

04 Aug 2008 From: B Openshaw/R Rossouw

To: R Oliver

DRILLING MORNING REPORT # 4 Longtom-4 H

Well Data							
Country	Australia	MDBRT	3259.0m	Cur. Hole Size	9.500in	AFE Cost	AUD\$81,987,600
Field	Longtom	TVDBRT	2632.9m	Last Casing OD	10.750in	AFE No.	LSRDV01/6
Drill Co.	Seadrill	Progress	253.0m	Shoe TVDBRT	2337.6m	Daily Cost	AUD\$692,100
Rig	West Triton	Days from spud	44.94	Shoe MDBRT	2590.8m	Cum Cost	AUD\$47,339,600
Wtr Dpth (MSL)	55.968m	Days on well	4.00	FIT/LOT:	1.68sg /		
RT-ASL (MSL)	41.100m	Planned TD MD	5822.000m	Current Op @ 0600	Drilling ah	ead as per DD	requirements at 3400m
RT-ML	97.068m	Planned TD TVDRT	2702.000m	Planned Op	Drill ahead the "100"		quirements to intersect

Summary of Period 0000 to 2400 Hrs

Drilling ahead as per DD requirements from 3006m to 3259m (2632.9mTVD). A hydraulic hose was repaired on the TDS and 0.5hrs was spent recycling the pumps to reactivate the MWD tools.

HSE Summary				
Events	Num. Events	Days Since	Descr.	Remarks
Abandon Drill		8 Days	Held at 10.30 hours.	Rig alarms activated. Fire and Abandon drill conducted.
BOP Test		13 Days	Pressure test on nipple up.	14 Days - 6th August 21 Days - 13th August
Drills	1	1 Day	Spill Drill.	Spill drill conducted by QTEC and Tasman Oil Tools.
Dropped Object		22 Days	Broken bolt on Link Tilt bracket.	When the link Tilt was retracted, the uneven piston movement caused the clamp bolt (on the Bail Arm) to break. The end of the bolt (10mm x 50mm) fell to the rig floor. Clamp remained coupled to the Bail Arm.
First Aid Case		10 Days	Relief derrickman caught hand at monkey board.	The relief derrickman was pulling back pipe when he lost his balance and placed his hand in such a position to have it caught between the pipe and the finger latch.
Incident		8 Days	Environmental spill.	Overflow at upper transverse trough due to blocked flow line. Approximately 65 ltrs.
PTW issued	7	0 Days		Permit to work issued for the day.
Safety Meeting		3 Days	Weekly Safety Meetings with crews.	Weekly safety meeting held at 1300hrs Saturday and 0045hrs on Sunday .
STOP Card	33	0 Days		Stop cards submitted for the day.
Time Out For Safety		2 Days		

Operations For Period 0000 Hrs to 2400 Hrs on 04 Aug 2008

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
P12	Р	D4	0000	0500	5.00	3081.0m	Drilled ahead 9.5in controlled drilling as per DD requirements from 3006m to 3081m.
P12	TP (RE)	G11	0500	0530	0.50	3081.0m	Repaired hydraulic leak on TDS.
P12	Р	D4	0530	2330	18.00	3259.0m	Drilled ahead 9.5in controlled drilling as per DD requirements from 3081m to 3259m. Drilling parameters: 150RPM, 10klbs WOB, 125stks, 730gpm, 2900psi.
P12	TP (TP)	G11	2330	2400	0.50	3259.0m	Cycled pumps and moved pipe to restart MWD tools as per DD instructions.

Operations For Period 0000 Hrs to 0600 Hrs on 05 Aug 2008

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
P12	Р	D4	0000	0600	6.00	3400.0m	Drill ahead 9.5in hole as per DD requirements from 3259m to 3400m.

Operations For Period Hrs to Hrs on

Phase Data to 2400hrs, 04 Aug 2008						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
Production Hole (2)(P12)	96	01 Aug 2008	04 Aug 2008	96.00	4.000	3259.0m

General	Comments
---------	----------

00:00 TO 24:00 Hrs ON 04 Aug 2008

Operational Comments Adjustments to rotary table elevation based on Fugro calculations;

General CO	mments													
			RT above L											
			RT above M West Triton			corne								
				0 1 1										
			1) Top drive rotating head has operating problems, to be able to rotate the IBOP must be operated first. This is impacting operational efficiency. New hydraulic pump on order?											
			3) CTU control panel has leaking valves, pressure regulator valve inoperable. Parts on order.											
			4) Link tilt clamps slipping on bails - need to rectify this issue.											
			5) Bail retaining plates on top drive bent, increasing time to change out bails by 1/2 hour. Require new retaining plates.											
			6) No spare UpperTop Drive IBOP or parts on board for Upper IBOP.											
Operatio	nal Comment	s	relating to e 7.2) Excess	ngines ma ive blow-b	ay be cause y observe	available for ed by fuel co d through oil own. Exciter	ntamina filler cap	ted with wa when it is	ter. removed (a	•	•	rs. Proble	ms	
	8) Emergency gene line).					k requires m	odificati	on to drain	line (no co	mmunic	ation with ta	ank throug	ıh drain	
			9) Pumping reads 3600p		read-out a	t Cyber chair	display	not accurat	te. At 2800	psi pum	p pressure,	cyber dis	play	
			10) Remote	controller	for Iron Ro	oughneck no	t operati	ional.						
			11) Automa	tic drill pip	e elevators	s not working	J.							
			12) Auto IBOP on TDS is sticky and does not operate smoothly - linkages distorted?? Drillers are not currently closing the IBOP while making connections as it is very difficult to re-open,											
Operatio	nal Comment	s	Hours on jar ser. No 1416-1515: 53hrs											
Omeratio	nal Cammant	_	MWD tools not providing reliable directional readings after 2941m. Using Xceed to provide necessary data.											
Operatio	nal Comment	5	MWD tool requiring frequent recycling of pumps after a connection to obtain communication response from tool.											
SBM Data					Cost To	oday AUD	\$ 1479	94						
Mud Type:	ACCOLADE	HTHP-	Temp:	120C°	Ex.Lime:			Solids(%vo	l):	21%	Viscosity		85sec/q	
Oil Type:	ACCOLADE	HTHP:		500psi	Salinity:	2715	62mg/l	H2O:		21%	YP PV		48lb/100ft 27c	
	BASE	HTHP-	FL: 3.0	cc/30min	Elec.Stab	.:	785mV	Oil(%):		56%	O/W Ratio:			
Sample-From:	Flowline	HTHP-	cake:	2/32nd"				Sand:		0.5	Gels 10s		72/28	
Time:	21:40			Z/OZIIG						0.5			14	
		CaCl m	nud:	27.44				LGS:		11%	Gels 10m Fann 003		14 25	
Weight:	12.10sg									11%	Gels 10m		1- 2: 1	
ŭ	12.10sg 64C°	CaCl w						LGS: Oil On Cut:			Gels 10m Fann 003 Fann 006 Fann 100		1- 2: 1:	
Weight: Temp: Comment	ŭ	Added regular Weight centrifu Admira	0.3ppb Tau M rly for damage ted premix to 1 uges in Barite I ul 50 sand, add	27.44 lod to active and replace 12.0ppg with recovery means of the second seco	ced screens th Barite to node to redu	s as necessar allow additior uce LGS. See	y (5x280 n without page los	Oil On Cut: necked shak mesh news reduction in sees of up to	er screens screens use mud weigh 10bbl/hr in	11% 9% ed). t. Run	Gels 10m Fann 003 Fann 006		72/28 14 28 11 13 38 78 123	
Temp:	ŭ	Added regular Weight centrifu	0.3ppb Tau M rly for damage ted premix to 1 uges in Barite I ul 50 sand, add	27.44 lod to active and replace 12.0ppg with recovery means of the second seco	ced screens th Barite to node to redu	s as necessar allow additior uce LGS. See	y (5x280 n without page los	Oil On Cut: necked shak mesh news reduction in sees of up to	er screens screens use mud weigh 10bbl/hr in	11% 9% ed). t. Run	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300		14 28 11 13 38	
Temp:	ŭ	Added regular Weight centrifu Admira	0.3ppb Tau M rly for damage ted premix to 1 uges in Barite I ul 50 sand, add	27.44 lod to active and replace 12.0ppg with recovery means of the second seco	ced screens th Barite to node to redu	s as necessar allow additior uce LGS. See	y (5x280 n without page los	Oil On Cut: necked shak mesh news reduction in sees of up to	er screens screens use mud weigh 10bbl/hr in	11% 9% ed). t. Run	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300	O2	14 23 11 13 34	
Temp: Comment	ŭ	Added regular Weight centrifu Admira	0.3ppb Tau M rly for damage ted premix to 1 uges in Barite I ul 50 sand, add	27.44 lod to active and replace 12.0ppg with recovery means of the second seco	ced screens th Barite to node to redu Calcium Car	s as necessar allow additior uce LGS. See	ry (5x280 n without epage los tive to mi	Oil On Cut: necked shak mesh new s reduction in isses of up to nimize losse	er screens screens use mud weigh 10bbl/hr in es with good	11% 9% ed). t. Run	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600	O2	1- 2: 1: 1: 3: 7: 12:	
Temp: Comment	ŭ	Added regular Weight centrifu Admira	0.3ppb Tau M rly for damage ted premix to 1 uges in Barite I ul 50 sand, add	27.44 lod to active and replace 12.0ppg with recovery means of the second seco	ced screens th Barite to node to redu calcium Cal	s as necessar allow additior uce LGS. See	ry (5x280 n without epage los tive to mi	Oil On Cut: necked shak mesh new s reduction in isses of up to nimize losse	er screens screens use mud weigh 10bbl/hr in es with good	11% 9% ed). t. Run	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600	O2	1- 2: 1: 1: 3: 7: 12:	
Temp: Comment Bit # 10	64C°	Added regular Weight centrifu Admira	VP: 0.3ppb Tau M ly for damage ted premix to 1 uges in Barite ul 50 sand, add	27.44 lod to active and replace 12.0ppg with recovery means of the second seco	ced screens th Barite to node to redu calcium Car Wear	s as necessar allow addition uce LGS. See bonate to act	y (5x280 n without epage los tive to mi	Oil On Cut: necked shak mesh new s reduction in isses of up to nimize losse	er screens screens use mud weigh 10bbl/hr in es with good	11% 9% ed). t. Run	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600		1. 2: 1 1: 3: 3: 7: 12: R	
Femp: Comment Bit # 10 Size ("):	64C°	Added regular Weight centrifu Admira results.	VP: 0.3ppb Tau M ly for damage ted premix to 1 uges in Barite ul 50 sand, add	27.44 lod to activ and replac 12.0ppg wit recovery m ded sized C	ced screens th Barite to node to redu calcium Car Wear	s as necessar allow addition uce LGS. See bonate to act	y (5x280 n without epage los tive to mi	Oil On Cut: necked shak mesh new s reduction in sses of up to nimize losse D	er screens screens use mud weigh 10bbl/hr in es with good	11% 9% ed). t. Run	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600		1. 2: 1 1: 3: 3: 7: 12: R	
Femp: Comment Bit # 10 Size ("): Mfr:	64C°	Added regular Weight centrifu Admira results.	0.3ppb Tau M rly for damage sed premix to 1 uges in Barite in 150 sand, add . IADC# WOB(avg)	27.44 lod to active and replace 12.0ppg with recovery midded sized Communication M322	ced screens th Barite to node to redi Calcium Car Wear Bitwear C	s as necessar allow addition uce LGS. See bonate to act	y (5x280) without page lostive to mi	Oil On Cut: necked shak mesh new s reduction in sses of up to nimize losse D	er screens screens use mud weigh 10bbl/hr in ss with good	11% 9% ed). t. Run B	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600 G	over Bit F	1. 2: 1 1: 3: 7: 12: R	
Temp: Comment	64C°	Added regular Weight centrift. Admira results.	0.3ppb Tau M rly for damage sed premix to 1 uges in Barite in 150 sand, add . IADC# WOB(avg)	27.44 lod to activ and replace 12.0ppg wit recovery method sized Community M322 8.00klb	ced screens th Barite to node to redu calcium Car Wear Bitwear C	as necessar allow addition uce LGS. See bonate to act	y (5x280) without page lostive to mi	Oil On Cut: mecked shak mesh new s reduction in sses of up to nimize losse D ed over last ss tom Hrs	er screens screens use mud weigh 10bbl/hr in es with good L L t 24 hrs 253.0m	ad). t. Run B Cum. I	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600 G G G G G G G G G G G G G G G G G G	over Bit F	1. 2: 1 1: 3: 3: 7: 12: R	
Femp: Comment Bit # 10 Size ("): Wfr: Type:	64C°	Added regular Weight centrift. Admira results. 9.50in REED PDC 18795	O.3ppb Tau M rly for damage led premix to 1 lyges in Barite il 50 sand, add IADC# WOB(avg) RPM(avg)	27.44 lod to active and replace 12.0ppg with recovery midded sized Community M322 8.00klb 150	ced screens th Barite to node to redu calcium Car Wear Bitwear C	as necessar allow addition uce LGS. See bonate to act	y (5x280) without page lostive to mi O1 Drille Progres	Oil On Cut: necked shak mesh new s reduction in sees of up to nimize losse D ad over last ss tom Hrs Orill Hrs	er screens screens use mud weigh 10bbl/hr in se with good L L t 24 hrs 253.0m 13.9h	11% 9% ed). t. Run f	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600 G G G G G G G G G G G G G G G G G G	over Bit F	1. 2: 1 1: 3: 3: 7: 12: 12: 12: 12: 12: 12: 12: 12: 12: 12	
Femp: Comment Bit # 10 Size ("): Mfr: Fype: Serial No.:	64C°	Added regular Weight centrift. Admira results. 9.50in REED PDC 18795	UP: 0.3ppb Tau M rly for damage red premix to 1 uges in Barite in 150 sand, add . IADC# WOB(avg) RPM(avg) F.Rate	27.44 lod to active and replace 12.0ppg with recovery method sized Community M322 8.00klb 150 730gpm	ced screens th Barite to node to redu calcium Car Wear Bitwear C	as necessar allow addition uce LGS. See bonate to act	y (5x280) without page lostive to mi O1 Progre: On Bot IADC E	Oil On Cut: necked shak mesh new s reduction in sses of up to nimize losse D ded over last ss tom Hrs Drill Hrs	er screens screens use mud weigh 10bbl/hr in se with good L L t 24 hrs 253.0m 13.9h	11% 9% ed). t. Run f	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600 G G G G G G G G G G G G	over Bit F	1. 22: 1 1: 33: 7: 12: 12: 12: 12: 13: 14: 563.0m 44.5h	
Gemp: Comment Bit # 10 Size ("): Wfr: Fype: Serial No.: Bit Model	64C°	Added regular Weight centrifu Admira results. 9.50in REED PDC 18795 6M-B3	UP: 0.3ppb Tau M ly for damage led premix to 1 lyges in Barite li 50 sand, add IADC# WOB(avg) RPM(avg) F.Rate SPP	27.44 lod to active and replace 12.0ppg with recovery method sized Community M322 8.00klb 150 730gpm	ced screens th Barite to node to redu calcium Car Wear Bitwear C	as necessar allow addition uce LGS. See bonate to act	y (5x280) without page loss tive to mi O1 Drille Progre: On Bot IADC I	Oil On Cut: necked shak mesh new s reduction in sses of up to nimize losse D ded over last ss tom Hrs Drill Hrs	er screens screens use mud weigh 10bbl/hr in es with good L t 24 hrs 253.0m 13.9h 23.0h	ad). t. Run B Cum. I Cum I Cum I	Gels 10m Fann 003 Fann 006 Fann 100 Fann 200 Fann 300 Fann 600 G G G G G G G G G G G G	over Bit F	1 2 1 1 1 3 3 7 12 12 R R R S63.0m 44.5h 60.0h	

BHA # 12			·						
Weight(Wet)	30.00klb	Length		215.0m	Torque(ma	x) 13	3000ft-lbs	D.C. (1) Ann Velocity	417fpm
Wt Below Jar(Wet)	14.00klb	String	2	218.00klb	Torque(Off.	.Btm) 8	3000ft-lbs	D.C. (2) Ann Velocity	386fpm
		Pick-Up	2	270.00klb	Torque(On.	.Btm) 10	0000ft-lbs	H.W.D.P. Ann Velocity	298fpm
		Slack-Off	2	211.00klb				D.P. Ann Velocity	298fpm
BHA Run Description		9.5in PDC bit, HWDP.	PD Xceed 6	75, Eco so	ope, Tele so	cope, NM HWD	P, X/O, 6x	5.5" HWDP, X/O, Jar, X/O), 12x 5.5"
BHA Run Comment									
Equ	uipment		Length	OD	ID	Serial #	:	Comment	
PDC Bit			0.22m	9.50in		218795			
PD Xceed 675			7.66m	6.75in	ı	241			
ECO Scope			8.05m	9.13in	1	963			
Tele Scope			8.52m	6.88in	1	EO 330			
NM HWDP			9.19m	6.75in	ı	SBD 3170			
X/O			0.49m	7.00in	ı	11560.3			
HWDP			56.23m	7.06in	ı				
X/O			1.22m	7.00in	1	SSD7142			
Jar			9.62m	6.25in	1	1416-1515			
X/O			0.91m	7.00in		508A67			
HWDP			112.76m	7.00in					
Survey	•	·		·	· ·				

Survey								
MD	Incl	Azim	TVD	Vsec	N/-S	E/-W	DLS	Tool Type
(m)	(deg)	(deg)	(m)	(deg)	(m)	(m)	(deg/30m)	
			0.00	0.0	0.0	0.0	0.0	
3076.34	72.8	185.3	2539.55	-1446.4	-1446.4	-113.2	1.1	
3106.22	72.9	185.5	2548.36	-1474.8	-1474.8	-115.8	0.2	
3136.04	76.0	186.2	2556.35	-1503.4	-1503.4	-118.8	3.2	
3164.24	80.1	185.2	2562.19	-1530.9	-1530.9	-121.5	4.5	
3194.93	79.5	186.0	2567.62	-1560.9	-1560.9	-124.5	1.0	
3224.35	81.5	184.3	2572.48	-1589.8	-1589.8	-127.1	2.7	
3254.13	84.4	184.1	2576.14	-1619.3	-1619.3	-129.2	2.9	
3283.78	87.2	180.5	2578.31	-1648.8	-1648.8	-130.4	4.6	
3313.51	90.4	179.5	2578.93	-1678.5	-1678.5	-130.4	3.4	
3343.47	93.1	182.4	2578.01	-1708.5	-1708.5	-130.9	4.0	

Bulk Stocks					
Name	Unit	In	Used	Adjust	Balance
Drill Water	MT	0	36	0	138.0
Rig Fuel	m3	0	17	0	206.0
POTABLE WATER	MT	0	28	0	288.0
Cement class \'G\'	MT	0	0	0	52.0
Bentonite	MT	0	0	0	45.0
Barite	MT	0	17	2	139.0
SOBM	m3	0	2	0	119.0
Brine	m3	0	0	0	192.0

Pu	Pumps																
Pump Data - Last 24 Hrs									Slow Pump Data								
No.	Туре	Liner (in)	MW (sg)	Eff (%)	SPM (SPM)	SPP (psi)	Flow (gpm)	Depth (m)	SPM1 (SPM)	SPP1FI (psi)	low1(gpn	n)SPM2 (SPM)	SPP2 (psi)		SPM3 (SPM)		Flow3 (gpm)
1	National 14 P-220	6.50	1.44	97	62	2900	363	3228.0	30	400	176	40	450	234	50	550	293
2	National 14 P-220	6.50	1.44	97	62	2900	363	3228.0	30	300	176	40	450	234	50	600	293
3	National 14 P-220	6.50	1.44	97					30		176	40		234	50		293

Casing			
OD	LOT / FIT	Csg Shoe (MD/TVD)	Cementing
30 "	/	128.80m / 128.80m	168bbl class G at 15.9ppg, 200% excess.
16 "	/	750.03m / 750.03m	Lead 516 bbls "G" class at 12.5ppg. Tail 229 bbls "G" class at 15.80 ppg
10 3/4"	/ 1.68sg	2590.78m / 2337.57m	200bbl class "G" at 15.8ppg, TOC at 1900m

Personnel On Board					
Company	Pax				
ADA	7				
Seadrill	13				
Seadrill Services.	38				
Catering	9				
Halliburton	2				
Baker Hughes Inteq	7				
Halliburton	2				
Tamboritha	3				
Q Tech	1				
Tasman Oil Tools	2				
Reach	1				
Schlumberger	6				
K&M	1				
Total	92				

Mud Volur Shaker Da	•	osses and Sh	nale	Engineer : Brian	Auckram/Tim Waldhute	er	
Available	2422.6bbl	Losses	145.0bbl	Equipment	Description	Mesh Size	Comments
Active	410.0bbl	Downhole	44.0bbl	Shaker 1	VSM-300	255	
Mixing		Surf+ Equip	81.0bbl	Shaker 1	VSM-300	255	
viixirig		Suii+ Equip	01.0001	Shaker 2	VSM-300	280	
Hole	840.6bbl	Dumped		Shaker 2	VSM-300	280	
Slug Reserve 1172.0bbl De-Gasser De-Sander	De-Gasser De-Sander		Shaker 3	VSM-300	280		
Reserve	1172.0001			Shaker 3	VSM-300	280	
Kill		De-Silter Centrifuge		Shaker 4	VSM-300	280	
		Evaporation	20.0bbl	Shaker 4	VSM-300	280	

Marine

Weather on 04 Aug 2008

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period	
10.0nm	5kn	130.0deg	1016.0mbar	12C°	0.1m	120.0deg	2s	
Rig Dir.	Ris. Tension	VDL	Swell Height	Swell Dir.	Swell Period	Weather Comments		
24.1deg	440.00klb	2780.00klb	0.6m	120.0deg	7s	Wave and swell heights are estimates.		
Comments						are est	imates.	

Vessel Name	Arrived (Date/Time)	Departed (Date/Time)	Status		Bulks		
Pacific Battler			En route to rig	Item	Unit	Used	Quantity
				Rig Fuel	m3		492
				Potable Water	Mt		445
				Drill Water	Mt		150
				CEMENT G	Mt		0
				Barite	Mt		84
				Bentonite	Mt		0
				Base Oil	m3		0
				Brine	m3		118
Pacific Valkyrie			At rig	Item	Unit	Used	Quantity
				Rig Fuel	m3		570.4
			Potable Water	Mt		278	
				Drill Water	m3		718
				CEMENT G	Mt		0
				Barite	Mt		105
				Bentonite	Mt		34.8

			Item Unit	Used	Quantity	
		SOBM	m3		79	
		Base Oil	m3		0	
		Brine	m3		0	
-	·	•				