Ø	Ø	Ø	Ø
697	2917.5		Ø	Ø	** =====:	.1400	1224	92	17	Ø	Ø	0	Ø
698	2920.0	1.86	Ø	Ø	====::::	.0920	809	83	41	Ø	Ø	Ø	Ø
699	2922.5		Ø	Ø	=====:::	.0430	443	43	3	Ø	Ø	Ø Ø	Ø Ø
700	2925.0		· Ø		* ====::	.0540	5ø9	34	Ø	Ø	Ø	Ø	Ø
701	2927.5		Ø	Ø	====:::	.0360	351	6	Ø	Ø	Ø		
7Ø2	2930.0		Ø	Ø	====::	•ø35ø	351	6	Ø	Ø	Ø	Ø Ø	Ø Ø
7Ø3	2932.5		Ø	Ø	====::	.0280	281	6	Ø	Ø	Ø Ø	Ø	Ø
707	2935.Ø		Ø	Ø	=::::::	.0300	313	Ø	Ø	Ø	Ø	Ø	Ø
708	2937.5		Ø	Ø	==::::::	.0640	522	6	Ø	Ø	Ø Ø	Ø	Ø
7Ø9	2940.0		Ø	Ø	====:	.0660	609	28	Ø Ø	Ø Ø	Ø	Ø	ø
710	2942.5		Ø	Ø	=====:	.0660	609	28	42	Ø	Ø	Ø	Ø
711	2945.0		Ø		** ===:	.2700	2262 · 1151	172 104	19	Ø	Ø	Ø	Ø
712	2947.5		Ø		* ====:::	.1260	261	84	4	Ø	Ø	Ø	Ø
713	2950.0		Ø	Ø	====::::	.0420 .0760	557	79	16	Ø	ø	Ø	ø
714	2952.5		Ø Ø	Ø	====:::	.0700 .0620	431	68	19	Ø	Ø	Ø	ø
715	2955.0		-	Ø	=====:::	.0520	431	68	19	Ø	ø	Ø	Ø
716	2957.5		Ø Ø	Ø	===:::::	.0250	243	11	0	Ø	Ø	ø	ø
717	2950.0		Ø	_	=::::::	.0333	282	9	Ø	Ø	Ø	Ø	ø
718 719	2962.5 2965.0		Ø	Ø	=::::::	.1390	974	143	15	Ø	ø	Ø	Ø
723	2957.5		Ø	Ø	====::::	.0340	318	17	ø	Ø	ø	Ø	Ø
721	2970.0		ø	Ø	====::::	.0390	278	13	ø	Ø	ø	Ø	3
722	2972.5		ø	Ø	====::::	.0300	278	13.	Ø	Ø	Ø	Ø	Ø
723	2975.0		Ø		=::::::	.0393	282	14	Ø	Ø	Ø	Ø	Ø
724	2977.5		Ø		****	.2429	1957	159	44	Ø	Ø	Ø	Ø
725	2980.1		Ø	Ø	* =::::::	.1696	1270	143	41	Ø	Ø	Ø	Ø
727	2985.0	1.92	Ø	Ø	=::::::	.0300	278	12	1	Ø	Ø	Ø	Ø
728	2937.5	1.82	Ø	Ø	====::::	.0350	355	7	1	Ø	Ø	Ø	Ø
729	299J.Ø	1.82	Ø	Ø	====::::	.0359	355	7	1	Ø	Ø	Ø	Ø
73Ø	2992.5	1.82	Ø	Ø	===:::::	.1850	1589	94	19	Ø	Ø	Ø	Ø
731	2995.Ø	1.82	Ø	Ø	=::::::	.1240	1048	59	25	Ø	Ø	Ø	Ø
732	2997.5	1.82	Ø	3	=::::::	.8300	7ø5	22	8	Ø	Ø	Ø	Ø
735	3030.0	1. 7 8	Ø		** ====::	.0303	654	95	10	Ø	Ø	Ø	Ø
737	3001.0	1.78	Ø		** ====::	.0399	654	96	10	Ø	Ø	Ø	Ø
738	3332.0	1.78	C	5	=====::	.0500	473	29	5	Ø	Ø	Ø	Ø
739	3003.0	1.78	Ø	5	=====:	.0590	473	20	6	3	Ø	Ø	Ø
743	3304.0	1.78	Ø	5	=====:	.0500	473	20	6	9	Ø	Ø	Ø
741	3005.0	1.78	Ø		* ====:::	.2320	2247	193	65	Ø	Ø	Ø	3
742	3006.0	1.78	Ø		* ====:::	.2823	2247	193	65	Ø	Ø	Ø	ß
743	3207.0	1.78	Ø		* ====:::	.2323	2247	193	65	Ø	Ø	Ø	Ø
744	3009.0	1.78	Ø	5	====::::	.1660	1357	130	19	Ø	Ø	Ø	Ø
745	3239.0	1.78	Ø	5	====::::	.1659	1357	130	19	Ø	Ø	Ø	Ø
746	3310.0	1.78	Ø	5	====::::	.1663	1357	130	19	Ø	Ø	9	Ø
747	3011.0	1.73	Ø	٠,	*** ====:	.5807	4969	322	93	9	Ø	Ø	Ø
749	3012.0	1.78	Ø	5	======:	.2200	1834	122	35	Ø	Ø	Ø	Ø
749	3013.0	1.78	Ø	~ 1	** ====:	.2700	2275	152	44	Ø	Ø	Ø	Ø
752	3014.0	1.78	Ø	0	====::::	.5420	4698	282	92	Ø	Ø	Ø	Ø
751	3015.0	1.78	Ø	Ø	=====:::	.2720	2349	140	46	. Ø	Ø	Ø	Ø

i

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 21 Dec 83 Time : 14:04

			·												
	FILE#	DEPTH	BULK DENSITY	CALC	C/ OLOM	LITHOLOGY	TOTAL GAS	Cl	C2	C3	iC4	iC5	CO2	H2S	ĺ
ł			spc grv		š		8	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ĺ
١	752	3016.0	1.78	Ø	Ø	====:::	.2720	2349	140	46	Ø	Ø	Ø	Ø	1
į	753	3017.0	1.78	Ø	Ø	======:	.1620	1319	117	• 19	Ø	Ø	Ø	Ø	1
i	754	3018.0	1.78	Ø	Ø	======:	.1620	1319	117	19	Ø	Ø	Ø	Ø	
į	755	3019.0		Ø	Ø	=====:	.1620	1319	117	19	Ø	Ø	Ø	Ø	ĺ
i	756	3020.0		Ø	Ø	** ======	.298ø	2610	125	43	Ø	Ø	Ø	Ø	1
i	757	3021.0		ø		 ** ======	.2980	2610	125	43	Ø	Ø	Ø	Ø	
i	758	3022.0		Ø	_	** ======	.2980	2610	125	43	Ø	Ø	Ø	Ø	ĺ
i	759	3023.0		Ø		* ======	.2440	2175	. 86	31	ø	ø	ø	Ø	i
i	760	3024.0		Ø	_	* ======	.2440	2175	86	31	ø	· ø	ø	Ø	ĺ
i	761	3025.0	-	ø		 * ======	.2440	2175	86	31	Ø	ø	Ø	Ø	ĺ
ì	762	3025.0		Ø	ø	======	.1160	1050	40	15	Ø	Ø	Ø	Ø	ĺ
i	763	3027.0		ø	ø	=======	.1160	1050	40	15	ø	ø	ø	Ø	i
i	764	3028.0		Ø	Ø	=======	.1160		40	15	ø	Ø	Ø	Ø	į
i		.3029.1		Ø		* =======	.4400	3512	286	109	ø	ø	ø	ø	ĺ
i	755	3030.2		Ø	-	* =======	.4400	3512	286	109	ø	ø	ø	Ø	i
i	767	3031.0		Ø	-	* =======	.4400	3512	286	109	ø	Ø	Ø	Ø	İ
i	768	3032.0		Ø	Ø	====::::	.0540	516	15	Ø	Ø	Ø	Ø	Ø	i
i	769	3033.0		Ø	Ø	=::::::	.0540	516	15	Ø	Ø	Ø	Ø	Ø	1
1	770	3034.0	1.82	Ø	Ø	=::::::	.0540	516	15	Ø	Ø	Ø	Ø	Ø	l
1	771	3035.0	1.80	Ø	Ø	=:::::::	.0560	484	36	Ø	Ø	Ø	Ø	Ø	
1	772	3036.0	1.80	Ø	Ø	=::::::	.0560	484	36	Ø	Ø	Ø	Ø	Ø	l
Ì	773	3037.0		Ø	Ø	=::::::	.0560	484	35	Ø	Ø	Ø	Ø	Ø	
1	774	3038.0	1.80	Ø	Ø	====:::	.1860	1540	114	3Ø	Ø	Ø	Ø	Ø	l
ŀ	7 75	3039.0	1.80	Ø	Ø	====:::	.1850	1540	114	3Ø	Ø	Ø	Ø	Ø	l
i	776	3040.0	1.83	Ø	Ø	====:::	.1860	1540	114	3Ø	Ø	Ø	Ø	Ø	į
-	777	3041.0		Ø	Ø	====::::	.4340	3551	229	113	Ø	Ø	Ø	Ø	i
- 1	778	3042.0		Ø	Ø	====::::	.4340	3551	229	113	Ø	Ø	Ø	Ø	ĺ
- !	779	3043.0		Ø	Ø	====::::	.4340	3551	229	113	Ø	Ø	Ø	Ø	i
1	780	3044.0		Ø		**====:::	•5960	4012	714	178	Ø	Ø	Ø	Ø	ſ
- 1	781	3045.0		Ø		* ====:::	.1620	1083	193	48	Ø	Ø	Ø	Ø	Í
	782	3046.Ø		Ø		* ====:::	.1620	1083	193	48	Ø	Ø	Ø	Ø	J
1	783	3347.0		Ø		*===:::::	.4120	35Ø6	171	93	Ø	Ø	Ø	Ø	j '
1	784	3948.0		Ø		*===:::::	.4120	3506	171	93	Ø	Ø	Ø	Ø	1
]	785	3049.0		Ø		*===:::::	.4120	35Ø6	171	93	Ø	Ø	Ø	Ø	
į	786	3050.0	-	Ø	Ø	=====:::	.1229	1090	57	25	Ø	Ø	Ø	Ø	
1	787	3051.0		Ø	Ø	=====:::	.1220	1090	57	26	Ø	Ø	Ø	Ø	
į	788 780	3052.0		Ø	Ø		.1220	1090	57	26	Ø	Ø	Ø	Ø	
1	789 790	3053.0		Ø		*=====:::	.5100	4260	246	116	Ø	Ø	Ø	Ø	
1		3054.0		Ø		*=====::	.5100	4250	246	116	Ø	Ø	Ø	Ø	
1	791 792	3055.0		9		*=====:::	.5100	4250	246	116	Ö	Ø	Ø	Ø	
1	792 793	3055.0 3057.0		Ø		*===:::::	.1780	1661	47	15	Ø	Ø	Ø	Ø	
,	793 794	3058.0		Ø		*===:::::	.1730	1661	47	15	Ø	Ø	Ø	Ø	
1	795	3059.0				*===:::::	.1780	1661	47	15	Ø	Ø	Ø	Ø	
!	795 796	3050.0		Ø Ø		*====:::	.2200	2132	62	31 .	Ø	Ø	Ø	Ø	
1	790 79 7	3061.0		Ø		*====::::	.2200	2132	62 63	31	Ø	Ø	Ø	0	
]	798	3062.0		Ø		***===:::	.2200 .9500	2132 8494	62 357	31 1ø8	Ø	Ø	Ø	Ø	
1	799 .	3063.0		Ø		***===:::	.9500	8494 8494	357 357	108 108	Ø Ø	Ø Ø	Ø	Ø !	
1	800	3064.0		Ø		***===:::	•9500	8494	357		Ø		Ø	Ø	
1	801	3065.0		Ø		***	1.2800	12134	513	108 153	Ø	Ø	Ø	Ø	
1	802	3066.0		Ø		**=====::	.3500	3412	144	153 43	Ø Ø	Ø Ø	Ø Ø	ØI	
i	803	3067.0		Ø		**=====::	.3600					_	-		
1	ر ن ب	20010	7010	Z)	* 1	::	· SONN	3412	144	43	Ø	Ø	Ø	øı	

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 21 Dec 83 Time : 14:10

FILE#	DEPTH	BULK DENSITY	CALC	:/ DLOM	LITHOLOGY	TOTAL GAS	Cl	C2	C3	iC4	iC5	C02	H2S
	;	spc grv	DO 8			8 .	ppm	ppm	ppm	ppm	ppm	mqq	mqq
804	3068.0	1.78	Ø		**=====::	.1600	1534	51	14	Ø	Ø	Ø	Ø
8Ø5	3069.0	1.78	Ø		**====::	.1600	1534	51	14	Ø	Ø	Ø	Ø
806	3070.0	1.78	Ø	-	****====::		1918Ø	640	180	12	Ø	Ø	g Ø
8Ø7	3071.0	1.78	Ø	-	**=====::	.8340	7569	286	7Ø	5	Ø	Ø	Ø
808	3072.0	1.78	Ø	~	**=====::	.8340	7569	286	70	5	Ø Ø	Ø Ø	Ø
809	3073.0	1.78	Ø		*=====::	.3100	2865	103	27	Ø	Ø	Ø	Ø
810	3074.0	1.78	Ø		*=====::	.3100	2865	108	27	Ø Ø	Ø.	Ø	Ø
811	3075.0	1.78	Ø	•	*====::	.3100	2865	108	27	Ø	. Ø	Ø	Ø
812	3076.0	1.78	Ø	-	*=====::	.3100	2865	108	27	Ø	Ø	Ø	Ø
813	3Ø77.Ø	1.78	Ø		*=====:::	.1920	1635	131	23		Ø	Ø	Ø
814	3078.0	1.78	Ø	-	*=====:::	.1920	1635	131	23	Ø Ø	Ø	Ø	2
815	3079.0	1.78	Ø		*====:::	.1920	1635	131	23	18	Ø	Ø	Ø
816	3080.0	1.78	Ø	_	*****===::		11275	75 <u>1</u>	152 152	18	Ø	Ø	Ø
817	3081.0	1.78	Ø	_	****===::	-	11275	751 751	152	18	Ø	Ø	Ø
818	3032.0	1.78	Ø	-	****===::		11275	751	152 71	7	Ø	Ø	Ø
819 •	3083.0	1.78	3	_	*=====::	.4829	4767	171 171	71	7	Ø	Ø	ø
820	3084.0	1.78	Ø	-	*=====:	.4820	4767		. 71	7	Ø	Ø	Ø
821	3085.0	1.78	Ø	-	*======:	.4820	4767	171	24	2	Ø	Ø	ø
822	3036.0	1.78	Ø	-	*=====::	.2660	2255	171 171	24	2	Ø	Ø	Ø
823	3037.0	1.78	Ø	_	*=====::	.2550	2255 2255	171	24	2	Ø	Ø	ø
824	3038.0	1.78	Ø	-	*=====::	.2660		95	59	3	Ø	ø	Ø
825	3039.0	1.83	Ø	_	*=====:	.298Ø .298Ø	2610 2610	95 95	59	3	Ø	Ø	Ø
826	3090.0	1.83	Ø	_	*======: *======:	.2930	2610	95	59	3	Ø	Ø	Ø
828	3091.0	1.80	Ø	_	*====:::		3985	271	108	18	ã	ø	Ø
829	3092.0	1.80	Ø		*====:::		3985	271	103	18	ø	ø	ø
830	3093.0	1.80	9	_	*====::::		3985	271	108	18	ø	2	Ø
831	3294.0	1.20 1.30	Ø		***** ===	.9240	7958	393	171	21	Ø	Ø	Ø
832	3095.0	1.83	Ø	_	***** ===	.9249	7958	393	171	21	Ø	ø	Ø
833	3396.0	1.80	Ø	-	**** ===	.9240	7958	393	171	21	ดี	Ø	Ø
834	3097.0	1.80	Ø		** ====::		1933	129	62	7	ø	Ø	Ø
835	3098.0	1.80	Ø	_	** ====::		1983	129	62	7	ø	ø	Ø
836	3399.0	1.80	Ø	_	** ====::	.2420	1983	129	62	7	Ø	Ø	Ø
837 838	3100.0 3101.0	1.80	Ø		***** == :	-	3941	393	279	21	Ø	Ø	Ø
339	3102.0	1.80	Ø	~	***** == :	.5600	3941	393	279	21	Ø	Ø	2
840	3103.0	1.80	Ø	•	***** == :	\$8540	7007	524	143	37	Ø	Ø	Ø
841	3104.0	1.83	Ø		*** ====::	.1340	1038	114	27	6	Ø	Ø	Ø
842	3105.1	1.30	ä	_	*** ====::	.1340	1039	114	27	6	Ø	Ø	Ø
843	3185.1	1.89	Ø	-	*** ====::	.1340	1238	114	27	5	Ø	2	3
844	3107.0	1.30	Ø		* ====::::	.1050	904	48	24	3	Ø	Ø	Ø
845	3109.0	1.80	Ø	-	* ====::::	.1050	904	48	24	3	Ø	Ø	Ø
846	3109.0	1.82	2		* ====::::	.1060	904	48	24	3	Ø	Ø	Ø
847	3113.0	1.80	Ø		====:::::	.0360	735	43	15	Ø	g	Ø	Ø
348	3111.0	1.80	ø	-	====:::::	.0360	735	43	15	Ø	Ø	· Ø	Ø
849	3112.0	1.80	Ø		====:::::	.ฮรรฮ	735	43	15	Ø	3	Ø	Ø
850	3113.0	1.83	Ø	Ø	====:::::	.0320	704	42	14	Ø	Ø	Ø	2)
851	3114.0	1.80	Ø	Ø	====:::::	.0320	704	42	14	Ø	Ø	20	Ø
852	3115.1	1.80	Ø	3	====:::::	.0320	704	42	14	Ø	Ø	Ø	Ø
353	3116.0	1.80	3	Ø	=====:::	.4440	3514	214	142	21	Ø	Ø	Ø
854	3117.0	1.80	Ø	g	=====:::	.4440	3514	214	142	21	Ø	Ø	Ø
855	3118.9	1.83	3	Ø	=====:::	.4440	3514	214	142	21	Ø	Ø	3
856	3119.0	1.83	2	Ø	=::::::	.3160	2595	142 🕋	78	14	Ø	Ø	Ø

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 21 Dec 83 Time : 15:02

LAG DATA PRINT

FILE#	DEPTH	BULK DENSITY	CALC	:/ oLom	LITHOLOGY	TOTAL GAS	Cl	C2	C3	iC4	iC5	C02	H2S
		spc grv	8			8	ppm	ppm	ppm	ppm	ppm	ppn	ppm
857	3120.0	1.80	Ø	Ø	=::::::	.316Ø·	2595	142	. 78	14	Ø	Ø	Ø
858	3121.0	1.80	Ø	Ø	* * * * * * == :	1.0400	8004	758	142	27	Ø	Ø	Ø
863	3123.0	1.80	Ø	Ø	* * * * * * * = = = :	1.0400	8004	758	142	27	Ø	Ø	Ø
864	3126.0	1.80	Ø	Ø	*=====:::	.4420	3828	109	114	21	Ø	Ø	Ø
865	3127.1		Ø	Ø	*=====:::	.4420	3828	109	114	21	Ø	Ø	Ø
866	3128.0		Ø	2	* =====:!	.1280	1121	63	11	Ø	Ø	Ø	Ø
867	3129.0		Ø	2	* =====:	.1280	1121	63	11	Ø	Ø	Ø	Ø
869	3130.0		Ø		* =====:	.1280	1121	63	11	Ø	. Ø	Ø	Ø
859	3131.0		Ø	2	======:	.1420	1155	104	18	Ø	Ø	Ø	Ø
370	3132.1		Ø	2	======:	.1420	1155	104	18	Ø	Ø	Ø	Ø
871	3133.0		Ø	2	=====:	.1420	1155	104	18	Ø	Ø	Ø	Øl
872	3134.0		Ø	2	====:::	.1780	1575	85	15	Ø	Ø	Ø	Ø
873	3135.1		ø		====::::	.1780	1575	85	15	Ø	Ø	Ø	Ø !
874 .	3135.0		Ø		=====::::	.1780	1575	85	15	Ø	Ø	Ø	2
874			Ø	2	=====:::	.1780	1575	85	15	Ø	Ø	Ø	ØI
875	3137.0 3138.0°		Ø	2	====:::	.1780	1575	85	15	Ø	Ø	Ø	Ø
•			Ø	2	=====:::	.1780	1575	85	15	ø	Ø	Ø	øi
877	3139.0			2	*******		16275	1008	264	34	ø	Ø	øi
878	3140.0		Ø					1003	264	34	0	ø	øi
879	3141.0		Ø	_	*******=:		16275	1003	264	34	Ø	Ø	Ø
880	3142.0		Ø	~-	*******		16275			34	Ø	Ø	Ø
881	3143.0		Ø	~	*=====:	.2480	2252	71	28			Ø	Ø
882	3144.1		Ø	_	*=====:!	.2480	2252	71	28	3	Ø		Ø
883	3145.0		Ø		*======:	.2480	2262	71	28	3	Ø	Ø	-
884	3146.0	1.80	Ø	2	===:::::	.2940	2458	171	45	4	Ø	Ø	Ø
885	3147.0	1.30	Ø	2	===:::::	.2940	2458	171	45	4	Ø	Ø	Ø
886	3148.0	1.80	Ø	2	===:::::	.2940	2458	171	45	4	Ø	Ø	Ø !
837	3149.0	1.78	Ø	Ø	1::::::1	.1950	1671	72	43	3	Ø	Ø	Ø
888	3150.0	1.78	2	Ø	1:::::::	.1950	1671	72	43	3	Ø	0	Ø
889	3151.0	1.78	Ø	Ø	1:::::::	.1950	1671	72	43	3	Ø	Ø	Ø
890	3152.0	1.78	Ø	Ø	1:::::::	.1200	974	71	31	4	Ø	Ø	Ø
891	3153.0	1.78	Ø	Ð	1::::::::	.1200	974	71	31	4	Ø	Ø	Ø !
892	3154.0	1.73	Ø	Ø	1:::::::	.1200	974	71	31	4	Ø	Ø	øl
893	3155.0		Ø	Ø	**====::	.6130	4872	378	167	13	Ø	Ø	Ø
894	3156.0		Ø	Ø	**====::	.6180	4372	378	167	13	Ø	Ø	Ø
895	3157.0		Ø	Ø	**=====::	.6180	4872	378	167	13	Ø	Ø	Ø
895	3158.0		Ø		***=====:	.9120	7569	429	211	16	Ø	Ø	Ø
897	3159.0		Ø	Ø	***=====:	.9120	7569	429	211	16	Ø	Ø	ø
898	3160.0		ø	Ø	***=====:	.9120	7569	429	211	16	Ø	Ø	Ø
899	3161.1		Ø	-	1::::::::	.2900	2224	254	57	4	Ø	Ø	Ø
900	3162.0		ø	-	1::::::::	.2900	2224	254	57	4	Ø	Ø	Ø
901	3163.0		Ø		1:::::::	.2900	2224	254	57	4	Ø	Ø	Ø
902	3164.2		Ø	_	*====:::	.2760	2161	184	77	3	Ø	Ø	Øl
903	3165.0		Ø	_	*====:::	.2750	2161	184	77	3	Ø	Ø	Ø
994	3156.0		Ø		*====::::	.2760	2161	184	77.	3	Ø	Ø	Ø
1 905	3167.0		Ø	Ø	*=::::::	.4180	3349	212	118	14	Ø	Ø	Ø
			Ø	Ø	*=::::::	.4180	3349	212	118	14	Ø	Ø	Ø
905	3169.0		Ø	-	*=:::::	.4180	3349	212	118	14	Ø	Ø	øi
907.	3169.0		-	_		.8830	7282	429	217	22	Ø	ø	øi
908	3170.0		Ø		**===::::		7282	429	217	22	Ø	Ø	ø
909	3171.0		Ø	Ø	**===:::::	.8880							øl
910	3172.0		Ø	0	**===:::::	.8880	7282	429 472	217 282	22 19	Ø Ø	Ø	ø
911	3173.2		Ø	Ø	**= ===== :		10441			19	Ø	Ø	øi
912	3174.0	1.78	Ø	Ø	**=====:	1.2300	10441	472	282	19	W	W	וש

SHE.

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 21 Dec 83 Time : 14:17

	FILE#	DEPTH	BULK	CALC	:/	LITHOLOGY	TOTÀL	C1	C2	C3	iC4	iC5	CO2	H2S	
٠			DENSITY	DO	LOM		GAS							ļ	
١		. :	spc grv	ક	;		8	bbw	.ppm	ppm	ppm	ppm	bbu	ppm	
	913	3175.0	1.78	ø	Ø	**=====:	1.2300	10441	472	282	19	Ø	Ø	Ø	
i	914	3176.0	1.78	Ø	Ø	=::::::	.2840	2244	165	81	4	Ø	Ø	Ø	4
i	915	3177.Ø		Ø	Ø	=::::::	.2840	2244	165 **	81	4	Ø	Ø	Ø	1
í	916	3178.1	1.78	Ø	Ø	=::::::	.2840	2244	165	81	4	Ø	Ø	Ø	
i	917	3179.0		ø	ø	=====:::!	.2840	2256	166	83	4	Ø	Ø	Ø	ĺ
i	918	3180.0		Ø	ø	=====:::	.2840	2256	166	83	4	Ø	Ø	Ø	
i	919	3181.0	1.78	ø	ø	=====::::	.2840	2256	166	83	4	Ø	Ø	0	L"
i	920	3182.0	1.78	ø	ø	*=::::::	.2760	. 2271	129	77	4	Ø	Ø	Ø	Ė,
i	921	3183.0		Ø	Ø	*=::::::	.2760	2271	129	77	4	Ø	Ø	Ø	1
ij	922	3184.0	1.78	ø	ø	*=::::::	.2760	2271	129	77	4	Ø	Ø	Ø	
i	923	3185.0	1.78	Ø	Ø	=====::::	.550Ø	4385	321	155	9	Ø	Ø	Ø	
i	924	3186.Ø	1.78	Ø	Ø	=====::::	.5500	4385	321	155	9	Ø	Ø	Øl	
i	925	3187.Ø	1.78	Ø	ø	====:::::	.5500	4385	321	155	9	Ø	Ø	Ø	
i	926	3188.0	1.78	ø	Ø	======:	.1700	16.07	43 🐞	4	Ø	Ø	Ø	Ø	
i	927	3188.6	-	Ø	Ø	=====:	.1700	1607	43	4	Ø	Ø	Ø	Ø	

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 25 Dec 83 Time : 02:25

~	m > m =	DD 7.10
LAG	DATA	PRINT

-	FILE#	DEPTH	BULK DENSITY	CALC	C/ OLOM	LITHOLOGY	TOTAL GAS	Cl	C2	C3	iC4	iC5	CO2	H2S
I		5	spc grv	9			8	ppm	ppm	ppm	ppm	ppm	ppm	ppm
1	5	3190.0	1.78	Ø	Ø	======:	.1700	1607	43	4	Ø	Ø	Ø	Ø
1	6	3191.0	1.78	Ø	Ø	=====:::	.1700 .		43	4	Ø	Ø	Ø	Ø
l	7.	3192.0	1.73	Ø	Ø	=====:::	.1700	1507	43	• 4	Ø	Ø	Ø	Ø
1	8	3193.1	1.78	Ø	Ø	=====:::	.1700	1697	43	4	Ø	Ø	Ø	0
ļ	9	3194.0	1.78	Ø	Ø	====:::	.1700	1607	43	4	Ø	9	Ø	Øl
1	10	3195.1	1.78	Ø	Ø	=====::::	.1700	1607	43	4	Ø	Ø	Ø	Ø 1
1	11	3195.0	1.78	Ø	Ø	====:::	.1700	1607	43	4	Ø	Ø	Ø	Ø
}	12	3197.1	1.75	Ø		******		12251	. 244	186	14 14	O Ø	Ø Ø	Ø Ø
1	13	3193.0	1.75	Ø		*****=::		12251	244	186	14 14	. Ø	Ø Ø	Ø
ļ	14	3199.0	1.76	Ø		******=::		12251	244	185	14 4	Ø Ø	о О	Ø 1
į	15	3233.0	1.76	Ø	_	**====::	.4020	3411	158	87 87	4	Ø	Ø	0
1	16	3201.0	1.76	Ø		**====::	.4020	3411	158	87 87	4	Ø Ø	Ø	Ø
•	17	3202.0	1.76	Ø		**====::	.4929	3411	158 89	66	3	Ø	Ø	øl
!	18	3203.0	1.76	Ø	Ø	======:	.2449	2083 2083	89	99 66	3	Ø	Ø	Ø
,	19	3204.0	1.76	Ø	Ø	=====:	.2440	2083	59 89	66	3	Ø	Ø	2 1
1	20	3205.0	1.76	Ø	Ø	=======:	.2449		543	186	9	Ø	Ø	Ø
1	21	-3205.0°	1.76	Ø	Ø	=======:	.955Ø .966Ø	8094 8094	543	186	9	Ø	Ø	Ø
į	22	3207.0	1.76	Ø Ø	Ø Ø	=======:	•965Ø	8304	543	186	9	Ø	· Ø	Øl
1	23	3203.0	1.76	23	-	· · · · · · · · · · · · · · · · · · ·	.2400	2213	124	74	2	Ø	Ø	øi
	24 25	3239.0	1.76 1.76	g		1::::::::	.2400	2213	124	74	2	Ø	Ø	ø
	25 25	3213.0	1.76	Ø		::::::::	.2400	2213	124	74	2	Ø	g	Ø
1	25 27	3211.0	1.76			**===== : : :	.2960	2751	107	62	3	Ø	ø	Ø
i i	27	3212.0 3213.0	1.76	g Ø	Ø	**====::	.2960	2751	107	62	3	Ø	Ø	Ø
1	20 3Ø	3214.0	1.76	Ø	Ø	**====::	.2960	2751	107	62	3	Ø	ø	øl
1	31	3215.0	1.76	Ø	-		.1840	1627	51	42	2	Ø	Ø	øi
i	32	3215.0	1.76	Ø		1:::::::	.1840	1527	51	42	2	Ø	ø	øi
1	33	3217.0	1.76	Ø		1:::::::::		1627	51	42	2	Ø	Ø	ø
1	34	3218.0	1.73	Ø	Ø	*=====:::	.5860	4738	348	139	8	Ø	Ø	øi
1	35	3219.0	1.73	Ø	Ø	*=====:::	.586ø	4738	348	139	é	ø	Ø	Ø
. ¦	35	3220.0	1.78	Ø	Ø	*=====::		4738	349	139	8	Ø	Ø	Ø
1	37	3221.0	1.78	Ø	Ø	*=====:::		1096	64	31	2	Ø	Ø	ø
i	38	3222.1	1.78	Ø		*====:::		1096	54	31	2	Ø	Ø	Ø
į	39	3223.0	1.73	Ø	Ø	*====:::	.1350	1096	64	31	2	Ø	Ø	0 1
i	40	3224.0	1.78	Ø	Ø	======::		4019	343	127	11	Ø	Ø	ព [
i	41	3225.0	1.78	Ø	Ø	======::		4019	343	127	11	Ø	Ø	Ø
i	42	3226.0	1.78	Ø	2	======::	.4900	4919	343	127	11	Ø	Ø	3
i	43	3227.1	1.78	Ø	2	======::	.2920	2355	164	74	4	Ø	Ø	0
i	44	3223.0	1.78	Ø	Ø	======::	.2929	2356	164	74	4	Ø	Ø	Ø I
1	45	3229.0	1.78	Ø	Ø	=====::	.2920	2366	164	74	4	Ø	Ø	0
ĺ	46	3229.0	1.78	Ø	Ø	======::	.2920	2355	164	74	4	Ø	Ø	Ø
i	47	3233.0	1.78	Ø	\mathcal{Z}	*=====:	.4100	3556	236	103	9	Ø	Ø	0 1
i	48	3231.0	1.78	Ø	Ø	*======:	.4103	3656	236	109	9	Ø	Ø	Ø
ĺ	49	3232.0	1.78	Ø	Ø	*=====:	.4190	3656	235	108	9	Ø	Ø	Ø
İ	50	3233.0	i.73	Ø	Ø	==::::::	.3100	2345	139	65 ·	4	Ø	Ø	0
İ	51	3234.0	1.73	Ø	Ø	==::::::	.3199	2345	139	55	4	Ø	Ø	O
į	52	3235.0	1.78	Ø	Ø	==::::::	.3100	2345	139	65	4	Ø	Ø	Ø
ı	53	3236.0	1.78	Ø	Ø	*=====::	.8400	7644	562	193	21	Ø	Ø	Ø
1	54 .	3237.Ø	1.78	Ø	Ø	*=====::	.8400	7644	552	193	21	Ø	Ø	Ø
1	55	3238.0	1.78	Ø	Ø	*=====::	.8400	7644	562	193	21	Ø	Ø	Ø
1	. 56	3239.0		Ø	Ø	=======:		1827	150	74	3	Ø	Ø	. Ø
: 1	57	3240.0	1.78	Ø	Ø	=======:	.2340	1827	15Ø	74	3	Ø	Ø	øl

SHELL DEV. AUST.: BASKER SOUTH No.1
Date: 25 Dec 83 Time: 02:31

	DATA P						سین بینے میں دین سیا دین جس میں سے س				مسر مذہ مسم بہت میں میں سے میں ۔		
FILE#	DEPTH	BULK DENSITY		LOM	LITHOLOGY	TOTAL GAS	C1	C2	Ĉ3	iC4	iC5	CO2	H2S
		spc grv	음 			ş 	ppm	mdd.	ppm	ppm	ppm	ppm	ndd
58	3241.0		Ø		======:	.2340	1827	150	74	3	Ø	Ø	. (
59	3242.0		Ø	-	*=====:	.1100	835	69	37	Ø	Ø	Ø	9
68	3243.0		Ø	~	*=====:	.1100	835	69	37	. Ø	Ø	Ø	(
61	3244.0		Ø		*=====:	.1100	835	69	37	Ø	Ø	Ø	9
62	3245.0		Ø		=::::::	.1900	1566	94	46	4	Ø	Ø	(
63	3245.1		Ø		=:::::::	.1900	1566	94	46	4	Ø	Ø	(
64	3247.0		Ø		=::::::	.1900	1566	94	46	4	Ø	Ø	(
65	3248.0		Ø		*==:::::	.3680	2847	265	101	7	Ø	· Ø	(
66	3249.0		Ø		*==:::::	.3580	2847	265	101	7	Ø	Ø	(
67	3250.0		Ø	_	*==:::::	.3690	2847	255	101	7	Ø	Ø	(
68	3251.0		Ø	Ø	-===::::	.2440	2012	114	73	4	Ø	Ø	(
72	3253.0		Ø	Ø	-===::::	.2440	2010	114	73	4	Ø	Ø	(
73	3254.0		Ø		*===::		8352	605	233	54	Ø	Ø	3
74	3255.0		Ø		*===::		8352	6Ø5	233	54	Ø	Ø	!
75	3256.0		Ø		*===:::		8352	695	233	54	Ø	Ø	(
76	3257.0		Ø		**===::		13921	1716	411	9ø 9ø	0 0	Ø Ø	
77	3258.1		Ø	-	**===::		13921	1716	411		Ø	Ø	;
78 70	3259.0		Ø		**===::		13921	1716	411	90 17	-	g	
79	3250.0		Ø		*===::	.4520	3776	162	116		Ø Ø	Ø	,
80	3251.0		Ø	-	*====::	.4520	3776	162	116	17 17	Ø	e O	,
81	3262.1		Ø		*===::	.4520	3775	162	116	7	Ø	Ø	,
92	3253.0		0	4	====:::	.2260	1732	142	71 71	7	Ø	g g	,
83	3254.0		Ø	4	====:::	.2263 .2259	1732	142 142	7 <u>1</u> 7 <u>1</u>	7	9	Ø	1
24	3265.0		Ø Ø	-	====::: *===:::	-	1732 10491	756	310	54	9	Ø	
85	3255.0		Ø		*==:: *=::		10491	756 756	310	54 54	Ø	Ø	
85 87	3257.0		Ø		*=== :		10491	755 756	310	54 54	0	3	
88	3268.0 3269.0		Ø	2	*==:::		9135	535 535	312	42	Ø	ž	
89	3270.0		3		*=		9135	685	312	42	Ø	g	,
93	3270.0		g		*==::		9135	585	312	42	ø	Ø	:
9.5	3271.0		ø	2	====::		9237	586	241	39	9	์ ช	,
92	3273.0		Ø	2	====::		9287	686	241	39	3	ด	į
93	3274.0		Ø	2	====::		9207	635	241	39	Ø	ø	
94	3275.0		Ø	2	:	.3350	2453	253	108	17	ø	g	
95	3275.0		Ø	2	-=====:!	.3359	2453	255	108	17	ø	g	
95	3277.0		Ø		-======:	.3350	2453	256	193	17	Ø	3	
97	3273.3		Ø		=====:	.5249	4872	397	174	12	Ø	ø	
93	3279.0		Ø	2	=====:	.5249	4372	397	174	12	Ġ	2	
99	3280.0		Ø	2	=====:	.5240	4372	397	174	12	Ø	a	í
103	3281.0		Ø		*====:		9514	854	253	21	Ø	Ø	
101	3232.8		Ø		*====:		9514	354	259	21	Ø	Ø	(
102	3283.0		Ø	-	*=====		9514	854	258	21	Ø	Ø	
103	3284.0	•	Ø	3	-=====:	.3940	2994	282	121	8	Ø	3	
104	3295.0		Ø	3	-=====:	.3940	2994	282	121	8	Ø	Ø	
105	3285.0		ø	3	-=====:	.3940	2994	282	121	8	Ø	Ø	1
105	3287.0		ด		 -======:	.2459	2307	115	69	5	Ø	Ø	
197	3288.0		Ø		-=====:	.2450	2007	115	59	5	Ø	Ø	
103	3289.0		Ø	3	-=====:	.2450	2007	115	69	5	ด	Ø	
139	3290.0		Ø	3	-====:::	.7650	5094	428	209	21	é	Ø	
110	3291.0		Ø	_	-====::::	.7668	5894	428	209	21	ø	ø	,
111	3292.0		Ø	3	-====:::	.7660	6394	428	- 209	21	Ø	g	
112	3293.0		Ø	-	*-===:::	.8120	5512	429	194	18	Ø	., 0	

LAG DATA PRINT

SHELL DEV. AUST. : BASKER SOUTH No.1 Date: 25 Dec 83 Time: 02:37

FILE#	DEPTH	BULK. DENSITY		LOM	LITHOLOGY	TOTAL GAS	Cl	C2	C3	iC4	iC5	CO2	H2S
		spc grv	8	; 		·	ppm	ppm	ppm	ppm	ppm	ppm	ppm
113	3294.0	1.74	Ø		*-===:::	.8120	6612	429	194	18	Ø	Ø	Ø
114	3295.0	1.74	Ø	3	*-===::::	.8120.	5612	429	194	18	Ø	Ø	2)
115.	3295.0	1.74	Ø	4	===::::	.2400	2186	129	* 55 .	7	Ø	Ø	2
116	3297.0	1.74	Ø	4	===::::	.2400	2186	129	65	7	Ø	Ø	Ø
117	3293.Ø	1.74	Ø	4	===::::	.2400	2186	129	65	7	Ø	Ø	Ø
118	3299.Ø	1.76	Ø	4	-=====::	.4390	3593	221	108	7	Ø	Ø	Ø
119	3300.0	1.76	Ø	4	-=====::	.4390	3593	221	109	7	Ø	Ø	Ø
120	3301.0	1.76	Ø	4	-=====::	.4380	359 3	221	108	7	Ø	Ø	Ø
121	3302.0	1.76	Ø	4	====:	.1690	1305	107	34	3	Ø	Ø	Ø
122	3303.0	1.76	Ø	4	====:	.1600	1305	107	34	3	· Ø	Ø	Ø
123	3304.0	1.76	Ø	4	====:	.1600	1305	107	34	3	g	Ø	Ø
124	3305.0	1.76	Ø	4	====::	.8160	6512	486	173	16	Ø	ž	Ø
125	3306.0	1.76	Ø	4	====::	.8160	6612	486	173	16	ø	ø	ø
125	3307.0	1.76	Ø	4	====::	.8150	6612	486	173	16	Ø	Ø	Й
	3308.0	1.76	Ø	3	====::	.8120	6473	386	217	41	Ø	Ø	Ø
128	3309.0	1.76	Ø	3	===::	.8120	6473	385	217	41	Ø	Ø	Ø
129	3310.0	1.76	Ø	3	====::	.8120	6473	385	217	41	Ø	Ø	Ø
130	3311.0	1.75	g	3		.1780	1542	128	5	9	Ø	Ø	Ø
131	3312.0	1.76	Ø	3	====::	.1780	1542	128	5	ø	Ø	Ø	g
132	3313.Ø	1.76	Ø	3	=====::	.1780	1542	128	5	Ø	Ø	Ø	Ø
133	3314.0	1.76	ø	3	-====:::	.1000	912	57	33	2	Ø		
134	3315.0	1.76	Ø	3	-====:::	.1022	912	57	33	2		Ø	Ø
135	3316.0	1.75	Ø		-=====:::	.1000	912	57	33	2	Ø	Ø	Ø
135	3317.0	1.76	Ø	3	-=====::	.1320	1075	57 69			Ø	Ø	Ø
137	3318.0	1.76	Ø	3	-=====::				37	2	Ø	ମ	Ø
133	3319.0	1.76	Ø	3	-=====::	.1320	1075	59 50	37	2	Ø	Ø	Ø
139	3320.0	1.76	Ø	3		.1320	1075	59	37	2	Ø	Ø	ภ
140	3321.0	1.76	Ø	3	===::	.2020	1663	121	49	3	g	Ø	Ø
141	3322.0	1.76	Ø		====::	.2020	1663	121	40	3	Ø	Я	Ø
142		1.76		3	====::	.2320	1663	121	40	3	Ø	Ø	Ø
143	3323.0		Ø	3	====::	.2220	1824	132	44	4	Ø	Ø	Ø
143	3324.1 3325.0	1.76	Ø	3	====::	.2220	1824	132	44	4	Ø	Ø	Ø
145		1.76	Ø	3	====::	.2220	1824	132	44	4	Ø	Ø	Ø
145	3325.0	1.76	Ø	4	-====:::	.6300	5237	286	139	23	Ø	Ø	Ø
	3327.0	1.76	Ø	4	-====::::	.6300	5237	285	139	20	Ø	Ø	Ø
147	3328.0	1.76	Ø	4	-====::::	.6300	5237	286	139	20	Ø	Ø	Ø
148	3329.0	1.76	Ø	4	-===::::	.2000	922	57	17	Ø	Ø	3	Ø
149	3330.0	1.76	Ø	4	-===::::	.2000	922	57	17	Ø	Ø	Ø	Ø
150	3331.0	1.76	Ø	4	-===::::	.2000	922	57	17	Ø	Ø	Ø	Ø
151	3332.0	1.75	3	4	-===::::	.7920	579	53	9	Ø	Ø	Ø	Ø
152	3333.0	1.76	Ø	4	-===::::	.7929	579	53	9	Ø	Ø	Ø	Ø
153	3334.0	1.76	Ø	4	-===:::	.7920	579	53	9	Ø	Ø	Ø	Ø
154	3335.0	1.76	Ø	4	-===::::	. 5960	522	29	4	Ø	Ø	Ø	Ø
155	3335.0	1.76	Ø	4	-==::::	•5960	522	29	4 .	Ø	Ø	Ø	Ø
156	3337.0	1.76	Ø	4	-==::::	.5959	522	29	4	Ø	Ø	Ø	Ø
157	3338.0	1.75	Ø	4	-==:::	.5950	522	29	4.	Ø	Ø	Ø	ß
159	3339.0	1.76	Ø	4	-===::::	.5960	522	29	4	Ø	Ø	Ø	Ø
155	3342.0	1.82	Ø	2	==::::	.2000	1888	5Ø	38	Ø	Ø	Ø	Ø
165	3343.0	1.82	Ø	2	==::::	.2093	1888	59	39	Ø	Ø	Ø	3
167 .	3344.0	1.82	Ø	2	-====::	.1800	1740	70	46	Ø	Ø	Ø	Ø
168	3345.0	1.82	Ø	2	-====::	.1800	1740	70	46	ø	Ø	ž	ä
	~~ ~ ~	1 00	Ø	2	i		1740		46			-	
169	3345.0	1.82	v	2	-====::	.1800	1/49	7ø	40	Ø	Ø	Ø	Ø

SHELL DEV. AUST. : BASKER SOUTH No.1
Date : 25 Dec 83 Time : 02:43

	DATA PE												
FILE#	DEPTH	BULK DENSITY	CAL	C/ OLOM	LITHOLOGY	TOTAL GAS	Cl	C2	C3	iC4	iC5	CO2	H2S
	5	spc grv		8		8 	ppm	ppm	ppm	ppm	ppm	ppm	mcjcj
171	3348.0	1.82	Ø		==::::	.1200	1131	28	23	Ø	Ø	Ø	Ø
172	3349.0	1.82	Ø		==::::	.1200	1131	28	23	Ø	Ø	Ø	Ø
173	3350.0	1.82	Ø		==::::	.0400	452	2	1 .	Ø	Ø	Ø	n
174	3351.0	1.82	Ø		===:::	.0400	452	2	1	Ø	Ø	Ø	g
175	3352.0	1.82	Ø	2	==::::	.0400	452	2	1	Ø	Ø	Ø	9
176	3353.0	1.82	Ø	_	-===::::	.0400	500	10	8	Ø	Ø	Ø	Ø
177	3354.0	1.82	Ø		-===:::::	.0400	500	10	8	Ø	Ø	Ø	Ø
178 179	3355.Ø	1.82	Ø		-===:::::	.0400	500	10	.8	Ø	Ø	· Ø	Ø
	3356.0	1.82	Ø		=::::::	.1000	1009	64	10	Ø	Ø	Ø	Ø
180	3357.0	1.82	Ø		=::::::	.1000	1009	64	10	Ø	Ø	Ø	Ø
181 182	3358.Ø 3359.Ø	1.82	Ø		=:::::::	.1000	1009	64	1Ø 5	Ø Ø	Ø	Ø	Ø
183	3359.0	1.82	Ø		=:::::::	.0300	700	15	5 5	Ø	Ø Ø	Ø	Ø
184	3351.0	1.82			=:::::::	.0300	700 700	15	5 5	Ø	Ø	Ø	g
185	3352.0	1.82	Ø		=:::::::	.0800	700 974	15	5 15	Ø	Ø Ø	Ø	Ø
186	3353.0	1.82 1.82	Ø Ø		==::::::	.0900	87Ø 87Ø	5Ø	15 15	Ø Ø	Ø	Ø Ø	Ø Ø
187	3354.0	1.82	Ø		==::::::	.0900 .0900	87Ø	5ø 5ø	15	21	21 9	Ø	Ø
188	3365.0	1.32	3		==:::::: ==:::::	.0500	636	5 <i>0</i>	2	g	Ø	Ø	2
189	3355.0	1.32	Ø		::::::	.0500	636	5	2	Ø	Ø	Ø	Ø
190	3357.0	1.82	Ø		==::::::	.0500	636	5	2	Ø	Ø	Ø	Ø
191	3358.0	1.32	Ø		==::::::	.03 <i>03</i>	535 536	5	2	9	a	Ø	Ø
192	3359.0		Ø		====::::<	.0300	500	5	2	Ø	Ø	Ø	Ø
193	3370.0	1.82 1.82	Ø	-	:	.0500	500 500	5	2	Ø	9	Ø	Ø
194	3371.0	1.82	Ø	9	===::::<\ ==:::::<\	.0300 .0200	25Ø	3	1	Ø	Ø	Ø	g
195	3372.0	1.82	Ø		-=::::<\ ====::::<	.0200	25 <i>ต</i> 25ต	3	1	Ø	Ø	2)	n
195	3373.0	1.82	Ø		====::::<	.0230	25% 25%	3	1	Ø	Ø	ø,	?) 3
197	3374.8	1.82	Ø	3	::XX	.0230 .0300	300	3	1	Ö	Ø	Ø	9
193	3375.0	1.82	Ø	8	::XX	.0300	300	3	1	Ø	Ø	Ø	ด
199	3375.0	1.82	Ø	8	::XX	.0300	300	3	· 1	Ø	Ø	Ø	3
200	3377.0	1.82	Ø	3	•	.1689	925	32	3	9	Ø	3	ø
231	3378.0	1.82	Ø	3	, ,	.1009	926	32	3	Ø	Ø	Ø	Ø
202	3379.0	1.32	Ø	8		.1000	925	32	3	Ø	9	g	อ
233	3380.0	1.82	Ø	3		.0200	240	3	9	9	3	Ø	Ø
254	3391.0	1.82	Ø	3	•	.0200	240	3	ő	g	9	7	ß
285	3382.0	1.32	Ø	_	:xxx	.0200	240	3	'n	3	ø	g	ดี
205	3393.0	1.92	Ø	8	:::::XX	.1200	1175	47	4	ø	ø	Ø	ø
237	3394.0	1.80	Ø	8	•	.1230	1175	47	4	Ø	Ø	Ø	3
203	3385.3	1.80	ä	8	: :	.1200	1175	47	4	g	Ø	Ø	3
239	3335.3	1.83	õ	3	:::::XX	.0200	235	5	1	ø	Ø	Ø	g
213	3387.3	1.83	3	3		.0203	235	5	ī	Ø	Ø	3	Ø
211	3388.0	1.82	Ø		:::::XX	.3233	235	5	1	Ø	Ø	9	Ø
212	3339.0	1,82	Ø		::::XXXX	.0323	260	5	ī	(3	Ø	Ø	C
213	3390.0	1.80	Ø	8		.0309	250	5	ī	Ø	Ø	Ø	3
214	3391.0	1.83	Ø	8		.0339	256	6	1	Ø	Ø	Ø	Ø
215	3392.0	1.83	Ø	3	:	.0200	210	5	ī	Ø	ø	n	2
216	3393.9	1.80	g		:::::XX	.0200	210	5	ī	ø	Ø	Ø	Ø
217	3394.2	1.92	2		XX	.0200	210	5	1	Ø	Ø	ß	Ø
218	3395.0	1.80	Ø		::::::XX	.0370	29%	ś	1	a	Ø	Ø	ø
219	3395.0	1.30	Ø	-	::::::::::::XX	.0333	290	6	ī	g	Ø	ð	я
223	3397.0	1.80	Ø		::::::XX	.0300	290	6	1	Ø	g	2	ä
221	3398.0	1.83	3		1::::::	.0830	765	43	4	ø	2)	3	3
222	3399.0	1.80	g			.0399	765	43	4	ø	ő	ø	ĝ

LAG DATA PRINT

SHELL DEV. AUST. : BASKER SOUTH No.1 Date : 25 Dec 83 Time : 02:48

FILE#		BULK DENSITY	CAI	OLO	LITHOLOGY	TOTAL GAS	C1	C2	C3	iC4	iC5	CO2	42S
		spc grv		용	و خلقه وسند جديد خديد النام وجدي شديد النامية وسند وجديد النامة والنام النامة	§ 	ppm	ppm	ppm	ppm	ppm	ppm	ppm
223 224 225 226 227 228 229 230 231 232 233 234 235 235	3400.0 3401.0 3402.0 3403.0 3404.0 3405.0 3405.0 3407.0 3407.0 3409.0 3411.0 3412.0 3413.0	1.89 1.89 1.89 1.89 1.89 1.80 1.80 1.80 1.80 1.80 1.80	Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	200 200 200 200 200 200 200 200 200 200		.0890 .0200 .0200 .0200 .3500 .3500 .3500 .5000 .5000 .5000 .0100 .0100	766 .200 200 200 4245 4245 4245 4245 4245 424	43 4 4 209 209 209 209 209 209 209 5 5	4 0 0 55 55 56 56 56 56 56 2 2	9 0 0 5 5 5 5 5 9 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0	9 0 9 9 6 9 9 9
237 238 239 240 241 242 243	3414.0 3415.0 3416.0 3417.0 3418.0 3419.0 3420.0	1.80 1.80 1.80 1.80 1.82 1.82 1.82 1.82	Ø 9 0 0 0 0 0	20 20 20 20 18 18 18		.0100 .0100 .0100 .0100 .0100 .0100	95 95 95 95 106 106 106	5 5 5 5 5 6 6 6	2 2 2 2 3 3 3	9 9 9 9 9 9	9 0 9 9 9 9	Ø Ø Ø Ø Ø	9 (9 9 9 9 9

APPENDIX H

FORMATION EVALUATION LOG

PE602291

This is an enclosure indicator page.

The enclosure PE602291 is enclosed within the container PE903478 at this location in this document.

The enclosure PE602291 has the following characteristics:

ITEM_BARCODE = PE602291
CONTAINER_BARCODE = PE903478

NAME = Formation Evaluation Log/Mud Log

BASIN = GIPPSLAND

PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Basker south 1 Formation Evaluation
Log/Mud Log (enclosure from Final Well

Report-attachment to WCR)

REMARKS =

 $DATE_CREATED = 24/12/83$

DATE_RECEIVED = 14/05/84

 $W_NO = W839$

WELL_NAME = Basker South-1

CONTRACTOR = Exploration Logging Australian Inc CLIENT_OP_CO = Shell Development (Australia) Pty Ltd

(Inserted by DNRE - Vic Govt Mines Dept)